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Chapter 1

Introduction

1.1 Optimization

Optimization in fluiddynamic problems has always been an important is-
sue. Wether there is the need of obtaining or trying to reach a certain value
for a certain variable or combination of variables, the optimization problem
allows to change all the other ones until the desired value is found. From
now on this "desired value" will be called "objective function". By starting
from this general point this work has the goal of finding an optimized state
with regards to an objective function for a certain basic model by changing
its variables until the best result is found.
The numerical optimization in practical applications is a growing issue in
the industry and practical examples can be seen everywhere. There may
be the need to find an efficient way to heat a room or to create a safer
work environment by avoiding air currents inside an office, a lot of every-
day problems can be solved as optimization problems. The complexity of
the problem depends on many things, the number of variables, the com-
plexity of the phenomenon under study, the boundary conditions or other
constraints. It is impossible to find an optimal solution for a real life
problem without the help of an optimization software and even then, the
solution is found by using some simplifications or approximations. Opti-
mization is obtained through software packages but it requires extensive
computer resources. At least three prerequisites are required to implement
successfully optimization in professional practice. These inlcude knowl-
edge of optimization techniques, the mathematical modeling of the design
problem and knowledge of programming. Another assumption frequently
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1 – Introduction

made is that each user is able to implement the optimization in a main-
frame computing environment. In recent years, though, new exciting pos-
sibilities arose. There have been several new software systems that deal
with mathematics, graphics, and programming available, accompanied by
numerous inexpensive desktop computing resources that aid engineering
practice. (Venkataraman, 2009)

There are different software systems that are viable choices as of today.
Benchmarking these possible choices is a popular argument and extensive
papers have been written on this argument. The evaluation of different
solvers involve tables displaying the performance of each solver on each
problem for a set of metrics such as CPU time, number of function evalu-
ations, or iteration counts. The problem, though, lies in the interpretation
of the results obtained in these tables, which is often cause of disagreement.
(Dolan & Moré, 2002) This is why benchmarking the methods used is not
tackled in this work, the extensive resources required preclude an adequate
number of iterations. A non-conclusive opinion will be given based on a
small number of iteration for each method.

The majority of open-source optimization systems found online require
extensive programming skill, that is why the Dakota software has been
chosen as the optimizer software. The extensive resources online backed
up by little programming skills allow to develop many interesting ideas
without the need of expensive computing power. The meaning of this work,
hence, is to devise a possible application by showing the optimization of
an approximated fluiddynamic problem. A room has been approximated
as a twodimensional box with current inside due to two openings in its
walls. The position of these openings will be optimized with respect to an
objective function defined by the user. Even though the problem at hand
is simple, the tools used to solve it are powerful and highly customizable
to every need.
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1.2 – Objectives

1.2 Objectives

The first objective of this thesis is to find a way to make the optimizer
software interact with the fluiddynamic solver. OpenFOAM will be used
as the powerful tool to solve fluiddynamic problems and DAKOTA will be
the optimization software. Having established the interaction between the
tools, a basic problem was designed next. Since the goal is to prove the
feasibility of this approach, the starting problem will be an alteration of
the basic cavity tutorial with some tweaks to allow the optimization. The
cavity model allows to understand the flow inside a 2D box with 3 fixed
walls and a wall moving at constant velocity.

Figure 1.1: Domain of the cavity tutorial

The moving wall will be removed and an inlet and an outlet will be
added to allow the circulation of the flow inside the box. An objective
function will be defined from the variables of the flow inside the cavity
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1 – Introduction

model and the interaction between the two systems will allow us to find
the desired value for our objective function, which can mean more efficient,
biggest value, lowest value or any other specific indication. Finally the
OpenFOAM model will be tested within Dakota with different algorithms
to see wether the results are coherent and to draw simple conclusion as to
the performances of the different algorithms launched.
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Chapter 2

Software Introduction

2.1 OpenFOAM Introduction

OpenFOAM (for "Open-source Field Operation And Manipulation") is
an open source CFD software. It is written in C++ and extremely flexible,
various solvers are already compiled in it but customized numerical solvers
are also possible, it has pre-/post-processing utilities for the solution of any
physical problem including, most importantly for this work, computational
fluid dynamics (CFD). It is developed primarily by OpenCFD Ltd since
2004. OpenFOAM has a considerable amount of features to solve anything
from the most basic fluid flows without any chemical reaction, turbulence or
heat transfer to the most complex ones including all of the above mentioned
processes and more. (Ferziger, Perić, & Street, 2002)

A short explanation as to how the software works follows. The solving
process of each case can be seen as 3 different operations:

• Pre-Processing

• Calculation

• Post-Processing
9



2 – Software Introduction

Figure 2.1: Processes followed by the software.

The pre-processor consists of the input of a flow problem into a form
suitable for use by the solver. It usually involves the definition of the
domain and its subdivision into a number of cells, the selection of the
physical and chemical phenomena that are to be modelled, the definition
of the properties of the flow and the details of suitable boundary condi-
tions. The calculation step is structured around numerical algorithms
that can simulate the problem at hand. The numerical solver performs the
approximation of unknown flow variables and subsequent discretization by
substitution of the approximation into the governing flow equations. Fi-
nally it solves the equation to find a solution that will be better the fewer
approximation are made. The spatial discretization is achieved with the
Finite Volume method. (F. Piscaglia, 2019)
Approximations of constitutive relations and governing equations are solved
for each cell to get the solution of the model. The post-processor is used
to visualize and extract relevant data from the previously solved simula-
tion. These are the main steps followed by the software. OpenFOAM is
a very powerful tool that allows to solve many different flows, hence there
are many different solvers already compiled in it, including the one used in
this thesis: icoFoam. This solver is used in striclty incompressible cases to
solve transient problems. It is, although, required to use very small time
steps to get converging results.
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2.1.1 Introduction to OpenFOAM case structure

