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Sommario

Lo scopo di questo lavoro è applicare l’analisi di dati funzionali ai dati ottenuti mediante Pletismo-
grafia Optoelettronica (OEP), una tecnica non invasiva per la misurazione della variazione di volume
toracico nel tempo associata alla respirazione, sviluppata all’interno del Dipartimento di Elettronica
Informazione e Bioingegneria del Politecnico di Milano. I dati acquisiti mediante questa tecnica sono
caratterizzati da una elevata variabilità intra-soggetto e inter-soggetto, dipendente sia da fattori
fisiologici che da fattori esogeni quali cambiamento di postura o artefatti di misura. La loro analisi
attualmente richiede scelte arbitrarie da parte dell’operatore, come il posizionamento dei minimi
del tracciato, l’eliminazione di respiri outlier e l’individuazione di gruppi all’interno dell’attività
respiratoria. Viene dunque proposta una innovativa procedura semi-automatica e riproducibile in
R basata su tecniche di analisi di dati funzionali, robusta rispetto a dataset non banali, in grado
di caratterizzare in senso funzionale il breathing pattern di un soggetto. La procedura sviluppata
consente di ottenere risultati inediti, quali l’estrazione su base statistica di un rappresentante fun-
zionale del respiro del soggetto e di indagare l’eventuale presenza di cluster, sia dal punto di vista
dei valori assoluti, sia dal punto di vista della forma. L’efficacia e la flessibilità della metodolo-
gia proposta vengono mostrate attraverso l’applicazione a una serie di casi clinici. Infine, viene
mostrato come l’estrazione della curva caratteristica permetta un’analisi comparativa del breathing
pattern tra gruppi di soggetti con diverse caratteristiche, attraverso una applicazione al confronto
di soggetti sani a diverse età e posture, e pazienti affetti da Distrofia Muscolare di Duchenne in
diverse fasi della malattia.
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Abstract

The aim of this work is to apply Functional Data Analysis to data acquired by means of Optoelec-
tronic Plethysmography (OEP), a technique allowing for a non-invasive chest wall volume variation
measurement during respiration, developed within the Dipartimento di Elettronica Informazione e
Bioingegneria at Politecnico di Milano. The OEP data are characterized by a high intra-subject
and inter-subject variability, due to both physiological factors and exogenous factors like postural
changes and/or measurement noise. The state-of-art analysis requires operator-dependent choices
such as minima positioning in the data track, elimination of outlier breaths and the individuation
of breath clusters in the data. An innovative semi-automatic and reproducible procedure in R
is proposed, based on Functional Data Analysis techniques, which allows for the characterization
of a subject’s breathing pattern in a functional sense, and is robust with respect to non-trivial
datasets. This procedure allows to achieve new results such as the extraction on a statistical basis
of a functional representative of a subject’s breath, or the statistical individuation of clusters in
the breathing pattern with respect to absolute values or shape. Flexibility and effectiveness of the
procedure are validated through its application to real case studies. Finally it is shown how the ex-
traction of a representative breath curve allows for an inter-subject breathing pattern comparison,
with an application to the comparison of healthy subjects in different postures and age classes, and
patients suffering from Duchenne Muscular Dystrophy in different disease stages.
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Chapter 1

Introduction

Far from self-sustaining, the body depends on the external environment, both as a source of sub-
stances the body needs to survive and as a catch basin for its wastes. Cells making up the body
require a continuous supply of oxygen to carry out their vital functions, and give off carbon dioxide,
a waste product the body must get rid of. The major function of the respiratory system is to sup-
ply the body with oxygen and dispose of carbon dioxide. Pulmonary ventilation, better known as
breathing, is the movement of air into and out of the lungs so that the gases there are continuously
changed and refreshed [16].

Several methods to measure pulmonary ventilation are available. Optoelectronic plethysmogra-
phy (OEP) is a now-established technique, based on typical methods for optical motion analysis,
that allows to measure the variations of the volume of the chest wall and its compartments during
breathing. This method, differently from traditional spirometry, provides a non-invasive measure-
ment of a subject’s pulmonary ventilation, and allows to study the contribution of the different
muscles of respiration during breathing [3]. The muscles of respiration are essential parts of the
respiratory system, since lungs are not capable of inflating themselves, and will expand only when
there is an increase in the volume of the thoracic cavity. In humans, as in the other mammals,
this is achieved primarily through the contraction of the diaphragm, but also by the contraction
of the intercostal muscles which pull the rib cage upwards and outwards [22]. Thanks to OEP it
is possible to study chest wall kinematics in the majority of conditions, including exercise [2] [4].
OEP data can be used to evaluate the breathing pattern of the subject under consideration, which
can be summarized with a number of parameters such as the respiratory rate, the tidal volume, the
end-expiratory lung volume. These quantities are then used in diagnostics, for example to assess
the evolution of respiratory system diseases [4].

The OEP data consist in temporal series of volume measurements of the chest wall and its com-
partments. Single volume oscillations, taken with respect to the total chest wall volume, constitute
the subject’s breaths. Given a set of curves, each representing a breath of the subject, computa-
tion of breathing pattern parameters has been standardized and can be done almost automatically.
However, a rigorous, automatic and reproducible procedure to analyse such data is lacking: state-
of-art analysis of OEP data still involves operator-dependent choices, especially for what concerns
cutting the data vector in single breaths, which is usually done by hand by the operator. Also,
outlying curves are removed based on visual inspection, and the breathing pattern parameters are
computed on a set of curves which is selected manually by the analyst among the whole dataset

1



[13] [14]. Moreover, in some applications (such as exercise) different breathing patterns may coexist
in the same acquisition, that is, it is required to distinguish clusters among data [2].

Functional Data Analysis (FDA) provides statistical tools able to tackle these problems. In
fact, OEP data can be interpreted as a sequence of realisations of a smooth underlying function,
that is the breath function of the patient under consideration. A statistical procedure to analyse
OEP data, from breaths separation to pattern recognition, is provided. B-spline smoothing [18],
functional outlier detection based on depth measures [9] [10] and K-medoids with Alignment [19]
techniques are combined and adapted to work with Optoelectronic Plethysmography data, in order
to deal with a variety of clinical situations.

A definition of breath is given as the oscillation between two consecutive minima of the total
chest wall volume. An algorithm, based on a pre-smoothing step, to find total volume minima is
provided. The concept of outlying breath is formalized and an algorithm for outlier detection is
given, which combines different outlier detection techniques. This procedure is semi-automatic and
reproducible, and allows to work on the original data avoiding manual curves selection. Moreover, it
is possible to provide a functional characterization of the breathing pattern of a subject. K-medoids
with Alignment is employed to find clusters in the breath curves: the L2 distance is used in contexts
where the amplitude or the mean volume trend in the data acquisition are significant, while the
Pearson correlation coefficient is proposed when shape patterns in the data are investigated. Cluster
centroids can be used for a synthetic description of the groups. Functional medians can also be
extracted as representatives of the quiet breath of a subject, and used for population analysis. The
proposed outlier detection algorithm can be used to study outliers in the medians, while K-medoids
with Alignment is applied to study group structures among the patients. A number of examples
and case studies show the effectiveness and the robustness of the developed procedure in analyzing
the OEP data, which by their nature are characterized by a high variability, both intra-subject and
inter-subject.

The thesis is organized as follows. In Chapter 2, basic concepts of respiratory system physiology
and breathing mechanics are discussed, and a description of Optoelectronic Plethysmography is
provided. Chapter 3 presents a Functional Data Analysis theoretical background, with a focus on
the techniques that are employed to study OEP data. Chapter 4 describes a statistical methodology
for OEP data preprocessing, from breaths separation to outlier detection. Examples of application
are provided, with an experimental assessment of the outlier detection method. In Chapter 5
a method to find the representative breath function of a subject is discussed. K-medoids with
Alignment algorithm is applied either to find the functional median breath of a subject, or to
find possible cluster structures in his breathing pattern. Case studies in different clinical and
experimental settings are discussed. In Chapter 6 methods and results of population analysis are
presented. Functional medians are used to compare healthy subjects in sitting and supine position,
and supine at different ages. A comparison between healthy subjects and patients affected by
Duchenne Muscular Dystrophy at different ages is discussed. Finally, in the Appendix the complete
R code for the analysis is reported in detail, with indications on the R packages needed to run the
scripts.
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Chapter 2

The respiratory system and
breathing mechanics

In this chapter, we provide a brief description of the respiratory system and its functions.
The respiratory system includes the nose, nasal cavity, and paranasal sinuses; the pharynx;

the larynx; the trachea; the bronchi and their smaller branches; the lungs,which contain the terminal
air sacs, or alveoli; the parts of the central nervous system concerned with the control of the muscles
of respiration, and the chest wall. The chest wall consists of the muscles of respiration — such as
the diaphragm, the intercostal muscles, and the abdominal muscles — and the rib cage. In Figure
2.1 a representation of the main respiratory organs is provided [16].

The major function of the respiratory system is to supply the body with oxygen and dispose of
carbon dioxide. Most of the tissues of the body require oxygen to produce energy, so a continuous
supply of oxygen must be available for their normal functioning. Carbon dioxide is a by-product of
this aerobic metabolism, and it must be removed from the vicinity of the metabolizing cells.

To accomplish this function, at least four processes, collectively called respiration, must happen
[16]:

1. Pulmonary ventilation: movement of air into and out of the lungs so that the gases there
are continuously changed and refreshed (commonly called breathing).

2. External respiration : movement of oxygen from the lungs to the blood and of carbon
dioxide from the blood to the lungs.

3. Transport of respiratory gases: transport of oxygen from the lungs to the tissue cells of the
body, and of carbon dioxide from the tissue cells to the lungs. This transport is accomplished
by the cardiovascular system using blood as the transporting fluid.

4. Internal respiration: movement of oxygen from blood to the tissue cells and of carbon
dioxide from tissue cells to blood.

The breathing of all vertebrates with lungs consists of repetitive cycles of inhalation and exha-
lation. Inspiration is the period when air flows into the lungs, and expiration is the period when
gases exit the lungs. The number of respiratory cycles per minute is the breathing or respiratory
rate, and is one of the four primary vital signs of life [22].
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The major function of the respiratory system is to supply
the body with oxygen and dispose of carbon dioxide. To accom-
plish this function, at least four processes, collectively called
respiration, must happen:

1. Pulmonary ventilation: movement of air into and out of
the lungs so that the gases there are continuously changed
and refreshed (commonly called breathing).

2. External respiration: movement of oxygen from the lungs
to the blood and of carbon dioxide from the blood to
the lungs.

3. Transport of respiratory gases: transport of oxygen from
the lungs to the tissue cells of the body, and of carbon
dioxide from the tissue cells to the lungs. This transport is
accomplished by the cardiovascular system using blood as
the transporting fluid.

4. Internal respiration: movement of oxygen from blood
to the tissue cells and of carbon dioxide from tissue cells
to blood.

Only the first two processes are the special responsibility of
the respiratory system (Figure 22.1), but it cannot accomplish
its primary goal of obtaining oxygen and eliminating carbon

dioxide unless the third and fourth processes also occur. As you
can see, the respiratory and circulatory systems are closely cou-
pled, and if either system fails, the body’s cells begin to die from
oxygen starvation.

The actual use of oxygen and production of carbon dioxide
by tissue cells, known as cellular respiration, is the cornerstone of
all energy-producing chemical reactions in the body. We discuss
cellular respiration, which is not a function of the respiratory
system, in the metabolism section of Chapter 24.

Because it moves air, the respiratory system is also involved
with the sense of smell and with speech.

Functional Anatomy
of the Respiratory System
c Identify the organs forming the respiratory passageway(s)

in descending order until the alveoli are reached.

c Describe the location, structure, and function of each of

the following: nose, paranasal sinuses, pharynx, and larynx.

c List and describe several protective mechanisms of the

respiratory system.
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Figure 22.1 The major respiratory organs in relation to surrounding structures.

Figure 2.1: The major respiratory organs.

2.1 The Muscles of Respiration and the Chest Wall

The muscles of respiration and the chest wall are essential components of the respiratory system.
The lungs are not capable of inflating themselves, and will expand only when there is an increase in
the volume of the thoracic cavity. In humans, as in the other mammals, this is achieved primarily
through the contraction of the diaphragm, but also by the contraction of the intercostal muscles
which pull the rib cage upwards and outwards [22].

The primary components of the chest wall are shown schematically in Figure 2.2 [4]. These
include the rib cage; the external and internal intercostal muscles and the diaphragm, which are
the main muscles of respiration; and the lining of the chest wall, the visceral and parietal pleura.

The intrapulmonary (intra-alveolar) pressure (Palv) is the pressure in the alveoli. Intrapul-
monary pressure rises and falls with the phases of breathing, but it always eventually equalizes with
the atmospheric pressure [16] [12].

The pressure in the pleural cavity, the intrapleural pressure (Ppl), also fluctuates with breath-
ing phases, but is always about 4 mm Hg less than Palv. That is, Ppl is always negative relative to
Palv.

Any condition that equalizes Ppl with the intrapulmonary (or atmospheric) pressure causes
immediate lung collapse. It is the transpulmonary pressure —the difference between the intra-
pulmonary and intrapleural pressures (Palv – Ppl)—that keeps the air spaces of the lungs open or,
phrased another way, keeps the lungs from collapsing. Moreover, the size of the transpulmonary
pressure determines the size of the lungs at any time [16].
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wall volume into different compartments. The geometrical models of the compart-

ments that have been developed for OEP volume measurements follow the three- 

compartment model, composed by the pulmonary rib cage (RCp), the abdominal rib 

cage (RCa), and the abdomen (AB) [15–18]. The rib cage is separated from the 

abdomen by the line of markers placed on the lower costal margin. The subdivision 

of the rib cage into RCp ad RCa is defined by the transverse section at the level of 

the xiphoid [19]. Precisely, the surface that encloses RCp extends from the clavicles 

to the line of markers extending transversely at the level of the xiphisternum, while 

RCa extends from this line to the lower costal margin. AB extends caudally from the 

lower costal margin to the level of the anterior superior iliac crest.
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rib cage

Abdominal
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Abdominal

muscles

Diaphragm
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muscles
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Pab
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Fig. 11.4 Three- 

compartment chest wall 

model schematic diagram of 

the respiratory system, where 

different pressures of interest 

are shown: Pao pressure at the 

airway opening, Palv alveolar 

pressure, Ppl pleural pressure, 

Pab abdominal pressure, Pbs 

pressure at the body surface. 

The different functional 

respiratory muscle groups 

displace the different chest 
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Fig. 11.5 Representative examples of volume variations of the pulmonary rib cage (RCp), abdom-

inal rib cage (RCa), and abdomen (AB) during quiet breathing. (a) Normal healthy subject. (b) 

Patient with type III osteogenesis imperfecta, presenting inspiratory paradoxical inward motion of 

the RCp. (c) Patient with chronic obstructive pulmonary disease (COPD), presenting inspiratory 

paradoxical inward motion of the RCa. (d) Patient with late-onset type II glycogenosis, presenting 

inspiratory paradoxical inward motion of the AB due to diaphragmatic severe weakness. Gray 

area: inspiration. Paradoxical motion is shown by the red arrows

A. Aliverti and A. Pedotti

Figure 2.2: Three-compartment chest wall model of the respiratory system, where different pressures
of interest are shown: Pao pressure at the airway opening, Palv alveolar pressure, Ppl pleural
pressure, Pab abdominal pressure, Pbs pressure at the body surface.

2.1.1 Inspiratory muscles

The muscles of inspiration include the diaphragm, the external intercostals, and the accessory
muscles of inspiration [12]. As these muscles are activated, the thoracic dimensions increase, the
lungs are stretched and the intrapulmonary volume increases, thereby decreasing the gas pressure
inside it. This drop in pressure causes air to rush into the box from the atmosphere, because gases
always flow down their pressure gradients [16].

The Diaphragm

The diaphragm is the primary muscle of inspiration. It is a large dome-shaped muscle (about
250 cm2 in surface area) that separates the thorax from the abdominal cavity. The diaphragm is
considered to be an integral part of the chest wall and must always be considered in the analysis
of chest wall mechanics. When a person is in the supine position, the diaphragm is responsible for
about two thirds of the air that enters the lungs during normal quiet breathing [22]. When a person
is standing or seated in an upright posture, the diaphragm is responsible for only about one third
to one half of the tidal volume. It is innervated by the two phrenic nerves, which leave the spinal
cord at the third through the fifth cervical segments [12].

During normal quiet breathing, contraction of the diaphragm causes its dome to descend 1
to 2 cm into the abdominal cavity, with little change in its shape. This elongates the thorax and
increases its volume. During a deep inspiration, the diaphragm can descend as much as 10 cm. With
such a deep inspiration, the limit of the compliance of the abdominal wall is reached. After this
point, contraction of the diaphragm elevates the lower ribs. If one of the leaflets of the diaphragm is
paralyzed (for example, because of transection of one of the phrenic nerves), it will “paradoxically”
move up into the thorax as intrapleural pressure becomes more negative during a rapid inspiratory
effort [12].
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a result, Ppul drops about 1 mm Hg relative to Patm. Anytime the
intrapulmonary pressure is less than the atmospheric pressure
(Ppul , Patm), air rushes into the lungs along the pressure gradi-
ent. Inspiration ends when Ppul 5 Patm. During the same period,
Pip declines to about –6 mm Hg relative to Patm (Figure 22.14).

During the deep or forced inspirations that occur during vig-
orous exercise and in some chronic obstructive pulmonary dis-
eases, the thoracic volume is further increased by activity of
accessory muscles. Several muscles, including the scalenes and
sternocleidomastoid muscles of the neck and the pectoralis

Chapter 22 The Respiratory System 821
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1 Inspiratory muscles contract 
(diaphragm descends; rib cage 
rises).

2 Thoracic cavity volume 
increases.

3 Lungs are stretched; 
intrapulmonary volume increases.

4 Intrapulmonary pressure 
drops (to –1 mm Hg).

5 Air (gases) flows into lungs 
down its pressure gradient until 
intrapulmonary pressure is 0 
(equal to atmospheric pressure).

1 Inspiratory muscles relax 
(diaphragm rises; rib cage 
descends due to recoil of costal
cartilages).

2 Thoracic cavity volume 
decreases.

3 Elastic lungs recoil passively; 
intrapulmonary volume 
decreases.

4 Intrapulmonary pressure rises
(to +1 mm Hg).

5 Air (gases) flows out of lungs 
down its pressure gradient
until intrapulmonary pressure is 0.

Figure 22.13 Changes in thoracic volume and sequence of events during inspiration
and expiration. The sequence of events in the left column includes volume changes during 
inspiration (top) and expiration (bottom). The lateral views in the middle column show changes in
the superior-inferior dimension (as the diaphragm alternately contracts and relaxes) and in the
anterior-posterior dimension (as the external intercostal muscles alternately contract and relax).
The superior views of transverse thoracic sections in the right column show lateral dimension
changes resulting from alternate contraction and relaxation of the external intercostal muscles.

Figure 2.3: Inspiration and expiration sequences.
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The External Intercostals

When they are stimulated to contract, the external intercostal, parasternal intercostal, and scalene
muscles raise and enlarge the rib cage. The parasternal muscles, which are usually considered part
of the internal intercostals, are inspiratory muscles and may be partly responsible for raising the
lower ribs. The scalene muscles appear to contract in normal quiet breathing and are therefore not
accessory muscles [12].

These muscles are innervated by nerves leaving the spinal cord at the first through the eleventh
thoracic segments. During inspiration, the diaphragm and inspiratory rib cage muscles contract
simultaneously. If the diaphragm contracted alone, the rib cage muscles would be pulled inward
(this is called retraction). If the inspiratory muscles of the rib cage contracted alone, the diaphragm
would be pulled upward into the thorax [12].

2.1.2 Expiratory muscles

Expiration is passive during normal quiet breathing, and no respiratory muscles contract. During
exhalation (breathing out), at rest, all the muscles of inhalation relax, returning the chest and
abdomen to a position called the “resting position”, which is determined by their anatomical elas-
ticity [12]. At this point the lungs contain the functional residual capacity of air, which, in the
adult human, has a volume of about 2.5–3.0 liters. Although the diaphragm is usually considered
to be completely relaxed during expiration, it is likely that some diaphragmatic muscle tone is
maintained, especially when one is in the horizontal position. The inspiratory muscles may also
continue to contract actively during the early part of expiration, especially in obese people. This
so-called braking action may help maintain a smooth transition between inspiration and expiration.
It may also be important during speech production [12].

Active expiration occurs during exercise, speech, singing, the expiratory phase of coughing or
sneezing, and in pathologic states such as chronic bronchitis.

The main muscles of expiration are the muscles of the abdominal wall and the internal intercostal
muscles.

The Abdominal Muscles

When the abdominal muscles contract, they increase abdominal pressure and push the abdominal
contents against the relaxed diaphragm, forcing it upward into the thoracic cavity. They also help
depress the lower ribs and pull down the anterior part of the lower chest [12].

The Internal Intercostal Muscles

Contraction of the internal intercostal muscles depresses the rib cage downward in a manner opposite
to the actions of the external intercostals [12].

2.2 Optoelectronic plethysmography

The measurement of pulmonary ventilation is usually done with a spirometer or a pneumotacho-
graph. However, this procedure is more complex than it may seem, because temperature, humidity,
pressure, viscosity, and density of gas influence the recording of its volume. Mouthpieces, face
masks, and noseclips may introduce leaks and therefore cause losses, are impractical for prolonged
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measurement, limit the subject’s mobility, introduce additional dead space, and thereby increase
tidal volume. They also make the subject aware that his breathing is being measured and therefore
interfere with the natural pattern of breathing and its neural control [4].

All these problems have induced investigators to attempt to measure ventilation indirectly by
external measurement of chest wall surface motion. Optoelectronic plethysmography (OEP) is a
now-established technique, based on typical methods for optical motion analysis, that allows to
measure the variations of the volume of the chest wall and its compartments during breathing. A
number of reflective markers are positioned by a hypoallergenic tape on the trunk of the subject
in selected anatomical reference sites of the rib cage and the abdomen, as in Figure 2.4. A set of
cameras is placed nearby the subject under analysis. Each camera is equipped with an illumina-
tor (infrared light-emitting diodes) that determines a high contrast between the reflective marker
and the rest of the scene on the recorded image, thus allowing the fully automatic recognition
of the markers. When a single marker is seen by two or more cameras, its position (defined by
the three-dimensional coordinates in the reference system of the laboratory) can be calculated by
stereophotogrammetry, being known the position, orientation, and the internal parameters of each
camera. Once the 3D coordinates (X, Y, Z) of the points belonging to the chest wall surface are
acquired with reference to an arbitrary coordinate system, a closed surface is defined by connecting
the points to form triangles (mesh of triangles). For each triangle, the area and the direction of the
normal of the plane defined by that triangle are determined. Successively, the internal volume of
the shape is computed using Gauss’ theorem (or divergence theorem, or Green’s theorem in space)
[4].

In the last years, different protocols of OEP have been developed for different experimental and
clinical situations. The validation of these measurement protocols was always performed by com-
paring the chest wall volume variation, measured by OEP, with lung volume variations measured
by a spirometer or integrating a flow measurement at the airway opening. In the first studies, vol-
ume changes were compared in healthy subjects while sitting or standing and wearing 89 markers,
during quiet breathing, slow vital capacity maneuvers, and incremental exercise on a cycle ergome-
ter. In these conditions, the coefficient of variation of the two signals was always lower than 4%.
Successively, OEP was validated in constrained postures, like the supine and prone position [4].

Another advantage of OEP with respect to the traditional Spirometry is that it allows to study
the contribution of the different muscles of respiration during breathing. The chest wall can be
modeled as being composed of three different compartments: pulmonary rib cage (RCp), abdom-
inal rib cage (RCa), and the abdomen (AB), as depicted in Figure 2.5. This model is the most
appropriate for the study of chest wall kinematics in the majority of conditions, including exercise.
It takes into consideration the fact that the lung- and diaphragm-apposed parts of the rib cage
(RCp and RCa, respectively) are exposed to substantially different pressures on their inner surface
during inspiration, that the diaphragm acts directly only on RCa, and that non-diaphragmatic
inspiratory muscles act largely on RCp. Abdominal volume change is defined as the volume swept
by the abdominal wall [4].

In our work we will analyse data collected by means of OEP. A data acquisition from a subject
consists in:

• Time (s) : the vector of times at which the markers positions were measured (and volume
was computed). Frequency of acquisition is 60Hz;

• RCp volume (L);

• RCa volume (L);

8



151

11.1.2  Optoelectronic Plethysmography

Optoelectronic plethysmography (Fig. 11.1) is a now-established technique, based 

on typical methods for optical motion analysis, that allows to measure the varia-

tions of the volume of the chest wall and its compartments during breathing [15, 

16]. A number of reflective markers are positioned by a hypoallergenic tape on the 

trunk of the subject in selected anatomical reference sites of the rib cage and the 

abdomen.

A set of cameras is placed nearby the subject under analysis. Each camera is 

equipped with an illuminator (infrared light-emitting diodes) that determines a high 

contrast between the reflective marker and the rest of the scene on the recorded 

image, thus allowing the fully automatic recognition of the markers. When a single 

marker is seen by two or more cameras, its position (defined by the three- dimensional 

coordinates in the reference system of the laboratory) can be calculated by stereo-

photogrammetry, being known the position, orientation, and the internal parameters 

of each camera. Once the 3D coordinates (X, Y, Z) of the points belonging to the 

chest wall surface are acquired with reference to an arbitrary coordinate system 

(Fig. 11.2), a closed surface is defined by connecting the points to form triangles 

(mesh of triangles) (Fig. 11.3). For each triangle, the area (Ai) and the direction of 

the normal of the plane defined by that triangle are determined. Successively, the 

internal volume of the shape is computed using Gauss’ theorem (or divergence theo-

rem, or Green’s theorem in space).
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Fig. 11.1 Optoelectronic plethysmography (OEP): principle of measurement
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Figure 2.4: Optoelectronic plethysmography (OEP): principle of measurement
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planes of the markers placed on the chest wall surface (during quiet spontaneous breathing). From 

markers’ displacement, the variations of the enclosed volume is computed (see Fig. 11.3)
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Fig. 11.3 Geometrical models of the three chest wall compartments: pulmonary rib cage (RCp), 

abdominal rib cage (RCa), and abdomen (AB) (left, three views) and their volume changes during 

quiet spontaneous breathing, respectively, Vrc,p; Vrc,a; and Vab. Chest wall volume (Vcw) is equal to 

Vrc,p + Vrc,a + Vab

A. Aliverti and A. Pedotti

Figure 2.5: Geometrical models of the three chest wall compartments: pulmonary rib cage (RCp),
abdominal rib cage (RCa), and abdomen (AB) (left, three views) and their volume changes during
quiet spontaneous breathing, respectively, Vrcp; Vrca; and Vab. Chest wall volume (Vcw) is equal to
Vrcp+ Vrca+ Vab.
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Figure 2.6: Acquired OEP data for a healthy subject in sitting position.

• AB volume (L);

• Chest Wall volume or Total volume (L), that is the sum of the volumes of the three compart-
ments.

A visual representation of raw data is given in Figure 2.6.
OEP data can be used to evaluate the so-called breathing pattern. Some breathing patterns are

for example the Quiet Breathing (QB) or eupnea, which is the ordinary breathing at rest of a subject,
forced breathing or hyperpnea, which is the breath modality during exercise, paradoxical breathing,
that is inward abdominal or rib cage movement with inspiration and outward movement with
expiration, apnea, tachipnea and many more. Each pattern is characterized by specific quantities
which can be measured based on OEP data or a spirogram. Figure 2.7 shows some of them:
total lung capacity (TLC), functional residual capacity (FRC), expiratory reserve volume (ERV),
residual volume (RV), vital capacity (VC), tidal volume (VT ). Other important quantities are also
the end-expiratory lung volume (EELV) and end-inspiratory lung volume (EILV), the respiratory
rate (number of breaths per minute) and ventilation (the product of breathing frequency and tidal
volume).

2.3 State of the art

Despite the computation of breathing pattern parameters has been standardized and can be done
almost automatically, state-of-art analysis of OEP data still involves arbitrary choices of the analyst,
especially for what concerns positioning the local minima of the signal (to get single breath curves)
which is usually done by hand by the operator. The selection of a sample of so-obtained curves
where to compute the breathing pattern parameters is also arbitrary: for example, outliers are
removed based on visual inspection [14]. Moreover, in some applications (such as exercise) different
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Here below is not provided a comprehensive literature analysis, but only a summary 

of the main findings achieved so far.

