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Abstract

Precision Agriculture is generally defined as “doing the right practice at the right loca-
tion and time at the right intensity”. To achieve this, the knowledge of crop and soil
characteristics is fundamental and new technologies have been growing in the last thirty
years. In this context, Unmanned Aerial Vehicles (UAVs) surveys can provide a simple,
reliable and cost-effective way to monitor agricultural areas.
This dissertation demonstrates the potential of the use of UAVs in agriculture and tries
to find solutions to some relevant issues still open, in order to encourage the spread
of UAV surveys for crop monitoring and management. The final aim of the thesis is
to recommend guidelines for conducting UAV surveys in precision agriculture applica-
tions. Some critical aspects of the surveys are addressed in it, from sensors analysis to
data exploitation, by means of four different case studies. In the first, the radiometric
calibration of sensors is presented, with a careful analysis of the consistency of mul-
tispectral datasets acquired by a common and widespread sensor, the Parrot Sequoia
camera. The performances of different processing strategies are analyzed and com-
pared and finally the reliability of results is assessed with respect to Sentinel-2 data.
In the second case study, some practical aspects of surveys and processing are illus-
trated, in order to generate accurate terrain models with a low-cost mass market UAV
in a vineyard. The best flight configurations are studied together with the various pro-
cessing software available on the market, to optimize survey times and costs without
excluding the accuracy of the final product. The third case focuses on one of the topics
most studied by researchers: the detection of crop rows from UAV imagery to derive
specific information on vegetation canopy. Thresholding algorithms, classification al-
gorithms and Bayesian segmentation are tested and compared on three different crop
types, namely grapevine, pear and tomato, for analyzing the suitability of the methods
according to the characteristics of each crop. Finally, the last study is an example of the
effectiveness of the use of UAV in precision agriculture. It deals with the integration of
data collected by UAV and geophysical ground-based surveys to delineate site-specific
management zones in a vineyard. For this purpose, the use of UAV multispectral and
thermal images provides a unique way to get information related to the crop develop-
ment along the growing season.
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CHAPTER1
Introduction

The term "Precision Agriculture" was adopted for the first time at the beginning of the
nineties, as the title of a workshop held in Great Falls (Montana, USA) about modern
agricultural practices (Oliver et al., 2013). Precision Agriculture (PAg) can be generally
defined as “doing the right practice at the right location and time at the right intensity”
(Mulla and Khosla, 2016). This requires a detailed description of the variability at field
scale of soil and crop properties, in order to manage water and nutrients with variable
rates, according to the actual irrigation and nutrient requirements (Ortuani et al., 2019).
Fields are not treated homogeneously, but are divided in management zones and the
right treatments are provided separately within each zone (Maes and Steppe, 2019).
Benefits of PAg are twofold: on one hand, saving the environment, by reducing the
environmental impacts of agricultural practices and limiting the waste of natural re-
sources, on the other hand, increasing farmers’ incoming, by decreasing their inputs
without affecting or even improving the quality of crop yield (Mulla, 2013).

Fundamental in PAg is the knowledge of the in-field spatial variability of soil and
crop properties. Since the last four decades, Remote Sensing (RS) techniques have been
widely adopted to collect spatial information on crops and soils. A detailed review of
the use of RS in agriculture is provided in Mulla (2013). Starting from the launch of
Landsat missions in 1972, satellite RS has been used to monitor crops status and re-
trieve correlation between spectral data and crop yield (Tucker et al., 1980). Satellite
RS provides a unique way to obtain estimates over spatially extensive areas, strongly
contributing in PAg applications from regional to global scale (Atzberger, 2013). Var-
ious are RS applications in agriculture: monitoring vegetation vigor (Sashikkumar
et al., 2017), assessing crop phenological stages (Boschetti et al., 2018), estimating
crop biomass (Guerini Filho et al., 2019). Variables collected with RS technologies
help in yield forecasting many existing operational large-scale agricultural monitoring

1
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Chapter 1. Introduction

systems (Fritz et al., 2019). Among all, a special mention for the Food Security unit at
JRC of the European Commission in Ispra (Italy) (López-Lozano et al., 2015).

Nevertheless, satellite RS applications are limited by the spatial and temporal reso-
lution available from these systems, which is often not suited to meet local objectives, in
particular at field-scale level. In recent years, a noteworthy development of Unmanned
Aerial Vehicles (UAVs) has been registered, in terms of vehicles miniaturization, im-
provement of their components, especially GNSS (Global Navigation Satellite System)
and INS (Inertial Navigation System) systems, and availability of new and ultra-light
sensors. This advancement has made the UAV a suitable platform to collect data in
agricultural applications, filling the gap between RS and terrestrial techniques (Pádua
et al., 2017). Using UAVs is a good compromise between the large coverage obtainable
with remote platforms (mainly satellite and aircraft) and the accuracy of the terrestrial
data, with advantages in terms of time-consumption and costs of the surveys. In Figure
1.1, a comparison of different survey systems is proposed, by relating the extension of
the area of interest and the spatial resolution of the acquired images. Unlike satellites
and airplanes, the increase in resolution compensates for the decrease in the size of the
area and makes UAVs the platform dedicated to identifying within-field variations in
agriculture.

Figure 1.1: Comparison among different survey systems, as respect to the extension of the area of interest
and resolution, in Nixon et al. (2017).

UAVs have introduced a new point of view for agricultural surveys, by allowing to
collect information closely from above, giving rise to several applications. As early as
2008, Nebiker et al. (2008) proposed the prototype of a multispectral sensor suitable
to be mounted on UAV and conducted experiments with it to assess vegetation health
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with promising results. Starting from this experience, a variety of studies can be found
in the literature about effective UAV surveys conducted for PAg purposes. Main appli-
cations involve in-field weed mapping, vegetation growth monitoring and yield estima-
tion, crop water stress analysis and optimization of irrigation management (Pádua et al.,
2017, Tsouros et al., 2019). De Castro et al. (2018b) exploited the very-high resolution
of UAV imagery to map weeds in sunflowers and cotton fields, developing an algo-
rithm based on machine learning techniques. In Stroppiana et al. (2018), the presence
of weeds in rice fields was detected by means of an automatic procedure for classifying
UAV data at early stages of the growing season. Nebiker et al. (2016) investigated the
suitability of UAV surveys with light-weight sensors for crop yield prediction of rape
and barley, finding high correlation values between vegetation indices derived from
UAV images and reference yield measures. UAV data were adopted in Stroppiana et al.
(2019) for estimating maize vegetation density at the beginning of the season in North-
ern Italy. In Hoffmann et al. (2016), crop water stress maps were derived from RGB
and thermal UAV imagery for spring barley fields located in Western Denmark in dif-
ferent moments of the season. Caruso et al. (2019) conducted experiments on both
irrigated and rainfed olive orchards in order to estimate tree height, canopy diameter
and canopy volume from UAV images. Quebrajo et al. (2018) stressed the needs of
site-specific irrigation strategies by evaluating water status of sugar beet plants from
thermal data acquired with UAV surveys. In addition, some papers focus not only on
application results but also on assessing methodologies performances. Gómez-Candón
et al. (2016) proposed new insights for acquiring and calibrating thermal UAV imagery,
aiming at correcting errors due to sensors drift during data capturing. The methodol-
ogy described in Zhang et al. (2019a) involves the concurrent use of RGB and thermal
UAV imagery for the accurate extraction of maize temperature canopy. In Poncet et al.
(2019), accuracies of five different radiometric calibration methods, commonly used on
multispectral UAV data, were investigated, providing a better understanding on advan-
tages and limitations on the compared methods.

The major strength of UAV surveys is providing information of various kinds, thanks
to the versatility of the sensors that can be mounted, in a rapid, non-invasive and exten-
sive way, and at the same time with a level of detail such that can detect within-field
variations. On the other hand, the weak point lies in the capability to transform the
acquired data into helpful information for crop management and make the data easily
usable and understandable to the stakeholders, mainly farmers. Despite all the efforts, a
standardized workflow to perform successful UAV-based surveys in PAg is still missing
(Tsouros et al., 2019). Some practical and technical expertise are required to exploit the
acquired data, in particular knowledge related to remote sensing and photogrammetry
sectors, thus preventing a wider use of UAV among farmers for operational use (Maes
and Steppe, 2019, Tsouros et al., 2019). The main challenges still refer to both data
collection and data processing. This dissertation arises from these problems and tries
to find solutions to some relevant issues still open, in order to encourage the spread of
UAV surveys for PAg applications. The final aim of this thesis is to propose guidelines
and define best practices for performing effective UAV surveys in agriculture. There-
fore, some critical aspects of UAV-based surveys are faced in it, from sensors analysis
to data exploitation, by means of four different case studies, conducted during my PhD
career. In the first case, analysis of radiometric performances of a popular multispec-
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Chapter 1. Introduction

tral sensor is addressed, by comparing results that can be obtained following different
elaboration strategies. The second case study focuses on the best practices of data ac-
quisition and processing in order to obtain accurate products with a mass-market UAV
equipped with a fisheye camera on a vineyard. Methodologies for detecting crop rows
on UAV imagery are presented in the third study and then one of these methods has
been used in the fourth case study, to produce site-specific management zones maps
in a vineyard. The latter is a clear example of the potential of UAV surveys in PAg,
by combining UAV-based and ground-based measurements. Three of the reported case
studies have been already presented to the public as articles that I have authored or co-
authored and published in scientific journals or in conference proceedings, in the last
three years. Specifically the first, the second and the fourth case study refer to Franzini
et al. (2019), Ronchetti et al. (2018) and Ortuani et al. (2019), respectively.

The rest of the dissertation is organized as follows. In Chapter 2 a review on UAV-
based RS for PAg is presented, including a description of the most popular vehicles,
sensors and processing software packages. Chapter 3 focuses on the radiometric as-
sessment of the multispectral sensor Parrot Sequoia (Franzini et al., 2019), while Chap-
ter 4 is about the generation of terrain models in a vineyard through fisheye imagery
(Ronchetti et al., 2018). In Chapter 5, the problem of images segmentation is addressed,
by presenting methodologies for extracting vegetation canopy from the background for
different crop typologies. The integration of geophysical ground-based measurements
and UAV imagery for delineating site-specific management zones in a vineyard is illus-
trated in Chapter 6 (Ortuani et al., 2019). Finally, conclusions and future perspectives
are discussed in Chapter 7.
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CHAPTER2
UAV Remote Sensing for Precision Agriculture

Introducing UAV has represented a revolution in RS techniques for environmental ap-
plications, such as PAg. In the last decade, the availability of UAV platforms and ultra-
light sensors has considerably increased, together with the improvement of computing
power and easy to use processing tools (Aasen et al., 2018).

In this Chapter, a brief review on vehicles, sensors, and software packages com-
monly adopted in UAV RS for PAg applications is presented. In particular, this Chapter
focuses on: i) the different types of vehicles suitable for conducting optimal UAV sur-
veys on agricultural areas; ii) the different types of sensors that can be mounted on UAV
platforms and are able to collect suitable information on soils and vegetation canopy;
iii) the best practices to obtain accurate agricultural data by means of UAV surveys,
from survey planning to images processing. Several instruments and methods were di-
rectly tested during the PhD work. The review is completed with information mostly
taken from some review articles available in the literature, including Tsouros et al.
(2019), Aasen et al. (2018), Pádua et al. (2017), Matese et al. (2016), Colomina and
Molina (2014), and Salamí et al. (2014).

2.1 Vehicles

UAVs can differ in dimension, shape, flight time and height and payload. In agricul-
ture, the attention of the most of the operators is focused on mini and micro UAV, with
weight less than 25 kg. Among them, two main groups of vehicles exist: fixed-wing
and multi-rotor, both with different and specific characteristics, advantages and usages.
The first type of vehicles planes with wings, while the latter relies on a variable num-
ber of propellers. The main conditions that have to be evaluated in order to choose
between the two categories, are the dimension and the orography of the area under
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Chapter 2. UAV Remote Sensing for Precision Agriculture

survey, the desired image resolution (directly dependent on the flight height) and the
available space for take-off and landing operations. Fixed-wing UAVs are employed in
large areas survey, from 1 to 10 km2, and allow to collect imagery with ground level
resolution in the order of magnitude of decimeters. They need a plane space of about
ten square meters for taking-off and landing. On the contrary, multi-rotor vehicles fit
to cover areas with dimensions in the range of 0.01 and 1 km2, with a resolution of
acquired data in the order of centimeters and do not need adding space for the take-off
and the landing (both vertical). Generally, but not in all cases, in PAg applications the
multi-rotors are preferred to fixed-wing vehicles, thanks to their slower flight speed and
easiness to operate and maneuver.

The main components of a UAV are the same for both vehicle types, in order to
guarantee safe flights. They can be summarized, but not limited, as follows:

– Ground Control Station: ground-based computer that can communicate and mon-
itor the UAV;

– Remote Control: flight control systems, which control the flight operation;

– GNSS system: on board GNSS receiver to define flight route;

– IMU systems: Inertial Measurement Unit, composed by accelerometers and gyro-
scopes to maneuver the UAV;

– Safety systems: other miniaturized on board sensors, in order to maintain a safe-
ty/minimal distance from obstacles during flights;

– Payload: equipment for data acquisition.

A lot of technical solutions are available on the market, for both fixed-wing and
multi-rotor UAV, searching from the main commercial labels or from self-made prod-
ucts. Figure 2.1 shows some examples of UAVs, representative for both fixed-wings
and multi-rotor vehicles.

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Fixed-wing UAVs: (a) SenseFly eBee, (b) Trimble UX5, (c) Parrot Disco. Multi-rotor UAVs:
(d) DJI Matrice 210, (e) MikroKopter HexaKopter, (f) Parrot Bebop 2. Images were taken from
manufacturers’ websites.
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2.2. Sensors

2.2 Sensors

The main limitation for conducting effective UAV surveys in agriculture is the payload.
In the last years, it has been registered a huge growth of low-cost and low-weight sen-
sors, suitable to be mounted on light-weight UAVs. RS sensors are capable to collect
defined bands of the electromagnetic (EM) spectrum and return measurements of EM
radiation at certain wavelengths. According to the source of energy adopted, two types
of sensors can be distinguished: active and passive. The active sensors transmit their
own radiation, as pulses, and then detect the radiation reflected back from surfaces.
The passive sensors, on the other hand, simply collect the natural radiation reflected
and emitted by surfaces, without transmitting their own radiation but exploiting sun-
light or artificial lights.

Different solutions are available on the market, both active (Figure 2.2) and passive
sensors (Figure 2.3), and the proper device has to be chosen according to final aims of
the application. In the following, a general overview is given on the large variety of
sensors suitable for UAV RS.

RGB sensors
These sensors operate in the visible (VIS) portion of the EM spectrum, commonly
known as light, with wavelengths ranging from 400 to 700 nm. The acronym RGB
corresponds to Red-Green-Blue, namely the three spectral bands collected by this type
of sensors that originate natural colors images. In some RS applications, RGB images
are separated in their original channels and individually used or combined in a false
color composite to enhance particular features. These sensors acquire ultra-high res-
olution imagery, whose processing is usually not particularly hard. RGB sensors are
mainly adopted in mapping applications, including 3D modelling and biomass estima-
tion. Despite the advantages, their usage in agriculture is often limited because lots of
vegetation parameters cannot be assessed in the VIS but require longer wavelengths,
such as Near-InfraRed (NIR) or RedEdge (RE). Some examples of RGB cameras are
shown in Figure 2.3a and 2.3b.

CIR sensors
Color InfraRed (CIR) sensors are cameras sensitive also to near infrared wavelengths,
approximately ranging from 700 to 1000 nm. Considering the EM spectrum, in the NIR
region there is the highest peak of the vegetation reflectance, therefore these sensors are
largely diffuse in PAg applications. CIR cameras (Figure 2.3c and 2.3d) are modified
RGB cameras, where the infrared filter is removed and substituted with a filter for one
of the RGB channels, usually blue channel. In agriculture, they are commonly used for
deriving vegetation properties and their usage is often combined with RGB sensors.

Multispectral and hyperspectral sensors
Multispectral sensors are multi-lenses systems, that can capture images in several EM
bands simultaneously. The most common sensors are composed from 4 to 10 differ-
ent lenses and, in addition to R,G,B and NIR channels, usually acquire RE channel,
namely the portion of the EM spectrum between red and near-infrared, covering wave-
lengths around 700 nm. The development of these sensors have significantly increased
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Chapter 2. UAV Remote Sensing for Precision Agriculture

in recent years and nowadays, different typologies are available on the market, vary-
ing from number and types of bands, weight and price. The interest in multispectral
sensors has grown among both researchers and farmers, thanks to the high potential of
their use for PAg applications, above all for monitoring spatial variability of vegetation
vigor. Nevertheless, image processing is complex and various calibration and correc-
tion procedures are required in order to obtain reliable information from data acquired
by multispectral sensors.

With respect to multispectral sensors, hyperspectral ones have more numerous and
narrower spectral bands. Hyperspectral sensors usually capture hundreds of bands in
narrow bandwidth. With these sensors, it is possible to retrieve more detailed infor-
mation on crops and soils and to perform more precise analysis, but their price, still
too high, represents an obstacle for their diffusion in PAg. In addition, along with the
number of bands, also data processing complexity increases (Adão et al., 2017). Two
commonly used multispectral sensors are shown in 2.3e and 2.3f, while in Figure 2.3g
an example of hyperspectral sensor.

Thermal sensors
Thermal sensors (Figure 2.3h and 2.3i) are a particular typology of cameras able to de-
tect thermal variability of surfaces. These sensors can collect the radiation emitted by
objects in the EM range from 8000 to 14000 nm, the so called TIR (thermal infrared)
wavelengths. According to the Planck’s Law, the emitted radiation is proportional to
objects’ temperature, therefore thermal sensors return measurement of surface temper-
ature. In PAg applications, they are typically used to monitor vegetation water stress,
often in tandem with other sensors.

LiDAR sensors
Unlike the aforementioned sensors, Light Detection And Ranging (LiDAR) are active
sensors (Figure 2.2), able to measure distances from targets. LiDAR data consist of geo-
referenced 3D point clouds of surfaces, and in vegetated areas, both plants and ground
below can be reconstructed. Although their usage is more common in forestry appli-
cations, in agriculture LiDAR sensors are adopted for monitoring vegetation growth
and biomass estimation. Nowadays, LiDAR suitable for UAV platforms are still very
expensive, around tens of thousands of euros, therefore not yet widespread.

(a) (b)

Figure 2.2: LiDAR sensors: (a) LeddarTech VU8, (b) Velodyne HDL-32E. Images were taken from
manufacturers’ websites.
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(a) (b)

(c) (d)

(e) (f) (g)

(h) (i)

Figure 2.3: RGB sensors: (a) Canon EOS M10, (b) MAPIR Survey2. CIR sensors: (c) Tetracam ADC
Lite, (d) MApir Survey3. Multi/hyper-spectral sensors: (e) Parrot Sequoia, (f) MAIA WV, (g) Head-
wall Micro-Hyperspec. Thermal sensors: (h) Optris PI400, (i) FLIR TAU2. Images were taken from
manufacturers’ websites.
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Chapter 2. UAV Remote Sensing for Precision Agriculture

2.3 UAV surveys

The activities involved in a UAV survey are different and all-important because they
may affect the success of the survey itself and the quality of the data acquired. The pre-
liminary phase is the flight-planning. This phase is certainly the most critical one, since
it guarantees to operate safety flights and to reduce post-processing times and costs.
Starting from shape and size of the area of interest, the characteristics of the sensor,
specifically the focal length and the dimensions of the image, and the spatial resolu-
tion, namely Ground Sample Distance (GSD) required by the application, it is possible
to derive the flight-height and the level of overlapping among images, both forward
and side overlap. In agricultural applications, dealing with vegetation imagery is quite
onerous, because of the vegetation characteristics that hamper the image matching. In
order to face these issues, UAV surveys require to plan the flight before data collections
assuming very high values of overlap, respectively at least 80% along flight direction
(i.e., longitudinal or forward overlap) and 60% along cross direction (i.e., transversal or
side overlap). Nowadays, this phase is conducted in the office by means of a dedicated
software, such as Pix4Dcapture or Mission Planner software, after the inspection of the
survey area and the definition of the aims of the work. The planning is then transferred
to the UAV itself and the flight is carried out autonomously by means of the GNSS and
IMU on-board systems (see Section 2.1). During the survey, variables that cannot be
considered in the planning phase are meteorological conditions. It is possible to per-
form flights also under moderate rainy or windy conditions, anyhow, the condition that
may mostly affect the survey is sunlight. Illumination conditions should remain homo-
geneous during the whole acquisition phase, in order to avoid illumination anomalies
in the images. In addition, it is advisable to conduct surveys during the central hours
of the day, when the sun reaches zenith, to limit the presence of shadows on the ground
and minimize the BRDF (Bidirectional Reflectance Distribution Function) effect.

