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Abstract

One of the most attractive functions of music is that it can convey emo-
tion and modulate a listener’s mood [1]. Music can bring to tears, console
us when we are grieving and drive us to love.
Music information behavior studies have identified emotion as an impor-
tant criterion used by people in music searching and organization. It
becomes significant the field of music emotion recognition.

Nowdays, is more and more important to retrieve and organize users
music, due to the increasing platforms of streaming, which gives the ac-
cess to a catalog of billions of songs.
The automatization of the recognition of perceived emotion in music al-
lows users to organize and research music in a content-centric fashion.

Purpose of this thesis is to find a link between music and emotions
during the listening of a song by combining audio and physiological sig-
nals analysis.

The inclusion of emotions is an hard task, due to the subjective nature
of emotion perception. There are problems in the reliability of ground
truth data and evaluation of prediction results, which are not troubles in
problems as face recognition or speech recognition.



Sommario

Una delle funzioni più attrattive della musica è che questa può trasmet-
tere e comunicare emozioni e modulare l’umore di una persona, come
descritto in [1]. La musica può provocarci lacrime, consolarci quando
siamo tristi, farci innamorare.
Gli studi fatti finora sulla musica, affermano che le emozioni sono un cri-
terio importante per la ricerca e l’organizzazione dei brani musicali. Qui
diventa fondamentale l’importanza del campo chiamato music emotion
recognition.

Al giorno d’oggi, diventa sempre più importante il fatto di catalogare e
organizzare la musica degli utenti, a causa dell’incremento di piattaforme
di streaming musicale, le quali danno accesso ad un numero infinito di
brani.
L’automatizzazione del riconoscimento delle emozioni percepite in mu-
sica, permette all’utente di organizzare e ricercare la musica in una vi-
sione più incentrata sul contenuto.

Lo scopo di questa tesi è quello di trovare il link tra emozioni percepite
durante l’ascolto di un brano musicale attraverso l’analisi del segnale au-
dio in primis, ma anche con l’utilizzo di segnali psicologici.

L’utilizzo delle emozioni , in generale, è un compito difficile, a causa
della natura intrinseca delle emozioni percepite. Ci sono problemi di af-
fidabilità dei dati empirici e la valutazione del modello di predizione, che
d’altra parte non sono dei problemi nei casi ben noti di face recognition
e speech recognition.
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1
Introduction

1.1 Motivation

Music has an important role in human life. More important, is that music
in capable to evoke different emotions for people, but how is structured
the relationship between music and emotion? We don’t know yet. It’s a
hard problem, which have very different fields of background, from com-
puter science, machine learning and psychology.

Emotion-aware Music Information Retrieval has been difficult due to
the subjectivity and temporal of emotion responses to music. The role of
physiological signals related to emotions could potentially be exploited
in emotion-aware music discovery.

Music is the vehicle for emotions, feelings, passion and actions.
With the music, the composer create a narration which is purely emo-
tional.

As one can image, dealing with human emotion is not a simple task,
due to their complexity and subjectivity. For this reason we used a data-
driven method, basing our research on a large dataset, on data.
A data-driven model is based on the analysis of the data about a spe-
cific system. The concept of this model is to find relationships between
the system state variables, input and output, with having an explicit
knowledge of the behavior of the system.

1.2 Outline of the thesis

This thesis is organized as follows:
After a brief introduction about the objective of the thesis, in Chap-

1



ters 2 and 3 is presented a complete overview about the main arguments.
In Chapter 2, are presented Music Information Retrieval (MIR) and Mu-
sic Emotion Recognition (MER).
In Chapter 3 Electrodermal Activity (EDA) and other physiological data
using on-body sensors are given.

Chapter 4 is devoted to a complete overview of the state of the art
about the main aspects related to Chapters 2 and 3 of this thesis, in
order to have a general idea about what has been done in the past and
which results they have achieved.

In Chapter 5 is presented how the dataset we have considered is struc-
tured and what results they have reached. In the same we also illustrate
our implementation of the problem.

Chapter 6 is about the results we have achieved and the comparison
between the PMEmo performances.

Finally Chapter 7, draws the conclusions and outlines possible future
research directions.

1.3 Application fields

The work proposed in this thesis finds potential application in several
fields. Thanks to the work done by the creators of PMEmo, that cre-
ated a large dataset containing emotion annotations and electrodermal
activity signal, we have the possibility to study the relationship between
music emotion and physiological signals.
Music Browsing can be an important field of application, because it helps
in general in finding, generally in large datasets, what music user are look-
ing for. For example one application could be to create a playlist based
on the emotion that songs produce in each of us.

The Music Information Retrieval deal with retrieving information
from music. In the last few years compared a large variety of music
streaming services. They are very useful, but they give the possibility to
the user to find billion of songs and become necessarily to find a useful
tool to search between songs.

Another important application is given by understanding the rela-
tionship between music and emotion, which is a well known relationship
but hard to find structural connection between the two.
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2
Theoretical Background on Music

Emotion Recognition

This chapter introduces the readers to the main basics about Music In-
formation Retrieval (MIR) and Music Emotion Recognition (MER).
MIR is an interdisciplinary science where the goal is to retrieve relevant
information from music. Researchers belonging to this community may
have a background in musicology, psychoacoustics, psychology, academic
music study, signal processing, informatics, machine learning, optical mu-
sic recognition, computational intelligence or some combination of these.

MIR is a small but growing field of research with many real-world ap-
plications and is being used by businesses and academics to categorize,
manipulate and even create music.
A few application to MIR can be:

• Music recommender systems, several already exist, but few are
based upon MIR techniques, some systems do not use just similar-
ity between subjects but also use audio retrieval to achieve better
results in music recommendation as in Pandora1.

• Intelligent and adaptive digital audio effects aim at design a system
that determine the settings of audio effects based on the audio
content.

• Music recording analysis as track separation, or also instrument
recognition.

• Automatic music transcription, the process of converting an audio
recording into symbolic, such score or a MIDI file.

1https://www.pandora.com
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• Automatic music tagging, as musical genre categorization or ex-
traction of other high level features (the usual task for the yearly
Music Information Retrieval Evaluation eXchange (MIREX)).

A broadly part of MIR is MER, where a useful application can be seen
in this thesis.
In this chapter will be presented as first an introduction on MER. Due to
the fact that this field is based on the emotions, they are explained and
related to music. Is then presented the emotion space, where emotions
are represented on a plane.
Is also shown the general framework of MER algorithms based on cate-
gorial or dimensional approaches, the music features extraction and se-
lection, followed by some Machine Learning (ML) process to complete
the general problem.
To conclude are mentioned some open issues related with MER.
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2.1 Music Emotion Recognition

MER is an important topic in the field of MIR. Music is often referred
as the language of emotion. People tend to listen different songs when in
different emotional states. Therefore, categorizing music according to the
type of emotion they express is becoming more and more important for
internet music service provider. MER aims at modeling human emotion
perception of music [9].
Automatic MER allows users to retrieve and organize their music collec-
tions in a fashion that is more content-centric than conventional methods
based on metadata.
The main challenge is based on the human perception of emotions, their
subjective nature of emotion perception. Building such a music emotion
recognition system, however, is challenging because of the subjective na-
ture of emotion perception. One needs to deal with issues such as the
reliability of ground truth data and the difficulty in evaluating the pre-
diction result, which do not exist in other pattern recognition problems
such as face recognition and speech recognition.

Music plays an important role in human life, even more in the digital
age. Never before such a large collection of music has been created and
accessed daily by people. Before with the use of compact audio formats
with near CD quality such as MP3 and now on with the various stream-
ing services, have greatly contributed to the tremendous growth of digital
music libraries.