Healthy subjects were analyzed during exercise, both on a cycle ergometer [17, 

18, 30, 31] and during walking on a treadmill [32]. In both modalities, end- expiratory 

lung volume is reduced because of the recruitment of the expiratory muscles, and 

this reduction increases with the intensity of exercise. During heavy exercise, about 

one third of the tidal volume is accomplished below FRC, and about 40 % of the 

increase in tidal volume is attributable to the recruitment of expiratory reserve vol-

ume. The reduction in end-expiratory total chest wall volume is almost entirely due 

to a decrease in end-expiratory volume of the abdomen (Fig. 11.7).

End-expiratory volumes of both rib cage compartments do not change signifi-

cantly. As the end-inspiratory displacement of the abdomen is nearly constant dur-

ing exercise, the increase in end-inspiratory lung volume is almost entirely due 

to rib cage expansion. In other words, during exercise, the increase in rib cage 

tidal volume results from recruiting only its inspiratory reserve volume, while the 
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Fig. 11.7 (a) Normal spirogram (TLC total lung capacity, FRC functional residual capacity, ERV 

expiratory reserve volume, RV residual volume, VC vital capacity, VT tidal volume). (b) Schematic 

diagram of the variations of VT during incremental exercise in healthy subjects. (c) Chest wall 

volume (Vcw) during exercise. The difference between end-inspiratory (open circles) and end- 

expiratory Vcw (closed circles) is VT. Dashed line, end-expiratory Vcw during quiet breathing (QB). 

(d) End-inspiratory (open symbols) and end-expiratory (closed symbols) mean volumes of the 

pulmonary rib cage (Vrc,p), abdominal rib cage (Vrc,a), and abdomen (Vab) during exercise (Modified 

from Aliverti et al. [17])
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Figure 2.7: On the left, a normal spirogram. On the right, schematic diagram of the variations of
VT during incremental exercise in healthy subjects.

breathing patterns may coexist in the same acquisition [2], while no automatized methodology to
analyse cluster structures in this kind of data is available. For an example of a recent study in the
field of breathing pattern analysis, one can see for instance Lo Mauro et al., 2016 [13].

The aforementioned issues can be tackled statistically by means of Functional Data Analysis.
In fact, OEP data can be interpreted as a sequence of realisations of a smooth underlying function,
that is the breath function of the patient under consideration. Then, it is reasonable to study the
OEP data in this framework. In addition, the functional interpretation of breaths allows for a richer
analysis, since it is is possible to characterize the breathing pattern of a subject by means of its
representative breathing function other than traditional scalar parameters.

This work represents the first attempt of application of Functional Data Analysis to Optoelectronic
Plethysmography data. Data analysed in the thesis have been provided by LaRes - Laboratorio
di Analisi della Respirazione at the Dipartimento di Elettronica Informazione e Bioingegneria of
Politecnico di Milano. LaRes mission is to create innovation in respiratory medicine developing new
methodologies and technologies for respiratory diseases analysis, functional evaluation and treat-
ment. Part of these data have been collected by LaRes during experimental campaigns, and part
through scientific collaborations between LaRes and other hospitals: Ospedale Maggiore Policlinico
di Milano, Istituto Medea Bosisio Parini and Uppsala University Hospital.
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Chapter 3

Functional Data Analysis

Functional Data Analysis is a branch of statistics which is able to study complex data, seen as
observations of functions varying over a continuum. This kind of data arises in many real-life
applications of statistics, especially in the biomedical field. Indeed, in many biomedical and health
studies, individual observations are signals or temporal curves observed at discrete time points, and
each curve provides the evolution over time of a certain process of interest for a given individual.
This is also the case of the OEP data, that we can view as an ensemble of smooth curves, each one
representing a breath. In this chapter, we will describe the Functional Data Analysis tools that we
employed to study such data.

3.1 Smoothing

In Functional Data Analysis, smoothing means finding a functional representation of data, given
noisy measurements. In this section, we will refer to the treatment of linear smoother of Ramsay
and Silverman, 2005 [18].

Consider a sample of m curves {tij , yij}j=1...ni , i = 1 . . .m. We suppose that there exists a
smooth function xi such that a data vector yi can be expressed as a sum of this function plus a
noise term ε:

yij = x(tij) + εij j = 1 . . . ni , i = 1 . . .m, (3.1)

where εij i.i.d, E[εij ] = 0, Var(εij) = σ2.
Normally, the construction of the functional observations xi using the discrete data yij takes

place separately or independently for each record i, therefore we simplify notation assuming that a
single function x for a data vector y has to be estimated, that is (in vector notation)

y = x(t) + ε. (3.2)

To obtain a functional representation of our data, we can express x as a combination of basis
functions. A basis function system is a set of known functions φk that are mathematically inde-
pendent of each other and such that we can approximate arbitrarily well any function by taking
a weighted sum or linear combination of a sufficiently large number K of these functions. Basis
function procedures represent a function x by a linear expansion:
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x̂(t) =

K∑
k=1

ĉkφk(t) (3.3)

in terms of the K known basis functions. The ĉk are called the coefficients of the basis expansion.
Let us express this relation in matrix terms:

y = Φĉ + ε, (3.4)

where

Φ =


φ1(t1) φ2(t1) . . . φK(t1)
φ1(t2) φ2(t2) . . . φK(t2)

...
...

...
φ1(tn) φ2(tn) . . . φK(tn)


y = (y1, . . . , yn)T , ĉ = (ĉ1, . . . , ĉK)T .

Notice that, thanks to basis functions, we can also express the derivative of our signal since:

x̂(t) =

K∑
k=1

ĉkDφk(t). (3.5)

A linear smoother can be obtained minimizing the least squares criterion:

SSE =

n∑
j=1

(yj −
K∑
k=1

ĉkφk(tj)). (3.6)

In matrix terms:

SSE = (y −Φĉ)T (y −Φĉ). (3.7)

The least squares solution is therefore

ĉ = (ΦTΦ)−1ΦTy

ŷ = Φĉ = Φ(ΦTΦ)−1ΦTy = Sy
(3.8)

where matrix S is called the smoothing matrix.
There are many possible choices for the basis functions φk: in our application, we chose to

smooth our data with B-spline basis system. This choice is motivated by B-splines flexibility and
efficiency in computations.
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Curve smoothing using B-splines

Spline functions are the most common choice of approximation system for non-periodic functional
data or parameters, as they combine fast computation with great flexibility, often achieved with a
small number of basis functions.

The first step in defining a spline is to divide the interval over which a function is to be approx-
imated into L subintervals separated by values τi, i = 1, . . . , L − 1 that are called breakpoints or
knots. Over each interval, a spline is a polynomial of specified order m. The order of a polynomial
is the number of constants required to define it, and is one more than its degree, its highest power.
Adjacent polynomials join up smoothly at the breakpoint which separates them for splines of order
greater than one, so that the function values are constrained to be equal at their junction. More-
over, derivatives up to order m−2 must also match up at these junctions. There is the possibility of
reducing these smoothness constraints by using multiple knots at junction points. Thus, the term
breakpoint, strictly speaking, refers to the number of unique knot values, while the term knot refers
to the sequence of values at breakpoints, where some breakpoints can be associated with multiple
knots. The knots are all distinct in most applications, and consequently breakpoints and knots are
then the same thing. The total number of degrees of freedom in the fit (the number of parameters
required to define a spline function) equals the order of the polynomials plus the the number of
interior breakpoints: m+ L− 1. If there are no interior knots, the spline reverts to being a simple
polynomial.

Any spline system fulfills the following properties:

• Each basis function φk(t) is itself a spline function as defined by an order m and a knot
sequence τ ;

• Any linear combination of these basis functions is a spline function;

• Any spline function defined by m and τ can be expressed as a linear combination of these
basis functions.

The most popular spline system is the B-spline one, which we are using in this work.
50 3. From functional data to smooth functions
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Figure 3.5. The thirteen basis functions defining an order four spline with nine
interior knots, shown as vertical dashed lines.

The property that an order m B-spline basis function is positive over no
more than m intervals, and that these are adjacent, is called the compact
support property, and is of the greatest importance for efficient computa-
tion. If there are K B-spline basis functions, then the order K matrix of
inner products of these functions will be band-structured, with only m− 1
sub-diagonals above and below the main diagonal containing nonzero val-
ues. This means that no matter how large K is, and we will be dealing
with values in the thousands, the computation of spline function can be
organized so as to increase only linearly with K. Thus splines share the
computational advantages of potentially orthogonal basis systems such as
as Fourier and wavelet bases.
The three basis functions on the left and the three on the right are dif-

ferent. As we move from the left boundary towards the center, the intervals
over which the basis functions are positive increase from one to four, but
always make the same smooth twice-differentiable transition to the zero
region. On the other hand, their transition to the left boundary varies in
smoothness, with the left-most spline being discontinuous, the next being
continuous only, and the third being once-differentiable. The same thing
happens on the right side, but in reverse order. That we lose differentiability
at the boundaries makes good sense, since we normally have no information
about what the function we are estimating is doing beyond the interval on
which we collect data. We therefore are allowing for the possibility that the
function may be discontinuous beyond the boundaries.

Figure 3.1: The thirteen basis functions defining an order four spline with nine interior knots, shown
as vertical dashed lines.
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Figure 3.1 shows the thirteen B-spline basis functions for an order four spline defined by nine
equally spaced interior breakpoints. Because cubic splines have two continuous derivatives, each
basis function makes a smooth transition to the regions over which it is zero.

The property that an order m B-spline basis function is positive over no more than m inter-
vals, and that these are adjacent, is called the compact support property, and enables efficient
computations.

Penalized smoothing

A crucial point of spline smoothing consists in selecting the right number of basis K: we wish to
ensure that the estimated curve gives a good fit to the data, for example in terms of the residual
sum of squares, but we do not wish the fit to be too dependent on our noisy data if this results in a
curve that is excessively locally variable, that is, we wish to keep the variance of the estimate under
control. Penalization allows to use a rich functional space (K ∼ n) without the risk of overfitting.

In our case, instead of finding the classical least squares solution by minimizing the SSE as we
have seen before, we minimize the penalized sum of squares PENSSE = SSE+λPEN(x), where λ
can be chosen for example with Generalized Cross Validation (GCV). Penalization introduces some
bias in the estimate, but allows to significantly reduce variance when we use a large K, therefore
it is a convenient choice to reduce the overall Mean Squared Error (MSE), which is a widely used
goodness-of-fit indicator consisting of a variance term plus a bias term:

MSE[ŷ(t)] = Bias2[ŷ(t)] + Var(ŷ(t)). (3.9)

The MSE of a fit can often be reduced by introducing some bias in order to reduce sampling
variance, and this is a key reason for imposing smoothness on the estimated curve. In fact, PEN(x)
can be defined as a roughness penalty, making use of the function derivatives. Indeed, many
functional data analyses require the estimation of derivatives, either because these are of direct
interest, or because they play a role in some other part of the analysis. A popular way to quantify
the notion of “roughness” of a function is the integrated squared second derivative of the function.
In fact the square of the second derivative [D2x(t)]2 of a function at t is often called its curvature
at t, since a straight line, which has no curvature, also has a zero second derivative. In this context
PEN2(x) =

∫
[D2x(s)]2ds.

This penalty may not be suitable, since it controls curvature in x itself, and therefore only the
slope in the derivative Dx. It does not require the second derivative D2x even to be continuous,
let alone smooth in any sense. In general, if the derivative of order m is the highest required by a
problem, one should actually penalize the derivatives of order m+2 in order to control the curvature
of the highest order derivative.

In this work, we are going to use the first derivative of our signal. Therefore, we introduce a
penalisation over the breaths third derivative by minimizing this loss function:

PENSSEλ = SSE + λPEN3(x), (3.10)

with PEN3(x) =
∫

[D3x(s)]2ds.
This can be expressed in matrix form as

PENSSEλ = SSE + λcTRφc, (3.11)

where Rφ(k,l) =
∫
D3φk(s)D3φl(s)ds.
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The least squares solution thus becomes:

ĉλ = (ΦTΦ + λRφ)−1ΦTy

ŷ = Φ(ΦTΦ + λRφ)−1ΦTy = Sy
. (3.12)

3.2 Functional Outlier Detection

3.2.1 Depth measures for functional data

In univariate statistics, boxplots are used to display descriptive statistics of data: the median, the
first and third quartiles and the extreme observations. In particular, the median is often referred
to as the most ”central” observation of the sample, since it is morally the central observation with
respect to the ordered sample [21].

To generalize order statistics or ranks to the functional setting, different versions of data depth
have been introduced to measure how deep (central) or outlying an observation is.

In this work we will adopt depth measures for multivariate functional data as described in Ieva
et al., 2013 [9] and Ieva and Paganoni, 2017 [10].

First, let us describe the notion of Band Depth (BD), as introduced in López-Pintado and Romo,
2009 [15]. We suppose to have a sample of n observations of the form yi = yi(t), i = 1, . . . , n, t ∈ I,
where I in an interval in R. The idea behind band depth is to provide a method to order functional
data according to decreasing depth values: y[1](t), that is the curve with highest depth, will be
the deepest (most central) curve or simply the median curve, and y[n](t) will be the most outlying
curve.

López-Pintado and Romo introduced the band depth concept through a graph-based approach.
The graph of a function y(t) is the subset of the plane

G(y) = {(t, y(t)) : t ∈ I}.

The band in R2 delimited by the curves yi1 , . . . , yik is

B(yi1 , . . . , yik) = {(t, x(t)) : t ∈ I, min
r=1,...k

yir (t) ≤ x(t) ≤ max
r=1,...k

yir (t)}. (3.13)

Let J be the number of curves determining a band, where J is a fixed value with 2 ≤ J ≤ n.
If Y1(t), ..., Yn(t) are independent copies of the stochastic process Y (t) generating the observations
y1, . . . , yn, the population version of the band depth for a given curve y(t) with respect to the
probability measure P is defined as

BDJ(y, P ) =

J∑
j=2

BD(j)(y, P ) =

J∑
j=2

P{G(y) ⊂ B(Y1, . . . , Yj)}, (3.14)

where B(Y1, . . . , Yj) is a band delimited by j random curves. The sample version of BD(j)(y, P )
is obtained by computing the fraction of the bands determined by j different sample curves con-
taining the whole graph of the curve y(t):

BD(j)
n =

(
n
j

)−1 ∑
1≤i1<i2<···<ij≤n

I{G(y) ⊆ B(yi1 , . . . , yij )}, (3.15)
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where I{·} denotes the indicator function. Computing the fraction of the bands containing the
curve y(t), the bigger the value of band depth, the more central position the curve has.

Then, the sample band depth of a curve y(t) is

BDn,J(y) =

J∑
j=2

BD(j)
n (y). (3.16)

A sample median function is a curve from the sample with largest depth value, defined by
argmaxy∈{y1,...,yn}BDn,J(y). If there are ties, the median will be the average of the curves maxi-
mizing depth.

López-Pintado and Romo also proposed a more flexible definition, which does not involve an
indicator function: the modified band depth (MBD). MBD measures the proportion of time that a
curve y(t) is in the band:

MBD(j)
n (y) =

(
n
j

)−1 ∑
1≤i1<i2<···<ij≤n

λ{Aj(y)}
λ{I} , (3.17)

where Aj(y) ≡ A(y; yi1 , . . . , yij ) ≡ {t ∈ I : minr=i1,...ij yr(t) ≤ y(t) ≤ maxr=i1,...ij yr(t)}, and λ
is the Lebesgue measure on I.

From now on we will consider bands defined by two curves, i.e. J = 2. Let us consider for each
pair of curves yi and yj the band that they define in I × R :

B(yi, . . . , yj) = {(t, y(t)) : t ∈ I,min(yi(t), yj(t)) ≤ y(t) ≤ max(yi(t), yj(t))}. (3.18)

Then, MBDn(y) is the mean over all possible bands of the time that y(t) spends inside a band,
while the original band depth accounts for the proportion of bands in which a curve is entirely
contained. If y(t) is always inside the band, the modified band depth degenerates to the band
depth.

Because the modified band depth takes the proportion of times that a curve is in the band
into account, it avoids having too many depth ties and is more convenient to obtain the most
representative curves in terms of magnitude.

Another interesting depth measure is the Modified Epigraph Index (MEI). As in the case of the
MBD, the MEI is a generalization of the Epigraph Index (EI), that accounts for the proportion of
curves that lie entirely above y (Lopez-Pintado and Romo, 2011 [15]).

The Epigraph Index is defined as:

EI(y) =
1

n

n∑
i=1

I{yi(t) ≥ y(t),∀t ∈ I}. (3.19)

The modified epigraph index of y ∈ {y1, ..., yn} is defined as

MEI{y1,...,yn}(y) =
1

n

n∑
i=1

λ({t ∈ I|yi(t) ≥ y(t)})
λ(I)

, (3.20)

and it stands for the mean proportion of time that y lies below the curves of the sample.
In Ieva et al., 2013 [9] and Ieva and Paganoni, 2017 [10] these statistics have been generalized

to the multivariate functional framework. Let Y be a stochastic process taking values in the
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space C(I;RL) of continuous functions y = (y1, ..., yL) : I −→ RL, with I as before. We have
a dataset constituted of N sample observations of this process, which we indicate by y1, . . . ,yn,
where yj = (yj1, . . . , yjL). The MBD and MEI of y become:

MBDy1,...,yn
(y) =

L∑
k=1

pkMBDJ
y1k,...,ynk

(yk)

MEIy1,...,yn(y) =

L∑
k=1

pkMEIy1k,...,ynk
(yk)

(3.21)

with pk > 0, ∀k = 1, . . . , L,
∑L
k=1 pk = 1, where the choice of the weights pk is usually

problem-driven.

3.2.2 Magnitude functional outlier detection

An useful tool to detect functional outliers is the functional boxplot developed by Sun and Genton,
2010 [21]. They used MBD to provide an ordering of the observations according to their depth
measures, and built a functional version of the well-known Inter Quartile Range (IQR).

Let us indicate the most central curve by y[1](t), and the most outlying one with y[n](t). In the
classical boxplot, the box itself represents the middle 50% of the data.The band delimited by the α
proportion (0 < α < 1) of deepest curves from the sample is used to estimate the α central region.
In particular, the sample 50% central region is

C0.5 = {(t, y(t)) : min
r=1,...,[n/2]

y[r](t) ≤ y(t) ≤ max
r=1,...,[n/2]

y[r](t)}, (3.22)

where [n/2] is the smallest integer not less than n/2. The border of the 50% central region is defined
as the envelope representing the box in a classical boxplot. Thus, this 50% central region is the
analog to the IQR and gives a useful indication of the spread of the central 50% of the curves. This
is a robust range for interpretation because the 50% central region is not affected by outliers or
extreme values, and gives a less biased visualization of the curves’ spread. The median curve y[1](t)
is also a robust statistic to measure centrality. The “whiskers” of the boxplot are the vertical lines
of the plot extending from the box and indicating the maximum envelope of the dataset except the
outliers. Sun and Genton proposed to extend the 1.5 times IQR empirical outlier criterion to the
functional boxplot. The fences are obtained by inflating the envelope of the 50% central region by
1.5 times the range of the 50% central region. Any curves outside the fences are flagged as potential
outliers and can be isolated from the original dataset.

Ieva et al., 2013 [9] generalized this procedure to construct the multivariate functional boxplot,
by using the multivariate definition of MBD to rank observations. This implies that the envelope of
the central region is composed of the same α% most central curves, with respect the multivariate
index of depth, in each component.

3.2.3 Shape functional outlier detection

A method that can be used to detect shape outliers and covariance outliers is the outliergram
(see Arribas-Gil and Romo, 2014 [6]), based on the computation of MBD and MEI of univariate
functional data. Shape outliers are curves that present a different pattern with respect to the rest
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of the data in terms of their derivatives. Covariance outliers are curves generated by a model that
is different from the model of the majority of data just in terms of the variance and covariance
operator that affects the second order moments of data.

Given a set of data y1, . . . , yn in the space C(I;R) of the continuous functions the following
inequality holds [6]:

MBDy1,...,yn(yj) ≤ a0 + a1MEIy1,...,yn(yj) + a2n
2(MEIy1,...,yn(yj))

2, j = 1, . . . , n, (3.23)

where a0 = a2 = −2/(n(n−1)) and a1 = 2(n+ 1)/(n−1). So considering a scatterplot of MBD
against multivariate MEI of data, the points lying far from the quadratic boundary correspond to
shape outliers, and data with very low values of MBD are potential magnitude outliers.

If in a sample of perfectly aligned curves with common shape one introduces a curve with a
different pattern, then the R2 point corresponding to the pair (MEI, MBD) for this new curve will
lie far away from the parabola defined by the points corresponding to the rest of the curves. In
general trajectories of a random process will cross many times even if they all exhibit the same
trend pattern. Then, the (MEI, MBD) points will not define a perfect parabola and identifying
outlying trajectories will not be straightforward. Arribas-Gil and Romo proposed the use of the
univariate boxplot rule for outlier detection on the vertical distances to the parabola: given a sample
of curves y1, . . . , yn with mbj = MBDy1,...,yn(yj) and mej = MEIy1,...,yn(yj) for j = 1, . . . , n we
consider the distances dj = a0 + a1mej + n2a2me

2
j −mbj and define as shape outliers those curves

with dj ≥ Qd3 + 1.5IQRd, where Qd3 and IQRd are the third quartile and inter-quartile range of
d1, . . . , dn.

To jointly visualize the observations in terms of shape and the boundary between the outlying
and non-outlying curves they propose to represent in R2 the (MEI, MBD) points together with the
parabola shifted downwards by Qd3 + 1.5IQRd. This graphical representation is referred to as the
outliergram.

In Ieva and Paganoni, 2017 [10] the following inequality is proved:

MBDJ
y1,...,yn

(y) ≤ a0 + a1MEIy1,...,yn
(yj) + a2n

2(MEIy1,...,yn
(yj))

2, j = 1, . . . , n, (3.24)

where a0 = a2 = −2/(n(n−1)) and a1 = 2(n+1)/(n−1). Therefore, it is possible to generalize
the outliergram to multivariate functional setting, with a construction that is analogue to the
univariate case.

3.3 Curve registration and clustering

A common problem encountered in functional data analysis is the misalignment of data (Ramsay
and Silverman, 2005 [18], Sangalli et al., 2010 [19]). Indeed, variation in functional observations
involves both the amplitude and the phase of the data. Amplitude variability pertains to the sizes
of particular features such as peaks or valleys of our functional data, ignoring their timings. Phase
variability is variation in the timings of the features without considering their sizes (see Figure 3.2).

Let us consider two breaths b1 and b2 pertaining to the same breathing track. One of our goals
will be to cluster breaths of the same subject, in order to see whether there are groups in his quiet
breathing. The breath curves b1 and b2 can in principle differ because of two types of variation. The
first is vertical variation, or amplitude variation, due to the fact that b1(t) and b2(t) may simply
differ at points of time t at which they are compared, but otherwise exhibit the same shape features
at that time. But they may also exhibit phase variation in the sense that functions b1 and b2 should
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Figure 1.1: The left panel shows three curves varying only in amplitude.
The right panel shows three curves varying only in phase.

Curve registration (or curve alignment) problem has been approached
with many methods in literature. In this project we follow the line of
research proposed by (Sangalli, Secchi, Vantini, Veneziani)[1] that define
suitable dissimilarity indexes between curves and thus align the curves min-
imizing their dissimilarity (or their distance). The algorithm implemented
in this work is able to jointly cluster and align a set of, unidimensional or
multidimensional, functional data. The package is developed giving atten-
tion to generality and extensibility to help future researchers to adapt it to
their own purposes.

1.2 Report structure

The report is organized as follows: In the Chapter 2 the algorithm is pro-
posed after the introduction of a proper framework for clustering and align-
ment. In Chapter 3 the focus moves to the program work-flow and any
relevant implementation details. In Chapter 4 a live web application is pro-
posed for the live testing of the package functionalities. In Chapter 5 there
are examples, conclusions and possible extensions. Finally a chapter with
tutorials on how to install, extend and use the package is provided.

2

Figure 3.2: On the left panel an example of amplitude-only variation is shown; on the right an
example of phase-only variation.

not be compared at the same time t because they are not exhibiting the same behavior. For this
reason, before comparing shape and amplitude of two breaths we need to align them, that is to
transform their time scales in order to make them compliant.

3.3.1 Mathematical framework

In this work we will adopt the methodology developed by Sangalli et al, 2010 [19], which is able to
efficiently cluster and align in K groups a set of curves.

As we have seen, variability among two or more curves can be thought of as having two com-
ponents: phase variability and amplitude variability. Heuristically, phase variability is the one that
can be eliminated by suitably aligning the curves, and amplitude variability is the one that remains
among the curves once they have been aligned .

Consider a set C of (possibly multidimensional) curves c(s) : R −→ Rd. Aligning c1 ∈ C to
c2 ∈ C means finding a warping function h(s) : R −→ R, of the abscissa parameter s, such that the
two curves c1 ◦ h and c2 are the most similar (with (c1 ◦ h)(s) := c(h(s)).

It is thus necessary to specify a similarity index ρ(c1, c2) : C × C −→ R that measures the
similarity between two curves, and a class W of warping functions h (such that c1 ◦ h ∈ C, for
all c ∈ C and h ∈ W ) indicating the allowed transformations for the abscissa. Aligning c1 to c2
means finding h∗ ∈W that maximizes ρ(c1 ◦h; c2). This procedure decouples phase and amplitude
variability without loss of information.

The choice of the couple (ρ,W ) (which defines phase and amplitude variability) cannot be
arbitrary, but has to satisfy some coherence properties:

• The similarity index ρ is bounded from above, with maximum value 1. Moreover, ρ is reflexive,
symmetric and transitive;

• The class of warping functions W is a convex vector space and has a group structure with
respect to function composition ◦.

• The couple (ρ,W ) functions is consistent in the sense that , if two functions c1 and c2 are
simultaneously warped along the same warping function h ∈ W , their similarity does not
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Figure 3.3: Possible choices of dissimilarity index and warping function class.

change:
ρ(c1, c2) = ρ(c1 ◦ h, c2 ◦ h) ∀h ∈W

This guarantees that is not possible to obtain a fictitious increment of similarity between two
curves c1 and c2 by simply warping them simultaneously to c1 ◦ h, c2 ◦ h. This propriety is called
W-invariance.

From the previous follows that for all h1 and h2 ∈W ,

ρ(c1 ◦ h1, c2 ◦ h2) = ρ(c1 ◦ h1 ◦ h−12 , c2) = ρ(c1, c2 ◦ h2 ◦ h−11 )

This means that a change in similarity between c1 and c2 obtained by warping simultaneously c1
and c2 can be obtained by warping only c1 or c2.

An equivalent formulation of this framework can be provided using couple (E ,W ) where E is a
dissimilarity measure between two curves; E has to satisfy analogous properties as ρ, except it has
to be bounded from below, with minimum value 0. For multidimensional functions, the similarity/
dissimilarity measure is computed via the average of the indexes in all directions.

Consistent (E ,W ) couples are shown in Figure 3.3. The class of warping functions in the table
are:

Wshift ={h : h(t) = t+ q, q ∈ R}
Wdilation ={h : h(t) = mt, m ∈ R+}
Waffine ={h : h(t) = mt+ q, m ∈ R+, q ∈ R}

and the more general class of diffeomorphisms Wdiffeomorphism, composed by increasing func-
tions that are smooth and have a smooth inverse. The case where no alignment is performed
corresponds to the special case Widentity = {h : h(t) = t}.
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3.3.2 K-means with alignment

Consider the problem of clustering and aligning a set of N curves {c1, . . . cN} with respect to a set
of k template curves {ϕ1, . . . ϕN} (with {c1, . . . cN} ⊂ C and ϕ ⊂ C. For each template curve ϕj ,
define the domain of attraction ∆j(ϕ) = {c ∈ C : suph∈W ρ(ϕj , c ◦ h) ≥ suph∈W ρ(ϕr, c ◦ h), r 6=
j}, j = 1, . . . , k, which is the ensembles of curves c that are more similar to ϕj than to the other
templates. Moreover, define the labelling function λ(ϕ, c) = min{r : c ∈ ∆r(ϕ)}, which indicates
the cluster curve c should be assigned to.