Each CFD problem is always composed by 3 folders:

• 0

• constant

• system

The folder 0 contains all the variables needed to simulate the problem at
their initial condition. The constant directory contains the mesh and dic-
tionaries for thermophysical and turbulence models. The system folder
contains settings for the run, discretization schemes and solution proce-
dures. It contains at least the following 3 files: controlDict where run
control parameters are set including start/end time, time step and param-
eters for data output; fvSchemes where the discretisation scheme employed
in the solution is chosen; and fvSolution where the equation solvers, toler-
ances and other algorithm controls are set for the run. Depending on the
complexity of the case under study, a solver will be selected from the many
already written inside OpenFOAM source code or compiled as needed. The
case is solved by the solver that follows the settings written inside these
files.

2.2 Dakota Introduction

The software Dakota delivers robust and usable perfomances in optimiza-
tion and uncertainty quantification. Broadly, the Dakota software’s ad-
vanced parametric analyses enable design exploration, model calibration,
risk analysis and quantification of margins and uncertainty with compu-
tational models. It provides a flexible, extensive interface between such
simulation codes and its iterative systems analysis methods, wich include:

• optimization with gradient and nongradient-based methods

• uncertainty quantification
11



2 – Software Introduction

• parameter estimation

• sensitivity/variance analysis

These capabilities may be used on their own or as components within ad-
vanced strategies such as hybrid optimization, surrogate-based optimiza-
tion, mixed integer nonlinear programming, or optimization under uncer-
tainty. (Dakota, 2009)
Here it will be used together with OpenFOAM as an optimizer to find the
best possible value for the variables that generate the geometry of our do-
main. The goal of this work, in general terms, is to find the configuration
that allows for the most uniform flow in a specific region of the domain or
in the whole domain. More details will be added in the following chapters.
A brief explanation as to how optimization within Dakota works will be
presented now.

2.2.1 Optimization Capabilities

The Optimization algorithms work to minimize (or maximize) the objec-
tive function, typically calculated by the simulation code supplied by the
user, subject to constraints on design variables and responses. There are
different approaches in Dakota including well-tested and proven gradient-
based, derivative-free local, and global methods to be used in design ap-
plications. Dakota also offers more advanced algorithms to manage multi-
objective optimization or perform surrogate-based minimization but these
won’t be mentioned here. This chapter summarizes optimization problem
foundation, some algorithms available in Dakota, which are important to
the problem at hand, and a guideline to follow.

2.2.2 Optimization Formulation

Here a basic introduction to the mathematical formulation of optimization
problems is provided. A general optimization problem is formulated as
follows:

minimize: f (x) x ∈ Rn
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subject to: gL ≤ g(x) ≤ gU
h(x) = ht

aL ≤ Aix ≤ aU

Aex = at
xtextitL ≤ x ≤ xU

where vector and matrix terms are written in bold. In this formulation, x
is an n dimensional vector of real-valued design variables or design
parameters. xLandxU n-dimensional vectors are the lower and upper
boundaries for the design variables of the problem. The design variable
can assume any value between the lower and upper bounds of the design
space. Chosing a set of design variables means setting a design point
within the parameter space. The objective function, f (x) has to be
minimized or maximized in a optimization problem while satisfying the
constraints. There are different types of constraints:

• linear or nonlinear

• inequality or equality

The nonlinear inequality constraints, g(x), as linear inequality constraints,
are "2-sided" because they have both lower and upper bounds, gL and gU,
respectively. The nonlinear equality constraints, h(x), have target values
specified by ht. The linear inequality constraints create a linear system
Aix, where Ai is the coefficient matrix for the linear system. The linear
equality constraints create a linear system Aex, where Ae is the
coefficient matrix for the linear system and at are the target values. The
space of parameters is hence divided into feasible and infeasible values.
All this is to say that the optimization problem formulated before can be
solved in different ways, all of which are based on the iteration on the
value x in some manner. This means that after an initial value for each
parameter x is generated, the response quantities are computed, f (x),
g(x), h(x), usually by running a simulation. Then a new parameter x is
found using a chosen algorithm, with it we can either compute a better
function object, reduce the infeasibility, or both.
The different optimization methods can be categorized by the
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optimization problem type which means on the type of constraints
(linear, nonlinear, equality, inequality, constrained, unconstrained); by the
search goal, local optimization, global optimization; by the search
method, which means the approach taken in the algorithm to find a new
design point, gradient-based, nongradient-based. Local optimization means
finding an optimal design point relative to the "nearby" region of the
parameter space while global optimization aims to find the best possible
objective function over the entire parameter space. In gradient-based
algorithms, gradients of the response functions are computed to find the
direction of improvement. This is usually very efficient in local
optimization methods but it may not be the right solution if gradients are
computationally too expensive, inaccurate or nonexistent. In this case,
nongradient-based algorithms are the best choice. There are a lot of
different approaches with nongradient-based optimization. This brief
explanation tells us that there is no single "best choice" of a single
optimization approach for all types of optimization problems. (Dakota,
2009)

2.2.3 Derivative-Free Methods

The optimization problem at hand is a constrained global optimization
problem where a gradient-based algorithm isn’t necessarily the best
choice since a gradient may be unreliable. This means that the choice
falls on nongradient-based global methods. It is important to add though,
that derivative-free methods exhibit much slower convergence rates for
finding an optimum, and as a result, tend to be much more
computationally demanding than gradient-based methods. Now let’s dig
deeper into the possible choices offered by Dakota.

