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“Life’s like a river that you can’t see too far ahead,
you don’t know where it will bend and turn.

There is only one thing you can know and control: yourself.
Once you know yourself, then wherever the river takes you,

you’ll be right where you were always meant to be.”



Abstract

The first PetaWatt laser facilities are becoming operational, and are expected to de-
liver on-target intensities exceeding 1022Wcm−2, making new regimes of laser-matter
interaction experimentally available for the first time. Ultra-intense laser-plasma
interaction can lead to a broad spectrum of physical effects among which synchrotron-
like photon emission. This work aims to reach a better understanding of the physics
and properties of the radiation emission in ultra-intense laser-plasma interaction.
The goal of this thesis is to gain insights on the system behaviour, helping designing
experiments never possible before.
An extensive, kinetic, multidimensional Particle-In-Cell simulation campaign has
been employed. A laser pulse with specifics realistic of the forthcoming Apollon facil-
ity in Paris-Saclay, is used to impact on a multilayered target made of a low-density
layer, and a solid density substrate. Special attention is given to the modelling, where
a balance between physically realistic and computationally affordable configuration
has been used.
Carefully designing the simulation set-up we managed to observe copious high en-
ergy photon production, with energy conversion efficiency from laser to synchrotron
radiation of the order of 10−1.

iii



Sommario

Le prime installazioni di laser multi-PetaWatt stanno venendo ultimate. L’aspettativa
è di poter irraggiare target con intensità superiori a 1022Wcm−2, riuscendo cos̀ı a ren-
dere accessibili per la prima volta i regimi ultra-intensi dell’interazione laser-plasma.
Quest’ultima può portare ad una vasta varietà di fenomeni fisici, tra cui l’emissione
di radiazione di sincrotrone.
L’obiettivo di questa tesi è quello di raggiungere una migliore comprensione della
fisica e delle proprietà dell’emissione di radiazione nell’interazione laser-plasma ultra-
intensa, fornendo cos̀ı strumenti utili alla progettazione di esperimenti mai stati
possibili fino ad ora. A questo scopo è stato effettuato un vasto studio di simulazioni
numeriche multidimensionali con il codice Particle-In-Cell Smilei.
Un impulso laser, le cui specifiche sono state basate sulle reali condizioni nominali
del laser Apollon (presto ultimato nel sito di Parigi-Saclay), è stato irraggiato su
di un target multistrato composto da uno strato a bassa densità e uno a densità
solida. Dando particolare attenzione alla modellazione numerica, è stata raggiunta
una configurazione risultante dal compromesso tra l’aderenza alla realtà sperimentale
e l’economia delle risorse computazionali.
Progettando opportunamente i set-up delle simulazioni, è stato possibile osservare
una copiosa produzione di fotoni ad alte energie, con efficienza complessiva di con-
versione energetica da laser a radiazione dell’ordine di 10−1.
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Introduction

The term Radiation Sources indicates any technology able to produce any sort of
radiation(α, β, γ, X or ions). Radiations are used in a broad spectrum of fields
among which medicine, material science and laboratory astrophysics. This work
focuses on exploring the possibility to build a compact, tunable and reliable γ-photon
source using a state of the art PW laser Apollon.
With the name γ-rays we refer to the most energetic part of the electromagnetic
spectrum. This kind of high energy radiation has lots of applications among which
[1] :

• Medical:

– Radiotherapy

– Sterilization of surgical items (i.e. killing micro-organisms from surgical
tools) and food (i.e. elimination of Salmonella from seafood)

– Radiodiagnostic (i.e. bone density)

• Industrial:

– Material non-destructive-testing (NDT) (i.e. material radiography, com-
posite structure analysis)

– Material testing in high dose fields (i.e. space oriented materials)

– Art irradiation (i.e. reduces paintings decay)

• Laboratory Astrophysics:

– Study of extreme astrophysical environments (i.e. supernovae)

– electron-position pair production via inverse Compton scattering

γ + h̄ω → e− + e+

Traditional γ sources are mainly of two kinds: isotope-based, or accelerator-based.
In the first a radioactive isotope is used to directly irradiate the object of interest
and measures of transmission or scattering can be done. This is also historically
the first employment of radioactivity. Radionuclides can also be incorporated into
compounds and used as an imaging tool inside a patient in medical facilities.
Radioisotopes are constantly active and this can raise radioprection issues. Further-
more one cannot control the intensity of the source, decreasing exponentially in time.
The second kind are based instead on the use of a particle accelerator, often a
synchrotron. These machines produce high energy electron beams which can be bent
using strong magnetic fields, emitting radiation. Synchrotrones can be switched on
and off at will and therefore carry reduced radioprotection issues and their brilliance
is relatively tuneable. On the other hand the cost and size of these machines is huge,
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usually several hundreds of MAC.
The possibility to employ a Laser-driven mechanism as a γ source results interesting
in order to reduce costs while overcoming some limitations of traditional γ sources.
This innovative approach is often referred to as Compact radiation sources or Laser
driven radiation sources.
Using a laser to produce the necessary radiation would reduce of roughly one order
of magnitude the cost of building and of few times the physical size with respect
to a traditional synchrotron. This idea opened the path to the study of Compact
Radiation Sources which is one of the most active topics in the plasma physics
community. Such a device would be able to overcome some of the limitations of the
traditional sources. The laser can be turned on and off at will just like synchrotrones,
the emitted radiation would have tuneable properties (i.e. brilliance, cut-off energy,
...), all in an efficient and affordable technology. Only the most powerfull lasers
can be usefull in this line of research, in particular for photon sources the intensity
(power divided by surface area on which is delivered) required is thought to be
> 1022Wcm−2. These kind of facilities are callad Multi-PetaWatt Lasers and we will
talk about them more at the very beginning of chapter 2.
In the forthcoming years will start the first experimental investigation of this topic
and great is the need for numerical support. Complex systems behaviour is often
difficult to predict analytically and thus, designing experiments exploiting new and
unexplored regimes is no simple task. Being able to simulate numerically even
complex systems is therefore a fundamental tool in order to gain insights on the
processes at play, and to help scientists designing efficient and effective experiments.
This thesis aims at being a preliminary numerical study giving insights on the
properties of compact γ sources, serving as a cornerstone during the experimental
design. This project is a collaboration between the ENSURE NANOLAB [2] at
Politecnico di Milano, and the Laboratoire d’Utilisation des Lasers Intenses (LULI)

at École Polytechnique in Paris. We used the kinetic, relativistic, and quantum
Particle-In-Cell (PIC) code Smilei [3] in about 200 simulations for a total of about
1.5MCPUhours of computing time. The results of this work are very promising and
further investigation is being scheduled starting from the collected data.



Part I

Theory and methods
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Chapter 1

Photon emission and back reaction
on the electron dynamics

The goal of this thesis is to explore the possiblity to enhance γ-photons emission
using the Petawatt laser facility Apollon. This being said the total energy converted
from laser (infrared) to photons is not the only relevant result, but also the energy of
the resulting photons is crucial. For various applications (i.e. laboratory astrophysics)
the higher the photon energy, the better. In the frame of this work we will use
interchangeably the word “photons” or γs, eventhough a photon is more in general
descriptive of a quantum of electromagnetic energy, while there is not an exact and
universal definition of γ-rays. Many distinguish X-rays from γ-rays using the quality
of the photon source: if the photon is produced by electrons is called “X”, if is
produced by nuclear transition is called “γ”. We will not employ this definition here,
although all photons created in this work come from electrons, because we are more
interested in highlighting the high energy of the photons produced more than we
are in their origin. We will use a energy-based definition of γ-rays instead. There
is no universal threshold for photons to be considered γ-rays but a good rule of
thumb is that the energy of the photon should be bigger than one tenth of the rest
mass of the electron (me/10 ≈0.0511 MeV),or over about 50 KeV. In this work we
will try to obtain high energy conversion from laser to photons, but we will favour
the systems for which the photons are more energetic. It is becoming pretty clear
that the emission spectrum of the electrons should be taken into account, and is
important to give an overview of the basic physics behind it.
In the frame of this work we will always talk about synchrotron-like radiation,
neglecting all other effects (i.e. Bremsstrahlung) which are considered of minimal
importance in the regimes explored here [4].
We therefore start by describing the physics behind the photon emission phenomenon.
The basic ingredients, as we will see in more details, are energetic electrons and
large electromagnetic (EM) fields. In this chapter we will discuss how the process of
radiation is described once we already obtained a system with these two ingredients,
regardless of how we reached them. The source of the high amplitude EM fields is
the laser pulse, while the production of high energy electrons will be the topic of
chapter 2.
One should also note that the aim of the following chapter is not to give an extensive
and rigorous treaty of classical and quantum electrodynamics, which is beyond the
purpouse of this thesis, but only to summarize the derivation of the main quantities
of interest for this work. We will start by looking at the most intuitive physical
picture, and then move to a classical description of the phenomena. Finally we will

12
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summarize what a more quantum approach would tell us about the main quantities
we are interested in. We will start by approaching the problem from a single particle
perspective in sections 1.1 and 1.2, while in section 1.3 we will address the specific
properties of the radiation emission of a many-particles system.

1.1 Classical radiation emission and back reaction

Before discussing the features of classical radiation emission, we need to formally
define the Lorentz factor γ to which we will refer to several times during this work.
Recalling Einstein famous equation for massive particles:

εtot = mc2 = γm0c
2 = εrest + εkin, (1.1)

with m0 being the particle rest mass and γ:

γ =

√
1

1− v2

c2

, (1.2)

where v denotes the particle velocity. We can then rearrange the equations to obtain
a usefull expression for the kinetic energy:

εkin = m0c
2(γ − 1). (1.3)

There goes also the fact that in ultra-relativistic regime (γ � 1) εkin ≈ m0c
2γ. This

will be useful to keep in mind since in literature and in the frame of this work, the
energy parameter for ultra-relativistic electrons is usually γe and not directly their
kinetic energy εeonkin .
The energy of a photon can be expressed by the product of the reduced Planck
constant and its wave angular frequency ω. We can define also a Lorentz factor for
photons which is no more than the photon energy normalized by a reference energy.
We take this reference energy to be the energy associated to the electron rest mass
(mec

2 ≈ 0.511MeV). The photon Lorentz factor reads:

γγ =
εphoton

mec2
=

h̄ω

mec2
(1.4)

1.1.1 Simple model for radiation by moving charged particles

Let’s start by addressing the fact that because of the equivalence of inertial frames,
any charged particle uniformly moving does not radiate, so only accelerated particles
emit energy in the form of electomagnetic waves. We will now show a simple example
of how this concept can be grasped then we will show only the result of a more
rigouros derivation, while for the derivation itself we will refer to more appropriate
texts such as [5][6][7].
Let’s imagine a system (figures 1.1) with a positive charged particle in point A which
is stationary at t = 0. This charged particle produces an electrostatic field which
is visualized by the dashed lines. Let’s now assume that the particle accelerates
uniformly to v = ∆v in a short time ∆t until it arrives in B and then moves uniformly,
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the electrostatic field of the particle in B is represented with solid lines.
After an arbitrary time t after the particle has arrived in B, the information about the
particle accelerating and arriving in B has travelled at the speed of light c reaching a
radius R = ct. Now, for any point in space at a distance r < R from B the particle
is already in B and there is therefore a Coulomb field with lines centered in B. For
any point in space at a distance r > R + c∆t the particle is still in A and so the
field is a Coulomb field with lines centered in A. Because of the continuity of the
electromagnetic field, it is required that a transverse field is propagating at velocity c.
This would mean that an accelerating particle has produced an electromagnetic wave
propagating away from it, and since EM waves transport energy, we can conclude that
the particle has radiated energy away in the form of an EM wave. Looking at figure 1.1
it is possibile to compute the ratio of the components of the field in the shaded region:

E⊥
E‖

=
t∆v sin θ

c∆t
=
ta sin θ

c
. (1.5)

In which we defined a to satisfy ∆v = a∆t. The parallel component is just the
electrostatic Coulomb field given by E‖ = q/(4πε0R

2). We can then compute the
perpendicular component as:

E⊥ =
qa sin θ

4πε0c2R
. (1.6)

And, remebering the definition of the Poynting vector and the relation between
electric and magnetic field in an electromagnetic wave:

SSS =
EEE ×BBB
µ0

, (1.7)

S =
q2a2 sin2 θ

16πε0c3R2
. (1.8)

Once we have the poynting vector we can compute its flux through the spherical
surface of radius R in order to get the total radiated power Pcl (as in “classical”):

Pcl =
q2a2

6πε0c3
. (1.9)

1.1.2 Synchrotron emission

Considering now the ultra-relativistic limit (γ � 1), we can assume that all the
radiation is emitted in the direction of motion of the particle and can be treated like
synchrotron radiation [4] [6].
It should be remarked that eq.(1.9) is the Larmor Power in the non-relativistic limit.
It can be generalized to an arbitrary velocity and applied in particular to the case of
a particle accelerated in an electromagnetic field [7][8]:

Pcl = P0η
2 with P0 =

2mc2

3τe
. (1.10)

The quantity τe = re/c is the time needed for the light to travel the classical electron
radius re = q2/(4πε0mc

2) ≈ 2.82× 10−15m .
The parameter η can be thought as the amplitude of the field in the particle proper
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Figure 1.1: Drawing of a particle in point A at t = 0 with v = 0, the same particle in B
at t = ∆t with v = ∆v, and the generated fields (top). Close-up of the blue region and
decomposition of the electric field in its parallel and perpendicular components (bottom).
From [7]

frame nomralized to a specific reference field. For the purpose of this section η in
the particle proper frame is defined as:

η ≡
∣∣∣∣F µνpν
Esme

∣∣∣∣ , (1.11)
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in which F µν is the elctromagnetic tensor defined as:

F µν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 , (1.12)

with the four-momentum:

p =
[
γmc, px, py, pz

]
, (1.13)

and Ecr:

Ecr ≡
4πε0m

2c4

e3
. (1.14)

Ecr is called “critical field of classical electrodynamics” and its value is about
≈ 1.8× 1020V/m. The parameter η is also related to the “quantum parameter” χ
that we will discuss in section 1.2.1.
We can rewrite η more simply in the following form:

η =
γ

Ecr

∣∣−(β · Eβ · Eβ · E)2 + (EEE + vvv ×BBB)2
∣∣1/2 (1.15)

I would like to point the attention of the reader towards the fact that if all the
quantities are expanded properly Pcl ∝ mass−3 meaning that a proton which has
mp ≈ 1836me seeing the same field from its proper frame would emit a radiated
classical power ≈ (1836)3 smaller than an electron. This fact leads us to consider only
electrons (or positrons) when talking about radiation emitted by moving charged
particles1. Whenever we use the subscript “e” we specifically refer to an electronic
quantity (i.e. me is the rest mass of the electron), while if no subscript is used we are
referring to a general particle. Beware that since we will always find only electrons
radiating, the two notations are often interchangeable.
The classical instantaneous power emission spectrum, often called Synchrotron
spectrum, can be computed as shown in chapter 14 of [6] and reads:

dPinst
dγγ

=
9
√

3

8π
Pcl

γγ
γc

∫ +∞

γγ/γc

K5/3(y)dy, (1.16)

with γc ≡ (3/2)γeη/α is called “critical energy” and corresponds to the energy
value for which the function is maximized, and α = e2/(4πε0h̄c) = 1/137 called fine
structure constant. The typical shape of eq.(1.16) can be visualized in figure 1.2,
defining F (y) = (1/Pcl)(dPinst/dγγ) and y = γγ/γc as is done in [6].

1.1.3 Classical radiation reaction

Photon emission is a very general term used to group all phenomenons for which
energetic charged particles can radiate away part of their energy. The emission of a
photon causes a feedback on the particle energy and momentum according to their
conservation laws, we call these feedback Radiation Reaction (RR).

1It is true however that in astrophysics and in large particle accelerators we find systems in which also
heavier particles radiate (i.e. accretion disks or in the Large Hadron Collider) but those system are not in
the interest of this thesis and so whenever we will talk about a radiating particle we will always refer to
electrons.
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Figure 1.2: Plot of F (y) = (1/Pcl)(dPinst/dγγ) vs y = γγ/γc with logarithimic scale
abscissa.[6]

Classically the motion of a charged particle in an electromagnetic field can be solved
by writing Newton equations and consider Lorentz force as an external force acting
on the particle. In the four-vector notation this would read:

m
duµ

dτ
= qF µνuν , (1.17)

where F µν is the elctromagnetic tensor defined as in eq.(1.12) and uν = pν/(γmc) is
the normalized relativistic linear momentum of the particle.
The most intuitive way of thinking of radiation reaction would be to add an extra
term to express the field of the emitted radiation acting as a feedback on the external
fields. The system to be solved now looks like [7]:

m
duµ

dτ
= q (F µν

ext + F µν
rad)uν , (1.18)

∂µF
µν
rad = q

∫
uµ(τ)δ(x− r(τ))dτ, (1.19)

where F µν
rad is the feedback term and F µν

ext represents the external fields.
The solution of this system is not trivial and goes beyond the purpose of this work
so we will just say that a first approach has been used by Lorentz, Abraham and
Dirac to derive the homonimous eqaution published in 1938 (Lorentz-Abraham-Dirac
equation or LAD equation). Later in 1947 another famous equation was published:
the Landau-Lifshitz (LL) equation. The real and physical solution to this equation
is shown to be [9]:

mc2
dγe
dt

= −evvv ·EEE − ecγeτ0vvv ·
dEEE

dt
+ τ0cEEE · (EEE + βββ ×BBB)

+
τ0e

2

me

EEE · (EEE + vvv ×BBB)− τ 2e
me

γ2e
[
(EEE + βββ ×BBB)2 − (βββ ·EEE)2

]
, (1.20)
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dppp

dt
= −e (EEE + vvv ×BBB)− eγeτ0

(
dEEE

dt
+ βββ × dEEE

dt

)
+
e2τ0
mec

γ2e [(βββ ·EEE)EEE − cBBB × (EEE + vvv ×BBB)]− e2τ0
mec

γ2e
[
(EEE + cβββ ×BBB)2 − (βββ ·EEE)2

]
βββ,

(1.21)

for which we defined τ0 = (2/3)τe, and βββ = vvv/c. Remembering how we defined the
quantity Pcl in eq. (1.10) and assuming to be in ultra-relativistic regime (γ � 1) we
can rewrite the equations leaving only the important terms:

mc2
dγ

dt
= qcEEE · βββ − Pcl, (1.22)

dppp

dt
= q (EEE + cβββ ×BBB)− βββPcl. (1.23)

The simplest physical system we can look at to show the effect of classical
radiation reaction is a single electron moving into a uniform and constant magnetic
field perpendicular to the velocity of the particle. If no radiation were emitted, the
electron trajectory would be a circle with radius rL = mv/(eB), angular frequency
ωL = eB/(2m) and, centripetal acceleration aL = |FFFL|/m = qvB/m. We can notice
that the larger the particle speed (and so the particle kinetic energy), the larger
the radius and, the larger the magnitude of the centripetal acceleration. We saw
in section 1.1 that the bigger the acceleration of the particle, the more radiation is
emitted, so just from this qualitative analysis we can assume that the emitted power
of a faster particle would be greater than the one of a slower particle. This agrees at
first order with the idea of a continuous particle slowing down until γ = 1, when no
more kinetic energy is stored in the particle. Quantitatively we can refer to [7] and
find an equation to describe γ(t):

dγ(t)

dt
= K(1− γ2), (1.24)

where we defined K = τ0B
2/(mΩ) with Ω = 2ωL. Once integrated it gives the

solution:

γ(t) = tanh [atanh (γ(0)) +Kt] ≈ γ(0)

1 +Kt
for γ(0)� 1. (1.25)

This solution clearly shows that the higher the energy the bigger the negative slope of
γ(t) so the faster the particle loses energy, tending asymptotically to arrive smoothly
at the value γ = 1. This case can be shown to yield to a trajectory with the shape
of a closing spiral.

1.2 Quantum radiation emission and back reaction

1.2.1 Inverse Compton scattering and quantum parameters

An electron moving into an electromagnetic field can exibit behaviours which de-
scription needs a quantum approach. In the regime where quantum effects are not
negligible, determining the spectral properties of the emission radiated away by an
electron in an arbitrary external field is greatly simplified when considering ultra-
relativistic electrons (i) in the presence of a large slow-varying field (ii) with respect
to the characteristic time scale for photon production [10]. These two conditions can



1.2. QUANTUM RADIATION EMISSION AND BACK REACTION 19

shown to be fulfilled if (i) γe � 1 and (ii) [10]

a0 =
e|Aµ|
mec2

� 1, (1.26)

with Aµ being the four potential related to the electromagnetic tensor F µν =
∂µAν − ∂νAµ. The quantity a0 is often called “normalized vector potential” and is a
measure of the strength of the electromagnetic field in a point in space.
Respecting the aforementioned conditions allows us to assume that the dominant
photon emission process in the system is the inverse Compton scattering which is
the quantum generalization of the synchrotron emission [10], for which the rate of
photon production has been derived in [5] and will be given in eq.(1.36). Before
that we need to introduce some parameters of fundamental importance in order to
understand eq.(1.36), namely, χe and χγ.
We will now define the electron quantum parameter χe which is tightly correlated
to the relative prominence of quantum effects. For χe values up to ∼ 10−3 a classi-
cal approach is considered sufficient to describe the system, for values larger than
∼ 10−2 then quantum effects start to be relevant (or even prominent) and should be
taken into account for a correct description. The quantum parameter χe is defined as:

χe ≡
∣∣∣∣F µνpν
Esme

∣∣∣∣ =
η

α
, (1.27)

in which me is the electron rest mass, c is the speed of light in vacuum and F µν is
the electromagnetic tensor defined in eq.(1.12), and α = e2/(4πε0h̄c) = 1/137 is the
fine structure constant, while Es is called ”Schwinger field” which is defined as:

Es =
m2
ec

3

h̄e
= αEcr ≈ 1.3× 1018 V

m
. (1.28)

The Schwinger field Es can be thought as the electromagnetic field amplitude limit
at which the behaviour of EM waves in the vacuum becomes non-linear. In classical
electrodynamics, two light beams crossing their path just add their amplitude in the
crossing point but pass right through each other. This is true until the combined
energy of the two beams is not high enough to start the vacuum polarization effect.
From this point of view, χ can be seen as the ratio between the electromagnetic field
experience by the particle in its proper frame by the Schwinger field, if χ ≥ 1 then
the pair production process is possible and we enter the fully quantum regime.
The quantum paramenter for a single electron moving into an electromagnetic field
can be rewritten as follows:

χe =
γe
Es

∣∣−(β · Eβ · Eβ · E)2 + (EEE + vvv ×BBB)2
∣∣1/2 . (1.29)

One can also project the electric field in its parallel and perpendicular component
relatively to the electron direction of motion and also, assuming that the electron is
ultra-relativistic (γ2e � 1) we can simplify the relation which now reads:

χe =
γe
Es

∣∣∣∣EEE‖γ2e + (EEE⊥ + vvv ×BBB)2
∣∣∣∣1/2 ≈ γe

Es
|EEE⊥ + vvv ×BBB| . (1.30)

In order to look at the electromagnetic field in the correct way we should either always
specify the reference frame in which all the quantities are measured or transform
them into Lorentz invariant, ensuring in this way that they are the same in every



20CHAPTER 1. PHOTON EMISSION AND BACKREACTIONON THE ELECTRONDYNAMICS

inertial reference frame. Since the second option seems more appealing, we will try
to discuss, when possible, in term of Lorentz invariants. In order to do so we define
the normalized vector potential of the wave similarly to what we have already done
in eq.(1.26) :

aL =
e|AAA|
mec

=
eE0

mecω0

. (1.31)

AAA has been already defined right after eq.(1.26), and can be thought as the ratio
between the amplitude of the electric field of a plane wave and its frequency ω.
Eventhough we will work exclusively with pulses which are not plane waves and
therefore are not made by a single frequency but by a broad spectrum of frequancies,
we will keep using this notation but instead of the plane wave frequency ω, we will
use the central frequency ω0.
The case of a single electron moving uniformly into the field generated by a plane
wave is too simple to give an accurate description of complex systems, but is enough
to give us a basic understanding of some properties of the processes at play in a
wide range of situations. So for a particular case of a single electron moving with vvve
parallel to the x-axis which is also the progation direction of a plane wave described
as:

AAA = ALsin

[
ω0

(
x− t

c

)]
nnnj, (1.32)

with nnnj the versor of the y-axis. In this case the quantum parameter becomes:

χe =
γeω0AL
Es

cos(ω0t)
[
1− vvv · nnni

c

]
. (1.33)

It should be pointed out that this relation reaches the maximum value if the electron
moves in the opposite direction of the propagation of the wave while has a minimum
if their propagation is co-directional. The maximization of this parameter is of the
utmost importance in order to enhance the photon emission.
Similarly to what done for χe we can define a correlated parameter called “photon
quantum parameter”:

χγ ≡
∣∣∣∣F µνh̄kν
Esme

∣∣∣∣ =
γγ
Es
|EEE⊥ + vvv ×BBB| , (1.34)

with γγ being the photon energy normalized to mec
2. Now we can derive the following

relation, which will be useful later on, in the assumption of EEE‖ ≈ 0:

χeγγ ≈ χγγe. (1.35)

1.2.2 Quantum radiation reaction

Deriving the photon emissin rate for an arbitrary field is too complex, so we will
instead place ourselves in the Local-Constant-Field-Approximation (LCFA), assuming
that the characteristic time of emission is much smaller than the optical cycle of
the external field, and that the Schwinger field is much larger than the external
field amplitude [7] [4], and we assume fulfilled all the hypothesis at the beginning of
section 1.2.1.
For a single electron the inverse Compton scattering spectral emission rate has been
first derived in [5] and reads:

d2Nγ

dτdχγ
=

2α2

3τe

G(χe, χγ)

χγ
, (1.36)



1.2. QUANTUM RADIATION EMISSION AND BACK REACTION 21

where τ is the electron proper time, and τe = re/c is the time for the the light to
cross the classical electron radius defined as re = e2/(4πε0mec

2).
G(χe, χγ) is the quantum emissivity:

G(χe, χγ) =

√
3χγ

2πχe

[∫ +∞

ν

K5/3(y)dy +
3

2
χγνK3/2(ν)

]
, (1.37)

in which Kn is the modified Bessel function of second kind of order n and:

ν =
2χγ

3χe(χe − χγ)
. (1.38)

We can link directly the photon quantum parameter at the emission instant to the
electron quantum parameter defining the following useful parameter:

ξ ≡ γγ
γe
. (1.39)

We can now use the eq.(1.35) to obtain:

χγ = ξχe. (1.40)

Let us now consider a specific reference frame in which the electron is ultra-relativistic,
we will hencefort call this frame the laboratory-frame (or lab-frame). The instanta-
neous power spectrum of the emitted photons can be obtained from eqs. (1.36) and
(1.37):

dPinsta
dγγ

=
Pα
γe
G(χe, χγ) =

√
3ξ

2πγe
Pα

[∫ +∞

ν

K5/3(y)dy +
3

2
χγνK3/2(ν)

]
, (1.41)

in which Pα = Pcl/χ
2
e with Pcl being the classical Larmor radiated power defined as

in eq.(1.10).
A more compact and easier to handle relation for the classical power can then be
found as:

Pcl =
2α(mec

2)2

3h̄
χ2
e. (1.42)

Integrating eq.(1.41) we obtain the “quantum corrected instantaneous power radiated
by the electron” that reads:

Prad = Pcl · g(χe) = Pcl
9
√

3

8π

∫ +∞

0

[
2ν2K5/3(ν)

(2 + 3νχe)2
+

4ν(3νχe)
2

(2 + 3νχ)4
K2/3

]
dν. (1.43)

g(χe) is called “quantum correction” and can be shown to converge towards unity for
small enough χe ( ≤ 10−2) bringing us back to the classical case. Looking at figure
1.3 two things can be understood. The first is that higher χe means higher energy
of the emitted radiation as one can see looking at the differences between curves of
different colors. The second is that approaching χe ∼ 0.1 a fully classical description
is not sufficent anymore, and a quantum correction is needed. Increasing even more
the value of χe, the quantum nature of radiation reaction becomes preminent ad a
fully quantum approach is needed.
Quantum radiation reaction results from the cumulative effects of energy and mo-
mentum loss of the charged particles emitting photons. As in QED high energy
photon emission is a random process, its modelling usually relies on Monte Carlo
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Figure 1.3: Classical power radiated vs quantum corrected formula. It is clear how
the agreement between calssical and quantum description becomes weaker the bigger χe
becomes. In particular we can see how the emmision at the high end of the spectrum is
overestimated by the calssical approach.[4]

methods [11] [12][13].
In these methods we draw randomly the time of emission and the energy of the
emitted photon. For the limit of χe � 1 it has been shown [10] that this approach is
equivalent of applying eq.(1.43).
A fully quantum approach is already available in Smilei [7][3]. The details on how
this approach is implemented in the code will be discussed later on in section ??.

1.3 Emission by many charged particles

Up to now we described systems with only one electron emitting radiation, now we
will see that the radiation emitted by a many-particle system is characterized by
properties which in general are not the sum of the features of many single electron
systems.
In general any kind of radiative behaviour can be classified as either “coherent” or
“incoherent”[10][14]. The first means that nearby particles collectively contribute to
the radiation emission, while the second kind of behaviour means that each particle
emits independently from each other. We know that the emission of a single particle
is deeply affected by the electric field in its surroundings, so if the space scale of
the fields inhomogeneities is of the order of or smaller than the average distance
between the particles, then each particle has to emit indpendentely from each other
since the environment in which is found is remarkably different from the others. For
the case of a typical laser pulse of λL ∼ µm the scale at which the field varies can
be estimated roughly to λL/10÷ 100, so about 102 ÷ 101nm. The typical distance

between electrons in an NCD plasma would be of the order of n
−1/3
c ∼nm, meaning

that on average we find tens if not hundreds of electrons in the characteristic spatial
scale for variation of the fields. In this range we find both coherent and incoherent
radiation emission and, PIC codes have different way to account for the two of them.
Figure 1.4 shows a depiction of coherent and incoherent photon emission.
We have already shown in eq.(1.9) that in the case of a single radiating particle,

the radiated power is proportional to the charge squared of the radiating particle,
so P s

inc ∝ q2 with “s” indicating the species. To compute the total power radiated
we then need to sum the single particle power over all the Ns particles, and being
electrons the only particles radiating in our regimes we can write Pinc ∝ Nee

2.



1.3. EMISSION BY MANY CHARGED PARTICLES 23

Figure 1.4: Depiction of incoherent radiation (left) and coherent radiation (right). Reprinted
from [15].

On the other hand if all the electrons radiates in unison then, they are like a big
particle of charge q = Nee radiating. Since the power is proportional to the square of
the charge of the radiating particle then we get Pcoh ∝ N2

e e
2 which can be significantly

different from Pinc depending on the physical system.

As we will se in chapter 3, coherent radiation is not well described above a certain
energy threshold in Particle-In-Cell codes like the one we used in this work, so it
would be appropriate to study systems for which the coherent component is negligible
with respect to its incoherent counterpart. Fulfilling the following hypothesis grants
exactly that:

1. Slow varying field with respect to the characteristic photon formation time ∆tγ

2. Collisional effects among particles, and in particular electrons, are negligible

3. Wavelength of the emitted photon λγ � n
− 1

3
c

Condition number one ensures that the environment in which the electron is does
not vary in the time needed for the electron to emit the photon. This hypothesis
translates to the fact that, from the electron point of view the process of emission
is almost instantaneous. Its practical effect is that the photon is emitted in the
forward-direction, which is the same as the electron instantanoeus velocity. It can
be shown that this condition is verified for a0 � 1 [10][14].
The third condition is related to the first one since has been shown that λγ ∝ ∆tγ
[10], but gives us a more direct measure of the photon energy intervall in which we are
committing a negligible error not modelling the coherent radiation. With a 800nm
laser we get a critical density of nc ≈ 1.7 × 1021cm−3 which, recalling condition
3 above, transalte into λγ < 0.8nm, which in energy becomes hνγ ∼ 1.5KeV or
equivalently γγ > 3× 10−3.
An awkward interval is formed between the minimum energy required for incoherent
emission dominance (γγ > 3× 10−3) and the maximum energy for which the code
can account for coherent radiation (γγ < 5× 10−4 in our specific set up). Following
the hypothesis above grants us the negligibility of the emitted energy in this “uncon-
fortable middle-ground” and relying only on the much more confortably modelled
incoherent emission. For a deeper reading on the topic we refer to [14].
We will always refer to incoherent radiation whenever we use terms such as “photons”,
“radiation” or similar, unless otherwise specified.



Chapter 2

Laser-plasma interaction

In the previous chapter we discussed how energetic electrons in strong fields can
radiate, now we will summarize how energetic electrons are produced using an ultra-
intense laser pulse.
After a brief introduction of state-of-the art high intensity lasers, the discussion will
start with an overview of the interaction between electrons and pulsed lasers, defining
different regimes of interaction. We will see how energetic electrons are produced in
various regimes, and in particular in the one we are interested in: the Near-Critical
regime.
Finally, when we understand how energetic electrons are created, we will discuss how
those electrons behave in the system. Radiation emission is the phenomenon in which
we are interested the most, but is not all those electrons will lead to. As we will see,
a hot plasma naturally expands, and gives rise to a complex dynamics in which also
ions are involved. Although we are not directly interested in ion acceleration, we
will briefly describe how ions are accelerated by energetic electrons and their effect
on the dynamics of the system in order to have a more complete picture.
In order to keep the focus on the specific work of this thesis we will only talk about
near-critical-density (NCD) plasmas and in particular we will always assume that we
are in the overcritical regime, unless specified otherwise. For a more general treaty
of Laser-Plasma interaction we refer to [16][17].

2.1 Multi-PetaWatt Lasers

Since the invention of Chirped Pulse Amplification (CPA) (1985) [18] the power of
laser facilities has grown at an incredible rate (Fig.2.1).
Through new records in laser intensity, it has been possible to access relativistic
laser-matter interaction, which allowed us to experimentally explore new physical
mechanisms.
Before 1985 the maximum achievable laser intensity had reached a saturation value

due to the fact that higher itensities would have damaged the amplification medium.
An elegant solution to this problem is to expand the pulse before amplification
reducing its intensity, amplify this weaker pulse, and then compress it to the desired
duration afterward.
Nowadays the most powerfull laser facilities all use CPA-based technology and they
are divided into two cathegories (summarized in fig.2.2):

• High Energy Density (HED)

• Ultra High Intensity (UHI)

24
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Figure 2.1: Evolution of laser intensities from the ’60s to 2018.[19]

To the first belong all facilities capable of delivering ∼ kJ of energy per pulse, with
a typical pulse duration of ∼ ns. These facilities are often used for the study of
warm matter and are fundamental in fields like (but not exclusive to) planetology,
hydrodynamic plasma instabilities and, inertial confinement fusion. In order to
achieve MJ order of energy multiple beams are used simultaneously as in the Nationl
laboratory for Inertial Fusion (NIF) and Laser MegaJoule (LMJ) facilities.
Ultra High Intensity Lasers are obtained when compressing a smaller energy (∼ 102J)

Figure 2.2: Main UHI (green) and HED (blue) facilities in the world.

into a ultra-short pulse (∼ 101fs ÷ ps) allowing us to achieve intensity values of
≥ 1021Wcm−2 and powers of the order or higher than ∼ 1 PW. Another important
difference between UHI and HED is the repetition rate. The bigger the energy the
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longer the amplification medium takes to cool down, causing a MJ facility to be
able to shoot at full power only few times per day. On the other hand UHI lasers
can shoot as much as few times per minute, having “only” few tens or hundreds of
Joules to dissipate. In particular we will focus on the UHI facility Apollon being
built at the CEA site in Saclay, France. The system is a Titanium:Sapphire based
laser able to deliver pulses with duration (Full-Width-Half-Maximum in time) of
∼ 20fs. This facility is scheduled to start experiments in Spring 2020 with a power
on target of about 1PW, and in few years reach almost 10PW. We will discuss its
specific parameters and its modelling in section 4.1.
Our goal is to shoot a powerful laser pulse onto a target, transforming it into a
plasma, and then exploit some features of the laser-plasma interaction in order to
create the favorable condition to radiate away γ-photons. We will see that the quality
of this interaction is determined by the properties of both plasma, and laser.

2.2 Single particle interaction

First we want to look at a very simple system that is far away from reality but
nonetheless it can give us insights about the description of a more complex system.
Let’s follow more or less [20] and consider a single non-relativistic electron interacting
with a laser pulse of central frequency ω propagating along kkk:

EEE(xxx, t) = EEE0(xxx) cos(kkk · xxx− ωt). (2.1)

In order to simplify the notation we writing the cosine phase as φ. To describe the
dynamic of the system we have to solve Newton equation of motion:

ẍxx =
q

me

(EEE + ẋxx×BBB) . (2.2)

We will look at an approximate solution using the linearized equation. First we need
to use a perturbative approach and write:

xxx = xxx(0) + xxx(1), (2.3)

in which the first term is the solution to the linearized equation (order zero dynamics)
and the second is the perturbative effect (first order dynamics). Expanding the field
around the electron position xxxe:

EEE ≈ EEE(xxxe) + [[(xxx− xxxe) · ∇]EEE]x=xe . (2.4)

Now we are able to linearize eq. (2.2) and solve for xxx(0):

xxx(0) = xxxe −
qEEE0(xxxe)

meω
cos(φ) = xxxe −

vvv(0)

ω
cos(φ). (2.5)

Plugging relation (2.3) into eq.(2.2) we can derive an expression for xxx(1):

ẍxx(1) = −
(

q

meω

)2 [
(EEE · ∇)EEE +EEE0 ×∇×EEE0 sin2 φ+ (...) sinφ cosφ

]
. (2.6)

The first term is function only of the spatial dishomogeneities while the last two
terms depend also on time, oscillating with frequency 2ω. Averaging over the laser
period (〈〉) we can get rid of these two terms:

me

d2
〈
xxx(1)
〉

dt2
= − q2

4meω2
∇|EEE0|2 = FFF p, (2.7)
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which is called Ponderomotive force. We should notice that FFF p is inversely propor-
tional to the mass of the particle, this implies that only electrons would effectively
react to it while ions are left almost in place. This consideration means that neutral
atoms would get ionized and electrons would be pushed away from the ions and
induce charge separation.
Associated to this force we can fid the Pondromotive potential :

Up =
q2

4meω2
|EEE0|2. (2.8)

If accounting for relativistic effects is needed then remembering the definitions
(2.15)(2.16) the ponderomotive force becomes [21]:

FFF p = −mec
2∇γ = −mec

2∇
√

1 + 〈aaa2〉. (2.9)

In a non-relativistic regime the main effect of FFF p is to push electrons toward regions
of space in which Up is lower, corresponding to smaller field magnitude.
This basic concept of Ponderomotive force can be extremely useful to understand
the processes at play in all regimes.
A real system is never a single particle, so is far more complicated than what we
saw in this section. A collection of charged particles is a plasma, and depending
on its actual charge density we find very different behaviours and different physical
mechanisms.

2.3 Regimes of interaction

Before discussing the different regimes of interaction we would like to present a few
key parameters which help to describe a plasma. The characteristic length for the
phenomena in a plasma is called Debye length or Lambda-Debye and is defined as:

λD =

√
ε0Te
e2ne

, (2.10)

with ε0 being the vacuum dielectric permittivity, and Te the electronic temperature.
Electrons have a priviliged spot in the study of laser-plasma interaction with respect
to the ions, since their dynamics is generally much faster than the ions and guides
the overall behaviour of the plasma. We will see now why.
The fundamental time scale of the dynamics in a plasma is related to what is called
Plasma frequency or Omega-plasma and is definde as:

ωp =

√
q2sns
ε0ms

, (2.11)

with “s” the species considered. It is clear that each species in the plasma will have
a different value of ωp depending on their mass and charge. The time scale can then
be defined as 2π/ωp.
Let’s notice that the mass of the species is in the denominator of the fraction, thus
ions respond much slower than electrons to electromagnetic stimuli. In the frame of
this work the electron response time is always much faster than the ions, thus we
will always assume that any electromagnetic perturbation (the laser pulse) interacts
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only directly with the electrons. All processes which result in ions gaining energy are
always mediated by electrons and will be briefly described in section 2.6. Henceforth
when we will talk about the plasma frequency we will always refer to the electronic
plasma frequency, unless otherwise specified.
Depending on the electron number density we can divide the laser-plasma interaction
into three regimes: subcritical (or undercritical), near-critical and, overcritical. The
main difference we want to focus on is if an electromagnetic wave can propagate or
not in a plasma of given density.
It is crucial to define the so called critical density nc given by:

nc =
ε0meω

2
0

e2
= 1.1× 1021cm−3

(
λ

1µm

)−2
, (2.12)

with ω0 being the central frequency in the laser spectrum, me the electron rest
mass and, e the proton charge. The complex index of refraction for a transverse
monochromatic mode of a cold, collisionless, un-magnetized, non relativistic plasma
can be expressed as [22]:

ñ =

(
1−

ω2
p

ω2
0

) 1
2

=

(
1− ne

nc

) 1
2

. (2.13)

This expression is very simple and makes use of several restrictive hypothesis,
nonetheless eq.(2.13) is usefull to show some crucial points.
If ne < nc the index of refraction is real and thus the the electromagnetic wave can
be transmitted, propagating through the plasma.
If otherwise ne > nc, ñ will have a non-zero imaginary part, then the equation for
the propagating wave will have an exponential dumped amplitude meaning that the
wave is not transmitted through the plasma. This is the case of an evanescent wave,
which will propagate for a certain distance through the medium but will inevitably
be reflected or absorbed during its path.
Therefore we call subcritical regime if ne < nc, overcritical regime if ne > nc and,
near-critical regime if ne ∼ nc. The latter is a regime in which the interaction
between an electromagnetic wave and a plasma grows in complexity, acting as a
middleground between the two extremes. This is the regime we are interested in
because it shows a strong laser-plasma coupling that we will try to exploit.
If the laser intensity rises above about 1018Wcm−2 then we access the relativistic
regime, which leads to more complex physics. Qualitatively we can observe one of
the effects of high intensity introducing the Lorentz factor γ as expressed below:

γ =
√

1 + 〈aaa2〉 =

√
1 +

a20
2
, (2.14)

with:

aaa =
eAAA

mec2
, (2.15)

EEE = −∂tA
AA

c
, (2.16)

I = ε0c〈EEE2〉, (2.17)

a0 = 0.85×
(

Iλ2

1018Wcm−2µm2

) 1
2

, (2.18)
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in which the angled brackets mean the average taken over a laser period, and AAA has
been defined in section 1.2.1. Relation 2.14 is true only for linearly polarized waves,
for circular polarization the argument of the square root becomes 1 + a20.
The electron mass me should then become γme and so nc becomes γnc. Since γ > 1
we can see that in relativistic regime a classically overcritical plasma can become
subcritical and in so doing also “transparent” to the wave. This mechanism is called
“Self-induced relativistic transparency” or “relativistic transparency” for short[16][17].
If the intensity of the laser is high enough to access the relativistic regime then
the dynamic of the system grows in complexity also due to non-linear effects. The
interaction of this evanescent wave with a near-critical plasma results in electron
heating mechanisms which modelling is not trivial at all. The outcome is a plasma
which has become hotter thanks to the energy left by the laser. This hot electron
plasma will give rise to a wide range of phenomena some of which will be investigated
in this work.
It is crucial to point out that as has been shown in past works[23] what really defines
the dynamics and the mechanisms at play in the system is not a single parameter of
the laser or of the plasma, but instead is the coupling of all the parameters of both
plasma and laser which defines the overall interaction. This topic will be addressed
when discussing the choice of the specific simulation set-up for this work in chapter
4.

2.4 Overview on undercritical and overcritical regime

The main focus of this work is on the Near-Critical-Density (NCD) plasma (ne ∼ nc)
but this regime is a middle ground between the overcritical and undercitical. So in
order to understand the mechanisms at play in the NCD regime we need to give a
brief overview on both subctricial and overcritical regimes evethough they are not
the main focus of this work.
If the plasma in which a laser is propagating is considered deeply subcritical (ne � nc)
then depending on the electromagnetic (EM) wave frequency, a longitudinal plasma
wave can be excited in the direction of the pulse propagation. When the pulse
arrives the field is increasing, pushing electrons forward as we have seen in section
2.2. Since the electrons are slower than light, the laser surpasses them pushing now
backward. In a subcritical system the result can be a collective plasma oscillation
called Wakefield.
The phase velocity of the electron wave is given by the laser group velocity [24] and,
recalling eq.(2.13) reads:

vwakeph = c

(
1−

ω2
p

ω2
0

) 1
2

= vlaserg , (2.19)

in which the plasma frequency ωp is defined as in eq.(2.11) and ω0 is the laser central
frequency.
An externally injected electron can ride this wake staying in phase with the pulse
itself and co-propagate with it. This mechanism generate a quasi-monoenergetic
electron bunch in the direction of propagation of the laser.
For proper laser frequencies the oscillation can become resonant, breaking the wave,
causing the trapping of electrons near the maximum of the field. Those electrons are
now dragged along with the pulse and accelerated (Figure 2.3) without the need of
any electron to be externally injected.
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In general, the process of accelerating electrons using the wakefield is called Laser

Figure 2.3: Physical picture of the laser wakefield acceleration mechanism (LWFA)[25].

WakeField Acceleration (LWFA) and is seen to be predominant in the deep subcritical
regime [24].
Increasing the density, another physical process starts to be more and more effective:
the so called Direct Laser Acceleration (DLA)[24].
The Ponderomotive force expels most of the electrons from the laser path creating a
channel, and with it huge static magnetic and electric fields. The channel effectively
acts like a potential well trapping the few electrons still inside it, making them
oscillate at their Betatron frequency defined as ωβ = ωp/(2γ

0.5). Can be shown that
a resonance between the oscillating electrons and the laser is possible for appropriate
frequencies [24]. Eploiting said resonances can be an effective way to accelerate
electrons which are produced with a quasi-thermal spectrum.

In overcritical plasmas the effects are more complicated since the pulse is mainly
reflected and the part of the wave propagating is actually evanescent. In these cases
the laser can transfer fraction of its energy to the particles but it is referred to this
phenomenon as electron heating, and will be the focus of the rest of this section.
The laser will always interact mainly with the electrons exploiting their relatively
low inertia to tranfer them its energy. In this process the fields amplitudes will drop
as the energy stored in them is absorbed by the electrons which will become “fast”
or “hot”. The exact modelling of the energy and temperature of these “hot electrons”
is probably an impossible task, so usually we estimate these quantities with rather
simple but effective scaling models.
The simplest is what is called “Ponderomotive model” or “Ponderomotive scaling”
and is built on the assumption that the main actor in the electron acceleration is the
so called “Ponderomotive force” FFF p defined as in (2.9). From this can be estimated
that the electron temperature would be roughly:

Th = mec
2(γ − 1). (2.20)

This scaling is rather simple and easy to use but it does not take into account any
effect of polarization nor incidence angle of the laser pulse on the target. In order
to include these latter, another scaling has been proposed [26] which is built from
the two main heating mechanisms leading to electron heating: JJJ ×BBB heating, and
Brunell effect.
JJJ ×BBB heating is caused by the oscillation of the ponderomotive force (PF)in the
laser period. As we see in eqs. (2.9) and (2.14) the magnitude of the PF is actually
a function of the field which is obviously oscillating in time. Working out the math
properly we can write the PF as a steady contribution and an oscillating part. The
first pushes electrons in the direction of the laser causing steepening in the electron
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density distribution, while the second makes electrons go back and forth and actually
heating them.
For what we said before it is reasonable to assume that for JJJ ×BBB heating the related
temperature would be proportional to the ponderomotive scaling:

TJ×B = C1Tpond = C1mec
2(γ − 1), (2.21)

with C1 being a parameter depending on polarization, laser a0 and thickness of the
target.
As for Brunell heating a scaling can be found in [27]:

TBrunell = C2mec
2

√(
1 + f 2

a20
2

)
(sin2 θ − 1) tan θ, (2.22)

with f being the field amplification factor due to reflection on the target, usually flat
solid density targets can be approximated as perfect mirrors so f ≈ 2. The angle of
incidence is represented by θ and C2 is a factor just like C1.
The overall temperature can be expressed as the sum of these two heating effects:

Te = TJ×B + TBrunell. (2.23)

It is appropriate to address the fact that for normal incidence θ = 0 Brunell heating
has no effect while its importance increase with the incidence angle. A full study on
the dependence of the parameters C1 and C2 can be found in [27].
It should be pointed out that several heating mechanisms exist apart from the two
already mentioned, asuch as: Collisional absorption, Sthocastic heating, Resonance
absorption, ad others. For all these mechanisms, scalings and models are proposed but
they will not be discussed in this section, since the goal is not to give an exhaustive
description of all heating mechanisms but only a brief overview on the meaning of
“electron heating”.
In the next section we will see how NCD targets are produced and employed in
nowadays experiments.