In order to cluster and align the set ofN curves {c1, . . . , cN} with respect to k unknown templates
we should first solve the following optimization problem:

Find ϕ = {ϕ1, . . . , ϕk} ⊂ C and h = {h1, . . . , hN} ⊂W such that

1

N

N∑
i=1

ρ(ϕλ(ϕ,ci), ci ◦ hi) ≥
1

N

N∑
i=1

ρ(ψλ(ψ,ci), ci ◦ gi) , (3.25)

for any other set of k templates ψ = {ψ1, . . . , ψk} ⊂ C and any other set of N warping functions
g = {g1, . . . , gN} ⊂ W ; and then, for i = 1, . . . , N , assign ci to the cluster λ(ϕ; ci), and align it to
the corresponding template, ϕλ(ϕ;ci), using the warping function hi.

This maximization problem is not analytically solvable; then, Sangalli et al [19] propose an iter-
ative procedure to find an approximate solution. The K-means with Alignment algorithm proceeds
as follows:

Let ϕ
[q−1] be the set of templates after iteration q−1, and {c1[q−1], . . . , cN [q−1]} be the N curves

aligned and clustered to ϕ
[q−1]. At the q−th iteration the algorithm performs the following steps.

Template identification step. For j = 1, . . . , k, the template of the j-th cluster, ϕj[q], is
estimated using all curves assigned to cluster j at iteration q − 1, i.e. all curves ci[q−1] such that
λ(ϕ

[q−1]; ci[q−1]) = j.

Ideally, the template ϕj[q] should be estimated as the curve ϕ ∈ C that maximizes the total
similarity: ∑

i:λ(ϕ
[q−1]

;ci[q−1])=j

ρ(ϕ, ci[q−1]). (3.26)

The set M where the template functions are searched has to be fixed. Two choices are natural:

• M may coincide with the entire functional space C. In this case, the representative functions
are called Frechet templates (i.e. the means). The resulting algorithm is called K-mean
Alignment algorithm;

• M may coincide with the set of functions {c1, ..., cN}, in which case the representative func-
tions are called Karcher templates (that is, the medians or medoids) and the algorithm is
called K-medoid Alignment.

Assignment and alignment step. The set of curves {c1[q−1], . . . , cN [q−1]} are clustered and
aligned to the set of templates ϕ

[q]
for i = 1, . . . , N ; the i-th curve ci[q−1] is aligned to ϕλ(ϕ

[q−1]
;ci[q−1])

and the aligned curve c̃i[q] = ci[q−1] ◦ hi[q] is assigned to cluster λ(ϕ
[q−1]; ci[q−1]) = λ(ϕ

[q−1]; c̃i[q−1])
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Normalization step. After each assignment and alignment step, a normalization step is
performed. For j = 1, . . . , k, all the Nj[q] curves c̃i[q] assigned to cluster j are warped along the

warping function (hj[q])
−1 where

hj[q] =
1

Nj[q]

∑
i:λ(ϕ

[q−1]
;ci[q−1])=j

hj[q]. (3.27)

In this way, at each iteration, the average warping undergone by curves assigned to cluster j is
the identity transformation h(s) = s. The normalization step is thus used to select, among all
candidate solutions to the optimization problem, the one that leaves the average locations of the
clusters unchanged, thus avoiding the drifting apart of clusters or the global drifting of the overall
set of curves. Note that the normalization step preserves the clustering structure chosen in the
assignment and alignment step, i.e., for all i, λ(ϕ

[q]
; ci[q]) = λ(ϕ

[q]
; c̃i[q])

The algorithm is initialized with a set of initial templates ϕ
[0]

= {ϕ1[0], . . . , ϕk[0]} ⊂ C, and

with {c1[0], . . . , cN [0]} = {c1, . . . , cN}, and stopped when, in the assignment and alignment step, the
increments of the similarity indexes are all lower than a fixed threshold.

If the problem is given in terms of dissimilarity measures, the optimization problem becomes a
minimization one:

1

N

N∑
i=1

E(ϕλ(ϕ,ci), ci ◦ hi) ≤
1

N

N∑
i=1

E(ψλ(ψ,ci), ci ◦ gi). (3.28)

Thus, the template ϕj[q] should be estimated as the curve ϕ ∈ C that minimizes the total
within-cluster dissimilarity: ∑

i:λ(ϕ
[q−1]

;ci[q−1])=j

E(ϕ, ci[q−1]). (3.29)
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Chapter 4

Plethysmography data
preprocessing

In this chapter a semi-automatic OEP data analysis procedure in R is proposed to prepare a
functional dataset of breaths from raw data . The aim is to form a set of 4-dimensional smooth
curves, each representing a single breath in its four components: total volume, RCp volume, RCa
volume, AB volume. There are three main issues to face in this phase:

• Breaths separation. This step involves finding the local peaks of a noisy signal, and an
opportune definition of breath;

• Breaths smoothing. This point is strictly linked with breaths separation;

• Outlier detection. Identifying and removing outliers is a fundamental step to make further
analysis more robust.

4.1 Breaths separation

Breaths separation is done cutting the data vectors in pieces, each one representing a breath,
where the cutting points are to be found with respect to the total volume. Indeed, referring to
the Spirometry test, a breath is usually defined as the interval between the points of zero air flux
coming out of the mouth during expiration [24]. Hence, we need to translate this concept in a
functional framework in order to separate breaths correctly.

4.1.1 Algorithm steps

Ideally, the cutting points we are looking for should be nothing more than the local minima of the
chest wall volume. In real cases, however, the lower part of the signal can be very noisy and subject
to small perturbations (Figure 4.1), due for example to heartbeat.

For this reason, positioning the cutting points is usually done by hand by experts, which is
arbitrary and rather time-consuming; instead, we provide a robust method to do this almost auto-
matically.
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Figure 4.1: A real signal with problematic minima.

1. Find local maxima of the total volume;

2. Smooth the pieces of volume between two consecutive maxima;

3. Divide the smoothed curves in subintervals;

4. Find the subinterval where the mean derivative starts to grow;

5. Pick the local minimum of that subinterval as cutting point;

6. Project the cutting points over compartments;

7. Smooth the so-obtained breaths.

The reasoning behind this algorithm is the following: we say that a breath starts (and the
previous breath ends) in the point where the total volume signal derivative starts to grow.

In order to obtain a smooth estimate of the signal derivative, we want to smooth our signal using
B-splines with a penalization on the third derivative (see section 3.1). However, due to the high
sampling frequency, the number of data points in a track is high and smoothing the whole total
volume can be very time-consuming even when the data acquisition is rather short (acquisitions
usually last more than 2 minutes) .

A more efficient solution can be found taking advantage of a characteristic of breathing tracks:
while the lower part of the signal is noisy and contains a lot of oscillations, we can instead locate
local maxima very precisely. Therefore, we first take the local maxima of the total volume, and
smooth the parts of signal between two consecutive maxima; then, we divide each smoothed curve
in subintervals (5-10 points) where we compute the mean signal derivative. We take the cutting
point as the local minimum of the volume in the interval formed by the union of the two subintervals
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such that the mean derivative in the second subinterval is more than 3 times the mean derivative
in the previous subinterval.

Once the cutting points have been found, the four signals (CW, RCp, RCa, AB) are cut in
correspondence with these points, and the resulting breath components are smoothed like before
using penalized B-splines.

Code

Let us consider first the problem of smoothing. In order to smooth our breaths, we wrote a R

function called smooth breath. Implementation made use of functions from the R package fda,
developed to support functional data analysis as described in Ramsay, J. O. and Silverman, B. W.
(2005) [18], which is available on CRAN.

In the function smooth breath we create a b-spline basis over an equidistant grid of knots. Then,
we create an object of type functional parameter, to enclose penalization over the third derivative,
and we evaluate the Generalized Cross Validation index for values of lambda on a log scale. Once
found the best lambda, we evaluate the smoothed signal and its derivatives.

Function smooth breath takes as input:

• time: the time vector, that is the abscissa of the signal;

• amplitude: the volume vector;

• order: the order of the b-spline basis to use. It defaults to 5;

• grid coef: an integer. It defines the refinement of the knots grid. Defaults to 10 (1 knot
each 10 datapoints).

• lambda: a vector with penalisation parameters, the best one is selected via Generalized Cross
Validation (GCV). It is advisable to look for the optimal lambda on a log scale;

• plot: boolean. If 1 two plots are produced, one with the computed GCV for each lambda
and one with the smoothed curve overlapped to the original signal.

Output quantities (contained in a list) are:

• smoothed curve: the evaluation of the smooth signal;

• der1: the evaluation of the signal first derivative;

• der2: the evaluation of the signal second derivative;

• lambda: the optimal penalisation parameter;

• GCV: optimal GCV statistic;

• df: degrees of freedom in the smoothed curve.
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smooth breath= function (time , amplitude , order=5, grid coef=10,
lambda=c (1 e−4,1e−5,1e−6,1e−7,1e−8,1e−9,1e−10) ,
plot=0)

{
# crea t e breakpo int s vec to r ( uniform gr id )
breakst=c ( )
for ( i in seq (1 , length ( time ) , grid coef ) )

breakst=c ( breakst , time [ i ] )

# c r ea t e the b sp l i n e ba s i s
base=create . b sp l i n e . b a s i s (c ( time [ 0 ] , time [ length ( time ) ] ) ,

breaks=breakst , norder=order )

ab s c i s s a=time ;
Xobs0=amplitude ;

# eva luate the best p ena l i z a t i o n lambda us ing GCV
gcv=numeric ( length ( lambda ) )
for ( i in 1 : length ( lambda ) )
{

f unc t i ona lPar = fdPar ( fdob j=base , Lfdobj=3, lambda=lambda [ i ] )
gcv [ i ] = smooth . ba s i s ( abs c i s s a , Xobs0 , func t i ona lPar )$gcv

}

lam=lambda [which .min( gcv ) ]

# fun c t i o n a l parameter , having arguments : bas i s , order o f the
# de r i v a t i v e to be pena l i zed , smoothing parameter
func t i ona lPar = fdPar ( fdob j=base , Lfdobj=3, lambda=lam)

Xss=smooth . ba s i s ( abs c i s s a , Xobs0 , func t i ona lPar )

# eva lua t i on o f the smooth func t i on
Xss0 = eval . fd ( absc i s s a , Xss$ fd , Lfd=0)

# eva lua t i on o f the f i r s t d e r i v a t i v e
Xss1 = eval . fd ( absc i s s a , Xss$ fd , Lfd=1)

# eva lua t i on o f the second d e r i v a t i v e
Xss2 = eval . fd ( absc i s s a , Xss$ fd , Lfd=2)

df = Xss$df # the degree s o f freedom in the smoothing curve
GCV = Xss$gcv # the value o f the GCV s t a t i s t i c

i f (plot ){

x11 ( )
plot ( log10 ( lambda ) , gcv )

x11 ( )
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plot ( abs c i s s a , Xobs0 , xlab=” t ” , ylab=”observed data” )
points ( abs c i s s a , Xss0 , type=” l ” , col=”blue ” , lwd=2)

}

r e s u l t=l i s t ( smoothed curve=Xss0 , der1= Xss1 , der2= Xss2 ,
lambda=lam , GCV=GCV, df=df ) ;

r e s u l t
}

Now let us move to the minima function. In this case we exploit the function peaks from the R

package splus2R (available on CRAN) in order to find the local maxima of the signal, then we use
the previously defined smooth breath to get an estimate of the pieces first derivatives.

Input to find local min function are:

• time: time vector;

• voltot: volume vector;

• peak span: parameter span to be passed to the peaks function. A peak is defined as an
element in a sequence which is greater than all other elements within a window of width span
centered at that element;

• grid coef: parameter to be passed to smooth breath;

• step: length of the subintervals on which the mean derivative is computed;

• slope coef: we state that the mean derivative starts to grow if the mean derivative in a
subinterval is slope coef times the mean derivative in the previous subinterval. Default
value is 3;

• plot: boolean. If 1 two plots are produced, one showing the detected local maxima and the
other showing the local minima;

• spiky min: logical. If TRUE then peaks is directly used to compute local minima. The
default is FALSE.

The choice of parameter peak span can be done looking at the (approximate) breathing fre-
quency of the subject: for example, supposing a sampling frequency of 60Hz, if looking at the
volume plot we see that the breaths duration is about 3s, then a good value for peak span could
be 3 × 60 = 180 −→ 181. This means that, for each data point, the algorithm will check if it is
higher than the 90 points on the left and the 90 on the right, where 90 data points correspond to
1.5s. The +1 is for the central point of the window, that is, the point being evaluated. For this
reason, peak span should always be an odd integer.

The output of the function is a list containing the following:

• minima: vector time points corresponding to minima locations;

• minidx: vector of positions of minima in the data vector;

• maxidx: vector of positions of maxima in the data vector;

• deltas: vector of breath lengths.
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find local min=function (time , vo l to t , peak span=201 , grid coef=10,
step=10, s l ope coef=3, plot=0, sp iky min=F)

{
# f ind l o c a l maxima
localmax=which( peaks ( vo l to t , span=peak span)==TRUE)

i f ( sp iky min==F){ # normal/ low frequency breaths , with t a i l s

br=table breaths (time , vo l to t , localmax )

min=NULL
minidx=NULL

# smoothing to f i nd d e r i v a t i v e s between two maxima
for ( j in 1 :dim( br$breaths ) [ 2 ] ) {
vec=which( ! i s .na( br$breaths [ , j ] ) )

#smooth p i e c e s one by one
sm=smooth breath ( br$ t imes [ vec , j ] , br$breaths [ vec , j ] ,

grid coef=grid coef , plot = 0)

timem=br$ t imes [ vec , j ]
volm=br$breaths [ vec , j ]

der1m=sm$der1

i f ( length ( timem)>step ){

# div ide the i n t e r v a l between two maxima in s ub i n t e r v a l s
# and compute the mean sub i n t e r v a l s d e r i v a t i v e s

amp=length ( timem)%%step

breaks=seq ( 1 , ( length ( timem)−amp) ,by=step )

minloc=NULL

i f ( length ( breaks )>2){

ms=c (mean( der1m [ breaks [ 1 ] : breaks [ 2 ] ] ) )

for ( j in 2 : ( length ( breaks )−1)){
med=mean( der1m [ breaks [ j ] : breaks [ j +1 ] ] )
ms=c (ms ,med)
# look in which sub i n t e r va l the mean f i r s t d e r i v a t i v e
s t a r t s to grow
i f (med>=0 & med>s l ope coef∗ms [ j −1]){
id=which .min( volm [ breaks [ j −1] : breaks [ j +1 ] ] )
minloc=timem [ breaks [ j−1]+id −1]
}
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}
} else i f ( length ( breaks )==2){

id=which .min( volm [ breaks [ 1 ] : breaks [ 2 ] ] )
minloc=timem [ breaks [1 ]+ id −1]

}

min=c (min , minloc )
minidx=c (minidx ,which( time==minloc ) )

}

}

} else { # fo r high−f r equency breaths , without t a i l s
# use ’ peaks ’ d i r e c t l y to f i nd the min
minidx=which( peaks(−vo l to t , span=peak span)==TRUE)

min=vo l t o t [ minidx ]
}

# breath l eng th s computation
deltaT=c ( ) ;

l a s t=time [ minidx [ 1 ] ] ;

for ( i in 2 : ( length (min ) ) ){
t=time [ minidx [ i ] ] ;
deltaT=c ( deltaT , abs ( t−l a s t ) ) ;
l a s t=t ;

}

i f (plot ){

x11 ( )
plot (time , vo l to t , type=’ l ’ ,main=’ Local maxima ’ )
points ( time [ localmax ] , v o l t o t [ localmax ] , col=’ red ’ , pch=20)
x11 ( )
plot (time , vo l to t , type=’ l ’ , main=’ Local minima ’ )
points ( time [ minidx ] , v o l t o t [ minidx ] , pch=20, col=’ red ’ )
}

r e s u l t=l i s t (minima=min , minidx=minidx , maxidx=localmax ,
d e l t a s=deltaT )

r e s u l t
}

The auxiliary function table breaths, given the signal and the cutting points, returns a list of
two matrices, one of breaths times, and one with breaths amplitudes; then, curves are smoothed in
all their four components using smooth breath. Full code can be found in the Appendix.

30



4.2 Outlier detection

In a data acquisition it is frequent that “outlier breaths” may occur during the subject’s respiration.
The sources of outlyingness can be several, for example:

• Coughs, yawns, talk or similar;

• Respiratory maneuvers, such as “deep breaths” or “vital capacity”, which the subject was
asked to perform during the acquisition;

• Movements of the subject, causing irregularities in the track;

• Subject falling asleep during acquisition;

• Software measurement errors, like “jumps” or “spikes”;

• And many other (unknown) causes.

Outlier breaths need to be identified and removed not to spoil subsequent analysis. We will
tackle this problem under different perspectives, combining state-of-the-art univariate and func-
tional outlier detection techniques.

Although the concept of “outlier breath” may be pretty intuitive, as the two vital capacities of
Figure 4.2, a rigorous definition is lacking. We formalize the outlier detection problem as follows:
a breath can be outlying with respect to three characteristics (plus their combinations): time-
duration, magnitude and shape. Given a curve, we state that it is an outlier if is outlying in at
least one of these features.
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Figure 4.2: Quiet breathing acquisition with two vital capacities

4.2.1 Algorithm steps

Our outlier detection algorithm finds and removes outliers in sequence: first time outliers have to
be removed, then magnitude ones, finally shape ones. Inverting the steps may result in less accurate
output.
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1. Identify time outliers with a boxplot of breath lengths;

2. Remove them and repeat until no more time outliers are found;

3. Resample each curve on 100 points;

4. Identify magnitude outliers using functional boxplot;

5. Remove them and repeat until no more magnitude outliers are found;

6. Identify shape outliers using the outliergram;

7. Remove them and repeat until no more shape outliers are found.

The resampling step is needed because functional outlier detection techniques require functional
data of the same length. Removing time outliers before this step can guarantee that all the breaths
have homogeneous duration, therefore improving the results.

In the multivariate functional outlier detection we weighted the 4 dimensions equally (0.25, 0.25,
0.25, 0.25). Other choices could have been, for example, giving less weight to the RCa which is
usually noisier (0.3, 0.3, 0.1, 0.3) or giving more weight to the total volume (0.4, 0.2, 0.2, 0.2).
However, these weights choices proved to give either the same results as using uniform weights, or
they individuated less outliers than expected (subsection 4.3.2).

Notice that, due to the peculiar characteristics of our data, we need to repeat each outlier
detection step (e.g. boxplot on breath lengths) until no more outliers are found before passing
to the subsequent step. This is due to the fact that very often data tracks present some outliers
which are so extreme that they can “mask” the presence of others. A common example is the vital
capacity (VC): the maximum amount of air a person can expel from the lungs after a maximum
inhalation. The VC length and amplitude are usually so big that, for example, smaller time outliers
will not be detected if we just compute the boxplot once.

Code

Implementation of functional multivariate boxplot and outliergram is provided by the R package
roahd (Ieva, Paganoni, Romo, Tarabelloni, 2019 [11]), available on CRAN. We wrote a R function
called outlier detection, which combines together the different outlier detection techniques and
performs algorithm iterations.

The input of the function is:

• times: matrix with breaths times. Times have to start from 0 for each breath;

• smoothed tot: matrix of the smooth total volume breaths;

• smoothed rcp: matrix of the smooth RCp breaths;

• smoothed rca: matrix of the smooth RCa breaths;

• smoothed ab: matrix of the smooth AB breaths;

• plot option: boolean. If 1, plots of the algorithm iterations are produced;

• weights: either ”uniform” or a vector of weights to be passed to fbplot and
multivariate outliergram.
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• range: scalar. The inflating factor for time boxplots whiskers. Defaults to 1.5.

• no iter: boolean. If 1, outlier detection at each phase is not repeated, but just the first
iteration is performed. defaults to 0.

Output is a list containing:

• filtered.times: matrix of breaths time vectors starting from 0, after outlier removal;

• filtered.Vtot: matrix of total volume vectors, after outlier removal;

• filtered.Vrcp: matrix of RCp volume vectors, after outlier removal;

• filtered.Vrca: matrix of RCa volume vectors, after outlier removal;

• filtered.Vab: matrix of AB volume vectors, after outlier removal;

• outliers.idx: vector of outlier breaths indexes;

• time.outliers.idx: vector of indexes of time outliers;

• magnitude.outliers.idx: vector of indexes of magnitude outliers;

• shape.outliers.idx: vector of indexes of shape outliers.

o u t l i e r d e t e c t i on=function ( times , smoothed tot , smoothed rcp , smoothed rca ,
smoothed ab , plot opt ion=1, weights=’ uniform ’ ,
range=1.5 , no i t e r =0)

{
f i l t e r e d . t imes=times
f i l t e r e d . Vtot=smoothed to t
f i l t e r e d . Vrcp=smoothed rcp
f i l t e r e d . Vrca=smoothed rca
f i l t e r e d .Vab=smoothed ab

# Check i f the number o f breaths i s high enough to s a f e l y apply
# the e n t i r e procedure
breaths . are . too . few=max( i f e l s e (dim( f i l t e r e d . Vtot ) [2 ] <30 , 1 , 0 ) ,

no i t e r )

i f ( breaths . are . too . few )
warning ( ’Number o f breaths i s too low to apply o u t l i e r d e t e c t i on
i t e r a t i v e l y . Out l i e r checks have been performed only once ’ )

# Aux i l i a ry vec to r to s t o r e the o r i g i n a l i n d i c e s o f the o u t l i e r s
aux . idx=1:dim( smoothed to t ) [ 2 ]

##### ou t l i e r d e t e c t i on : TIME
time . o u t l i e r s . idx=NULL # vecto r o f i n d i c e s f o r time o u t l i e r s
found=1
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de l t a s=c ( )
for ( i in 1 :dim( f i l t e r e d . t imes ) [ 2 ] )
d e l t a s=c ( de l ta s ,

f i l t e r e d . t imes [ length (which( ! i s .na( f i l t e r e d . t imes [ , i ] ) ) ) , i ] )

# i t e r a t e de t e c t i on un t i l no more o u t l i e r s are found
while ( found ){
x11 ( )
bp <− boxplot ( de l ta s , range=range , plot = plot opt ion )
t imesout <− bp$out
t imesout <− unique ( t imesout )

out <− NULL
for ( k in 1 : length ( d e l t a s ) ){
for (h in t imesout )
i f ( d e l t a s [ k]==h){
out <− c ( out , k )
break
}

}

# remove o u t l i e r s in time ( i f any )
i f ( length ( out )>0){

de l t a s=de l t a s [−out ]

f i l t e r e d . t imes=f i l t e r e d . t imes [ ,− out ]
f i l t e r e d . Vtot=f i l t e r e d . Vtot [ ,− out ]
f i l t e r e d . Vrcp=f i l t e r e d . Vrcp [ ,− out ]
f i l t e r e d . Vrca=f i l t e r e d . Vrca [ ,− out ]
f i l t e r e d .Vab=f i l t e r e d .Vab[ ,− out ]

time . o u t l i e r s . idx=c ( time . o u t l i e r s . idx , aux . idx [ out ] )
aux . idx=aux . idx [−out ]

# Stop to 1 i t e r a t i o n i f the re are not many breaths
i f ( breaths . are . too . few )
found=0

}
else
found=0
}

# Resca le breaths on [ 1 : 1 0 0 ] to apply f un c t i o n a l o u t l i e r d e t e c t i on
# on magnitude and shape
s ca l ed . Vtot=r e s c a l e a l l ( f i l t e r e d . Vtot , f i l t e r e d . t imes )
s c a l ed . Vrcp=r e s c a l e a l l ( f i l t e r e d . Vrcp , f i l t e r e d . t imes )
s c a l ed . Vrca=r e s c a l e a l l ( f i l t e r e d . Vrca , f i l t e r e d . t imes )
s c a l ed .Vab=r e s c a l e a l l ( f i l t e r e d .Vab , f i l t e r e d . t imes )
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##### ou t l i e r d e t e c t i on : MAGNITUDE
magnitude . o u t l i e r s . idx=NULL # vector o f i n d i c e s f o r magnitude o u t l i e r s
found=1

# i t e r a t e de t e c t i on un t i l no o u t l i e r s are found

while ( found ){
out1=fbp l o t (mfData ( grid=1:100 , l i s t ( t ( s c a l ed . Vtot ) , t ( s c a l ed . Vrcp ) ,

t ( s c a l ed . Vrca ) , t ( s c a l ed .Vab ) ) ) ,
Depths=l i s t ( de f=’MBD’ ,weights=weights ) ,
main=l i s t ( ’Magnitude o u t l i e r s ’ , ’Magnitude o u t l i e r s ’ ,
’Magnitude o u t l i e r s ’ , ’Magnitude o u t l i e r s ’ ) ,
d i sp l ay=plot opt ion )

idx1=out1$ID o u t l i e r s ;

# remove o u t l i e r s in magnitude ( i f any )
i f ( length (as . vector ( idx1 ))>0){

s c a l ed . Vtot=sca l ed . Vtot [ ,− idx1 ]
s c a l ed . Vrcp=sca l ed . Vrcp [ ,− idx1 ]
s c a l ed . Vrca=sca l ed . Vrca [ ,− idx1 ]
s c a l ed .Vab=sca l ed .Vab[ ,− idx1 ]

f i l t e r e d . t imes=f i l t e r e d . t imes [ ,− idx1 ]
f i l t e r e d . Vtot=f i l t e r e d . Vtot [ ,− idx1 ]
f i l t e r e d . Vrcp=f i l t e r e d . Vrcp [ ,− idx1 ]
f i l t e r e d . Vrca=f i l t e r e d . Vrca [ ,− idx1 ]
f i l t e r e d .Vab=f i l t e r e d .Vab[ ,− idx1 ]

magnitude . o u t l i e r s . idx=c ( magnitude . o u t l i e r s . idx , aux . idx [ idx1 ] )
aux . idx=aux . idx [− idx1 ]

# Stop to 1 i t e r a t i o n i f the re are not many breaths
i f ( breaths . are . too . few )

found=0
}

else
found=0

}

##### ou t l i e r d e t e c t i on : SHAPE
shape . o u t l i e r s . idx=NULL # vector o f i n d i c e s f o r shape o u t l i e r s
found=1

while ( found ){ # i t e r a t e de t e c t i on un t i l no o u t l i e r s are found
x11 ( )
out2=mu l t i v a r i a t e out l i e rg ram (mfData ( grid=1:100 , l i s t ( t ( s c a l ed . Vtot ) ,
t ( s c a l ed . Vrcp ) , t ( s c a l ed . Vrca ) , t ( s c a l ed .Vab ) ) ) ,
weights=weights ,
d i s p l ay = plot opt ion )
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idx2=out2$ID o u t l i e r s ;
i f ( length (as . vector ( idx2 ))>0){

s c a l ed . Vtot=sca l ed . Vtot [ ,− idx2 ]
s c a l ed . Vrcp=sca l ed . Vrcp [ ,− idx2 ]
s c a l ed . Vrca=sca l ed . Vrca [ ,− idx2 ]
s c a l ed .Vab=sca l ed .Vab[ ,− idx2 ]

f i l t e r e d . t imes=f i l t e r e d . t imes [ ,− idx2 ]
f i l t e r e d . Vtot=f i l t e r e d . Vtot [ ,− idx2 ]
f i l t e r e d . Vrcp=f i l t e r e d . Vrcp [ ,− idx2 ]
f i l t e r e d . Vrca=f i l t e r e d . Vrca [ ,− idx2 ]
f i l t e r e d .Vab=f i l t e r e d .Vab[ ,− idx2 ]

shape . o u t l i e r s . idx=c ( shape . o u t l i e r s . idx , aux . idx [ idx2 ] )
aux . idx=aux . idx [− idx2 ]

# Stop to 1 i t e r a t i o n i f the re are not many breaths
i f ( breaths . are . too . few )

found=0
}
else

found=0
}

# Cut breaths to the l ong e s t one
max. l en=0
for ( j in 1 :dim( f i l t e r e d . t imes ) [ 2 ] ) {

l en=length (which( ! i s .na( f i l t e r e d . t imes [ , j ] ) ) )
i f ( len>max. l en )
max. l en=len

}

f i l t e r e d . t imes=f i l t e r e d . t imes [ 1 :max. len , ]
f i l t e r e d . Vtot=f i l t e r e d . Vtot [ 1 :max. len , ]
f i l t e r e d . Vrcp=f i l t e r e d . Vrcp [ 1 :max. len , ]
f i l t e r e d . Vrca=f i l t e r e d . Vrca [ 1 :max. len , ]
f i l t e r e d .Vab=f i l t e r e d .Vab [ 1 :max. len , ]

r e s u l t=l i s t ( f i l t e r e d . t imes=f i l t e r e d . times ,
f i l t e r e d . Vtot=f i l t e r e d . Vtot ,
f i l t e r e d . Vrcp=f i l t e r e d . Vrcp ,
f i l t e r e d . Vrca=f i l t e r e d . Vrca ,
f i l t e r e d .Vab=f i l t e r e d .Vab ,
o u t l i e r s . idx=c ( time . o u t l i e r s . idx , magnitude . o u t l i e r s . idx ,
shape . o u t l i e r s . idx ) ,
time . o u t l i e r s . idx=time . o u t l i e r s . idx ,
magnitude . o u t l i e r s . idx=magnitude . o u t l i e r s . idx ,
shape . o u t l i e r s . idx=shape . o u t l i e r s . idx )

}
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The auxiliary function rescale all is used to resample breaths over the same number of points.
Full code is available in the Appendix.