Conventionally, the management of music collections is based on cat-
alog metadata, such as artist name, album name, and song title. As the
amount of content continues to explode, this conventional approach may
be no longer sufficient. The way that music information is organized and
retrieved has to evolve to meet the ever increasing demand for easy and
effective information access.

However, music is a complex acoustic and temporal structure, it is
rich in content and expressivity.
When an individual engages with music as a composer, performer or
listener, a very board range of mental processes is involved, including
representational and evaluative. The representational process includes
the perception of meter, rhythm, tonality, harmony, melody, form, and
style, whereas the evaluative process includes the perception of prefer-
ence, aesthetic experience, mood, and emotion. The term evaluative is
used because such processes are typically both valences and subjective.
Both the representational and the evaluative processes of music listening
can be leveraged to enhance music retrieval.
According to a study of Last.fm2, emotion tagging is the third most fre-
quent type of tags (first is genre and second geographic area) assigned to
music pieces by online users.
Even if emotion-based music retrieval was not yet well explored, a survey

2https://www.last.fm/home

5

https://www.last.fm/home


conducted in 2004 from [10] showed that about 28.2% of the participants
identified emotion as an important criterion in music seeking and orga-
nization.
The Table 2.1 represent the responses of 427 subjects to the question
"When you search for music or music information, how likely are you to
use the following search/browse options?" [10].

Search/Browse by Positive rate
Singer/Performer 96.2%
Title of work(s) 91.6%
Some words of the lyrics 74.0%
Music style/genre 62.7%
Reccomendations 62.2%
Similar artist(s) 59.3%
Similar music 54.2%
Associated usage 41.9%
Singing 34.8%
Theme(main subject) 33.4%
Popularity 31.0%
Mood/emotional state 28.2%
Time period 23.8%
Occasions to use 23.6%
Instrument(s) 20.8%
Place/event where heard 20.7%
Storyline of music 17.9%
Tempo 14.2%
Record label 11.7%
Publisher 6.0%

Table 2.1: Responses of 427 subjects to the question "When you search
for music or music information, how likely are you to use the following
search/browse options?"

Into another survey [11], they present findings from an exploratory ques-
tionnaire study featuring 141 music listeners (between 17 and 74 years
of age) that offers some novel insights.
Emotions induced by music are subjective phenomena, there are sig-
nificant differences between individuals. One of the most exciting but
difficult endeavors in research on music is to understand how listeners
respond to music. It has often been suggested that a great deal of the
attraction of music comes from its emotional powers. That is, people
tend to value music because it expresses and induces emotions.
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The Table 2.2 tries to resume the motivations to the answer "Why do
we listen to music?"

Motive Ratio
"To express, release and influence emotions" 47%
"To relax and settle down" 33%
"For enjoyment, fun, and pleasure" 22%
"As company and background sound" 16%
"Because it makes me feel good" 13%
"Because it’s a basic need, I can’t live without it" 12%
"Because I like, love music" 11%
"To get energized" 9%
"To evoke memories" 4%

Table 2.2: Responses of 141 subjects to the question "Why do you listen
to music?"

Some music companies, like Allmusic.com3, gives the possibility to
search music by emotion labels. With these, the user can retrieve and
browse artists or albums by emotion.

Making computers capable of recognizing the emotion of music also
enhances the way humans and computers interact. It is possible to play
back music that matches the users mood detected from physiological,
prosodic, or facial cues. A cellular phone equipped with automatic MER
function can then play a song best suited to the emotional state of the
user; a smart space (e.g. restaurant, conference room, residence) can
play background music best suited the people inside it.

3https://www.allmusic.com/moods
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2.2 Emotions and music

There is a relationship between music and emotions, that has been the
subject of much discussion and research in many different disciplines, like
philosophy, musicology, sociology.
In psychological studies, emotion are often divided into three categories:

• Expressed emotion that the performer tries to communicate with
the listener.

• Perceived emotion represented by music and perceived by the lis-
tener.

• Felt or Evoked emotion induced by music and felt by the listener.

MER focus on perceived emotions because they are less subjective than
felt emotions and are often easier to conceptualize. This because felt
emotions depends on personal factors and the situation in which the lis-
tener processes the song. From an engineering point of view, one of the
main interests is to develop a computational model of music emotion and
to facilitate emotion-based music retrieval and organization.
MIR community has made many efforts for automatic recognition of the
perceived emotion of music, various implementations will be presented
further in Chapter 4.

One of the aim of this thesis, is trying to link perceived and felt emo-
tions, the former through the analysis of the music, the latter, through
biometric signals and understand how are they related.

2.3 Emotion space

Now we will focus on the emotion conceptualization alone, since it’s cen-
tral to have a theoretical background to apply then to MER.

The celebrated paper of Hevner [12] from 1934, studied the relation-
ship between music and emotions though experiments where subjects
were asked to report some adjectives that came to their mind as the
most representative part of a music played. From this have been pro-
posed a large variety of emotion models, like the one presented and used
in this thesis.

Emotions, in the years, were conceptualized in two main approaches,
the categorical approach and the dimensional approach. In the
following sections will be presented these two different approaches, along
with another one used for dynamic emotion recognition.

2.3.1 Categorical approach

The first assumption of this emotion conceptualization is that emotions
are categorized and categories are distinct from each other. Within this
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approach, it is necessary to assume that there are a limited number of
innate and universal emotion categories, such as:

• Happiness

• Sadness

• Anger

• Fear

• Disgust

• Surprise

All the other emotions can be derived from these basic emotions.
In psychological studies, different researchers have come up with different
sets of basic emotions.
For example, a famous categorical approach to emotion conceptualiza-
tion is Hevner’s adjective checklist. He defined eight clusters positioned
in circle as in Figure 2.1. Adjectives in the same cluster are nearly iden-
tical, neighbor clusters have similar meaning. The opposite position of a
given cluster is its opposite in emotional sense.

Figure 2.1: Eight clusters proposed by Hevner

Hevner’s checklist proposed in 1935 was updated and regrouped into ten
groups by Fansworth and into nine groups in 2003 by Schubert.
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Drawback of categorical approach is that the number of primary emo-
tion classes is very small in comparison with the richness of music emotion
perceived by humans. The problem is that using a finer granularity it
does not necessarily solve the issue because the language for describing
emotions is inherently ambiguous and varies from person to person. Us-
ing a large number of emotion classes could confuse the subject and is
impractical for psychological studies falsing results.

2.3.2 Dimensional approach

While categorical approach focuses mainly on the characteristics that
distinguish emotions from one another, dimensional approach focuses on
identifying emotions based on their position on a small number of emo-
tion "dimensions" called axes, intended to correspond to internal human
representation of emotion.

Several names from researchers gave very similar interpretations of
the resulting factors like tension/energy, intensity/softness, tension/re-
laxation. Most of the factors correspond to the two dimensions of emotion
the valence (positive and negative affective states) and arousal (energy
and stimulation level) to create the Valence Arousal (VA) space. Some
studies found that valence as well as intensity, is triggered by the amyg-
dala, while the arousal by the reptilian brain.
Russel, proposed a circumplex model of emotion in [13] which consist
in a two-dimensional, circular structure, as in Figure 2.2 involving the
dimensions of valence and arousal. In this structure, emotions that are
inversely correlated, are placed across the circle from one another.

Emotions that are easy to be confused, such as calm and sadness,
appear to have similar valence and arousal values. This result implies
that valence and arousal may be the most fundamental and most clearly
communicated emotion dimensions among others.
High arousal emotional events are encoded better that non arousing
events. Instead of increasing overall attention to an event, an emotion-
ally arousing stimulus decreased attentional resources available for in-
formation processing and focused attention only on the arousal-eliciting
stimulus.