In the survey phase, before data acquisition, calibration of sensors is required,

(a) (b)

Figure 2.4: (a) Black and yellow panels used as GCPs in a UAV survey with a RGB camera; (b) Radio-
metric calibration targets as visible in a Red channel image.

to reduce distortions on image, both geometric and radiometric, and to improve data
quality. Geometric corrections are performed by means of panels, namely Ground
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Control Points (GCPs), whose geographic coordinates are measured with GNSS sys-
tems. These panels, of materials, color and dimension that make them clearly visible
by the on-board sensor, operating at the planned height (Figure 2.4a), will be used
then in the data processing for georeferencing purposes and for performing camera
self-calibration. When working with multi-lenses sensors, GCPs allow to guarantee
also high overlapping among images acquired in the diverse spectral channels. As re-
gards radiometry, calibration procedures are necessary, especially when dealing with
CIR, multi/hyper-spectral and thermal sensors. Radiometric corrections involve cali-
bration targets, commonly white or gray panel (Figure 2.4b) with known spectral char-
acteristics, used to normalize collected images in relation to illumination conditions
and sensor performances. More specifically, calibration panels are adopted to convert
pixel values expressed as Digital Numbers (DN) in real reflectance values. Radiometric
corrections are particularly recommended in agricultural applications to compare data
acquired in different epochs or to produce index maps.

2.4 Data processing

UAV surveys allow to acquire a huge amount of images, with different geometric and
spectral characteristics, thus data processing requires specific and methodical tech-
niques. As already discussed in Chapter 1, there is not a standardized workflow for ex-
ploiting data collected in agricultural applications. Nevertheless, the common practice
involves first the use of photogrammetric techniques in order to geometrically recon-
struct the area of interest, then deriving additional features, such as vegetation indices
and texture variables, to analyze radiometric characteristics of soils and vegetation, and
finally advanced processing, including image segmentation and classification, for re-
trieving specific information according to application purposes. Data processing main
steps are described in the following.

Photogrammetric techniques
As regard geometric processing of UAV imagery, photogrammetric techniques are
adopted in order to accurately reconstruct the surveyed area. Photogrammetry con-
sists in defining the position, shape, size and appearance of the objects on the ground,
using at least two overlapping images of the objects themselves, taken from different
points of view. Considering UAV as platform for images acquisition, several overlap-
ping images are required to cover the entire area of interest and images mosaicking
is necessary for 3D area reconstruction. Starting from some points mutually detected
on multiple frames, first images are stitched together by means of images matching
techniques and then are georeferenced on the coordinates of the GCPs measured dur-
ing the survey. The main outputs obtainable through photogrammetric techniques are
3D points clouds, Digital Elevation Models (DEMs) and orthophotos. DEMs are dig-
ital models representing the altitude of objects. They can be distinguished in Digital
Terrain Model (DTM), when referring to the model of the terrain without any objects
above it, and Digital Surface Model (DSM), in the case of the model of the heights of
all surfaces captured on the images. The orthophoto, on the other hand, is the orthogo-
nal projection on the ground of the mosaic of images, which allows to obtain a scaled
representation of reality, without perspective deformations. According to the charac-
teristics of the sensor adopted in the UAV survey, produced orthophotos can be RGB
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Chapter 2. UAV Remote Sensing for Precision Agriculture

orthophoto, CIR, multi/hyper-spectral or thermal.
Considering the high number of images acquired during UAV surveys, traditional

photogrammetric methods have been replaced by algorithms coming from the Com-
puter Vision (CV) world, which are able to process a big amount of images easily and
rapidly. In particular all the software used in UAV data processing implement Struc-
ture from Motion (SfM). This algorithm allows to generate digital model of the surface
of interest, orthophotos and photorealistic 3D reconstructions in assisted or automatic
way, even when images blocks acquired by UAV surveys are far from those commonly
required for photogrammetric analysis. The main purpose of SfM is to achieve a quick
processing and an effective final product, although this includes a loss in the final ac-
curacy and a minor control of the user during the processing steps. Agisoft Metashape
(https://www.agisoft.com/), Pix4Dmapper Pro (https://www.pix4d.com/) and MicMac
(https://micmac.ensg.eu/index.php/) are photogrammetric software packages dedicated
and widely used for UAV imagery processing.

Derived features
Starting from the orthomosaics generated by means of photogrammetric techniques,
additional variables can be derived in order to enhance radiometric characteristics of
surfaces under survey. Talking about vegetation, a huge improvement can be reached by
the use of Vegetation Indices (VIs), computed through mathematical operations among
single image channels. VIs allow to synthesize and make easily understandable infor-
mation derived from each spectral component. According to the sensors adopted during
the survey (RGB, CIR, multi/hyper-spectral or thermal sensors), different indices can
be calculated by suitably combining the available bands. The mostly used VI is the
Normalized Difference Vegetation Index (NDVI), expressed as the difference between
the NIR and the Red bands normalized by the sum of these (Rouse Jr et al., 1974). It is
generally considered as a proxy of vegetation vigor, because, considering the spectral
response of vegetation canopy, a large gap between NIR and Red reflectance values
represents a healthy and lush vegetation. The main limitations of using NDVI is that it
requires the acquisition of NIR band and cannot be derived from RGB sensors. Another
interesting VI is the Crop Water Stress Index (CWSI), used to describe the crop water
status and to derive a proxy of crop yield maps, in particular in rainfed environment
(Jones et al., 2002). The computation of the CWSI requires the real values of canopy
surface temperature, that can be retrieved through an appropriate processing of thermal
images generally combined with RGB imagery. In the case studies described in this
dissertation, various VIs were adopted, including both RGB-derived and multispectral-
derived indices. The VIs employed in each application are properly reported in the
respective chapter.

Apart from VIs, other derived variables widespread in remote sensing are texture
measures, generated from spatial relationship of pixels. Texture can be defined as the
measures of smoothness, coarseness and regularity of an image region (Gonzalez and
Woods, 1992). Statistical techniques can be used for the analysis of texture of natural
image scenes. The Grey Level Co-occurrence Matrix (GLCM) (Haralick et al., 1973)
is computed, counting the occurrence of grey values differences between two pixels at
a time, in a single band image. From the GLCM the eight standard Haralick textures
can be calculated, namely contrast based features (i.e., contrast, dissimilarity and ho-
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mogeneity), orderliness based features (i.e., angular second moment and entropy) and
statistically based features (i.e., mean, variance and correlation).

Without having to rely on programming languages, many software packages nowa-
days implement tools for performing simple calculation among rasters. Among those,
the most widely used are Geospatial Information System (GIS), both Free and Open
Source Software (FOSS), such as QGIS (qgis.osgeo.org) or GRASS (grass.osgeo.org),
or commercial software, as ArcGIS (desktop.arcgis.com/en/arcmap), and image analy-
sis software (i.e., ENVI www.harris.com/solution/envi).

Advanced processing
Some image processing techniques are commonly used as a complement of photogram-
metry and derived bands computation, in order to address to the specific requirements
of the application. In this context, image classification and segmentation are very im-
portant in PAg, for vegetation monitoring and mapping. Classification algorithms al-
low to characterize crop species and identify the presence of weed, while segmentation
methods are commonly applied to discriminate objects and extract biophysical param-
eters. Both approaches are based on remote sensing principles, according to which
each surface can be detected by reconstructing its own spectral signature (i.e., surface
reflectance as a function of wavelengths). Spectral response of crops and soils can be
obtained in a coarser or in a more accurate way, in relation to the number of spectral
bands available on the sensor (see Section 2.2).

During image classification, pixels are clusterized according to their radiometric
characteristics. This operation can be performed automatically or with the addition
of some a-priori information provided by a user. Considering the level of automation
of the methods, classification algorithms are divided in Unsupervised and Supervised
methods. Unsupervised algorithms group pixels with similar spectral characteristics
into unique clusters according to some statistically determined criteria, while super-
vised classification is the process of using user defined samples of known informational
classes, namely training sets, to classify pixels of unknown identity. Unsupervised
methods include K-mean and ISODATA clustering, as well as supervised algorithms
comprise Minimum Distance to Mean, Maximum Likelihood and Spectral Angle Map-
per classifiers. In addition to the well-known aforementioned methods, in recent years
there has been an increase in the use of machine learning techniques in agricultural
applications, including in particular Random Forests, Artificial Neural Networks and
Support Vector Machine algorithms.

The process of detecting and delineating single features on images is defined as
image segmentation. Segmentation methods are mostly used in forestry applications
for tree crowns mapping but can be also exploited in agriculture for getting either sin-
gle plants or single rows information in orchards and vineyards. Starting from sim-
ple thresholding algorithms, many examples are available in the literature proposing
methodologies for extracting and analysing features of interest on UAV imagery in
agriculture.

Advanced processing usually requires a combination of data as input, whether they
are geometric, radiometric, original or derived information. Simple algorithms are
implemented in GIS and image analysis software, however, it is advisable to cre-
ate specific processing chains by means of programming languages such as Python
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Chapter 2. UAV Remote Sensing for Precision Agriculture

(https://www.python.org/), R (https://www.r-project.org/) or Matlab
(https://www.mathworks.com/products/matlab.html), in order to fine-tune required pa-
rameters and increase the level of automation of processing.
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CHAPTER3
Radiometric consistency of UAV image blocks.

– Analysis of Parrot Sequoia datasets

The processing of large datasets that cover areas which need to be acquired by several
UAV missions is still a challenging task. As for photogrammetric projects, these types
of datasets, composed of various sub-blocks, require a careful assessment of the accu-
racy of the final products, from both geometric and radiometric points of view. This is
even more true when time-series are analyzed; the consistency between data is manda-
tory in these cases.

While geometry is almost always considered when quality assessment is performed,
radiometry is less often investigated but plays a key role in several applications, includ-
ing precision agriculture (PAg). Although in recent years sensor manufacturers have
improved in describing sensor performance and providing tools for performing radio-
metric corrections (https://forum.developer.parrot.com), the radiometric quality of data
is still uncertain. The reliability of spectral information acquired by multispectral sen-
sors mounted on UAVs is not completely clear (BorgognoMondino and Gajetti, 2017).
Absolute accuracy might be insufficient for some applications, so that calibration pro-
cedures are required (Aasen et al., 2018).
Nowadays equipment vendors are making an effort to supply easy to use HW (Hard-
ware) and SW (Software) so that crop monitoring can be performed by individual farm-
ers. The bundle of Parrot Sequoia (Parrot S.A., Paris, France) and Pix4D (Pix4D S.A.,
Prilly, Switzerland) is a clear and popular example of this approach.

This case study investigates geometric and radiometric consistency of two over-
lapping datasets, acquired with Sequoia camera and processed with the bundled soft-
ware. Geometry was studied to avoid the influence of its inconsistencies on the quality
of the radiometry, while radiometry, as well, because it is the main source for agro-
nomic studies. The study site is an area of approximately 36 ha cultivated with rice, in
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Pavia province in Northern Italy. Although UAV surveys for PAg typically are multi-
temporal, in this study datasets acquired almost at the same time were compared. This
is a strength, as the difference assessed in vegetation indices can only be attributable to
sensor noise and, possibly, to issues in the radiometric calibration procedure.

The geometric consistency is not assessed by means of a number (generally limited)
of check points (CPs), as it is usually done, but by exhaustively evaluating the dis-
tance between the whole generated point clouds, with the ICP (Iterative Closest Point)
methodology. A dedicated Matlab procedure was specifically developed by colleagues
of the University of Pavia (partner of this project), implementing ICP and having some
unique features. The geometric consistency is not discussed in this thesis, but it is
thoroughly explained in Franzini et al. (2019).

3.1 Materials and methods

3.1.1 Study area and UAV survey

The dataset was acquired with the HEXA-PRO UAV, which is operated by the Labora-
tory of Geomatics of the University of Pavia and is shown in Figure 3.1a. The vehicle
was made by a small Italian company named Restart and has the following main char-
acteristics: 6 engines (290W each one), Arducopter-compliant flight controller, maxi-
mum payload of 1.5 kg (partly used by the gimbal, weighting 0.3 kg), flight autonomy
of approximately 15 minutes. The UAV was equipped with a Parrot Sequoia camera
(see Figure 3.1c). Sequoia has a high-resolution RGB camera with a 4608x3456 pixel
sensor, a pixel size of 1.34 µm and a focal length of 4.88 mm; GSD (Ground Sam-
ple Distance) is 1.9 cm at 70 m height above ground level (AGL). Sequoia also has
four monochrome cameras that are sensitive to the following spectral bands: Green
(530-570 nm, G), Red (640-680 nm, R), RedEdge (730-740 nm, RE) and Near-Infrared
(770-810 nm, NIR). Their resolution is 1280 x 960, a pixel size of 3.75 µm and a focal
length equal to 3.98 mm; GSD is 6.8 cm at the 70 m flying height (AGL), which was
adopted for the described survey.

On 13th September 2017, a photogrammetric survey was performed on the Santa
Sofia farmstead, near Pavia, Northern Italy (Figure 3.2a). The test-site is a flat area
totaling about 36 ha, used exclusively to cultivate rice. The whole acquisition was
obtained by five flight missions whose planning is shown in Figure 3.2b, where the
optical orthomosaic, used as background, derives from a previous survey. In total,
the project is constituted by about 1300 multispectral images, each composed by four
bands. The AGL height was 70 m and image overlapping 80% and 60%, along- and
across-track, respectively. The Sequoia camera was adopted, as previously mentioned.
Twelve markers were placed on the ground and surveyed with the NRTK (Network
Real Time Kinematic) GPS mode; VRS (Virtual Reference Station) differential correc-
tions were applied connecting via NTRIP (Networked Transport of RTCM via Internet
Protocol) to the GNSS positioning service of “Regione Piemonte and Regione Lom-
bardia” (https://www.spingnss.it/spiderweb/frmIndex.aspx). GCPs coordinates have a
planimetric and altimetric accuracy of 2-3 cm and 4-5 cm, respectively. GCPs were
constituted by artificial markers having a black and gray diamond shape (Figure 3.1d);
markers position is illustrated in Figure 3.2b. At the beginning of each flight, the recom-
mended radiometric calibration procedure was performed by acquiring the calibration
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(a) (b)

(c) (d)

Figure 3.1: The equipment operated by the Laboratory of Geomatics of the University of Pavia: a) The
HEXA-PRO UAV used for the survey; b) The Airinov calibration target supplied with the camera; c)
The Parrot Sequoia camera: the imaging and irradiance sensors are shown; d) An example of the
used artificial markers.

target (Figure 3.1b).
The present work will only focus on flights 3 and 4, as these had a methodological

purpose. The overlapping area allowed to deeply analyze geometric and radiometric
congruency under several processing scenarios (as described in Section 3.1.2), because
it is quite wide (23 ha) and encompasses 4 GCPs (Ground Control Points).

3.1.2 Photogrammetric processing

The photogrammetric project was carried out with Pix4Dmapper Pro, ver. 4.4.9. Only
the four multispectral channels were considered, having 6.8 cm GSD; higher resolu-
tion RGB imagery was disregarded, as it is recorded in the JPEG format with a high
compression factor and has low quality, compared to photogrammetry requirements.
The processing followed the usual pipeline (Ronchetti et al., 2018): images alignment,
tie points extraction, manual measurement of CPs and GCPs, bundle block adjustment
(BBA), generation of dense point clouds, Digital Surface Model (DSM), orthomosaic
and reflectance maps. The software allows to use only one set of calibration target im-
ages per project, so the photogrammetic processing followed a single-block approach.
Four scenarios were depictedbased on georeferentiation methodology and radiometric
processing:
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(a) (b)

Figure 3.2: UAV survey framework: (a) Site location in Italy; (b) The sub-blocks composition: light blue
lines represent the flight outlines where the overlapping areas are clearly visible. The one considered
in the paper is highlighted in red and includes four GCPs named 6, 7, 8 and 9. GCPs locations
are reported with green triangles. Coordinate Reference System (CRS): WGS84/UTM 32N. Central
coordinates (E, N): 506500, 5005600.

1. Direct georeferencing (DG) scenario: no GCPs were inserted in BBA and each
sub-block was processed by direct photogrammetry using positions coming for
the Sequoia integrated GPS receiver. Scenario A will be used only in geometric
assessment.

2. Independent georeferentiation/independent radiometric processing (Ig/Ir) scenario:
the two blocks were independently processed in terms of geometry and radiome-
try. Scenario B will be used both in geometric and radiometric assessment.

3. Independent georeferentiation/joint radiometric processing (Ig/Jr) scenario: this
scenario is a variation of the previous one in which orientation parameters were
computed for each block independently, as in the second scenario, but the two
flights were then merged for dense point cloud and reflectance maps genera-
tion. This scenario coincides with the so-called “merge option” in Pix4Dmapper
software, and it is the recommended procedure for processing photogrammetric
blocks with a large number of images and an overlapping area. It should ensure
that radiometric differences caused by a misalignment in the dense point clouds
are avoided. Scenario Ig/Jr was used only in radiometric assessment.

4. Joint georeferentiation/independent radiometric processing (Jg/Ir) scenario: the
two blocks were jointly orientated, and the obtained exterior orientation parame-
ters were then transferred to a single-block project for generation of dense point
clouds and reflectance maps. In this scenario, possible radiometric inconsisten-
cies due to separate computation of interior and exterior orientation parameters
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are eliminated. This scenario was used in both geometric and radiometric assess-
ment.

Bundle block adjustment and dense point cloud generation

The bundle block adjustment parameters were set according to the described scenario,
since they differ in terms of calibration method and camera optimization. In DG sce-
nario, the calibration method was set to the “alternative” option. This choice is rec-
ommended when the surveyed area is flat (as in this case) and there is availability of
good image geolocation; for the Sequoia sensor, the used geolocation comes from the
on-board GPS receiver, even if its quality is low, as discussed before. For camera op-
timization, external parameters were all re-estimated, while for the internal ones they
were adopted from the camera model that is delivered by Sequoia directly into the EXIF
(Exchangeable image file) section of each image. As we knew from the Pix4D tech-
nical support, the parameters delivered into the EXIF are individually determined for
each item at the factory. Their reliability is good, as reported in (Fernández-Guisuraga
et al., 2018), in which the changes between nominal and optimized camera parameters
were as low as 0.01%. In Ig/Ir and Ig/Jr scenarios, the calibration method was again
set to “alternative”. For camera optimization, since the GCPs were imported and mea-
sured on each of the two blocks, both external and internal parameters were optimized.
Finally, Jg/Ir is a two-step scenario in which the two blocks were jointly processed, and
so the obtained internal and external parameters were used to separately generate the
dense point clouds for each block. For the first step (image orientation), the parameters
were set as equal to Ig/Ir; for the second step (single-block dense point cloud genera-
tion), the calibration method was set to geolocation-based, since accurate positioning
and orientation are available from the first step. Besides, in this case, neither interior
nor external parameters were optimized because they were directly imported in the first
step of the project.