• Evolutionary Algorithms (EA)

• DIvision of RECTangles (DIRECT)

Evolutionary Algorithms (EA) are based on the survival of the fittest
theory by Darwin. The EA algorithm selects random points in the design
space that form an initial "string" much like DNA. The algorithm then
generates new parameters from the best design points of the previous
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generation that are considered to be the most promising and are allowed
to endure in the following generation. The EA follows the mathematical
analogous of reproduction, natural selection and mutation.

DIvision of RECTangles (DIRECT) searches both in promising
regions of the feasible design space in the neighborhood of a global
minimum and in unexplored regions.

2.3 Guideline

The most important file in any Dakota simulation is the input file. The
software is launched by calling out the input file. After that, Dakota
outputs a large amount of information to help track progress in new files:

• The screen output can be saved in a *.stdout file if instructed

• An output file *.out that contains all the informations about the
functions evaluation

• A *.dat file (due to an option in the input file) that summarizes the
variables and responses for each iteration of the evaluation

• Finally a dakota.rst which is a restart file in case the simulation
has to be paused and restarted again.

The *.stdout file allows to reduce the screen output to a minimum. The
output file is much more extensive, it contains information on every
iteration carried out by Dakota. It starts with a copy of the input file at
the top and timing information at the bottom of the file. Generally the
file is divided into 3 parts:

• Information on the problem

• Information on each function evaluation

• Summary statistics
15
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2.3.1 Dakota Input File Format

The input file is the controller of the software iterations. It is divided into
six blocks identified by keywords:

• variables

• interface

• responses

• model

• method

• environment

The order in which they are written into the input file isn’t important but
there is an important relation between these blocks which is summarized
in the following figure from the User Manual of Dakota. (Dakota, 2009)

Figure 2.2: Dakota blocks relation
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This relationship can be summarized as follows: for every iteration of the
chosen algorithm, a model is chosen and the method block requests a
particular variables- to -responses mapping. The model satisfies the
requests through an interface. As an example of an input file, let’s look at
the input file of the case under study.

The environment block is optional, it is used to specify the general
Dakota settings such as Dakota’s graphical output and the tabular data
output. The method block identifies the iterative method used by Dakota
and the options associated. This block is required by Dakota and there
also may be more than one. The model specifies how a set of variables is
mapped through an interface into a set of responses. The model block is
optional just in the default case which allows to specify a single set of
variables, interface and response. The variables block specifies the
number, type and characteristics of the parameters that will be
continously generated by Dakota in each iteration. There are three types
of variables, design variables, uncertain variables or state variables. These
can also be continous or discrete. The sub-specifications for continuous
design variables provide the descriptors as well as lower and upper
bounds for these variables. All these information are written in column
form for readability. The interface block specifies the code that will be
used to run the simulation and the details as to how the data are passed
between Dakota and the simulation code. This is fundamental in this
work since Dakota is going to be linked with OpenFOAM. The keyword
direct is used to indicate the use of a function directly into Dakota,
while fork invokes an external simulation code, like an OpenFOAM
simulation. In this last case, data is passed between Dakota and the
simulation via text files. At least one interface block is reaquired. The
responses block contains the type of data that the interface will return
to Dakota after each iteration. In optimization cases like this one,
objective functions will be used, as mentioned previously. There are other
types of response data but their description is beyond the scope of this
chapter. The keywords no_gradients and no_hessians means that the
simulation won’t provide any derivative to the method.
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# Usage:
# dakota -i xxx.in -o run.out > stdout.out
################################################################################
environment

graphics
tabular_data

tabular_data_file = ’table_out.dat’
################################################################################
method
coliny_direct
max_function_evaluations = 50

################################################################################
variables
continuous_design = 2
descriptor ’teta1’’teta2’
lower_bounds 0.01 5.55
upper_bounds 5.48 6.27

################################################################################
interface
fork
asynchronous evaluation_concurrency = 4
analysis_driver = ’simulator_script’
parameters_file = ’params.in’
results_file = ’results.out’
work_directory directory_tag

copy_files = ’templatedir/*’
dprepro
################################################################################
responses
objective_functions = 1

no_gradients
no_hessians

sense ’max’
################################################################################

Figure 2.3: Dakota input file
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2.4 Dakota Setup

It is useful to underline how the software Dakota is coupled to a user
supplied simulation (in our case OpenFOAM). The files needed to run the
iterations with the Dakota software are few, the dakota_ of.in input
file, the casebase folder that contains the OpenFOAM simulation to be
iterated, the script dprepro which is fundamental in setting up each new
case together with the folder templatedir. Dakota will be launched by

Figure 2.4: Dakota main files

calling out the input file as usual, the only difference from a case run
within Dakota will be in the interface block. There, the keyword fork
will be written instead of direct. The fork keyword calls out another
script wich will act as the driver script of the problem, the
simulator_script. The simulator_script is fairly simple, it contains the
commands needed to copy the new parameters into a new OpenFOAM
simulation and then to launch the simulation. The preprocessing block
calls out an executable file called dprepro which is tasked to read each
passage in the file topoSetDict.template, which is inside the template
directory, and find each keyword teta1 or teta2(our two variables in this
specific case). After that it will substitute the new parameters (which are
represented by the keyword $1), generated at each iteration, into the
topoSetDict.template file, at each location where the keywords teta1 and
teta2 have been read. Finally the file topoSetDict.template will be
renamed topoSetDict.in, once the variables have been copied inside of
it. The analysis block is used to copy the casebase, which contains the