2.5 Near-Critical regime and foam-based targets

The Near-Critical regime is the most complex of all. Its complexity derives from
the fact that is neither a subcritical nor an ovecritical regime but is somewhere in
between. We do not have a clear behaviour dominating the laser-plasma interaction,
but many phenomena of both subcritical and overcritical plasmas may concurr.
When a laser pulse interacts with a Near-Critical-Density (NCD) plasma we can see
behaviour which is the combination of the other two extreme cases.
If a plasma is overcritical or “overdense”, it does not let a laser pulse propagate
acting as a mirror and the pulse is almost perfectly reflected from the target. On
the other hand if the plasma is underdense or subcritical, a plasma wave may be
generated transporting the energy as it propagates. If ne ∼ nc the pulse may be
able to propagate through the plasma until is almost completely absorbed producing
energetic electrons with a quasi-thermal spectrum.
The electron density of a regular solid target is usually several hundreds times the
critical density and this makes most of traditionally employed targetry not really
efficient when converting energy from pulse to electrons. In the last decades effort
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has been put into developing a new class of solid-based targets with near-critical
electronic density. The aim is to realize targets which have better laser-plasma
coupling leading to a longer penetration of the pulse, and increase the number of
energetic electrons and their temperature. TIn the frame of this work, these energetic
electrons will be used to produce photons as discussed in chapter 1.
The critical density of a plasma is typically very low, in the order of magnitude of
the density of the air(few mg/cm3), so producing such light materials is challenging.
There are few techniques which are able to generate a very low density plasma such
as various kind of nanostructures(foams, nanotubes, nanorods,...), gas-jets, aerogels,
and others[28]. We will focus on what are called ”porous nanostructured carbon layer”
or more commonly ”foams” which have been studied in [20][23][26][27][29][30][31][32]
and many other works. They are made of a collection of carbon nanoparticles
aggregating with each other in a foam-like structure as shown in figure 2.4.
In order to produce these materials there are few methods but the one used in the

Figure 2.4: SEM images of cross section (left) and top view (right) of an example of porous
nanostructured carbon layer.[30]

referenced works is the Pulsed Laser Deposition (PLD) (Figure 2.5). Using a laser in
a controlled atmosphere, a graphite target is irradiated and a cloud (or plume) of
carbon nanoparticle expands. The nanoparticles start to aggregate with each other
and end up deposited onto a solid substrate. The properties of the foam can be
controlled changing either the filling gas or its pressure. The aggregation process is
complex and its modelling is not trivial, for more details about this topic we will
refer to [31][32][33]. The structure results in a porous material in which the total
volume occupied by carbon particles is of the order of ∼ 0.1 ÷ 1.0% of the total
volume occupied by the structure. This value is also referred to as “filling factor”
and it is a important parameter characterizing the foam properties.
Experimental evidence of increased electron temperature using this kind of targetry
has been shown with respect to a bare solid-density foil [22][26][29].
A typical scheme for such a foam-based target is as follows (Figure 2.6):

• Near-critical-density foam layer

• Solid-density substrate
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• Pollutants (or “contaminants”) layer

The first layer (from the left) is also the first to interact with the laser and is exactly
what we expanded upon in this section, tipically few µm thick. Following we find
the substrate onto which the foam has grew, usually its thickess is of the order of
one (or few) laser wavelength. This part is called different names depending on its
actual purpose. This layer is usually referred to as “foil” or “substrate”, but fin
the frame of this work we will call it “mirror” since we are mostly interested in its
ability to reflect a laser pulse minimizing its absorbtion. Finally the last layer is just
a few nanometers thick and is made of hydrogenated impurities usually called also
“pollutants”. These substances (mainly hydrogen) are naturally found on metallic
surfaces, and although is indeed possibile to clean them off, they are proven to be
advantageous for ion acceleration as we will see in section 2.6.
This work will not look at optimizing ion acceleration but we decided to keep the

Figure 2.5: Simplified schematics of a typical PLD experimental apparatus.[34]

pollutant layer. The γ-photons production happens mainly in the first two layers so
by logic we could erase this last one. Nevertheless we always accounted for it since
its computational cost is negligible and helps us having a more realistic target.
It is due to specify that this kind of targets are not the only advanced low-density
targetry studied for enhanced photon production. Innovative targetry based on
nanotubes has been widely used for various porposes among which synchrotron
radiation production [4] and neutron production from D-D fusion [35]. For a more
complete treaty on the behaviour of different NCD structures we refer to [30].

2.6 Expanding hot electron plasma and ion acceleration

Since foam-based targets have been shown effective in ion acceleration techniques,
we will now give an overview of the main ion acceleration mechanisms.
NCD targets are show to increase the number of hot electrons generated and their
temperature. As we will understand better later on in this section, more hot electrons
mean more efficient ion acceleration. For these reasons usually NCD targets like the
one in fig. 2.6 are used to enhance ion acceleration mechanisms. In the frame of this
work we have no interest in producing energetic ions but we want to use these highly
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Figure 2.6: Foam-based target scheme. In the top half only the electrons are plotted while
in the bottom half onyl ions. The different colors of ions represent different species. More
details will be given in section 4.2

energetic electrons to radiate and produce copious amount of photons.
We will start by describing a physical picture of the processes at play starting from
the laser arrival at the front surface of the target. Afterward we will discuss the
properties of the ions at the back surface of the target, and then we will talk about
the processes hapening at its front surface.

2.6.1 Physical picture

Once the laser pulse interacted with the target and the hot electrons are produced,
part of them will leave directly the solid material from the front surface while the
others will travel through the target itself reaching the backside giving rise to a ion
acceleration mechanism called Target-Normal-Sheath-Acceleration (TNSA). These
electrons are not free to leave the target but if they are energetic enough they
can overcome the pulling potential and indeed leave from the back surface. Their
respective ions, traditionally metal ions or Carbon in nowadays targetry, are too
heavy to follow right away so the electrons accelerated by the laser create a charge
separation leading to an electric field, which tends to accelerate any ion in the target.
It is clear that if we had light ions ready to be accelerated on the backside the
acceleration process would be way more efficient. Is exactly for this reason that
usually a really thin (∼ nm) layer of hydrocarburic pollutant is left onto the rear
surface [22]. Electrons arriving at the surface need to fight the bulk attraction to
leave and this leads to a single electron oscillating back and forth multiple times
around the surface before leaving definitively the surface. This mechanism ensures
the ionization of the light pollutants which are then ready to be accelerated thanks
to their low inertia and favorable position.
While all this is happening the heavy ions which donated the electrons sustain the
charge separation. Once lighter ions are accelerated, the field felt by the heavier ions
is reduced and so the acceleration of these latter ones is limited.
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If a proton beam is needed then impurities and pollutants are the best option, but
for some applications it may be needed a beam of heavier ions (i.e. Hadrotherapy).
In order to obtain that, we need to suppress the proton acceleration removing any
impurities causing the charge separation to be left umbalanced until heavy ions come
into play, being accelerated and “absorbing” the energy stored into the sheath field.
Figure 2.7 summarizes what just described.

Figure 2.7: Physical picture of the main actors in a traditional (one layer) target. Reprinted
from [22]

2.6.2 Particle dynamics on the rear surface: hot plasma expansion

A simple but effective model to describe the dynamics on the back of the target has
been proposed in the frame of the expansion of a hot plasma by [22][36][37]. The
plasma is treated like a fluid of charged particles with initially hot electrons with
a Maxwell-Boltzmann distribution at temperature Th. We assume the validity of
Poisson law at all times t:

ε0∇2φ = e

(
ne −

∑
s

Zsns

)
, (2.24)

in which ε0 is the vacuum permittivity, φ is the electrostatic potential, and the
subscript s denotes each specific ions species with atomic number Zs. For the sake of
semplicity we will imagine a 1D system with a plasma made out of only one species
of ions. Poisson law then reads:

ε0∂
2
xφ = e (ne − Zni) . (2.25)

The expanding electrons plasma leads to charge separation, which increases the
absolute value of the right-hand-side (RHS) of equation (2.25) generating a potential
which itself generates a field given by:

EEE = −∇φ. (2.26)

Now to describe the ion expansion derived from this field, we use fluid equations
which represent respectively mass and momentum conservation:

(∂t + vi∂x)ni = ni∂xvi, (2.27)
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(∂t + vi∂x)vi = −eZ
mi

∂xφ. (2.28)

These two equations solved together with Poisson’s law would give an analytical
solution to the system.
If the plasma is left to expand for a sufficiently long amount of time then its
characteristic length of expansion L is much greater then the spatial scale of the
electron distribution λD defined as in eq.(2.10).
If L� λD then can be shown [36] that LHS of Poisson law becomes very small and
thus:

0 ≈ e(ne − Zni)→ ne ≈ Zni. (2.29)

Now, defining the so called “self-similar coordinate” ξ = x/(cst) we can rewrite the
set of equations which now reads:

(vi − csξ)∂ξni = ni∂ξvi, (2.30)

(vi − csξ)∂ξvi = −eZ
mi

∂ξφ, (2.31)

with:

ωpi =

√
e2Zne
ε0mi

, (2.32)

cs = λDωpi =

√
ThZ

mi

, (2.33)

being the ion plasma frequency and the ionic speed of sound respectively.
A solution to this system is found as:

ne = Zni = ne(t = 0) exp [−ξ − 1] , (2.34)

vi = cs(1 + ξ), (2.35)

φ = −Th
e

(ξ + 1) . (2.36)

This equation gives us a description of a rarefraction wave meaning that the ion
density initially ni = ne/Z is decreasing as the ions expand into the vacuum. This
decrease in density is called “rarefraction” and the corresponding rarefraction wave,
being a mechanical perturbation, moves at speed cs.
At the expansion front quasi-neutrality cannot be ensured so the model fails as we

can see in Fig 2.8.
It is now the time to point out that in this model we assumed that we have an
infinite supply of electrons at temperature Th. This can only be achieved by using
the hypothesis of a semi-infinite plasma in the direction x < 0. If we look at a real
system for a long enough time we see that the electrons can actually cool down or
simply diffuse away, one of the main reason being the finished interaction with the
laser, so the model fails for very long times as well.
One of the main results of this model is that we can get the ion spectrum:

dN

dv
= niot exp

[
− v
cs

]
, (2.37)

with nio being the density of ions at time t = 0. We can notice how the number of
accelerated ions is linear with time and exponentially decreasing in speed, with the
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Figure 2.8: a) Self-similar expansion of 1D hot plasma slab. The point x = 0 is taken at
the plasma boundary fot t = 0. b) Average ion velocity. c) The ion velocity distribution
normalized to the initial ion density. In red after 10 ions time (tωpi = 10) and in blue after
20 ions time(tωpi = 20). Reprinted from [37]

same validity points made before.
This model is very useful to describe the rear side of the target after the interaction
with the pulse. Moreover, using simple dimensional arguments as done in [20][38]
is possible to roughly estimate the maximum ion energy. Let’s say that the sheath
electric field at the back of the target is:

Esheath ∼
Th
eLe

, (2.38)

with Le ∼ λD the length of the protruding electron cloud which is of the order of
the Debye length. The temperature can be estimated here with a ponderomotive
scaling described in eq. (2.20) which results in Te ∝ I0.50 ∝ a0.
The energy of a test ion acquired in said field is:

εi ∼ ZeEsheathLe ∼ ZTe. (2.39)

Typical experimental values are a0 ∼ 100÷101, electron density ne ∼ 1022÷1023cm−3

(∼ 102nc) and sheath size Le ∼ µm. These parameters would give us temperatures
of the order of few MeVs and sheath field of the order of few MVs. The total energy
given to the ion is then of the order of few MeVs per nucleon.
Relating the ion energy to the intensity on target we can find:

εi ∝ P
1
2
laser ∝ I

1
2
laser, (2.40)

with Plaser being the laser power and Ilaser being its corresponding intensity.
In the frame of laser-driven processes, TNSA is the most solid, reliable and effortless
way of accelerating ions we have at the moment. Eventhough increasing the intensity
of the laser beam will definitely translate into an increased energy for the ions, since
it scales like I0.5 TNSA might not be the most efficient mechanism to be exploited
at ultra-high intensity.

2.6.3 Particle dynamics on the front surface: Radiation Pressure

Electromagnetic waves (EMW) carry momentum which can be transferred to a
non-transparent medium (overcritical plasma). With momentum transfer, a force is
generated and with it a pressure. This very pressure is what rules the dynamics on
the front surface, thus the name of this mechanism is Radiation Pressure Acceleration
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(RPA).
Assuming a plane wave of frequency ω and intensity I we can write the radiation
pressure as [22]:

P = (1 +R− T )
I

c
= (2R + A)

I

c
, (2.41)

with c the speed of light in vacuum and R, T,A the reflective, transmission and
absorption coefficients respectively. In general these coefficients are functions of the
refractive index ñ which is itself function of the EMW frequency, so for a laser pulse
we should expect small differences between each coefficient along the spectrum but
for the sake of semplicity those differences are neglected. The pressure can be related
to the total steady ponderomotive force acting on the particles [22]. As already stated
only electrons interact directly with the laser and can get directly accelerated. The
pressure would lead electrons to be pushed inward in the surface of the target, piling
up, and creating a charge separation that would drag along ions. It is important to
address the fact that the ponderomotive force is not a stationary quantity, but leads
to oscillations in the electron density. This oscillations are what heat up electrons.
Since the ion reaction time is so much longer that the electron’s, as far as an ion is
concerned it only feels an average force corresponding to the average ponderomotive
force over the laser period.
The radiation pressure (RP) pushes the surface inward in the material, deforming
it. If the target is thick enough what is observed is only a parabolic deformation of
the surface while for very thin targets (< 1µm) the target as a whole can be pushed
along with the radiation. The first regime is called Hole-Boring (HB) while the
second one is referred to as Light-Sail-Acceleration (LSA).
Looking first at the behaviour of a thick target we give a brief description of the HB
mechanism.
Putting ourself in the rest frame of the surface we se ions coming towards us moving
at velocity −vHB, be reflected, and leaving at velocity vHB. The surface recession
speed vHB can be computed as shown in [22][39] balancing the momentum flow of
the ions with the momentum of the EMW reflected at the surface.

I

c

1− vHB
c

1 + vHB
c

= nimiγ
2
HBv

2
HB. (2.42)

Solving for vHB we find:

vBH =
Π

1
2

1 + Π
1
2

c, (2.43)

with:

Π =
I

minic3
=
Zncme

Anemp

a20. (2.44)

The resulting ion energy in the laboratory frame can be computed as:

εi = 2mic
2 Π

1 + Π
1
2

. (2.45)

This process produces ions at vHB until the electron sharpening becomes unstable
and breaks down. If the laser pulse is still interacting with the surface then the
process starts all over producing another bunch of ions at the same velocity. This
will go on until the pulse stops to interact with the target.
If the target is thin enough the deformation of the surface can reach the other side
and section of the target is physically detached from the rest. The electron and ion
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bunch is now carried by the laser pulse much like a sail is carried by the wind, giving
the name Light Sail Acceleration (LSA) (fig.2.9).
At this point the laser will continue accelerating the bunch until it is completely
reflected. This process appears to be more efficient than both HB and TNSA but
requires special targets and ultra-high-intensity lasers. In particular the thickness
required for a LSA target would be of few tens of nm for intensity of the order of
1020Wcm−2. The main advantage of this regime would be an ion energy scaling
proportionally to the laser intensity in the ultrarelativistic regime. This would mean
that for ultra-high intensities we may choose LSA over TNSA or HB.
In the frame of this work, although at ultrarelativistic intensity, we used pretty

Figure 2.9: Ion accelerated front in light sail regime obtained through PIC simulation.[38]

thick foam-based targets which are specialized in enhancing absorption and suppress
reflection, LSA is then never observed. For more thorough discussion on RPA driven
mechanisms we refer to [38][39][40].



Chapter 3

The Particle-In-Cell code Smilei

In the previous chapters we discussed the main physical processes underlying the
generation of photons driven by high intensity lasers. In chapter 1 we focused
on the main mechanisms for the conversion of high energy electrons into photons,
while chapter 2 was devoted to the generation of high energy electrons driven by
superintense lasers. A reliable theoretical description of such complex system can
be obtained only by means of dedicated numerical simulations. In this thesis we
ran simulations of (almost) realistic experimental set-ups in order to enstablish
the magnitude of the photon production achievable by a UHI laser facility such as
Apollon. In this work we used Particle-In-Cell (PIC) simulations, which are the
most-established tool to study kinetic effects in the field of laser-plasma interaction.
In particular we employed the PIC code Smilei [3] which is developed here at Ecole
Polytechnique by the Maison de la simulation. In this chapter we explain how a PIC
code works, focusing especially on Smilei.
PIC codes are kinetic codes, meaning that they are based on an approximate resolu-
tion of the system made of Vlasov equation and Maxwell equations. First we will
give an introduction on the kinetic approach, then we will discuss the core of a PIC
code: the PIC algorithm.
Finally, a brief explanation of the main physics modules we used which are not
included in a standard PIC code, such as ionization mechanisms, collisional processes,
and photon production.

3.1 Kinetic description

3.1.1 Kinetic equations

In order to achieve a complete kinetic description of a system of N particles, the set
of all positions xxxk and momenta pppk of each particle is needed at all times.
The distribution function fMs describes the evolution in time of the position of all
the particles of the species s in phase space (xxx,ppp) and is defined as follows:

fMs(xxx,ppp, t) =
∑
k

δ(xxx− xxxk(t))δ(ppp− pppk(t)), (3.1)

in which the subscript k refers to the single k-th particle of the system, while M
means that we are looking at the single particles and thus we are adopting a “micro-
scopic” approach. The function δ is the Dirac-delta and is defined as:

40
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δ(w) =

{
∞ if w = 0,

0 otherwise,
(3.2)

and ∫ +∞

−∞
δ(w)dw = 1. (3.3)

We can then define a charge density ρM and a current density JJJM by suitably
averaging the distribution function in the momentum space:

ρM(xxx, t) =
∑
s

qs

∫
fMsdppp, (3.4)

JJJM(xxx, t) =
∑
s

qs

∫
vvvfMsdppp. (3.5)

Assuming that the total number of particles in the system does not change in time
[4][7] :

dfMs(xxx,ppp, t)

dt
= 0, (3.6)

and assuming that every particle experiences the Lorentz force only, we can write
what is known as Klimontovich equation [4][7] :

∂tfMs + vvv · ∇fMs +
qs
ms

(EEEM + vvv ×BBBM) · ∇pppfMs = 0. (3.7)

This equation once solved would give us all the information about all particles of the
system. Unfortunately, the combination of the incredibly large amount of particles
present in typical systems (∼ 1010 ÷ 1020) and the limited resolution of nowadays
numerical codes (> 10−10m), makes it impossible to have an accurate solution for each
particle in the system. We can simplify the system writing each microscopic quantity
as the sum of an averaged (or collective) quantity and a microscopic fluctuation
denoted by the symbol δ :

fMs = fs + δfs, (3.8)

EEEM = EEE + δEEE, (3.9)

BBBM = BBB + δBBB, (3.10)

FFFL = q(EEE + vvv ×BBB). (3.11)

By applying this concept and averaging (〈〉) eq.(3.7) we can find [4][7] :

∂tfMs + vvv · ∇fMs +
FFFL

ms

· ∇pppfMs = − 1

ms

〈δFFFL · ∇pppfMs〉 . (3.12)

The left hand side (LHS) arise from the collective properties of the plasma while the
right hand side (RHS) is due to the microscopic (or collisonal) behaviour. Collisional
effects are born from the Coulomb interaction of the single charges with one another.
The colder the plasma, the more important the collisional behaviours become. As a
useful rule of thumb, a plasma can be described as collisionless if [4][7] :

Λ = neλ
3
D � 1. (3.13)
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Where Λ is called “plasma parameter”, ne is the number density of the electrons
and λD is the Debye length(defined in eq.2.10). In the frame of this work we will
consider mostly strongly relativistic electrons with temperatures of the order of or
greater than the electron rest energy (for which λD ∼ 10−2cm) and densities of the
order of or greater thna the critical densities nc ≈ 1.7× 1021cm−3. That would yield
to a plasma parameter Λ ∼ 1015 � 1, well inside the hypothesis of negligibility of
collisional behaviour unless otherwise specified.
Neglecting the RHS of eq. (3.12) we get another famous equation in plasma physics
known as Vlasov equation which reads [4][7] :

∂tfs + vvv · ∇fs +
FFFL

ms

· ∇pppfs = 0. (3.14)

3.1.2 Kinetic description of radiation reaction

As we discussed in section (1.1.3) radiation reaction enters the particle equations of
motion as:

dppp

dt
= FFFL +FFFRR, (3.15)

in which the first term on the RHS is the Lorentz force and the second is the feedback
force due to the photon emission. Following the steps in [7] we can then write an
equation for the electron distribution function that reads:

∂tfs + vvv · ∇fs +
1

ms

∇ppp · (FFFL +FFFRR) fs = 0, (3.16)

which is really similar to Vlasov equation. Let’s notice that if ∇ppp · FFF = 0 then it
means that the generic force FFF does not change the volume in phase-space of the
distribution function and because of that we can say that FFF does not change the
total energy stored in the particles [7]. For FLFLFL this is true, as we saw in section
1.1.1 an electron under the effect of the only Lorentz force will start rotating at
constant angular velocity ωL and constant radius rL conserving its total energy. FFFRR

instead implies a trasfer of energy from electrons to photons thus decreasing the
total energy stored in the particles, reducing the phase-space volume of fs (or fe
since the only radiating particles in this work are electrons). This means that in this
case ∇ppp · FFFRR > 0 [7]. Expanding then the last term of eq. (3.16) we can write a
Vlasov equation accounting for classical radiation reaction [4][7] :

∂tfs + vvv · ∇fs +
1

ms

(FFFL +FFFRR) · ∇pppfs = −fs∇ppp ·FFFRR. (3.17)

In the next section we will see how the flow of a PIC code in its main parts addresses
the problem of solving this equation coupled with the Maxwell systems.

3.2 PIC algorithm

Particle-in-cell (PIC) codes approximately solve the system of equations made of
Vlasov (eq. 3.18) equation and Maxwell equations (in SI units in this work) (eqs.
(3.19)-(3.22)) for a collection of charged particles.