The experience of music listening is multidimensional. Different emo-
tions are associated with different music patterns. For example, arousal
is associated to:

• tempo (fast/slow)

• pitch (high/low)

• loudness (high/low)

• timbre (bright/soft)

while valence is associated to:
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Figure 2.2: Russel’s circumplex model of affect

• mode (major/minor)

• harmony (consonant/dissonant)

as expressed in [14].
Emotion perception is correlated to the combination of music factor,
rarely from just one of them. For example, loud chords and high-pitched
chords tends to be feel as more positive valence than soft chords and
low-pitched chords.

Also dimensional approach have some drawbacks. For example, it is
argued that dimensional approach blurs important psychological distinc-
tions and consequently obscure important aspects of the emotion process.
One example in support of this argumentation is that anger and fear are
placed close in the valence-arousal plane but they have very different im-
plications for the organism. Also, it has been argued that using only a few
emotion dimension cannot describe all the emotions without residuum.
To overcome this issue, some researchers tired to add a third dimension
called potency, varying from dominant to submissive, to obtain a more
complete picture of emotion. However, this would increase the cognitive
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load on the subjects and at the same time requires a more complex in-
terface and makes hard to annotate the process. The third dimension
problem is still in discussion.

2.3.3 Music Emotion Variation Detection

An important aspect that is not addressed in the previous two Paragraphs
(2.3.1 and 2.3.2) is temporal dynamics. Most researches has focused on
music piece that are homogeneous with respect to the emotional plane.
However, music can change its emotional expression during the song,
becomes important to investigate the time-varying relationship between
music and emotion. Here is more useful the dimensional approach to cap-
ture the continuous changes of emotional expression as Music Emotion
Variation Detection (MEVD). Usually subjects are asked to rate valence
and arousal in response of the stimulus over time.
For example, songs can be described by valence and arousal curves as in
Figure 2.3.

Figure 2.3: Valence and arousal curves for MEVD
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2.4 MER algorithms

MIR researches have been made to automate MER tasks, and the type
of music under study has gradually shifted over the past few years from
symbolic music to raw audio signal, from Western classical music to pop-
ular music. The purpose of MER is to facilitate music retrieval and
management in the everyday music listening.
In the following section will be presented the general algorithm path for
MER problems.

2.4.1 General framework

Nowdays, main approaches are still context-based approaches based on
human tagging, but it is not possible to annotate a great amount of songs
and there is a possibility of human mistakes. To overcome those prob-
lems, ML and data mining techniques are used to model the relationship
between music and emotion. ML is used to automatically infer mood
and mood variation perceived in songs.
The training and automatic recognition model typically consists of the
following steps:

1. Data collection: nowadays there are several large-scale dataset cov-
ering all sort of music types and genres. Otherwise is desirable
to collect data of the different types, getting rid of the effects
called "album effect" or "artist effect" and collect a variety of music
pieces. One problem is that there is no consensus on which emotion
model or how many emotion categories should be used. Comparing
systems that use different emotion categories and different dataset
is impossible. However the issue concerning how many and which
emotion classes should be used seem to remain open.

2. Data preprocessing: to compare music pieces fairly, music pieces
are normally converted to a standard format, and since a complete
music piece can contain sections with different emotions, 20 to 30
second segment is often selected, which is representative of the song
(like the chorus part). A good remark of the segment length can
be found in [15].

3. Subjective test: emotion is a subjective matter, so the collection of
the ground truth data should be conducted carefully. Annotation
methods can be grouped into two categories:

• Expert-based method: which employs a few musical experts
to annotate emotions.

• Subject-based method: employs a large number of untrained
subjects to annotate emotions.
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The ground truth is set by averaging the opinion of all subjects
(typically more than 10 subjects per song).
It became important to not make a long test, in order to not com-
promise the reliability of the emotion annotations. Nowadays is
introduced the use of listening games.

4. Collect from human annotators the ground truth emotion labels or
emotion values.

5. Features extraction: a certain number of features are extracted
from the music signal to represent the different dimension of music
listening like melody, timbre and rhythm.
After features extraction, is applied feature normalization, in order
to have a standardized visualization.

6. Apply a learning algorithm between music features and emotion
labels/values by training a ML model to learn the relationship
between emotion and music. Music emotion classification is car-
ried out with classification ML algorithms, such as Neural Network
(NN), k-Nearest Neighbor (k-NN), decision tree, Support Vector
Machine (SVM) and Support Vector Classification (SVC).

7. Predict emotion of an input song from the resulting computational
model.

The music emotion recognition process can be schematized in the Figure
2.4 with a division in training and testing, in order to apply ML methods.

Figure 2.4: MER general framework process

Researches that work on MER can be classified into two approaches, cat-
egorical and dimensional, which are based on the emotion representation
ideas.
In categorical approach, subjective annotations are global terms, in di-
mensional approach subjective annotations are point in the VA space and
in MEVD they are sequences of points in the dimensional space.
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2.4.2 Categorical approach

The categorical approach categorizes emotions into a number of discrete
classes and applies ML techniques to train a classifier. The predicted
emotion labels can be incorporated into a text-based or metadata-based
music retrieval system.
Advantage of categorical approach is that it is easy to be incorporated
into a text-based or metadata-based retrieval system. Emotion labels
provide an atomic description of music that allows users to retrieve music
through a few keywords.

2.4.3 Dimensional approach

The dimensional approach to MER defines emotions as numerical values
over VA plane. A regression model is trained to predict the emotion val-
ues that represent the affective content of a song, thereby representing
the song as a point in an emotion space. Due to the fact that the emotion
plane contain an infinite number of emotion descriptions, the granularity
and ambiguity issues are relieved.
MER problem became a regression problem, and two independent mod-
els, as regressors, are trained to predict separately valence and arousal
values.
The dimensional approach requires the subjects to annotate the numer-
ical VA values. This requirement impose an high cognitive load on the
subjects.

Pros and cons of categorical and dimensional approach are schematized
in the Table 2.3.

Pros Cons
Categorical Intuitive

Natural language
Atomic description

Lack a unifying model
Ambiguous
Subjective
Difficult to offer fine-grained
differentiation

Dimensional Focus on few dimen-
sions
Good user interface

Less intuitive
Semantic loss in projection
Difficult to obtain ground
truth

Table 2.3: Pros and cons of categorical and dimensional approaches
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2.5 Music features

In MER analysis, an important step is to extract audio features and than
apply a feature selection method.
There are several features that can be extracted from audio signal in
order to represent five of the most useful perceptual dimensions of music
listening:

• Energy: dynamic loudness, audio power, total loudness, specific
loudness sensation coefficients.

• Rhythm: beat histogram, rhythm pattern, rhythm regularity, rhythm
clarity, average onset frequency, average tempo.

• Temporal: zero-crossing, temporal centroid, log-attack-time.

• Spectrum: spectral centroid, spectral rolloff, spectral flux, spectral
flatness.

• Harmony: salient pitch, chromagram centroid, harmonic change,
pitch histogram.

These features are just an example of an infinite series of features that
can be extracted from audio signals.

Gabrielsson et al. [14] noted that there are corresponding relations
between the dimensional models and music features. Among these fea-
tures, intensity is a basic feature, which is highly correlated with arousal
and is used to predict the arousal dimension [16].
In [5] is shown a table summary of musical characteristics relevant to
emotion, reported in Table 2.4.