19
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# --------------
# PRE-PROCESSING
# --------------
# Incorporate the parameters from DAKOTA into the template

dprepro $1 topoSetDict.template topoSetDict.in

# --------
# ANALYSIS
# --------

pwd
cp -r ../casebase/* .
cp topoSetDict.in system/topoSetDict

./Allclean

./Allrun

Figure 2.5: The simulator_script

standard OpenFOAM simulation without the new parameters created by
Dakota, into the template directory. The new topoSetDict.in file will
substitute the standard topoSetDict file to feed the new variables into the
simulation. Finally, the simulation will be launched with the new
variables. There may be a POSTPROCESSING block in the simulator
script to get the response function that results from the OpenFOAM
simulation that was run before, back to the Dakota software. Here the
postprocessing part needed to extract the numerical value of the flow
uniformity was written inside the Allrun script, inside the casebase
folder, hence it was not necessary to write it again into the
simulatorscript. Once one iteration reaches its end, the results and the
simulation are written in a new directory called workdir.* where the
number of the iteration is written inside the "*". The response function
(the objective function) is read by Dakota which then, following the
method guidelines, creates new variables for the next iteration.

20



Chapter 3

Working Case

3.1 Physics Of The Model

The starting point of this work is the cavity model. The OpenFOAM
tutorial consists in a square two-dimensional box with 3 fixed walls and a
moving wall as boundary conditions. This generates an isothermal,
incompressible flow in a two-dimensional square domain.

Figure 3.1: Cavity tutorial domain

This tutorial has been modified by adding an inlet and an outlet to the
box and by removing the moving wall at the top of the domain. The final
result is a box with 4 fixed walls and 2 openings. The physics of the
problem does not change, this allows us to use a similar case setup during
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the simulation. The particular case at hand enables us to use the solver
icoFoam for laminar, isothermal, incompressible flow which means to have
a continous flow inside the box that our software OpenFOAM is able to
solve easily.

3.2 OpenFOAM Case Setup

As previously said the casebase folder is composed by five objects, three
folders and two scripts:

• 0 folder

• constant folder

• system folder

• Allrun script

• Allclean script

Figure 3.2: OpenFOAM casebase folder elements

The 0 folder contains just the two variables required by the solver
icoFoam: p, U with their starting value at time 0. The pressure has a set
outlet value and a zero gradient boundary condition applied on the walls
and on the inlet, while an empty condition is set on the front and back
because it is still a two-dimensional case. The velocity has a noSlip
condition on the walls, a fixed value at the inlet and a zero gradient at
the outlet.This concludes the variables section which is straightforward.
The constant folder contains the mesh and the transportProperties
file which defines a transport model and the constant nu. The system
folder is more complicated than the other two, it contains the files needed
to control the case, controlDict, fvSolution, fvSchemes, the files
needed to do the postprocessing, sampling, the script to generate the
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mesh blockMeshDict,the script that allows parallel processing
decomposeParDict and finally the files needed to change the position of
the inlet and outlet during each iteration, createPatchDict,
topoSetDict. The files to control the case are pretty standard, no
changes have been made from the tutorial case with the exception of
some minor tweaks. The controlDict has been changed so that more
time steps have been written and the postprocessing has been added at
the bottom of the file. The post processing, called out from the
controlDict file, invokes the sampling file.

3.2.1 Sampling

The sampling file allows for multiple sampling operations on surfaces
inside the domain. The sampled variables are chosen at the top of the
file, in our case just the variable U is relevant to our objective. The next
step consists in defining the place where the sampling operation is done,
this file allows a lot of freedom in defining the sampling location.

1. The variable to be sampled is defined

2. The sampling plane is chosen by defining a position and a normal
direction to it

3. The extension of the plane is defined (can also extend outside of the
domain)

It can be seen that this means a lot of flexibility in the position of the
sampling probe. In practical terms this allows to define a precise position
anywhere inside the domain, the potential problems that can be tackled
in this way are countless.

Going back to the sampling file, the calculations to be done with the
sampled variables follows. The operations included inside the standard
file are already extensive:

• massflow

• areaAverage
23



3 – Working Case

• areaIntegrate

• flow uniformity

• weighted uniformity

In any case it is straightforward to add any desired operation to it. In
this case it is not necessary since the uniformity operation is already
defined inside OpenFOAM source code. Finally the plane (or planes)
previously defined is selected and the operation to be done with the
variable (or variables) sampled in that plane is chosen with a keyword.
The exact operation done by calling out the desired keyword is written
inside the surfaceFieldValue.C which is part of OpenFOAM source
code.The surfaceFieldValue function object provides options to
manipulate surface field data into derived forms without the need to write
and compile any calculation from scratch. The uniformity equation is
written as follows inside surfaceFieldValue.C:

ui = 1− numer/(2 ∗mag(mean ∗ areaTotal) + ROOTV SMALL); (3.1)

Uniformity index

Where numer and mean are:

numer = gSum(mag(areaV al − (mean ∗mag(Sf)))); (3.2)

Absolute deviation from unweighted mean value

mean = gSum(areaV al())/areaTotal; (3.3)

Unweighted mean value (area-averaged)

areaTotal = gSum(mag(Sf)) (3.4)
24



3.3 – Dakota Setup

tmp < scalarF ield > areaV al(values ∗mag(Sf)) (3.5)

Where mag() is the magnitude of a vector, Sf is the face area vector and
gSum is the global summation of a vector.