∂tfs + vvv · ∇fs + qs (EEE + vvv ×BBB) · ∇pppfs = 0, (3.18)
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∇ ·EEE =
ρ

ε0
, (3.19)

∇ ·BBB = 0, (3.20)

∇×EEE = −∂tBBB, (3.21)

∇×BBB = µ0JJJ +
1

c2
∂tEEE, (3.22)

with fs = fs(xxx,ppp, t) is the distribution function in phase space (xxx,ppp) and in time.
The subscript s denotes the specific species characterized by a charge qs and a mass
ms. The electromagnetic fields generated by the charges are computed from the
charge density ρ and the current density in the plasma JJJ , and of these quantities can
be computed starting from fs. We can notice that the number density of particles of
species s and their flux are respectively:

ns(xxx, t) =

∫
fsdppp, (3.23)

φφφs(xxx, t) =

∫
vvvfsdppp. (3.24)

The total charge density and current density are then defined as:

ρ(xxx, t) =
∑
s

qs

∫
fsdppp, (3.25)

JJJ(xxx, t) =
∑
s

qs

∫
vvvfsdppp. (3.26)

It is clear that this system is self-consistent and every equation has feedback on
the others so in general these equations cannot be solved separately but need to be
satisfied simultaneously.
Let’s emphasise that the performance of nowadays supercomputers and softwares does
not allows us to describe the evolution of the motion of every fondamental particle, so
the PIC algorithm uses what are called macroparticles which are fictitious particles
representing each one a group of real particles. PIC codes approximately solve the
system above, solving instead the system made of Maxwell equations and Newton
equation of motion for each macroparticle. In order to do so, the configuration space
is divided into regions of size ∆xm (with “m” the dimensionality of the system)
called cells and time into a sequence of discrete jumps ∆t called timesteps, defining
space and time not as a continous coordinates anymore, but as discretized ones.
This way, each coordinate in space along any diurection, i.e. x, will be a multiple of
the cell size in that direction, i.e. ∆x. Another quantity which is very important is
what is called “space resolution” or 1/∆x. In the frame of this this line of research
it is usually given in “points per λ0”, referring to how many cells can be fit into
a laser wavelength. Nonetheless in this work we wanted to keep the focus on the
experimental reality, so we will always give ∆x in µm or in nm, and so the resolution
in “points per µm”.
The discretization process is pretty straightforward and is based on the approximation
of the derivatives with finite differences as follows:

∂f

∂x
→ fi+1 − fi

∆x
, (3.27)
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∂f

∂t
→ fn+1 − fn

∆t
, (3.28)

in which i denotes the cell number in the x−direction and n the timestep at which the
values are taken. And of course integrals are now finite sums over a specific coordinate:∫

fdt→
∑
n

fn∆t. (3.29)

In order to find a solution each eqaution is solved iteratively in what is called the
“PIC loop” structured as represented in figure 3.1.

Tipical resolutions for works similar to this thesis are on the order of 10−8 ÷ 10−9m

Figure 3.1: Schematics of the PIC loop. [4]

which is far from enough to describe the motion of an electron around a nucleous,
and, even if it were possible to reach adequate resolutions, questions on the physical
meaning of said description would arise.
The PIC approach is enough to describe processes with characteristic length greater
than the resolution, for this reason collision-like processes are usually taken into
account by implementing tailored Monte Carlo modules and tables.

Lastly, it is really important to point out the difference between the term macropar-
ticle and nanoparticle (from sec.2.5). A macroparticle has been described in this
chapter and is a numerical escamotage in order to simulate the behaviour of several
real particles, which would be otherwise an impossible task. A macroparticle is just
a numerical tool, is not a physical characteristic of the system, even a perfectly
uniform plasma would still be divided into macroparticles. A nanoparticle is instead
a physical characteristic of a system, such as foams, which have a peculiar structure.
A nanoparticle is a collection of atoms aggregated together which is roughly as dense
as a solid (102 ÷ 103nc). The structure of a foam as seen in section 2.5 is roughly a
collection of nanoparticles, for which the average density is two or three orders of
magnitude lower than the solid density. From this should be clear that macroparticle
and nanoparticle are two very distinct concepts and the reader should pay attention
not to confuse them.

3.3 Mesh and interpolation method

Each time the code needs to compute on a grid point any particle quantity, and
vice versa, an interpolation is required. This process is not trivial and here we will
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summarize how is generally done in PIC codes.
For the sake of semplicity we will look at the 1D representation of a more general
3D mesh, but all the concepts are easily generalized to higher dimensionalities. Let’s
appoint the fact that all the quantities realative to the particles (ρ and JJJ) are
computed at the particle coordinates (xk) while the fields are calculated at the mesh
points (Xi). In order for the code to solve the equations we need all the quantities
evaluated at the same point in space, so we need to interpolate in order to find
the data we are missing. Following the core PIC loop as delineated in the previous
section, we project currents and charge densities onto the mesh points. This is
necessary in order to solve Maxwell equations and get the updated fields. Now what
is needed is to interpolate the newly computed fields onto the particles positions in
order to compute the Lorentz force acting on each one of them.
The interpolation is always made using a “shape function” S as described below:

ρ(Xi) =
1

∆xm

∑
s

∑
k

qsS(Xi − xk), (3.30)

JJJ(Xi) =
1

∆xm

∑
s

∑
k

qsvkS(Xi − xk), (3.31)

where m is the dimensionality of the discretized space(m = 1 in 1D), and denoting
the Heaviside function H(w) with w = x/∆x:

H(w) =

{
1 if w ≥ 0

0 otherwise.
(3.32)

We can deifne the shape function of the order 0 as:

S0(w) = H

(
w +

1

2

)
H

(
w − 1

2

)
, (3.33)

S0(w) =

{
1 if − 1

2
< w < 1

2

0 otherwise.
(3.34)

In the way described in [4] we can derive the shape functions for higher orders of
approximation:

S1(w) =


w + 1 if − 1 ≤ w ≤ 0

1− w if 0 ≤ w ≤ 1

0 otherwise,

(3.35)

S2(w) =


3
4
− |w|2 if |w| ≤ 1

2
1
2

(
3
2
− |w|

)2
if 1

2
≤ |w| ≤ 3

2

0 otherwise.

(3.36)

Is important to point out now that discontinuities in the value of S or in its first
derivative are detrimental from the point of view of numerical oscillation since it has
been shown that they enhance numerical noise [4]. For this reason commonly used
in nowadays PIC codes are order of interpolation 2, 3, 4.
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Figure 3.2: Plot of the shape functions for order 0,1 and 2. It is preferable to use smooth
functions with no discontinuities, so modern PIC codes use order of 2 and above.

3.4 Order reduction

Before describing the solver itself and its discretization it is worth highlighting how
solving Maxwell equations (eqs.(3.19)-(3.22)) can be reduced to solve only Faraday
law, Ampere law and the conservation of charge given that Maxwell-Gauss laws are
satisfied for t = 0. Assuming:

∇ ·BBB(t = 0) = 0, (3.37)

and
ε0∇ ·EEE(t = 0)− ρ(t = 0) = 0. (3.38)

We can apply the divergence to faraday’s and Ampere’s law leading to:

∇ · ∇ ×EEE(t) = −∂t∇ ·BBB(t), (3.39)

and
∇ · ∇ ×BBB(t) = µ0∇ · JJJ(t) + µ0ε0∂t∇ ·EEE(t). (3.40)

The first term of these equations is identically zero so we can rewrite the system as:

∂t∇ ·BBB(t) = 0, (3.41)

and
∇ · JJJ(t) + ε0∂t∇ ·EEE(t) = 0. (3.42)

From eq.(3.41) we can see that the divergence of the magnetic field would be a
constant in time, so if it is equal to zero at one time then it will remain zero during
all the considered time intervall.
In eq. (3.42) we will plug Gauss theorem to get:

∇ · JJJ(t) + ∂tρ(t) = 0, (3.43)
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which is exactly the expression for the charge conservation valid for each time t
considered. Thanks to this reasoning, the complexity of the system of equations to
be solved has been reduced by two, with the removed equations solved only at the
beginning of the simulation, so only for one timestep.
Ensuring charge conservation is not as trivial as it sounds and a specific algorithm has
been implemented in some PIC codes, among which Smilei, that grants the coherence
between charge and currents throughout the simulation [41]. This algorithm will be
explained in section 3.7.

3.5 Solving Maxwell’s equation: Yee solver

We will give an introduction to one of the most popular Maxwell solver for PIC codes
which is also used in Smilei: the “Yee solver”. We will only go through its main
features explicitly describing its discretization but we will not discuss its effectiveness
or efficiency, for a more thorough reading we will refer to the original work [42] or to
[4].
Figure 3.3 shows the spatial discretization, more precisely what is shown is the
diagram of a single cell and the position in which the quantities are evaluated in
the algorithm. The Yee solver exploits a “staggered grid” and a “leap-frog” scheme.
The former means that different quantities are evaluated on different grids relatively
shifted with respect to one another. This approach is useful because allows us to
compute derivatives in a simpler and more stable way while the main drawback is
that it is limited to a cubic cell geometry [4]. Generally PIC codes focus more on
producing stable results activating as many physical processes as possible rather
than to make exotic cell geometries available. In general not all numerical solvers use
staggered grids, for example in most commercial CFD codes irregular or self-adaptive
grids are a more suitable choice.
Leap-frog means that coupled quantities (e.g. E and B) are not computed at the

Figure 3.3: Figure rapresenting the discretization space and the place where the quantities
are computed.[43]
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same timestep, which can be seen as expoilting a staggered grid in time which has
the same pros and cons of a staggered grid in space. This approach is particularly
useful if one quantity or its space derivatives are functions of the time derivatives
of the other. For example ∂t(BBB)n which is the time derivative at the timestep n
is obtained by the difference of the BBB field at timesteps n + 1/2 and n − 1/2. In
Maxwell equations the partial time derivative of the magnetic field is related to the
space derivatives of the electric field which is computed at timestep n.
Using the above discretization method we can then rewrite Faraday law that reads:
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n+ 1

2
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n− 1
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(Bz)
n+ 1
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i+ 1
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2
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2
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(3.46)
Keep going with the discretization method used until now we can also rewrite Ampere
law in its discretized form:
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2
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(3.49)

The code will now solve this system of discretized equations for each point on the
grid, giving us the complete distribution of fields inside the simulation domain (also
called “simulation box”) for a given timestep.
The Yee solver is an “explicit” solver, which means that each equation is solved
only once for timestep, since in each equation only one unknown quantity is present
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at once. This approach is different from an “implicit” one, for which in general is
required the numerical solution of a linear system of equations.
For explicit solvers, and in particular for the Yee solver the resolution in time is
not independent from the one in space because it can be shown that the following
condition, i.e. the CFL condition,(

1

∆x2
+

1

∆y2
+

1

∆z2

)
(c∆t)2 ≤ 1. (3.50)

must be satisfied in order to avoid any numerical instability [4]. This condition
is meant to prevent any kind of information to travel too much distance between
timesteps and causing divergence in the solver. This condition practically corresponds
to avoid letting a particle travelling of more than one cell during any timestep. In
Smilei the recommanded timestep is 0.95 of the CFL limit.
It is worthy to point out now that this method of computing derivatives as differences
between the two closest adjacent points which have the same relative weight is often
called centered method or centered scheme. This method implies that the flow of
information in a specific region of space is not strongly directional and can propagates
in the same way in all direction. For simulations based on electromagnetic interaction
this is true, since the electromagnetic information in principle can travel in all
directions at fixed velocity c. This characteristic isotropy in information propagation
is also typical of diffusion-like problems like heat conduction.

3.6 Newton solver: Boris pusher

Now that all fields are computed it is time to compute their effects on the charged
particles in the box. What needs to be solved are Newton equations and since in
general particles move at velocities comparable to c, relativistic Newton equations are
needed. The algorithm that solves this system of equations related to the particles
motion is often called “pusher” since it is responsible for appropriately “pushing”
the particles. One of the most common choices which is also implemented in Smilei
is called “Boris pusher” [44].
We follow the steps from [4][7] and start by writing down the equations of motion:

dtxxx = vvv, (3.51)

dtppp = qs (EEE + vvv ×BBB) , (3.52)

in which ppp = γmvvv is the relativistic momentum of the particle and we can recognize
Lorentz force in the right hand side of eq. (3.52). Discretizing eq.(3.51) we get:

xxxn+1 = xxxn +
pppn+

1
2

msγ
n+ 1

2

∆t. (3.53)

In order to discretize eq. (3.52) we need to use the Lorentz force to transform pppn−
1
2

in pppn+
1
2 . This is not trivial since both the electric and magnetic fields are competing

to accelerate the particle but with different effects. The magnetic field bends the
trajectory of the particle with a magnitude related to the particle’s velocity that
is being modified by the electric field. The Boris pusher does this in three steps
exploiting two intermediate momenta ppp− and ppp+ :

1. Accelerate particles with EEEn for half timestep from pppn−
1
2 to ppp−
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2. Rotate the particles momentum with BBBn from ppp− to ppp+

3. Accelerate particles with EEEn for half timestep from ppp+ to pppn+
1
2

The first and last step are obviously more similar to each other and read:

ppp− = pppn−
1
2 +

qsEEE
n

ms

∆t

2
, (3.54)

pppn+
1
2 = ppp+ +

qsEEE
n

ms

∆t

2
, (3.55)

The second step instead involves a normalized magnetic field bbb = qs∆tBBB
n/(2ms) and

consists in a pure rotation:

ppp+ =
2

1 + b2

 −b2y − b2z bz + bxby −by + bxbz
−bz + bxby −b2x − b2z bx + bybz
by + bxbz −bx + bybz −b2x − b2y

ppp−. (3.56)

The Boris pusher may seem a simplistic way to approximate the motion of a particle
inside an electromagnetic field but has actually given really good results for what
PIC codes are concerned, so that it is one of the most commonly used.

3.7 Esirkepov correction for charge conservation

As already discussed in section 3.4, the Maxwell solver is required to solve only
Ampere and Farady law in order to compute the fields in all space at all times given
that Poisson condition is guaranteed at t = 0 and charge continuity equation is ensure
at all times. PIC codes therefore require charge conservation but the definitions of
charge and currents of eqs. (3.30) (3.31) make it not trivial to actually ensure it. We
will now summarize a method proposed in [41] which is nowadays considered the
most reliable algorithm to address the problem of charge conservation.
Recalling the definition given of ρ in eq. (3.30) and assuming linearity between the
terms we can focus on the single macroparticle contribution to charge density and
afterwards sum all contribution together. We then define:

ρp(XXX) = qpS(XXX − xxxp), (3.57)

in which we called XXX the coordinate of the grid centers and xxx the coordinates of the
single macroparticle p. We can also define what are called density decomposition
vectors in the following way:

WWW i,j,k = −∇+ · JJJ i,j,k
∆t

qp
, (3.58)

with the operator ∇+ defined as:

∇+fi,j,k =

(
fi+1,j,k − fi,j,k

∆x
,
fi,j+1,k − fi,j,k

∆y
,
fi,j,k+1 − fi,j,k

∆z

)
. (3.59)
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Since the indices (i, j, k) are repeated we will drop them when writing WWW i,j,k and,
using eq. (3.57) and the continuity equation discretized as follows:
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i,j,k − ρni,j,k
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(3.60)

we get the relation between the decomposition vectors and the shape functions:

Wx +Wy +Wz = S(x+ ∆x, y + ∆y, z + ∆z)− S(x, y, z). (3.61)

The right hand side of this last equation is called “3D shift of the shape function”
while the vector (∆x,∆y,∆z) is called “3D shift in the macroparticle position”.
Now, because we assumed linearity we can say that any 3D shift in shape function
can be expressed as a linear combination of 1D shifts in a shape function. In order
to simplify the notation we will define eight functions each one corresponding to one
particular position shifts combination:

f1 = S(x, y, z), (3.62)

f2 = S(x+ ∆x, y, z), (3.63)

f3 = S(x, y + ∆y, z), (3.64)

f4 = S(x, y, z + ∆z), (3.65)

f5 = S(x+ ∆x, y + ∆y, z), (3.66)

f6 = S(x+ ∆x, y, z + ∆z), (3.67)

f7 = S(x, y + ∆y, z + ∆z), (3.68)

f8 = S(x+ ∆x, y + ∆y, z + ∆z). (3.69)

Given these definitions it can be shown[41] that the decomposition vectors can be
written as:

Wx =
1

3
(f8 − f7 + f2 − f1) +

1

6
(f6 + f5 − f4 − f3) , (3.70)

Wy =
1

3
(f8 − f6 + f3 − f1) +

1

6
(f7 + f5 − f4 − f2) , (3.71)

Wz =
1

3
(f8 − f5 + f4 − f1) +

1

6
(f7 + f6 − f3 − f2) . (3.72)

Now that we defined WWW as a function of the shifted shape functions we need to solve
eq. (3.58) in order to find the right current JJJ to plug it in the PIC loop.
It should be stressed that this method is valid only for Cartesian geometries, but
can be used for any shape functions order given that the 3D shape function can be
written as product of 1D shape function such as:

S3D(x, y, z) = S1D(x)S1D(y)S1D(z). (3.73)

The algorithm also assumes that all macroparticles cannot move along a straight
line of more then a cell length per timestep, but this is already ensured by the CFL
condition (eq. (3.50)).
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3.8 Radiation reaction in PIC codes

In chapter 1 we described the process of photon emission and we discussed from a
theoretical point of view the concept of Radiation Reaction (RR). We discussed also
the differences between coherent and incoherent radiation, and we said that coherent
radiation is not well accounted for in PIC codes, but we did not explained why. Now
that we have explained the fundamental features of a PIC code we can understand
how photons are created and thus how radiation is managed inside the code.
In PIC codes each macroparticle is treated independentely, and so incoherently, with
respect to the others. All macroparticles meet the requirement to emit individually,
regardless of the nearby macroparticles. This means that all the photons (macropho-
tons) produced by the radiation reaction modules are always representative of an
incoherent kind of radiation.
Since we always refer to synchrotron-like radiation, all kind of charge oscillation
with spatial scale larger than the mesh resolution ∆x is accounted in the code. The
electromagnetic fields created by any oscillation of space scale larger than ∆x can
in fact be resolved by the grid. This kind of radiating behaviour transfers energy
directly into the fields and thus does not create a macrophoton. Practically this
translates into a minimum wavelength which can be resolved by the mesh (λγ > ∆x),
and following the steps of section 1.3 we can find out what this threshold wavelength
is, and thus the maximum photon frequency (and energy) accounted by this process
in the code (γγ < 5× 10−4 corresponding to εphoton ∼ 250eV). It is crucial to point
out that it is nearly impossible to measure any energy emitted by a macroparticle in
this way. The radiation emitted in this process is, by the definitions of section 1.3,
considered a coherent kind of radiation [10][14]. This is the only coherent radiating
behaviour that a PIC code is nowadays able to accurately describe.
As for incoherent radiation emission, the specifics on how a macroelectron can radiate
a macrophoton, depending on the employed method, will be given in the following
subsections. The basic concept is that if an electron (macroelectron) is found ful-
filling the necessary condition to radiate, then a photon (macrophoton) is emitted
in the forward direction, which coincides with the direction of the instantaneous
velocity of the electron. The energy and momentum of the radiating particle are
updated considering the properties of the emitted photon. In opposition to what
said regarding coherent radiation, now (incoherent behaviour) the energy radiated
away by the particles is stored into macrophotons, and thus is easily measurable.
We have seen that coherent radiation of wavelength λγ > ∆x (∼ 5nm in our configu-
rations) is accounted in the code as it modifies directly the fields values. Incoherent
radiation instead is accounted, as we have seen in section 1.3, up to a maximum
value of wavelength (λγ < 0.8nm in our configurations). A range of wavelengths is
created which is not modelled by the code. Fulfilling the hypothesis of section 1.3, we
can ensure that the amount energy radiated in this awkward interval of wavelengths
is negligible to the energy emitted in the rest of the spectrum [14].
While running simulations with Smilei the user can select different approaches for the
computation of radiation reaction: Landau-Lifshitz (LL), quantum corrected Landau-
Lifshitz (cLL), Focker-Planck (FP) or Monte-carlo (MC). The first three methods are
based on the Landau-Lifshitz continuous radiation emission described in section 1.1.3,
while the last one takes into account the stochastic effects at play for χ approaching 1.
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3.8.1 Classical radiation reaction

Classical radiation reaction can be taken into account within the Boris pusher we
talked about in section 3.6 as a correction on the final momentum pppn+

1
2 using the

results at the end of section 1.1.3. More specifically we compute the correction using
the properties of the particle at the previous timestep as[7]:

∆pppRR = −Pcl
∆t

c
ΩΩΩn− 1

2 , (3.74)

with ΩΩΩ being the normalized momentum:

ΩΩΩ =
ppp

|ppp|
, (3.75)

so that now eq. (3.55) becomes:

pppn+
1
2 = ppp+ + qsEEE

n∆t

2
+ ∆pppRR. (3.76)

This model is referred as “Landau-Lifshitz” or “LL” in this work and in the docu-
mentation of Smilei [45].
It is possible to apply a “quantum correction” to the classical approach as described
in eq. (1.43), which is unfortunately way too complicated to be implemented in the
solver. In order to correct the purely classical formulation, a fit proposed in [46] is
used. The fit function reads:

g(χe) =
[
1 + 4.8(1 + χe)ln(1 + 1.7χe) + 2.44χ2

e

]− 2
3 . (3.77)

In this case eq.(3.74) becomes:

∆pppRR = −Pclg(χe)
∆t

c
ΩΩΩn− 1

2 , (3.78)

The user is always encouraged to use the quantum corrected version of the LL model
(“cLL” - as in “Corrected”) if 10−3 < χ < 10−1. If then the quantum parameter
reaches unity a stochastic method should be used like the Focker-Planck or the full
Monte Carlo method.
The Focker-Planck method follows a classical approach but considers some of the
stochastic effects intrinsic of quantum mechanics. This method has been shown to
be almost equivalent to the full Monte Carlo approach up to χe ∼ 1 [45][47].
All the methods explained in the present section consider a radiation emitted in
a continuous spectrum, and do not consider the radiation emitted as made up of
individual photons.

3.8.2 Monte Carlo method

This subsection is written following the steps from [4][7][45].
When the electron quantum parameter χe approaches 1 the photons energy becomes
of the order of the electron kinetic energy. In this scenario the single photon feedback
is important on the overall electron dynamics, so each photon emission should be
accounted singularly. In order to do that PIC codes use a Monte Carlo approach.
At the beginning of the simulation, to each electron is assigned a “final optical
length” τf sampled as τf = − log(r) with r a random number in the interval ]0; 1].
A “current optical depth” τc is also assigned and initialized to zero. The process
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now is to increment τc once for each timestep until it reaches τf and in that moment
the electron emits a photon, τc is brought back to zero, and τf is sampled again. In
order to modify the current optical length additional steps are added to the PIC
loop in which τc is increased following:

dτc
dt

=

∫ χe

0

d2Nγ

dχγdt
dχγ, (3.79)

in which the integrand is the spectral rate of emission of eq. (1.36). When τc ≥ τf
a photon is emitted with energy that can be computed sampling another random
number ξ in the same intervall ]0; 1] and then reversing the following relation to find
χγ which is a parameter related to the photon energy defined in eq.(1.34) [4][7]:

ξ =

∫ χγ
0
G(χe, χ

′
γ)dχ

′
γ/χ

′
γ∫ χe

0
G(χe, χ′γ)dχ

′
γ/χ

′
γ

. (3.80)

It is important to say that the value of χe is taken at the moment of the emission.
From this last equation we can extract χγ and with it using eq. (1.35) we can get
the photon energy:

εγ = mec
2γγ = mec

2γeχγ
χe

. (3.81)

At this point the electron momentum has to be corrected accordingly, so considering
only forward emission we add a step into the Boris pusher just like eq.(3.76) with:

∆pppRR = −εγ
c

ΩΩΩ, (3.82)

in which we rember that ΩΩΩ represents the direction of motion of the particle.
It is due to mention at this point that this method is granted to conserve the total
momentum in the system but not the total energy, although the error has been shown
to decrease with the increse of the electron energy and be negligible for γe � 1 [7].

3.9 Ionization and collisions

Here we will give a brief overview on how effects like Tunnel ionization (or Field
ionization) and binary collisions are implemented in Smilei. In chapter 5 we will
investigate how these two phenomena will afect the simulations output.