All dense point cloud generation was performed adopting the default options: Half
Image Size resolution images, point density was set on Optimal and a cloud point was
accepted only if positively matched in at least three images. The average density is be-
tween 11 to 14 points per m3. In a preliminary test, the Original Image Size resolution
was evaluated too, but higher point density did not significantly improve the orthopho-
tos and reflectance maps generation; the requirements of precise agriculture are lower
in comparison to other applications, such as 3D mapping, and the obtained resolution
was considered enough for the research aims.

Orthophoto and reflectance maps generation

Pix4Dmapper allows to generate orthophoto and reflectance maps during step 3 of the
processing, together with the computation of the DSM. In this study, products were
generated with GSD equal to 0.10 m and project settings were maintained the same for
the considered scenarios.

Reflectance maps were generated by setting, in the Radiometric Processing and Cal-
ibration panel, Camera and Sun Irradiance correction. It allows to apply corrections
to the camera parameters stored in the image metadata (i.e. vignetting, dark current,
ISO), as well as for the sun irradiance information, acquired with the proper sensor (see
Figure 3.1c). Images of the calibration target are required for performing corrections.
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Hence, during the survey, the prescribed radiometric calibration procedure of the Par-
rot Sequoia camera was performed and the suitable calibration target (see Figure 3.1b)
was imaged several times, with different exposure time. Acquisitions were taken at the
beginning of each flight, so that different calibration data were stored for each flight,
ensuring similar sky and illumination conditions between calibration images and flight
images.

For the Radiometric Processing and Calibration, calibration images with the high-
est value of exposure time were retained and the software automatically detected target
on them defining the proper reflectance values for each spectral band that are equal to
0.172, 0.215, 0.266 and 0.369, respectively for Green, Red, RedEdge and NIR.

3.1.3 Radiometric consistency assessment

Radiometric consistency was assessed by computing, pixel by pixel, differences for the
co-registered reflectance maps in the overlapping area of photogrammetric blocks 3 and
4. Respective statistics were also analyzed. Considering that Sequoia is a sensor mainly
dedicated to agricultural applications, assessment was conducted also for some vegeta-
tion index (VI) maps, since they commonly represent a proxy of vegetation parameters
to be used for agronomy purposes. VI maps were computed in Matlab, by applying an
index formula to proper reflectance maps (Table 3.1).

Table 3.1: Vegetation Indices (VIs) used in this study.

Index Name Formula References

NDVI
Normalized Difference

Vegetation Index
Nir−Red
Nir+Red Rouse Jr et al. (1974)

GNDVI
Green Normalized

Difference Vegetation Index
Nir−Green
Nir+Green Gitelson et al. (1996)

NDRE
Normalized Difference

RedEdge Index
Nir−RedEdge
Nir+RedEdge Barnes et al. (2000)

NDVIre
RedEdge Normalized

Difference Vegetation Index
RedEdge−Red
RedEdge+Red Gitelson and Merzlyak (1994)

NGRDI
Normalized Green Red

Difference Index
Green−Red
Green+Red Gitelson et al. (2002)

For Ig/Ir and Jg/Ir scenarios, maps derived from blocks 3 and 4 were directly com-
pared, while Ig/Jr scenario was checked with respect to the single blocks of Ig/Ir sce-
nario (see Section 3.1.2 for more details about scenario characteristics). From here on,
maps are identified with the names “3 Ig/Ir”, “4 Ig/Ir”, “3 Jg/Ir”, “4 Jg/Ir”, “Ig/Jr”,
where “3” stands for block 3, and “4” for block 4. DG scenario was not considered for
radiometric assessment.

Moreover, since no ground truth was available, the reliability of reflectance and VI
maps was evaluated by comparing maps with the one obtained from Sentinel-2 (S2) im-
agery. Indeed, a Sentinel-2 acquisition two days after the survey (September 19, 2017)
was available. Maps derived from the photogrammetric blocks (having a GSD equal to
0.10 m) were upscaled with a nearest-neighbor resampling to 10 m spatial resolution,
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to match Sentinel-2 imagery resolution. Correlation analysis was applied and statistics
were performed on differences in terms of single bands and radiometric indices.

Although a comparison with ground truths calculated with spectroradiometer would
have been more effective, a test on compatibility between Sequoia and S2 data is also
of scientific relevance, given the growing interest in the integration of data acquired
from satellite and UAV platform for environmental applications (Puliti et al., 2018,
Dash et al., 2018), including PAg (Matese et al., 2015, Khaliq et al., 2019, Zhang et al.,
2019b), both from research and applicative point of view.

3.2 Results

Radiometric consistency was assessed by estimating differences pixel by pixel among
corresponding reflectance and VIs maps, in the overlapping area. Results are reported
in Section 3.2.1. Moreover, the test on the compatibility of Sequoia maps with Sentinel-
2 imagery, performed by means of correlation analysis, is presented in Section 3.2.2.

3.2.1 Assessment of the differences between overlapping blocks

For the three processing scenarios, differences were calculated pixel by pixel among
corresponding reflectance and VI maps in the overlapping area. While Ig/Ir and Jg/Ir
scenarios were independently evaluated, Ig/Jr scenario was compared to the single
blocks of Ig/Ir scenario (see Section 3.1.3). Descriptive statistics for differences calcu-
lated on reflectance maps are shown in Table 3.4, and results of VIs maps are reported
in Table 3.2, as well as results on VIs maps are reported in Table 3.3. Although dif-
ferences have similar ranges, it is important to remember that reflectance maps have
values in the range [0, 1], while values for VIs maps are in the range [-1, 1].

The computed RMSE values are quite close to zero for all cases, but significant
differences among single reflectance maps and VI maps can be stressed, considering
minimum and maximum absolute values. In particular, differences with maximum and
minimum values above 0.4 are calculated for the NIR maps, differences reach values
close to 0.3 for the red-edge map, and lower values are registered for the green and
red maps, with minimum and maximum absolute values below 0.2 for the red maps in
some cases. A similar behavior is also evident for the VI maps, where the differences
calculated on NDVI maps assume lower RMSE values, while maximum and minimum
values even greater than 0.5 are calculated for many VIs. The comparison between the
statistics computed for Ig/Ir and Jg/Ir scenarios shows that both reflectance and VI map
differences reach very similar values.

To assess the significance of the calculated values, the differences are presented in
the form of box and whisker plots. Figure 3.3 reports box and whisker plots for differ-
ences computed on reflectance maps, while in Figure 3.4 VIs results are shown. The
plots do not refer to the Jg/Ir scenario, as similar results are obtained with respect to
Ig/Ir scenario.
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Table 3.2: Summary statistics of the differences between reflectance maps in the overlapping area.

Green Red RedEdge Nir

3 Ig/Ir-4 Ig/Ir

min -0.1923 -0.1640 -0.2957 -0.5217
max 0.2822 0.2194 0.4168 0.5931
mean 0.0088 -0.0013 0.0268 0.0368
std 0.0572 0.0272 0.0367 0.1103

rmse 0.0579 0.0272 0.0454 0.1163

3 Ig/Ir-Ig/Jr

min -0.0947 -0.1042 -0.2336 -0.3432
max 0.2538 0.1763 0.3557 0.6642
mean 0.0166 0.0061 0.0182 0.0482
std 0.0305 0.0131 0.0208 0.0692

rmse 0.0348 0.0144 0.0276 0.0843

4 Ig/Ir-Ig/Jr

min -0.1791 -0.1964 -0.3547 -0.3863
max 0.1915 0.1696 0.2769 0.5047
mean 0.0079 0.0075 -0.0086 0.0115
std 0.0338 0.0195 0.0213 0.0613

rmse 0.0347 0.0208 0.0230 0.0624

3 Jg/Ir-4 Jg/Ir

min -0.1826 -0.1761 -0.3217 -0.5519
max 0.2670 0.1874 0.4511 0.5831
mean 0.0087 -0.0014 0.0270 0.0365
std 0.0572 0.0276 0.0446 0.1104

rmse 0.0579 0.0277 0.0522 0.1163

Table 3.3: Summary statistics of the differences between VIs maps in the overlapping area.

NDVI GNDVI NDRE NDVIre NGRDI

3 Ig/Ir-4 Ig/Ir

min -0.4431 -0.3859 -0.2651 -0.5629 -0.4726
max 0.4749 0.5066 0.3567 0.4930 0.6011
mean 0.0293 0.0064 -0.0003 0.0361 0.0392
std 0.0242 0.0678 0.0767 0.0616 0.0910

rmse 0.0380 0.0681 0.0767 0.0714 0.0991

3 Ig/Ir-Ig/Jr

min -0.3822 -0.2891 -0.2033 -0.4939 -0.3508
max 0.5734 0.5924 0.4426 0.4208 0.4884
mean 0.0142 -0.0012 0.0248 -0.0008 0.0245
std 0.0183 0.0310 0.0513 0.0311 0.0538

rmse 0.0232 0.0310 0.0570 0.0311 0.0591

4 Ig/Ir-Ig/Jr

min -0.2675 -0.2200 -0.2502 -0.400 -0.5166
max 0.3856 0.3130 0.3924 0.4575 0.3907
mean -0.0151 -0.0077 0.0252 -0.0370 -0.0146
std 0.0208 0.0450 0.0418 0.0467 0.0481

rmse 0.0257 0.0457 0.0488 0.0596 0.0503

3 Jg/Ir-4 Jg/Ir

min -0.4354 -0.3559 -0.4354 -0.6301 -0.4934
max 0.5024 0.5452 0.7340 0.6121 0.6811
mean 0.0293 0.0062 0.0003 0.0359 0.0394
std 0.0271 0.0689 0.0861 0.0688 0.0942

rmse 0.0400 0.0691 0.0861 0.0775 0.1021
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Figure 3.3: Box and whisker plots of differences computed on different reflectance maps in the overlap-
ping area.

Figure 3.4: Box and whisker plots of differences computed on different VIs maps in the overlapping
area.

From the plots it is evident that results vary from map to map, but few general
considerations can be drawn. Median values are overall around 0, while maximum
and minimum values are outside of the confidence intervals and can be considered as
outliers. For most cases, the variability of the differences is contained in the range [-
0.2, 0.2]; thus, this interval of values is retained as significant for further analysis. The
VIs can mitigate the effects of single reflectance maps, specifically the high differences
registered for NIR maps are rather compensated in the NDVI maps. Moreover, with
respect to the differences computed between single blocks (i.e., 3 Ig/Ir-4 Ig/Ir), results
obtained considering Ig/Jr scenario (i.e., 3 Ig/Ir-Ig/Jr and 4 Ig/Ir-Ig/Jr) have narrower
confidence intervals.

Spatial distribution of the differences in the overlapping area is shown in Figure 3.5,
Figure 3.6 and Figure 3.7. For the sake of brevity, only the most significative results
are presented. As a matter of fact, similar results were registered for Ig/Ir and Jg/Ir
scenarios. As regarding Ig/Jr scenario, green, NIR, and NDVI maps are shown, since
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the other maps have a similar spatial behavior.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 3.5: Spatial distribution of differences in the overlapping area. Ig/Ir scenario: Green (a), Red
(b), RedEdge (c), Nir (d), NDVI (e), GNDVI (f), NDRE (g), NDVIre (h), NGRDI (i).

A clear spatial pattern can be noted from the plots-the reflectance values tend to
be overestimated as moving away from the center of the block (i.e., approaching the
borders of the block); an analogous effect is visible in VI difference maps. This effect
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(a) (b)

(c)

Figure 3.6: Spatial distribution of differences in the overlapping area for Ig/Jr scenario, with respect to
block 3: Green (a), Nir (b), NDVI (c).

(a) (b)

(c)

Figure 3.7: Spatial distribution of differences in the overlapping area for Ig/Jr scenario, with respect to
block 4: Green (a), Nir (b), NDVI (c).

is more evident considering the differences calculated between the single blocks of Ig/Ir
scenario (Figure 3.5), it is less evident when introducing also Ig/Jr scenario (Figure 3.6
and 3.7). No difference or very small differences are found in NDVI maps for all
considered cases, which are uniformly distributed with no specific spatial profile in the
overlapping area of blocks 3 and 4.

3.2.2 Comparison with Sentinel-2 imagery

As described in Section 3.1.3, the reliability of Sequoia maps was assessed with respect
to Sentinel-2 data to evaluate the feasibility of data integration. First, an upscaling

25



i
i

“output” — 2020/3/23 — 9:49 — page 26 — #38 i
i

i
i

i
i

Chapter 3. Radiometric consistency of UAV image blocks.
– Analysis of Parrot Sequoia datasets

of maps derived from Sequoia imagery was required, then correlation analysis was
computed (N = 265 samples). Results for the correlation analysis are reported in Figure
3.8 and maps statistics are summarized in Table 3.4. For the sake of brevity, only results
for NDVI are shown. As a matter of fact, other studies are present in the literature
focusing on the comparison of NDVI only (Khaliq et al., 2019, Zhang et al., 2019b).
Rmse values reported in Table 3.4 were calculated by considering NDVI map from S2
imagery as reference.

Table 3.4: Summary statistics of the NDVI maps computed from S2 imagery and Sequoia imagery, in the
overlapping area.

S2 3 Ig/Ir 4 Ig/Ir Ig/Jr

NDVI

min 0.3197 0.0998 0.0764 0.0221
max 0.7787 0.8731 0.8926 0.8946
mean 0.5583 0.6262 0.5945 0.6119
std 0.0906 0.1323 0.1331 0.1324

rmse - 0.1140 0.0984 0.1090

(a) (b) (c)

Figure 3.8: Scatter plot and regression line for NDVI maps computed on S2 imagery as respect to
Sequoia imagery: 3 Ig/Ir (a), 4 Ig/Ir (b), Ig/Jr (c). For each graph, the coefficient of determination
(R2) and the Pearson’s correlation coefficients (ρ) are reported (p-value < 2.2x10-16).

The correlation with NDVI map from S2 imagery shows a good correspondence:
coefficients of determination are 0.5197 for 3 Ig/Ir, 0.5249 for 4 Ig/Ir, and 0.4840 for
Ig/Jr. The NDVI map with the highest correspondence against S2 imagery is the one
derived from 4 Ig/Ir data, with Pearson’s correlation coefficient ρ and rmse equal to
0.7245 and 0.0984, respectively. Nevertheless, the regression lines show a slight over-
estimate of Sequoia data compared to S2; NDVI maps from Sequoia imagery report
higher values with respect to the S2 map (as also summarized by higher values for max
and mean in Table 3.4) and cover wider ranges (lower values for min and higher values
for std in Table 3.4).

3.3 Discussion

As already stressed by many authors in the literature (Guo et al., 2019, Mafanya et al.,
2018, Honkavaara and Khoramshahi, 2018, Iqbal et al., 2018), radiometric corrections
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are necessary when using sensors mounted on UAV for PAg, but the ease of use and
diffusion is limited. The radiometric processing available in Pix4Dmapper software for
the Sequoia camera provides most of the corrections, including vignetting, dark current,
exposure time, and sunlight irradiance, but omits other possible causes of radiometric
variations (Tu et al., 2018). First, this research points out that radiometric inconsis-
tencies due to differences in the acquisition geometry remain unsolved. Reflectance
values of pixels at the borders of the blocks tend to be overestimated, as a consequence
of the inclination of the point of view during the photogrammetric survey. From Fig-
ure 3.5, it is evident that differences are not uniformly distributed, but present a clear
spatial pattern. Higher difference values (absolute values) are measured at the borders
of the overlapping area, while the lowest values approach the center of the area. This
demonstrates the presence of a high edge effect on the reflectance maps, which must be
considered during flights planning. In practical use, it is advisable to plan UAV surveys
covering an area wider than the one of interest. Enlarging the survey area should guar-
antee uniformity in the acquisition geometry even in the edges, otherwise characterized
by non-negligible radiometric distortions.

Radiometric differences are not affected by different geometric processing of the
blocks, as confirmed by the similar values of the differences computed for Ig/Ir and
Jg/Ir scenarios for both reflectance and VI maps (Table 3.2 and Table 3.3).
As can be noted from rmse values reported in the tables, differences calculated for
some VI maps are lower than values obtained for reflectance maps, meaning that some
indices can decrease inconsistencies of single reflectance bands (Stow et al., 2019).

Considering the Ig/Jr scenario, the differences are moderate with respect to Ig/Ir
scenario for both reflectance and VI maps, with mean values overall close to zero. The
edge effect is also still evident from the spatial distributions shown in Figure 3.6 and
Figure 3.7, however with lower values, as is evident in the box plots in Figure 3.3 and
Figure 3.4. As a matter of fact, it should be recalled that the Ig/Jr scenario corresponds
to the procedure recommended by Pix4Dmapper software to process large photogram-
metric blocks. For adjacent blocks acquired with separate but temporally close flights,
the recommended merging option can partially correct the effect of illumination geom-
etry and mitigate radiometric inconsistencies in the overlapping areas between blocks.

There are still uncertainties regarding the obtained absolute values of reflectance
and for the derived indices (González-Piqueras et al., 2018), and consequently in the
quantitative use of the Sequoia data for the possible calculation of biophysical param-
eters. From the results reported in this study, it should be noted that in some areas,
differences have values close or even larger than 0.2 (absolute value). Therefore, the
different processing scenarios have an impact on the results in terms of radiometry. A
difference of this magnitude cannot be neglected in the operational phase for precision
agriculture applications; even more so if used for multitemporal surveys. As a matter
of fact, the map that shows the most homogeneous values in all cases is NDVI, which
is widely used in most agriculture applications (Teal et al., 2006, Katsigiannis et al.,
2016, Freidenreich et al., 2019).

Regarding the comparison with S2, which is limited in this paper to NDVI, it should
be mentioned that despite the analysis being affected by the different geometric resolu-
tions of sensors and acquisition platforms, a significative correlation is found between
Sequoia and S2 maps. Following the approach of Khaliq et al. (2019), the Pearson’s
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correlation coefficient can be adopted as a map similarity measure. The obtained coef-
ficients, which are close to 0.7, prove a coherence between the data collected from the
different platforms and show similar spatial variability values of NDVI maps, which are
to be interpreted as the same behavior in terms of crop vigor (Di Gennaro et al., 2019).
Therefore, the compatibility and integration of NDVI maps obtained by Sequoia and
Pix4D systems should be feasible along with the Sentinel-2 products.

3.4 Conclusions

Even though producers and developers have made great efforts to enhance them, radio-
metric corrections leave significant radiometric distortions in orthomosaics obtained by
Sequoia and Pix4D systems, which can result in biased absolute values. This study
shows that relevant differences are found depending on flight geometry and block pro-
cessing choices, with differences that can reach 20% of pixel values for single re-
flectance bands or VIs, thus reducing the effective use in PAg. Moreover, available
radiometric corrections do not guarantee uniform accuracy and consistency of results,
and this can cause difficulties in comparing surveys carried out on different lighten-
ing conditions. Careful planning of the survey, together with proper choices of image
processing, can enhance the results. Very high image overlap yields uniformity over
a single block, and edge distortions can be reduced by surveying a wider area that in-
cludes the study area. Carrying out double grid flights has not been addressed in this
case study, but it could be an alternative to reduce edge effects.

Nevertheless, for large surveys that imply the acquisition and processing of sepa-
rated sub-blocks, the merge option suggested by Pix4D is effective in reducing radio-
metric inconsistencies in adjacent areas. This fact, together with the high correlation
found with S2 products, proves that Sequoia is suitable for agronomic purposes, but
great attention must be paid to the planning of the survey and to the data processing.

Therefore, it is necessary to increase the awareness in the use of sensors and semi-
automatic data processing to deeply understand the strengths and weaknesses of UAV
usage for PAg. In this study, the choice to process the dataset following the proposed
scenarios instead of a standard workflow was driven by the apparently impossibility
of attributing the corresponding calibration set of images to each block. The new Se-
quoia+ sensor should bypass this issue because no calibration target is needed; imagery
processing exploits a new fully automatic calibration pipeline in Pix4D.