4.3 Validation of preprocessing techniques

4.3.1 Minima Examples

Let us see a couple of examples of application of the algorithm on real data, shown in Figure 4.3.
In the upper panel we can see a regular quiet breathing of an healthy patient, where minima were
found keeping default values.

In the middle panel instead we can see an example of “long-tail” breathing. Provided that each
of the breaths lasts more than 5s, setting peak span=301 was sufficient to correctly position the
cutting points at the end of breath tails. Other parameters were left as default.

Bottom panel shows an extreme example with pauses between one breath and another. Using
the same parameters as before, we were able to get a very good result.

4.3.2 Outlier detection - performance

In order to validate the outlier detection procedure, we designed an experiment, consisting in a
protocol for data acquisition. Four healthy subjects aged 20-25 years old were involved in two data
acquisitions (one in seated and one in supine position) in which they were asked to perform 30s of
some maneuvers every 30s of quiet breathing, in the following order:

• 30 s of quiet breathing (QB)

• 30 s talking

• 30 s QB

• 30 s yawning

• 30 s QB

• 30 s long inspiration

• 30 s QB

• 30 s chaos (a free time slot, where a subject can breathe in any unusual way)

• 30 s QB

• 30 s long expiration

• 30 s QB.

The result of an acquisition that follows this protocol is a track where perturbations are specif-
ically localized. This allows to understand (even visually) whether the outlier detection steps is
doing well. We see the chest wall volume and the detected minima of one of these acquisitions in
Figure 4.4a. This data is really extreme and can work as a stress test for our outlier detection
algorithm.
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(b) Minima in a long-tail signal.
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(c) Minima in a signal with pauses.

Figure 4.3: Minima examples.
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(b) Outliers on the CW volume.

39



0 100 200 300 400

12
.5

13
.0

13
.5

14
.0

Outlier breaths − RCp volume

Time

V
rc

p

Outliers − Time
Outliers − Magnitude
Outliers − Shape

0 100 200 300 400

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

Outlier breaths − RCa volume

Time

V
rc

a

Outliers − Time
Outliers − Magnitude
Outliers − Shape

0 100 200 300 400

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

Outlier breaths − AB volume

Time

V
ab

Outliers − Time
Outliers − Magnitude
Outliers − Shape

Figure 4.5: Identified outliers over compartments.
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In order to understand what breaths were removed and in which phase, let us consider Figure
4.4b. As we can see, outliers are evident from the track. At first glance, we can observe that
the majority of outliers were correctly removed. Only the talking part remained untouched: this
is explained by the fact that talk is the framework which is most similar to quiet breathing with
respect to other types of outlyingness. In Figures 4.6, 4.7 and 4.8 we can see the results of the
procedure iterations in sequence (first time, then magnitude and shape).

Figure 4.6 contains the three performed iterations of magnitude outlier detection and is to be
read as follows: on the left, a block of 4 functional boxplots, corresponding to the 4 signals (CW
+ compartments) in the first iteration; on the right, the set of 4 boxplots of the second iteration;
at the bottom, the 4 boxplots of the last iteration where no more magnitude outliers were found.
Each block is organized in this way: top-left, the chest wall, top-right, the RCp, bottom-left, RCa,
and bottom-right the AB volume. Blue line in the middle corresponds to the median curve, the
blue band corresponds to the traditional box of the boxplot (from the first to the third functional
quartile), while the solid dark blue lines are the boxplot’s whiskers. The functional boxplot (see
subsection 3.2.2) is obtained by ranking functions from the center of the distribution outwards
thanks to a suitable depth definition (multivariate MBD in this case), computing the region of 50%
most central functions. The fences are obtained by inflating such region by a factor F = 1.5 . Given
the envelope of the functions entirely contained inside the inflated region, the data crossing these
fences even for one time instant are considered outliers (they are the coloured curves).

Figure 4.8 displays the five iterations of shape outlier detection. As regards each outliergram,
values of MEI and MBD on its axes are the multivariate depth measures, and each point in the
graph corresponds to one breath (seen as the ensemble of its 4 components). The dark boundary
on the top corresponds to the quadratic boundary in equation 3.24, while the lower boundary
corresponds to the upper one inflated by a 1.5 factor (subsection 3.2.3).

We also performed some sensitivity analysis of our procedure with respect to the weights choice
using as weights for multivariate functional depths the vectors (0.3, 0.3, 0.1, 0.3), giving less weight
to RCa, and (0.4, 0.2, 0.2, 0.2) giving more weight to the total volume. In both cases, the result
was absolutely identical to the one obtained with uniform weights.

In order to evaluate the peformance of the outlier detection algorithm, it is necessary to consider
two aspects. First, true outliers should be removed by the algorithm, then, no quiet breaths should
be recognized as outliers. Therefore, we define the following quantities: OUT = true outliers in the
track, QB= true quiet breaths, AOUT=detected outliers, AQB=breaths who were not removed by
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Figure 4.7: Magnitude outlier detection iterations.
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Figure 4.8: Shape outlier detection iterations.
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the algorithm (leaved as quiet breathing). Results of outlier detection are summarized in Table 4.1
in terms of these quantities.

OUT QB
AOUT 47 0
AQB 18 44

Table 4.1: Outlier detection results - perturbed track

Among 109 breaths individuated in the minima detection, 47 were marked as outliers and 62
were leaved. 18 outliers were not detected (25% of the total number of outliers), 8 in the talking
part. Nevertheless, we are quite satisfied with this result, since the most important outlier blocks
were removed almost entirely. In fact, 85% of non-talk outliers were detected. Moreover, no breaths
in the QB sections were removed.

Let us define a performance index: we define the outlier error index as
OUT-EI= 100× number of errors

total number of breaths , where the errors are the number of QB recognized as outliers
plus the number of outliers not detected by the algorithm. In this case, the value of OUT-EI is
16.5% for all the weight choices. We computed the OUT-EI for each of the 8 acquisitions and
the three possible weight choices. We define outlier error rate OUT-ER as the mean of the OUT-
EI in the 8 acquisitions. In Table 4.2 the values of OUT-ER for the different weight choices are
shown. Uniform weights over the 4 breath components had the better performance. OUT-ER was
also computed separately for the supine and seated positions, resulting in a better performance of
uniform weights in both configurations. Moreover, it seems that errors in supine position are fewer.
This can be explained by the fact that breath in sitting position is generally noisier (the subject
can move) and has a lower abdominal contribution (abdomen is actively involved in outliers such
as coughing), therefore outliers are less evident than in supine position.

OUT-ER OUT-ER seated OUT-ER supine
w=(0.25, 0.25, 0.25, 0.25) 22.8% 24.2% 21.35%

w=(0.3, 0.3, 0.1, 0.3) 24.85% 25% 24.7%
w=(0.4, 0.2, 0.2, 0.2) 24.6% 25% 24.2%

Table 4.2: Outlier error rates in different configurations.

The outcome of our analysis shows that, as expected, the choice of uniform dimension weights
to compute multivariate functional depths is reasonable and provides stable results. In particular,
giving more weight to the total chest wall volume seems to select the same outliers; lighting the
weight on the abdominal rib cage instead seems not to be an appropriate choice, since evident
outliers may not be detected. This result suggests that, although the abdominal rib cage signal
is the smaller in absolute value (RCa is the smaller compartment, see Figure 2.5) and in general
noisier than the others, it plays an important role when we want to study the breathing patterns
of a subject.
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4.3.3 Outlier detection - Quiet Breathing with maneuvers

In this example (Figure 4.9) the subject was asked to perform some maneuvers during the data
acquisition, specifically a vital capacity and deep breaths. Maneuvers are a frequent occurrence
during the process of data collection, our goal is to successfully separate the quiet breathing from
the rest. Referring to the results in subsection 4.3.2, uniform weights are employed.
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Figure 4.9: Chest wall volume with minima.

In Figure 4.12 we can see that the vital capacity is removed (correctly) as a time outlier (Figure
4.10a), the deeper breaths are removed as a result of the functional boxplot (Figure 4.10b) and
finally four breaths are removed by the outliergram as shape outliers (Figure 4.11). All curves
corresponding to non-quiet breathing are successfully identified and removed.
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(b) Multivariate functional boxplot output.

Figure 4.10: Time and magnitude outlier detection.
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Figure 4.11: Shape outlier detection.
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Figure 4.12: Identified outliers over chest wall and compartments.
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4.3.4 Outlier detection - Quiet Breathing with noise

In this example we will perform outlier detection over a quiet breathing acquisition of a healthy
patient aged 60 in seated position. Referring to the results in subsection 4.3.2, uniform weights are
employed. Detected outliers are shown in Figures 4.13b (total volume) and 4.14 (compartments).
Some evident outliers from the plots, due to errors in the measurement software, are removed as
expected. Also outliers due to problematic minima are detected, while quiet breathing is untouched
at it should be.
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(a) Chest wall volume with minima.
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(b) Outliers on the CW volume.

Figure 4.13: Quiet breathing example with measurement artifacts
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Figure 4.14: Identified outliers over compartments.
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Chapter 5

Breathing patterns identification

Optoelectronic plethysmography has been adopted for evaluating breathing under a wide variety of
circumstances both in health and disease. Each of these applications involves different variables of
interest, which require different methods of analysis. In this section we propose some methodologies
to analyze patterns in the OEP data in specific frameworks. Considering breaths as functions, we
are able to find the functional breathing patterns, that is, breathing patterns of a subject can be
summarized by means of representative breath curves, other than the traditional breathing pattern
parameters. The functional representation is richer: curves enclose in itself the fundamental scalar
quantities such as breath duration and amplitude, but also breath shape, which could not be studied
otherwise.

5.1 Quiet breathing

Quiet breathing (QB), also known as eupnea, is a mode of breathing that occurs at rest and does
not require the cognitive thought of the individual [22]. During quiet breathing, the diaphragm
and external intercostals must contract. The quiet breathing of an healthy person has usually very
small variations in terms of duration, amplitude and shape; thus, it makes sense to ask whether it
is possible to extract a single curve as a representative of the quiet breathing of the subject.

This representative breath has to be intended in terms of all the main quantities of interest
during breathing: mean volume, duration and amplitude; in other words, it should be a real breath.
Then, we propose to apply K-medoids with alignment algorithm on the smoothed breath curves
(after preprocessing) using affine warping functions with K = 1; in other words, we compute the
functional median of the curves. We will consider the median computed with respect to the L2

distance between curves normalized by the square root of the length of the common curves domain
D:

d(c1, c2) =
1√
D

(∫
D

(c1(t)− c2(t))2dt

)1/2

, (5.1)

where D = D1 ∩D2, D1 and D2 being the time domains of c1 and c2, respectively. In case of
multidimensional data, the distance is computed as the mean of the distances between homologous
dimensions.

The use of the normalizing constant is justified by the following invariance property of this
measure with respect to affine warping functions : for c1(t), t ∈ D1 and c2(t), t ∈ D2 and
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h(t) = at+ b, a ∈ R, b ∈ R+, we have d(c1, c2) = d(c1 ◦ h, c2 ◦ h) [1]. In other words, introducing
this normalization allows to use affine warping functions with L2 distance.

An example of representative breath identification is shown in subsection 5.5.1. Once localized
the median breath in the dataset, it can be extracted and used, for example, in comparison with
the medians coming from other subjects (chapter 6).

Code

In our work we used the optimized K-Mean Alignment algorithm implementation by Alessandro
Zito [25], which is available on GitHub in the form of an R package called fdakmapp. Code can be
found at https://github.com/zitale/fdakmapp in the branch pacs.

Function kmap of fdakmapp package performs K-mean or K-medoid with Alignment algorithms.
We use it with the following input:

• timet: numeric matrix [n.func X grid.size]. The abscissa values where each function is eval-
uated. n.func: number of functions in the dataset. grid.size: maximal number of abscissa
values where each function is evaluated.

• arr: array [n.func X grid.size X d]. Evaluations of the set of original functions on the abscissa
grid x. n.func: number of functions in the dataset. grid.size: maximal number of abscissa
values where each function is evaluated. d: number of function components, i.e. each function
is a d-dimensional curve.

• n clust: scalar. Required number of clusters. Default value is 1. Note that if n clust=1 kma
performs only alignment without clustering.

• warping method: character. Type of alignment required. The implemented options are:
“affine”, “dilation”, “shift” and “noalign”. In our code, we use “affine”.

• center method: character. Type of clustering method to be used. Possible choices are:
“mean”,“medoid” and “pseudomedoid”. Default value is “mean”. In our code, we use
“medoid”.

• similarity method: character. Required similarity measure. Possible choices are: “pear-
son”,“l2”. Default value is “pearson”. In order to compute the median, we will use “l2”.

• comp original center: boolean. If comp original center=TRUE the initial center with rel-
ative dissimilarities is computed otherwise this step is skipped.

The output of kmap is:

• x.center.orig: numeric vector of length n out. Abscissa of the center computed if
comp original center=TRUE.

• y.center.orig: numeric vector n out or matrix n out X n dim. Value of the center computed
if comp original center = TRUE.

• similarity.origin: numeric vector n obs dissimilarity,similarity or distance of the original
center respect the observations computed if comp original center=TRUE.

• x.final: matrix [n.func X grid.size]. Aligned abscissas.
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• n.clust.final: scalar. Final number of clusters. Note that it may differ from initial number
of clusters (i.e.,from n.clust) if some clusters are found to be empty.

• x.centers.final: matrix [n.clust.final X grid.size]. abscissas of the final function centers.

• y.centers.final: matrix [n.clust.final X n.out] or array [n.clust.final X n.out x n dim] ,
contain the evaluations of the final functions centers.

• labels: vector of length n obs. Cluster assignments.

• similarity.final: vector [n obs]: similarities, dissimilarities or distance between each func-
tion and the center of the cluster the function is assigned to.

Further details about kmap can be found in the package manual.
The following code describes the steps to take after outlier detection on order to find the median

breath:

# Out l i e r d e t e c t i on #

f i l t e r e d=o u t l i e r d e t e c t i on (data ,min , t imes , smoothed , smoothed rcp ,
smoothed rca , smoothed ab , plot opt ion=1)

f i l t e r e d . t imes=f i l t e r e d $ f i l t e r e d . t imes
f i l t e r e d . Vtot=f i l t e r e d $ f i l t e r e d . Vtot
f i l t e r e d . Vrcp=f i l t e r e d $ f i l t e r e d . Vrcp
f i l t e r e d . Vrca=f i l t e r e d $ f i l t e r e d . Vrca
f i l t e r e d .Vab=f i l t e r e d $ f i l t e r e d .Vab
o u t l i e r s=f i l t e r e d $ o u t l i e r s . idx

# preparat i on o f a data array to be passed to kmap

datavec = c (c ( t ( f i l t e r e d . Vtot ) ) , c ( t ( f i l t e r e d . Vrcp ) ) ,
c ( t ( f i l t e r e d . Vrca ) ) , c ( t ( f i l t e r e d .Vab ) ) )

a r r=array ( datavec , c (dim( f i l t e r e d . Vtot ) [ 2 ] ,dim( f i l t e r e d . Vtot ) [ 1 ] , 4 ) )

t imet=t ( f i l t e r e d . t imes )

# compute the median us ing k−medoids with 1 group

med=kmap( timet , arr , n c l u s t =1, warping method=’ a f f i n e ’ ,
c en t e r method=’medoid ’ , s im i l a r i t y method=’ l 2 ’ ,
comp o r i g i n a l c en te r = T)

kmap show r e s u l t s (med) # p l o t s the r e s u l t

# ind i v i dua t e the median index with r e sp e c t to L2 d i s t anc e
indm=which(med$ s im i l a r i t y . o r i g i n==0)

# pick the median
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median=cbind ( f i l t e r e d . t imes [ , indm ] , f i l t e r e d . Vtot [ , indm ] ,
f i l t e r e d . Vrcp [ , indm ] , f i l t e r e d . Vrca [ , indm ] ,
f i l t e r e d .Vab [ , indm ] )

5.2 Exercise

Forced breathing, also known as hyperpnea, is a mode of breathing that can occur during exercise
or actions that require the active manipulation of breathing, such as singing [2]. During forced
breathing, inspiration and expiration both occur due to muscle contractions. In addition to the
contraction of the diaphragm and intercostal muscles, other accessory muscles must also contract.
During forced inspiration, muscles of the neck, including the scalenes, contract and lift the thoracic
wall, increasing lung volume. During forced expiration, accessory muscles of the abdomen, including
the obliques, contract, forcing abdominal organs upward against the diaphragm. This helps to
push the diaphragm further into the thorax, pushing more air out. In addition, accessory muscles
(primarily the internal intercostals) help to compress the rib cage, which also reduces the volume
of the thoracic cavity [2]. In Figure 5.1, the evolution of breathing patterns during exercise is
represented (TLC: total lung capacity; EILV: end-inspiratory lung volume; EELV: end-expiratory
lung volume; RV: residual volume).

During exercise first inspiratory and expiratory flows increase (i.e., the breath amplitude); con-
temporarily, also the breathing frequency increases. Then, when the maximal effort is reached,
there is an increase also in the mean value of the volume, that is an upward shift of the curves.
However, this is only true for non-athlete healthy subjects: In fact, in highly fit endurance athletes
the pressure produced by inspiratory muscles can approach the maximum and expiratory pressures
are increased to levels at which dynamic compression of the airways determines expiratory flow
limitation. This phenomenon also frequently occurs in elderly subjects due to the age-related loss
of lung elastic recoil, and is a common feature of patients with chronic obstructive pulmonary dis-
ease (COPD), not only during exercise but also at rest in the most severe cases. When expiratory
flow is limited, end-expiratory lung volume has to be increased to allow for further increases of flow
(Incomplete expiration prior to the initiation of the next breath causes progressive air trapping). In
other words, expiratory flow limitation causes the so called “dynamic hyperinflation”. This means
that the increase in mean volume can occur at the beginning of the effort [2]. In other pathologies,
different trends in the mean volume (and in amplitude) can also be observed during exercise.

For these reasons, OEP data involving exercise contain different breathing patterns, according to
the level of effort (Figure 5.1). Therefore, studying these data were are interested in finding breath
clusters. Since in this case the mean value of the volume is an important quantity of interest,
we propose to apply K-medoids with Alignment algorithm using affine warping functions and the
normalized L2 distance in formula 5.1 as dissimilarity measure. We use K-medoids instead of K-
means since the group centroids, which we consider the representatives of the patient’s breathing
patterns, have to be real breaths, taken with their duration and amplitude. Results of a real case
study are shown in subsection 5.5.3.

Code

The code for clustering is very similar to the one used to compute the median; indeed, we can use
kmap imposing n clust equal to K, K being the number of clusters.
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Respiratory muscles during exercise
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[1, 2]. As a result, end-expiratory lung volume 
is decreased during exercise (figure 1) and the 
mechanics of breathing is optimised for several 
reasons. Tidal volume occurs in the most compli-
ant part of the respiratory system; the diaphragm 
is lengthened and thus works near its optimal 
length; at each breath part of the required inspira-
tory work is previously stored in the form of elastic 
energy during the previous expiration [3]. 

How do respiratory muscles 
undertake the increased 
ventilatory demands of 
exercise?

At moderate levels of exercise, metabolic require-
ments increase in parallel with alveolar ventila-
tion, arterial blood–gas tensions and acid-base 
balance are maintained close to their levels at rest. 
The mechanics of the breathing pattern is regu-
lated so precisely that the work performed by the 
respiratory muscles is minimised.

At higher levels of exercise up to maximal exer-
cise, the pressures produced by the respiratory 
muscles are well below their maximum. At maxi-
mal exercise, the oxygen consumed by the respira-
tory muscles to breathe is only ∼10% of the total 
[4]. However, this is only true for healthy subjects 
not those who are trained athletes. In fact, in highly 
fit endurance athletes the pressure produced by 
inspiratory muscles can approach the maximum 
and expiratory pressures are increased to levels at 
which dynamic compression of the airways deter-
mines expiratory flow limitation [5]. This phenome-
non also frequently occurs in elderly subjects due to 
the age-related loss of lung elastic recoil [6], and is 
a common feature of patients with chronic obstruc-
tive pulmonary disease, not only during exercise but 
also at rest in the most severe cases. When expira-
tory flow is limited, end-expiratory lung volume has 
to be increased to allow for further increases of flow. 
In other words, expiratory flow limitation causes the 
so called “dynamic hyperinflation”. At high opera-
tional lung volumes, the inspiratory muscles have 
to overcome a higher elastic load oYered by the lung 
and chest wall [7]. Moreover, they are shorter and, 
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FIGURE 1 The main features of respiratory muscle action during exercise. TLC: total lung capacity; EILV: end-inspiratory lung volume; EELV: end-expiratory 
lung volume; RV: residual volume.Figure 5.1: The main features of respiratory muscle action during exercise.

A common problem is how to fix K. In fact, if K is too small, we are missing some clusters;
if instead it is too big, we are overfitting our data. In our code we chose to look for the elbow
of the mean similarities plot: we run K-medoids with Alignment for different values of K and we
compute the mean of the final within-cluster similarities (dissimilarities in our case), then we plot
these values for each K. We take K as the number of clusters for which the mean (dis)similarity
does not improve much taking higher values, that is, an elbow in the plot.

## . . . . . .

# K−mean al ignment s e t t i n g s
distance=’ l 2 ’
warp=’ a f f i n e ’
c en te r=’medoid ’

# choose number o f c l u s t e r s −−> elbow
K=4
checksim=numeric (K)
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for ( j in 1 :K){

check=kmap( timet , arr , n c l u s t=j , warping method=warp ,
c en te r method=center , s im i l a r i t y method=distance ,
comp o r i g i n a l c en te r = T)

checksim [ j ]=mean(check$ s im i l a r i t y . f i n a l )
}

x11 ( )
plot ( checksim , type=’ l ’ , x lab=’ Clus te r l a b e l s ’ ,

y lab=’Mean d i s s i m i l a r i t i e s ’ ,
main=paste0 ( ’Mean D i s s im i l a r i t y − ’ ,warp , sep=’ ’ ) )
points ( checksim , pch=1, col=’ blue ’ , lwd=2)

# Se l e c t ed number o f c l u s t e r s
n c l u s t=2 # i f the elbow i s at K=2

r e s=kmap( timet , arr , n c l u s t=nc lust , warping method=warp ,
c en te r method=center , s im i l a r i t y method=distance ,
comp o r i g i n a l c en te r = T)

kmap show r e s u l t s ( r e s )

5.3 Mechanical ventilation

Mechanical ventilation is a life support treatment. A mechanical ventilator (ventilator, respirator,
or breathing machine) is a machine that helps people breathe when they are not able to breathe
enough on their own, blowing gas (air plus oxygen as needed) into a person’s lungs. It can help
a person by doing all of the breathing or just assisting the person’s breathing. The ventilator can
also provide what is called positive end expiratory pressure (PEEP), air pressure in the lungs which
is above the atmospheric pressure at the end of expiration. Pressure support ventilation (PSV)
applies PEEP to hold the lungs open so that the air sacs do not collapse [5].

Most patients who need support from a ventilator because of a severe illness are cared for
in a hospital’s intensive care unit (ICU). Patients suffering from neuromuscular diseases such as
Duchenne Muscular Dystrophy (DMD) undergo a progressive weakening of muscles, included the
ones of respiration, therefore need a continuous ventilation support [4] [14].

OEP data can be used to understand the effects of mechanical ventilation on a patient’s breath.
For example, it is interesting to see how much the mean lung volume changes after the application
of external PEEP. Moreover, the action of the ventilator (which replaces the work of the patient’s
respiratory muscles) has also an action over the breathing dynamics. DMD patients in advanced
stages have a compromised diaphragm, which is not able to act coordinately with the other (less
compromised) respiratory muscles. As a result, the AB volume measured with OEP presents a
phase shift with respect to the rib cage. The abdominal behaviour is often paradoxical, that is,
with a phase shift of 180 degrees. Among the effects of mechanical ventilation is also the removal
of these impairments, which results in an “healthy” breathing pattern.
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In order to study these phenomena, we have to take into account both breath mean volume
and breath shape, which are influenced by the action of the ventilator. We will proceed as in the
exercise case, applying K-medoids with Alignment algorithm with the L2 distance as dissimilarity
measure and affine warping functions.

Code is the same as in the exercise case. Results of a real case study are shown in subsection 5.5.4.

5.4 Shape patterns during quiet breathing

In some applications, one is more interested in shape patterns variation during breathing rather
than changes in the mean volume. During the quiet breathing of unhealthy patients, alternating
patterns can occur. In other cases, data show a pattern transition during time that we would like
to capture.

In this setting, we would like to find clusters which depend on the breaths shape rather than
their mean volume or their amplitude. We will thus apply the K-medoids with Alignment algorithm
on the breaths derivatives, using affine warping functions. The chosen dissimilarity (semi-metric)
is then

d(c1, c2) =

∥∥∥∥∥ c
′

1

‖c′1‖
− c

′

1

‖c′1‖

∥∥∥∥∥ , (5.2)

which induces the similarity index

ρ(c1, c2) =
< c

′

1(t), c
′

2(t) >

‖c′1‖2‖c
′
2‖2

, (5.3)

where < ·, · > is the scalar product in L2 and ‖ · ‖ the induced norm. The similarity index ρ
is called normalized Pearson correlation and corresponds to the cosine of the angle formed by c

′

1

and c
′

2. For multidimensional curves (4-dimensional in our case), ρ is computed as the average of
the 1-dimensional similarity indexes, that is, the average of the cosines of the angles between the
derivatives of homologous components of c1 and c2 [20]. An example of shape classification is shown
in subsection 5.5.5.