3.9.1 Field ionization

In general field ionization is a process of particular importance for laser-plasma
interaction in the non-relativistic regime and, it could likely be relevant in the
ultra-high intensity regime. It afffects the energy trasfer from laser to electrons,
and thus could be important in the dynamics of the whole system. This process is
not described in the standard PIC (Vlasov-Maxwell) formulation, and an ad hoc
description needs to be implemented. A Monte Carlo module for field ionization has
thus been developed in Smilei [48].
This method is based on the cumulative probability FZ∗−1

k to ionize from 0 to k times
an atom/ion with initial charge state Z∗ − 1 during a single timstep ∆t defined as:

FZ∗−1
k =

k∑
j=0

pZ
∗−1

j , (3.83)
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in which pZ
∗−1

j represents the probability to ionize the atom/ion exactly j times.
The module proceeds by sampling a random number r with uniform distribution from
0 to 1, and checks if r > pZ

∗−1
0 which corresponds to the probability to ionize the

atom 0 times, so to not ionize it. If the test fails then the atom is not ionized during
the timestep, otherwise it keeps increasing the value of k until r < FZ∗−1

k . At that
point k is selected as the number of ionization events, a macroelectron with weight k
times the one of the ion is created and the ionization state of the atom is increased
by the same value. The created macroelectrons have all the same momentum of the
parent ion.
Since the atomic structure is not modelled in the code, in order to account for the
loss of electromagnetic energy due to ionization, a fictitious current density JJJ ion is
defined as:

JJJ ion ·EEE = ∆t−1
k∑
j=1

Ip(Z
∗ − 1 + k), (3.84)

in which Ip(Z
∗ − 1 + k) represents the ionization potential of the ion with charge

state Z∗−1+k. It is shown in [49] that introducing this current density into Ampere
law leads to a loss in electromagnetic energy due to ionization processes computed
as:

dUelm
dt

= −(JJJ + JJJ ion) ·EEE, (3.85)

ensuring energy conservation.

3.9.2 Collision module

Collisions between two particles (Binary Collisions) are implemented in Smilei with
the same scheme as in the Particle-In-Cell code CALDER following the model
proposed in [50]. We will give a brief summary of how collisions are implemented
and we refer to [50] for a deeper reading.
In the center of mass frame, an elastic collision between two particles is equivalent to
a rotation. Since the scheme must be valid for arbitrary temporal resolution, even for
timesteps larger than the characteristic time between each collision, the code does
not measure directly the angular deviation following each collision but computes a
cumulative deviation angle φ (from the current trajectory) outcome of N collision
events. The cumulative angle distribution writes:

f(φ) =
A

4π sinhA
exp(A cosφ), (3.86)

with A being the solution to the equation:

cothA− 1

A
= exp(−s12), (3.87)

and s12 = N〈θ2〉/2 where 〈θ2〉 is the mean squared scattering angle for a single
collision.
Once f(φ) is obtained, the cumulative deviation angle is extracted stochastically
following the distribution and the correction to the momentum in the center of mass
frame is computed. Afterwards, the correction is translated into laboratory frame
and the particles momenta are updated[50].
In order to consider also inelastic collisions and thus collisional ionization, a Monte
Carlo scheme similar to the one described in section 3.9.1 has been implemented to
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manage the ionization probability for each collision [51].
It should be remarked now that elastic collisions are implemented among all species,
while collisional ionization is currently supported only for inter-collisions (collision
among different species), and only if one of those species is an electron. It is then
impossibile in the code to have, for example, an ion-ion collision resulting in ionization
of one or both the particles.

3.10 Goal of this thesis work

At this point, all the elements necessary to understand the motivations and goals of
this thesis work have been laid out. In the introduction we gave a brief explanation
of why commercial compact photon sources would be interesting, together with an
overview on state-of-the-art laser facilities. Different kinds of radiation sources are
used for a variety of applications, ranging from medicine, to industry, and research.
High energy photons have several applications in all those sectors and nowadays are
produced either with radioisotopes or with particle accelerators. The former are non-
tunable sources which cannot be switched on and off causing radioprotection issues,
while the latter are incredibly expensive and space-consuming devices. Achieving a
configuration able to produce high energy, brilliant photon beams but being tunable,
realtively cheap, table-top, and with reduced radioprotection risk, is therefore of
great appeal. We think that significant steps forward in this direction could be done
employing the upcoming PW facilities coupled with innovative targetry.
In chapter 1 we discussed the fundamental aspects of the physical processes which
lead to the production of photons. We understood that the fundamental requirement
to develop a synchrotron-like radiation source is to generate both energetic electrons
(εkin >∼ 101MeV) and huge electromagnetic fields (a0 >∼ 101). We then explored
the characteristics of the emitted radiation regardless of how the right conditions
are obtained, understanding that the more energetic the electrons and the stronger
the electromagnetic field sorrounding them, the more copious the emission and the
higher the photon energy.
Instead in chapter 2 we focused on how to meet those requirements. Special attention
has been given to laser-matter interaction, and in particular to the dynamics and
behaviour of electrons in a near-critical-density (NCD) plasma. Modern targetry
can reach very low density (∼ nc) being able to enhance the energy transfer from
laser to electrons. The more energy is absorbed, the more energetic electrons are
produced, thus leading to the emission of more intense and energetic radiation
[52][53]. Nanostructured low density targets are then more interesting for this kind
of applications than tradiational solid density thick foils. A brief overview of how
those innovative targets are manifactured, and their basic properties has also been
given.
On paper, the Apollon facility could be a perfect fit to explore the photon produc-
tion regimes. The “Phase 1” of the facility is almost ready and operational and
experimental campaigns are scheduled to start in winter 2020. For the first time
what has been studied only theoretically, has now the possibility to be investigated
experimentally so that, a need to design complex experiments arises. This thesis
places itself in this line of work. Here, we investigate the aforementioned physical
system (i.e. the Apollon laser system interacting with double-layer targets) for the
purpose of photon generation by means of numerical Particle-In-Cell simulations.
The idea is to get a deeper theoretical knowledge on such complex system, with
the ultimate goal to support the design of possible future experimental campaigns.



3.10. GOAL OF THIS THESIS WORK 57

Providing a broad understanding of the behaviour of double-layer targets under
such interaction conditions is important not only to guide the experimental design,
but also to provide a suitable physical interpretation. In order to do so we need to
unvail the full behavior of the system, grasping its complexity and characterizing the
consequent outcome. For this reason, special attention will be paid to several crucial
aspects related to the numerical modeling, having to compromise between accuracy
and feasibility.
Because of the specific nature of the analyzed phenomena, a kinetic approach is the
most suitable choice. The essential tool we used to achieve our goal has been the
kinetic (Particle-In-Cell) code Smilei[3] we described in chapter 3. We wanted to
simulate the behaviour of slightly different set-ups in a parametric study touching
upon mainly the average density of the target, its structure and, the laser intensity.
Every simulation is carried out with both the nanostructured and homogeneous
modelling in order to address the effect of the nanostructure on the outcome. More
realistic set-ups would take into account nanostructure, but in order to distinguish
between effects due to the structure itself and effects derived from other features
consider a homogenous plasma for reference.
Multidimensional simulations are required in order to be representative of a realistic
set-up. Ideal would be full 3D3V simulations (meaning 3 spatial dimensions and
3 dimensions in momentum space), but the incredibly high cost of each one of
them (estimated ∼ 105÷7CPUhours) makes them unsuitable for vast parametric
studies such as this one. 2D3V simulations were the best choice, considering 1D3V
simulations not being representative of the system. Nonetheless, 3D3V version of
some of the simulations here presented are to be run atthe insitution in which I
carried out this work: the Theory, Interpretation, Plasma & Simulation (TIPS)
group at the Laboratoire d’Utilisation des Lasers Intenses (LULI). Because of the
computational cost of each simulation, state-of-the-art supercomputers are needed.
All the simulations here presented were carried out on the Irene Joliot Curie machine
hosted at the Très Grand Centre de Calcul (TGCC).
In particular, the second part of this thesis will be organized as follows:

• Chapter 4. Physical and numerical modelling of the laser and the target.

• Chapter 5. Analysis of the effect of the modelling of additional physics on the
system. In particular, we are interested in understanding if accounting for the
ionization processes and the collisional behaviour affects the outcome of the
simulations in the regimes of interest.

• Chapter 6. Investigation on some important properties of the propagation of
an ultra-intense laser pulse into a near-critical-density double-layer target.

• Chapter 7. Extensive parametric study on the photon produced by the afore-
mentioned configurations.

• Chapter 8. The conclusions of this work will be presented, and proposals for
future studies and developments are suggested.
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Chapter 4

Numerical modelling and
parameters

In this chapter we will explain the choice of the numerical parameters and the
numerical modelling of both the laser pulse and the target.
All simulations are carried out with the open source PIC code Smilei [3].
Is well known that dimensionality plays a crucial role in PIC codes, so chosing
3D3V geometry would help us describe a more realistic set-up. Nevertheless 3D
PIC simulations of this kind of systems are too expensive to be used for parametric
studies like in this thesis. The cheapest geometry would be 1D3V but unfortunately
it is not representative of the system. Every simulation is then carried out in 2D3V
geometry, which let us preserve the fundamental behaviours of the system which we
will expand upon later.
First we are going to look at the laser and starting from the paraxial equation we
will derive the diffraction disk (Airy disk) which is theoritically the most accurate
description of any wavefront after a focusing element (lense or mirror). Practically
a laser pulse is never described as a diffraction pattern but with a Gaussian shape
instead, so next we will fit the Airy disk with a Gaussian function that conserves
both peak intensity and total energy. Finally we will take the official specifics of
the Apollon laser and we will see how the combination of those parameters and the
Gaussian model we derived translates into the numerical parameters of the simulated
laser pulse. Next comes the target. We will describe the Multi-Layered-Target (MLT)
we are going to use and break down each component, explaining how each one is
simulated. Last, we will briefly address the numerical modelling ofsome physics
modules which are not included in the standerd PIC loop such as: photon emission,
Tunnel Ionization, and Collisions.

4.1 Laser modelling

The Apollon laser is one of the top UHI facilities, and it is in its final stage of
construction at the CEA site not far from the Ecole Polythecnique where I conducted
this study. One of the aims of this thesis is to understand the behaviour of specific
target configurations under the nominal condition of this laser in order to serve as
cornerstone to help project experiments in the near future. For these reasons it will
now follow a brief description of Apollon’s parameters and their implementation in
the code.

60
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4.1.1 Paraxial optics and laser front

We will start this chapter briefly addressing the important points in paraxial optics
that we will need in the following sections.
Starting from Maxwell equations and assuming light propagates in straight trajecto-
ries (paraxial hypothesis), it is possibile to derive what is called “paraxial equation”
[7] which reads:

∇2
⊥u+ 2ik∂zu = 0, (4.1)

with i being the imaginary unit, k the wave vector of the wave and, u the wave function
of the field. The solutions to this equation describe how a light ray propagates into
space.
We are interested in finding the analytical shape of the laser front after the focusing
mirror of diameter D, and this can be thought as a diffraction problem in which the
beam prior the mirror represents the source and the focused beam represents the
diffracted field. The field amplitude after the mirror can be written as:

E(RRR) = E0M(RRR)ei
k0R

2

2f , (4.2)

where RRR is the radial position right after the mirror, M is called “mask function”
and is defined as 1 if R < D/2 and 0 otherwise, and f is the focal distance of the
mirror. The last exponential term represents the curvature that the mirror, or any
focusing tool, gives to the beam and is expressed as a phase change.
We are interested in systems which have f-number f# = f/D of the order of 2-3 that
corresponds to the near-field approximation. Is it possible to write an enough general
solution for these kind of problems called “Fresnel integral” or “Fresnel diffraction
formula”:

E(rrr, z) = −ie
ikzei

kr2

2z

λz

∫∫
source

d2RE(RRR, 0)e−i
kR2

2z
+i kR·rR·rR·r

2 , (4.3)

where z is the propagation coordinate. z = 0 correspond to our mirror/source, and rrr
is instead the radial coordinate on the plane of the diffraction figure.
Plugging eq. (4.2) into eq. (4.3) and considering z = f , rearranging the equation
and collect all the phase parameters in front of the integral in the term e−iφ we can
write:

E(rrr, f) = ie−iφ
E0

λf

∫ R

0

dRR

∫ 2π

0

dθei
kRr
f
cos(θ). (4.4)

We can now notice that the last integral is one of the definition of the Bessel function
of first kind of order zero [54] and so we can rewrite the equation as:

E(rrr, f) = ie−iφ
2πE0

λf

∫ R

0

RJ0

(
kRr

f

)
dR. (4.5)

Using properties of Bessel functions [54] and defining r0 = (λf)/(πD), we can then
show that the equation takes the final form:

E(rrr, f) = ie−iφ
DE0

4r0

2J1(r/r0)

r/r0
. (4.6)

The intensity of the field is then:

I(rrr, f) =
1

2
cε0|E(rrr, f)|2 =

(
D

4r0

)2
cε0
2
|E0|2

(
2J1(

r
r0

)
r
r0

)2

= I0

(
2J1(

r
r0

)
r
r0

)2

. (4.7)
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This function is the representation of a diffraction pattern after a circular aperture
and is called Airy disk. We will use this result in the following section when discussing
the most fitting shape for the implementation of the laser front.

4.1.2 Intensity profile

In Smilei every laser pulse is completely defined by Bz(x = 0, t), we will then specify
the profile only for this field. Experimentally the spatial parameters can be pretty
difficult to measure but the gaussian profile is considered the best representation for
high intesity short pulses, so in order to give a description with the best accordance
possible to the experiment we will use a taylored gaussian profile.
Smilei always starts propagating the laser for a boundary of the simulation box, so
the parameters at the boundary are needed. If the profile is not a plane wave but
a gaussian which changes its properties during the propagation, Smilei needs the
parameters relative to the focal spot and then it computes the initializing parameters
using the maxwell solver to propagate back the pulse to the box boundary.
Bz in the focal spot is then defined as:

Bz (r, t) = f (t) g (r) , (4.8)

in which g(r) denotes the spatial profile while f(t) the temporal shape.
Assuming the spatial profile is a gaussian we will then write:

g (r) = B0exp

[
− r

2

w2
0

]
, (4.9)

with:

B0 =
meω0a0

e
, (4.10)

where me is the electron rest mass, e is the proton electric charge, ω0 is the laser
central frequeny and, a0 is the normalized vector potential of the field, and w0 is
called “waist of the pulse in the focal spot” and will be define later on.
The nominal temporal profile (without any pedestal or pre-pulse) is given to us by
the Apollon team as proportional to a sin function so f(t) is defined to be:

f (t) = sin

(
πt

2τp

)
, (4.11)

taken for the intervall:

0 < t < 2τp, (4.12)

where 2τp is the time length of the pulse. The value of τp will later refelect the
full-width-half-maximum (FWHM) of the intensity profile. We now have to define
the key parameter w0 not only numerically but also physically. In order to do that
we look at the intensity profile of a generic diffracted wave and then travel our way
back to the field parameters.
From the experimental point of view what is know is the the energy stored in the
pulse Up, the dimension of the beam before focusing D, the focal distance of the
parabola f and the pulse duration τp. We will henceforth try to express the intensity
profile as a function of these parameters, easily accessible to experimentalists. Aim
of this section is to define the pulse using an easy and transversal language among
theory, simulation, and experiment.
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The intensity of the pulse is then defined as:

I (r, t) = F (t)G (r) . (4.13)

The optics at Apollon give an f-number f# ≡ f/D ranging from 2.5 to 3.5, in this
condition we can put ourselves in the near-field approximation also called “Fraunhofer
diffraction”. An extensive derivation of the profile is beyond the purpouse of this
thesis so we summarized the main results in section 4.1.1.
The most rigurous spatial function of a circular beam after a focusing device would
be an Airy function (or Airy disk) given by eq. (4.7):

G(r) = I0

[
2J1(

r
r0

)
r
r0

]2
, (4.14)

with :

r0 =
λ0f

πD
, (4.15)

I0 =
πUp

4λ20τp

(
D

f

)2

, (4.16)

in which λ0 is the central wavelength of the laser. For the sake of semplicity we
will approximate said distribution with a customed gaussian profile with same peak
intensity and same area. In order to have the same peak intensity all is needed is
having the same I0. In order to have the same area we need to integrate over all
space a generic Gaussian curve and eq. (4.14). The unknown in this last condition
would be the pulse waist w0 which determines how “sharp” the pulse will be. We
are then able to write our gaussian profile as:

G(r) = I0 · exp
[
−2

r2

w2
0

]
, (4.17)

with:

w0 =
2
√

2

π
λf#. (4.18)

In Fig. 4.1 we can see as the gaussian approximation conserves the peak intensity
but is relatively larger than the main peak of the Airy disk. This effect is due to the
choice of having the same area under both curves so that we are able to have the
same pulse energy regardless of which profile is used.
The peak intensity is maybe the most important parameter to take into account to

have an intuitive and immediate estimate of the phenomena at play in the target, so
it would be very useful to have a compact and easy expression to estimate it only
by the main laser parameters. I0 as expressed in eq. (4.16) is mathematically very
simple but we can do better rearranging the dimensional similar terms to find:

I0 · λ20 = 3.927

(
D

f

)2(
Up

10J

)(
20fs

τp

)
· 1022W · µm2

cm−2
. (4.19)

This way even without a calculator at hand would be way easier to estimate the
peak intesity of the pulse.
All we need now is the intensity temporal profile which is the most simple task at
this point. For what we said before we know that the intensity temporal profile is
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Figure 4.1: Comparison of the Airy function (eq. 4.14) and its gaussian approximation (eq.
4.17). Plotted are the intensity functions, both normalized to their peak intensity which is
always I0 defined in eqs. (4.16) and (4.19).

just the square of the field temporal profile, so we can write simply:

F (t) = sin2

(
πt

2τp

)
, (4.20)

taken for the intervall:
0 < t < 2τp. (4.21)

4.1.3 Parameters

Apollon is very close to be operational but the full potential of this structure would
actually realize in the next years. We are now entering what is called “Apollon phase
1”, with one available beam of total energy 20J, a beam diameter before focusing of
14 cm, optics with f-number 3.5 and a temporal FWHM of 20 fs. This configuration
would lead us to an effective peak power on target of about 2 PW.
Next will be the finalization of the contruction of another beamline exploiting 60J
with a 40 cm beam diameter prior focusing and f# = 2.5, always with a pulse
duration of 20 fs, leading to a power on target of about 6 PW. This is what is called
“Apollon phase 2” and is realization is scheduled for the next years.
Last we find “Apollon phase 3” which should be the last stage in which the energy
of the second line should be brought up to 150J, this leading to an effective peak
power of about 15 PW. We summarized all the main parameters of these different
configurations in table 4.1 for easy access and comparison. In order to avoid confusion,
in the frame of this work we renamed the official phases of Apollon as letters (A, B,
C) instead of numbers (1, 2, 3).
In table 4.1 are present both πr0 and w0 belonging respectively to the Airy disk
description (eq. 4.7) and Gaussian description (eq. 4.17).
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In the frame of this work we only used configuration A and B, while for a study on

Apollon configurations
A B C

Pulse energy (J)
Beam diameter (before focusing) (cm)
f number (-)

20
14
3.5

60
40
2.5

150
40
2.5

I0 (1022 W · cm−2) 1.002 5.891 14.73
a0 68 166 263
πr0 (µm) 2.8 2.0 2.0
w0 (µm) 2.52 1.80 1.80

Table 4.1: Three different set of parameters corresponding to the different stages of
developping of the Apollon laser. The parameter τp is set to 20 fs for every configuration.

C we refer to future works, perhaps when experiments with configuration A and B
have already given us data to analyze and compare to this and other works.

4.1.4 Further complications at higher intensities

In a preliminary investigation we found out that for configuration A (a0 = 68,
w0 = 2.52µm) the exact point at which the laser was focused did not really matter
as far as it enters the foam with negative divergence (still focusing). Therefore up
until now we focused the laser onto the mirror regardless of the fact that for longer
foams we would have slightly smaller amplitude of the field at the entrance of the
foam. This effect is totally negligible for configuration A and the reason could be
found in the Rayleigh Length zR = πw2

0/λ0 wich is ≈ 25µm. We know that zr is
often identified as the characteristic length of the focusing/defocusing mechanism
near the focal point in free propagation of a gaussian pulse. Roughly speaking,
if the focal distance of a laser is z0 then the pulse is still considered focused for
z0 − zR < z < z0 + zR. This might seem a naive approximation but it is reflected in
the simulations outcome. In this configuration most of the targets have foam layers
thinner than zR so that effectively the laser impacts with the same field on the foam.
When we switch to configuration B (a0 = 166, w0 = 1.8µm) zR becomes roughly
13µm which is now smaller than most of the foams. So now we face a big difference
in propagation properties from one case to another. The easiest way to look at this
problem is to choose between two options: keep the same focal distance for every
case and ignore the possibility to find a “best” choice for the sake of consistency, or,
change the focal point for each case trying to maximize the efficiency at the expenses
of consistency. The second option requires a tailored parametric study on its own
and would rely on knowledge on the properties of the propagation of lasers into
NCD plasma that we do not have at this point, and also, would make us lose some
properties of the systems we will use in the discussion in chapter 7 (i.e. the fact that
prior the interaction with the solid substrate every system behaves in the same way
for all cases with same a0 and n0).
After some consideration we chose to use the same focal length for all simulations
that we decided to be 20µm into the foam (only for configuration B with a0 = 166),
since that value appeared to be somehow halfway the span of the foam lengths for
configuration B.
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4.2 Target modelling

After defining the laser shape and parameters is due to decide how to model the
target. A crucial point that will be investigated is the ionization state of the tar-
get at the beginning of each simulation. When discussing ultra-relativistic regime
is always assumed that the target would be immediately and completely ionized
by the pulse, so in most works the target is initialized as already a fully ionized
plasma[23][30][20][29][52][53][55][56][27][4][33][57][26]. This assumption is based on
the fact that for laser intensity� 1014Wcm−2 the atomic bond builds up a potentail
barrier which is negligible with respect to the energy given to the electrons by the
field. This regime is called “Barrier-less ionization” [58]. Even though the assumption
seems solid, the first thing we will do is to try to extend the work done in [29][30] at
Politecnico di Milano and check how important is to initialize a foam-based target as
neutral with respect to initialize it as a completely ionized plasma from the beginning.

4.2.1 Substrate

The easiest part of the target modelling will be the substrate or “mirror”. Since
this material is just a plain solid-density foil the obvoius choice would be to use an
homogeneous slab-like shape with appropriate density. In literature and in particular
in the works [52][53][55] is pretty common to have Aluminium as substrate material.
We decided to use Al since is one of the most common substrates in general for
foam-based targetry and has high enough electron density to act as a good mirror
for laser radiation. The maximum ionization state held by an Al atom is +13, while
its mass is taken equal to 27 mass atomic units. The corresponding electron density
in fully ionized regime would is computed to be 450nc with nc defined in eq. (2.12).
In previous works [27] has been show that the substrate thickness has a marginal role
in the overal dynamics of the system with respect to the other layers. When using
PIC codes is crucial to understand that the most expensive part in the PIC-loop is
the particles pusher, therefore the total number of macroparticles in the box has a
huge role in the cost of a simulation. For this reason one always tries to use high
number of particles only for the components which are interesting to simulate, and
the total number of particles is proportional to the volume of a layer, so the smaller
a component is the cheaper is to simulate. The role of the substrate is to reflect the
pulse once it is hit by it and, if the thickess is sufficient to assolve the job without
it being destroyed or damaged excessively, then there is no reason for us to use a
thicker substrate that would only increase the computational cost. The thickness
has been set to 2 µm since it reasonable and is consistent with the usual thickness of
about few laser wavelength as described in literature [27][52][53][55].