Finally, the applicability of the proposed method can be extended. In this paper,
geometric and radiometric consistency was evaluated comparing results obtained from
two almost contemporaneous flights, processed following a single-block approach. The
same method can be used to evaluate consistency between two or more blocks acquired
days or month apart; in other words, the method can be used to assess time-series.
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Precision agriculture (PAg) recommends a sustainable employment of nutrients and
water, according to the site-specific crop requirements. In this context, the knowledge
of soil characteristics allows to appropriately manage resources, reducing the financial
and environmental commitment. Also the topography can influence soil water condi-
tion, because elevation differences control the spatial distribution of water on a field
(Schmidt and Persson, 2003). The Topographic Wetness Index (TWI), based on the lo-
cal slope (Sörensen et al., 2006), for example, is a reliable indicator of how topography
influences the movement of water and consequently the soil moisture content.

The Digital Terrain Model (DTM) describes the topography in a discrete way, with
a given resolution and accuracy, and allows deriving TWI maps (Silva et al., 2014).
Moreover, in agriculture applications, the crop growth can be monitored from DTM and
Digital Surface Model (DSM), by extracting the Canopy Height Model (CHM), com-
puted as filtered difference of surface and terrain heights (Zarco-Tejada et al., 2014).
The level of detail of the spatial analysis can be extracted according to the spatial res-
olution of the DTM. Therefore, the generation of high-resolution terrain models has
great relevance in agriculture.

This case study focuses on the production of high resolution DTM in agriculture by
photogrammetric processing with a mass market very light UAV, the Parrot Bebop 2.
Particular attention is given to the data processing procedures and to the assessment of
the quality of the results. An experimental test has been carried out on a vineyard lo-
cated in Monzambano, Northern Italy. The interest in the use of small consumer UAV
for photogrammetric applications is constantly increasing and more and more often
these systems are equipped with fisheye lenses. These cameras are characterized by
short focal lengths, coupled with a wide field of view, which requires a non-classical
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projection model (Perfetti et al., 2017; Kannala and Brandt, 2006). These lenses were
firstly embedded in UAV systems mainly for entertainment purposes. However, their
use for 3D reconstruction of cultural heritage sites, as well as for precision agriculture
applications, has widespread, mainly because of the low-cost, high manoeuvrability
and easiness of use of such platforms.

4.1 Materials and methods

4.1.1 Study area and UAV survey

A vineyard located in Olfino di Monzambano (province of Mantova), Northern Italy,
has been chosen as study area. It covers about one hectare at the Colombara Farm. The
study site is shown in Figure 4.1.

Figure 4.1: The Monzambano vineyard location: on the left, the Northern Italy centered on Lombardy
region (filled in white) where Monzambano is located; on the right, a detailed zoom on vineyard
location. Map data: c©Google Satellite.

The survey has been conducted using a Parrot Bebop 2, a small lightweight and
low-cost quadcopter. It is equipped with 14 Mpx fisheye camera, installed with a fixed
inclination of 30◦. The use of oblique images acquired with these kind of cameras could
be very challenging for commercial photogrammetric software packages. Nevertheless,
the wide field of view and the tilt angle of the camera can give advantages in agriculture
applications because it is possible to investigate the crop not only from nadiral direc-
tion, but even from a lateral point of view, to monitor the development of vegetation.
The used UAV is characterized by easiness of use and control. It can resist headwinds
up to 60 km/h and its flight is quite stable, thanks to the number of sensors installed on-
board (namely pressure and ultrasound sensors, GNSS chipset, 3-axis accelerometer,
3-axis magnetometer and 3-axis gyroscope). It can be completely remotely controlled
via Wi-Fi connection using a tablet or a smartphone and the flight can be easily planned
using the Pix4D Capture App. Because of its low weight, this platform can guarantee a
flight autonomy up to 25 minutes.

Consumer UAVs, such as the Bebop 2, are equipped with cameras that delivers high
quality images, however the use of fisheye lenses for photogrammetric purposes re-
quires a number of specific attentions because the mapping between object and image
points is very different from the one that characterize rectilinear images. Because of
that, the classical pinhole camera model cannot be used and different optical projec-
tions have to be consider (Perfetti et al., 2017, Barazzetti et al., 2017). Fisheye camera
models can be classified considering different type of projections (namely equidistant,
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equisolid, stereographic and orthographic). However, it is important to point out that
apart from the distortion due to the fisheye lenses there are residual distortions that
characterize each single lens and are responsible for the discrepancies from the theo-
retical model. Because of the market widespread of low-cost wide-angles cameras and
their use on board UAV platform, fisheye camera models have been added to the most
used commercial software packages (e.g. Agisoft PhotoScan Pro and Pix4Dmapper
Pro). Moreover, Matlab 2017b introduced a camera calibration procedure dedicated to
fisheye lenses.

The survey took place on 14th of December, at the end of the vegetation season, after
the pruning of the grapevines. This period of the year was chosen in order to investigate
the ground, without any impediment due to the presence of leaves or branches, meaning
that for this study the DSM and the DTM can be considered equivalent. In addition, the
survey was used as a test for evaluating the performance of the UAV acquisition with
Bebop 2 fisheye camera in agriculture, with the aim of carrying out the same procedure
during other vegetation seasons for monitoring the growth of the vineyard. An example
of image acquired with such a camera is reported in Figure 4.2.

Figure 4.2: One of the image acquired during the survey.

A double grid flight was planned with a high longitudinal and transversal overlap, equal
to 75% and 70% respectively. The flight height was fixed at 30 m above the ground,
ensuring an average Ground Sample Distance (GSD) of about 6 cm.

At the end of the survey a total of 215 images were acquired.A total of 26 black and
white (30 cm x 30 cm) and black and yellow panels (50 cm x 50 cm) were placed on the
ground and surveyed with a Topcon HiPer SR GNSS receiver (used in Real-Time Kine-
matic (RTK) mode) in order to obtain the coordinates of the GCPs and Check Points
(CPs), which is fundamental to ensure a high geometric accuracy in the generation of
the photogrammetric products. Moreover, the coordinates of 15 additional points were
acquired with GNSS, in order to generate an independent DTM, through Kriging inter-
polation, to be considered as reference surface.
In Figure 4.3, the points used as GCPs in the reference scenario are represented in red,
while the CPs in yellow, and the additional GNSS points are shown in blue. Both CPs
and GNSS points have been used for the generation of the Kriging’s interpolated DTM
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Figure 4.3: Distribution of points used for the generation of DTM by interpolation and for the
photogrammetric process.

4.1.2 Photogrammetric processing

Two software packages widely used in photogrammetry (Sona et al., 2014), namely
Pix4Dmapper Pro and Agisoft Photoscan Pro, have been tested, with the aim to evaluate
their performances in case of blocks composed by fisheye images. Moreover, a two-
step approach has been realized by pre-processing the images in Matlab 2017b and
then performing the bundle block adjustment in Agisoft Photoscan using undistorted
rectilinear images. It is worth to notice that these software packages exploit different
fisheye mathematical models.

Agisoft PhotoScan fisheye model is based on the general form of the equidistant
projection. The residual distortions due to lens imperfections are modelled using an
extended version of Brown’s model (Duane, 1971) combined with the affinity and shear
parameters (El-Hakim, 1986). The resulting equations are:

xd =
f ·X√
X2 + Y 2

arctg(

√
X2 + Y 2

Z
) + cx + ∆xdist (4.1)

yd =
f · Y√
X2 + Y 2

arctg(

√
X2 + Y 2

Z
) + cy + ∆ydist (4.2)

where f is the focal length, X, Y, Z are the object coordinate of a generic point, cx, cy are
the coordinates of the principal point and (∆xdist,∆ydist) take into account of radial
and tangential distortions as well as affinity and shear parameters.

Also Pix4Dmapper uses an equidistant model but in this case the incidence angle θ
is mapped as:

θ =
2

π
arctg(

√
X2 + Y 2

Z
) with θ ε [0, 1] (4.3)
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The relationship between object and image coordinates is modelled as:(
xd

yd

)
=

[
C D

E F

] (
ρ ·X/

√
X2 + Y 2

ρ · Y/
√
X2 + Y 2

)
+

(
cx

cy

)
(4.4)

where ρ = θ+ p2θ
2 + p3θ

3 + p4θ
4, p2, p3, p4 are the coefficients of a polynomial func-

tion, C,D,E,F are the coefficients that allows to map the undistort image coordinates
into the distorted ones (xd, yd). The diagonal element of this matrix can be related
with the focal length. The fisheye model embedded in Matlab 2017b release is based
on the general model for calibrating omnidirectional cameras discussed in Scaramuzza
et al. (2006). The mapping function is represented by a Taylor series expansion, whose
coefficients are estimated via 4-step least square adjustment. The resultant model for
fisheye lenses is described by:

xd =
X

Z
(a0 + a2ρ

2 + a3ρ
3 + a4ρ

4) + cx (4.5)

yd =
Y

Z
(a0 + a2ρ

2 + a3ρ
3 + a4ρ

4) + cy (4.6)

where X,Y, Z are the object coordinates, a0, a2, a3, a4 are the polynomial coefficients
to be estimated during the calibration procedure and ρ is equal to

√
x2 + y2, with x,y

are the ideal projection of the 3D point and cx, cy are the coordinates of the principal
points.

Different image blocks processing strategies have been tested. First of all, the stan-
dard double grid block configuration typical of the Bebop system has been evaluated.
In order to assess the configurations with a lower number of images, also separate
blocks of images acquired along a single direction have been processed, resulting in
one block composed by the stripes parallel to the vineyard rows (96 images), and one
block composed by strips orthogonal to the rows direction (119 images). Furthermore,
three different GCP / CP configurations were considered. In the first one, a quite stan-
dard distribution of the GCPs has been used, placing them both inside and along the
perimeter of the investigated area. For the second configuration, the internal points have
been excluded from the GCPs in order to evaluate the quality of the photogrammetric
solution obtainable in those cases where could be difficult or impossible to access the
field. Finally, in the third configuration only 4 GCPs, placed at the corners of the field,
have been used. The last configuration simulates the operative case of a quick survey,
for a rapid production of DTM and orthomosaics, georeferenced on few GCPs.

Pix4Dmapper Pro

The Bebop system has been developed together with Pix4Dmapper Pro to realize a
recommended and standard processing workflow. In fact, this software is able to inter-
pret properly the flight information acquired by the UAV and a good approximation of
the embedded camera is stored in its own database. The images have been processed
with Pix4Dmapper Pro (version 4.0.25). The tie points search and the estimation of the
External Orientation (EO) and Internal Orientation (IO) parameters have been realized
using the images at their full resolution, for all the considered scenarios. The dense
point clouds have been generated using images with a dimension equal to 1/4 of the
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original images. Finally, the DTMs have been generated with a ground resolution of
0.40 m.

Agisoft Photoscan Pro

The images have been processed with Agisoft Photoscan Pro (version 1.4.0), following
the standard workflow proposed for fisheye cameras, maintaining their full resolution
(correspondent to the high alignment quality of the software). A previously estimated
set of Internal Orientation (IO) parameters has been used as initial camera calibration.
This has been necessary because of the non-coherent pixel size value read by the soft-
ware from the EXIF file, with respect to the nominal focal length. These approximate
parameters have been then refined using PS optimize stage. The dense clouds have
been generated downgrading the images with a factor equal to 4 (i.e. using the high
quality of Agisoft Photoscan Pro), guaranteeing the same level of resolution used by
Pix4Dmapper. Also in this case, the DTMs have been generated with a ground resolu-
tion of 0.40 m, for all the considered scenarios.

Matlab 2017b + Agisoft Photoscan Pro

A two-step procedure has been tested for evaluating the effect of pre-processing the
fisheye images and transforming them into undistorted rectilinear images. A new set of
functions that allows to calibrate fisheye images and correct them from lens distortions
have been embedded in Matlab 2017b. After a dedicated calibration procedure (re-
alized using the Matlab chessboard pattern), undistorted rectilinear images have been
generated, together with the parameters of a virtual perspective camera that produce
those images. These images have been processed in Agisoft Photoscan Pro, maintain-
ing the same level of resolution previously illustrated. Because any UAV system suffers
impacts during take-off and landing, a self-calibration has been performed in Agisoft
Photoscan Pro by using the optimize stage. Even if the area covered by the rectilinear
images is smaller with respect to the fisheye ones, the image overlapping stays still
quite high (>9), which does not affect the completeness of the generated 3D models.
The DTMs have been generated with a ground resolution of 0.40 m.

Bundle block adjustment results

The quality of the photogrammetric solution has been evaluated considering the resid-
uals of the CPs, for all the scenarios. The results are shown in Table 4.1. They are all
in line with the requested tolerance, indeed the highest 3D residuals are of the order of
0.07 m in the worst case. From here on, Pix4Dmapper Pro is defined as P4, Agisoft
Photoscan Pro as PS and the processing with Matlab 2017b and Agisosoft Photoscan
Pro is identified as MPS.

Considering the different flight configuration, it is quite evident that the better re-
sults have been obtained for the double grid configuration, with 3D residuals of the or-
der of 0.03 m for all the evaluated software packages, and horizontal residuals around
0.015 m. This is quite reasonable because such flight path ensures the strongest acqui-
sition geometry, which reflects in a better intersection of the homologous rays.
Moreover, it is quite evident that the use of internal GCPs has no meaningful impact
on the final accuracy. As expected, the use of only four corner GCPs slightly reduces
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Table 4.1: Residuals on the CPs after bundle block adjustment.

Software
packages

Flight
configuration

N◦

GCP E [m] N [m] h [m]

P4 double grid 13 0.016 0.015 0.021
P4 double grid 9 0.014 0.017 0.028
P4 double grid 4 0.027 0.025 0.032
P4 along row 13 0.041 0.028 0.017
P4 along row 9 0.042 0.030 0.028
P4 cross row 13 0.040 0.038 0.019
P4 cross row 9 0.039 0.036 0.025

PS double grid 13 0.013 0.015 0.019
PS double grid 9 0.012 0.016 0.019
PS double grid 4 0.022 0.020 0.024
PS along row 13 0.031 0.021 0.012
PS along row 9 0.027 0.023 0.016
PS cross row 13 0.029 0.034 0.024
PS cross row 9 0.028 0.030 0.023

MPS double grid 13 0.016 0.016 0.022
MPS double grid 9 0.015 0.018 0.024
MPS double grid 4 0.021 0.019 0.023
MPS along row 13 0.060 0.037 0.016
MPS along row 9 0.058 0.036 0.018
MPS cross row 13 0.017 0.026 0.037
MPS cross row 9 0.018 0.021 0.025

accuracy in all double grid cases.
For both MPS and P4 the worst results have been obtained for the block composed only
by the images acquired along the vineyard rows. Instead, for PS there is slight wors-
ening for the block composed by the images acquired orthogonal to the vineyard rows,
especially along N and h coordinates.

4.1.3 Kriging interpolation

The reference DTM has been obtained by interpolating 15 points, whose coordinates
have been measured with GNSS-RTK. This low number of observations has been con-
sidered sufficient for the estimation of the DTM because the investigated area is quite
flat, without significant topography variation. The DTM has been obtained by inter-
polation using the Kriging method, in the version implemented in the Geostatistical
Wizard of ArcMap (version 10.5). The use of a geostatistical method has been pre-
ferred to the use of a deterministic methods (such as Inverse Weighted Distance, spline
etc.) because it provides also a standard map error, that shows the uncertainty related to
the predicted values (Burrough et al., 2015). In the absence of a precise DTM generated
through an Aerial Laser Scanner survey, the reference DTM has been created using the
ordinary Kriging, which assumes that there is an unknown constant mean value and
that the phenomenon is continuous in the space. These assumptions can be consid-
ered correct in case of a field characterized by a flat topography, without a pronounced
trend. Of course, the model created with an interpolation procedure tends to be flatter
with respect to the DTMs generated from photogrammetry, because it does not capture

35



i
i

“output” — 2020/3/23 — 9:49 — page 36 — #48 i
i

i
i

i
i

Chapter 4. DTM generation with mass-market UAV.
– Using a fisheye camera on a vineyard

local spatial variability (e.g. minor ground furrows). The resulting interpolated model
is shown in Figure 4.4, while the standard error map is reported in Figure 4.5. The
hypothesis of almost flat field is respected, as the maximum variation in 150 m (along
the diagonal of the field) is less than 1.5 m. Moreover, errors are lower than 0.03 m for
most of the area; as expected the highest error values are located along the edges.

Figure 4.4: The DTM created by Kriging interpolation.

Figure 4.5: Kriging error prediction map.

4.2 Results

As a first general remark, it can be stated that all photogrammetric process strategies
gave satisfactory results, as even the worst accuracies are around 0.06 m, that for agri-
cultural applications is by far sufficient. All the DTMs, obtained with different image
block configurations, number of GCPs and software packages, have been compared
with the reference one, generated by Kriging interpolation. This DTM is considered as
reference because point interpolation describes the main behavior of height field, ne-
glecting the high frequency details due to lines and interlines of the vineyard. For the
sake of brevity, only few comparisons are here analyzed and deeply discussed, choosing
the better cases. Crossing the information that double grid blocks have produced the
better accuracies, and at the same time the use of GCPs in the middle of the field have
not improved results, we can consider as best result, for each processing type (MPS, PS
or P4) the block formed with double grid and 9 GCPs on the border.

In Figure 4.6, the differences between the reference DTM and the photogrammetric
models obtained with different software packages are shown. It is quite evident, that
the computed differences underline the presence of the furrows for all the cases. This is
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Figure 4.6: Differences between the computed DTM for the 9 GCPs scenario: a) P4, b) PS, c) MPS.

because the photogrammetric models represent the terrain with a higher level of detail,
while the interpolated model is smoother and correctly represents only low frequency
phenomena. Moreover, all the computed maps are characterized by a common spatial
pattern, which reflects the spatial distribution that can be observed in the error pre-
diction map, generated during the Kriging interpolation (see Figure 4.4). The highest
differences between the reference DTM and the photogrammetric ones are of the order
of 0.2 m (absolute values). Table 4.2 reports mean and standard deviation values for
the computed differences. The values show a good agreement among the models. Con-
sidering that the standard deviations assume the same values for all the cases, P4 model
is the most similar to the reference one. This can be due to the better performance of
this software, with processing options specifically designed for Parrot Bebop fisheye
imagery. Even if, a certain level of smoothing due to interpolation is inevitably intro-
duced by each software packages during DTM generation, it has been noticed that P4
point clouds were in general smoother than point clouds generated with PS and MPS.
This is probably due to the fact that tie-points search is performed by using a sky-mask,
which avoid creating erroneous matchings that increase the roughness of the computed
point cloud.

Table 4.2: Means and standard deviations of the DTM differences.

µ [m] σ [m]

P4 -0.025 0.048

PS -0.053 0.048

MPS -0.069 0.049
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The smooth behaviour of DTM produced by Kriging interpolation is evident even in
the section, shown in Figure 4.7. The photogrammetric models well describe the terrain
profile with the high frequency component given by the presence of furrows and lines.
In addition, the profile confirms that the DTM generated by P4 software is the closest
to the reference one.

(a) (b)

Figure 4.7: (a) DTM generated with P4 software and extracted section (blue line); (b) terrain profiles
extracted from the different DTMs.

4.3 Conclusions

This case study investigates the use of Parrot Bebop 2 fisheye camera for generating
very high resolution DTM to be employed for precision agriculture purposes, as well
as prescription irrigation maps. All the tested strategies have given good results and
this study has been useful for defining best practices for surveying and processing op-
timization.