Features Examples
Timing Tempo, variation, duration, contrast
Dynamics Overall level, crescendo/diminuendo, accents
Articulation Overall staccato, legato, variability
Timbre Spectral richness, harmonic richness
Pitch High or low
Interval Small or large
Melody Range, direction
Tonality Chromatic-atonal, key-oriented
Rhythm Regular, irregular, smooth, firm, flowing, rough
Mode Major or minor
Loudness High or low
Musical form Complexity, repetition, disruption
Vibrato Extent, range, speed

Table 2.4: Musical features relevant to MER for [5]
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Despite the identification of these relations, many of them are not fully
understood, still requiring further musicological and psychological stud-
ies, while others are difficult to extract from audio signals. Nevertheless,
several computational audio features have been proposed over the years.
While the number of existent audio features is high, many were devel-
oped to solve other problems (e.g., Mel-Frequency Cepstral Coefficient
(MFCC) for speech recognition) and may not be directly relevant to
MER.

Nowadays is not really clear the relationship between low-level and
mid-level features and mood. In order to capture different aspects is ex-
tracted a large set of features. This create a feature matrix that is then
normalized in order to map them on the same range of values.

After the feature matrix is created is applied a feature selection or
feature reduction algorithm to select the best set of features. Feature
selection algorithms are based on two different ideas:

• High Level (HL) point of view: find the set of features that best
model the concept. This lead to the accuracy of machine learning
techniques being limited because of the limitation of the hypothesis
done.

• Low Level (LL) point of view: find the set of features that produces
the best classification rate.

2.5.1 Feature selection

From the machine learning point of view, features are not necessarily of
equal importance or quality, and irrelevant or redundant features may
lead to inaccurate conclusion. Experiments have shown that, although
the performance can thus be improved to a certain extent, using too
many features leads to performance degradation [16].
With an highly discriminant sets of features, is not true that their com-
bination produces a better discriminant power, for example if the set of
features is 60, the number of possible combinations are:

ncombinations =
60∑
n=1

(
60

k

)
(2.1)

which is clearly impossible to compute. For this reason is applied some
feature selection algorithms.

An example of feature selection for the categorical approach is the
Sequential Feature Selection. It starts from an initial condition, and
features are added or removed from a candidate subset while evaluating
the criterion in two possibilities:

1. Sequential Forward Selection (SFS): features are sequentially added
to an empty candidate set until the addition of further features does
not decrease the criterion.
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2. Sequential Backward Selection (SBS): features are sequentially re-
moved from a full candidate set until the removal of further features
increases the chosen criterion.

Another feature selection method is the minimum-Redundancy-Maximum-
Relevance (mRMR) which select the features with the highest relevance
to the target class. Relevance is characterized in terms of mutual infor-
mation which is defined as (given X and Y a pair of random variables):

I(x, y) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy (2.2)

where p(x, y) is the joint probability mass function of X and Y , p(x) and
p(y) are the marginal probability mass function of X and Y respectively.

On the other side, for dimensional approach, feature selection is for
example RReliefF [17]. Basic idea of this algorithm is that try to esti-
mate the quality of each attribute (in this context the features) according
to how well their values distinguish between instances that are close each
other.
The pseudocode of the RReliefF feature selection algorithm from [17]:

Figure 2.5: RReliefF pseudocode

Another feature selection for dimensional approach is Principal Com-
ponent Analysis (PCA) and Independent Component Analysis (ICA).
The method starts with all features and reduces them one by one, and
hence is similar to backward selection. The goal of ICA is to find a linear
representation of non-Gaussian data so that the components are statis-
tically independent, or as independent as possible. While the other well
known linear transformation methods (PCA) benefit from the gaussian-
ity of the data, ICA improves the classifier performance in the opposite
case.
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2.6 Machine learning

ML is the scientific study of algorithms and statistical models that com-
puter systems use to perform a specific task without using explicit in-
structions, relying on patterns and inference instead. It is seen as a
subset of Artificial Intelligence (AI). Machine learning algorithms build
a mathematical model based on sample data, known as "training data",
in order to make predictions or decisions without being explicitly pro-
grammed to perform the task.

ML is not just fantasy, it’s already here, it has been around for decades
in some specialized applications. The first ML application that became
mainstream was done in 1990s, the spam filter [18].
A classical definition came from Arthur Samuel in 1959:

"Machine Learning is the field of study that gives computers the ability
to learn without being explicitly programmed"

Another definition, more engineering-oriented is by Tom Mitchell in 1997:

"A computer program is said to learn form experience E with respect to
some task T and some performance measure P, if its performance on T,

as measured by P, improves with experience E"

The main difference between traditional programming and ML is well
schematized in the Figure 2.6.

Figure 2.6: Traditional programming versus Machine Learning

There are many different ML systems. They can be classified in categories
based on:

• Whether or not they are trained with human supervision (super-
vised, unsupervised, reinforcement learning).

• Whether or not they can learn incrementally on the fly (online and
bach learning).
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• Whether they work by comparing new data points to know data
points, or instead detect patterns in the training data and build a
predictive model (instance-based and model-based learning).

These criteria are not exclusive, they can be combined together.
In supervised learning, the algorithm builds a mathematical model

from a set of data that contains both the inputs and the desired outputs.
For example, if the task was determining whether an image contained
a certain object, the training data for a supervised learning algorithm
would include images with and without that object (the input), and each
image would have a label (the output) designating whether it contained
the object.
Semi-supervised learning algorithms develop mathematical models from
incomplete training data, where a portion of the sample input doesn’t
have labels.
In unsupervised learning, the algorithm builds a mathematical model
from a set of data that contains only inputs and no desired output la-
bels.

Classification algorithms and regression algorithms are types of su-
pervised learning. Classification algorithms are used when the outputs
are restricted to a limited set of values. For a classification algorithm
that filters emails, the input would be an incoming email, and the out-
put would be the name of the folder in which to file the email. For an
algorithm that identifies spam emails, the output would be the prediction
of either "spam" or "not spam", represented by the Boolean values true
and false. Regression algorithms are named for their continuous outputs,
meaning they may have any value within a range.
In this thesis the focus will be on supervised learning.

Supervised learning algorithms build a mathematical model of a set
of data that contains both the inputs and the desired outputs. The data
is known as training data, and consists of a set of training examples.
Each training example has one or more inputs and the desired output,
also known as a supervisory signal. In the mathematical model, each
training example is represented by an array or vector, called feature
vector, and the training data is represented by a matrix. Through
iterative optimization of an objective function, supervised learning algo-
rithms learn a function that can be used to predict the output associated
with new inputs. An optimal function will allow the algorithm to cor-
rectly determine the output for inputs that were not a part of the training
data. An algorithm that improves the accuracy of its outputs or predic-
tions over time is said to have learned to perform that task.
In order to solve a problem of supervised learning, one has to perform
steps:

1. Determine the training data type.

2. Gather a training set.
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3. Determine the input feature representation of the learned function.
Here input objects are transformed into feature vector which con-
tains a number of features that describe the object.

4. Determine the structure of the learned function and corresponding
algorithm.

5. Run the algorithm on the training set and optimize performances on
a subset called validation set of the training set, or through cross-
validation (a statistical method used to estimate the accuracy of
ML models).

6. Evaluate the accuracy of the model.

There are several algorithms of supervised learning, there are no one that
works best on all problems, due to this different algorithms are tested.
Most widely used learning algorithms are:

• SVM.

• Support Vector Regression (SVR).

• Linear Regression (LR).

• Decision Tree (DT).

• NN.

Regression and Classification are both problems of supervised machine
learning, the main difference between them is that the output variable
in regression is numerical (or continuous) while that for classification is
categorical (or discrete).

The task of MER is a regression problem both for dimensional, cate-
gorical and MEVD. In dimensional approach, the valence-arousal plane
with a continuous space. Each point of the plane is considered an emo-
tion state. This allow to overcome the categorical problem of granularity
issue since the emotion plane implicitly offers an infinite number of emo-
tion descriptions.
The regression approach applies a computational model that predicts the
valence and arousal values of a music piece, which determine the place-
ment of the music piece in the emotion plane [9].