4.2.2 Foam structure

The modelling of the foam is surely less trivial. As we can see in [31][32] the processes
at play during the production of a foam-based target are complex and their modelling
tricky. For a 3D geometry, the choice of the model for the aggregation mechanism is
crucial for the final properties of the target [30]. In 2D we cannot hope to reproduce
exactly the behaviour of a 3D nanostructure, so we need the 2D structure that let us
conserve most of the behaviour we are more interested in.
A near-critical homogeneous layer would be the easiest choice, but as shown in
previous works [23] it is not necessarily well representative of a nanostructered foam
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even if the average density of the nanostructured case matches the one from the
homogeneous one.
The fundamental behaviour we need to conserve is the fact that there must not be
any “closure” or “wall” in the laser path, preventing its propagation. This means
that in a real porous structure we can imagine to draw a line and pass from one side
of the foam to the other without crossing any nanoparticle. This is crucial because
otherwise at some point in the propagation the laser could find a “wall” of ne ∼ 102nc
and be almost completely reflected, which never happens with real porous foams.
The only 2D structure that allows us to respect this behaviour is a collection of
nanosphere, or more like “circles” since we are in 2D. Phyisically the system will
be representative of a collecion of nantotubes with infinite length in the z direction,
being the laser propagating in the x > 0 direction and calling y the only transverse
direction in 2D . Surely this system is not equivalent to structures like the ones in
fig. 2.4 but no 2D structure can be, and the one we chose is the closest one: we also
defined this collection to be uniformly randomly allocated in the volume to add some
disomogeneity tipical of porous materials.
Another important point is the size of the nanoparticles. We do not want the laser

Figure 4.2: Example of foam structure modelled as a collection of spheric nanoparticles,
and magnification of the same picture to highlight the single cluster structure.

to be completely reflected by the single particle. In reality this does not happen
because the dimension of the cluster is � λ0. So we want small enough clusters to
exploit this property, which should then be no more than 0.1λ0. Since Apollon is a
Ti:Sa laser, its wavelength is 800 nm, so we chose the diameter of the nanoparticles
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to be ∼ 80nm. We could have chosen them to be smaller, but we should keep in
mind that PIC codes have a resolution which hardly ever can get below the nm, and
we always need enough cells to resolve each nanoparticle. The resolution for this
work is 192 point per µm which is equivalent to say that the cell length ∆x ≈ 5.2 nm.
Choosing 80 nm as a nanoparticle dimension means having roughly 15 cells spanning
over its diameter, enabling us to resolve clearly the shape of each nanoparticle.
Furthermore the previous work [20][23][29] have all used the same value making our
work consistent with prexisting literature.
Two crucial parameters we would like to be realistic are the filling factor and
the average density. Unfortunately because of the simulation dimensionality it is
impossible to use the same filling factor and the same average density of real 3D
foams. Since this work is based on the studies carried on at Nanolab at Polimi
([20][23][29]) we will use their same parameters. The structure is shown in figure 4.2
and the parameters are summarized in table 4.2.
Every simulation will be carried out with both homogeneous and nanostractured foam
modelling to appreciate the difference between the two models. We will henceforth
refer to these two configurations as HOMO and NANO respectively.
The last thing left to define is the average densities to be used. Since the reason to
use foams is to explore the near critical regime we should use densities which are
coherent with this point. Although there is no clear threshold for the NCD regime,
an appropriate intevall can be 0.1 < n0/nc < 10. Since the laser has incredibly
high power, a relativistic correction of the order of 10−2 should be applied to the
density decreasing by a factor 100. Because of this reason we excluded all value for
n0 < nc in order to try to stay the closest possible to the NCD regime. We therefore
selected the average densities to be n0 = {3,6,9} nc. The cluster density is now also
determined since we will use the same filling factor ff = 0.0333 from [23] in order to
be able to relate the two works. The cluster density ns is then:

ns =
n0

ff
. (4.22)

As we already stated we want a strong coupling laser-plasma in all configurations.
Different mechanisms of interaction would give more or less efficient coupling. Has
been shown by [23] that an important parameter is the “transparency parameter” or
“opacity factor” n defined as follows:

n =
n0√

1 +
a20
2

. (4.23)

For n < 0.3nc a channel is generated from the interaction, leading to huge electron
currents and effective laser propagation through the foam. Instead if n > 0.8nc
the main mechanism is hole-boring (section 2.6.3) which is typical of laser-solid
interaction and would not be very interesting in the frame of this work. We would
like to highlight, looking at table 4.2, that all cases have n < 0.3nc, so we can expect
the formation of a clear channel during the propagation in the foam.

4.3 Simulation set-up

In literature when doing PIC simulations all numerical parameters are expressed in
function of λ0 and tu0 = λ0/c, here we decided to do something different. In order
to have a more concrete and practical mindset, most of the time we will refer to the
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a0 Laser
68 166

Structure Randomly arranged spheres

Sphere nominal diameter (δx) 80 nm

Filling factor (ff) 0.0333

Average densities (×nc ) 3, 6, 9

Corresponding cluster density (ns = n0/ff) 90, 180, 270

Normalized opacity factor (n/nc) 0.062, 0.12, 0.18 0.026, 0.051, 0.077

Table 4.2: Nanostructured foam physical parameters.

quantities in µm and not in unit of λ0, eventhough the order of magnitude remains
the same it is worth warning that the central wavelentgh of the Apollon laser is
λ0 = 0.8µm therefore the actual length are indeed different using the two different
units. The same goes for the time intervalls, we will use fs and not t0 although should
be noticed that t0 ≈ 2.67 fs.

4.3.1 Geometry

The main geometrical and numerical parameters are summarized in figure 4.3 and
table 4.3.

First, we find two pictures, the top one will be named Semi-infinite case (or
“configuration”, “geometry”), and the other one will take the name of the foam length
in front of the substrate (i.e. “15µm geometry”). The top one will be used whenever
we need to investigate the behaviour of the foam during the interaction with the
pulse, without discussing any phenomena arising from the substrate presence. This
will be done mainly in chapter 5 and 6, while from section 6.2 onward we will discuss
the behaviour of a system like the one in the bottom row of figure 4.3. Whenever in
this work we refer to Semi-infinite foam or Only-foam cases we will always indicate
a Semi-infinite configuration, while when for example addressing a “7µm case” or
“21µm configuration” we will always refer to a geometry with substrate just like the
one in figure 4.3 (bottom row) with respectively foam length of 7µm and 21µm.
Let’s start by naming all the fundamental geometrical parameters. Lx and Ly are
the size of the simulation domain in the x and y direction. Going from left to right,
or from 0 to Lx along the x axis we find first a region of vacuum of length FSx
(“Foam Start x”). Its initialization allows us to look at the entire laser pulse before
it interacts with the target itself, using it as a control tool when looking at the
simulation results. Moreover since the implementation of boundary conditions can
be tricky in PIC codes, it is common use to have the main interaction not too close
to the boundary of the simulation box. Its value is fixed and related to the pulse
duration in time. Since our intensity time profile is a sin2 with a FWHM of 20fs as
explained in section 4.1.2, the total time duration of the pulse would be twice that
value: 40fs. Light in vacuum travels at roughly 0.3µm/fs so multiplying 40fs times
this value we get 12µm which is the exact minimum amount of space needed for the
pulse to enter completely inside the box unperturbed. We do not want to increase
furthermore this value because it would translate only in more expensive simulations
without really any benefit. It is necessary to point out that as will be explained in
chapter 5, for the first part of this work (ch. 5) we used a pulse with slightly different
temporal shape in order to be able to compare results with literature. In particular
we used a pulse with FWHM in fields of 40fs, so that actually FSx = 24µm for those
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Figure 4.3: Example of geometry employed in the simulations, both are NANO, for a
HOMO case the foam should be just “filled” instead of “dotted”. The top row represents
the configuration used to obtain the results in chapter 5 and section 6.1, called Semi-infinite
foam. On the bottom row instead is an example of a configuration discussed from section
6.2 onward. In particular this refers to a nanostructured foam of 15µm length with a pulse
of temporal FWHM of 20fs.In the top half only elctrons (blue) are plotted while in the
bottom half only ions: Carbon (grey), Aluminium (purple) and Hydrogen (red, cannot be
seen in this picture because too thin).

and only those cases.
Next we find the foam length LF . This parameter is actually not fixed but is one of
the main three (along with n0 and a0) that we are going to scan in order to find the
optimal configuration for photon emission. Along all simulations its value varies from
3µm to 36µm. The foam is attached to a mirror (substrate) of thickness LM = 2µm
as discussed in section 4.2.1. Last we find what in the figure cannot be seen: the
pollutant (or contaminant) layer of thickness LP ≈ 10nm. It is simply too small to
be appreciated in scale with the other layers. Its computational cost is negligible so
we decided to initialize it anyway to have a possibily more accurate description of
the system.
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The total length of the simulation box Lx is not independent from the other parame-
ters but is chosen as Lx = 2 × (FSx + LF ). The simulation time Tsim is chosen as
the time needed for the laser to travel from x = 0 to x = Lx in vacuum. By defining
these two parameters this way we prevent any part of the main laser pulse to leave
the box before the simulation ends and also lets us avoid to loose any energetic
particles (photons or electrons) through the right box boundary.
The spatial resolution is fixed to 192 points per µm in order to resolve properly the
nanostructured foam as explained is section 4.2.2, but also grants us to resolve the
plasma skin depth lSD defined as:

lSD =
λ0
2π

√
γ
nc
ne
≈ λ0

2π

√
a0√

2

nc
ne
≈ 53nm > ∆x ≈ 5.2nm (4.24)

Resolving the skin depth is essential in order to avoid numerical heating, but is
not sufficient, we should be able to also resolve the Debye length associated to the
plasma defined as in eq. 2.10. We notice that λD ∝

√
T so if the electrons have

enough energy the Debye length is resolved, in particular in our configuration we
need a temperature greater of about 0.22eV. Initializing electrons with already this
energy would mean starting the simulation with particles at already an equivalent
temperature > 2500K which is totally unrealistic. If the Debye length is not resolved
numerical heating arises injecting noises and errors in the reults, but off course this
is a problem occurring only when initializing plasmas, neutral atoms do not give rise
to numerical heating because they produce no electrostatic fields. When initializing
a full ionized plasma we bypass this problem by first defining the positions of all the
ions in the box at t = 0 and then placing all electrons on top the respective ions, all
particles initialized at T = 0K. This way they act almost like a neutral atom having
no net fields between each other, and as soon as the laser arrives the electrons are
immediately heated up to temperature of the order of ∼KeV which is way above the
threshold of 0.22eV.
The last numerical parameter are the particles per cell (nppc) which in Smilei must
be the same number for both ions and electrons. First we assigned a value of 32 for
mirror and pollutant layer which are always modelled as homogeneous. To someone
with expertise in PIC simulations this value might seem low for a density of 450nc,
but it comes from a compromise between realism and costs. Larger nppc would be
more realistic but using a value around the few hundreds would make the simulation
too expensive. Nevertheless we are interested only in the reflection properties of
the substrate, so reducing its density would be unrealistic in the frame of this work.
Since we are not interested in the internal dynamics of the mirror we kept the
density of 450nc and used a relatively low nppc. This is a trade-off between realism
and affordability, but in prelimary investigation we noticed that the difference in
behaviour increasing of few times the nppc was negligible.
The nppc for the foam depends on the configuation, the reason being that in general
“denser” plasmas need more particles per cell in order to properly interact with the
pulse. In HOMO the nppc is set to be 8 in all cases, while in NANO configuration
the filling factor of ≈ 1/30 increases the local electron density so more particles per
cell are needed. In NANO configuration a nppc of 120 is used for all densities.

4.3.2 Photon emission

Smilei comes with four different possible radiation reaction modules which we ex-
panded upon in section 3.8 : classical Landau-Lifshitz (LL), quantum-corrected
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Average density n0
3 6 9

Points per [µm] 192

FSx [µm] 12

LF [µm] from 5 to 36 from 5 to 24 from 3 to 22

LM [µm] 2

LP [nm] 10

Ly [µm] 24

Lx 2× (FSx + LF )

Tsim Lx/c

nppc (foam)
(NANO) 120
(HOMO) 8

nppc (mirror &
pollutants)

32

Table 4.3: Table summarizing the main geometrical and numerical parameters.

Landau-Lifshitz (CLL), Focker-Plank (FP) and, Monte Carlo (MC). In Smilei doc-
umentation is expanded upon which module to use depending on the radiating
electrons properties, in particular their χ [45]. The classical model should be used
when the particles quantum parameter χe < 10−3, above that one should use the
corrected version up to χe < 10−1, above that the Focker-Planck approach should
be used until χe < 1, then the recommended approach is the full Monte Carlo.
Let’s clarify that the MC model is the most accurate and can be used even for
low χe, but it is also the most expensive because it actually creates macroparticles
(macrophotons) at runtime which increases the workload on each processor and
also memory consumption. For this reason a cheaper choice is recommended when
possible.
After a preliminary investigation we found that even for the lesser powerful laser
configuation (a0 = 68), the maximum χe reached by the particles is ∼ 10−1 so we
would already have the need to employ at least the FP module. Since it is quite
obvious that increasing the laser intensity would bring higher value of χe, then for
consistency we decided to use the MC module in all simulations.



Chapter 5

Foam modelling and additional
physics

In this chapter we will discuss if and how the ionization state of the target at time
t = 0, and collisional behaviours affect the simulations outcome.
A realistic foam prior the interaction with the laser is a collection of neutral atoms,
only intense electromagnetic fields are able to ionize its structure. The external field
must be stronger than the elettrostatic atomic field defined for hydrogen as :

EEEH =
e2

4πε0r20
r0r0r0, (5.1)

with r0 = h̄/mecα the Bohr radius ≈ 5.29× 10−11m. A strong electric field strips one
electron ionizing the atom, this process is called Field Ionization or Tunnel Ionization
and is activated for a laser with intensity of the order of 1014Wcm−2 or above. The
actual value depends mainly on the specific element and current ionization state of
the atom. For ultrarelativistic lasers the ionizations is thought to be Effortless since
the field and the intensity are so large that the electron is dragged along without
any real resistance from the atomic field [58].
Usually in the frame of works similar to this one, simulations are expensive and so
one must find a way to model the system which can be both realistic and affordable,
often having to compromise between the two. Initializing a foam as a collection of
neutral clusters would be more realistic but also more expensive because it would
require to add an ionization module in the PIC-loop, moreover not every PIC code
supports ionization schemes. On the other hand initializing the target as an already
fully ionized plasma can be too simplistic and might not be representative of the
system.
Looking at the values for the parameters in our simulations we thought that since
we are in ultra-relativistic regime (a0 ≥ 68, I > 1022Wcm−2) ionization mechanisms
should not play a huge role in the system. Anyway we wanted to know if our belief
was true or not so we started from replicating the results obtained in [23][29][30]
with the PIC code Piccante [59] and then, using Smilei, add the ionization module,
comparing the two cases.
Collisions are instead complex processes which are less and less prevalent increasing
the temperature of the particles (eq.(3.13). It is not clear how collisions should
affect the system, so we are going to compare collisional and collisionless cases to
discuss their effectiveness in this regimes. As already said, larger differences should
be found with lower laser intensity, so we used a0 = 15 in order to address the
most problematic case in [23][29][30]. First we compared the macroscopic energy
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distribution among pulse, electrons and, ions, and then microscopic properties such
as electronic and ionic energy spectra at different times.
In order to effectively compare our work with the one done by the NANOLAB at
POLIMI we will do this part of the study with their laser parameters: 30 fs temporal
FWHM of the intensity and 4 µm waist. Those are enough similar conditions in this
context for the conclusions to be extended in our set-up.
We compared the result obtained previously using the code Piccante with our code
Smilei, benchmarking them against each other. This is not usually done by research
groups but is crucial because it strongly validates the results of both codes.
We will proceed now looking at two nanostructured cases with different average
density n0 = {1, 9}nc. We will run simulations with same geometry and set-up but
switching on different physics modules. The resulting configuration will be:

• NTNC → (No Tunnel No Collisions) Foam initialized as a fully ionized colli-
sionless plasma.

• TNC → (Tunnel but No Collision) Foam neutrally ionized. Collisionless.

• TCNI → (Tunnel with Not Ionizing Collisions) Foam neutrally initialized but
the collisions are switched on. This kind of collisions are not able to ionize the
neutrals themselves.

• TC → (Tunnel and Ionizing Collisions )Foam neutrallyinitialized and collisions
are switched on. Also this kind of collisions have the possibility to ionize the
neutrals.

For all the simulations in this chapter we used a semi-infinite geometry as defined in
figure 4.3 since here we are only interested in simulating the behaviour of the foam
and not the photon production.
The last section of this chapter is dedicated at investigating if the differences found
in this regime are important for the rest of this work, so we will address the case of
a pulse with a0 = 68.

5.1 Ionization in collisionless neutral clusters

First, we compare the effect of ionization on a collisionless system. As we can see in
figure 5.1 there is very little difference in behaviour between a fully ionized plasma
and a neutrally initialized foam. The curves stick together for long and then after a
time of the order of ∼ 102 fs separate. We can see that the neutrally initialized case
(TNC) transfers more energy into electrons, which is no surprise. A nanostructured
foam is characterized by local high electronic density, and fully ionized nanoparticles
act like small mirrors. Eventhough their size is roughly one tenth of the laser
wavelength, some of the laser is naturally reflected in the interaction. If the foam is
already fully ionized (NTNC) the laser sees nanometric mirrors from the beginning,
in TNC configuration this is not the case since initially the pulse propagates into
a neutral environment. If the foam is made of neutral clusters then the laser can
penetrate into the material ionizing progressively the nanoparticles. The front of
the pulse does therefore not see immediately a mirror but a mildly ionized medium
which is less reflective than a fully ionized configuration. Since the peak intensity
of the pulse is ultra-intense (I0 > 1022Wcm−2), and thus the tail intensity becomes
very quickly � 1014Wcm−2, we do not expect this effect to be extremely significant,
but a difference can be spotted between the two cases.
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Figure 5.1: Quantitative effect of tunnel ionization on the total energy balance for a0 = 15
and n0 = nc (left) and 9nc (right). The fully ionized collisionless behaviour (No Tunnel
No Collision - NTNC - solid lines) is compared to the initially neutral foam (Tunnel No
Collision - TNC - dashed lines). The plotted quantities are: Electron kinetic energy (uke -
blue), Ions kinetic energy (uki - red), and Electromagnetic energy stored in the Bz field
(ubz - green).

From a microscopic point of view introducing tunnel ionization slightly increases the
particles maximum energy, but even for relatively long times the difference is very
small (fig. 5.2).

Figure 5.2: Energy spectrum of electrons (left) and ions (right) at t = 80fs for nanostruc-
tures of average density n0 = nc (top row) and n0 = 9nc (bottom row) at a0 = 15.
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5.2 Non-ionizing Collisions in neutral nanoclusters

At this point we already suggested the idea that the reason the energy transfer
between laser and electrons is more efficient, even if only slightly, is that including
ionization processes contributes to lower temporarily the local charge density. One
could think that another way of reducing the local charge is to induce the electrons
to spread out faster and more evenly in the cluster. One path to achieve this result
could also be with collisions. Collisions should force particles with same charge apart,
making more difficult to obtain sharp charge density peaks. We know that the higher
the temperature the less important collisions are, and often realtivistic plasmas are
modelled as collisionless (eq.(3.13)).
In order to see if this phenomenon alone can in some way have any effect on the
system we switched on collisions among all species. We do not want the collions to
be able to ionize the material yet, so we can focus only on the “spreading” effect.
The results are summarized in figure 5.3 . As we can see no difference whatsoever has
been found between collisionless and collisional foams. No difference has been found

Figure 5.3: Quantitative effect of non-ionizing collisions on the total energy balance of a
neutral cluster for a0 = 15 and n0 = nc (left) and 9nc (right). The collisionless behaviour
(Tunnel No Collision - TNC - dashed lines) is compared to the same system with the
addition of non-ionizing collisions among all species (Tunnel Collision Not Ionizing - TCNI
- dotted lines). The plotted quantities are: Electron kinetic energy (uke - blue), Ions kinetic
energy (uki - red), and Electromagnetic energy stored in the Bz field (ubz - green).

also in the spectra for any time in analysis, pictures are omitted for redundancy.
We can conclude that the collisional effect of “spreding” electrons in space is definitely
negligible in the regime of interest for this work.

5.3 Ionizing Collisions in neutral nanoclusters

The last case we want to check is when we have both tunnel and collisional ionization
switched on. This is also the most expensive configuration for this particular section.
As we can clearly see in figure 5.4 we find no difference between the collisional and
collisionless cases. No difference has been found also in the spectra for any time in
analysis, pictures are omitted for redundancy.
We therefore conclude that collisions are straight-up negligible even for a0 = 15 for
the whole range of foam average densities of interest for this work (n0 = (1÷ 9)nc).
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Figure 5.4: Quantitative effect of collisional and tunnel ionization on the total energy
balance of a neutral cluster for a0 = 15 and n0 = nc (left) and 9nc (right). The complete
system with both tunnel and collisional ionization (TC - dotted lines) is compare with
previous cases. The plotted quantities are: Electron kinetic energy (uke - blue), Ions kinetic
energy (uki - red), and Electromagnetic energy stored in the Bz field (ubz - green).

We are left to check if for higher laser intensities the tunnel ionization effect tends to
vanish or is worth modelling.

5.4 Tunnelling for higher intensities

The case with a0 = 15 and average density n0 = nc shows no significant changes with
or without tunnel ionization, and we expect the difference to only become smaller
increasing the pulse intensity. For these reasons we will only test the higher density
n0 = 9nc at a0 = 68 corresponding to our lowest intensity, and so the potentially
most affected case. As we can see in figure 5.5 the foam behaviour is a middleground
between the previous cases at a0 = 15, and a reason for this can be found in the
opacity factor n = n0/

√
1 + a20/2. We know from work [23] [29] that the processes

at play in the foam depend heavily on this factor n, in particular systems with
similar opacity factor tends to behave similarly regardless of the specific value of
laser intensity or average electronic density. Computing this quantity for the three
cases we get:

a0 = 15, n0 = 1→ n ≈ 0.09

a0 = 15, n0 = 9→ n ≈ 0.85

a0 = 68, n0 = 9→ n ≈ 0.19

We can see how the third case is in between the other two but more shifted towards
the first, and this affects the global behaviour of the system.
Overall we can say that tunnel ionization does not play a huge role in the system

until very late in the simulation, at a time for which the pulse would be already
reflected by the mirror in our main set-up. To further strengthen this point we look
at the energy spectra of the particles at time t = 80fs in figure 5.6. We can see how
barely no difference can be appreciated here.
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Figure 5.5: Quantitative effect of tunnel ionization on the total energy balance for a0 = 68
and n0 = 9nc . The fully ionized collisionless behaviour (No Tunnel No Collision - NTNC
- solid lines) is compared to the nuetrally initialized foam (Tunnel No Collision - TNC -
dashed lines). The plotted quantities are: Electron kinetic energy (uke - blue), Ions kinetic
energy (uki - red), and Electromagnetic energy stored in the Bz field (ubz - green).

Figure 5.6: Energy spectrum of electrons (left) and ions (right) for nanostructures of
average density n0 = 9nc at a0 = 68.

5.5 Conclusions on tunnelling and collisions

In this chapter we looked for the effect of both collisions and tunnell ionization on
the system dynamics. We observed that collisions play a totally negligible role and
without esitation we will never consider them in the modelling in this work. Less
trivial is the ionization effect.
We saw in figure 5.1 that tunnelling can be relevant for higher densities, but as the
density decreases or the laser intensity increases becomes less and less important.
For the frame and the regimes of this work the impact observed can be considered
negligible (fig.5.6).
Analyzing the performances we observed that using collisions increases the computa-
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tional time by a value often around 100%.
Tunnel ionization instead showed a more irregular behaviour, and estimating its effect
on performances turned out to be not as trivial as we thought. Usually switching on
the field ionization module results in an increase in computational time (40%÷ 70%)
but in some cases increased the efficiency of the code. Initializing a target as neutral
is indeed beneficial at the beginning since the number of macroparticle in the box is
halved with respect to an already fully ionized plasma (ions and electrons are one
neutral particle). Nevertheless at runtime the number of macroparticles increases,
but overall number of macroparticles should remain lower than a fully ionized plasma.
On the other hand, using an additional Monte Carlo module is always heavier for
the code as a whole. These two effects concurr and the effect on performance is
relatively unpredictable from the data we collected.
A final remark should be done on the quantitative reliability of 2D PIC simulations.
In particular we stress again the fact that 2D systems are not perfectly representative
of a complex 3D system. As shown in previous work [20][30], 2D simulations result in
an overestimation of the energy output. It is more clear now that a quantitative error
of less than few % in 2D results is even less significant knowing that a quantitative
difference of the order of ∼ 10 ÷ 20% is usually observed when switching to 3D
simulations.
For everything we just said we chose to initialize the target as a fully ionized plasma
and neglect all tunnelling and collisional effect.