It is feasible to obtain accurate DTMs without any GCPs placed inside the field, as
long as GCPs are in sufficient number for the photogrammetric process and well dis-
tributed all around the surveyed area. Image pre-processing, aimed at removing fisheye
distortion to produce standard frame images, is not necessary and not advantageous in
terms of computational time. Regarding Agisoft Photoscan Pro, recent releases of the
software can deal with fisheye cameras, but high quality processing is not worthy in
terms of requested time with respect to obtained accuracies. Double grid flight config-
uration should be preferred to single direction flight. In order to reduce the acquisition
and processing time, it should be considered to reduce the number of strips and images.
This implies a reduction in transversal and longitudinal overlaps (Ajayi et al., 2017).
The GSD high variability through a single image and the real overlapping areas must
be carefully taken into account. To check the accuracies obtainable with this strategy,
further processing tests should be performed, by forming image blocks selecting one
every two images, and one every two strips.
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Crop row detection to optimise on-farm irrigation

management

In the context of Precision Agriculture (PAg), particular attention is given to the opti-
mization of on-farm irrigation management, since water resources for agricultural use
have become scarcer in recent decades due to the combined effect of climate change
and increased competition between different water uses (WWAP/ UN-Water, 2018,
Pachauri et al., 2014). Additionally, in many areas, the growing crop water require-
ment and the reduction of rainfall during the cropping season led to the need to irrigate
crops traditionally not irrigated (Costa et al., 2016). In fact, due to the increase in ex-
treme weather events, irrigation is becoming an important tool to guarantee adequate
quality standards to agricultural products (Castellarin et al., 2011).

The optimization of on-farm irrigation management, particularly variable rate drip
irrigation systems, is based on the spatial variability of soil and crop properties. UAV
imagery is used in PAg to monitor this variability and produce crop maps. When a row
crop is the object of investigation, UAV imagery must be post-processed to identify and
extract crop row from soil background and weeds. Different studies can be found in the
literature, proposing (semi)automatic methods, using image-processing techniques on
a single-band image, Vegetation Indices (VIs), or Digital Elevation Models (DEMs), to
detect crop canopy (Pádua et al., 2018a). Poblete-Echeverría et al. (2017) compared the
performance of four classification methods, including standard and well-known meth-
ods (i.e. K-means and VIs thresholding) and machine learning methods (i.e. Artificial
Neural Networks (ANN), and Random Forest (RF)), for vine canopy detection using
ultra-high resolution RGB Imagery acquired with a conventional camera mounted on
a low-cost UAV. Marques et al. (2019) presented an UAV-based automatic method to
detect chestnut trees, by using RGB and CIR orthomosaics combined with the canopy
height model. In Li et al. (2019), potato plant objects were extracted from bare soil
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using Excess Green Index and Otsu thresholding methods.
This case study focuses on the crop row detection and extraction by analysing and

post-processing images acquired through UAV. Different methodologies were tested
and compared, as well as several segmentation methods, such as supervised classi-
fications, Bayesian segmentation and algorithms developed ad hoc for this purpose.
Extraction algorithms were applied both on geometric products (i.e., DEM) and VIs,
and the assessment of the methods was performed on different crop types, including
grapevine, pear and tomato. As a remark, this study is inserted in a project, namely
NUTRIPRECISO, realized in cooperation with the University of Milan, aimed at de-
veloping and disseminating the new management practices of PAg.

5.1 Materials

5.1.1 NUTRIPRECISO project

“Precision fertilization and irrigation techniques in fruit-viticulture and horticulture”,
namely NUTRIPRECISO (RDP-EU, measure 1.2.01, Lombardy Region), is a two-
years project supported by PSR (Programma di Sviluppo Rurale) Lombardia 2014-
2020 Operation 1.2.01 “Information and demonstrative projects”, which started in Novem-
ber 2017 as a collaboration among the Department of Agricultural and Environmen-
tal Sciences-Production, Landscape, Agroenergy (DiSAA) of the University of Milan,
the Department of Civil and Environmental Engineering (DICA) of the Politecnico
di Milano, and CREA (Consiglio per la ricerca in agricoltura e l’analisi dell’economia
agraria). The aim of the project is to design, realise and manage variable rate drip irriga-
tion systems in vineyards, orchards and horticultural crops. The project is addressed to
the various stakeholders involved in the agricultural process, i.e. farmers, agronomists,
agricultural machinery drivers. Therefore, demonstrative and educational activities are
part of the project, in order to let the agricultural world know the PAg techniques and
their implementation methods in fruit-growing, viticulture and horticulture.

5.1.2 Study sites

Three different types of crops have been investigated in the NUTRIPRECISO project:
grapevine, pear, and tomato; therefore, three different areas have been chosen as study
sites, to be representative for each crop. According to the project specifications, the
three sites have been selected in the Lombardy Region. The location of the vineyard is
shown in Figure 4.1, while the pear orchard and tomato sites are reported in Figure 5.1.
In the following, the main characteristics of the three study sites are described.

Vineyard

The vineyard involved in the project is located in Olfino di Monzambano, province of
Mantova, Northern Italy (see Chapter 4). The soil of the site is composed by sand,
silt and clay, and the climatic condition are warm and mild with important rainfall
(mean annual value: 816 mm (climate-data.org)), that provide favourable conditions
for the grapevine to grow. The vineyard has an extent of around one hectare and is
characterized by the presence of Chardonnay grapes, with rows height and width of
about 1.3 m and 0.6 m, respectively, and the distance between rows is about 2.4 m.
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5.1. Materials

Figure 5.1: The experimental sites located in Montanaso Lombardo (LO): in yellow the pear orchard,
in red the tomato field; Coordinate Reference System (CRS): WGS84/UTM zone 32 N.
Map data: c©OpenStreetMap contributors.

Pear orchard

The pear orchard selected for this study is part of the experimental farm of University of
Milan, located in Arcagna locality, Montanaso Lombardo (province of Lodi, LO). The
area is characterized by warm and mild climatic condition (mean temperature: 13◦C),
with important rainfalls throughout the year (mean annual value: 897 mm (climate-
data.org)); the soil is loam, more clayey in deep horizons. The orchard has an extension
of about one hectare, and four different pear varieties are cultivated, namely Williams,
Abate, Kaiser and Conference variety, distributed in 17 rows with inter-rows distance
of about 2 m.

Tomato field

The third site included in the project is an area of about one hectare cultivated with
industrial tomato “Pietra Rossa F1”, inside the CREA ORL, at Montanaso Lombardo
(LO). The soil of the site is loam (sand, silt and clay), while climatic conditions are
the same of the ones above-described for the pear orchard site. Tomatoes plants are
few centimeters height and are cultivated in parallel rows of 0.5 m width, and distance
between rows of about 1.5 m.

5.1.3 UAV surveys and photogrammetric processing

Two UAV surveys were conducted on each study site, during the agricultural season
of 2018. For each site, in the first survey, the Parrot Bebop 2 was used to acquire
RGB images, as well as the Sequoia camera mounted on the Parrot Disco to collect
multispectral imagery during the second survey. The photogrammetric processings of
all the surveys were performed with Pix4Dmapper Pro software (version 4.1.1). The
details of the surveys and their processing are described in the following sections.
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Vineyard

The RGB survey of the vineyard took place on 28th June 2018, while the multispec-
tral one, six days later on the 4th July. The flight height of the Parrot Bebop 2 used in
the RGB survey was set to 40 m (AGL), while the Parrot Disco flew at 60 m (AGL)
during the multispectral survey. The same overlaps among images were fixed for the
two surveys: longitudinal overlapping equal to 80% and transversal equal to 70%. An
amount of 130 and 560 images were collected during the RGB and multispectral sur-
vey, respectively. According to sensors characteristics (i.e., Parrot Bebop 2 fisheye
camera and Sequoia camera), the final GSD of the acquired images was about 0.1 m
for both cases. As suggested in Ronchetti et al. (2018), the coordinates of 9 GCPs were
measured with the GNSS receiver Leica Viva GS14 (Leica Geosystems, Heerbrugg,
Switzerland) in Network Real Time Kinematic (NRTK) mode, to ensure the georefer-
encing of the photogrammetric products with high accuracy. According to the results of
the study described in Chapter 4, eight GCPs were distributed all around the perimeter
of the vineyard, while the nineth target was placed in the middle of the field (Figure
5.2).

At the end of two independent photogrammetric processings, performed with

Figure 5.2: Ground Control Points (GCPs) distribution for the surveys on the vineyard.
Map data: c©Google Satellite.

Pix4Dmapper Pro software, a Digital Surface Model (DSM), a RGB orthophoto and
a four bands multispectral orthophoto were produced, with GSD of around 0.1 m, to
exploit for the crop row detection. The DSM generated after the multispectral survey
had lower quality than the RGB one, therefore avoided from further analysis. Table 5.1
summarises the residuals on GCPs after photogrammetric processing, while in Figure
5.3 DSM and orthophotos of the vineyard are shown.

Pear orchard

In the pear orchard site, the RGB and multispectral surveys were conducted on 26th

June and 2nd July, respectively. The characteristics of the flights were the same of
the surveys performed on the vineyard site: longitudinal overlap among images equal
to 80%, transversal overlap equal to 70%, flight height set at 40 m and 60 m for the
multirotor UAV and the fixed-wings UAV, respectively, thus ensuring a GSD of the
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5.1. Materials

(a) (b)

(c)

Figure 5.3: Vineyard site: DSM (a) and orthophoto (b) produced through photogrammetric processing
of RGB dataset; false color orthophoto (c), generated from the multispectral dataset.

Table 5.1: Vineyard site: residuals on the GCPs after bundle block adjustment.

Label Easting [m] Northing [m] height [m]

v1 -0.029 -0.008 0.088
v2 -0.007 -0.012 -0.012
v3 -0.025 -0.030 -0.063
v4 0.008 0.025 0.062
v5 0.015 0.005 0.000
v6 0.022 -0.013 0.024
v7 0.030 -0.013 0.027
v8 0.020 -0.015 -0.086
v9 0.012 0.008 0.012

RMSE 0.021 0.016 0.052

images of about 0.1 m. 147 images were acquired during the RGB survey, while 540
during the multispectral one. During the UAV flights, seven targets were placed on
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Chapter 5. Crop row detection to optimise on-farm irrigation management

the terrain to be used as GCPs, well distributed all around the orchard, as shown in
Figure 5.4. As the case of the vineyard, the DSM and the orthophotos were produced

Figure 5.4: Ground Control Points (GCPs) distribution for the surveys on the pear orchard.
Map data: c©Google Satellite.

in Pix4Dmapper Pro with a spatial resolution of 0.1 m (Figure 5.5). The residuals on
the GCPs computed after the photogrammetric workflow are reported in Table 5.2.

Table 5.2: Pear orchard site: residuals on the GCPs after bundle block adjustment.

Label Easting [m] Northing [m] height [m]

p1 -0.050 -0.017 0.007
p2 -0.032 -0.004 -0.017
p3 0.018 -0.060 0.021
p4 0.028 -0.089 0.113
p5 0.003 0.023 -0.290
p6 0.100 0.053 0.018
p7 -0.085 0.003 0.054

RMSE 0.056 0.047 0.119

Tomato field

Given the proximity of the two sites, the tomato field was surveyed on the same days as
the pear orchard, with the same equipment and flight characteristics. During the RGB
survey, 96 images were acquired, as well as 388 images came from the multispectral
flight. From these datasets, one DSM and two orthophotos, having a GSD equal to 0.1
m, were generated after bundle block adjustment in Pix4Dmapper Pro. The various
photogrammetric products were georeferenced by means of six GCPs, whose centre
coordinates were measured with GNSS-RTK on the dates of the surveys. The distribu-
tion of the GCPs on the tomato site and their computed residuals are shown in Figure
5.6 and Table 5.3, respectively. The photogrammetric products are reported in Figure
5.7.
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(a) (b)

(c)

Figure 5.5: Pear orchard site: DSM (a) and orthophoto (b) produced through photogrammetric process-
ing of RGB dataset; false color orthophoto (c), generated from the multispectral dataset.

Figure 5.6: Ground Control Points (GCPs) distribution for the surveys on the tomato site.
Map data: c©Google Satellite.
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(a) (b)

(c)

Figure 5.7: Tomato site: DSM (a) and orthophoto (b) produced through photogrammetric processing of
RGB dataset; false color orthophoto (c), generated from the multispectral dataset.

Table 5.3: Tomato site: residuals on the GCPs after bundle block adjustment.

Label Easting [m] Northing [m] height [m]

t1 -0.098 0.071 -0.101
t2 0.095 0.068 0.046
t3 0.028 0.71 0.077
t4 -0.026 -0.127 -0.054
t5 -0.019 -0.154 0.149
t6 -0.053 -0.038 0.114

RMSE 0.062 0.096 0.097

5.2 Crop row detection methods

To differentiate between crop canopy and background is particularly challenging. Nev-
ertheless, the variety of crop types considered in this study leads to exploit many dif-
ferent methods with diverse inputs for extracting crop rows. In the following Sections,
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5.2. Crop row detection methods

five different detection methods are proposed; some of them were taken from existing
literature, while two methods, labelled as Thresholding algorithms, were developed ad
hoc for the purposes of the project.

In order to achieve the best possible crop mask to be used to identify crop rows on
orthophotos, Vegetation Indices (VIs) were chosen as inputs of the detection methods,
as already proposed by many authors (Poblete-Echeverría et al., 2017, Pádua et al.,
2018b, Marques et al., 2019). Considering vegetation, most of those indices take into
account Red (R) and Nir reflectance bands (ρλ): the greater is the difference between
ρR and ρNir, the greater is the amount of green and healthy vegetation in that particular
pixel. Among all the possible VIs, only those composed of spectral bands that sensors
involved in the surveys could provide, were used in this study (Table 5.4).

To fully exploit the proposed methods, also the DSM and RGB orthophoto were

Table 5.4: Vegetation Indices (VIs) used in this study.

Index Name Formula References

NDVI
Normalized Difference

Vegetation Index
Nir−Red
Nir+Red Rouse Jr et al. (1974)

SR
Simple
Ratio

Nir
Red Birth and McVey (1968)

SAVI
Soil-Adjusted

Vegetation Index
Nir−Red

Nir+Red+L (1 + L) Huete (1988)

ARVI
Atmospherically Resistant

Vegetation Index

Nir−RB
Nir+RB where:

RB = Red− γ(Blue−Red) Kaufman and Tanre (1992)

ExG
Excess
Green 2(Green)− (Red+Blue) Woebbecke et al. (1995)

G%
Normalized Green
Channel Brightness

Green
Red+Green+Blue Richardson et al. (2007)

individually used as inputs. This ensures that the methods are still operational, even in
the cases where only imagery resulting from UAVs which only supports RGB sensors
is available, as for the Parrot Bebop 2.

5.2.1 Thresholding algorithms

These algorithms were developed by starting from Weiss and Baret (2017), who pro-
posed a method for crop rows extraction by using as input the 3D Points Cloud. Both
methods were generated in Matlab 2017b, and are simply based on the concept that
high pixel values correspond to crop row.

Local Maxima Extraction

This method aims to generate a binary raster, where non-null values refer to the pres-
ence of the crop canopy. First, the input raster is divided into square cells (macro-cells),
then inside each macro-cell a percentage of pixels with the highest values is selected.
It is a semi-automatic algorithm, where the user has to define the dimensions of the cell
and the percentage value.
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This method is sensitive to the user’s choices: in particular, the macro-cell dimen-
sion should be selected in order to include both crop and ground pixels, thus being
close to the distance between rows or slightly larger. Macro-cell size should be neither
too small nor too big with respect to the distance between rows. If it is too small, a
wrong selection of pixels is performed whatever the chosen percentage is. When the
cell includes only crop pixels, whatever percentage not equal to 100% causes an under-
estimation of crop pixels; on the other side, when the cell overlaps only ground pixels,
they would be selected as crop pixels, thus producing an over-estimation in the crop
mask. The over-estimation arises also when the dimension of the macro-cell is too big,
because the probability of selecting pixels belonging to the ground increases with the
chosen cell size.

Threshold Selection

This method produces a binary crop mask, by selecting as crop pixels all pixels with
values higher than a mean value. The challenging part of this algorithm is the definition
of this mean reference value. When both DSM and DTM of the area are available, the
CHM could be derived and zero could be considered as the reference value, while
in other cases (i.e. VIs as input, no availability of an accurate DTM) it should be
determined as described here below.
Starting from the input raster, create a smoothed raster with a moving window average
filter. Subtract the smoothed raster to the input raster and define on the differences
a threshold to be considered as the reference mean value. Pixels with values greater
than the threshold are retained as crop. Even in this algorithm, the user intervention is
twofold, choosing the dimensions of the moving window and the value of the threshold,
and could cause problems of under/over-estimation of crop canopy pixels.

5.2.2 Classification algorithms

Two well-known classification algorithms were exploited in this study, K-means clus-
tering and Minimum Distance to Mean (MDM) classifier, to be representative of both
unsupervised and supervised classification algorithms. Both methods were applied in
QGIS (version 3.4), to allow users not familiar with programming languages to run the
algorithms thanks to a dedicated user-friendly GUI (Graphical User Interface).

K-means Clustering

It is a well-known algorithm for hard unsupervised thematic classification (MacQueen
et al., 1967). The clustering made by K-means is based on the minimization of the
objective function f(Ω), defined as the Euclidean distance of samples of a cluster from
respective centroid.

The number of classes (K) is known a priori. Once K is defined, the method consists
of three iterative steps. In the first step, for each class ki, a centroid is automatically
chosen. The rest of the data are assigned to k clusters based on the minimum distance
criterion. The Euclidean distances of each sample from the centroids are computed
and, in the second step, the sample is assigned to the cluster for which the computed
distance is minimum. In the last step, centroids are re-calculated and all the samples
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are re-assigned. This step is iterated until the clustering converges to a stable solution,
namely when centroids of clusters do not change meaningfully.

The final configuration is stable and does not depend on the initial position of cen-
troids arbitrarily selected. The initial configuration only influences the number of iter-
ations necessary to reach the convergence.

Minimum Distance to Mean Classifier

This method finds the mean values of all the training sets and classifies all the image
pixels according to the class mean they are closest. The process is performed for all
image pixels, one at a time. Bounds are determined using statistics derived from the
training sets and the used distance is the Euclidean one.

As all supervised algorithms, a crucial phase of MDM classifier is the selection of
the training samples. They are used to compute class spectral signatures, therefore
must be representative of all the classes. In this study, training samples were defined by
visual inspections of the UAV images and grouped in two macro-classes: crop canopy
and background, which includes weeds, soil and shadow pixels.

5.2.3 Bayesian segmentation

This method relies on the Bayesian approach, where any uncertainty can be considered
random variables, that are fully described by probability distributions (Ross, 2003).
Given the vector of data y and the vector of parameter x, the conditional distribution of
parameters is described by the Bayes theorem (Bayes, 1763):

P (x|y) =
P (x, y)

P (y)
=
P (y|x)P (x)

P (y)
(5.1)

where:
P (x|y) is called posterior probability and describes the new level of knowledge of the
unknown parameters x given the observed data y.
P (y) is a normalization constant used to impose that the sum of P (y|x) for all possible
x is equal to 1.
P (x), instead, represents the prior probability distribution. It describes the knowledge
of the unknown parameters x without the contribution of the observed data.
P (y|x) is defined as likelihood and is a function of x. It describes the way in which the
a-priori knowledge is modified by data and depends on the noise distribution.

The terms in equation 5.1 can be adapted to match the purpose of this study, the
detection of crop rows: the posterior probability is the probability of a pixel to be part
of the class crop canopy or background, the prior probability is defined starting from
mean and standard deviation values, a-priori assigned to each class, and the likelihood
is described by a Gaussian distribution, in which the parameters are mean and standard
deviation of the two classes:

P (yi|xi) =
1

σxi
√

2π
exp

(
−(yi − µxi)2

2σ2
xi

)
(5.2)

The final goal of Bayesian approach can be identified in finding the optimal pa-
rameters x that maximize the posterior probability distribution P (x|y). This is called
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Maximum a Posteriori (MAP) estimate (Geman and Geman, 1984) and it is defined as:

xMAP = arg max
x

P (x|y) (5.3)

In crop row detection, it consists in assigning a unique class to each pixel of the image,
depending on the posterior probabilities estimated for each pixel. In order to obtain out-
puts less affected by pixel noise, smoothing filters or image adjustment can be applied
on input raster.