3.3 Dakota Setup

Starting off with the dakota_of.in input file, some different algorithms
will be tested, all of them derivative-free global methods though, since it
is a requirement to find a global maximum for the uniformity index.
The tested algorithms are 3 division of rectangles algorithms and one
evolutionary algorithm, all already built in Dakota source code:

• ncsu direct

• genie direct

• coliny direct

• coliny ea

3.3.1 Variables Block

The variables block contains the values that have to be fed to the
templatedir folder. This folder contains the necessary script to change
the geometry at each iteration, the topoSetDict.template. It works
together with createPatchDict to change the domain in order to shift
constantly the location of the inlet and the outlet before each iteration.
The variables are put inside the file and undergo some mathematical
operations before becoming the group of coordinates needed to define the
inlet position and outlet position. The variables in the Dakota input file
are two, one for the inlet and one for the outlet. The basic idea behind
this is to use polar coordinates. The polar system is a two dimensional
coordinate system that locates a point with a radius(distance) and an
angle. The variables inside dakota_ of.in are angles in radians. The
first one teta1 ranges from 0 to 5.48 because we have chosen to change
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the position of the inlet over all the walls of the domain with the
exception of half of one wall where we change, instead, the position of the
outlet. That is why the second variable teta2 has a lower bound of 5.55
and upper bound of 6.27. The variables do not cover the entire 360
degrees arc to avoid any unwanted overlapping.

Figure 3.3: Arbitrary point in the Cartesian
plane

Figure 3.4: Polar coordinates system

The mathematical operations done inside the topoSetDict.template file
modify the polar coordinates received as variables from the input script
to become the Cartesian coordinates of the inlet and outlet positions
before running the next simulation inside OpenFOAM. Depending on the
efficiency of the selected method, the variables will be iterated in a
different way and the maximum objective function will be found in a
faster or slower way.

3.3.2 Interface Block

The interface block works as explained in the previous chapters,
simulation interfaces which employ system calls and forks to create
separate simulation processes must communicate with the simulation
code through the file system. This is accomplished through the reading
and writing of input parameters and results files. The input file invokes
the simulator_script file as analysis driver. This script is customized to
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this specific problem, it calls the standard Dakota executable dprepro to
write the variables, generated by the input file, into the simulation file
topoSetDict.template where the variables in radians become
geometrical cartesian coordinates. In the next step the analysis driver will
create a copy of the folder casebase, where the OpenFOAM simulation is
run, and copy the new topoSetDict into the system folder. Finally the
OpenFOAM simulation is launched inside this new folder, the results will
be written in a file called results.out in a form readable by the Dakota
software and the analysis driver job is done. The results contain just the
uniformity index of this specific iteration which means a number
between 0 and 1. The results.out is read by the input file that prepares
the next iteration of variables according to the chosen method.

3.3.3 Response Block

The bottom of the custom input file is quite standard. It tells us that
only one objective function will be defined (the uniformity index) and
it also tells us if there is the need for derivatives from the OpenFOAM
simulation. In this case, as previously said, there is no need for either
gradients or hessians. Finally, the last option to specify is wether we
search for a minimum or a maximum value for our objective function.
Since we are searching for the "most uniform" flow we need to have a
uniformity index as close as possible to 1, hence we are searching for a
global maximum.
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Chapter 4

Results

4.1 Optimization Results

Previously we talked about the potential of this combination of softwares
that allows a lot of flexibility depending on the goal to be reached. In
particular the extensive customization that allows the sampling tool gives
us the possibility to easily set up different goals equally important. This
is what the title refers to, we have the means to find the best case
scenario in either a small section of the domain or the whole domain. We
can change the sampling script to our needs, for example to find the
"most uniform" flow in terms of speed uniformity in the center of the
domain, or the lower left corner of the domain or the entirety of the
domain. These will be the cases tackled to prove the effectiveness of the
optimization. We will also see the different results if higher precision is
used, a finer mesh and more iterations or even different solvers. The
solvers that will be launched are:

• coliny_direct

• genie_direct

• ncsu_direct

• coliny_ea

All the compared simulations will run the same number of iterations and
the same settings for the OpenFOAM simulation. The chosen number of
iteration is 50 because of the computing power and time required for each
simulation to run.
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4.1.1 Regional Domain Optimization

Starting from the basic case, the sampling has been changed according to
the goal set. We are still going to study the global optimization of the
flow but localized in a precise position of the domain instead of the whole
domain (which will be studied after). The two cases of global
optimization in a precise area of the domain are:

• Global optimization in a small area in the center of the domain

• Global optimization in a small area in the lower left corner of the
domain

Center Regional Optimization

In this first case the sampling script is changed so that the sampling area
is located in (0.05 0.05) with an extension of 0.01 in each direction. The
exact sampling area (in the y direction) is shown next. The same center
of the plane with a (1 0 0) normal vector and same extension is the
sampling area in the x direction, it is not shown because it is essentially
the same, just rotated.

Figure 4.1: Local center sampling area

Different solvers will be used and the results will be compared to each
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4.1 – Optimization Results

other. The first solver that will be launched is coliny_direct. A brief
conclusion of the optimization results is found at the bottom of the
run.out file.

Figure 4.2: Values of the objective function obtained from the algorithm coliny_direct

The 41st iteration was the most successful one for this particular
configuration and this result is the same that is shown in the brief
conclusion summary previously seen. It may be that this same result is
obtained in multiple configurations similar to this one. This can be
avoided with an increased precision in the solving process or with a finer
mesh.