Code

Code is analogous to the L2 version, but in this case we have to use kmap on the breaths derivatives
with similarity method = ’pearson’. Moreover, the function finds clusters by minimizing the
similarity index with changed sign, therefore we have to change the sign back if we want to plot
the similarity indexes to find the elbow.

f i l t e r e d=o u t l i e r d e t e c t i on ( times , smoothed , smoothed rcp , smoothed rca ,
smoothed ab , plot opt ion=1)

o u t l i e r s=f i l t e r e d $ o u t l i e r s . idx

f i l t e r e d . t imes=f i l t e r e d $ f i l t e r e d . t imes
f i l t e r e d . Vtot1=smoothed1 [ ,− o u t l i e r s ]
f i l t e r e d . Vrcp1=smoothed rcp1 [ ,− o u t l i e r s ]
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f i l t e r e d . Vrca1=smoothed rca1 [ ,− o u t l i e r s ]
f i l t e r e d . Vab1=smoothed ab1 [ ,− o u t l i e r s ]

f i l t e r e d . Vtot1=f i l t e r e d . Vtot1 [ 1 :dim( f i l t e r e d . t imes ) [ 1 ] , ]
f i l t e r e d . Vrcp1=f i l t e r e d . Vrcp1 [ 1 :dim( f i l t e r e d . t imes ) [ 1 ] , ]
f i l t e r e d . Vrca1=f i l t e r e d . Vrca1 [ 1 :dim( f i l t e r e d . t imes ) [ 1 ] , ]
f i l t e r e d . Vab1=f i l t e r e d . Vab1 [ 1 :dim( f i l t e r e d . t imes ) [ 1 ] , ]

datavec = c (c ( t ( f i l t e r e d . Vtot1 ) ) , c ( t ( f i l t e r e d . Vrcp1 ) ) ,
c ( t ( f i l t e r e d . Vrca1 ) ) , c ( t ( f i l t e r e d . Vab1 ) ) )

a r r=array ( datavec , c (dim( f i l t e r e d . Vtot1 ) [ 2 ] ,dim( f i l t e r e d . Vtot1 ) [ 1 ] , 4 ) )

t imet=t ( f i l t e r e d . t imes )
o r i g i n a l . t imes=volumes . to t$ t imes [ ,− o u t l i e r s ] # f o r g raph i c s
o r i g i n a l . t imes=o r i g i n a l . t imes [ 1 :dim( f i l t e r e d . t imes ) [ 1 ] , ]

# K−mean al ignment s e t t i n g s
distance=’ pearson ’
warp=’ a f f i n e ’
c en te r=’medoid ’

# look f o r s im i l a r i t y elbow
K=4
checksim=numeric (K)

for ( j in 1 :K){

check=kmap( timet , arr , n c l u s t=j , warping method=warp ,
c en te r method=center , s im i l a r i t y method=distance ,
comp o r i g i n a l c en te r = T)

checksim [ j ]=mean(check$ s im i l a r i t y . f i n a l )
}

x11 ( )
plot(−checksim , type=’ l ’ , x lab=’ Clus te r l a b e l s ’ , y lab=’Mean s i m i l a r i t i e s ’ ,
main=paste0 ( ’Mean S im i l a r i t y − ’ ,warp , sep=’ ’ ) )

points(−checksim , pch=1, col=’ blue ’ , lwd=2)

# Se l e c t ed number o f c l u s t e r s
n c l u s t=2

r e s=kmap( timet , arr , n c l u s t=nc lust , warping method=warp ,
c en te r method=center , s im i l a r i t y method=distance ,
comp o r i g i n a l c en te r = T)

kmap show r e s u l t s ( r e s )
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5.5 Case studies and applications

5.5.1 Quiet breathing example

In Figure 5.2 we can observe the quiet breathing of an healthy patient in supine position, with also
two vital capacities. After outlier removal ( Figure 5.3) breaths were aligned and the medoid was
computed, as shown in Figure 5.4, and the corresponding breath was picked. Figure 5.5 displays
the four components of the median breath in comparison (each curve has been translated to start
from 0). This kind of plot is very common in the literature of breathing patterns studies, since
it synthetically describes the contribution of each compartment to the total [13]. However, the
displayed breath is one chosen by the analyst, therefore it has got mainly a qualitative value. Our
method provides a better information instead: we are using the functional median as a summary
statistic of the respiration mode, which has also a quantitative value in terms of duration and
amplitude.
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Figure 5.2: Quiet breathing example.
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5.5.2 Case report - Cystic Fibrosis

This case study involves data acquisition from a woman suffering from Cystic Fibrosis (CF). CF is
a genetic disorder that affects mostly the lungs, but also the pancreas, liver, kidneys, and intestine.
In people with CF, mutations in the cystic fibrosis transmembrane conductance regulator (CFTR)
gene cause the CFTR protein to become dysfunctional. When the protein is not working correctly,
it’s unable to help move chloride (a component of salt) to the cell surface. Without the chloride to
attract water to the cell surface, the mucus in various organs becomes thick and sticky.

In the lungs, the mucus clogs the airways and traps germs, like bacteria, leading to infections,
inflammation, respiratory failure, and other complications [7].

From an inspection of the breathing tracks in Figure 5.6, we can notice spikes in the signal,
corresponding to coughs. In particular, after the second cough there seem to be a sudden decrease
in the total volume. We expect this behavior to be influential in the clustering step.

Outlier detection

The results of the full outlier detection is shown in Figure 5.7. As expected, the coughs are all
removed as magnitude outliers. The first breaths after the change of the absolute value of the
volume are identified as time outliers.

Patterns

Since there seem to be a step in amplitude, the chosen functional distance in this case has been the
L2 one. The elbow in the mean similarities plot indicated 2 clusters.

The algorithm identified two clusters, collecting all the breaths before and after the second
cough respectively (Figure 5.8 and 5.9). The two groups are different in terms of absolute value
of the volume in the chest wall, in particular in the RCa compartment. Interestingly, they also
differ in terms of shape in the RCp compartment, with cluster 1 presenting a paradox (the volume
decreases during the inspiration phase). In Figure 5.10 we can observe the the significant difference
in absolute volume of the two clusters and the shift in phase in the pulmonary rib cage.

Discussion

Cluster 1 represents the breathing pattern before the cough, which is characterized by a higher mean
value and a significantly paradoxical behaviour in terms of RCp volume (see Figure 5.11). Cluster 2
encloses the breathing pattern afterwards, which is characterized by a decrease in the mean value of
RCa, while the paradox disappears. It is likely that at the beginning of the acquisition the patient
had an obstruction in the lungs, which was removed with the cough, resulting in a change of her
breathing activity. This case is a borderline example about the selection of the distance on top of
the grouping structure. We used the L2 distance for the clustering, which puts more weight on the
absolute value. However, except for RCp compartment, the shape between the groups seems quite
similar, so are the two breathing patterns actually different?
To answer this question, we repeated the clustering step using the Pearson distance on the first
derivatives of the signal. Again, the similarity index suggested 2 clusters. The results are show in
Figure 5.12 and Figure 5.13 and are substantially equal to those obtained previously.
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Figure 5.6: Breathing tracks - Chest wall and compartments
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Figure 5.7: Outlier detection results.
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Figure 5.8: Multivariate kma results - L2 distance
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Figure 5.9: Clustering on data volumes.

62



0 20 40 60 80 100

14
.4

14
.5

14
.6

14
.7

14
.8

Clustered breaths − CW

time

0 20 40 60 80 100

5.
10

5.
15

5.
20

Clustered breaths − RCp

time

0 20 40 60 80 100

2.
05

2.
10

2.
15

2.
20

Clustered breaths − RCa

time

0 20 40 60 80 100

7.
20

7.
25

7.
30

7.
35

7.
40

7.
45

7.
50

Clustered breaths − AB

time

Figure 5.10: Clustered breaths

Cluster 1 (RCp paradox)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
00

0.
05

0.
10

0.
15

0.
20

time (s)

vo
lu

m
e 

(L
)

Cluster 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
00

0.
05

0.
10

0.
15

0.
20

time (s)

vo
lu

m
e 

(L
)

CW
RCp
RCa
AB

Figure 5.11: Median breaths of clusters - L2 distance
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Figure 5.12: Multivariate kma results - Pearson distance
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Figure 5.13: Clustering on total volume - Pearson distance
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5.5.3 Case report - Exercise

In this case report we will analyse data from a healthy subject aged 16 sitting on a cycle ergometer.
The data acquisition comprehends 180s of quiet breathing with a vital capacity, followed by exercise
at growing effort levels. The bike resistance was increased in a stepwise manner for 5 times, and
removed in the end for subject recovery. In Figure 5.14 it is possible to see the variations in breathing
pattern as the required effort changes. As expected, the behaviour is similar to the theoretical one
shown in Figure 5.1. Flat parts in the plot correspond to points in which the data recording was
stopped to save the partial result and have to be considered as missing data.

Outlier detection

Since quiet breathing contains few curves with respect to the rest of the track, and those breaths
have a higher duration, it was decided to be slightly more permissive with respect to time outliers
and the inflating factor for time boxplots was set to 2 instead of 1.5. The vital capacity has been
marked as outlier and most quiet breathing has been preserved, flat parts were removed together
with the spike due to a measurement error (see Figure 5.15).

Patterns

Variables of interest in forced breathing are linked with absolute values: breath amplitude, End-
Expiratory/End Inspiratory Lung Volume (EELV/EILV) and the trend in mean volume, therefore
the L2 distance was chosen. The elbow in mean dissimilarity plot indicated 5 clusters. Results are
shown in Figures 5.16, 5.17, 5.18 and 5.19.

Cluster 4 encloses the quiet breathing and presents a higher rib cage contribution with respect
to the abdominal one, which is typical of the sitting position. Cluster 5 encloses the initial effort
and is characterised by an increase in breath amplitude in all compartments, but above all has a
greater abdominal contribution with respect to quiet breathing. The increase in effort corresponds
to higher amplitude and a slight grow in the mean volume, and all compartments are actively
involved in ventilation. Finally, in the recovery phase, the mean volume goes back to its original
value, while amplitude gradually decreases.

Discussion

Classification proved to be able to capture the main variations of breathing pattern during exercise.
It is well-known that breathing pattern changes during exercise in reaction to increasing effort levels,
and different subjects react in their own way to increase ventilation: some increase amplitude first,
and then breathing frequency; others start by increasing frequency and then amplitude; others
proceed gradually augmenting both amplitude and frequency [2]. Clusters were correctly placed in
sequence over the data acquisition, and separate different effort stages as expected (Figure 5.19).
The observation of group centroids in comparison (Figure 5.18) allows for a better comprehension of
breathing dynamics: in particular, three breathing modes during exercise were found, independently
of the bike resistance level: the subject started increasing amplitude (cluster 5), then breathing
frequency, finally frequency and EELV (cluster 3 and 1). This is coherent with the theoretical
behaviour of breathing pattern during maximal effort (Figure 5.1). Finally, recovery (cluster 2) was
not immediate, although the mean value of chest wall volume dropped immediately to the original
one. It is also possible to observe a gradual transition in cluster 2 towards quiet breathing (Figure
5.17).
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Figure 5.14: Data acquisition during exercise.
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Figure 5.15: Outlier detection results.
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Figure 5.16: Multivariate kma results - L2 distance
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Figure 5.17: Clustered breaths.
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Figure 5.18: Cluster centroids in comparison.

68



0 200 400 600 800

23
24

25
26

27
28

Breaths by clusters

Time

V
ol

um
e

Cluster 1  Number of breaths = 162  (36.9%)
Cluster 2  Number of breaths = 97  (22.1%)
Cluster 3  Number of breaths = 91  (20.73%)
Cluster 4  Number of breaths = 36  (8.2%)
Cluster 5  Number of breaths = 53  (12.07%)

0 200 400 600 800

10
.0

10
.5

11
.0

11
.5

12
.0

12
.5

Breaths by clusters

Time

V
ol

um
e

Cluster 1  Number of breaths = 162  (36.9%)
Cluster 2  Number of breaths = 97  (22.1%)
Cluster 3  Number of breaths = 91  (20.73%)
Cluster 4  Number of breaths = 36  (8.2%)
Cluster 5  Number of breaths = 53  (12.07%)

0 200 400 600 800

5.
0

5.
5

6.
0

6.
5

Breaths by clusters

Time

V
ol

um
e

Cluster 1  Number of breaths = 162  (36.9%)
Cluster 2  Number of breaths = 97  (22.1%)
Cluster 3  Number of breaths = 91  (20.73%)
Cluster 4  Number of breaths = 36  (8.2%)
Cluster 5  Number of breaths = 53  (12.07%)

0 200 400 600 800

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

Breaths by clusters

Time

V
ol

um
e

Cluster 1  Number of breaths = 162  (36.9%)
Cluster 2  Number of breaths = 97  (22.1%)
Cluster 3  Number of breaths = 91  (20.73%)
Cluster 4  Number of breaths = 36  (8.2%)
Cluster 5  Number of breaths = 53  (12.07%)

Figure 5.19: Clustering on data volumes.
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5.5.4 Case report - Mechanical ventilation

This case study involves data acquisition from patient suffering from glycogenosis, a metabolic dis-
order caused by enzyme deficiencies affecting either glycogen synthesis, glycogen breakdown or gly-
colysis (glucose breakdown), typically in muscles and/or liver cells. Symptoms include enlargement
of the liver, heart, or striated muscle, including the tongue, with progressive muscular weakness
[23]. During the acquisition, mechanical ventilation of the patient was activated and stopped. It
is possible to observe the transition from the patient’s quiet breathing to the breath induced by
mechanical ventilation and back, as shown in Figure 5.20. Ventilation replaces the action of the
patient’s respiratory muscles, having an effect both on the mean value of the chest wall volume and
on the breathing dynamics. Therefore, in our analysis we expect to identify clusters characterized
by differences in both volume and shape.

Outlier detection

The results of the full outlier detection is shown in Figure 5.21. The moment corresponding to the
end of ventilation is marked as outlier, as well as some noise at the end of the track.

Patterns

Since with ventilation the absolute value of the volume is relevant, the chosen functional distance in
this case has been the L2 one. The elbow in the mean similarities plot indicated 2 clusters: Cluster
1 covers the non-ventilated breathing, Cluster 2 covers the ventilated breathing (see Figure 5.22
and Figure 5.23).

Discussion

It is possible to notice in cluster 2 how the abdominal paradox is progressively reduced after
ventilation is activated (Figure 5.24). When ventilation ends, the breathing activity immediately
returns to its original pattern. Figure 5.25 shows the median breaths for all compartments in both
clusters: non-ventilated breathing presents a paradoxical pattern in the abdomen. With ventilation,
the phase shift of the abdomen is significantly reduced, thus the chest wall volume increases and
we can see a slight decrease of the rib cage volume, which no longer has to compensate the full
abdominal phase shift.
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Figure 5.20: Breathing tracks - Chest wall and compartments
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Figure 5.21: Outlier detection results.
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Figure 5.22: Multivariate kma results - L2 distance
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Figure 5.23: Clustering on data volumes.
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Figure 5.25: Median breaths of clusters
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5.5.5 Case report - Duchenne

This case study involves data acquisition from a patient affected by Duchenne muscular dystrophy
(DMD). DMD is an X-linked myopathy resulting in progressive wasting of locomotor and respiratory
muscles, with consequent chronic ventilatory failure that is the main cause of death. In these
patients it is extremely important, therefore, to measure lung function and respiratory muscle action
in order to monitor the progression of the disease, to identify early signs of ventilatory insufficiency,
to plan optimal interventions for improving the quality of life and to quantify the effects of novel
gene-modifying strategies and pharmacological therapies [14]. The symptoms of muscle weakness
usually begins around the age of four in boys and worsens quickly. Typically muscle loss occurs
first in the thighs and pelvis followed by those of the arms. This can result in trouble standing up.

As we can see from Figure 5.26, although the total volume in this subject is regular, there is an
alternation in all the chest wall compartments between abdominal breathing and rib cage breathing.

Outlier detection

The results of the outlier detection are shown in Figure 5.27. Almost no outliers are found, which
is reasonable since the two breathing patterns are exactly alternated and equal in terms of number
of breaths.

Patterns

The chosen functional distance in this case has been the L2 one, since we can clearly see a difference
in absolute volume between the two breathing patterns. The elbow in the mean similarities plot
indicated 2 clusters. Result is shown in Figures 5.28, 5.29 and 5.30 :

Cluster 2 covers the abdominal breathing, with a phase shift in the RCp volume. Cluster 1 covers
the rib cage breathing. Figure 5.31 shows the median breaths of the chest wall and compartments
for each cluster.

Discussion

This subject has two distinct, equally frequent breathing patterns. At the current stage, considering
the overall median of the track is not advised because it would not be representative of the real way
of breathing. As the dystrophy will worsen, the abdominal muscles will weaken more and more, so
we expect cluster 1 to become dominant and cluster 2 to disappear progressively. In that case, it
will be safer to associate the overall median to the patient breathing activity.
The L2 distance was selected in this case because the alternating segments differ significantly by
absolute value. Pearson distance over breaths derivatives is also a valid choice because the shape of
the two patterns is very different. Indeed, by grouping the first derivatives of the curves we basically
obtain the same result, except for the extreme breath of each sub-group (see Figure 5.32 and 5.33).
This may indicate that the transition between abdominal breathing and rib-cage breathing is not
immediate.
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Figure 5.26: Breathing tracks - Chest wall and compartments
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Figure 5.27: Outlier detection results in the chest wall.
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Figure 5.28: Multivariate kma results - L2 distance
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Figure 5.29: Clustering on data volumes.
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Figure 5.31: Median breaths of clusters
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Figure 5.32: Multivariate kma results - Pearson distance
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Figure 5.33: Clustering on data volumes.
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Chapter 6

Population analyses

Breathing pattern comparison between different subjects is a complex task, which is usually done
qualitatively or by means of the breathing pattern parameters. Here, a method to compare breathing
functions from different subjects is described, taking advantage of the procedure defined in the
previous chapter. In fact, the median breath as defined in section 5.1 can be picked (when it makes
sense to do so) as a representative of the breathing mode of a person. Therefore, we can compare
the representative breaths of different subjects applying a very similar procedure to the one that
was defined for intra-patient analysis. Analyses over populations which differ on posture, age and
clinical condition are presented.

6.1 Methodology

Let us describe the methodology that has been developed to compare breath curves of different
subjects. First of all, it is important to notice that median breaths cannot be taken as they are,
but some transformation is needed.

First, the absolute value of the volume has to be removed, since it mostly depends on the
person’s weight. What matters in this context is the volume variation, that is the breath amplitude.
Therefore, all the representative breaths have to be made start from 0.

Then, it has to be considered that the value of breath amplitudes (the volume variation) depends
on the lungs volume, which in turn depends on the chest wall height. This differs from subject to
subject and does not influence respiration, thus it is also necessary to normalize amplitudes dividing
by a suitable value. The candidate is of course the chest wall height, but this measure is problematic
for several reasons. First of all, it has never been measured explicitly in any of previous studies,
therefore data are not available; then, a rigorous definition of this measure has not been given. In
fact, the chest wall height is influenced by posture and could even change during an acquisition if,
for example, the patient moves.

Finally, in some situations one may suspect a systematic difference in the value of amplitudes
between subjects groups, for example between healthy and unhealthy patients. This is for example
the case of patients suffering from Duchenne Muscular Dystrophy (DMD), who undergo a progres-
sive reduction of the tidal volume VT due to muscle wasting [14]. In this setting it can be reasonable
not to introduce any amplitude normalization, but to compare median breaths directly.
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All these considered, we individuated three alternative ways to normalize the representative
breath amplitude:

1. Divide the amplitude of all compartments by the patient’s height. In fact height can be easily
measured and is in general proportional to the chest wall height.

2. Divide by the amplitude of all compartments by the amplitude of the total volume, a.k.a.
tidal volume (VT ). In this way, compartment curves get an amplitude which represents the
relative contribution of that compartment to the total (amplitudes like percentages of VT ). If
this alternative is chosen, the total volume curve becomes less informative and can be removed
from the following analysis.

3. Leave amplitude as it is, i.e. no normalization. This alternative should be chosen when tidal
volume differences between subjects is under interest (real amplitudes, in Litres).

Although the first alternative seems the most natural, we prefer a combination of both the second
and third one, which produce more interpretable results in terms of measurement units (%VT , and
L). In fact, no normalization can be used first to investigate differences in groups comprehensive
of the tidal volume. Then, a second analysis with total volume normalization can be done, since it
allows to compare the relative contribution of compartments to respiration in different subjects.

Once fixed normalization, outlier detection can be applied as in section 4.2. In this setting,
outliers correspond to different patients, therefore their breathing pattern may be analysed later to
understand the (possibly clinical) reasons of their outlyingness.

Finally, clustering techniques as in section 5.3 (absolute value) or section 5.4 (shape) can be
applied to assess the presence of group structure within the sample, and if group structures are
linked with some variables of interest, as the presence of some pathological condition.
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6.2 Comparing different postures

This case study involves 54 healthy subjects measured in supine position and 28 healthy subjects
measured in seated position. Each subject is represented by his multivariate median breath (chest
wall and compartments). Each median is then normalized by its respective chest wall volume.
Figure 6.1 shows the so obtained normalized breaths. We can observe that supine subjects are
characterized by a lower contribution of the rib cage in the breathing activity and a higher contri-
bution of the abdomen, while for seated subjects it is the opposite. This observation is supported
by previous studies, e.g. in Aliverti et al., 2001 [3].
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Figure 6.1: Normalized median breaths

We then proceed with outlier detection and clustering via K-medoids with Alignment. L2 dis-
tance is chosen since we expect different groups to be characterized by different percent contribution
of the segments in the chest wall. The values of the similarity index suggests two clusters, the result
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is shown in Figure 6.2. RCa volume was not considered since it has the lowest relative contribution
to breathing activity, and it is usually noisier.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

t

x

Original Data, dimension 1

0 1 2 3 4 5

−
0.

2
0.

2
0.

6
1.

0

t

y

Original Data, dimension 2

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

x

k 
=

 2

Registration: affine
Aligned Data; dimension 1

Cluster 1
Cluster 2

0 1 2 3 4 5 6
−

0.
2

0.
2

0.
6

1.
0

x

k 
=

 2

Registration: affine
Aligned Data; dimension 2

Cluster 1
Cluster 2

Figure 6.2: Inter-subject clustering

Cluster 1 groups breaths with a lower rib cage volume and a higher abdominal volume, while
cluster 2 is characterized by a higher rib cage volume and a lower abdominal volume.

Checking the labels of each curve, we find that cluster 1 is mainly composed by supine and
cluster 2 by seated. The misclassification table (Table 6.1) reports that the majority of subjects is
correctly classified (outliers are not in the count).

Classified
Supine Seated

True
Supine 42 9
Seated 5 20

Table 6.1: Confusion matrix for subject posture

Figure 6.3 shows how the breaths are classified by kma.
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Figure 6.3: Classification results in terms of compartment contribution: the left column shows the
true labels, the right column shows how breaths are classified.
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6.3 Comparing different ages - healthy sample

This case study involves 65 healthy subjects of different ages measured in supine position. People
in the sample belongs to the following age ranges:

• 21 subjects between 5 and 10 years old;

• 21 subjects between 18 and 25 years old;

• 23 over 60 subjects.

We would like to investigate whether there is any difference in the breathing pattern of children,
young adults and elder people, both in terms of volume variations, and relative contribution of
compartments. Each subject is represented by his multivariate median breath (chest wall and
compartments).

6.3.1 Volume variations comparison

Median breaths are made to start from volume 0, and no other normalization is introduced. Fig-
ure 6.4 shows the ensemble of so obtained curves, where different colours correspond to different
age classes. The children group is characterized by a smaller amplitude and a higher breathing fre-
quency, while young adults seem to have the highest tidal volume. This difference is easily explained
by the fact that children have smaller lungs, therefore have a smaller volume variation compared
to adults.

We proceed with outlier detection and clustering. Outlier detection removes 2 children, 4 young
and 9 over 60 among the noisiest. For classification the L2 distance is chosen since we expect
different groups to be characterized by volume variations of the segments in the chest wall. The
values of the similarity index suggests two clusters, the result is shown in Figure 6.5. Cluster 1
groups breaths with a higher volume variation in all compartments. Cluster 2 is characterized by
smaller volume variations and duration. Not surprisingly, Cluster 2 encloses most of the children,
while Cluster 1 contains adults. Table 6.2 is the confusion matrix for this case. Based on this result,
we can say that there is no evidence of a significant difference between young adults and over 60 in
terms of volume variations. Figure 6.6 shows how the breaths are classified by kma.

Classified
[5-10] [18-25] and Over 60

True
[5-10] 16 3

[18-25] and Over 60 3 28

Table 6.2: Confusion matrix for subject age
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Figure 6.4: Median breaths - healthy sample
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Figure 6.5: Classificaton results
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Figure 6.6: Classification results in terms of volume variation: the left column shows the true labels,
the right column shows how breaths are classified.
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6.3.2 Compartments relative contribution

Here each median is normalized by its respective chest wall volume. Figure 6.7 shows the so obtained
normalized breaths. We can observe that younger subjects seem to be characterized on average by
a higher rib cage and a lower abdomen contribution, while for older subjects it is the opposite.
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Figure 6.7: Normalized median breaths - healthy sample

Outlier detection spotted 4 children, 3 young and 5 elders. The L2 distance is chosen for
classification since we expect different groups to be characterized by different relative contribution
of the segments in the chest wall. The values of the similarity index suggests three clusters, the
result is shown in Figure 6.8. As before, RCa volume was not considered in classification, since it
has the lowest contribution to breathing activity.

Cluster 1 groups breaths with a higher rib cage and lower abdominal contribution. Cluster 2
is characterized by a lower rib cage contribution, while abdomen is higher and breaths duration is
shorter. Cluster 3 has the lowest rib cage contribution, sometimes paradoxical, and high abdominal

91



0 1 2 3 4 5

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

t

x
Original Data, dimension 1

0 1 2 3 4 5

−
0.

4
0.

0
0.

4
0.

8

t

y

Original Data, dimension 2

0 1 2 3 4 5 6

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

x

k 
=

 3

Registration: affine
Aligned Data; dimension 1

Cluster 1
Cluster 2
Cluster 3

0 1 2 3 4 5 6

−
0.

4
0.

0
0.

4
0.

8

x

k 
=

 3

Registration: affine
Aligned Data; dimension 2

Cluster 1
Cluster 2
Cluster 3

Figure 6.8: Classification result - compartment contribution

volume, while breathing frequency is similar to the one in Cluster 1. We check whether these
clusters are linked with age. Cluster labels give the following division:

• Cluster 1 is composed by: 7 subjects in [5-10] age range, 12 in [18-25] range, 4 over 60;

• Cluster 2 is composed by: 9 subjects in [5-10] age range, 2 in [18-25] range, 2 over 60;

• Cluster 3 is composed by: 1 subject in [5-10] age range, 4 in [18-25] range, 12 over 60.

We can then assign Cluster 1 to young adults, Cluster 2 to children and Cluster 3 to over 60. Table
6.3 shows the age confusion matrix. We observe that some children are classified as young adults,
while some young adults are put together with elders.

Classified
[5-10] [18-25] Over 60

True
[5-10] 9 7 1
[18-25] 2 12 4
over 60 2 4 12

Table 6.3: Confusion matrix for subject age - compartment contribution

On the other hand, we can merge the two groups of [5-10] and [18-25] age range into a single
population of under 25 years old. In this case, we have that Cluster 1 and 2 together provide a
good covering of this newly defined group, as shown by the Table 6.4.

These results suggest that, although there might be some difference between children and young
adults, it seems to be linked most with breathing frequency rather than compartmental contribution,
and it is not neat. On the contrary, over 60 are well-distinguished from the younger subjects. In
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Classified
[5-10] and [18-25] Over 60

True
[5-10] and [18-25] 30 5

Over 60 6 12

Table 6.4: New confusion matrix for subject age - compartment contribution

fact, RCp contribution in that group is lower than the abdominal one, while the rib cage may also
show a paradoxical behaviour. This may be explained by a greater rigidity of the rib cage in seniors,
due to a lower muscular tone. Figure 6.9 shows how the breaths are classified by kma, considering
cluster 1 and 2 as representative of the under 25 population.
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Figure 6.9: Classification results in terms of compartment contribution: the left column shows the
true labels, the right column shows how breaths are classified.
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6.4 Comparing different ages - DMD sample

The following case studies compare a group of 49 children between 5 and 10 years old affected by
Duchenne Muscular Distrophy (DMD) with a group of 40 elder patients aged from 18 to 25 years
old. We recall that DMD is a severe genetic disease which results in progressive locomotor and
respiratory muscle wasting, whose symptoms arise during childhood [14]. All acquisitions are in
supine position. Each subject is represented by his multivariate median breath (chest wall and
compartments). We would like to investigate whether there are differences in breathing pattern in
the two age classes in terms of volume variation and relative contribution of compartments.

6.4.1 Volume variations comparison

Median breaths are made to start from volume 0, and no other normalization is introduced. Figure
6.10 shows the ensemble of so obtained curves, where different colours correspond to different age
classes. Children seem to have a lower pulmonary rib cage volume with respect to adults. Notice
that, differently from what we have seen for healthy subjects, tidal volume for elder DMD seems
not higher than the children’s one. In fact, reduction of the tidal volume in adult DMD patients is
a symptom of respiratory muscles weakening [14].

We proceed with outlier detection and clustering. Some DMD children are clearly outlying, both
in terms of duration and shape, and are removed as expected. In total, during outlier detection 8
children and 1 adult are spotted.

For classification the L2 distance is chosen as before. The values of the similarity index suggests
two clusters. Result is shown in Figure 6.11 while the confusion matrix is in Table 6.5. Based on
this, we do not see an evident age-related subdivision between groups (which is opposite from what
we observed in healthy subjects).

Classified
[5-10] [18-25]

True
[5-10] 32 9
[18-25] 15 24

Table 6.5: Confusion matrix for subject age - DMD sample

We then remove the RCa compartment, which gives the lowest contribution to tidal volume,
in order to verify whether age-related differences arise in the behaviour of the pulmonary rib cage
compared with abdomen. Result of classification is shown in Figure 6.12.