5.3 Results

Considering all the detection methods, their parameters and all the possible input rasters,
the number of crop mask potentially available is very high. For the vineyard site, 191
outputs were tested, 166 and 104 for the pear orchard and tomato site, respectively. For
the sake of brevity, only the best masks, representing each detection method, are here
reported and compared. An exhaustive analysis of all the tests performed is described
in Marino and Marotta (2019).

The assessment of the results was performed by computing error matrices and clas-
sification accuracies (Overall Accuracy (OA), User’s Accuracy (UA), and Producer’s
Accuracy (PA)), on some validation samples manually identified on orthophotos. In
particular, the quality of the crop detection was defined according to the value of PA of
the class crop canopy: the greater is the PA, the lower is the probability to omit crop
pixels, therefore to under-estimate the detected crop rows.

5.3.1 Vineyard

For the vineyard site, the parameters of each detection method which arose the best
results are reported in Table 5.5.

Table 5.5: Vineyard site: parameters for the best results of each detection method.

Method Input User’s choices

Local Maxima
Extraction G%

cell size: 5 m
percentage: 30%

Threshold
Selection DSM

cell size: 3 m
threshold: 0.3

K-means
Clustering

RGB
orthophoto classes: 6

MDM
Classifier

RGB
orthophoto classes: 2

Bayesian
Segmentation

2G_RBi,
Gaussian filter (σ = 3)

Background: µ=0.2, σ=0.2
Crop canopy: µ=0.7, σ=0.25

For the computation of the error matrices, 104 polygons (N pixels = 42732) were
defined for the class crop canopy and 97 polygons (N pixels = 64309) for the class
background. In Table 5.6 the accuracies of the five selected best results are summarised,
as well as a detail of each crop mask is shown in Figure 5.8.
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(a) (b) (c)

(d) (e)

(f)

Figure 5.8: Vineyard site: crop row detection results for (a) Local Maxima Extraction, (b) Threshold
Selection, K-means Clustering (c), MDM Classifier (d) and Bayesian Segmentation (e). Figures refer
to the area included in the red box in (f).

Table 5.6: Vineyard site: assessment of the best results of each detection method.

Method OA PA
Crop canopy

UA
Crop canopy

Local Maxima
Extraction 0.94 0.95 0.91

Threshold
Selection 0.76 0.41 0.99

K-means
Clustering 0.82 0.73 0.80

MDM
Classifier 0.87 0.84 0.83

Bayesian
Segmentation 0.96 0.97 0.94
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5.3.2 Pear orchard

The parameters for the best results of each detection method for the pear orchard, are
summarised in Table 5.7.

Table 5.7: Pear orchard site: parameters for the best results of each detection method.

Method Input User’s choices

Local Maxima
Extraction DSM

cell size: 4 m
percentage: 40%

Threshold
Selection DSM

cell size: 4 m
threshold: 0

K-means
Clustering

RGB
orthophoto classes: 5

MDM
Classifier

RGB
orthophoto classes: 2

Bayesian
Segmentation

NDVI,
Gaussian filter (σ = 3)

Background: µ=0.8, σ=0.04
Crop canopy: µ=0.93, σ=0.04

The error matrices were computed starting from a validation set composed by 37
polygons (N pixels = 44889) for the class crop canopy and 34 polygons (N pixels =
62378) for the class background. The five selected best results and their respective
accuracies are presented in Figure 5.9 and in Table 5.8.

Table 5.8: Pear orchard site: assessment of the best results of each detection method.

Method OA PA
Crop canopy

UA
Crop canopy

Local Maxima
Extraction 0.92 0.88 0.93

Threshold
Selection 0.95 0.97 0.92

K-means
Clustering 0.95 0.90 0.99

MDM
Classifier 0.87 0.68 0.99

Bayesian
Segmentation 0.94 0.91 0.95
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(a) (b) (c)

(d) (e)

(f)

Figure 5.9: Pear orchard site: crop row detection results for (a) Local Maxima Extraction, (b) Threshold
Selection, K-means Clustering (c), MDM Classifier (d) and Bayesian Segmentation (e). Figures refer
to the area included in the red box in (f).
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5.3.3 Tomato field

Table 5.9 reported the parameters chosen for each detection method, which gave the
best crop mask outputs.

Table 5.9: Tomato field site: parameters for the best results of each detection method.

Method Input User’s choices

Local Maxima
Extraction G%

cell size: 3 m
percentage: 30%

Threshold
Selection DSM

cell size: 4 m
threshold: 0

K-means
Clustering

SAVI +
NDVI classes: 5

MDM
Classifier

SAVI +
NDVI classes: 2

Bayesian
Segmentation

2G_RBi,
Histogram adjustment

Background: µ=0.05, σ=0.15
Crop canopy: µ=0.65, σ=0.35

The assessment of the results for the tomato site was performed on 52 polygons (N
pixels = 81290) for the class crop canopy and 42 polygons (N pixels = 155296) for the
class background. The accuracy values are presented in Table 5.10, while Figure 5.10
shows the crop detection for the five selected methods.

Table 5.10: Tomato field site: assessment of the best results of each detection method.

Method OA PA
Crop canopy

UA
Crop canopy

Local Maxima
Extraction 0.98 0.94 0.98

Threshold
Selection 0.97 0.87 0.99

K-means
Clustering 0.93 0.93 0.79

MDM
Classifier 0.90 0.60 0.92

Bayesian
Segmentation 0.98 0.91 0.98

5.4 Discussion

As general findings, it can be stated that all the methods tested in this study perform
well for crop row detection, with OA close or even greater than 0.9. The vineyard site
seems to be the most challenging (OA values lower than 0.9 for some methods), due
to concurrent presence of weed, bare soil and shadow in the inter-row distance, while
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(a) (b) (c)

(d) (e)

(f)

Figure 5.10: Tomato field site: crop row detection results for (a) Local Maxima Extraction, (b) Threshold
Selection, K-means Clustering (c), MDM Classifier (d) and Bayesian Segmentation (e). Figures refer
to the area included in the red box in (f).

the high contrast between bare soil and crop canopy facilitates the crop detection in the
tomato site (OA values always higher than 0.9).

Local Maxima Extraction (LME) and Bayesian Segmentation (BS) overall return
the best outputs in terms of accuracies values, but with different performances in terms
of time-cost and parameters setting. The first method is faster and choosing a cell size
comparable with the rows distance, or slightly larger, and a percentage of maxima be-
tween 30% and 40% can produce high quality results in all cases. The latter requires
a high level of a-priori knowledge and parameters have to be ad-hoc fine-tuned with a
time-consuming trial and error approach. Threshold Selection (TS) algorithm needs to
be run with an accurate DSM and has bad performances on fields characterised by a
relevant slope, as demonstrated by the low accuracy values registered in the vineyard
site (OA = 0.76). In hilly fields and non flat areas, to use of a real CHM is necessary
and cannot be bypassed by the creation of a smoothed raster. Classification algorithms
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are easy to run, especially in the QGIS implementation, and widely used in Remote
Sensing, but cannot reach, in all cases, the same level of accuracy as the other meth-
ods. In addition, these algorithms require considerable human intervention, either in
the labelling phase, as the case of the K-means Clustering, or in the delineation of the
training samples, as for starting the MDM Classifier.

Regarding input rasters, DSM, RGB orthophotos and VIs obtained as combination
of RGB bands are the most adopted in the selected methods. Only the cases of BS on the
pear orchard site and classification algorithms for tomato site require NDVI and NDVI
joint with SAVI to obtain the best results. Therefore, NIR information does not give any
particular additional value in crop row detection and RGB sensors can perform accurate
canopy extraction, as already demonstrated by other authors (Poblete-Echeverría et al.,
2017, Weiss and Baret, 2017), saving time and cost of the UAV surveys and processing.

According to crop characteristics, specific considerations can be stressed out for
each single crop.
In the case of vineyard, it is important to maintain the continuity of the crop row, when
detecting the crop canopy. This characteristics is enhanced in the BS, as shown in Fig-
ure 5.8e, also thanks to the Gaussian filter applied to the input raster before launching
the algorithm. The continuity of the vine rows is also guaranteed by using the LME
algorithm as detection method (Figure 5.8a), apart from some rare and sparse pixels.
Nevertheless, the two aforementioned methods registered the highest accuracies val-
ues, in particular PA values: 0.97 and 0.95 for BS and LME, respectively, considerably
greater than the PA values of the other detection methods. The major issue of de-
tecting vine rows is the presence of shadows, weeds and bare soil in the inter-rows
distance. Our results demonstrate that the shadow problem makes the classification
methods practically unusable on vineyard. In Figure 5.8c and 5.8d, it is clearly visible
how the pixels at the edges of the shadow areas are detected as crop pixels. Classifica-
tion algorithms are unable to separate the vine canopy from its shadow on the terrain,
resulting in an overestimation of the crop rows (UA values around 0.8).
In the orchard, pear trees are planted quite distant one from the other (in our study site
around 1.5 m), therefore a good detection has to identify single plants rather than rows.
In these terms, Classification algorithms return the best results, as visible in Figure
5.9c and 5.9d and confirmed by the highest values of UA practically equal to 1 (Table
5.8). On the other hand, these detection methods also return the most noisy outputs
and underestimate the presence of pear trees in the orchard, in particular the MDM
classifier with a PA equal to 0.68. The height of the trees favors their extraction from
the background, also in presence of weeds in the inter-row distance. To fully exploit
this characteristics, it is advisable to use the DSM as input of the whatever detection
method, particularly the Threshold Selection algorithm gives the best outcomes in the
pear orchard site, with PA value for the class crop canopy of 0.97. Unlike the vineyard
site, no issues due to the presence of shadows on the terrain were evident in the pear
orchard site.
As already mentioned, the tomato field site has the highest accuracy values for the crop
detection, thanks to the regular alternation of bare soil and vegetation canopy. The OA
values for all the tested methods are higher than 0.9, LME algorithm, BS and K-means
also return PA values above 0.9, while the PA of the TS method is slightly lower than
0.9 due to the use of the DSM as input for starting the algorithm. The plants have an
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5.4. Discussion

height of few centimeters, comparable to image GSD, therefore the errors in the pho-
togrammetric processing (column height in Table 5.3) in this specific case affected the
results of the canopy detection.

Precision viticulture is already widespread in the world and recent articles have
demonstrated the added value that remote sensing from UAV platforms can give to
this sector (BorgognoMondino and Gajetti, 2017). Hence, numerous studies can be
found in the literature dealing with vine canopy extraction (Weiss and Baret, 2017,
Poblete-Echeverría et al., 2017, Cinat et al., 2019, De Castro et al., 2018a). The results
presented in this work have accuracy values similar to those available in the literature.
From the best of author’s knowledge, very few studies have already been published
related to the detection of pear trees in orchards or tomato canopy, thus hampering the
availability of reference values to compare the outputs. The assessment of the reliabil-
ity of the illustrated results was based on similar case studies present in the literature.
The detection of pear plants was performed with accuracy values slightly lower than
the results obtained by Dong et al. (2020), in two orchards in China, but close to the
outcomes of the chestnut trees extraction described in Marques et al. (2019). The high
values found for the tomato site are in agreement with the results presented in Li et al.
(2019), about the estimation of crop emergence in potatoes.

The potential utility of this study in Precision Agriculture is high. The methods here
described allow to derive from UAV imagery vegetation properties specifically related
to canopy characteristics. In Figure 5.11, 5.12 and 5.13, NDVI maps for the three anal-
ysed study sites are shown: on the left, the original maps, while on the right the canopy
maps generated after the extraction of crop rows. This information could be used in
Precision Agriculture applications for mapping vegetation stress status, or to optimise
on-farm irrigation management. As an example, in the following Chapter (6) the use
of crop row detection method to delineate Site-Specific Management Zones (SSMZs)
maps on a vineyard will be described.

(a) (b)

Figure 5.11: Vineyard site: NDVI map before (a) and after (b) the crop rows extraction.
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(a) (b)

Figure 5.12: Pear orchard site: NDVI map before (a) and after (b) the crop rows extraction.

(a) (b)

Figure 5.13: Tomato field site: NDVI map before (a) and after (b) the crop rows extraction.

5.5 Conclusions

This case study demonstrates that it is possible to perform crop row detection from
high resolution UAV imagery, for different crop variety, including vineyard, orchard
and horticulture. DSM, RGB or multispectral orthophotos can be used as input for
the detection methods, in particular the DSM performs better with crop characterised
by high heights (i.e., grapevine and pear), even in presence of inter-row weed, but it
should be avoided to detect horticultural crops (i.e., tomato). Commercial RGB sen-
sors give high accuracy values for crop row detection, therefore for this purpose it is
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not necessary to perform surveys mounting more expensive multispectral cameras, if
no additional infrared information is required. Nevertheless, in presence of shadows
produced by the crop canopy on the terrain, indices based on NIR band and classifica-
tion algorithms can lead to an overestimation of the crop rows.

Although all methods need some level of human intervention, among all, the Local
Maxima Extraction algorithm, ad hoc developed within this study, allows to have the
best compromise in terms of time-cost, automation and quality of the results. Bayesian
segmentation applied on VIs performs better than the other methods in presence of bare
soils, but it is dependent on a-priori information.

Finally, these detection methods could be used to derive specific information on crop
canopy to be used to optimise on-farm irrigation management.
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CHAPTER6
Data fusion for delineating Site Specific

Management Zones.
– An experiment on a vineyard

Site-specific management of water and nutrients in PAg requires the delineation in
the field of sub-regions with similar soil and crop characteristics affecting crop yield,
namely Site Specific Management Zone (SSMZ) (Nawar et al., 2017). Intensive and
relatively time-saving measurements of soil electrical conductivity (EC) through geo-
physical proximal soil sensors are among the most frequently used approaches in PAg to
delineate SSMZs (Corwin et al., 2003, Morari et al., 2009, Moral et al., 2010, Van Meir-
venne et al., 2013, Neupane and Guo, 2019). Statistical procedures (Pascucci et al.,
2018) are used to classify the EC maps derived by interpolation of the geophysical data,
resulting in few sub-field zones to be managed separately. EC maps are considered to
delineate SSMZs because EC is influenced by a combination of soil physical-chemical
properties affecting crop yield, including soluble salts, clay content and mineralogy,
soil water content, bulk density, organic matter, and pH.

Ancillary data acquired by spectral sensors in the visible (VIS), near-infrared (NIR)
and thermal infrared (TIR) regions shall be combined with EC data to characterize
the soil spatial variability (Corwin, 2008) and to improve the delineation of SSMZs
(López-Lozano et al., 2010, Scudiero et al., 2013). Indeed, NIR reflectance from soil
has been correlated with many soil properties, including total C, total N, water content
and texture (Chang et al., 2001, Rossel et al., 2006. The most recent literature stresses
the importance to consider multi-sensor data to optimally delineate SSMZs (Shaddad
et al., 2016, Castrignanò et al., 2017, Scudiero et al., 2018, Anastasiou et al., 2019,
Martínez-Casasnovas et al., 2018). An approach to improve the delineation of SSMZ
by considering multi-sensor data describing both crop and soil variability is illustrated
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in De Benedetto et al. (2013). In non-flat areas, as often in cases of vineyards, also
topography can influence soil water condition (see Chapter 4) and consequently crop
yield and field zonation; in this situation SSMZ delineation may be improved by inte-
grating geophysical soil monitoring data with topography data (Priori et al., 2013).

In this case study, it is presented the implementation of data fusion procedures to
delineate a SSMZ map in a vineyard of 1.5 ha located in Franciacorta (province of
Brescia, Italy), since this information is crucial for the elaboration of irrigation pre-
scription maps to be used for the design and/or the management of variable-rate irriga-
tion systems. In particular, the study shows how the different types of data which can
be involved in the SSMZ delineation are acquired and analysed, and finally integrated
through a data fusion approach. To assess the reliability of the SSMZ maps obtained
from different types of data, each of them was compared with data acquired with a
thermal infrared (TIR) survey carried out in a hot and dry period of the agricultural
season 2017, in a phase of the crop phenology during which the vine is normally most
sensitive to water stress.

6.1 Materials and methods

6.1.1 Study area

The experimental site is a rainfed vineyard of 1.5 ha located in Franciacorta (Erbusco,
575813 E, 5050828 N, Northern Italy), a rolling hills area south-east of the Iseo Lake
(Figure 6.1).

Figure 6.1: The experimental site; Coordinate Reference System (CRS): WGS84/UTM zone 32 N. Map
data: c©OpenStreetMap contributors.

Soils of this site are sandy-loam in texture, according to the regional 1:250.000 soil
map (http: //www.geoportale.regione.lombardia.it). They belong to the land system of
“intermediate moraine deposits”. In this area, the typic Paleudalf coarse loamy and
poorly gravelly soils (CZO1), are associated with more skeletal soils, very deep, with
moderately faster permeability and drainage (VBO1) (Usda, 2004).

In the Franciacorta region, the climate is continental, with the lake providing a miti-
gating effect in both summer and winter. Considering the average monthly values of the
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main agrometeorological variables registered at the Erbusco station (part of the Lom-
bardy regional monitoring network), located 2 km far from the experimental site, for the
period 2008-2018, it can be observed that the minimum and maximum monthly rainfall
occur respectively in July (70 mm) and October (85 mm), while the minimum and max-
imum daily air temperatures vary, respectively, from 7◦C in October to 20◦C in July,
and from 16◦C in October to 32◦C in July. Figure 6.2 shows the behavior of the main
agrometeorological variables recorded at the Erbusco station during the experimental
period June-August 2017.

Figure 6.2: Precipitation and temperature daily data collected at the agrometeorological station of
Erbusco, during the experimental period from June to August 2017.

6.1.2 Experimental surveys

Different types of data were collected in the vineyard to describe all the factors affect-
ing crop yield, related to the hydrological condition of the soil, as well as to the crop
vigor and water status. The soil properties were detected through an electro-magnetic
induction (EMI) sensor, while the topography of the vineyard and the crop properties
were investigated through multispectral and thermal sensors mounted on UAV. Various
combinations of these data (i.e. data fusion) were analyzed, to assess their effective-
ness in improving the delineation of the SSMZs aimed at optimizing the crop yield (see
Section 6.1.3 for more details).

Soil survey through EMI sensors

The soil variability was detected through an EMI survey on 14th June 2017, when the
soil water content might be considered close to the field capacity (FC), few days after
a three-day period of rainfall that resulted in 26 mm of rain (Figure 6.2).

The geophysical data were collected with the multi-frequency EMI sensor Profiler
EMP-400 (GSSI Inc., Nashua, NH USA). The EMI sensor worked with up to three
different frequencies from 1 to 16 kHz (15 kHz, plus at most two other frequencies),
corresponding to decreasing Depths of Exploration (i.e. DoE). Two frequencies were
selected for the survey, 15 kHz (DoE about 1.5 m) and 10 kHz (DoE about 2.5 m),
to explore the soil in contact with the vineyard’s root system, which is usually 2-3 m
deep. The data were acquired along parallel rows with an interdistance of 10 m, while
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vineyard rows have an interdistance of 2 m. In the portions of the fields characterized
by gravelly soils the EMI measurements showed not to be valid, since the EC values
were found to be negative. This extreme soil texture was more present in the upper part
of the soil profiles (investigated with the sensor operating at higher frequencies), and
showed to have a lower weight as the depth increases.