31



4 – Results

0 10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

Objective Fn

0 10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

Objective Fn

Figure 4.3: Values of the objective function obtained from the algorithm coliny_direct
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Figure 4.4: Values of the variable of the posi-
tion of the inlet
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Figure 4.5: Values of the variable of the posi-
tion of the outlet

The inlet and outlet positions in this cofiguration are shown next, the
inlet is on the top of the domain while the outlet is on the lower right of
the domain. The configuration of the cases that bear same solution is
almost the same as this one.

Figure 4.6: Representation of the positions of inlet and outlet obtained in the best configuration
found by the algorithm coliny_direct and sampling in the centre of the domain
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The uniformity value in this configuration is 0.984815. The resulting
flow is represented next.

Figure 4.7: Representation of the flow obtained in the best configuration found by the algorithm
coliny_direct and sampling in the centre of the domain

Figure 4.8: Vectorial representation of the flow obtained in the best configuration found by the
algorithm coliny_direct and sampling in the centre of the domain

Now the same will be done with another algorithm, the genie_direct
algorithm. We expect to get similar result, if not the same, even though
it is obtained through a different approach.
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The genie_direct algorithm finds the lowest value for an objective
function, hence, to get the highest uniformity value, its inverse is used as
objective function.

Figure 4.9: Values of the objective function obtained from the algorithm genie_direct

This tells us that the best result found is 1.00746 which corresponds to a
uniformity value of 0,99259524. The genie_direct algorithm finds,
with the same 50 iterations, a higher uniformity value with respect to the
coliny_direct algorithm. The various iterations are shown next.
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Figure 4.10: Values of the objective function obtained from the algorithm genie_direct
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Figure 4.11: Values of the variable of the po-
sition of the inlet
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Figure 4.12: Values of the variable of the po-
sition of the outlet
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The inlet and outlet positions for the 44th iteration, the one that yields
the highest uniformity value, are shown next.

Figure 4.13: Inlet and outlet positions in the 44th iteration by the algorithm genie_direct and
sampling in the centre of the domain

The configuration is similar to the one obtained from the previous
algorithm, although the inlet position here is shifted with respect to the
other case. The resulting flow is represented next.
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Figure 4.14: Flow in the best configuration found by the algorithm genie_direct with sampling
in the centre of the domain

Figure 4.15: Vectorial representation of the flow obtained in the best configuration found by the
algorithm genie_direct and sampling in the centre of the domain

The ncsu_direct algorithm follows.
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Figure 4.16: Summary of the ncsu_direct algorithm

The best uniformity value found is 0,9917. It is found in function
evaluation number 55. The values of the two variables in this
configuration are teta1 equal to 2,193 and teta2 equal to 5,554.
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Figure 4.17: Values of the objective function obtained from the algorithm ncsu_direct

0 10 20 30 40 50 60
0

1

2

3

4

5

6

teta1

0 10 20 30 40 50 60
0

1

2

3

4

5

6

teta1

Figure 4.18: Values of the variable of the po-
sition of the inlet
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Figure 4.19: Values of the variable of the po-
sition of the outlet
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The inlet and outlet position for the 55th iteration and the relative flow:

Figure 4.20: Inlet and outlet position for the best configuration found by ncsu_direct
algorithm

Figure 4.21: Resulting flow for the best configuration found by ncsu_direct algorithm with
sampling in the centre of the domain
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Figure 4.22: Vectorial representation of the flow obtained in the best configuration found by the
algorithm ncsu_direct and sampling in the centre of the domain

The evolutionary algorithm coliny_ea.

Figure 4.23: Summary of the coliny_ea algorithm for optimization in the centre of
the domain

The best uniformity value found is 0,9893. It is found in function
evaluation number 8. The values of the two variables in this configuration
are teta1 equal to 2,283 and teta2 equal to 5,651.
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Figure 4.24: Values of the objective function obtained from the algorithm coliny_ea
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Figure 4.25: Values of the variable of the po-
sition of the inlet
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Figure 4.26: Values of the variable of the po-
sition of the outlet
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The inlet and outlet position for the iteration number 8 and the relative
flow:

Figure 4.27: Inlet and outlet position for the best configuration found by coliny_ea algorithm

Figure 4.28: Resulting flow for the best configuration found by coliny_ea algorithm
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Figure 4.29: Vectorial representation of the flow obtained in the best configuration found by the
algorithm coliny_ea and sampling in the centre of the domain

Lower Left Regional Optimization

In this second case the sampling script is changed so that the sampling
area is located in (0 0) with an extension of 0.01 in each direction. The
exact sampling area is shown next (in the y direction). The same center
of the plane with a (1 0 0) normal vector and same extension is the
sampling area in the x direction, it is not shown because it is essentially
the same, just rotated.

Figure 4.30: Lower left sampling area

The first solver, as before, will be coliny_ direct, here is the brief
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4 – Results

conclusion of the results obtained.

The optimal result in this case is found in the iteration number 50, it
corresponds to a uniformity value equal to 0.817555. The following
graphs summarize the whole algorithm process.
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Figure 4.31: Values of the objective function obtained from the algorithm coliny_direct and
sampling in the lower left of the domain
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Figure 4.32: Values of the variable of the po-
sition of the inlet
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Figure 4.33: Values of the variable of the po-
sition of the outlet
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The inlet and outlet optimal positions as evaluated by the
coliny_direct algorithm are shown next.