A user can then retrieve music by specifying a point in the emotion
plane according to his/her emotion state, and the system would return
the music pieces whose locations are closest to the specified point. Be-
cause the 2D emotion plane provides a simple means for user interface,
novel emotion-based music organization, browsing, and retrieval can be
easily created for mobile devices.
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2.6.1 Regression approach

A schematic diagram of the regression approach is in 2.7 where in the
training phase, regression model are trained by learning the relationship
between music features x and ground truth emotion values y.

Figure 2.7: Schematic diagram of a regression approach

Regressors for valence and arousal are denoted with rV and rA. In the
test phase, given the features x∗ of an input song, the regressors rV and
rA can be applied to predict its emotion values:

y∗ = [v∗, a∗]
T = [rV (x∗), rA(x∗)]

T (2.3)

The regression theory aims at predicting a real value from observed vari-
ables, in MER application music features. The VA values are predicted
directly from music features and due to this MER can be approached as
a regression problem.

Given N inputs (xi, yi), with i ∈ 1, ..., N where xi is the feature vec-
tor of an object di (music piece), and yi is the real value to be predicted
(valence or arousal), a regressor r(·) is created by minimizing the Mean
Square Error (MSE) ε:

ε =
1

N

N∑
i=1

(yi − r(xi))
2 (2.4)

where r(xi) is the prediction result for di.
In this thesis in mathematical expressions, bold font is used to represent
vectors and matrices.

To evaluate the performances of the regression approach with various
ground truth data spaces, feature spaces and regression algorithms is
used the R-squared model, R2 statistics, which is a standard way for
measuring the goodness of fit of regression models.
It is calculated as:

R2(y, r(X)) = 1− Nε∑N
i=1(yi − ŷ)2

= 1−
∑N

i=1(yi − r(xi))
2∑N

i=1(yi − ŷ)2
(2.5)
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where ŷ is the mean value of the ground truth. R2 is comparable be-
tween experiments thanks to the normalization of the total squared error
Nε by the energy of the ground truth. The value of R2 lies in [− inf; 1]
where R2 = 1 means the model perfectly fits the data, while a negative
R2 means the model is even worse than simply taking the sample mean.

The regression approach to MER, however, is not free of issues. First,
the regression approach suffers from the subjectivity issue of emotion per-
ception as it assigns the valence and arousal values to a music piece in
a deterministic way. It is likely that different users perceive different
emotion values in the music piece. Second, the regression approach re-
quires numerical emotion ground truth to train the computational model,
but performing such an emotion rating is a heavy cognitive load to the
subjects.
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2.7 Open issues of Music Emotion Recogni-
tion

As MER is a quite new domain, there are some elements that have no
clear answer. Four of these issues are:

1. Ambiguity and Granularity of emotion description: issue related
to the relationship between emotions and the affective terms that
denote emotions and the problem of choosing which and how many
affective terms to be included in the taxonomy. Emotions are fuzzy
concepts, there are main synonyms and similarities between differ-
ent terms. In general, classification accuracy of an automatic model
is inversely proportional to the number of classes considered [19].

2. Heavy cognitive load of emotion annotation: to collect data for
training an automatic model, is typically conducted a subjective
test by inviting human subjects to annotate the emotion of music
pieces. The problem is that, to reduce the management effort, each
music piece is annotated by two or three musical experts to gain
consensus of the annotation result. Everyday contexts, in which
musical experts experience is so different from those non-experts,
require separate treatment. Since MER system is expected to be
used in the everyday context, the emotion annotation should be
carried out by ordinary people.

3. Subjectivity of emotional perception: music perception is intrinsi-
cally subjective and is under the influence of many factors, such as
cultural background, age, gender, personality and so forth. There-
fore conventional categorical approaches that simply assign one
emotion class to each music piece in a deterministic manner do
not perform very well in practice.

4. Semantic gap between LL audio signal and HL Human perception:
it is difficult to accurately compute emotion values, and what intrin-
sic element of music causes a listener to create a specific emotional
perception is still far from well understood.
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3
Theoretical Background on EDA

This chapter introduces the readers to Electrodermal Activities and how
are they related with MER task.

First is presented a general and theoretical introduction of these Elec-
troDermal Activity (EDA), how were they discovered and how are pro-
cessed to have significant results.

After a general introduction, some recording techniques are shown,
using electrodes positioned in different parts of the body.

It follow an explanation of the different techniques for preprocessing
the data, as artifacts removal.

At last is mentioned an explanation of the main features that can be
extracted from EDA signals.

3.1 Electrodermal Activity

Already in the 80’s, psychological factors related to electrodermal phe-
nomena were observed. It became an important field of study, due to the
fact its ease of obtaining a distinct ElectroDermal Response (EDR), the
intensity of which seems apparently related to stimulus intensity and/or
its psychological significance [20].

While there is still widespread disagreement and confusion about the
nature and causes of musically evoked emotions, recent studies involving
real-time observation of brain activity seem to show that areas of the
brain linked with emotion (as well as pleasure and reward) are activated
by music listening [21].

EDA is arguably the most useful index of changes in sympathetic
arousal that are tractable to emotional and cognitive states as it is the
only autonomic psychophysiological variable that is not contaminated
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by parasympathetic activity. EDA has been closely linked to autonomic
emotional and cognitive processing, and is a widely used as a sensitive
index of emotional processing and sympathetic activity.
This coupling between cognitive states, arousal, emotion and attention
enables EDA to be used as an objective index of emotional states. It
can also be used to examine implicit emotional responses that may occur
without conscious awareness or are beyond cognitive intent (i.e., threat,
anticipation, salience, novelty).

3.1.1 Terminology and history

EDA was first introduced by Johnson and Lubin in 1966 [22] as a com-
mon term for all electrical phenomena in skin, including all active and
passive electrical properties that can be traced back to the skin and its
appendages.
EDA is the property of the human body that causes continuous variation
in the electrical characteristics of the skin. Historically, EDA has also
been known as Skin Conductance (SC), Galvanic Skin Response (GSR),
EDR, PsychoGalvanic Reflex (PGR), Skin Conductance Response (SCR),
Sympathetic Skin Response (SSR) and Skin Conductance Level (SCL).
The long history of research into the active and passive electrical prop-
erties of the skin by a variety of disciplines has resulted in an excess of
names, now standardized to EDA.

The use of the term response for electrodermal phenomena suggests
that there is a distinct relationship to a stimulus producing an EDR.
Sometimes there are parts that cannot be traced to any specific simula-
tion, they are called spontaneous or non-specific EDR.

3.1.2 SCL and SCR division

There is ample empirical evidence that electrodermal phenomena are gen-
erated by sweat gland activity in conjunction with epidermal membrane
processes. Skin conductance is characterized by:

• Tonic also called SCL, smooth underlying slowly changing level, it
accounts for the general levels of the conductivity of the skin.

• Phasic, SCR rapidly changing peaks, results from momentary sym-
pathetic activation when arousing stimuli are present.

When sweat gland activity is abolished in humans, either as a result of
congenital absence, by sympathectomy, by peripheral sudomotor nerve
discharge, or by pharmacological blocking, SCR and Skin Potential Re-
sponse (SPR) are normally eliminated and SCL is reduced [23].