Cluster 1 groups breaths with a higher volume variation in abdomen rather than rib cage.
Cluster 2 is characterized by smaller abdominal variations and a higher tidal volume. Now Cluster
2 encloses most of adult patients, while Cluster 1 contains children. Table 6.6 is the confusion
matrix for this case. Classified breaths are shown in Figure 6.13. Based on this result, we can say
that adults are characterized by a higher tidal volume and rib cage volume, while children have got
a higher abdominal volume variation. We can compare these insights with the ones obtained with
a healthy sample, where adults had a significantly higher volume variation in the chest wall and all
of its compartments with respect to children.
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Figure 6.10: Median breaths - DMD sample

Classified
[5-10] [18-25]

True
[5-10] 31 10
[18-25] 5 34

Table 6.6: New confusion matrix for subject age - DMD sample
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Figure 6.11: Classification results - DMD sample
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Figure 6.12: Classification results without RCa - DMD sample
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Figure 6.13: Classified median breaths - DMD sample
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6.4.2 Compartments relative contribution

As before, here medians are normalized dividing by their corresponding tidal volume, while only
RCp and AB are considered for classification. Figure 6.14 shows the normalized curves. We can
observe that adults seem to be characterized by a higher rib cage and a lower abdomen contribution,
while for children the opposite seems to hold.

Outlier detection removes 10 subjects in the 5-10 age range, which we recall to be the noisiest
group, and one in 18-25. Figures 6.15 and 6.16 show the results of classification. Confusion
matrix is provided by Table 6.7. Cluster 1 groups breaths which have a lower rib cage contribution
with respect to the abdominal one, and covers most of the children, while the opposite holds for
Cluster 2 which holds most of the adults. This is coherent with the fact that the diaphragm,
which is responsible for the abdominal volume variation, is weakened first by the disease, and
needs compensation by the rib cage. Therefore, while in children supine respiration is prevalently
abdominal (as in healthy subjects), elder patients have a major rib cage contribution. Nevertheless,
as we have seen in the volume variations comparison, this compensation is not sufficient to guarantee
a level of ventilation comparable with the one of healthy adults.

Classified
[5-10] [18-25]

True
[5-10] 29 10
[18-25] 10 29

Table 6.7: Confusion matrix for subject age - Compartment contribution in DMD sample
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Figure 6.14: Normalized median breaths - DMD sample
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Figure 6.15: Classification results - Compartment contribution in DMD sample
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Figure 6.16: Classification results in terms of compartment contribution: the left column shows the
true labels, the right column shows how breaths are classified.
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6.5 Comparing different clinical conditions

The following case studies compare a group of patients affected by Duchenne Muscular Distrophy
(DMD) with a control group of healthy subjects (CTR). All acquisitions are in supine position.
Each subject is represented by his multivariate median breath (chest wall and compartments). We
would like to investigate whether there is any difference in the breathing pattern of healthy and
not healthy subjects in same age range in terms of volume variation and relative contribution of
compartments.

6.5.1 Healthy children and DMD children

In this analysis we consider the following samples:

• CTR young: 21 healthy subjects between 5 and 10 years;

• DMD young: 49 DMD patients between 5 and 10 years.

Volume variations comparison

Median breaths are made to start from volume 0, and no other normalization is introduced. Figure
6.17 shows the so obtained curves, where different colours correspond to different age classes. There
seem to be no clear distinction between healthy and DMD subjects.

Some DMD children are clearly outlying, both in terms of duration and shape, and are removed
as expected. In total, during outlier detection 5 CTR and 21 DMD are removed. The reason why
so many curves are removed is that data acquisition for children is typically short and very noisy
(children move a lot and movement is detected by the software) so the median for each subject is
computed on a much lower number of breaths with respect to an adult. This implies that medians
are more irregular and thus the outlier detection is more sensitive.

Figures 6.18 and 6.19 show the results of classification. Cluster 1 groups breaths which have an
overall larger volume, cluster 2 groups those with a lower volume. However, none of the two clusters
is representative of CTR or DMD sample so there is no point in constructing a misclassification
table. For an age range of [5-10] years old, it seem that the difference in volume variation is not
liked to the clinic condition.
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Figure 6.17: Median volume variations - DMD and CTR young samples
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Figure 6.18: Classification results - DMD young and CTR young.
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Figure 6.19: Classification results in terms of volume variation: the left column shows the true
labels, the right column shows how breaths are classified.
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Compartments relative contribution

Medians are normalized dividing by their corresponding tidal volume, while only RCp and AB are
considered for classification. Figure 6.20 shows the normalized curves. As before, there seem to be
no clear distinction between healthy and DMD subjects. In total, during outlier detection 5 CTR
and 21 DMD are removed.

Figures 6.21 and 6.22 show the results of classification. Again, the median breaths of the two
groups are scattered in the two clusters, so it is not advisable to pick them as representative of
the samples. As with volume variations, the difference in terms of relative contribution of the
compartments in the breathing activity seems to be unrelated to the pathology. Based on these
results, we can state that in the age range from 5 to 10 years old children affected by DMD still
have breathing patterns which are substantially analogous to the ones of healthy omologous.
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Figure 6.20: Normalized median breaths - DMD and CTR young samples.
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Figure 6.21: Classification results - DMD young and CTR young.
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Figure 6.22: Classification results in terms of compartment contribution: the left column shows the
true labels, the right column shows how breaths are classified.
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6.5.2 Healthy adults and DMD adults

In this first analysis we consider the following samples:

• 21 healthy subjects between 18 and 25 years

• 40 DMD patients between 18 and 25 years

Volume variations comparison

Median breaths are made to start from volume 0, and no other normalization is introduced. Figure
6.23 shows the so obtained curves, where different colours correspond to different samples. Healthy
subjects have a significantly higher volume variation and a lower breathing frequency with respect
to DMD subjects, which is to be expected since DMD weakens the respiratory muscles. Since the
number of healthy subjects is much lower than DMD subjects and there are no evident outliers, we
skip outlier detection in this case to avoid the removal of too many breaths in the healthy breaths,
which would otherwise be considered as magnitude outliers. Figures 6.24 and 6.25 show the results
of classification. Cluster 1 groups breaths with the lower volume, which mostly corresponds to the
DMD adults, cluster 2 groups breaths with higher volume, which corresponds to the healthy adults.
The confusion matrix is in Table 6.8, the two groups are identified with good precision. Healthy
adults are characterized by a higher respiratory volume, while DMD patients have a lower volume
variation associated with a higher respiratory rate.

Classified
CTR adult DMD adult

True
CTR adult 15 6
DMD adult 6 34

Table 6.8: Confusion matrix for DMD and CTR adult samples - volume variation
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Figure 6.23: Median volume variation - DMD and CTR adult samples.
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Figure 6.24: Classification results - DMD adult and CTR adult.
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Figure 6.25: Classification results in terms of volume variation: the left column shows the true
labels, the right column shows how breaths are classified.
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Compartments relative contribution

Medians are normalized dividing by their corresponding tidal volume, while only RCp and AB
are considered for classification. Figure 6.26 shows the so obtained curves, where different colours
correspond to different samples. On average the healthy adults have a higher duration of the breaths,
which indicates lower breathing frequency. Moreover, they seem to have a smaller RCp contribution,
which is reasonable since DMD tends to affect abdominal muscles first, so DMD patients have to
resort more on pulmonary breathing (meaning higher RCp contribution for DMD subjects). Outlier
detection finds 2 healthy and 5 DMD subjects as outliers. Figures 6.27 and 6.28 show the results
of classification. The confusion matrix is provided in Table 6.9. Cluster 1 is characterized by a
higher abdominal contribution than the rib cage, and encloses mostly healthy adults, while Cluster
2 presents a higher rib cage contribution and contains DMD patients. Abdominal respiration is
coherent with the respiratory pattern described before for healthy supine subjects.
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Figure 6.26: Normalized median breaths - DMD and CTR adult samples.
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Figure 6.27: Classification results - DMD adult and CTR adult.

Classified
CTR adult DMD adult

True
CTR adult 14 5
DMD adult 9 26

Table 6.9: Confusion matrix for DMD and CTR adult samples - compartment contribution
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Figure 6.28: Classification results in terms of compartment contribution: the left column shows the
true labels, the right column shows how breaths are classified.
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6.6 Discussion

In this chapter, we declined the procedure described in the previous chapters to compare breathing
patterns of healthy subjects in different postures and ages, and patients suffering from DMD. We
summarize the main findings that we achieved:

• Respiration in healthy subjects in supine position is prevalently abdominal, while in seated
position the higher contribution is given by the rib cage (Figure 6.29);

• Volume variations and breaths duration in healthy subjects are way higher from childhood
to adulthood, but there is no significant difference between young adults and elder people
(Figure 6.30a);

• Compartments contribution to respiration in healthy subjects changes in time, in particu-
lar people aged over 60 have a reduced rib cage contribution which is compensated by the
abdomen (Figure 6.30b);

• Children affected by DMD display breathing patterns which are not significantly different from
the ones of the healthy, both in terms of volume variations and compartments contribution;

• Adult DMD have a tidal volume which is systematically lower than the one of homologous
healthy subjects, and a higher respiratory rate (Figure 6.32a);

• Supine respiration in adult DMD subjects is characterized by a balanced contribution of the
rib cage and the abdomen, while in healthy subjects respiration is prevalently abdominal
(Figure 6.32b);

• Adult DMD subjects have a tidal volume which is slightly higher than the one of DMD
children, moreover adults have a decreased abdominal contribution (Figure 6.31).

These insights are coherent with findings arising from previous clinical studies developed with
Optoelectronic Plethysmography, which demonstrated the influence of age and posture over the
breathing pattern (see for example Massaroni et al., 2016 [17]). Moreover, results related to DMD
patients confirm the outcome of the analysis in Lo Mauro et al., 2018 [14], who showed the significant
change from normality of tidal volume, respiratory rate and abdominal contribution from childhood
to adulthood.

Thus, the procedure developed in this work is able to reinforce the results obtained with the tra-
ditional breathing pattern methodologies, with a more rigorous analysis that requires less arbitrary
interventions and allows to study breath curves as a whole instead of a set of scalar parameters.
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Figure 6.29: Position comparison - supine and seated healthy subjects
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(b) Compartments percentage contribution.

Figure 6.30: Age comparison - supine healthy subjects
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Figure 6.31: Age comparison - DMD subjects
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Figure 6.32: Clinic condition comparison - Healthy and DMD adult
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Chapter 7

Conclusion and further
developments

In this work, we developed a rigorous and reproducible procedure for the statistical analysis of data
coming from Optoelectronic Plethysmography, based on Functional Data Analysis techniques.

First, an algorithm was designed to separate breath curves based on the peculiar characteristics
of OEP data tracks and B-spline smoothing, accounting for the presence of noisy minima, long-
expiration breaths or pauses in the subject respiration. This algorithm allows for a fast minima
detection even in long data acquisition, moreover parameters can be tuned based on the data
acquisition characteristics, especially the sampling frequency.

Secondly, the concept of outlier breath was formalized in terms of breath duration, magnitude
and shape. An algorithm for automatic outlier detection was developed, combining scalar dura-
tion boxplot and functional techniques such as multivariate functional boxplot and multivariate
outliergram. An experiment was designed to assess the outlier detection algorithm performance in
extreme conditions, and to determine the best weight configuration to use in multivariate functional
depths. The algorithm proved to be quite robust even in these worst cases, while the best results
were achieved through uniform weights.

The two pre-processing algorithms were used to build functional datasets of smooth breath
curves from single acquisitions. Multivariate K-Medoids with Alignment algorithm was employed
both to extract the median curve of these datasets as a representative curve of the breathing pattern
of the subject, or to analyse group structures in breathing patterns, both in terms of absolute
value and shape. Different algorithm settings were proposed in relation to different clinical and
experimental situations, such as breathing pattern variations during exercise. Application to real
case studies shows the effectiveness of the algorithm in capturing cluster structures based on relevant
physiological parameters.

Finally, a new way to compare breathing patterns of different subjects was proposed, based on
the adaptation of the intra-subject outlier detection and clustering procedure previously defined.
Normalized median breaths are used each as representatives of the corresponding subjects. K-
Medoids with Alignment over volume variations and relative contribution of compartments has
been used to discriminate healthy subjects in different positions and age classes, with a comparison
to patients suffering from Duchenne Muscular Dystrophy at different ages. Classification provided
physiologically interpretable results, which also reinforced evidence obtained in previous clinical
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studies [3] [14].
Many further developments of this work can be possible:

• Using the same methodology developed in this thesis, breathing pattern comparison between
healthy subjects and patients with different pathologies other than DMD can be performed;

• This work has been focused mainly over the characterization of quiet breathing, while outliers
were discarded. Differences in outliers like vital capacities extracted by different subjects, or in
coughs, which are often used to assess a patient’s breathing functionality, could be examined
[17];

• Plethysmography can be implemented by means of wearable devices, which allow for a continu-
ous monitoring of breathing activity during the daily activities. On-line processing techniques
may be developed to analyze data coming from this source, and possibly to identify patterns
related to different postures, activities and others;

• Multivariate K-medoids algorithm weights all the curve dimensions equally. An improvement
would be to use a weighted K-medoids, giving different importance to the different chest wall
compartments;

• K-medoid Alignment for dependent curves could be used to take into account temporal de-
pendence in clustering [1].
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Appendix A

Code

In this appendix the full code used for OEP data analysis is provided.

A.1 Prerequisites

The results of this thesis were obtained with R. It is advisable to use an R version of at least 3.5.1.
The following R packages are needed: fda, roahd, splus2R and fdakmapp. The first three are

available on CRAN an can be installed with install.packages("packagename"). The optimized
K-Mean Alignment algorithm implementation by Alessandro Zito [25] is available on GitHub in
the form of the R package called fdakmapp. Code can be found at https://github.com/zitale/
fdakmapp in the branch pacs. To install it, download the .zip folder, unzip it and type on the R
console
install.packages("/path/to/package/folder", type=’source’, repos=NULL)

A.2 Subject analysis - procedure

The following code is the one used to find the median or cluster breaths from the data file of a
single patient.

# load l i b r a r i e s
l ibrary ( fda )
l ibrary ( roahd )
l ibrary ( fdakmapp )
l ibrary ( splus2R )

# load func t i on s
setwd ( ”/path/to/R/ s c r i p t s ” )
source ( ”smooth breath .R” )
source ( ” loca lmin .R” )
source ( ” t ab l e breaths .R” )
source ( ” r e s c a l e .R” )
source ( ” o u t l i e r d e t e c t i on .R” )
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source ( ” p l o t . breaths . by c l u s t e r s .R” )
source ( ” p l o t compartments .R” )

# load data
setwd ( ”/path/to/ d a t a f i l e ” )

name=’name ’

data=read . table (paste (name , ” . dat” , sep=’ ’ ) , header = F)

time=data [ , 1 ]
vo l r cp=data [ , 2 ]
vo l r c a=data [ , 3 ]
volab=data [ , 4 ]
v o l t o t=data [ , 5 ]

x11 ( )
plot (time , vo l to t , col=’ black ’ , type = ’ l ’ , main=’CW volume ’ ,

x lab=’ time ( s ) ’ , y lab=’ volume (L) ’ )

x11 ( )
plot (time , vo lrcp , col=’ black ’ , type = ’ l ’ , main=’RCp volume ’ ,

x lab=’ time ( s ) ’ , y lab=’ volume (L) ’ )

x11 ( )
plot (time , vo l rca , col=’ black ’ , type = ’ l ’ , main=’RCa volume ’ ,

x lab=’ time ( s ) ’ , y lab=’ volume (L) ’ )

x11 ( )
plot (time , volab , col=’ black ’ , type = ’ l ’ , main=’AB volume ’ ,

x lab=’ time ( s ) ’ , y lab=’ volume (L) ’ )

write c en t e r s=FALSE # TRUE to save r e s u l t s

min=find local min(time , vo l to t , peak span=101 , grid coef=10, step=10,
plot=1, sp iky min = T)

volumes . to t=table breaths (time , vo l to t ,min$minidx )
volumes . rcp=table breaths (time , vo lrcp , min$minidx )
volumes . rca=table breaths (time , vo l rca , min$minidx )
volumes . ab=table breaths (time , volab , min$minidx )

d=min$de l t a s ;
t imes=volumes . to t$ t imes
for ( j in seq (1 , length (d ) ) )
t imes [ , j ]= times [ , j ]− t imes [ 1 , j ] ;

smoothed=matrix (NA, nrow=dim( volumes . to t$breaths ) [ 1 ] ,
ncol=dim( volumes . to t$breaths ) [ 2 ] )
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smoothed1=matrix (NA, nrow=dim( volumes . to t$breaths ) [ 1 ] ,
ncol=dim( volumes . to t$breaths ) [ 2 ] )

for ( j in 1 :dim( volumes . to t$breaths ) [ 2 ] ) {
vec=which( ! i s .na( volumes . to t$breaths [ , j ] ) )
sm=smooth breath ( volumes . to t$ t imes [ vec , j ] , volumes . to t$breaths [ vec , j ] ,
grid coef=5,plot = 0) #smooth breaths one by one
smoothed [ vec , j ]=sm$smoothed curve
smoothed1 [ vec , j ]=sm$der1

}

smoothed rcp=matrix (NA, nrow=dim( volumes . to t$breaths ) [ 1 ] ,
ncol=dim( volumes . to t$breaths ) [ 2 ] )

smoothed rcp1=matrix (NA, nrow=dim( volumes . to t$breaths ) [ 1 ] ,
ncol=dim( volumes . to t$breaths ) [ 2 ] )

for ( j in 1 :dim( volumes . to t$breaths ) [ 2 ] ) {
vec=which( ! i s .na( volumes . rcp$breaths [ , j ] ) )
sm=smooth breath ( volumes . to t$ t imes [ vec , j ] , volumes . rcp$breaths [ vec , j ] ,
grid coef=5,plot = 0) #smooth breaths one by one
smoothed rcp [ vec , j ]=sm$smoothed curve
smoothed rcp1 [ vec , j ]=sm$der1

}

smoothed rca=matrix (NA, nrow=dim( volumes . to t$breaths ) [ 1 ] ,
ncol=dim( volumes . to t$breaths ) [ 2 ] )

smoothed rca1=matrix (NA, nrow=dim( volumes . to t$breaths ) [ 1 ] ,
ncol=dim( volumes . to t$breaths ) [ 2 ] )

for ( j in 1 :dim( volumes . to t$breaths ) [ 2 ] ) {
vec=which( ! i s .na( volumes . rca$breaths [ , j ] ) )
sm=smooth breath ( volumes . to t$ t imes [ vec , j ] , volumes . rca$breaths [ vec , j ] ,
grid coef=5,plot = 0) #smooth breaths one by one
smoothed rca [ vec , j ]=sm$smoothed curve
smoothed rca1 [ vec , j ]=sm$der1

}

smoothed ab=matrix (NA, nrow=dim( volumes . to t$breaths ) [ 1 ] ,
ncol=dim( volumes . to t$breaths ) [ 2 ] )

smoothed ab1=matrix (NA, nrow=dim( volumes . to t$breaths ) [ 1 ] ,
ncol=dim( volumes . to t$breaths ) [ 2 ] )

for ( j in 1 :dim( volumes . to t$breaths ) [ 2 ] ) {
vec=which( ! i s .na( volumes . ab$breaths [ , j ] ) )
sm=smooth breath ( volumes . to t$ t imes [ vec , j ] , volumes . ab$breaths [ vec , j ] ,
grid coef=5,plot = 0) #smooth breaths one by one
smoothed ab [ vec , j ]=sm$smoothed curve
smoothed ab1 [ vec , j ]=sm$der1

}
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x11 ( ) ; matplot ( smoothed , type=’ l ’ , main=’ Breaths − t o t a l volume ’ ,
x lab=’ time ( s ) ’ , y lab=’ volume (L) ’ )

x11 ( ) ; matplot ( smoothed rcp , type=’ l ’ , main=’ Breaths − RCp volume ’ ,
x lab=’ time ( s ) ’ , y lab=’ volume (L) ’ )

x11 ( ) ; matplot ( smoothed rca , type=’ l ’ , main=’ Breaths − RCa volume ’ ,
x lab=’ time ( s ) ’ , y lab=’ volume (L) ’ )

x11 ( ) ; matplot ( smoothed ab , type=’ l ’ , main=’ Breaths − AB volume ’ ,
x lab=’ time ( s ) ’ , y lab=’ volume (L) ’ )

x11 ( ) ; matplot ( smoothed1 , type=’ l ’ , main=’ F i r s t De r i va t i v e s − t o t a l volume ’ ,
x lab=’ time ( s ) ’ , y lab=’ ’ )

x11 ( ) ; matplot ( smoothed rcp1 , type=’ l ’ , main=’ F i r s t De r i va t i v e s − RCp volume ’ ,
x lab=’ time ( s ) ’ , y lab=’ ’ )

x11 ( ) ; matplot ( smoothed rca1 , type=’ l ’ , main=’ F i r s t De r i va t i v e s − RCa volume ’ ,
x lab=’ time ( s ) ’ , y lab=’ ’ )

x11 ( ) ; matplot ( smoothed ab1 , type=’ l ’ , main=’ F i r s t De r i va t i v e s − AB volume ’ ,
x lab=’ time ( s ) ’ , y lab=’ ’ )

### Out l i e r d e t e c t i on ###

f i l t e r e d=o u t l i e r d e t e c t i on ( times , smoothed , smoothed rcp , smoothed rca ,
smoothed ab , plot opt ion=1)

plot o u t l i e r s (time , vo l to t , volumes . tot , f i l t e r e d $time . o u t l i e r s . idx ,
f i l t e r e d $magnitude . o u t l i e r s . idx , f i l t e r e d $shape . o u t l i e r s . idx ,
main=’ Out l i e r breaths − CW Volume ’ )

plot o u t l i e r s (time , vo lrcp , volumes . rcp , f i l t e r e d $time . o u t l i e r s . idx ,
f i l t e r e d $magnitude . o u t l i e r s . idx , f i l t e r e d $shape . o u t l i e r s . idx ,
main=’ Out l i e r breaths − RCp Volume ’ )

plot o u t l i e r s (time , vo l rca , volumes . rca , f i l t e r e d $time . o u t l i e r s . idx ,
f i l t e r e d $magnitude . o u t l i e r s . idx , f i l t e r e d $shape . o u t l i e r s . idx ,
main=’ Out l i e r breaths − RCa Volume ’ )

plot o u t l i e r s (time , volab , volumes . ab ,
f i l t e r e d $time . o u t l i e r s . idx ,
f i l t e r e d $magnitude . o u t l i e r s . idx , f i l t e r e d $shape . o u t l i e r s . idx ,
main=’ Out l i e r breaths − AB Volume ’ )

f i l t e r e d . t imes=f i l t e r e d $ f i l t e r e d . t imes
f i l t e r e d . Vtot=f i l t e r e d $ f i l t e r e d . Vtot
f i l t e r e d . Vrcp=f i l t e r e d $ f i l t e r e d . Vrcp
f i l t e r e d . Vrca=f i l t e r e d $ f i l t e r e d . Vrca
f i l t e r e d .Vab=f i l t e r e d $ f i l t e r e d .Vab
o u t l i e r s=f i l t e r e d $ o u t l i e r s . idx

### Clus t e r i ng ###

# I f abso lu t e va lue i s r e l evant−> groupBy . abs=TRUE, use L2 .
# Use Pearson otherw i s e ( groupBy . abs=FALSE)
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cat ( ” I n s e r t a boolean : TRUE i f abso lu t e va lue i s r e l e van t ( use L2 d i s t ance ) ,
FALSE i f only shape i s r e l e van t ( use d1 . pearson ) . Press ENTER to cont inue . ” )

groupBy . abs=scan ( ”” ,what=log ica l ( ) , nmax=1)

i f ( groupBy . abs ){

datavec = c (c ( t ( f i l t e r e d . Vtot ) ) , c ( t ( f i l t e r e d . Vrcp ) ) , c ( t ( f i l t e r e d . Vrca ) ) ,
c ( t ( f i l t e r e d .Vab ) ) )
a r r=array ( datavec , c (dim( f i l t e r e d . Vtot ) [ 2 ] ,dim( f i l t e r e d . Vtot ) [ 1 ] , 4 ) )

} else {

f i l t e r e d . Vtot1=smoothed1 [ ,− o u t l i e r s ]
f i l t e r e d . Vrcp1=smoothed rcp1 [ ,− o u t l i e r s ]
f i l t e r e d . Vrca1=smoothed rca1 [ ,− o u t l i e r s ]
f i l t e r e d . Vab1=smoothed ab1 [ ,− o u t l i e r s ]

f i l t e r e d . Vtot1=f i l t e r e d . Vtot1 [ 1 :dim( f i l t e r e d . t imes ) [ 1 ] , ]
f i l t e r e d . Vrcp1=f i l t e r e d . Vrcp1 [ 1 :dim( f i l t e r e d . t imes ) [ 1 ] , ]
f i l t e r e d . Vrca1=f i l t e r e d . Vrca1 [ 1 :dim( f i l t e r e d . t imes ) [ 1 ] , ]
f i l t e r e d . Vab1=f i l t e r e d . Vab1 [ 1 :dim( f i l t e r e d . t imes ) [ 1 ] , ]

datavec = c (c ( t ( f i l t e r e d . Vtot1 ) ) , c ( t ( f i l t e r e d . Vrcp1 ) ) , c ( t ( f i l t e r e d . Vrca1 ) ) ,
c ( t ( f i l t e r e d . Vab1 ) ) )
a r r=array ( datavec , c (dim( f i l t e r e d . Vtot1 ) [ 2 ] ,dim( f i l t e r e d . Vtot1 ) [ 1 ] , 4 ) )

}

t imet=t ( f i l t e r e d . t imes )

o r i g i n a l . t imes=volumes . to t$ t imes [ ,− o u t l i e r s ] # f o r g raph i c s
o r i g i n a l . t imes=o r i g i n a l . t imes [ 1 :dim( f i l t e r e d . t imes ) [ 1 ] , ]

distance=i f e l s e ( groupBy . abs==1, ’ l 2 ’ , ’ pearson ’ )
warp= ’ a f f i n e ’

find .median=F # FALSE to f i nd c l u s t e r s , TRUE to f i nd j u s t the median

i f ( find .median){

nc lu s t=1

# a l i g n and compute the median
r e s=kmap( timet , arr , n c l u s t=nc lust , warping method=warp ,
c en te r method=’medoid ’ , s im i l a r i t y method=distance ,
comp o r i g i n a l c en te r = T)

kmap show r e s u l t s ( r e s )
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# pick and p lo t the median breath
ind=which( r e s$ s im i l a r i t y . f i n a l==0)

cen t ro id1=cbind ( f i l t e r e d . t imes [ , ind ] , f i l t e r e d . Vtot [ , ind ] ,
f i l t e r e d . Vrcp [ , ind ] , f i l t e r e d . Vrca [ , ind ] ,
f i l t e r e d .Vab [ , ind ] )

dcent ro id1=cbind ( f i l t e r e d . t imes [ , ind ] , f i l t e r e d . Vtot1 [ , ind ] ,
f i l t e r e d . Vrcp1 [ , ind ] , f i l t e r e d . Vrca1 [ , ind ] ,
f i l t e r e d . Vab1 [ , ind ] )

# p lo t the c en t r o id
plot compartments ( timet , f i l t e r e d . Vtot , f i l t e r e d . Vrcp , f i l t e r e d . Vrca ,

f i l t e r e d .Vab , c en t r o id idx = ind ,
labels = re s$labels , n c l u s t =1,
t i t l e s = c ( ’Median breath − CW and compartments ’ ) )

# save the median
i f (write c en t e r s )
{
write . table ( centro id1 , f i l e=paste0 (name , ’ median . txt ’ ) )
}

} else {

# choose number o f c l u s t e r s −−> elbow

cat ( ” I n s e r t the number o f c l u s t e r s to t ry . Press ENTER to cont inue . ” )
K=scan ( ”” ,what=integer ( ) , nmax=1)
checksim=numeric (K)

for ( j in 1 :K){

check=kmap( timet , arr , n c l u s t=j , warping method=warp ,
c en te r method=’medoid ’ , s im i l a r i t y method=distance ,
comp o r i g i n a l c en te r = T)

checksim [ j ]=mean(check$ s im i l a r i t y . f i n a l )
}

x11 ( )
plot ( checksim , type=’ l ’ , x lab=’ Clus te r l a b e l s ’ , y lab=’Mean s i m i l a r i t i e s ’ ,
main=paste0 ( ’Mean S im i l a r i t y − ’ ,warp , sep=’ ’ ) )
points ( checksim , pch=1, col=’ blue ’ , lwd=2)