Figure 4.34: Inlet and outlet optimal positions found with algorithm coliny_direct and sampling
in lower left of the domain

The resulting flow is:

Figure 4.35: Resulting flow in optimal configuration found with algorithm coliny_direct and
sampling in lower left of the domain
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4.1 – Optimization Results

Figure 4.36: Vectorial representation of the flow obtained in the best configuration found by the
algorithm coliny_direct and sampling in the lower left part of the domain

The second algorithm is tested next with the same sampling area in the
lower left corner. The genie_direct algorithm, again, works by finding
the minimum of an objective function, hence the inverted function will be
the response function fed to the Dakota software. The results of the
optimization are:

Figure 4.37: Summary of the results obtained from the algorithm genie_direct

This algorithm manages to find a better result in the defined number of
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4 – Results

iterations. The highest objective function value found is 1.00027 that
corresponds to a uniformity value of 0,999730073, which means that the
genie_direct algorithm does a much better job with the same sampling
area. Since the results greatly differ from one another, we expect also to
see a great difference in the inletoutlet configuration.
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Figure 4.38: Values of the objective function obtained from the algorithm genie_direct
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Figure 4.39: Values of the variable of the po-
sition of the inlet
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Figure 4.40: Values of the variable of the po-
sition of the outlet

The inlet and outlet optimal positions as evaluated by the genie_direct
algorithm are shown next.

Figure 4.41: Inlet and outlet optimal positions found with algorithm genie_direct and sampling
in lower left of the domain

The resulting flow is:
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4 – Results

Figure 4.42: Resulting flow in optimal configuration found with algorithm genie_direct and
sampling in lower left of the domain

Figure 4.43: Vectorial representation of the flow obtained in the best configuration found by the
algorithm genie_direct and sampling in the lower left part of the domain

It can be seen that this last configuration is radically different from the
previous ones. If the iterations are increased to 200 for the
coliny_direct algorithm, the results do not change much, the best
uniformity value found in this case is 0,8178. The ncsu_direct
algorithm follows.
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4.1 – Optimization Results

Figure 4.44: Summary of the ncsu_direct algorithm

The best uniformity value found is 0,8173. It is found in function
evaluation number 54. The values of the two variables in this
configuration are teta1 equal to 2,576 and teta2 equal to 5,735.
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Figure 4.45: Values of the objective function obtained from the algorithm ncsu_direct
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Figure 4.46: Values of the variable of the po-
sition of the inlet
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Figure 4.47: Values of the variable of the po-
sition of the outlet

The inlet and outlet position for the 54th iteration and the relative flow:

Figure 4.48: Inlet and outlet position for the best configuration found by ncsu_direct
algorithm
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Figure 4.49: Resulting flow for the best configuration found by ncsu_direct algorithm

Figure 4.50: Vectorial representation of the flow obtained in the best configuration found by the
algorithm ncsu_direct and sampling in the lower left part of the domain

The evolutionary algorithm coliny_ea.
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Figure 4.51: Summary of the coliny_ea algorithm

The best uniformity value found is 0,8173. It is found in function
evaluation number 54. The values of the two variables in this
configuration are teta1 equal to 2,576 and teta2 equal to 5,735.
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Figure 4.52: Values of the objective function obtained from the algorithm coliny_ea
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Figure 4.53: Values of the variable of the po-
sition of the inlet
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Figure 4.54: Values of the variable of the po-
sition of the outlet
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The inlet and outlet position for the 54th iteration and the relative flow:

Figure 4.55: Inlet and outlet position for the best configuration found by coliny_ea algorithm

Figure 4.56: Resulting flow for the best configuration found by coliny_ea algorithm
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Figure 4.57: Vectorial representation of the flow obtained in the best configuration found by the
algorithm coliny_ea and sampling in the lower left part of the domain

4.1.2 Global Domain Optimization

The final test case that was launched aimed to have a uniform flow
considering the whole domain. To do this multiple sampling planes were
set up in the sampling file. In this case 10 planes for the x direction and
10 planes for the y direction were added as sampling locations. Each
plane is extended through the whole domain. The final uniformity value
is found as the mean value between the uniformity values of all the
planes.

The first solver that will be launched is coliny_direct. A brief
conclusion of the optimization results is found at the bottom of the
run.out file.
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Figure 4.58: Summary of the results obtained with coliny_direct algorithm and sampling in
the whole domain

We can see that the 22nd iteration was the most successful one for the
global domain optimization case. It may be that this same result is
obtained through various configurations similar to this one. This can be
avoided with an increased precision in the solving process or with a finer
mesh.
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Figure 4.59: Values of the objective function obtained from the algorithm coliny_direct
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Figure 4.60: Values of the variable of the po-
sition of the inlet
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Figure 4.61: Values of the variable of the po-
sition of the outlet

The inlet and outlet positions in this cofiguration are shown next, the
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inlet is on the top of the domain while the outlet is on the lower right of
the domain. The configuration of the cases that bear same solution is
almost the same as this one.

Figure 4.62: Inlet and outlet optimal positions found with algorithm coliny_direct and sam-
pling in the whole domain

The uniformity value in this configuration is 0,57433. The resulting
flow is represented next.
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Figure 4.63: Resulting flow from the best configuration found with algorithm coliny_direct and
sampling in the whole domain

Figure 4.64: Vectorial representation of the flow obtained in the best configuration found by the
algorithm coliny_direct and sampling in the whole domain

The genie_direct algorithm is tested next with the same sampling area
on the whole domain. The inverse function is the objective function, this
algorithm works, as before, by minimizing instead of finding a maximum.
The results of the optimization are:
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Figure 4.65: Summary of the results obtained with coliny_direct algorithm and sampling in
the whole domain

Again this algorithm manages to find a better result in the defined
number of iterations. The highest objective function value found is
1.6889 that corresponds to a uniformity value of 0,5921. The results are
similar though, so we don’t expect to see a big difference in the "best"
configuration found by both algorithms.
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Figure 4.66: Values of the objective function obtained from the algorithm genie_direct
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Figure 4.67: Values of the variable of the po-
sition of the inlet
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Figure 4.68: Values of the variable of the po-
sition of the outlet

The inlet and outlet optimal positions as evaluated by the genie_direct
algorithm are shown next.