Vegetation and topography survey through UAV multispectral and thermal imagery

Vegetation survey was conducted by means of an aerial campaign with sensors mounted
on an UAV. The survey took place on 19th July 2017, under sunny and clear blue-sky
conditions. The daily average air temperature was 26◦C, with a maximum value of
31◦C during the central hours of the day. The survey was conducted during the verai-
son phenological stage, in which the crop is more sensitive to crop water stress.

The UAV employed for the survey was the HexaKopter (MikroKopter, Moormer-
land, Germany). It is a multirotor equipped with six brushless motors, it weighs about
1.2 kg, including batteries, and its maximum transportable payload is equal to 0.5 kg. It
can be remotely controlled and programmed for automatic navigation through the free
and open source Mission Planner software (http://ardupilot.org/planner/index.html). Its
maximum transmission range is about 200 m and the flight duration is limited to 10
minutes.

The UAV was equipped with three different sensors, in order to collect imagery in
different portions of the electromagnetic spectrum: VIS (450 - 720 nm), NIR (800 -
1000 nm) and TIR (7000 - 14000 nm). The Survey2 camera (MAPIR, San Diego,
CA, USA) was used for VIS acquisitions, while a modified SJ4000 camera (SJCAM,
Shangxue Technology Park, Putian, Shenzhen, China) was used to collect NIR imagery.
Both instruments are low cost and light-weight cameras, with a CMOS sensor of max-
imum size 16 Mpx. TIR data were collected by the thermal camera OPTRIS PI400
(Optris Gmbh, Berlin, Germany), with a spectral response in the range 7.5 - 13 µm.
The thermal camera acquires data in radiometric video sequences format (.RAVI). For
the photogrammetric processing, single frames with resolution equal to 382 x 288 px
are subsequently extracted from the video. Technical specifications of the three sensors
used for the vegetation survey are reported in Table 6.1.

Table 6.1: Technical specifications of the three cameras used for the vegetation survey.

Survey2 SJ4000 OPTRIS PI400

Acquisition VIS NIR TIR
Focal length (mm) 4.35 4.35 8
Sensor size (mm) 4.86 x 3.64 4.86 x 3.64 9.55 x 7.2
Sensor size (px) 4032 x 3024 4032 x 3024 382 x 288
Pixel size (µm) 1.2 1.2 25

Field of View (FOV) 82◦ 82◦ 62◦ x 49◦

Output format JPEG image JPEG image RAVI video
Weight (g) 64 64 380

According to the UAV payload, two flights were required to collect images with the
three sensors. During the first flight, the UAV mounted the Survey2 and the SJ4000
cameras simultaneously, in order to acquire a multispectral dataset. Considering sen-
sors characteristics and study area, flight planning included six strips at an altitude of

64



i
i

“output” — 2020/3/23 — 9:49 — page 65 — #77 i
i

i
i

i
i

6.1. Materials and methods

60 m above ground level (AGL), with forward and side overlaps equal to 80% and
65%, respectively. Two blocks of data (VIS and NIR) were acquired, each amounting
164 images with ground resolution, namely Ground Sample Distance (GSD), equal to
0.017m. The adopted plan for the multispectral flight is reported in Figure 6.3.

During the second flight, the UAV mounted the OPTRIS PI400 to collect data of
vegetation temperature. The video sequences were acquired with nadiral orientation
at a constant speed of 2.7 m/s and at the altitude fixed to 55 m AGL. The derived im-
ages had a GSD of about 0.150 m and forward and side overlaps equal to 80% and
40%, respectively. The georeferencing and the accuracy of the photogrammetric prod-

Figure 6.3: Flight track-lines for multispectral images acquisition and Ground Control Points (GCPs)
distribution. Map data: c©Google Satellite.

ucts were achieved by means of some targets used as Ground Control Points (GCPs),
whose center coordinates were measured through a Global Navigation Satellite System
(GNSS) receiver. The GNSS receiver Leica Viva GS14 (Leica Geosystems, Heerbrugg,
Switzerland) in Network Real Time Kinematic (NRTK) mode was used in this study,
with horizontal and vertical accuracies of 2-3 cm and 5 cm, respectively. Different types
of targets were used for multispectral and thermal surveys: 16 black and white plastic
square panels (30 cm x 30 cm) were employed for the multispectral survey, while 16
polystyrene square panels (60 cm x 60 cm), covered with aluminum foil and marked
with a copper cross to enhance the central point were used for the thermal survey. In
order to have an optimal distribution of GCPs, the targets were placed both all around
the perimeter of the vineyard, on the ground, and inside the investigated area, on the
top of the vineyard poles to ensure their visibility. Moreover, some targets with known
reflectance and thermal characteristics were imaged, to perform radiometric calibration
of VIS-NIR data and atmospheric correction of TIR images. According to Labbé et al.
(2012), 4 polystyrene square panels (60 cm x 60 cm), covered with plastic, where used
for the atmospheric correction of the thermal images. The panels, two white panels (i.e.
cold target) and two black panels (i.e. hot target) were placed outside the investigated
area in two different positions.
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6.1.3 Methodological approach to delineate SSMZs through data fusion

Different types of data - geophysical data acquired through EMI sensors, and topo-
graphic and crop data acquired through the multispectral VIS-NIR sensors mounted
on the UAV - were variously combined to delineate SSMZs. A data fusion approach
was considered, by applying multivariate statistical methods (i.e., Principal Component
Analysis, PCA) to integrate the different types of data. Precisely, the PCA was applied
to the maps elaborated from geophysical and VIS-NIR data as explained in Section
6.2.1. Moreover, the CWSI map was elaborated from the imagery acquired through
the TIR sensor mounted on UAV. CWSI was calculated as expressed in the following
formula:

CWSI =
Ts − Twet
Tdry − Twet

(6.1)

where Ts is the crop surface temperature, Twet is the lower boundary of crop tempera-
ture corresponding to the water status of a leaf with stomata fully open and a maximum
transpiration rate, Tdry is the upper boundary of crop temperature corresponding to the
water status of a non-transpiring leaf with stomata completely closed.
The CWSI map was used to assess the effectiveness of the SSMZ delineation obtained
from different combination of data even though crop yield maps are usually considered
for this purpose. In this study, in absence of this type of information, the CWSI map
was used as a proxy of the crop yield map. As a matter of fact, the crop water status
(described through the CWSI) is assumed to be the main environmental factor affecting
crop yield in this rainfed vineyard. Areas in CWSI map with low values (i.e. good crop
water status) were expected corresponding to areas with high soil water contents (i.e.
high EC values and/or high NDVI values and/or low topographic slope values).

Particularly, the effectiveness of the data fusion approach to enhance the delineation
of SSMZs was assessed by applying the methodology hereinafter explained and illus-
trated in Figure 6.4. Two separated areas were defined within the vineyard, because
of the occurrence of not valid EMI measurements for gravelly soils (Section 3.1.2). In
the first area (called “a”), characterized with valid EMI measurements, geophysical and
VIS-NIR data were available; in the second area (called “b”), characterized with not
valid EMI measurements, only VIS-NIR data were available. For each area, maps pro-
duced from different combinations of data were fused by applying PCA. Consequently,
the SSMZs were elaborated (for each area, “a” and “b”) from the integrated maps pro-
duced through PCA (i.e. maps of the Principal Components, PCs) by applying Cluster
Analysis (CA) through the Management Zone Analyst (MZA) software (Fridgen et al.,
2004). MZA implements an unsupervised fuzzy classification method and determines
the optimal number of SSMZs through the minimization of both the indices Normal-
ized Classification Entropy index (NCE) and Fuzziness Performance Index (FPI); the
NCE measures the degree of disorganization among zones (the larger the NCE, the
higher is the amount of disorganization), the FPI measures the degree of separation be-
tween zones (the larger the FPI, the stronger is the membership sharing between zones).
Specifically, the CA was applied considering only the PC maps representing most of
the variability of the input maps.

For the area “a”, the following three cases were analyzed: (1) only geophysical data
were considered: the SSMZs were delineated based on the EC maps relative to dif-
ferent soil depths; (2) geophysical data were considered together with the topographic
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data obtained from VIS-NIR imagery: elevation and slope maps as well as EC maps
referred to different soil depths were used to delineate SSMZs; (3) the complete dataset
including also crop data was considered: the SSMZs were delineated by integrating the
NDVI map with all the previously illustrated maps. NDVI map was elaborated from
VIS-NIR imagery, as the index is defined as the normalised difference between NIR
and Red bands (Rouse Jr et al., 1974).

For the area “b”, the following two cases were analyzed: (1) the topographic data
obtained from VIS-NIR imagery were considered: elevation and slope maps were used
to delineate SSMZs; (2) the complete dataset, including topographic and crop data, was
considered: the SSMZs were delineated by integrating the NDVI map with elevation
and slope maps.

For each case, the SSMZ map was validated through a comparison with the CWSI
map. The accuracy of the correspondence between SSMZ and CWSI map was analysed
considering the distributions of the CWSI values within each SSMZ.

Figure 6.4: Scheme of the methodological approach adopted in this study.

6.2 Results

6.2.1 Soil, vegetation and topography mapping

EC maps

The EC measurements obtained for each frequency used with the EMI sensor (15 kHz
and 10 kHz) were interpolated on a grid with 2 m pixel size. Two EC maps were ob-
tained (Figure 6.5), each one relative to a different DoE corresponding approximatively
to 1.5 m and 2.5 m, respectively. Red color area (area “b”) in each map of Figure 6.5
corresponds to gravelly soils, for which the EMI measurements were not valid, because
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of the very low EC values characterizing those soils. In these zones, negative EC values
were obtained from the EMI survey. The total extent of these areas decreases with the
increasing DoE.

(a) (b)

Figure 6.5: The obtained EC maps (mS/m): (a) frequency 15 kHz, corresponding to a DoE of 1.5 m;
(b) frequency 10 kHz, corresponding to a DoE of 2.5 m. Red color area (area “b”) corresponds to
gravelly soils (EMI measurement not valid).

Topography and slope maps

The VIS and NIR imagery blocks were processed through standard photogrammetric
workflow (Ronchetti et al., 2018) with the Agisoft Photoscan Professional software
version 1.2.6. Finally, the Digital Surface Model (DSM) was produced with spatial
resolution equal to 0.05 m, representing the height model for both vegetation and soil.

In order to reconstruct the soil topography, vegetation pixels were detected and re-
moved from the DSM. Vegetation detection was performed on DSM by using an algo-
rithm developed by the authors, which assumes that pixels with higher elevation values
correspond to vegetation, widely discussed in Chapter 5. The algorithm detects as veg-
etation pixels, all pixels which values are greater than a user-defined threshold within
a moving window. In a second step, vegetation pixels were subtracted from the DSM,
thus producing a model representing the height of the terrain, namely the Digital Terrain
Model (DTM) of the study area. Figure 6.6 shows the DSM and the DTM of the vine-
yard, obtained after photogrammetric processing and vegetation detection and removal,
respectively. The final DTM reported in Figure 6.6b, obtained after the application of a
moving average smoothing filter, has a spatial resolution of 2 m.

Slope and contour line maps were derived from the DTM, by using the Raster Ter-
rain Analysis functions in QGIS version 3.2. A fixed interval of 1 m was set for the
generation of the contour lines, while the slope map was computed as the gradient of
the terrain model, having the same spatial resolution of the DTM (i.e. 2 m). Final
results are shown in Figure 6.7.
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(a) (b)

Figure 6.6: DSM (a) and DTM (b) produced through photogrammetric processing of multispectral (VIS-
NIR) dataset.

Figure 6.7: Slope map and contour lines derived from the DTM.

Vegetation indices maps (NDVI and CWSI)

Multispectral VIS-NIR and TIR imagery were used to compute the vegetation indices
NDVI and CWSI, commonly adopted to describe vegetation vigor and crop water sta-
tus respectively.

VIS-NIR orthomosaic was generated in Digital Number (DN) with a spatial resolu-
tion of 0.05 m, then converted in reflectance values, through the radiometric calibration
obtained with an empirical line correction approach (Smith and Milton, 1999). Images
of the radiometric targets were used to compute the linear regression coefficients of
the DN values against the reflectance values from the target surface. The orthomo-
saic corrected through the radiometric calibration was used to obtain the NDVI map.
Moreover, soil was masked out, to avoid the inclusion of soil pixels in the vegetation
maps. The soil mask was created by extracting pixels that were not considered to be
vegetation, as described in Section 6.2.1. Figure 6.8 shows NDVI maps before and
after the soil pixel removal. From the graphs showing the frequency distribution of the
NDVI maps (Fig. 6.8b and 6.8d), it is evident that the most of the pixels with NDVI
values lower than 0.7 - corresponding to soil and inter-row weed - could be removed
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and only vegetation pixels (NDVI values greater than 0.7) were retained. The CWSI

(a) (b)

(c) (d)

Figure 6.8: NDVI map before (a) and after (c) soil masking, together with their respective frequency
distribution (b) and (d).

map was obtained from the TIR orthomosaic. The TIR orthomosaic (with spatial res-
olution equal to 0.15 m) was generated through a specific procedure for TIR images.
This procedure, including single frames extraction, format conversion and photogram-
metric processing, is described in detail in Tucci et al. (2019). Atmospheric correction
of the obtained TIR orthomosaic was performed by using the thermal images of the
cold and hot targets, representing respectively the minimum (Tmin) and the maximum
(Tmax) temperature values within the investigated area. The temperature of the targets
was recorded at the ground level as well. These temperature values, acquired at flight
height and at ground level, were used to derive an atmospheric model (Labbé et al.,
2012) successively applied to the TIR orthomosaic to obtain the crop surface temper-
ature (called crop surface TIR orthomosaic hereinafter). CWSI map was calculated as
in Equation 6.1. The values Twet and Tdry were initially determined by an empirical
approach reported in many studies (Meron et al., 2003, Cohen et al., 2005, Gonzalez-
Dugo et al., 2013, Gerhards et al., 2018). The value Tdry was calculated by using the
current Tair plus 5 ◦K (Möller et al., 2006, Ben-Gal et al., 2009, Alchanatis et al., 2010),
while the value Twet was calculated as the mean of the coolest 5% vegetated pixels in
the crop surface TIR orthomosaic. As for the NDVI map, soil was masked out from the
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crop surface temperature map. Figure 6.9 illustrates the CWSI maps before and after
soil pixels removal. Both maps show a zone with values greater than 1, due to the pres-
ence of pixels with surface temperature higher than Tdry. This could be due to the fact
that, in this study, Tair (31◦C) was the average hourly temperature registered during the
central hours of the day (from 1:00 p.m. to 2:00 p.m, solar time) at the Erbusco agro-
meteorological station, placed 2 km away from the experimental site and positioned
over a standard grass surface as indicated by WMO (World Meteorological Organiza-
tion). In order to estimate a more reliable value for Tdry, the same approach used for
Twet was adopted: Tdry was calculated based on the temperature histogram (Park et al.,
2017, Veysi et al., 2017, Bian et al., 2019) as the mean of the hottest 5% vegetated
pixels in the crop surface TIR orthomosaic. The derived CWSI map, successively used
in this study, is shown in Figure 6.10.

(a) (b)

(c) (d)

Figure 6.9: CWSI map before (a) and after (c) soil masking. The frequency distribution of the crop sur-
face temperatures, with the illustration of Twet and Tdry values calculated according to the empirical
approach described in Section 6.2.1, is reported for each case (b, d).

6.2.2 SSMZ mapping

Firstly, the SSMZ map was elaborated from EC maps only (Section 6.2.2). After-
wards, topography and crop information were integrated with the EC maps through
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(a) (b)

Figure 6.10: CWSI map after soil masking (a), derived considering the Twet and Tdry values calculated
as the mean of the coolest 5% and the hottest 5% vegetated pixels in the crop surface TIR ortho-
mosaic, respectively. The frequency distribution of the crop surface temperatures is also reported
(b).

PCA, to improve the SSMZ map (Sections 6.2.2 and 6.2.2). The Pearson’s correla-
tion coefficients were computed separately for areas “a” and “b”, respectively among
the EC, DTM, Slope and NDVI values calculated at the grid nodes used to interpolate
the EC data (2 m pixel size), with valid EMI measurements (Table 6.2), and among
the DTM, Slope and NDVI values calculated at the nodes of the same grid, with not
valid EMI measurements (Table 6.3). All the coefficient values are statistically signif-
icant with level 0.001 (p-value < 5x10-4). Moreover, the Moran Index was calculated
to describe the spatial autocorrelation of the variables and the spatial cross-correlation
between the variables. The values, calculated separately for areas “a” and “b”, con-
sidering the nodes respectively inside and outside the vineyard’s area with valid EMI
measurements, are reported respectively in Tables 4 and 5. The Moran Index values
were always statistically significant with level 0.001 (p-value < 5x10-4). The univari-
ate Moran Index calculated for the different variables was always positive and greater
than 0.60, showing a high spatial autocorrelation of all the variables. The bivariate
Moran Index (between variables) describes the correlation based on the relationships
between each point and the neighborings. According to Chen (2015), the correlation
described through the Pearson’s coefficients can be decomposed in two components,
related to a direct correlation without distance effect and an indirect correlation based
on the distance effect. Consequently, the difference between the Pearson’s coefficient
and the Moran Index quantifies the direct correlation component. For the two datasets
described in Tables 6.4 and 6.5, this difference was always less than 0.03 in absolute
value, equal to the 25% of the correlation coefficient at most, except for the correlation
between the variables EC-15kHz and EC-10kHz (Table 6.4) and between the variables
DTM and Slope (Table 6.5). These results highlighted the relevant contribution of the
spatial pattern in cross-correlation.
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Delineation of SSMZs from EC maps

The two EC maps relative to frequencies 15 kHz and 10 kHz, calculated within area
“a” considering only the valid EMI measurements (i.e., not negative EC values), were
analyzed through the PCA. The SSMZ map (Figure 6.11) was obtained by applying CA
to the first PC, explaining about 96% of the variability of both EC maps. Three SSMZs
were delineated within area “a”; another SSMZ (red color) was defined, corresponding
to area “b” characterized with not valid EMI measurements (i.e., negative EC values)
occurred for gravelly soils (Figure 6.5). SSMZs from 1 to 4 (Figure 6.11) correspond
to decreasing EC values.

Table 6.2: Pearson’s correlation coefficients among the variables used to delineate SSMZ, estimated
considering the grid nodes with valid EMI measurements (area “a”).

EC-15 kHz EC-10 kHz DTM Slope NDVI

EC-15 kHz 1 0.931 -0.201 0.231 -0.221

EC-10 kHz 1 -0.291 -0.261 -0.211

DTM 1 -0.401 -0.191

Slope 1 -0.072

NDVI 1

Table 6.3: Pearson’s correlation coefficients among the variables used to delineate SSMZ, estimated
considering the grid nodes with not valid EMI measurements (area “b”).

EC-15 kHz EC-10 kHz DTM Slope NDVI

EC-15 kHz - - - - -
EC-10 kHz - - - -

DTM 1 -0.401 -0.122

Slope 1 -0.083

NDVI 1

Table 6.4: Moran Index among the variables used to delineate SSMZ, estimated (using GeoDa software,
by Luc Anselin) considering the grid nodes with valid EMI measurements (area “a”).

EC-15 kHz EC-10 kHz DTM Slope NDVI

EC-15 kHz 0.822 0.792 -0.202 0.232 -0.242

EC-10 kHz 0.812 -0.282 0.272 -0.222

DTM 0.992 -0.402 -0.192

Slope 0.632 -0.072

NDVI 0.762

SSMZ and CWSI maps were compared. High EC values (i.e. high soil water con-
tents) were expected to correspond with low CWSI values (i.e. good crop water status).
Instead, areas with high CWSI values, denoting crop water stress, were included in the
SSMZ 1 (characterized by high EC values), while, viceversa, areas with low CWSI val-
ues were present in the SSMZ 4 (very low EC values). The analysis showed that for the

1p-value < 5x10-5;
2p-value < 5x10-4;
3p-value < 5x10-3
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Table 6.5: Moran Index among the variables used to delineate SSMZ, estimated (using GeoDa software,
by Luc Anselin) considering the grid nodes with not valid EMI measurements (area “b”).