# s e l e c t K run−time
cat ( ” I n s e r t the s e l e c t e d number o f c l u s t e r s to use . Press ENTER to cont inue . ” )
n c l u s t=scan ( ”” ,what=integer ( ) , nmax=1)
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# c l u s t e r
r e s=kmap( timet , arr , n c l u s t=nc lust , warping method=warp ,
c en te r method=’medoid ’ , s im i l a r i t y method=distance ,
comp o r i g i n a l c en te r = T)

kmap show r e s u l t s ( r e s )

labels=re s$labels
table ( labels )

# p l o t s
col=plot . b reaths . b y c l u s t e r s (time , vo l to t , o r i g i n a l . times , f i l t e r e d . Vtot , labels )
plot . b reaths . b y c l u s t e r s (time , vo lrcp , o r i g i n a l . times , f i l t e r e d . Vrcp , labels )
plot . b reaths . b y c l u s t e r s (time , vo l rca , o r i g i n a l . times , f i l t e r e d . Vrca , labels )
plot . b reaths . b y c l u s t e r s (time , volab , o r i g i n a l . times , f i l t e r e d .Vab , labels )

x11 ( ) ;matplot ( f i l t e r e d . Vtot , col=col$col . groups , type=’ l ’ ,
main=’ Clustered breaths − CW’ , xlab = ’ time ’ )
x11 ( ) ;matplot ( f i l t e r e d . Vrcp , col=col$col . groups , type=’ l ’ ,
main=’ Clustered breaths − RCp ’ , xlab = ’ time ’ )
x11 ( ) ;matplot ( f i l t e r e d . Vrca , col=col$col . groups , type=’ l ’ ,
main=’ Clustered breaths − RCa ’ , xlab = ’ time ’ )
x11 ( ) ;matplot ( f i l t e r e d .Vab , col=col$col . groups , type=’ l ’ ,
main=’ Clustered breaths − AB’ , xlab = ’ time ’ )

i f ( groupBy . abs ){
ind=which( r e s$ s im i l a r i t y . f i n a l==0)

} else {
ind=which( r e s$ s im i l a r i t y . f i n a l >=(−1−10ˆ−15) &
r e s$ s im i l a r i t y . f i n a l <=(−1+10ˆ−15))

}

labels [ ind ]

# take the 2 most numerous groups and p lo t t h e i r c en t r o i d s
s e l e c t e d cen t ro id1=sort ( ind ) [ 1 ]
s e l e c t e d cen t ro id2=sort ( ind ) [ 2 ]

c en t ro id1=cbind ( f i l t e r e d . t imes [ , s e l e c t e d cen t ro id1 ] ,
f i l t e r e d . Vtot [ , s e l e c t e d cen t ro id1 ] , f i l t e r e d . Vrcp [ , s e l e c t e d cen t ro id1 ] ,
f i l t e r e d . Vrca [ , s e l e c t e d cen t ro id1 ] ,
f i l t e r e d .Vab [ , s e l e c t e d cen t ro id1 ] )
c en t ro id2=cbind ( f i l t e r e d . t imes [ , s e l e c t e d cen t ro id2 ] ,
f i l t e r e d . Vtot [ , s e l e c t e d cen t ro id2 ] , f i l t e r e d . Vrcp [ , s e l e c t e d cen t ro id2 ] ,
f i l t e r e d . Vrca [ , s e l e c t e d cen t ro id2 ] ,
f i l t e r e d .Vab [ , s e l e c t e d cen t ro id2 ] )

# p lo t the c en t r o i d s (2 c l u s t e r s )
plot compartments ( timet , f i l t e r e d . Vtot , f i l t e r e d . Vrcp ,
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f i l t e r e d . Vrca , f i l t e r e d .Vab ,
c en t r o id idx = ind , labels = re s$labels ,
n c l u s t=nc lust ,
t i t l e s = c ( ’ Centroid 1 ’ , ’ Centroid 2 ’ ) )

# save the r e s u l t s (2 c l u s t e r s )
i f (write c en t e r s ){
write . table ( centro id1 , f i l e=paste0 (name , ’ c en t ro id1 . txt ’ ) )
write . table ( centro id2 , f i l e=paste0 (name , ’ c en t ro id2 . txt ’ ) )
}

}

Function kmap of fdakmapp package performs K-mean or K-medoid with Alignment algorithms.
We use it with the following input:

• timet: numeric matrix [n.func X grid.size]. The abscissa values where each function is eval-
uated. n.func: number of functions in the dataset. grid.size: maximal number of abscissa
values where each function is evaluated.

• arr: array [n.func X grid.size X d]. Evaluations of the set of original functions on the abscissa
grid x. n.func: number of functions in the dataset. grid.size: maximal number of abscissa
values where each function is evaluated. d: number of function components, i.e. each function
is a d-dimensional curve.

• n clust: scalar. Required number of clusters. Default value is 1. Note that if n clust=1 kma
performs only alignment without clustering.

• warping method: character. Type of alignment required. The implemented options are:
”affine”, ”dilation”, ”shift” and ”noalign”. In our code, we use ’affine’.

• center method: character. Type of clustering method to be used. Possible choices are:
’mean’,’medoid’ and ’pseudomedoid’. Default value is ’mean’. In our code, we use ’medoid’.

• similarity method: character. Required similarity measure. Possible choices are: ’pear-
son’,’l2’. Default value is ’pearson’. In order to compute the median, we use ’l2’.

• comp original center: boolean. If comp original center=TRUE the initial center with rel-
ative dissimilarities is computed otherwise this step is skipped.

The output of kmap is:

• x.center.orig: numeric vector of length n out. Abscissa of the center computed if
comp original center=TRUE.

• y.center.orig: numeric vector n out or matrix n out X n dim. Value of the center computed
if comp original center = TRUE.

• similarity.origin: numeric vector n obs dissimilarity,similarity or distance of the original
center respect the observations computed if comp original center=TRUE.

• x.final: matrix [n.func X grid.size]. Aligned abscissas.

134



• n.clust.final: scalar. Final number of clusters. Note that it may differ from initial number
of clusters (i.e.,from n.clust) if some clusters are found to be empty.

• x.centers.final: matrix [n.clust.final X grid.size]. abscissas of the final function centers.
y.centers.final: matrix [n.clust.final X n.out] or array [n.clust.final X n.out x n dim] ,
contain the evaluations of the final functions centers.

• labels: vector of length n obs. Cluster assignments.

• similarity.final: vector [n obs]: similarities, dissimilarities or distance between each func-
tion and the center of the cluster the function is assigned to.

Further details about kmap can be found in the package manual. Note: if the acquisition contains
too few breaths, numerical problems in kmap may arise. In this case, one can find the median breath
with respect to the non-warped curves by imposing ind=which(res$similarity.origin==0).

A.2.1 File smooth breath.R

In the function smooth breath we create a b-spline basis over an equidistant grid of knots. Then,
we create an object of type functional parameter, to enclose penalization over the third derivative,
and we evaluate the Generalized Cross Validation index for values of lambda on a log scale. Once
found the best lambda, we evaluate the smoothed signal and its derivatives.

Function smooth breath takes as input:

• time: the time vector, that is the abscissa of the signal;

• amplitude: the volume vector;

• order: the order of the b-spline basis to use. It defaults to 5;

• grid coef: an integer. It defines the refinement of the knots grid. Defaults to 10 (1 knot
each 10 datapoints).

• lambda: a vector with penalisation parameters, the best one is selected via Generalized Cross
Validation (GCV). It is advisable to look for the optimal lambda on a log scale;

• plot: boolean. If 1 two plots are produced, one with the computed GCV for each lambda
and one with the smoothed curve overlapped to the original signal.

Output quantities (contained in a list) are:

• smoothed curve: the evaluation of the smooth signal;

• der1: the evaluation of the signal first derivative;

• der2: the evaluation of the signal second derivative;

• lambda: the optimal penalisation parameter;

• GCV: optimal GCV statistic;

• df: degrees of freedom in the smoothed curve.
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smooth breath= function (time , amplitude , order=5, grid coef=10,
lambda=c (1 e−4,1e−5,1e−6,1e−7,1e−8,1e−9,1e−10) ,
plot=0)

{
# crea t e breakpo int s vec to r ( uniform gr id )
breakst=c ( )
for ( i in seq (1 , length ( time ) , grid coef ) )
breakst=c ( breakst , time [ i ] )

# c r ea t e the b sp l i n e ba s i s
base=create . b sp l i n e . b a s i s (c ( time [ 0 ] , time [ length ( time ) ] ) ,
breaks=breakst , norder=order )

ab s c i s s a=time ;
Xobs0=amplitude ;

# eva luate the best p ena l i z a t i o n lambda us ing GCV
gcv=numeric ( length ( lambda ) )
for ( i in 1 : length ( lambda ) )
{
f unc t i ona lPar = fdPar ( fdob j=base , Lfdobj=3, lambda=lambda [ i ] )
gcv [ i ] = smooth . ba s i s ( abs c i s s a , Xobs0 , func t i ona lPar )$gcv
}

lam=lambda [which .min( gcv ) ]

# fun c t i o n a l parameter , having arguments : bas i s , order o f the
# de r i v a t i v e to be pena l i zed , smoothing parameter
func t i ona lPar = fdPar ( fdob j=base , Lfdobj=3, lambda=lam)

Xss=smooth . ba s i s ( abs c i s s a , Xobs0 , func t i ona lPar )

# eva lua t i on o f the smooth func t i on
Xss0 = eval . fd ( absc i s s a , Xss$ fd , Lfd=0)

# eva lua t i on o f the f i r s t d e r i v a t i v e
Xss1 = eval . fd ( absc i s s a , Xss$ fd , Lfd=1)

# eva lua t i on o f the second d e r i v a t i v e
Xss2 = eval . fd ( absc i s s a , Xss$ fd , Lfd=2)

df = Xss$df # the degree s o f freedom in the smoothing curve
GCV = Xss$gcv # the value o f the GCV s t a t i s t i c

i f (plot ){

x11 ( )
plot ( log10 ( lambda ) , gcv )
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x11 ( )
plot ( abs c i s s a , Xobs0 , xlab=” t ” , ylab=”observed data” )
points ( abs c i s s a , Xss0 , type=” l ” , col=”blue ” , lwd=2)
}

r e s u l t=l i s t ( smoothed curve=Xss0 , der1= Xss1 , der2= Xss2 ,
lambda=lam , GCV=GCV, df=df ) ;
r e s u l t

}

A.2.2 File localmin.R

Input to find local min function are:

• time: time vector;

• voltot: volume vector;

• peak span: parameter span to be passed to the peaks function. A peak is defined as an
element in a sequence which is greater than all other elements within a window of width span
centered at that element;

• grid coef: parameter to be passed to smooth breath;

• step: length of the subintervals on which the mean derivative is computed;

• slope coef: we state that the mean derivative starts to grow if the mean derivative in a
subinterval is slope coef times the mean derivative in the previous subinterval. Default
value is 3;

• plot: boolean. If 1 two plots are produced, one showing the detected local maxima and the
other showing the local minima;

• spiky min: logical. If TRUE then peaks is directly used to compute local minima. The
default is FALSE.

The choice of parameter peak span can be done looking at the (approximate) breathing fre-
quency of the subject: for example, supposing a sampling frequency of 60Hz, if looking at the
volume plot we see that the breaths duration is about 3s, then a good value for peak span could
be 3 × 60 = 180 −→ 181. This means that, for each data point, the algorithm will check if it is
higher than the 90 points on the left and the 90 on the right, where 90 data points correspond to
1.5s. The +1 is for the central point of the window, that is, the point being evaluated. For this
reason, peak span should always be an odd integer.

The output of the function is a list containing the following:

• minima: vector time points corresponding to minima locations;

• minidx: vector of positions of minima in the data vector;

• maxidx: vector of positions of maxima in the data vector;
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• deltas: vector of breath lengths.

find local min=function (time , vo l to t , peak span=201 , grid coef=10, step=10,
s l ope coef=3, plot=0, sp iky min=F)

{

localmax=which( peaks ( vo l to t , span=peak span)==TRUE) # f ind l o c a l maxima

i f ( sp iky min==F){ # normal/ low frequency breaths , with t a i l s

br=table breaths (time , vo l to t , localmax )

min=NULL
minidx=NULL

# smoothing to f i nd d e r i v a t i v e s between two maxima
for ( j in 1 :dim( br$breaths ) [ 2 ] ) {
vec=which( ! i s .na( br$breaths [ , j ] ) )

#smooth p i e c e s one by one
sm=smooth breath ( br$ t imes [ vec , j ] , br$breaths [ vec , j ] ,
grid coef=grid coef , plot = 0)

timem=br$ t imes [ vec , j ]
volm=br$breaths [ vec , j ]
der1m=sm$der1

i f ( length ( timem)>step ){

# div ide the i n t e r v a l between two maxima in s ub i n t e r v a l s
# and compute the mean sub i n t e r v a l s d e r i v a t i v e s

amp=length ( timem)%%step

breaks=seq ( 1 , ( length ( timem)−amp) ,by=step )

minloc=NULL

i f ( length ( breaks )>2){

ms=c (mean( der1m [ breaks [ 1 ] : breaks [ 2 ] ] ) )

for ( j in 2 : ( length ( breaks )−1)){
med=mean( der1m [ breaks [ j ] : breaks [ j +1 ] ] )
ms=c (ms ,med)
# look in which sub i n t e r va l the mean f i r s t d e r i v a t i v e
s t a r t s to grow
i f (med>=0 & med>s l ope coef∗ms [ j −1]){
#minloc=timem [ breaks [ j ] ]
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id=which .min( volm [ breaks [ j −1] : breaks [ j +1 ] ] )
minloc=timem [ breaks [ j−1]+id −1]
}
}
} else i f ( length ( breaks )==2){
id=which .min( volm [ breaks [ 1 ] : breaks [ 2 ] ] )
minloc=timem [ breaks [1 ]+ id −1]
}

min=c (min , minloc )
minidx=c (minidx ,which( time==minloc ) )
}

}

} else { # fo r high−f r equency breaths , without t a i l s
# use ’ peaks ’ d i r e c t l y to f i nd the min
minidx=which( peaks(−vo l to t , span=peak span)==TRUE)
min=vo l t o t [ minidx ]
}

# breath l eng th s computation
deltaT=c ( ) ;

l a s t=time [ minidx [ 1 ] ] ;

for ( i in 2 : ( length (min ) ) ){
t=time [ minidx [ i ] ] ;
deltaT=c ( deltaT , abs ( t−l a s t ) ) ;
l a s t=t ;
}

i f (plot ){

x11 ( )
plot (time , vo l to t , type=’ l ’ ,main=’ Local maxima ’ )
points ( time [ localmax ] , v o l t o t [ localmax ] , col=’ red ’ , pch=20)
x11 ( )
plot (time , vo l to t , type=’ l ’ , main=’ Local minima ’ )
points ( time [ minidx ] , v o l t o t [ minidx ] , pch=20, col=’ red ’ )
}

r e s u l t=l i s t (minima=min , minidx=minidx , maxidx=localmax , d e l t a s=deltaT )

r e s u l t
}
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A.2.3 File outlier detection.R

Implementation of functional multivariate boxplot and outliergram is provided by the R package
roahd (Ieva, Paganoni, Romo, Tarabelloni [11]), available on CRAN. We wrote a R function called
outlier detection, which combines together the different outlier detection techniques and per-
forms algorithm iterations.

The input of the function is:

• times: matrix with breaths times. Times have to start from 0 for each breath;

• smoothed tot: matrix of the smooth total volume breaths;

• smoothed rcp: matrix of the smooth RCp breaths;

• smoothed rca: matrix of the smooth RCa breaths;

• smoothed ab: matrix of the smooth AB breaths;

• plot option: boolean. If 1, plots of the algorithm iterations are produced;

• weights: either ”uniform” or a vector of weights to be passed to fbplot and
multivariate outliergram.

• range: scalar. The inflating factor for time boxplots whiskers. Defaults to 1.5.

• no iter: boolean. If 1, outlier detection at each phase is not repeated, but just the first
iteration is performed. defaults to 0.

Output is a list containing:

• filtered.times: matrix of breaths time vectors starting from 0, after outlier removal;

• filtered.Vtot: matrix of total volume vectors, after outlier removal;

• filtered.Vrcp: matrix of RCp volume vectors, after outlier removal;

• filtered.Vrca: matrix of RCa volume vectors, after outlier removal;

• filtered.Vab: matrix of AB volume vectors, after outlier removal;

• outliers.idx: vector of outlier breaths indexes;

• time.outliers.idx: vector of indexes of time outliers;

• magnitude.outliers.idx: vector of indexes of magnitude outliers;

• shape.outliers.idx: vector of indexes of shape outliers.
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o u t l i e r d e t e c t i on=function ( times , smoothed tot , smoothed rcp , smoothed rca ,
smoothed ab , plot opt ion=1, weights=’ uniform ’ ,
range=1.5 , no i t e r =0)

{

f i l t e r e d . t imes=times
f i l t e r e d . Vtot=smoothed to t
f i l t e r e d . Vrcp=smoothed rcp
f i l t e r e d . Vrca=smoothed rca
f i l t e r e d .Vab=smoothed ab

# Check i f the number o f breaths i s high enough to s a f e l y apply
# the e n t i r e procedure
breaths . are . too . few=max( i f e l s e (dim( f i l t e r e d . Vtot ) [2 ] <30 , 1 , 0 ) , no i t e r )

i f ( breaths . are . too . few )
warning ( ’Number o f breaths i s too low to apply o u t l i e r d e t e c t i on
i t e r a t i v e l y . Out l i e r checks have been performed only once ’ )

# Aux i l i a ry vec to r to s t o r e the o r i g i n a l i n d i c e s o f the o u t l i e r s
aux . idx=1:dim( smoothed to t ) [ 2 ]

##### ou t l i e r d e t e c t i on : TIME
time . o u t l i e r s . idx=NULL # vecto r o f i n d i c e s f o r time o u t l i e r s
found=1

de l t a s=c ( )
for ( i in 1 :dim( f i l t e r e d . t imes ) [ 2 ] )

d e l t a s=c ( de l ta s ,
f i l t e r e d . t imes [ length (which( ! i s .na( f i l t e r e d . t imes [ , i ] ) ) ) , i ] )

# i t e r a t e de t e c t i on un t i l no more o u t l i e r s are found
while ( found ){
x11 ( )
bp <− boxplot ( de l ta s , range=range , plot = plot opt ion )
t imesout <− bp$out
t imesout <− unique ( t imesout )

out <− NULL
for ( k in 1 : length ( d e l t a s ) ){
for (h in t imesout )
i f ( d e l t a s [ k]==h){
out <− c ( out , k )
break
}
}

# remove o u t l i e r s in time ( i f any )
i f ( length ( out )>0){
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de l t a s=de l t a s [−out ]

f i l t e r e d . t imes=f i l t e r e d . t imes [ ,− out ]
f i l t e r e d . Vtot=f i l t e r e d . Vtot [ ,− out ]
f i l t e r e d . Vrcp=f i l t e r e d . Vrcp [ ,− out ]
f i l t e r e d . Vrca=f i l t e r e d . Vrca [ ,− out ]
f i l t e r e d .Vab=f i l t e r e d .Vab[ ,− out ]

time . o u t l i e r s . idx=c ( time . o u t l i e r s . idx , aux . idx [ out ] )
aux . idx=aux . idx [−out ]

# Stop to 1 i t e r a t i o n i f the re are not many breaths
i f ( breaths . are . too . few )
found=0

}
else
found=0
}

# Resca le breaths on [ 1 : 1 0 0 ] to apply f un c t i o n a l o u t l i e r d e t e c t i on
# on magnitude and shape
s ca l ed . Vtot=r e s c a l e a l l ( f i l t e r e d . Vtot , f i l t e r e d . t imes )
s c a l ed . Vrcp=r e s c a l e a l l ( f i l t e r e d . Vrcp , f i l t e r e d . t imes )
s c a l ed . Vrca=r e s c a l e a l l ( f i l t e r e d . Vrca , f i l t e r e d . t imes )
s c a l ed .Vab=r e s c a l e a l l ( f i l t e r e d .Vab , f i l t e r e d . t imes )

##### ou t l i e r d e t e c t i on : MAGNITUDE
magnitude . o u t l i e r s . idx=NULL # vector o f i n d i c e s f o r magnitude o u t l i e r s
found=1

# i t e r a t e de t e c t i on un t i l no o u t l i e r s are found

while ( found ){
out1=fbp l o t (mfData ( grid=1:100 , l i s t ( t ( s c a l ed . Vtot ) , t ( s c a l ed . Vrcp ) ,
t ( s c a l ed . Vrca ) , t ( s c a l ed .Vab ) ) ) ,
Depths=l i s t ( de f=’MBD’ ,weights=weights ) ,
main=l i s t ( ’Magnitude o u t l i e r s ’ , ’Magnitude o u t l i e r s ’ ,
’Magnitude o u t l i e r s ’ , ’Magnitude o u t l i e r s ’ ) ,
d i sp l ay=plot opt ion )
idx1=out1$ID o u t l i e r s ;

# remove o u t l i e r s in magnitude ( i f any )
i f ( length (as . vector ( idx1 ))>0){
s c a l ed . Vtot=sca l ed . Vtot [ ,− idx1 ]
s c a l ed . Vrcp=sca l ed . Vrcp [ ,− idx1 ]
s c a l ed . Vrca=sca l ed . Vrca [ ,− idx1 ]
s c a l ed .Vab=sca l ed .Vab[ ,− idx1 ]
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f i l t e r e d . t imes=f i l t e r e d . t imes [ ,− idx1 ]
f i l t e r e d . Vtot=f i l t e r e d . Vtot [ ,− idx1 ]
f i l t e r e d . Vrcp=f i l t e r e d . Vrcp [ ,− idx1 ]
f i l t e r e d . Vrca=f i l t e r e d . Vrca [ ,− idx1 ]
f i l t e r e d .Vab=f i l t e r e d .Vab[ ,− idx1 ]

magnitude . o u t l i e r s . idx=c ( magnitude . o u t l i e r s . idx , aux . idx [ idx1 ] )
aux . idx=aux . idx [− idx1 ]

# Stop to 1 i t e r a t i o n i f the re are not many breaths
i f ( breaths . are . too . few )
found=0
}
else
found=0
}

##### ou t l i e r d e t e c t i on : SHAPE
shape . o u t l i e r s . idx=NULL # vector o f i n d i c e s f o r shape o u t l i e r s
found=1

while ( found ){ # i t e r a t e de t e c t i on un t i l no o u t l i e r s are found
x11 ( )
out2=mu l t i v a r i a t e out l i e rg ram (mfData ( grid=1:100 , l i s t ( t ( s c a l ed . Vtot ) ,
t ( s c a l ed . Vrcp ) , t ( s c a l ed . Vrca ) , t ( s c a l ed .Vab ) ) ) ,
weights=weights ,
d i s p l ay = plot opt ion )
idx2=out2$ID o u t l i e r s ;
i f ( length (as . vector ( idx2 ))>0){

s c a l ed . Vtot=sca l ed . Vtot [ ,− idx2 ]
s c a l ed . Vrcp=sca l ed . Vrcp [ ,− idx2 ]
s c a l ed . Vrca=sca l ed . Vrca [ ,− idx2 ]
s c a l ed .Vab=sca l ed .Vab[ ,− idx2 ]

f i l t e r e d . t imes=f i l t e r e d . t imes [ ,− idx2 ]
f i l t e r e d . Vtot=f i l t e r e d . Vtot [ ,− idx2 ]
f i l t e r e d . Vrcp=f i l t e r e d . Vrcp [ ,− idx2 ]
f i l t e r e d . Vrca=f i l t e r e d . Vrca [ ,− idx2 ]
f i l t e r e d .Vab=f i l t e r e d .Vab[ ,− idx2 ]

shape . o u t l i e r s . idx=c ( shape . o u t l i e r s . idx , aux . idx [ idx2 ] )
aux . idx=aux . idx [− idx2 ]

# Stop to 1 i t e r a t i o n i f the re are not many breaths
i f ( breaths . are . too . few )
found=0
}
else
found=0
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}

# Cut breaths to the l ong e s t one
max. l en=0
for ( j in 1 :dim( f i l t e r e d . t imes ) [ 2 ] ) {
l en=length (which( ! i s .na( f i l t e r e d . t imes [ , j ] ) ) )
i f ( len>max. l en )
max. l en=len
}

f i l t e r e d . t imes=f i l t e r e d . t imes [ 1 :max. len , ]
f i l t e r e d . Vtot=f i l t e r e d . Vtot [ 1 :max. len , ]
f i l t e r e d . Vrcp=f i l t e r e d . Vrcp [ 1 :max. len , ]
f i l t e r e d . Vrca=f i l t e r e d . Vrca [ 1 :max. len , ]
f i l t e r e d .Vab=f i l t e r e d .Vab [ 1 :max. len , ]

r e s u l t=l i s t (
f i l t e r e d . t imes=f i l t e r e d . times ,
f i l t e r e d . Vtot=f i l t e r e d . Vtot ,
f i l t e r e d . Vrcp=f i l t e r e d . Vrcp ,
f i l t e r e d . Vrca=f i l t e r e d . Vrca ,
f i l t e r e d .Vab=f i l t e r e d .Vab ,
o u t l i e r s . idx=c ( time . o u t l i e r s . idx , magnitude . o u t l i e r s . idx ,
shape . o u t l i e r s . idx ) ,
time . o u t l i e r s . idx=time . o u t l i e r s . idx ,
magnitude . o u t l i e r s . idx=magnitude . o u t l i e r s . idx ,
shape . o u t l i e r s . idx=shape . o u t l i e r s . idx )

}

The function plot outliers can be used to plot the outlier breaths with respect to the volume
tracks. Outliers are colored differently according to the phase in which they were removed (red for
time outliers, blue for magnitude ones, green for shape). Inputs are the time vector, the volume
vector, the matrix of separated breaths and outlier indexes as outputted by outlier breaths.

plot o u t l i e r s=function (time , vol , volumes , time . o u t l i e r s . idx ,
magnitude . o u t l i e r s . idx , shape . o u t l i e r s . idx ,
main=’ Out l i e r breaths ’ , x lab=’ ’ , y lab=’ ’ )

{
col=c ( ’ red ’ , ’ b lue ’ , ’ green ’ )
x11 ( )
plot (time , vol , type=’ l ’ , x lab=xlab , ylab=ylab , main=main , col=’ black ’ )

for ( j in time . o u t l i e r s . idx ){
l ines ( volumes$ t imes [ , j ] , volumes$breaths [ , j ] , type=’ l ’ , col=col [ 1 ] )
}
for ( j in magnitude . o u t l i e r s . idx ){
l ines ( volumes$ t imes [ , j ] , volumes$breaths [ , j ] , type=’ l ’ , col=col [ 2 ] )
}
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for ( j in shape . o u t l i e r s . idx ){
l ines ( volumes$ t imes [ , j ] , volumes$breaths [ , j ] , type=’ l ’ , col=col [ 3 ] )
}

text=c ( ’ Ou t l i e r s − Time ’ , ’ Ou t l i e r s − Magnitude ’ , ’ Ou t l i e r s − Shape ’ )
l t y <− rep (1 , length ( text ) )
lwd <− rep (2 , length ( text ) )
legend ( ” t op r i gh t ” , legend = text , col = col , l t y = lty , lwd=lwd ,
cex = 0 . 8 )

}

A.2.4 Auxiliary functions

File rescale.R

These auxiliary functions were written in order to resample breaths over the same number of points:

# r e s c a l e s a l l breaths on a 0−100 g r id

r e s c a l e a l l=function ( breaths , t imes ){

f i r s t br=breaths
f i r s t time=times
N=dim( breaths ) [ 2 ] ;
r e s c br=matrix (0 ,100 ,N)
grid=seq (0 ,100 , length . out = 100)
for ( i in 1 :N){
# Remove NA
x=f i r s t time [ ! i s .na( f i r s t time [ , i ] ) , i ] ;
y=f i r s t br [ ! i s .na( f i r s t br [ , i ] ) , i ] ;

r e s c br [ , i ] = r e s c a l e time (x , y , n=100)
}

r e s u l t=data . frame ( r e s c br )
r e s u l t

}

# takes a time s e r i e s as input and re tu rn s the value o f the t s in n
# equ id i s t an t po in t s over t min and t max , us ing a cubic s p l i n e
# f o r i n t e r p o l a t i o n

r e s c a l e time=function (x , y , n=1000){

f=x [ 1 ] ;
t=x [ length ( x ) ] ;

newx=seq ( f , t , length . out=n ) ;
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r e s curve=spline (x , y , xout=newx ) ;
r e s curve$y

}

File table breaths.R

Given the signal and the cutting points, table breaths creates two matrices (returned inside a
list): one of breaths time vectors, and one with breaths amplitude vectors. Missing values (breaths
have all different lengths) are filled with NA.

table breaths=function (time , amplitude , min idx ){

breaths=amplitude [min idx [ 1 ] :min idx [ 2 ] ] ;
t=time [min idx [ 1 ] :min idx [ 2 ] ] ;

PLOT BREATH = matrix (NA, nrow = length ( time ) , ncol = length (min idx )−1);
PLOT TIME = matrix (NA, nrow = length ( time ) , ncol = length (min idx )−1);
#empty matr i ce s f o r breaths plot , f i l l e d with NA
PLOT BREATH[ 1 : length ( breaths ) ,1 ]= breaths ;
PLOT TIME[ 1 : length ( breaths ) ,1 ]= t ;
nrows=0;

for ( i in seq (3 , length (min idx ) , by =1) ){

#newbreath = amplitude [ min idx [ i −1] :min idx [ i ] ] ;
PLOT BREATH[ 1 : length ( amplitude [min idx [ i −1] :min idx [ i ] ] ) , i −1] =
amplitude [min idx [ i −1] :min idx [ i ] ] ;
PLOT TIME[ 1 : length ( time [min idx [ i −1] :min idx [ i ] ] ) , i −1] =
time [min idx [ i −1] :min idx [ i ] ] ;
i f ( length ( amplitude [min idx [ i −1] :min idx [ i ] ] ) > nrows ) {
nrows = length ( amplitude [min idx [ i −1] :min idx [ i ] ] )
}
}

PLOT BREATH = PLOT BREATH[ 1 : nrows , ] ;
PLOT TIME = PLOT TIME[ 1 : nrows , ] ;

r e s u l t=l i s t ( breaths=PLOT BREATH, t imes=PLOT TIME) ;
r e s u l t

}

File plot breaths byclusters.R

The plotting function plot.breaths.byclusters displays a graph were the original data track is
colored according to the groups. It takes as input the original data (time and amplitude vectors),
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the filtered times and the filtered breaths, and the vector of labels resulting from clustering. A
parameter threshold can be provided to exclude from the plot clusters whose numerosity is less
than threshold% of the total number of breaths.

plot . b reaths . b y c l u s t e r s=function (time , amplitude , plot . t imes , plot . breaths ,
labels , th r e sho ld=0)

{

n . breaths=dim(plot . t imes ) [ 2 ]
labels . unique=sort (unique ( labels ) )
n . c l u s t e r s=length ( labels . unique )

col . ramp <− c ( ” red ” , ” blue ” , ” green3 ” , ” orange ” , ” grey ” , ” ye l low ” )
col . ramp . a f t e r <− rainbow (n . c l u s t e r s )

col . ramp <− c ( col . ramp , col . ramp . a f t e r )
col . ramp <− col . ramp [ 1 : n . c l u s t e r s ]
c l u s t e r . dimension <− rep (0 , n . c l u s t e r s )

col . bygroup <− rep (0 , n . breaths )
for ( k in labels . unique ){
col . bygroup [which( labels == k ) ] <− col . ramp [ k ]
c l u s t e r . dimension [ k ] <− sum( labels==k)
}
c l u s t e r .prop <− ( c l u s t e r . dimension/n . breaths )∗100

### Plot each breath in the co l ou r o f the corre spond ing c l u s t e r

x11 ( )
plot (time , amplitude , type=’ l ’ , x lab=’Time ’ , y lab=’Volume ’ ,
main=’ Breaths by c l u s t e r s ’ , col=’ black ’ )

for ( j in 1 : n . breaths ){
l ines (plot . t imes [ , j ] , plot . b reaths [ , j ] , type=’ l ’ , col=col . bygroup [ j ] )
}

text <− rep (0 , n . c l u s t e r s )
for ( i in 1 : n . c l u s t e r s ) {
t t <− c ( ” Clus te r ” , i , ” Number o f breaths = ” ,
c l u s t e r . dimension [ i ] ,
” ( ” ,round( c l u s t e r .prop [ i ] , d i g i t s = 2) , ”%)” )
t t <− paste ( tt , c o l l a p s e = ”” )
text [ i ] <− t t
}
l t y <− rep (1 , length ( text ) )
lwd <− rep (2 , length ( text ) ) ;
legend ( ” t o p l e f t ” , legend = text , col = col . ramp , l t y = lty , lwd=lwd ,
cex = 0 . 8 )
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### Plot s e l e c t e d c l u s t e r s only

# vector o f bool , i n d i c a t e i f the c l u s t e r i s kept or not
s e l e c t e d=rep (1 , n . c l u s t e r s )

# Discarded c l u s t e r s are in gray
col . bySelectedGroup <− col . bygroup
for ( i in 1 : n . c l u s t e r s ){
i f ( c l u s t e r .prop [ i ] <= thre sho ld ){
s e l e c t e d [ i ]=0
col . bySelectedGroup [which( labels == i ) ] <− ” grey ”
}
}

num. d i s ca rded=length (which( s e l e c t e d==0))

i f ( th r e sho ld !=0){
# i f no thr e sho ld i s set , show only the f i r s t p l o t

x11 ( )
plot (time , amplitude , type=’ l ’ , x lab=’Time ’ , y lab=’Volume ’ ,
main=paste (c ( ’ S e l e c t ed c l u s t e r s − Threshold = ’ , thresho ld , ”%” ) ,
c o l l a p s e=”” ) , col=’ black ’ )

for ( j in 1 : n . breaths ){
l ines (plot . t imes [ , j ] , plot . b reaths [ , j ] , type=’ l ’ ,
col=col . bySelectedGroup [ j ] )
}

text <− NULL
co l o r . l e g <−NULL
for ( i in 1 : n . c l u s t e r s ) {
i f ( s e l e c t e d [ i ] ) {
t t <− c ( ” Clus te r ” , i , ” Number o f breaths = ” ,
c l u s t e r . dimension [ i ] ,
” ( ” ,round( c l u s t e r .prop [ i ] , d i g i t s = 2) , ”%)” )
t t <− paste ( tt , c o l l a p s e = ”” )
text <− c ( text , t t )
c o l o r . l e g <− c ( c o l o r . l eg , col . ramp [ i ] )
}
}
text <− c ( text , paste ( ”Discarded : ” , i f e l s e (num. discarded >0,
paste ( ” Clus te r ” , which( s e l e c t e d ==0)) , ”None” ) ,
c o l l a p s e = ”” ) )
c o l o r . l e g <− c ( c o l o r . l eg , ” grey ” )
l t y <− rep (1 , length ( text ) )
lwd <− rep (2 , length ( text ) ) ;
legend ( ” t o p l e f t ” , legend = text , col = co l o r . l eg , l t y = lty , lwd=lwd ,
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cex = 0 . 8 )

}

r e s u l t=l i s t ( col . groups=col . bygroup ,
col . s e l e c t e d . groups=col . bySelectedGroup )

}

A.3 Inter-subjects comparison

In this section we report a script example for inter-subjects comparison (seated vs. supine), which
can easily be adapted to other applications. It is supposed that the medians for each subject have
been saved in files name median.txt and the median derivatives in name median d1.txt.

l ibrary ( fda )
l ibrary ( roahd )
l ibrary ( fdakmapp )
l ibrary ( splus2R )

setwd ( ”/path/to/Rsc r ip t s ” )

source ( ”smooth breath .R” )
source ( ” loca lmin .R” )
source ( ” t ab l e breaths .R” )
source ( ” r e s c a l e .R” )
source ( ”smooth .R” )
source ( ” o u t l i e r d e t e c t i on .R” )
source ( ” p l o t compartments .R” )

setwd ( ”/path/to/ d a t a f i l e s ” )

sup in i= # f i l e names vec to r group 1

s edu t i= # f i l e names vec to r group 2

n sup in i=length ( sup in i )
n s edu t i=length ( s edu t i )

names=c ( sup in i , s edu t i )

max. l en=0
l 2=T

i f ( l 2==1){

for ( i in names){
cent=read . table ( paste0 ( i , ’ median . txt ’ , sep=’ ’ ) , header=T)
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i f ( length ( cent [ ,1 ] ) >max. l en )
max. l en=length ( cent [ , 1 ] )

}

mat . t imes=matrix (NA, nrow = max. len , ncol = length (names ) )
mat . vtot=matrix (NA, nrow = max. len , ncol = length (names ) )
mat . vrcp=matrix (NA, nrow = max. len , ncol = length (names ) )
mat . vrca=matrix (NA, nrow = max. len , ncol = length (names ) )
mat . vab=matrix (NA, nrow = max. len , ncol = length (names ) )

for ( i in 1 : length (names) ){
cent=read . table ( paste0 (names [ i ] , ’ median . txt ’ , sep=’ ’ ) , header=T)
mat . t imes [ 1 : length ( cent [ , 1 ] ) , i ]= cent [ , 1 ]
mat . vtot [ 1 : length ( cent [ , 1 ] ) , i ]=( cent [ ,2 ]− cent [ , 2 ] [ 1 ] ) /max( cent [ ,2 ]− cent [ , 2 ] [ 1 ] ,
na .rm = T)
mat . vrcp [ 1 : length ( cent [ , 1 ] ) , i ]=( cent [ ,3 ]− cent [ , 3 ] [ 1 ] ) /max( cent [ ,2 ]− cent [ , 2 ] [ 1 ] ,
na .rm = T)
mat . vrca [ 1 : length ( cent [ , 1 ] ) , i ]=( cent [ ,4 ]− cent [ , 4 ] [ 1 ] ) /max( cent [ ,2 ]− cent [ , 2 ] [ 1 ] ,
na .rm = T)
mat . vab [ 1 : length ( cent [ , 1 ] ) , i ]=( cent [ ,5 ]− cent [ , 5 ] [ 1 ] ) /max( cent [ ,2 ]− cent [ , 2 ] [ 1 ] ,
na .rm = T)

}

} else {

for ( i in names){
cent=read . table ( paste0 ( i , ’ median d1 . txt ’ , sep=’ ’ ) , header=T)
i f ( length ( cent [ ,1 ] ) >max. l en )
max. l en=length ( cent [ , 1 ] )

}

mat . t imes=matrix (NA, nrow = max. len , ncol = length (names ) )
mat . vtot=matrix (NA, nrow = max. len , ncol = length (names ) )
mat . vrcp=matrix (NA, nrow = max. len , ncol = length (names ) )
mat . vrca=matrix (NA, nrow = max. len , ncol = length (names ) )
mat . vab=matrix (NA, nrow = max. len , ncol = length (names ) )

for ( i in 1 : length (names) ){
cent=read . table ( paste0 (names [ i ] , ’ median d1 . txt ’ , sep=’ ’ ) , header=T)
mat . t imes [ 1 : length ( cent [ , 1 ] ) , i ]= cent [ , 1 ]
mat . vtot [ 1 : length ( cent [ , 1 ] ) , i ]= cent [ , 2 ]
mat . vrcp [ 1 : length ( cent [ , 1 ] ) , i ]= cent [ , 3 ]
mat . vrca [ 1 : length ( cent [ , 1 ] ) , i ]= cent [ , 4 ]
mat . vab [ 1 : length ( cent [ , 1 ] ) , i ]= cent [ , 5 ]

}

}

max. l en=0 # ne i c e n t r o i d i sono s a l v a t i anche g l i NA a l l a f i n e
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for ( j in 1 :dim(mat . t imes ) [ 2 ] ) {
l en=length (which( ! i s .na(mat . t imes [ , j ] ) ) )
i f ( len>max. l en )
max. l en=len

}

mat . t imes=mat . t imes [ 1 :max. len , ]
mat . vtot=mat . vtot [ 1 :max. len , ]
mat . vrcp=mat . vrcp [ 1 :max. len , ]
mat . vrca=mat . vrca [ 1 :max. len , ]
mat . vab=mat . vab [ 1 :max. len , ]

col=c ( rep ( ’ red ’ ,n sup in i ) , rep ( ’ b lue ’ ,n s edu t i ) )
text=c ( ’ Supin i ’ , ’ Sedut i ’ )
l t y <− rep (1 , length ( text ) )
lwd <− rep (2 , length ( text ) )
co l 2=c ( ’ red ’ , ’ b lue ’ )

x11 ( ) ;matplot (mat . t imes , mat . vtot , type = ’ l ’ , main=’CW volume ’ , col=col ,
x lab = ’Time ( s ) ’ , y lab = ’V ( l ) ’ )
legend ( ” t op r i gh t ” , legend = text , col = col2 , l t y = lty , lwd=lwd , cex = 0 . 8 )

x11 ( ) ;matplot (mat . t imes , mat . vrcp , type = ’ l ’ , main=’RCp volume ’ , col=col ,
x lab = ’Time ( s ) ’ , y lab = ’V ( l ) ’ )
legend ( ” t op r i gh t ” , legend = text , col = col2 , l t y = lty , lwd=lwd , cex = 0 . 8 )

x11 ( ) ;matplot (mat . t imes , mat . vrca , type = ’ l ’ , main=’RCa volume ’ , col=col ,
x lab = ’Time ( s ) ’ , y lab = ’V ( l ) ’ )
legend ( ” t op r i gh t ” , legend = text , col = col2 , l t y = lty , lwd=lwd , cex = 0 . 8 )

x11 ( ) ;matplot (mat . t imes , mat . vab , type = ’ l ’ , main=’AB volume ’ , col=col ,
x lab = ’Time ( s ) ’ , y lab = ’V ( l ) ’ )
legend ( ” t op r i gh t ” , legend = text , col = col2 , l t y = lty , lwd=lwd , cex = 0 . 8 )

f i l t e r e d=o u t l i e r d e t e c t i on (mat . t imes , mat . vtot ,mat . vrcp ,mat . vrca ,mat . vab ,
plot opt ion = 1)

f i l t e r e d . t imes=f i l t e r e d $ f i l t e r e d . t imes
f i l t e r e d . Vtot=f i l t e r e d $ f i l t e r e d . Vtot
f i l t e r e d . Vrcp=f i l t e r e d $ f i l t e r e d . Vrcp
f i l t e r e d . Vrca=f i l t e r e d $ f i l t e r e d . Vrca
f i l t e r e d .Vab=f i l t e r e d $ f i l t e r e d .Vab

o u t l i e r s=f i l t e r e d $ o u t l i e r s . idx

# I f abso lu t e va lue i s r e l evant , use L2 . Use Pearson otherw i s e
groupBy . abs=TRUE

# c ( t ( f i l t e r e d . Vtot ) ) , c ( t ( f i l t e r e d . Vrca ) ) ,
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datavec = c (c ( t ( f i l t e r e d . Vrcp ) ) , c ( t ( f i l t e r e d .Vab ) ) )
a r r=array ( datavec , c (dim( f i l t e r e d . Vrcp ) [ 2 ] ,dim( f i l t e r e d . Vrcp ) [ 1 ] , 2 ) )

t imet=t ( f i l t e r e d . t imes )

distance=i f e l s e ( groupBy . abs==1, ’ l 2 ’ , ’ pearson ’ )
warp= ’ a f f i n e ’

# choose number o f c l u s t e r s −−> elbow
K=4
checksim=numeric (K)

for ( j in 1 :K){

check=kmap( timet , arr , n c l u s t=j , warping method=warp ,
c en te r method=’medoid ’ , s im i l a r i t y method=distance ,
comp o r i g i n a l c en te r = T)

checksim [ j ]=mean(check$ s im i l a r i t y . f i n a l )
}

x11 ( )
plot ( checksim , type=’ l ’ , x lab=’ Clus te r l a b e l s ’ , y lab=’Mean s i m i l a r i t i e s ’ ,
main=paste0 ( ’Mean S im i l a r i t y − ’ ,warp , sep=’ ’ ) )
points ( checksim , pch=1, col=’ blue ’ , lwd=2)

# Se l e c t ed number o f c l u s t e r s
n c l u s t=2

r e s=kmap( timet , arr , n c l u s t=nc lust , warping method=warp ,
c en te r method=’medoid ’ , s im i l a r i t y method=distance ,
comp o r i g i n a l c en te r = T)

kmap show r e s u l t s ( r e s )

c en t r o id idx=which( r e s$ s im i l a r i t y . f i n a l==0)
labels [ c e n t r o i d s idx ]
t i t l e s=c ( ’ Healty supine ’ , ’ Healthy seated ’ )

plot compartments ( time=timet , Vtot=f i l t e r e d . Vtot , Vrcp=f i l t e r e d . Vrcp ,
Vrca=f i l t e r e d . Vrca , Vab=f i l t e r e d .Vab ,
n c l u s t=length (unique ( labels ) ) ,
c en t r o id idx=cen t ro id idx ,
labels , t i t l e s )

A.3.1 File plot compartments.R

This function can be used to to make two plots: a plot of the centroid for each cluster (chest wall
volume and its compartments), and a plot with the comparison of the centroids compartment by
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compartment. The function takes as arguments:

• time: matrix of breaths time vectors by rows;

• Vtot: matrix of chest wall curves by columns;

• Vrcp: matrix of RCp curves by columns;

• Vrca: matrix of RCa curves by columns;

• Vab: matrix of AB curves by columns;

• n clust: number of clusters;

• centroid idx: indexes of clusters centroids;

• labels: breaths cluster labels;

• titles: plots titles, in the order of centroids indexes.

plot compartments=function (time , Vtot , Vrcp , Vrca ,Vab , n c lu s t , c en t r o id idx ,
labels , t i t l e s )

{

###### Color s c a l e f o r c l u s t e r s
col . ramp <− c ( ” red ” , ” blue ” , ” green3 ” , ” orange ” , ” grey ” , ” ye l low ” )
col . ramp . a f t e r <− rainbow (n c l u s t )

col . ramp <− c ( col . ramp , col . ramp . a f t e r )
col . ramp <− col . ramp [ 1 : n c l u s t ]

###### Plot median vs compartments

# Axis l im i t s
xlim sup=rep (0 , n c l u s t )
yl im i n f=rep (0 , n c l u s t )
yl im sup=rep (0 , n c l u s t )
xl im max=0
ylim min=0
ylim max=0
for ( i in 1 : n c l u s t ){

xlim sup [ i ]=max( time [ c en t r o id idx [ i ] , ]− time [ c en t r o id idx [ i ] , 1 ] ,na .rm=TRUE)
ylim i n f [ i ]=min(na . omit ( Vtot [ , c en t r o id idx [ i ] ]−Vtot [ 1 , c en t r o id idx [ i ] ] ) ,

na . omit (Vrcp [ , c en t r o id idx [ i ] ]−Vrcp [ 1 , c en t r o id idx [ i ] ] ) ,
na . omit (Vrca [ , c en t r o id idx [ i ] ]−Vrca [ 1 , c en t r o id idx [ i ] ] ) ,
na . omit (Vab [ , c en t r o id idx [ i ] ]−Vab [ 1 , c en t r o id idx [ i ] ] ) )

yl im sup [ i ]=max(na . omit ( Vtot [ , c en t r o id idx [ i ] ]−Vtot [ 1 , c en t r o id idx [ i ] ] ) ,
na . omit (Vrcp [ , c en t r o id idx [ i ] ]−Vrcp [ 1 , c en t r o id idx [ i ] ] ) ,
na . omit (Vrca [ , c en t r o id idx [ i ] ]−Vrca [ 1 , c en t r o id idx [ i ] ] ) ,
na . omit (Vab [ , c en t r o id idx [ i ] ]−Vab [ 1 , c en t r o id idx [ i ] ] ) )
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i f ( xl im sup [ i ]>xlim max)
xl im max=xlim sup [ i ]

i f ( yl im sup [ i ]>ylim max)
yl im max=ylim sup [ i ]

i f ( yl im i n f [ i ]<ylim min)
yl im min=ylim i n f [ i ]

}

# plo t
x11 ( )
par (mfrow=c (1 , n c l u s t ) )
for ( i in 1 : n c l u s t ){

plot ( time [ c en t r o id idx [ i ] , ]− time [ c en t r o id idx [ i ] , 1 ] ,
Vtot [ , c en t r o id idx [ i ] ]−Vtot [ 1 , c en t r o id idx [ i ] ] ,
col=”black ” , lwd=4, type=’ l ’ , main=t i t l e s [ i ] ,
cex . main=2, xlab = ’ ’ , y lab=’ ’ , xaxt=’n ’ , yaxt=’n ’ ,
xl im=c (0 , xl im max) , yl im=c ( yl im min , yl im max) )

axis (1 , cex . axis=1.2)
axis (2 , cex . axis=1.2)
mtext( ” time ( s ) ” , s i d e =1, l i n e =2.5 , cex =1.8)
mtext( ”volume (L) ” , s i d e =2, l i n e =2.5 , cex =1.8)
l ines ( time [ c en t r o id idx [ i ] , ]− time [ c en t r o id idx [ i ] , 1 ] ,

Vrcp [ , c en t r o id idx [ i ] ]−Vrcp [ 1 , c en t r o id idx [ i ] ] ,
col=”blue ” , lwd=4)

l ines ( time [ c en t r o id idx [ i ] , ]− time [ c en t r o id idx [ i ] , 1 ] ,
Vrca [ , c en t r o id idx [ i ] ]−Vrca [ 1 , c en t ro id idx [ i ] ] ,
col=”green ” , lwd=4)

l ines ( time [ c en t r o id idx [ i ] , ]− time [ c en t r o id idx [ i ] , 1 ] ,
Vab [ , c en t r o id idx [ i ] ]−Vab [ 1 , c en t r o id idx [ i ] ] ,
col=”red ” , lwd=4)

}

l e g=c ( ”CW” , ”RCp” , ”RCa” , ”AB” ) ;
l i n e . colors=c ( 1 , 1 ) ;
l i n e . width=c ( 3 , 3 ) ;
xpos=xlim max−xlim max/2 .35
ypos=ylim max+ylim max/20
legend ( xpos , ypos , l eg , col=c ( ’ b lack ’ , ’ b lue ’ , ’ green ’ , ’ red ’ ) ,

l t y=l i n e . colors , lwd=l i n e . width , cex =1.2 , bty = ’n ’ )

#### Compare compartments in each group

xlim=c (0 ,max( time [ c en t r o id idx ,]−time [ c en t r o id idx , 1 ] , na .rm=TRUE) )

ylim tot=c (min( Vtot [ , c en t r o id idx ]−Vtot [ 1 , c en t r o id idx ] ,na .rm=TRUE) ,
max( Vtot [ , c en t r o id idx ]−Vtot [ 1 , c en t r o id idx ] ,na .rm=TRUE) )

ylim rcp=c (min(Vrcp [ , c en t r o id idx ]−Vrcp [ 1 , c en t r o id idx ] ,na .rm=TRUE) ,
max(Vrcp [ , c en t r o id idx ]−Vrcp [ 1 , c en t r o id idx ] ,na .rm=TRUE) )

ylim rca=c (min(Vrca [ , c en t r o id idx ]−Vrca [ 1 , c en t r o id idx ] ,na .rm=TRUE) ,
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max(Vrca [ , c en t r o id idx ]−Vrca [ 1 , c en t r o id idx ] ,na .rm=TRUE) )
ylim ab=c (min(Vab [ , c en t r o id idx ]−Vab [ 1 , c en t r o id idx ] ,na .rm=TRUE) ,

max(Vab [ , c en t r o id idx ]−Vab [ 1 , c en t r o id idx ] ,na .rm=TRUE) )

x11 ( )
par (mfrow=c ( 1 , 4 ) )
plot ( time [ c en t r o id idx [ 1 ] , ] − time [ c en t r o id idx [ 1 ] , 1 ] ,
Vtot [ , c en t r o id idx [1 ] ] −Vtot [ 1 , c en t r o id idx [ 1 ] ] ,
col=col . ramp [ labels [ c en t r o id idx [ 1 ] ] ] , lwd=4, type=’ l ’ ,
main=’ Total volume ’ , xlab = ’ time ( s ) ’ , y lab=’ volume (L) ’ ,
xl im=xlim , ylim=ylim tot−c ( 0 . 0 2 5 , 0 ) )
for ( i in 2 : n c l u s t ){
l ines ( time [ c en t r o id idx [ i ] , ]− time [ c en t r o id idx [ i ] , 1 ] ,
Vtot [ , c en t r o id idx [ i ] ]−Vtot [ 1 , c en t r o id idx [ i ] ] ,
col=col . ramp [ labels [ c en t r o id idx [ i ] ] ] , lwd=4, type=’ l ’ )
}
plot ( time [ c en t r o id idx [ 1 ] , ] − time [ c en t r o id idx [ 1 ] , 1 ] ,
Vrcp [ , c en t r o id idx [1 ] ] −Vrcp [ 1 , c en t r o id idx [ 1 ] ] ,
col=col . ramp [ labels [ c en t r o id idx [ 1 ] ] ] , lwd=4, type=’ l ’ ,
main=’RCP volume ’ , x lab = ’ time ( s ) ’ , y lab=’ volume (L) ’ ,
xl im=xlim , ylim=ylim tot−c ( 0 . 0 2 5 , 0 ) )
for ( i in 2 : n c l u s t ){

l ines ( time [ c en t r o id idx [ i ] , ]− time [ c en t r o id idx [ i ] , 1 ] ,
Vrcp [ , c en t r o id idx [ i ] ]−Vrcp [ 1 , c en t r o id idx [ i ] ] ,
col=col . ramp [ labels [ c en t r o id idx [ i ] ] ] , lwd=4, type=’ l ’ )

}
plot ( time [ c en t r o id idx [ 1 ] , ] − time [ c en t r o id idx [ 1 ] , 1 ] ,
Vrca [ , c en t r o id idx [1 ] ] −Vrca [ 1 , c en t r o id idx [ 1 ] ] ,
col=col . ramp [ labels [ c en t r o id idx [ 1 ] ] ] , lwd=4, type=’ l ’ ,
main=’RCA volume ’ , x lab = ’ time ( s ) ’ , y lab=’ volume (L) ’ ,
xl im=xlim , ylim=ylim tot−c ( 0 . 0 2 5 , 0 ) )
for ( i in 2 : n c l u s t ){

l ines ( time [ c en t r o id idx [ i ] , ]− time [ c en t r o id idx [ i ] , 1 ] ,
Vrca [ , c en t r o id idx [ i ] ]−Vrca [ 1 , c en t r o id idx [ i ] ] ,
col=col . ramp [ labels [ c en t r o id idx [ i ] ] ] , lwd=4, type=’ l ’ )

}
plot ( time [ c en t r o id idx [ 1 ] , ] − time [ c en t r o id idx [ 1 ] , 1 ] ,
Vab [ , c en t r o id idx [1 ] ] −Vab [ 1 , c en t r o id idx [ 1 ] ] ,
col=col . ramp [ labels [ c en t r o id idx [ 1 ] ] ] , lwd=4, type=’ l ’ ,
main=’AB volume ’ , x lab = ’ time ( s ) ’ , y lab=’ volume (L) ’ ,
xl im=xlim , ylim=ylim tot−c ( 0 . 0 2 5 , 0 ) )
for ( i in 2 : n c l u s t ){

l ines ( time [ c en t r o id idx [ i ] , ]− time [ c en t r o id idx [ i ] , 1 ] ,
Vab [ , c en t r o id idx [ i ] ]−Vab [ 1 , c en t r o id idx [ i ] ] ,
col=col . ramp [ labels [ c en t r o id idx [ i ] ] ] , lwd=4, type=’ l ’ )

}
text=NULL;
for ( i in 1 : n c l u s t ){

text=c ( text , paste ( ” Clus te r ” , i ) ) ;
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}
l i n e . colors=rep (1 , length ( text ) ) ;
l i n e . width=rep (3 , length ( text ) )
legend ( ” t op r i gh t ” , text , col=col . ramp [ 1 : length ( text ) ] ,
l t y=l i n e . colors , lwd=l i n e . width )

}
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