In the Figure 3.1 can be seen the plot over time of an EDA signal and
its decomposition in tonic and phasic parts extracted using pyphysio1

library [24] on an EDA signal.
1https://github.com/MPBA/pyphysio
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Figure 3.1: Representation EDA signal (in blue), driver signal (in red)
and phasic signal (in green)

The time series of the change of SC is characterized by a slowly varying
tonic activity and fast varying phasic activity. The SCR shows a steep
incline to the peak and a slow decline to the baseline. The successions
of SCR usually results in a superposition of subsequent SCR as one SCR
arises on top of the declining trail of the preceding one.
The Figure 3.2 from [2] shows a SC data section. The upper row shows
the original SC data. The middle row shows the driver signal which re-
sults from deconvolution of the SC data. Inter-impulse data are used to
estimate the tonic part of the driver at 10-s intervals (tonic grid points).
The tonic driver is used to compute the tonic SC (see upper row). Sub-
traction of the tonic part from the driver results in the phasic driver
(lower row). The phasic driver shows a virtually zero baseline and dis-
tinct phasic responses.

Figure 3.2: Skin conductance and phasic driver extraction from [2]
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3.1.3 Decomposition algorithms and tools

To process EDA data dividing in phasic and tonic component, in the
literature, several algorithms and tools were presented.

To separate the signal components, generally is designed an Infinite
Impulse Response (IIR) Butterworth low-pass filter with a cut-off fre-
quency of 0.001Hz (stop frequency of 1Hz at −60dB). The tonic com-
ponent is then extracted from the output of the IIR filter, while the
phasic component is obtained from the difference between the original
signal (supplied to the IIR filter) and the tonic component.

To separate phasic and tonic components, is also used an algorithm
called cvxEDA. The model of the cvxEDA2 assumes that the observed
SCR (y) is the sum of the phasic activity (r), a slow tonic component
(t), and an additive independent and identically distributed zero-average
Gaussian noise term (ε):

y = r + t+ ε (3.1)

Physiologically-plausible characteristics (temporal scale and smoothness)
of the tonic input signal can be achieved by means of a cubic spline with
equally-spaced knots every 10s, an offset and a linear trend term:

t = Bl + Cd (3.2)

where:

• B is a tall matrix whose columns are cubic B-spline basis functions

• l is the vector of spline coefficients

• C is a Nx2 matrix with Ci,1 = 1, and Ci,2 =
i

N

• d is a 2x1vector with the offset and slope coefficients for the linear
trend

Phasic component is the result of a convolution between the SudoMotor
Nerve Activity (SMNA) p and an impulse response h(t) shaped as a
biexponential Bateman function:

h(t) = (e−t/τ1 − e−t/τ2)u(t) (3.3)

where τ1 and τ2 are the slow and the fast time constants of the phasic
curve shape and u(t) is the unitary step function.
Referring to [25], the final model can be written as:

y = Mq +Bl + Cd+ ε (3.4)
2https://github.com/Iciti/cvxEDA
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Given the EDA model 3.4, cvxEDA formulated the problem as a mini-
mization problem as:

minimize
1

2
||Mq +Bl + Cd− y||2 + αδ||Aq||1 +

γ

2
||l||22 (3.5)

subject to Aq >= 0

This problem can be solved using one of the many sparse-QP solvers in
order to find the optimal [q, l, d], than find tonic component t from 3.2.

One tool is EDAtool3. It is a function developed to preprocess EDA
signal including removal of electrical noise and artifact detection. It
separates also the signal in phasic and tonic components.

Another tool that is able to separate signal components is Ledalab4.
This software aims to provide EDA analysis though two methods:

1. Continuous decomposition analysis, which performs a decomposi-
tion of SC data into continuous signals of phasic and tonic activity.

2. Discrete decomposition analysis, which performs a decomposition
of SC data into distinct phasic and tonic activity by means of non-
negative deconvolution.

3http://www.musicsensorsemotion.com/2012/06/21/edatool/
4http://www.ledalab.de
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3.2 Measurement principles

EDA can be measured both without externally applied voltage (endoso-
matic method) or with application of Direct Current (DC) or Alternate
Current (AC) (exosomatic method). The widespread used method is
the exosomatic with DC recordings. With direct voltage, skin resistance
measurements will result when current is constant, while skin conduc-
tance measurement will result when voltage is kept constant.

There are some factors that should be controlled as possible sources
or variance in EDA recordings, like environmental conditions as the cli-
matic conditions and physiological factors like age, gender and ethnic
differences.

EDA can be measured in many different ways electrically including
skin potential, resistance, conductance, admittance, and impedance. It
achieves this by passing a minuscule amount of current between two
electrodes in contact with the skin. The units of measurement for con-
ductance are microSiemens (µS).

3.2.1 Recording techniques

Electrodermal recording is usually performed with two electrodes. Ex-
osomatic techniques use two active sites, while endosomatic recording
requires an active and an inactive site.
Figure 3.3 illustrate the preferred palmar recording areas for exosomatic
and endosomatic EDA recordings. Sites A and B for bipolar recordings.
C and D for volar electrode sites.

Figure 3.3: Preferred palmar recording areas for exosomatic and endoso-
matic EDA recordings

3.2.2 Wearable technologies

During the last years, some wearable devices were made, in order to ex-
tract EDA data through sensors.
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For example, one wearable device is from Empatica5. Product exam-
ples can be seen in Figure 3.4.

(a) e4 (b) embrace 2

Figure 3.4: Empatica wearable devices

Empatica has designed a system support real-world applications for seizure
detection and characterization. Empatica is running a clinical trial, open
to Embrace users, to collect and validate biometric signals from epilepsy
patients using the Empatica Embrace watch and Alert app and compare
them to e-diary seizure report information.

Another device is from Bitbrain6 as in Figure 3.5.

(a) Biosignal device from Bitbrain (b) Positioning the sensors

Figure 3.5: Bitbrain wearable devices

The sensors are located on the fingers’ first and second phalanges (opti-
mal measurement points) as shown in 3.5.

Another one device is from iMotions7. The name of the device is
Shimmer3 GSR+ which monitors skin conductivity between two elec-
trodes attached to two fingers of one hand as can be seen in Figure 3.6.
Caused by a stimulus the sweat glands become more active, increasing

5https://www.empatica.com/en-eu/
6https://www.bitbrain.com
7https://imotions.com
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Figure 3.6: Bitbrain wearable devices

moisture on the skin and allowing the current to flow more readily by
changing the balance of positive and negative ions in the secreted fluid
(increasing skin conductance).
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3.3 EDA preprocessing

EDA data is often captured by wearable devices, which makes the signal
collected vulnerable to several types of noise. Artifacts can be generated
from electronic noise or variation in the contact between the skin and
the recording electrode caused by pressure, excessive movement or ad-
justment of the device [3].
They may be mistaken for a skin conductance response, and this must
be avoided.

Typically, as Boucsein [20] report, the shape of an SCR lasts between
1s to 5s, has a steep onset and an exponential decay and reaches an am-
plitude of at least 0.01µS. An example of a typical SCR in Figure 3.7.

Figure 3.7: Example of a SCR shape

Currently, many researchers deal with signal artifacts and noise by ap-
plying exponential smoothing or low-pass filtering.
Additionally, filter cutoff frequencies are based only loosely on prior
knowledge of typical characteristics of SCR shape, and vary widely study
to study (from 1Hz to 5Hz). The cutoff frequency ultimately chosen for
a study is specific to that particular study, making generalization diffi-
cult.

There are much relevant techniques that are also able to recognize
and compensate for large-magnitude artifacts that can result from pres-
sure or movement of the device during recordings.
In [3] is presented a figure reported at Figure 3.8, which shows a portion
of signal that contains three artifacts, in which the fast decrease could
not be produced by human physiology. Comparing the raw signal and
the filtered version, the low-pass filter has not removed the artifacts.
Some researchers, as Boucsein analysis [20], develop heuristic techniques
for removing atypical portion of the EDA signal. Someone decide to dis-
card portion of their data where the signal increased more than 20% per
second or decreased more than 10% per second.