Figure 4.69: Inlet and outlet optimal positions found with algorithm genie_direct and sampling
in the whole domain

The resulting flow is:
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Figure 4.70: Resulting flow from the best configuration found with algorithm genie_direct and
sampling in the whole domain

Figure 4.71: Vectorial representation of the flow obtained in the best configuration found by the
algorithm genie_direct and sampling in the whole domain

This last configuration is almost the same as the previous one with the
coliny_direct algorithm which means either that a higher value is
nowhere to be found or that both algorithms need more iterations to find
a better value. The ncsu_direct algorithm follows.
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Figure 4.72: Summary of the ncsu_direct algorithm

The best uniformity value found is 0,8173. It is found in function
evaluation number 54. The values of the two variables in this
configuration are teta1 equal to 2,576 and teta2 equal to 5,735.
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Figure 4.73: Values of the objective function obtained from the algorithm ncsu_direct
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Figure 4.74: Values of the variable of the po-
sition of the inlet
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Figure 4.75: Values of the variable of the po-
sition of the outlet
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The inlet and outlet position for the 54th iteration and the relative flow:

Figure 4.76: Inlet and outlet position for the best configuration found by ncsu_direct
algorithm

Figure 4.77: Resulting flow for the best configuration found by ncsu_direct algorithm
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Figure 4.78: Vectorial representation of the flow obtained in the best configuration found by the
algorithm ncsu_direct and sampling in the whole domain

The evolutionary algorithm coliny_ea.

Figure 4.79: Summary of the coliny_ea algorithm

The best uniformity value found is 0,8173. It is found in function
evaluation number 54. The values of the two variables in this
configuration are teta1 equal to 2,576 and teta2 equal to 5,735.
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Figure 4.80: Values of the objective function obtained from the algorithm coliny_ea
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Figure 4.81: Values of the variable of the po-
sition of the inlet
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Figure 4.82: Values of the variable of the po-
sition of the outlet
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Chapter 5

Summary and outlook

The starting point of this work was to think of a possible optimization
problem to be studied by the software OpenFOAM from the fluiddynamic
point of view and the software Dakota from the optimization point of
view. After the theoretical problem was designed a fitting baseline was
found in the cavity tutorial case. This starting point provided the
fluiddynamic component of the problem, indeed very few changes were
made to the cavity tutorial case domain and solving process since it is
mostly the same as the desired baseline. The addition of an inlet and an
outlet to the mesh domain are the most notable changes made to the
tutorial case. The time-step of the solving process has been reduced to
achieve convergence as well as a more accurate solving process has been
used to increase precision, although not too much to slow down
excessively the solving process. The finer mesh also allowed to
understand better the final result. Most importantly a post-processing
operation was added to allow the following steps of optimization, indeed
OpenFOAM was tasked to find the unweighted uniformity index value of
the present configuration launched.

After the fluiddynamic step was developed, the optimization component
had to be examined. The Dakota software was studied extensively, its
optimization algorithms and its interaction with outsourced solvers. The
theoretical approach as well as the practical approach of optimization and
optimization within Dakota was studied. At this point the fluiddynamic
model was linked to the iterative one which means that the iterative
variables have been defined as the position of the inlet and of the outlet,
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and the fork keyword calls out OpenFOAM to solve each iteration. Most
importantly the objective of the optimization has been defined as finding
the maximum unweighted uniformity index. At this point the working
case was ready for testing, the iterative software fed each time the
position of the inlet and outlet to the fluiddynamic case. OpenFOAM
solved each case while evaluating the uniformity index and Dakota,
depending on the algorithm chosen would find a new set of variables to
try to increase the previous value of the index.

Different iterative algortihms and also different sampling locations inside
the domain have been tested. The results told us that different sampling
locations yield similar results depending on the algorithm chosen. A
difference in the position of the inlet was found between optimization in
the center of the domain and the optimization in the lower left part of the
domain although some algorithm would find such difference while others
would not, at least not in the small number of iterations chosen for this
cases. It is important to say that there is no best optimization algorithm
but, for these specific cases, the genie_direct algorithm has been found
to yield the best results while the coliny_direct algorithm to yield the
fastest results. It is nevertheless important to say that such a small
number of iteration tells us nothing conclusive apart from the
confirmation that such an undertaking can indeed be solved in this way
as well as any optimization problem regarding fluiddynamics. These are
but few examples that prove the effectiveness and relative simplicity of
this optimization procedure. Here, a numerical goal based on the velocity
uniformity value has been chosen but any variable, or combination of
variables can be fed to Dakota as an objective function in an optimization
problem.

Conclusively the following step in this particular case could be asking
how a substance in the air diffuses in a twodimensional (or even
threedimensional) box (or any domain). How to reach a higher uniformity
value of the composition of the air inside that domain after the injection
of a gaseous substance. The results could be studied further by adding
another inlet, another outlet, or both. The inlet velocity of the gaseous
substance could be changed and the inlet could be developed to yield
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higher diffusion with a spray-like inlet. The most important conclusion to
draw here is the reach and endless possibilities of this approach, outside
the value of any single theoretical case, in real world applications.
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