Chapter 6

Pulse propagation in foam-based
targets

6.1 Plasma lense effect

Near critical density plasmas are able to efficiently focus laser pulses and particle
beams. This phenomenon is called “Plasma lense” or “Self-focusing” and has been
studied exensively in [60][61] in order to achieve higher intensities for various purposes.
As we can see in figure 6.1 this effect is well observed in our simulations. The pulse
focuses itself way beyond the Gaussian limit in vacuum, reaches a new waist and
then defocuses. Depending on the average density n0, structure of the plasma and
laser intensity, we observe that the maximum amplitude of the laser field (i.e. BZ) is
increased by a factor of roughly BMAX

Z /a0 ∼ 1.5÷ 2.5.
In order to better visulalize the self-focusing effect we will always simulate a semi-

Figure 6.1: Example of self-focusing of the laser pulse inside a homogeneous NCD plasma.
In colors is the magnetic field normalized amplitude at three different times, respectively
23, 52, and 79fs after the beginning of the interaction. The vertical dashed line represents
the beginning of the NCD foam. The initial peak amplitude of the pulse is in this case
a0 = 166, the density is n0 = 6nc. The snapshots are taken hiding the channel magnetic
field that is indeed created, in order to have a clearer view of the pulse.

80
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infinite foam (fig.4.3) in this section.
We observe that the larger the average density n0, the bigger will be the lense effect.

Figure 6.2: Maximum value of the field Bz recorded in the box for each timestep normalized
to the initial laser amplitude a0. The slight ramp at the beginning is just the standard
focusing in Gaussian propagation, with the focal length fixed at the beginning of the foam.

We also need to consider the fact that increasing the density (but still remaining in
NCD conditions) will increase the plasma absorption (and reflection) draining the
pulse from its energy, decreasing the field amplitude faster over time. We can see
the results of these two phenomena in figure 6.2 for three different n0 with a0 = 68
and homogeneous (left) or nanostructured foam (right). The decreasing of the field
after the maximum is a sign of both defocusing and absorption. We can see that for
higher densities the process of focusing/defocusing seems to be quicker. This is true
for both homogeneous and nanostructured foam, although for the latter seems that
the density does not really affects the maximum reached value (dashed lines).
Changing the approach we could look at how the energy spread of the pulse varies

during the propagation. The pulse is compressed into a smaller and smaller region
also concentrating its energy. Of course field amplitude and energy density are not
independent, since it is well know that this latter reads u = εE2 = B2/µ with ε and
µ the dielectric and magnetic permittivity of the medium. In figure 6.3 we can notice
how the energy stored in the electromagnetic fields is progressively focused. In order
to obtain that figure we must find for each timestep the xMAX coordinate of the
maximum value for the field, and we look at the electromagnetic energy distribution
along the transverse direction u(xMAX , y). From this curve, going in direction y > 0
we can define two points with coordinates that we will call y25 and y75. This points
are defined such that the area under the curve (energy) for 0 < y < y25 is 25% of the
total area (total energy), and the area under the curve (energy) for 0 < y < y75 is
75% of the total area (total energy). This means that in the region of space inside
y25 < y < y75 is enclosed 50% of the total energy. At the end we obtain two points
y25 and y75 for each timestep, which once plotted vs time we obtain figure 6.3. We
can notice that the nanostructured case results in more asymmetrical behaviour.
This is only caused by the intrinsic chaos of the structure itself. In comparison
the homogeneous foam results in more symmetry. It is due to point out that the
propagation of the pulse in NCD plasma is not a stable phenomenon and at its front
filamentation can be observed, a little asymmetry in the data is then expected.
One can also think of plotting the same point series but vs xMAX instead of time to
see the position in space of the maximum of the field varying, but the results are
very similar and are omitted for redundancy.
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Figure 6.3: Example of self focusing and defocusing inside a NCD plasma of n0 = 3nc and
a0 = 68 for homogeneous (green (y25) and purple (y75) squares) and nanostructured (blue
(y25) and red (y75) triangles) foam. Vertical dashed line represents the moment at which
the maximum of the pulse enters the foam. The asymmetry of the NANO configuration is
due to its intrisic chaotic structure.

As we showed in section 1.2.1 in order to achieve greater γ emission we should
increse the quantum parameter χe. We remember also that χe ∝ γe|BBB|, then maxi-
mizing the field amplitude is crucial in order to maximize χe and thus photon emission.

6.2 Mirror effect

When interacting with a high density material, a laser pulse is reflected and for a
brief window of time the incident and the reflected wave interfere with each other.
Throughout this work we observed an increase of the field amplitude during reflection
by a factor 1.5 ÷ 2.0 which is in line with previous works [52][53][55].
In order to maximize photon emission we need to have a foam layer of thickness LF
in front of a mirror so that we can exploit the laser-plasma coupling to accelerate
electrons, and then induce a radiation emission thanks to the temporary doubled
(almost) field. In order to do that we need to find the configuration which allows us
to maximize the field during the reflection. The maximum amplification is achieved
if the reflected field is the highest possible, so we use a semi-infinite foam to find the
LF which would allows laser to arrive onto the mirror with the maximum possible
field.
This is done by considering the field amplitude at y = 0 for each timestep, and

following the pulse along the x−axis in time. This kind of diagnostic is called streak
and is named after the streak-camera. In order to follow the pulse we decided to plot
the streak of B2

Z(x, 0, t), as shown in figure 6.4. We can now check the corrispondance
with figure 6.2, and find out the space coordinate of the maximum value for the field
amplitude, all in one diagnostic.
We chose to use the square of the field and not the field itself to make sure we do not
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Figure 6.4: Streak of B2
z (x, 0, t)/a20, in all the box for all timesteps (left) and, the same

picture but magnified in order to better distiguish the region of maximum focusing (right).
The y coordinate is set to be in the middle of the box

loose negatives values, and of course every field amplitude has been normalized to a20.
Now we can directly pinpoint the best penetration length in order to maximize the self

Figure 6.5: Effect of the mirror on the propagation of the pulse in the system. Figure
obtained with the same method of figure 6.2 but in four different simulation differing only for
the foam length put prior the substrate (mirror). The parameters for this specific example
are: n0 = 3nc, a0 = 68, homogeneous foam. Lfocus for these parameters is measured
at about 10µm, so in the figure we plotted LF = {5, 10, 15}µm and a semi-infinite foam
without a substrate (black) for reference.

focusing. Our job is now to use this information to enhance electronic radiation emis-
sion. For each density and each intensity we measured the propagation length for the
most efficient focusing effect Lfocus which will result different from the optimal length
for γ-photon generation. In general for each Lfocus we ran a batch of 4÷ 10 simula-
tions with foam of lengths roughly like: {Lfocus/2, Lfocus, 3Lfocus/2, 2Lfocus, 3Lfocus}
and few more cases considered of interest. As we can observe in figure 6.5 the
reflection acts as we expect increasing of a factor 1.5÷ 2.0 the field in the system.
The configuration with the foam length LF equal to the focusing length Lfocus is
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indeed the one reaching the highest maximum field amplitude, as we expected. How
this will translate into radiation emission is topic for the next chapter.
Interesting is also to look at the focusing effect for each n0 and a0 as we show in figure

Figure 6.6: Maximum normalized field amplitude normalized to a0 recorded in the box
vs foam length of the simulation for homogeneous (left) and nanostructured (right). The
same process of figure 6.5 is applied here but only the maximum values (dashed lines in
the referenced figure) are kept and plotted againt the respective foam lenghts LF (squares).
Different colors refer to the different average densities n0 = {3, 6, 9}nc.

6.6. We confirm that if all the other parameters are the same then higher average
density leads to a stronger and quicker focusing effect. It should be pointed out the
fact that for n0 = 9nc we manage to reach an amplification factor of over 4.5 which is
the highest in our work. Nanostructured targets follow roughly the behaviour of the
homogeneous cases, although the trend is less clear and the amplification is overall
less efficient. We will address it many times but nanostructures are complex systems
characterized not only by an average density like a homogeneous foam is. Changing
the filling factor and the nanoclusters diameter also changes its properties as shown
in [52]. Henceforth we need to have the homogeneous foam cases as a comparison
in order to help us better interpret the nanostructured cases. An extension of this
work studying how all the nanostructure parameters on a 3D foam influence the
macroscopic and microscopic phenomena would be extremely useful and extremely
important to predict experimental results.

6.3 Conclusions on field amplifications mechanisms

In this chapter we analyzed two independent processes that we are going to exploit
to increase the field amplitude in the system: self-focusing, and reflection. The
first focuses the pulse surpassing its Gaussian limit, amplifing the maximum field
reached by a factor of the order of 2 (fig.6.2). The second yields from the self-
interference of the pulse with itself when is reflected by a solid density substrate
(mirror), and is also responsible for a factor of the order of 2 in the filed amplification
(fig.6.5). The sum of these two effects makes us able to increase the maximum
field inside the target of a factor of the order of 4 and thus of a factor of the order
of 16 in intensity. We should remark that the lowest intensity we are going to
consider is already 1022Wcm−2 so increasing by one order of magnitude we reach
a laser intensity of the order of 1023Wcm−2 on target. In the next chapter we will
focus on how everything we said up to this point is translated into photon production.



Chapter 7

Photon production

Here we will discuss the possible production of γ-photons with the available Apollon
power of 2PW (a0 = 68) and 6PW (a0 = 166). In this chapter the laser parameters
are those summarized in column “A” and “B” in table 4.1.
We will again remark that all the generated photons are only from synchrotron-like
emission, all other processes (i.e. Bremsstrahlung) are not considered here but are
assumed to be negligible in this regimes [4]. Neglected are also all photon-photon
interaction such as pair production via Breit-Wheeler (BW) since we are not inter-
ested in positron production yet, we will leave this topic for future studies.
We will first look at the macroscopic dynamics of the system, addressing the energy
transfer among: electromagnetic fields, electrons, ions, and photons.
Afterwards we will discuss the properties of the electrons and how those are related to
the photons dynamics. Finally we will characterize the photons and their properties.
The physical modelling of photon production has been summarized in chapter 1,
while the numerical simulation tools are described in section 3.8.2.

7.1 Conversion efficiency

7.1.1 Energy transfer in the system

The first effect of the pulse propagation inside the foam is to increase the total
electron kinetic energy, which macroscopically translates into an energy transfer
from the laser to the electrons. The laser will interact always and only directly with
the electrons, and will be the electrons which in turn radiate, producing photons.
Since all photon-photon interaction are neglected, the laser cannot interact directly
with other photons, thus the electrons are always the only first-hand receiver of laser
energy, which then radiate it into photons or transfer it to ions.
For all intensities and densities we observed that the energy absorbed by electrons is
almost linear in time during the laser propagation into the foam, and so is also the
energy radiated away in photons (fig. 7.1) . At the moment of reflection (shaded
region) we can see how all curves change behaviour, in particular the electrons kinetic
energy stops its growth, and the radiated energy (photon energy - Urad) increases
rapidly. We would like to point out how for the radiated energy we pass from
a ramp-like curve (foam propagation) to a burst (reflection), and then to a final
saturation phase. From now on we will refer to these three behaviours as: ramp,
burst and, afterglow respectively. In all three we find the same physics at play but in
very different contexts, henceforth the properties of both particles and radiation have
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different characteristics that we will try to explain. It should be pointed out how
the sum of ramp(∆UR), burst(∆UB), and afterglow(∆UA), gives the total radiated
energy so that at the end of the simulation Urad = ∆UA + ∆UB + ∆UR.

Figure 7.1: Typical evolution of the fraction of laser energy that is converted to: electrons
kinetic energy (Ukin eon - blue), ions kinetic energy (Ukin ion - red), photon energy (Urad
- green), and energy stored in the field BZ (UBZ - pink). We can see the rapid energy
conversion to radiation during the reflections (shaded area). The energy stored in the
BZ field is a good indicator of half of the energy still in the pulse at each timestep
(the other half is stored in Ey). It should be noticed how the total radiated energy
Urad = ∆UA + ∆UB + ∆UR.

One can have immediately two ideas to exploit the information just given, in order to
enhance the total energy emitted in photons. The first would be that since during the
propagation in the foam Urad has a roughly constant slope, having a really long foam
would be beneficial. This is shown later on not to be convenient, instead, having a
big burst is often better than having a long ramp. The second idea would be, on the
other hand, to say that since quantitatively the burst is often between 40÷ 70% of
the entire output of radiated energy, the best solution is to look for ways to increase
its magnitude forgetting completely about the ramp. This approach is also inefficent
too, since the latter has still great importance as shown in fig. 7.2. Looking at this
latter figure one can see that the magnitude of the burst is larger for LF = 6µm but
the overall highest conversion is achieved for foams of around 10µm while for longer
foams it lowers, proving how important is to look for a good combination of ramp
and burst in order to obtain the highest photon energy output. The afterglow gives
often less than 10 ÷ 20% of the total photon energy, thus is much less interesting
than ramp and burst .
Even for relatively long foams like the 15µm (fig. 7.2 - green line) the ramp has
more or less constant slope while the burst magnitude has less trivial trend. In the
next section we will try to break down how the relative importance of those three
components changes with our parameters.
It is due now to point out that we simulated situations with several parameters
which gave a wide range of results, some systems (usually very thick or very thin
foams) behave in substantially different ways from the rest. In order to correctly
discuss the dependence of each quantity from the parameters it is necessary to use
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Figure 7.2: radiated energy evolution in time for n0 = 6nc, a0 = 68, and different foam
thickness with homogeneous structure.

systematic and coherent definitions. In some cases we recorded a different behaviour
of one configuration from all other similar ones. Usually this comes from a very
intuitive and almost trivial reason, for example sometimes the cases with the thickest
foams do not have a clear burst or the ones with the thinnest foams do not have a
proper ramp. Sometimes in order to clearly see a trend it is necessary to compare
only physical systems which behave in the same way excluding systems which are
too different from the others (i.e. a system in which there is no burst but only a very
long ramp instead). Therefore occasionally some points will not be shown in the
pictures, because they would not be significant comparisons to the other systems.
We will try to always show all the data when appropriate.

7.1.2 Dependence on target geometry and density

If we look only at the overall conversion efficiency defined as Urad/Upulse ( fig.7.3) we
notice that its maximum value is not achieved for a foam thickness that granted the
maximum field amplitude ( fig.6.6). Previously we proposed the idea that reflecting
the pulse at its maximum focusing would have been the best way of producing
photons, but the data suggest that best point in which reflect the pulse is actually
somewhere after the point of maximum focusing, where the field amplitude is not at
its maximum possible value. The field amplitude is still an important component
but results suggest that is not the only relevant one.
From the curves relative to a0 = 68 in homogeneous targets we are brought to think
that the lower the density, and the bigger the conversion efficiency reached. The
curves for a0 = 166 suggest the opposite instead, implying that a configuration “too
transparent” is not really an efficient choice. The hypothesis we made right now is
that there is an optimum between transparency and opacity for which the maximum
convertion effciency can be reached. This value we can estimate being around the
value reached for a0 = 166 with n0 = 6÷ 9nc, and a0 = 68 with n0 = 3nc. The value
of opacity factor estimated is in the intervall 0.05 ≤ nc ≤ 0.08 which also correspond
to an optimal thickness in the intervall 14µm ≤ LF ≤ 17µm for all the three cases
mentioned.
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The behaviour of the nanostructured targets is different and less predictable. We
showed previously in this work how the nanostructure influences the focusing/defocusing
dynamics in the target, so further investigation is needed to draw conclusions in
these cases. All our attempts in order to quantify this behaviour gave unfitting
results, further theoretical modelling is needed in order to coherently explain these
phenomena.

Figure 7.3: Conversion efficency in radiation vs foam thickness for homogeneous (left) and
nanostructured (right) cases, at the end of the simulation. Different colors refer to the
different densities n0 = {3, 6, 9}nc and different laser parameter a0 = {68, 166}. We can
see how the energy converted into photons reaches beyond 7% of the laser energy with
a0 = 68 and above 22% for a0 = 166.

Looking at figure 7.4 we can decompose the total conversion efficiency into the
three components ramp, burst and afterglow. We should immediately notice that in
the first row representing the ramp (HOMO on the left and NANO on the right) the
curves are roughly linear with the foam length.
These facts will be discussed more in section 7.2.1 and will help us understand the
microscopic mechanisms underneath.
The ramp slope grows with the average density n0 (fig.7.4) suggesting a dependence
of the ramp slope on the focusing dynamics (i.e. how quickly the process of focus-
ing/defocusing happens). This assumption is reinforced by the behaviour of both
burst and afterglow , the first in particular with its bell-like shape shows that if the
density increases then the condition in order to have the maximum burst magnitude
are met and lost quicker. Because of what just said we expect a strong correlation
between n0 ( or n) and all macroscopic phenomena.
We should remark now how for a0 = 68 (2PW) we obtained a conversion efficiency
above 5% for most cases, reaching a maximum at roughly 7% for n0 = 3nc and
LF = 17µm. This is far beyond what we expected at the beginning of this work and
what obtained in previous works [52][55] which suggested the possibility to reach
∼ 1%. For a more powerful laser (a0 = 166, 6PW) we obtain up to 22% of converted
energy from the laser to photons. These values are incredibly promising and they
should be focus of further studies, in particular, 3D3V simulations are to be ran in
order to acquire more quantitive resuluts for experimental design. We expect that
with the final Apollon power of ≈ 15PW will be possibile to reach even higher values.
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Figure 7.4: Magnitude of respectively ramp (top row), burst (center row) and afterglow
(bottom row) for homogeneous (left column) and nanostructured (right column). The
magnitude is measured as the fraction of radiated energy over the total pulse energy. The
burst is generally the most important part, while the afterglow is usually less than a tenth
of burst and ramp combined.

7.1.3 Dependence on target number thickness

Up to now the results appear to be function of average density (n0), laser parameter
(a0), and geometry (LF ). As we have already seen, there is a parameter used in
previous works concerning foams [20][29][23] which contains the first two items in the

list. The opacity factor n, defined in eq.(4.23) as n = n0/
√

1 + a20/2 is a parameter
which takes into account the relativistic transparency of the medium in which the
laser is propagating. Expressing the results in function of this parameter could
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be interesting, but we can include also the last parameter on the list: LF . The
mass thickness is a quantity defined as (mass density) × thickness of a specific
medium. Since all simulations have the same materials for the target, we do not
really care about the mass density, but rather the charge density. Furthermore, since
all electrons have the same charge, we are interested only in the number density of
electrons. We can then define a parameter µ as:

µ ≡ nLF =
n0√

1 +
a20
2

LF . (7.1)

Its dimension are the one of a number density (l−3) times a length, which give the
dimension of a surface density (l−2).
In fig. 7.5 we show the fraction of the pulse energy emitted in photons during the
ramp in function of µ/nc. As we can see the curves with same a0 tend to come
together suggesting that all the information related to n0 and LF are contained in µ.

Figure 7.5: Conversion efficency in radiation during the ramp (∆UR/Upulse) vs normalized
number thickness (µ/nc) for homogeneous (left) and nanostructured (right) cases, at the
end of the simulation. Different colors refer to the different densities n0 = {3, 6, 9}nc and
different laser parameter a0 = {68, 166}. We can see how the curves obtained at the same
a0 tend to overlap regardless of the value of n0.

Since the cases at a0 = 166 seems to radiate much more than the ones at a0 = 68 we
can infer that the dependence on the field strenght is not completely described by
the parameter µ. As we have seen in chapter 1, the power emitted in photons can
be very convoluted in complex systems. Maybe even with the same value of µ, the
actual magnitude of the laser intensity is important to determine the behaviour of
the system. We therefore repropose the same plot but we normalize the fraction of
energy radaited away with a factor a20 ∝ I0 (fig. 7.6).

We can see how all the curves now tend to overlap suggesting that the radiating
behaviour during the ramp can be roughly related to the only parameter µa20 ∝ µI0.
What happens in the burst is more complicated because it is function not only of the
initial intensity of the laser I0 (or normalized amplitude a0), but also of the specific
condition at the reflection. It is therefore more complicated to propose a simple
scaling to describe the burst behaviour. Using the same approach as for figure 7.6
we obtain figure 7.7, which shows a tendency of the curves with same a0 to gather
regardless of the specific value of n0, suggesting that all the information about the
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Figure 7.6: Conversion efficency in radiation during the ramp (∆UR/Upulse) divided by
a20 vs normalized number thickness (µ/nc) for homogeneous (left) and nanostructured
(right) cases, at the end of the simulation. Different colors refer to the different densities
n0 = {3, 6, 9}nc and different laser parameter a0 = {68, 166}. We can see how all the
curves tend to overlap regardless of the value of n0 or a0.

target properties are contained into the parameter µa20 ∝ µI0.

Figure 7.7: Conversion efficency in radiation during the burst (∆UB/Upulse) divided by
a20 vs normalized number thickness (µ/nc) for homogeneous (left) and nanostructured
(right) cases, at the end of the simulation. Different colors refer to the different densities
n0 = {3, 6, 9}nc and different laser parameter a0 = {68, 166}. We can see how the curves
obtained at the same a0 tend to overlap regardless of the value of n0.

In general the behaviour of the nanostructured targets is less predictable but still
follows, even if less effectively, the principle shown in the homogeneous cases. It was
shown in [53] that nanostructures tend to behave more and more like homogeneous
plasmas the smaller the size of the nanoparticles, it is therefore reasonable to expect
a difference in the evolution of a nanostructured target with respect to a uniform
one. Real foams can have characteristic dimension much smaller than 80nm like it
was used in this work, thus we expect that real foams (δx ∼ 10nm) can in principle
behave more similarly to the homogeneous case than the foams simulated in this work.
A parametric study on the effect of the characteristic dimension of the nanosphere
δx on the radiation properties would be rather useful in order to gain more insights
on this topic.
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7.2 Electron microscopic properties

Now that we have a good grasp of the macroscopic behaviour of the system, we will
discuss the microscopic properties of the electrons.
First we will look at where the photons are emitted, by looking at where the most
active electrons are in the system. Then we will try to pinpoint the region in space
for each one of ramp, burst , and afterglow . Lastly we will characterize the electrons
in term of their energy γe and quantum parameter χe in order highlight the difference
between ramp and burst .

7.2.1 Radiating electron location

Up until now we looked at the evolution of some macroquantities, like the radiated
energy, in time but we have not said anything about their space evolution. A useful
information would be knowing where in the system the photons are produced, so
we can better focus our attention. We can very easily plot a map of the estimated
classical power emitted by the electrons using the relation Pcl = Pαχ

2
e defined in

eq.(1.42). We can use the classical formula to estimate the radiated power since
for a0 = 68 we find χe which is smaller than 10−1 for most electrons, so the error
committed is acceptable for a rough estimate. We can correct the classical approach
accounting for a quantum factor g(χe) as defined in eq. (1.43), using the Ridgers fit
defined in eq.(3.77). This new quantity is called quantum corrected classical power,
we will refer to it with the acronym cLL standing for Corrected Landau-Lifshitz
(Pcll).

In figure 7.8 we can see four snapshots of the classical corrected radiated power
in the system as the pulse propagates into the plasma. The brighter the color, the
higher the χ2

e of the particle is, highlighting the most active electrons and their
position in the box. It should pointed out that the pulse follows the brighter region
almost perfectly, suggesting that the radiating electrons are mostly the ones inside
the pulse at each timestep. Furthermore we can see how Pcll increases even more in
the reflection region at the reflection instant. The afterglow effect is shown to be
remarkably smaller than ramp and burst .
It should be remarked that the channel is not left completely empty after the laser
passage, and thus moderately energetic electrons are left in the static magnetic
field of the channel with equivalent a0 of th order of ∼ 101. This condition leads
undoubtedly to photon emission, but as shown in figure 7.8 is negligible with respect
to the emission from the rest of the system. We can then assume that all the photon
emission of the ramp comes from the electrons directly into the propagating pulse at
each instant. At this point we can assume the following:

• The ramp is linear in time because most of the power is radiated from the
electrons directly into the pulse, and thus is almost constant until the reflection.

• The left-behind electrons radiate but their contribution is negligible.