In another case, a study which collected EDA from two sensors (on
both the ankle and wrist) [26] was able to detect artifacts by looking for
epochs when only one of the two sensors had an abnormally low signal,
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Figure 3.8: Portion of an EDA signal, the raw signal on the left in red,
a 1Hz low-pass filter applied on the signal to the left in blue in [3]

or showed an unusually rapid increase or decrease.
In [3] developed a ML algorithm for automatically detecting EDA

artifacts, providing empirical evaluation of classification performances.
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3.4 EDA features

As for MER analysis, also in EDA data analysis, is important to find
which features need to be extracted and then which feature selection
method must be carried.

Emotion recognition from EDA has been commonly used for the as-
sessment of user’s experience in a variety of contexts such as recreational
and games [27] and driving [28]. Previous research has explored the pre-
dictive power of a diverse set of EDA features of different types, including
time domain, frequency domain, and time-frequency domain features.

Regarding time domain features, most usually features considered are
the statistical parameters of the signal as:

• Mean value: µ is the central value of a discrete set of numbers
x1, x2, ..., xn, specifically, the sum of the values divided by the num-
ber of values:

µ =
1

n

n∑
i=1

xi (3.6)

• Standard deviation: is a measure of the amount of variation or
dispersion of a set of values:

σ =

√ 1

n

n∑
i=1

(xi − µ)2 (3.7)

• Kurtosis: is a measure of the "tailedness" of the probability distri-
bution of a real-valued random variable:

kurt =

1

n

∑n
i=1 (xi − µ)4

σ4
(3.8)

• Skewness: is a measure of the asymmetry of the probability distri-
bution of a real-valued random variable about its mean:

skew =

1

n

∑n
i=1 (xi − µ)3

σ3
(3.9)

In [6], as an example, were extracted the features for EDA data shown
in table 3.1, where Discrete Wavelet Transform (DWT) is an implemen-
tation of the wavelet transform using a discrete set of wavelet scales.
Other cases, researchers have focused on event-related features of EDA.
They are useful when are presented to the subjects some events, stimu-
lus, like images or sounds.
Examples of event-related aspects of EDA considered in other studies
are SCR amplitude, SCR peak count, mean SCR rise time, or the sum
of SCR areas.
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Domain Feature vector Number of features
Time SCR related

Statistical features
Hjorth features
Higher Order Crossing

7
8
2
5

Frequency Statistical features
Band power

8
9

Time-Frequency DWT coefficients
SWT features
MFCC
Statistical features MFCC

56
40
481
5

Table 3.1: Features extracted in [6]

Fewer researches, as [6] remarks, has focused on the predictive power
of EDA related to the frequency domain. The frequency domain analysis
has shown superior capability for the gradient component’s detection of
individual SCR.
Due to the different rate of physiological process, EDA signals vary sig-
nificantly with the frequency [29].
Frequency oscillations of EDA signals can be divided into different fre-
quency sub-bands to analyze it. Indeed previous researchers has consid-
ered statistical aspects (variance, range, signal magnitude area, skewness,
kurtosis, harmonics summation) and spectrum power of five frequency
bands, as well as their minimum, maximum, and variance.

As for audio, also for EDA data, after constructing a feature matrix,
need to apply an algorithm of feature selection to improve data reliability.

Some examples of feature selection could be:

• Joint Mutual Information (JMI): focuses on the increasing comple-
mentary information between features.

• Conditional Mutual Information Maximization (CMIM): it can prop-
erly identify truly redundant features and noisy features, and gives
preference to informative, uncorrelated features.

• Double Input Symmetrical Relevance (DISR): a normalized variant
of JMI.

In general it is not known which features are most appropriate for emotion
recognition from EDA and previous works have made limited contribu-
tions on a systematic comparison of EDA features.
In [6] there is a table showing various features extracted for EDA signals
already presented in Table 3.1 with also references in the literature.
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4
State of the Art

This chapter introduces the readers to a complete review of the problem
and all the different resolution possibilities.
First section deal with a general explanation of various physiological sig-
nals that are used in different application. Later, a general methodology
of physiological signal processing is presented with an evidence on vari-
ous issues.
Fourth section of the chapter deals with a complete state of the art review
on the task of emotion recognition through physiological signals.

4.1 Physiological signals

In this section will be defined a general overview on physiological signals
that can be used in order to achieve a solution to the MER problem.

Emotions, which affect both human physiological and psychological
status, play a very important role in human life. Positive emotions help
improve human health and work efficiency, while negative emotions may
cause health problems. Long term accumulations of negative emotions
are predisposing factors for depression, which might lead to suicide in
the worst cases.
The emotion often refers to a mental state that arises spontaneously
rather than through conscious effort and it is accompanied by physical
and physiological changes, relevant to the human organs and tissues such
as brain, heart, skin, blood flow, muscle, facial expressions, voice, etc.
[30].

Emotion recognition has been applied in many areas such as safe
driving [31], health care especially mental health monitoring [32], social
security [33], and so on.
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In general, emotion recognition methods could be classified into two ma-
jor categories:

• Using human physical signals such as facial expression [34], speech
[35], gesture, posture, etc. This method has the advantage of easy
collecting and is a chapter which has been studied for years. On
the other side, the reliability cannot be guaranteed, as it is rel-
atively easy for people to control the physical signals like facial
expression or speech to hide real emotions, especially during social
communications.

• Using internal signals as:

– Electroencephalogram (EEG)

– Electrocardiogram (ECG)

– Electromyogram (EMG)

– Blood Pressure (BP)

– Hearth Rate Variability (HRV)

– EDA as:

∗ Skin Resistance (SR)
∗ Skin Temperature (ST)
∗ SC
∗ GSR

– Respiration (RSP)

These signals are produced by the Nervous System which is divided
into:

– Central Nervous System (CNS)

– Peripheral Nervous System (PNS): consist of the Autonomic
Nervous System (ANS) and Somatic Nervous System (SNS).

EEG, ECG, EMG, GSR and RSP change in a certain way when
people face some specific situations. Physiological signals are in
response to the CNS and ANS. Due to the fact that CNS and ANS
are involuntarily activated, they cannot be controlled.

In the Table 4.1 is shown a summary of various papers using different
biological signals.
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Biological signal Paper
ECG [36], [37], [38], [39], [40]
ECG, EMG, RSP [41]
ECG, GSR [42]
HRV, SR [43]
EEG [44]
HRV [45]

Table 4.1: Papers with correspondent biological signal used

In Table 4.2 is presented the relationship between emotions and physi-
ological features, thanks to [30]. Arrows indicate increased (↑), decreased
(↓), no change in activation from the baseline (−) or both increases and
decreases in different studies (↑↓).
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Signal Anger Anxiety Embarrassment Fear Amusement Happiness Joy
Cardiovascular

HR ↑ ↑ ↑ ↑ ↑↓ ↑ ↑
HRV ↓ ↓ ↓ ↓ ↑ ↓ ↑
LF ↑ (−) (−)

LF/HF ↑ (−)
PWA ↑
PEP ↓ ↓ ↓ ↑ ↑ ↑↓
SV ↑↓ (−) ↓ (−) ↓
CO ↑↓ ↑ (−) ↑ ↓ (−) (−)
SBP ↑ ↑ ↑ ↑ ↑ ↑ ↑
DBP ↑ ↑ ↑ ↑ ↑ ↑ (−)
MAP ↑ ↑ ↑ ↑
TPR ↑ ↓ ↑ ↑ (−)
FPA ↓ ↓ ↓ ↓ ↑↓