EC-15 kHz EC-10 kHz DTM Slope NDVI

EC-15 kHz - - - - -
EC-10 kHz - - - -

DTM 0.962 -0.592 -0.152

Slope 0.692 -0.092

NDVI 0.662

study vineyard, physical-chemical soil properties described by the EC values where not
sufficient to explain the crop water status. As matter of fact, the spatial pattern of the
SSMZs is quite different from that one of the zones in the CWSI map correspondent to
low index values (from 0 to 0.5) and high index values (from 0.5 to 1).

Figure 6.11: The SSMZ map obtained from the EC maps relative to frequencies 15 kHz and 10 kHz.
SSMZ from 1 to 4 corresponds to decreasing EC values; in particular, SSMZ 4 corresponds to nega-
tive EC values, due to gravelly soils.

Data fusion: delineation of SSMZs from slope and EC maps

The combined effect of soil properties (i.e. EC values) and field topography (i.e. ele-
vation and slope) was investigated to improve the delineation of SSMZs, looking for a
better correspondence with the spatial distribution of the zones in CWSI map with low
and high index values. EC, elevation and slope maps were analyzed through PCA. The
SSMZ map was obtained by applying CA to the first and second PCs explaining most
of the variability of all the considered maps. Particularly, PCA and CA were applied
separately to the area “a” with valid EMI measurements, corresponding to SSMZs from
1 to 3 in Figure 6.11, as well as to the gravelly soil area “b”, corresponding to SSMZ 4
in Figure 6.11.

In the former area, four SSMZs (numbered from A1 to A4 in Figure 6.12a), were
delineated considering EC, elevation and slope maps. In the latter area, three SSMZs
(numbered from B1 to B3 in Figure 12a) were recognized taking into account only el-
evation and slope maps. The resulting SSMZ map is shown in Figure 6.12a. This map,
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even though improved with respect to that obtained from EC maps only (Figure 6.11),
could not completely explain the spatial variability detected in the CWSI map. Indeed,
as illustrated also in Figure 6.13 showing the distributions of the CWSI values within
each SSMZ, the SSMZs A1 and A2 (high EC values) corresponded to low CWSI val-
ues (as expected), as well as for the SSMZ B1 and part of the SSMZ B2; on the other
hands, SSMZs A3 and A4 included areas with both low and high CWSI values (not
expected due to the low EC values), as for the cases of SSMZ B3 and part of B2. This
behavior highlighted how the zonation shown in Figure 12a did not consider all the
factors affecting the crop water status.

(a) (b)

Figure 6.12: The SSMZ map obtained from: (a) EC, elevation and slope maps; (b) EC, elevation, slope
and NDVI. In (b), red circles highlight the presence of small areas with low CSWI values in areas
overall characterized by high CWSI values.

Data fusion: delineation of SSMZs from soil maps (slope and EC maps) and NDVI map

Finally, also the variability of crop vigor (described by the NDVI map) was taken into
account to produce a more reliable SSMZ map, with better correspondence to the zones
in the CWSI map characterized by high (from 0.5 to 1) and low values (from 0 to 0.5)
of the index. EC, elevation, slope and NDVI maps were analyzed through PCA and
CA. Following the same approach considered in the Section 6.2.2, the SSMZ map was
obtained by applying PCA and CA firstly to data available within the area “a” with valid
EMI measurements, and afterwards to data available within the area “b” characterized
by gravelly soils.

For area “a”, CA was applied to the first three principal components PCa1 , PCa2

and PCa3 (Table 6.6), obtained from the EC, elevation, slope and NDVI maps: PCa1

represented mainly the physical-chemical soil properties (correlation coefficients with
EC greater than 0.90), and partly the DTM (correlation coefficient equal to -0.48); PCa2

represented the topography (correlation coefficients with DTM and Slope equal to 0.72
and -0.45 respectively); PCa3 represented both the topography (correlation coefficient
with Slope equal to -0.61) and the crop vigor (correlation coefficient with NDVI equal
to 0.59) which are negatively correlated (see Table 6.2). For area “b”, CA was applied
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.13: Distribution of the CWSI values within each SSMZ shown in Figure 6.12a: (a) SSMZ A1,
(b) SSMZ A2, (c) SSMZ A3, (d) SSMZ A4,(e) SSMZ B1, (f) SSMZ B2, (g) SSMZ B3.

to the first two principal components PCb1 and PCb2 (Table 6.7), obtained from the
elevation, slope and NDVI maps: PCb1 represented the topography (correlation coeffi-
cients with DTM and Slope equal to -0.89 and 0.88 respectively); PCb2 represented the
crop vigor (correlation coefficient with NDVI equal to 0.99).

Within areas “a” and “b”, respectively, five SSMZs (numbered from AA1 to AA5)
were delineated from EC, elevation, slope and NDVI maps, and three SSMZs (num-
bered from BB1 to BB3) were delineated considering only elevation, slope and NDVI
maps. The resulting SSMZ map is shown in Figure 6.12b. The SSMZs AA1-AA3 ,
BB1 and BB3 corresponded to low CWSI values, while SSMZs AA4, AA5, and BB2
mostly corresponded to high CWSI values, except for the three small areas highlighted
with the red circles in Figure 6.12b. As matter of fact, the SSMZ delineation in Fig-
ure 6.12b improved respect to that one shown in Figure 6.12a, as illustrated in Figure
6.14: i) the mean and the standard deviation of the CWSI values within SSMZ AA1
decreased, while SSMZs AA5 (corresponding to SSMZ A4 in Figure 6.12a) mostly
included high CWSI values, with an increased mean value respect to that one for CWSI
values within SSMZ A4 in Figure 6.12a; ii) also the mean of the CWSI values within
SSMZs AA3 increased respect to the value for SSMZ A1 in Figure 6.12a; iii) the SSMZ
BB2 is characterized with the highest mean of the CWSI values; iv) the SSMZ BB3
mostly included low CWSI values (the mean and the standard deviation of the CWSI
values within this SSMZ decreased respect to the values for SSMZ B3 in Figure 6.12a).

76



i
i

“output” — 2020/3/23 — 9:49 — page 77 — #89 i
i

i
i

i
i

6.2. Results

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.14: Distribution of the CWSI values within each SSMZ shown in Figure 6.12b: (a) SSMZ AA1,
(b) SSMZ AA2, (c) SSMZ AA3, (d) SSMZ AA4,(e) SSMZ AA5, (f) SSMZ BB1, (g) SSMZ BB2, (h)
SSMZ BB3.

Finally, the integration of the NDVI data allowed the delineation of SSMZs each corre-
sponding to low or high CWSI values (except for the three small areas highlighted with
the red circles in Figure 6.12b).

The spatial distributions of the PCs (Figure 6.15 and 6.16) explain which factors
prevailed in the SSMZ delineation through CA. The SSMZs AA1-AA3 were mainly
determined by soil properties (EC data, described by PCa1), while the SSMZ AA4, as
well as the SSMZs BB1 and BB2, were mainly determined by topography (DTM and
Slope data, described by PCa2 for the case of SSMZ AA4, and by PCb1 for the case of
SSMZs BB1 and BB2). The SSMZs AA5 and BB3 were mainly determined by crop
vigor (NDVI data, described by PCa3 for the case of SSMZ AA5, and by PCb2 for the
case of SSMZ BB3).

Table 6.6: Results of PCA applied in the area “a”: variance of the principal components considered in
CA and correlation coefficients with the variables used to delineate SSMZ.

Variance Cumulative Var. EC-15 kHz EC-10 kHz DTM Slope NDVI

PCa1 2.26 45% 0.90 0.93 -0.48 0.52 -0.27
PCa2 1.29 71% 0.25 0.18 0.72 -0.45 -0.69
PCa3 0.87 88% 0.28 0.26 0.03 -0.61 0.59
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Table 6.7: Results of PCA applied in the area “b”: variance of the principal components considered in
CA and correlation coefficients with the variables used to delineate SSMZ.

Variance Cumulative Var. DTM Slope NDVI

PCb1 1.56 52% -0.89 0.88 -0.06
PCb2 1.03 87% -0.14 0-0.20 0.99

(a) (b)

(c)

Figure 6.15: Results of the PCA applied in the area “a”: spatial distribution of (a) PCa1 , (b) PCa2 , (c)
PCa3 .

Moreover, Tables 6.8 shows the correlation between CWSI and the variables (ele-
vation, slope and NDVI) used to integrate the EMI measurements in order to improve
the reliability of the SSMZ map obtained from only EC data. Correlation with NDVI
was the highest (p-values less than 5x10-4), highlighting how NDVI data were able to
explain the CWSI spatial variability within the whole field area. As matter of fact, for
NDVI the difference between the Pearson’s coefficient and the Moran Index, quantify-
ing the direct correlation component independent from the spatial variability, is almost
-0.30, while this component is almost zero for the other variables.

1p-value < 5x10-5;
2p-value < 5x10-4;
3p-value > 0.1
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(a) (b)

Figure 6.16: Results of the PCA applied in the area “b”: spatial distribution of (a) PCb1 , (b) PCb2 .

Table 6.8: Results of PCA applied in the area “b”: variance of the principal components considered in
CA and correlation coefficients with the variables used to delineate SSMZ.

DTM Slope NDVI

Pearson’s coefficient 0.291 0.023 -0.711

Moran index 0.292 0.022 -0.522

6.3 Discussion

Obtaining a reliable SSMZ map is of practical relevance for farmers, since this map is
an important tool to actuate variable rate practices in PAg, in term of both designing
and managing application systems (e.g. for the water and nutrient management). As
matter of fact, the delineated SSMZs are zones where the factors influencing the crop
yield (i.e. soil, topography, and micro-climate) result in affecting the crop water status
and vigour in a different way. These factors need to be adequately described through
thematic maps, to allow the delineation of SSMZs through their combination.

This study proposed a fusion approach integrating different thematic maps (EC,
DTM, slope and NDVI maps) to compute a SSMZ map, whose effectiveness was as-
sessed considering a CWSI map. The approach was applied in a rainfed vineyard to
obtain a SSMZ map useful for the design and the management of a variable rate irri-
gation system. By actuating a variable rate irrigation accordingly to the SSMZ map,
farmers would achieve a twofold result: first, to obtain a higher and more uniform pro-
duction and second, to optimize the water use.

Interesting general discussion points that emerge from the results of this study are
the following:

1. the SSMZ map can vary greatly its spatial configuration depending on the infor-
mation layers used for its production, it is therefore necessary to conduct more
research aimed at understanding which information it may be appropriate to in-
clude, based not only on the prevailing factors affecting the crop yield, but also on
the purpose for which the SSMZ map is being developed (e.g., nutrient manage-
ment, water management);
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2. the addition of the topographic information to the soil data included in the EC
maps leads the SSMZ map to have a spatial distribution more similar to that shown
by the CWSI map; it can be deduced that in a vineyard in slope conditions, the
topographic information together with the soil distribution information are able to
explain part of the variability illustrated in the vegetation maps;

3. in the specific case of this study (i.e., rainfed vineyard in severe water stress con-
ditions), NDVI data were able to explain the CWSI spatial variability within the
whole field area; indeed, the NDVI map showed a strong correlation with the crop
water status (CWSI);

4. while information on soil properties and topography are not very variable over
time, crop data may vary from year to year if soils and topography are not the
only factors conditioning their distribution; it would therefore be necessary to
repeat the study for several years to verify the stability over time of the spatial
distribution of crop data;

5. if the SSMZ map is to be used to design a rigid variable-rate irrigation system (i.e.,
drip irrigation system subdivided into different irrigation sectors), considering that
the geometry of the irrigation system (and consequently the irrigation amounts
distributed) cannot be changed from year to year, it is even more important to
verify the stability over time of the spatial distribution of crop data, and if therefore
it makes sense to consider them in the delineation of the SSMZs.

6.4 Conclusions

Recent literature suggests that integrating EC information with elevation and slope
maps, as well as with crop indices describing the crop vigor, can improve the delin-
eation of SSMZs in vineyards. This was demonstrated in this study, focusing on the
fusion of EC maps obtained by an EMI geophysical survey and VIS-NIR data collected
through UAV-mounted cameras, to optimally delineate SSMZs in a rainfed vineyard.
In the study, in absence of a spatially distributed crop yield map, the crop water sta-
tus detected during the grape’s veraison phenological stage was assumed to summarize
the effect of the principal environmental factors acting on the crop production; conse-
quently, the CWSI map was used as a proxy of the crop yield map itself.

The obtained results stressed how the crop water status in the study vineyard was
actually affected significantly not only by the physical-chemical soil properties (de-
scribed by the EC maps), but also by the elevation and slope of terrain. Moreover,
the NDVI map allowed to include in the analysis time-dependent factors influencing
the production (i.e. interaction among soil, topography, micro-climate and vegetation).
In fact, for the study vineyard, a good correspondence between the spatial pattern of
SSMZ and CWSI maps was achieved only by integrating the NDVI data to the other
types of data. Consequently, at least for the study case, a reliable SSMZ map to be used
to design and manage irrigation within the vineyard showed to require the availability
of both ‘stable-over-time information’, related to soil properties and topography, and
‘time-dependent information’, related to the crop development. In this study, crop in-
formation was available only for the 2017 season, but a good practice to obtain reliable
SSMZ maps would require the acquisition of crop data during different seasons.

80



i
i

“output” — 2020/3/23 — 9:49 — page 81 — #93 i
i

i
i

i
i

CHAPTER7
Conclusions and Perspectives

This dissertation gave a better understanding of advantages and limitations of perform-
ing UAV surveys for precision agriculture applications, mainly focusing on crop moni-
toring and management. Several open points were addressed, starting from the analysis
of sensors, vehicles and flight strategies, passing through the study of methodologies
for effective parameters extraction, up to the proposal to integrate UAV imagery with
geophysical data acquired from ground-based platforms. The illustrated case studies
derive from real practical needs that occurred during the PhD period. Starting from
these it was possible to find solutions to the problems encountered and recommend
guidelines for conducting UAV surveys in the agricultural sector. From each case study
it was possible to extract important recommendations and the main guidelines are re-
ported below.

A careful planning of the survey is relevant in any applications, together with proper
choices during image processing. When working with multispectral sensors, radiomet-
ric calibration of data is required, anyhow it is recommended to assess accuracy of the
calibration before using results, because significant radiometric distortions may be left.
Radiometric errors are more evident especially on the edges of the acquired blocks,
therefore to reduce this effect it is advisable to plan to survey a wider area that includes
the area under investigation. Semi-automatic processing methods must be used with
awareness, knowing their limitations and weaknesses.
To facilitate the spread of UAV surveys in agriculture, it is worth knowing that mass
market very-light UAV can also be used, even if equipped with fisheye cameras. Recent
advances in processing techniques compensate geometric distortions on images, in or-
der to obtain high quality products. To optimize costs and times of the surveys, double
grid flight configurations should be preferred to single direction flights, and placing any
GCPs inside the field would not affect quality of final results, as long as the minimum
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number of necessary points is reached and that they are well distributed all around the
surveyed area.
Precision Agriculture applications require to derive specific information on crop canopy.
Vegetation parameters can be easily extracted from products generated by means of
UAV imagery processing, whether they are DSM, RGB orthophotos or Vegetation In-
dices maps. Different methods have been developed aiming at detecting vegetation
canopy and differentiating from soil background. The performances of the methods are
generally good but vary greatly according to the characteristics of the input data, the
level of automation of the algorithm and the peculiarities of the crops analyzed. Com-
pared to orchards and horticultural crops, the extraction of rows in vineyards presents
the greatest challenges, due to the concurrent presence of bare soil, weeds, and shadows
in the inter-rows distance.
For responsible management of agronomic resources, the delineation of SSMZs can be
improved by integrating EC information derived from ground-based sensors with ele-
vation, slope and crop vigor maps retrieved from UAV surveys. To design and manage
irrigation systems, it is required to collect information related to soil properties and
topography, stable over the time, and time-dependent factors related to the crop devel-
opment along the growing season, obtainable by means of very-high resolution UAV
multispectral and thermal imagery.

Although several aspects have been addressed, the reported case studies are not ex-
haustive, and few problems have not been thoroughly investigated. Concerning data
acquisition, this thesis has not dealt with the analysis of the optimal flight parameters
for conducting surveys, namely image overlaps and flight height. Following a conser-
vative approach, in the presented UAV surveys it was assumed that overlaps between
images were always greater than 60% and flight heights fixed in order to guarantee a
GSD of few centimeters. A recent study (Seifert et al., 2019) has demonstrated that
flight parameters can influence surface reconstruction in forestry applications, it would
be worthy to evaluate their effects also in agriculture. Regarding data processing, none
of the reported studies specifically focused on BRDF corrections, despite being a topic
of interest among researchers (Wierzbicki et al., 2018, Honkavaara and Khoramshahi,
2018). An open point remains what added value can bring performing BRDF correc-
tions for operational uses in agriculture. Finally, this thesis refers only to applications
with the concurrent use of UAV and satellite imagery. Further actions could be to study
solutions to encourage the combined use of data acquired from both satellite and UAV
platforms, in order to exploit the potential of both remote sensing systems. UAV sur-
veys could be used on selected sites as training samples to calibrate satellite images and
then enlarge the extension of the area under investigations. Other possible applications
could be performing targeted UAV surveys on fields in which satellite data have high-
lighted some critical issues. In this direction, it is necessary that there is georeferencing
and radiometric coherence between the collected data. The main issue to be solved is
to make two such different data comparable, through the fusion of images with very
different spatial resolutions. The launch of Sentinel-2 mission five years ago has in-
creased research interest in this area and the first methodological proposals have been
put forward (Zhao et al., 2019, Di Gennaro et al., 2019, Nonni et al., 2018, Martin et al.,
2018). The next research activities will be certainly addressed to these perspectives.
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List of Acronyms

AGL Above Ground Level
B Blue
BBA Bundle Block Adjustement
BRDF Bidirectional Reflectance Distribution Function
BS Bayesian Segmentation
CA Cluster Analysis
CHM Canopy Height Model
CIR Color InfraRed
CP Check Point
CV Computer Vision
CWSI Crop Water Stress Index
DEM Digital Elevation Model
DG Direct Georeferencing
DN Digital Number
DoE Depths of Exploration
DSM Digital Surface Model
DTM Digital Terrain Model
EC Electrical Conductivity
EM ElectroMagnetic
EMI ElectroMagnetic Induction
EO External Orientation
FOSS Free and Open Software System
FPI Fuzziness Performance Index
G Green
GCP Ground Control Point
GIS Geospatial Information System
GLCM Grey Level Co-occurence Matrix
GNSS Global navigation Satellite System
GPS Global Positioning System
GSD Ground Sample Distance
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GUI Graphical User Interface
ICP Iterative Closest Point
IMU Inertial Measurements Units
INS Ineratial Navigation System
IO Internal Orientation
LiDAR Light Detection And Ranging
LME Local Maxima Extraction
MDM Minimum Distance to Mean
MZA Management Zone Analyst
NCE Normalized Classification Entropy
NDVI Normalized Difference Vegetation Index
NIR Near-InfraRed
NRTK Network Real Time Kinematic
OA Overall Accuracy
PA Producer’s Accuracy
PAg Precision Agriculture
PC Principal Component
PCA Principal Component Analysis
R Red
RE RedEdge
RGB Red-Green-Blue
RMSE Root Mean Square Error
RS Remote Sensing
S2 Sentinel-2
SfM Structure from Motion
SSMZ Site Specific Management Zone
TIR Thermal InfraRed
TS Threshold Selection
TWI Topographic Wetness Index
UA User’s Accuracy
UAV Unmanned Aerial Vehicle
VI Vegetation Index
VIS Visible
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