• The burst is a phenomenon happening only in a very small spatial region

In order to asses the importance of the reflection region we integrated over time
the map of the corrected classical radiated power to obtain a map of the corrected
classical radiated energy. Furthermore we can integrate over the y-coordinate to
obtain a linear energy density radiated away. These two plots are found in figure 7.9.
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Figure 7.8: Example of evolution of the estimated classical corrected (CLL) radiated power
Pcll in the system. What is shown in colorbar is Pcll in logscale, the units are arbitrary.
The orange bars delimit the foam volume prior interaction. The pictures are taken at
respectively 30, 63, 78, and 114 fs after the beginning of the interaction. Since the colorbar
is in logscale, if an electron has χe = 0 it is represented as white, so the colored regions
contain electrons which are not perfectly still and thus have χe > 0.

We can conclude that spatially the burst is confined to the reflection area and that
the electrons are radiating because they are in the self-enhanced reflected pulse,
and not because of other exotic effects due, for example, to the interaction between
particles and solid density mirror. There is indeed a small peak of activity on the rear
surface of the target caused by the pull back force of the solid toward the electrons
willing to leave the target. Overall we can see that this phenomenon is negligible
with respect to the other mechanisms in the system.
It is important to mention that depending on the burst magnitude the importance
of this region can both increase or descrease with respect to the rest of the box. For
most of the cases the burst is the main source of photons, and so is also this region
of the target. There are few cases in which the burst does not happen because the
field is too weak at the reflection. Those configuration are far from the optimum, so
we do not bother too much discussing them, since they are interesting only as an
extreme reference for the other cases.
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Figure 7.9: Example of estimated corrrected classical radiated energy integrated over time
(left) and, same map integrated over y (right). Typically most of the energy radiated away
comes from the small (∼ µm) area where the reflection happens.

7.2.2 Energy spectra and temperature

Now we look at the features of the electrons energy spectra. Fixing a specific a0
and n0 we typically observe something like figure 7.10 . The spectra are taken right
before the reflection so that we can see the pure effect of the pulse propagation on
the electronic spectrum. The energy spectra given in this work will be often given
as a differential spectrum (dne/dγe), with ne being the elctronic density, and the
quantity γe being the electronic Lorentz factor. Recalling its definition we know that
εkin = mec

2(γe − 1) so actually for γe � 1 we have that εkin ≈ mec
2γe, meaning that

approximately for γe ≈ 2 we have εkin ≈ 1MeV. In this work typical values for the
maximum electron energy have the order of several hundreds of MeVs (γe ∼ 103) for
homogeneous foams and about 100 MeV lower for nanostructured ones.

Figure 7.10: Typical spectra for a specific laser intensity and foam average density. In
particular this case refers to a0 = 68 and n0 = 3nc in both HOMO (left) and NANO (right)
configuration.

Often in literature the hot electron temperature is a characterizing parameter so
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would be interesting to see how it relates to the other quantities. Unfortunately in
this work is not always easy to define a temperature rigourosly for all the analyzed
curves. Furthermore the temperature and the maximum energy of the electrons
seem unrelated. When talking about radiation emission, the most active electrons
are the hottest, so the ones near the maximum for which χe(∝ γe) can reach the
highest values. This leaves us uncertain on how the temperature should relate to
the results. We tried three possible fits: Maxwell-Juttner, Maxwell-Boltzman, and
simple decaying exponential. Everyone of those did not seem to quite work for every
case, and comparing values obtained from different models can be complicated. For
these reasons we will not discuss thoroughly the hot electron temperature. We will
only say we observed qualitatively that in general higher temperature means higher
overall conversion efficiency.

7.2.3 Ramp properties

In order to better characterize the ramp we need to look at only one more quantity:
χe.
In figure 7.11 is shown the time-averaged χe spectra for n0 = 6nc, a0 = 68, for
both homogeneous and nanostructured foams. We can see that the right part of the
spectra, representing also the most active electrons in the system, are very similar and
can be barely told apart. This observation agrees with the fact that we see a ramp of
almost constant slope. The power emitted is infact only a function of χe and of the
number of electrons with high enough χe, so if the differential spectrum (dne/dχe) is
very similar, also the radiated energy curves will be almost indistinguishable.

Figure 7.11: Example of χe spectrum for n0 = 6nc, a0 = 68, averaged in the duration of
the ramp, in HOMO (left) and NANO (right). The spectra are very similar to each other,
as expected since the ramp properties should not vary much for the same n0.

The number of activated electrons should be roughly proportional to the volume
covered by the laser inside the foam. From diagnostics like the one in figure 6.4 we
computed the propagation speed of the pulse inside the foam, and observed that for
a specific density and laser intensity it is roughly constant. Then it is reasonable to
assume that the number of active electrons increases almost linearly with time as
shown in figure 7.12 .
One can notice that something might not add up in what just said. How come
that if the number of activated electrons increases then the power does not? The



96 CHAPTER 7. PHOTON PRODUCTION

explanation comes from the fact that we are just increasing the number of electrons
in the left side of the spectrum, which are active but not much, so most of the power
come from an almost constant number of electrons.

Figure 7.12: Number of electrons with χe > 0 (only electrons which interact with pulse)
for homogeneous (left) and nanostructured (right) configurations. It is shown an almost
linear relation as expected from simple geometrical statements.

7.2.4 Burst properties

We begin the discussion presenting figure 7.13, which represents the same case as
figure 7.11 but during the burst. In order to focus ourselves on the process of the burst
we look at what we will call “restricted spectrum” meaning that we are interested
only in the particles in the small volume of space of ∼ 1µm× 1µm at the boundary
between mirror and foam. We prefer to use only these electrons because the burst is
a pretty localized phenomenon (as seen in fig. 7.8) and its properties should be only
characterized by the properties of the particles in the same volume. Looking at the
complete spectrum of all the particles in the box we would find the same value for
χmaxe but, on the left part of the spectrum we would have lots of electrons coming
from all the box which are not contributing to the burst.

Figure 7.13: Example of χe restricted spectrum for n0 = 6nc, a0 = 68, averaged in the
duration of the burst , in HOMO (left) and NANO (right). Now the spectra reach sensibly
higher values, letting us expect more sever radiation emission.
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We should notice that during the burst the right part of the spectrum now changes
more for different LF with respect to the spectra in the ramp. Furthermore the
shape of the spectra in this case is also different having more electrons with higher
χe values. This is definitely an effect of the enhanced field amplitude experienced by
the particles during the reflection.

7.3 Radiation properties

In the previous sections we saw that electrons have different properties if looked at
during ramp or at the burst . This leads us to expect also differences in the spectrum
of the emitted radiation. We will characterize the energy spectrum of the photons
but also their angle of emission which is important to reach high brilliance.

7.3.1 Ramp characterization

The first important quantity we want to look at is the energy spectrum of the photons.
In figure 7.14 we can observe both the differential (dUγ/dγγ) and cumulative spectrum
(U of all photons with γ ≤ γγ) of the totality of the photons emitted during the
ramp. Roughly two thirds of the energy goes into photons of less than 1 MeV while
only few percent is stored into multi-MeV photons. Nanostructured targets having
lower average χe emit photons at lower energies as expected from the theory.

In order to have a single parameter to compare different densities and configurations
we will look at the energy of the photons when the cumulative curve reaches 90%
(second black dashed line) of the converted energy. We call this value γ90 and it gives
us a good idea of the overall distribution of energy among the photons. In figure
7.15 the quantity γ90 is plotted in function of LF for different values of n0 and a0.

It cannot go unnoticed the remarkable difference in values of γ90 for the cases at
average densities n0 = 3nc with respect to the others at a0 = 68. We are not
sure about the physical reason behind this behaviour, but since there is no visible
differences between the cases with n0 = 6nc and n0 = 9nc, we suggest that a possible
threshold mechanism could rise at specific densities or for specific opacity factor
n. The curves for a0 = 166 are fairly more similar in behaviour, suggesting that
maybe the threshold hypothesized is around n ∼ 0.1nc (refer to table 4.2). Further
investigation of more densities and laser intensities is needed in order to reinforce the
idea of a threshold mechanism acting for n < 0.1nc which increases the vaule of γ90.
Theoretical justification of such phenomenon may be found in different dominant
processes at different trasparency regimes (i.e. DLA, LWFA, ...).

As we already did previously in section 7.1.3, we look at the results in function of
the parameter µ = nLF and we see how all the curves obtained with a0 = 166 tend
to collapse together making sort of a single curve (fig. 7.16) suggesting a common
behaviour for a0 = 166.
It is due to remember that the parameter γ90 is an arbitrary quantity of our choice
to somehow quantitatively compare photon spectra of the type of figure 7.14. The
first step in order to do a better analysis would be to find a more characterizing
parameter to describe the spectra. In the frame of this work γ90 works adequately,
so we will no further study other ways of comparing photon energy spectra, and we
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Figure 7.14: Example of differential (top row) and cumulative (bottom) energy spectra
for n0 = 3nc and a0 = 68 for both homogeneous (left) and nanostructured (right) foams
during the ramp. The spectrum is taken at the end of the ramp and is comprehensive of all
photons produced before the burst . We notice that more than half of the energy produced
is below γγ = 1 corresponding to an energy equal to the electron rest mass. While the last
10% of the energy comes from photons of 0.7÷ 2.5 MeV (1.5 ≤ γγ ≤ 5.). The three black
dashed lines represent (from top to bottom) 100%, 90%, and 50% of the total emitted
power and are plotted to help the reading of the plot.

Figure 7.15: Values of γ90 of the photons emitted during the ramp for a homogeneous (left)
and nanostructured (right) target. The difference at a0 = 68 between n0 = 3nc and the
other densities is remarkable.

will refer to future studies in the matter.
Consideration on the energy spectrum of the produced photons are important, but so
is duscussing the angular distribution of said particles. In order to have an effective
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Figure 7.16: Values of γ90 of the photons emitted during the ramp vs normalized number
thickness (µ/nc) for a homogeneous (left) and nanostructured (right) target. The curves
at a0 = 166 come together while for a0 = 68 the differences are conserved from figure 7.15.

γ-ray source we should be able to confine the photons into the smallest solid angle
possible. As suggested in figure 7.17 longer foams generally correspond to also higher
photon maximum energies in the ramp regime. Discussing quantitatively a parameter
in colors is never easy, so everytime a plot in color is shown we focus mainly on the
shape of the colors rather than their precise values. The angle of emission is reported
on the y axis and is defined with θ = 0 as parallel to the laser progation (x > 0), so
that at the center of the image are pictured the photons emitted “forward” while at
the top and at the bottom are plotted the ones emitted “backward”.

Figure 7.17: Photons angular spectrum at the end of the ramp for two specific cases:
LF = 5µm and 16µm, both are for n0 = 9nc and a0 = 166 in homogeneous foam. Radially
is plotted the photon energy γγ while in colors we find the logarythm in base ten of the
relative photon energy distribution. The angle is define so that θ = 0 is parallel to x > 0
and the laser propagation. For this configuration LFOCUS = 14µm.

We should notice a pretty unexpected effect: for short foams we find an angular
dispersion of the photons mainly in two symmetric “lobes” (left in fig.7.17), while
for longer foams we find also a more “plume”-like shape around the direction θ = 0
(right in fig.7.17). We know that the behaviour in the ramp is the same for each
configuration up until reflection so this means that the plume we see for thicker foams
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is produced after the lobes. The plot on the right in figure 7.17 is then obtained
by a the sum of the lobes produced in the early stages of the ramp and the plume
produced on the second part.
Recalling that for incoherent emission we always assume that the photon is emitted
in the direction of motion of the electron, we can then observe that the shape we
see is also representative of the angle distribution of the electrons motion. Looking
at the phase space (px, py) of the electrons we indeed find the same shape. This
peculiar phenomenon seems to be related to the focal length of the pulse in the foam.
Reporting all the pictures for all cases (too much pages would be required to do so)
we would see the exact same lobes-plume transition passing at roughly the LFOCUS
of the system. Its origin is not completely clear, but the effect is to lower the photon
dispersion resulting in potentially higher brilliance for longer foams.

7.3.2 Burst characterization

First of all we should point out how the spectrum shape changes from ramp (fig.7.14)
to burst (fig.7.18). The first is steaper meaning more energy is emitted in the low-end
of the spectrum, while the latter has relatively more energy stored in high frequency
photons. The maximum value of γγ is roughly the same for both ramp and burst ,
what really changes is, as just said, the realtive number distribution of the photons.
Further evidence of what just stated is found in the cumulative energy distribution
which clearly shows more energy has been converted into high energy photons.
Quantitatively now about half of the energy is stored into multi-MeV photons and
the parameter γ90 is shown in figure 7.19.
As found in the ramp we notice a strong difference at a0 = 68 between the cases with

average density n0 = 3nc and the other cases which are pretty much indistinguishable
from the point of view of this parameter. This difference is reflected both in the
homogeneous and nanostructured targets leading us to believe there could be some
kind of threshold-like mechanism activating for a low/high enough density just like
we said in the previous section.
It should be pointed out how for a0 = 166 we reached γ90 ∼ 50 which corresponds to
∼ 25MeV, much higher than the few MeVs of the a0 = 68 configuration.
As we have already seen in this work, looking at the results from the point of view

of the parameter µ could be useful. Looking at figure 7.20 we can see the tendency
of the curves at a0 = 166 to collapse on each other, but in a less effective way than
we have seen for the ramp. The burst confirms to be the most complex phenomenon
in our system, and proposing a scaling for its magnitude or properties is no simple
task.
We want to point out how the same lobes-plume transition is translated into the

burst spectrum. For short enough foams (LF < LFOCUS) the electron phase-space
(px, py) is shaped more like two lobes while for longer foams it slowly transitions to a
more plume-like shape which, since the photon is always emitted in the direction of
motion, means a specular shape in photon angular spectrum. Longer foams means
more photons along the x−axis which is better for high brilliance sources. All the
consideration made about this behaviour during the ramp are perfectly valid also
here. In case of the burst the effect is enhanced since plotted are only the photons
produced during the reflection and thus the photons are representative of only the
electronic phase-space during the burst . So if the electrons are more plume-like we
see only the plume-like photons and not the sum of different phase-space shapes.
The angular spectrum of the photons in the burst are the same as the one produced
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Figure 7.18: Example of differential (top row) and cumulative (bottom) energy spectra for
n0 = 3nc and a0 = 68 for both homogeneous (left) and nanostructured (right) foams during
the burst . The spectrum is comprehensive of all photons produced during the burst .We
notice that now more than half of the energy produced is above γγ = 1 corresponding to
an energy equal to the electron rest mass. While the last 10% of the energy comes from
photons of ∼ 5 MeV (γγ ∼ 101).

Figure 7.19: Values of γ90 of the photons emitted during the burst for a homogeneous (left)
and nanostructured (right) target. The difference between n0 = 3nc and the other densities
is remarkable. It should be noticed that the scale of the y axis is now logarithmic.

in the last moment of the ramp.
Overall nanostructured cases follow the same trends as homogeneous ones but less
efficiently, thus localized higher density seems to be detrimental to the process.
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Figure 7.20: Values of γ90 of the photons emitted during the burst vs normalized number
thickness (µ/nc) for a homogeneous (left) and nanostructured (right) target. The difference
between n0 = 3nc and the other densities is remarkable. It should be noticed that the scale
of the y axis is now logarithmic.

Figure 7.21: Photons angular spectrum during the burst for two specific cases: LF = 5µm
and 16µm, both are for n0 = 9nc and a0 = 166 in homogeneous foam. Radially is plotted
the photon energy γγ while in colors we find the logarythm in base ten of the relative
photon energy distribution. The angle is define so that θ = 0 is parallel to x > 0 and the
laser propagation. For this configuration LFOCUS = µm.



Chapter 8

Conclusions and future
perspective

In the present thesis, an extensive parametric study has been carried out with the
kinetic, relativistic and quantum Particle-In-Cell (PIC) code Smilei in order to
explore the possibility to use the MultiPetawatt facility Apollon with near-critical
nanostructured targets for the purpose of high-energy photon generation.
First, an overview on the phenomenon of the synchrotron-like radiation emission
has been given from a very general point of view (chapter 1). An appealing way to
generate such kind of radiation relies on high-energy electrons heated in laser-plasma
scenarios, especially if the interaction occurs in the near-critical regime. For this
reason, coupling the Apollon laser with nanostructured MLTs is very interesting,
bringing together the potential of a state-of-the-art laser facility and an advanced
targetry concept (chapter 2). A photon source that is based on this kind of con-
figuration has the interesting advantage of being relatively compact, flexible, and
affect by limited radioprotection concerns. Understanding in details the physical
features of this configuration is of great interest, but because of its complexity, a
complete understanding of its behaviour can only be obtained through numerical
simulations. PIC simulations are the most suitable tool for this purpose, being able
to take into account the kinetic, relativistic, and quantum effects that are relevant
in the considered scenario. Hence we explained the main structure and features of
PIC codes, in order to help us understand the criticalities of this kind of numerical
simulation (chapter 3).
We used the previous works in the literature on nanostructured foams to help us cor-
rectly model the targets, and the actual specifics of the Apollon facility to accurately
describe the laser parameters.(chapter 4)
We started our work by understanding what physical processes were important in
our system, in particular we examined the effect of tunnel-ionization and binary
collisions. It was observed that for the regimes of interest here, binary collisions are
completely negligible while tunnel-ionization has a small (∼ 1%) effect on the results.
Modelling tunnel-ionization could perhaps improve our description of the system,
but the computational costs of its use can be far greater than the actual benefits, so
we decided to simulate collisionless fully ionized targets.(chapter 5)
In order to enhance photon emission, huge electromagnetic fields are required, thus
the need to find ways to increase the maximum field amplitude arises. At this regard,
a crucial point was to better understand the characteristics of the propagation of a
Ultra-High-Intesity (UHI) laser pulse into a near-critical double-layer targets. Using
the combined effect of a proper foam thickness (LF ) and a solid density foil (“mirror”)
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we observed an increase in the field amplitude (BMAX
Z /a0) ranging from about 2.5

up to more than 4, which translates roughly in one order of magnitude gain in laser
intensity (IMAX/I0 ∼ 101). (chapter 6)
Finally in chapter 7 we discussed the radiation emission features.
We looked first at the macroscopic quantities such as the total kinetic energy of
electrons, and the total energy of the emitted photons. Three distinct “phases” in
the course of the interaction were observed, which were called: ramp, burst , and
afterglow . We characterized each one of them from a macroscopic, and microscopic
point of view. The ramp is characterized by a roughly constant radiated power
in time, and corresponds to the laser pulse propagating through the near-critical
layer of the target. The burst happens when the pulse is reflected by with the solid
density foil, enhancing the fields amplitude which in return increases the radiated
power. The burst is also very short in time, its duration has been found to be of the
order of half of the Full-Width-Half-Maximum in time of the pulse prior interaction
(∆tBURST ∼ τp/2 = 10fs). After the reflection the pulse propagates back through
the near-critical layer until it leaves the target, this phase is called afterglow and is
characterized by a very small radiated power.
It was shown that finding the right balance between ramp and burst was of the
utmost importance in order to increase the fraction of energy converted from laser
to photons, while the afterglow has a nearly negligible effect on the overall dynamics
of the system. For a laser pulse characterized by a0 = 68 (I0 ≈ 1022Wcm−2) we
obtained that over 7% of the energy from the laser was converted to photons, in the
best configuration, and a maximum photon energy of hundreds of MeVs. For higher
intensities, namely a0 = 166 (I0 ≈ 5.9 × 1022Wcm−2), the maximum conversion
reached was over 22% of the total pulse energy, for a maximum photon energy of
the order of the GeV. Those are stunning results considering that these very laser
parameters will be achievable experimentally in the next years at the Apollon facility.
Nevertheless we should again remark that 2D simulations overestimate the results,
so eventhough we expect a real experiments to perfom worse than what has been
shown here, simulating some configurations in 3D geometry could help us being more
precise in estimating a real photon yield and energy.
Looking at the photon spectrum instead, it was shown how the photons emitted
during the burst were far more energetic than the ones emitted during the ramp.
Defining a “best” configuration is therefore not obvious: if the goal of a specific
experiment is to convert as much energy possible to photons regardless of their energy
spectrum, then the “best” configuration is one which can maximize the fraction of
energy converted in photons, relying on a good balance between ramp and burst . On
the other hand, if the goal is to obtain high energy photons, then a configuration
characterized by a huge burst is to consider the “best”, regardless of the overall
conversion efficiency.
Parameter of great importance which has been shown to be promising in the inter-
pretation of the results is the normalized number thickness µ/nc = nLF/nc. This
quantity has hardly ever being used in the literature around the topic of this work,
but it helped us characterize the systems, and we expect it to be an important
parameter in future studies as well.
The homogeneous targets performed better than their nanostructured counterpart, in
both macroscopic energy conversion, and photon maximum energy, even for the same
value of average density (n0). This effect has to be attributed to the dishomogeneity
of the latter ones, which leads to a local high (∼solid) density of the nanoparticles.
In conclusion, we investigated by means of 2D PIC simulations a laser-driven photon
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source based on the Apollon multi-PW laser system and near-critical double-layer
targets. The PIC code Smilei is an effective tool to investigate this physical system.
We examined the emission process in detail, considering the role of the different
stages of the interaction in the emission itself. The parameters we investigated were
vast, and spaced from an average density of the near-critical layer of 3 to 9 times the
critical density of the corresponding plasma, with thickness ranging from 3 to 36 µm,
and laser intensities of 1×1022Wcm−2 (a0 = 68) to 5.9×1022Wcm−2 (a0 = 166). For
the first time such an extensive parametric study included a systematic discussion of
the produced photon energy and angular spectrum.
We found that to optimize the photon production one has to cleverly tailor both
the target and laser parameters in order to be able to control the ramp and burst
stages. Overall, we find that high-energy photon sources constitute a promising
application of ultra-high-intensity (UHI) lasers. The overall numerical campaign,
from the preliminary investigations to the final outcome, consisted in hundreds of
simulations, for a total computational time of over 1.5 MCPUhours.

This work could set the basis for future developments, here we propose few topics
for future studies which would answer some of the questions arised from this work:

• Modelling of an UHI laser pulse propagation in nanostructured foams. In
particular we would like to better understand the behaviour of a nanostructured
NCD plasma irradiated with such intense and short pulses. The information
important in the frame of this present work would be: an analytical relation or
scaling which is able to predict the position and the magnitude of the maximum
amplification of the laser due to the self-focusing effect, how the pulse is shaped
and compressed during the propagation, a scaling able to describe the difference
brought by a local high electronic density with respect to an homogeneous
configuration, and, a relation expressing the dependence of the behaviour of a
nanostructured foam on the size of the nanoparticles.

• Effect of pre-pulses and/or pedestals in the laser temporal profile. There is no
pulsed laser that can be produced with a perfect temporal profile, a pre-pulse or
pedestal is always present which leads to the anticipated delivery of laser energy
to the target. For UHI pulses even a relatively high contrast (ratio between the
pulse peak intensity and the intensity that preceeds it) (∼ 108÷1010) could lead
to the modification of the target structure, and therefore also of its properties.
Usual time scales of such pedestals are of the order of 100 ÷ 101ps so extensive
parametric studies on this topic would be extremely expensive computationally.
An organic study on the topic would be a key to bring the simulation world
closer to the real experimental conditions.

• Quantitative characterization of the photon spectra. In the frame of this study
we gave a quantitative description of the photon spectra based on the value
of γ90 (see section 7.3) which is a simple and arbitrary quantity. A deeper
characterization of the energy distributions (energy spectra) and of their higher
order momenta could give us more (non-arbitrary) parameters for comparison.

• Explore more regimes. Expanding our knowledge on more regimes, studying
combinations of nanostructured targets and lasers with different parameters
such as intensity, total pulse energy, different polarization, and, longer pulses
(∼ 102fs).
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• 3D simulation campaign. Because of its computational cost, 3D PIC simulations
are not suitable for parametric studies, but understanding how the dimension-
ality of the system changes the results is of the utmost importance in order to
try to predict experimental results. Nanostructures are intrinsecally 3D and
real targets are nanostructured, not homogeneous. It goes without saying that
simulating a more realistic 3D foam-based target would be crucial to accurately
predict experimental outcomes.

This work has shown how the combination of advanced nanostructured targetry and
the forthcoming Multi-Petawatt facilities could be employed as an effective, and
efficient high-energy photon source. One thesis alone could not possibly contain
all the knowledge necessary to develop a laser-driven compact γ-source but can be
regarded as a starting point for future works on this topic.
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