FPTT ↓ ↓ ↓ ↑
EPTT ↓ ↓ ↑

FT ↓ ↓ ↓ (−) ↑
Electrodermal

SCR ↑ ↑ ↑ ↑
nSRR ↑ ↑ ↑ ↑ ↑ ↑
SCL ↑ ↑ ↑ ↑ ↑ ↑ (−)

Respiratory
RR ↑ ↑ ↑ ↑ ↑ ↑
Ti ↓ ↓ ↓ ↓ ↓
Te ↓ ↓ ↓ ↓
Pi ↑ ↑ ↓

Ti/Ttot ↑ ↓
Vt ↑↓ ↓ ↑↓ ↑↓ ↑↓

Vi/Ti ↑
Electroencephalography

PSD(α wave) ↑ ↑ ↓ ↑ ↑ ↑
PSD(β wave) ↓ ↑
PSD(γ wave) ↓ ↑ ↑ ↑

DE (avg) ↑ (−) ↓ ↑ ↑
DASM (avg) (−) ↑ ↓ ↓ ↓
RASMs (avg) ↑ ↑ ↓

Table 4.2: Relationship between emotions and physiological features

The position of different biosensors is shown in Figure 4.1.
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Figure 4.1: Position of the bio-sensors

4.1.1 Electroencephalogram

EEG is an electrophysiological monitoring method to record electrical
activity of the brain. EEG measures voltage fluctuations resulting from
ionic current within the neurons of the brain. Clinically, EEG refers to
the recording of the brain’s spontaneous electrical activity over a period
of time, as recorded from multiple electrodes placed on the scalp.

EEG is most often used to diagnose epilepsy, which causes abnormal-
ities in EEG readings. It is also used to diagnose sleep disorders, depth
of anesthesia, coma, encephalopathies, and brain death.
Many studies have indicated that the physiological correlates of emotions
are likely to be found in the central nervous system rather than simply
in peripheral physiological responses. Researchers have supported this
viewpoint using EEG or other neuroimaging (e.g., functional Magnetic
Resonance Imaging) approaches to investigate the specificity of brain ac-
tivity associated with different emotional states.
However, most of the available studies on emotion-specific EEG response
have focused on EEG characteristics at the single-electrode level, rather
than at the level of EEG-based functional connectivity.

4.1.2 Electrocardiogram

ECG is a recording of the electrical activity of the hearth using electrodes
placed on the skin. These electrodes detect small electrical changes that
are a consequence of cardiac muscle depolarization followed by repolar-
ization during each cardiac cycle, the heartbeat.

There are three main components to an EEG: the P wave, which
represents the depolarization of the atria; the QRS complex, which rep-
resents the depolarization of the ventricles; and the T wave, which rep-
resents the repolarization of the ventricles, as in Figure 4.2.
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Figure 4.2: ECG of a heart in normal sinus rhythm, PQRST wave

4.1.3 Electromyogram

EMG is an electrodiagnostic medicine technique for evaluating and record-
ing the electrical activity produced by skeletal muscles.
An electromyograph detects the electric potential generated by muscle
cells when these cells are electrically or neurologically activated. The
signals can be analyzed to detect medical abnormalities, activation level,
or recruitment order, or to analyze the biomechanics of human or animal
movement.

Therefore, the best readings are obtained when the sensor is placed
on the muscle belly and its positive and negative electrodes are parallel
to the muscle fibers. Since the number of muscle fibers that are recruited
during any given contraction depends on the force required to perform
the movement, the intensity (amplitude) of the resulting electrical signal
is proportional to the strength of contraction.

In psychophysiology, EMG was often used to find the correlation be-
tween cognitive emotion and physiological reactions. In the work by
Sloan [46], for example, the EMG was positioned on the face (jaw) to
distinguish smile and frown by measuring the activity of zygomatic ma-
jor and corrugator supercilli. In experiment of [41], bipolar electrodes
were placed at the upper trapezius muscle (near the neck) in order to
measure the mental stress of the subjects.

4.1.4 Hearth Rate Variability

HRV measure the beat-to-beat temporal changes of the hearth rate,
sometimes it is calculated from ECG, but the usability of measuring the
ECG is limited. HRV can be evaluated also through the Blood Volume
Pulse (BVP) or Photoplethysmography (PPG).

A reduced HRV is linked to psychiatric illness as depression, anxi-
ety. The heart rate is the most natural choice for arousal detection using
comparison of sympathetic and parasympathetic frequency bands of the
time series. However, it is highly dependent on the position of the body
during monitoring.
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4.1.5 Electrodermal Activity

As already been studied in Chapter 3, EDA measures the resistance of the
skin and the skin conductivity applying electrodes to the skin. The skin
conductivity decreases during relaxed states, and increase when exposed
to effort.

4.1.6 Respiration

RSP is the process of moving air into an out of the lungs to facilitate gas
exchange with the internal environment, mostly bringing in oxygen and
flushing out carbon dioxide.
The respiration can be measured with a latex rubber band, the amount
of stretch in the elastic is measured as a voltage change and recorded.
The most common measures of RSP are the depth of breathing and the
rate of RSP.

RSP rate generally decreases with relaxation, tense situations may
result in momentary RSP cessation. Irregularity in the RSP pattern
could be the cause of negative emotions.
Due to the fact that RSP is closely linked to the cardiac function, RSP
can be affect other measures, like EMG and SC measurements.
Positions to the left, and typical waveform of the signals to the right are
presented in the Figure 4.3.

Figure 4.3: Positions (left) and waveform of the signals (right), (a) ECG,
(b) RSP, (c) SC, (d) EMG
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4.2 General methodology

For physiological signal-based emotion recognition, there is a common
methodology which can be divided into two categories:

• Traditional ML methods: model specific methods, which require
carefully designed hand-crafted features and feature optimization
methods.

• Deep learning methods, which are model-free methods and can
learn the inherent principle of the data and extract features au-
tomatically.

The whole emotion recognition framework is shown in Figure 4.4.

Figure 4.4: Emotion recognition process using physiological signals under
target emotion stimulation

4.2.1 Preprocessing

After the part of data acquisition, which is different for each physiological
signal, a data preprocessing step is usually performed. It is necessary
to eliminate the noise effect, artifacts and other signal parts that may
lead to wrong results. Due to the complex and subjective nature of
raw physiological signals and the sensitivity to noises, electromagnetic
interference, movement artifacts, ... this step is mandatory.

Some of the common steps can be summarized in:

• Filtering: is commonly used a low-pass filter to remove noises, or
also adaptive band pass filters to remove artifacts.

• DWT: used to reduce the noise of physiological signals

• ICA: used to extract and remove respiration sinus arrhythmia from
ECG.

• Empirical Mode Decomposition (EMD): used to remove the eye-
blink from EEG.
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4.2.2 Traditional Machine Learning

Main steps for traditional ML methods, as already presented in 2.6.
There are processes including feature extraction, feature selection and
classification as reviewed in [47].

Feature extraction

Feature extraction plays a fundamental role in the emotion recog-
nition model. Several major features are extracted for each physiologi-
cal signal, since it is important to extract the most prominent features
for emotion recognition task. For example EEG is a complex and non-
stationary signal, so some statistical features like Power Spectral Density
(PSD) and Spectral Entropy (SE) are commonly used.
Often are extracted statistical features as mean, standard deviation, Kur-
tosis, Skewness, entropy.
However, each bio-signal has to be investigated separately as extracted
features might vary in their usefulness for the classification of emotions.

Feature selection

After the feature extraction process, there might be a quantity of
features, some of which may be irrelevant, some that are probably corre-
lated each other, there might be some redundant features.
This lead to a longer time to analyze the features and train the model.
This results in an overfitting problem and as consequence the decreasing
of the model performance.
Some of the main feature selection algorithms are RfeliefF, mRMR, SBS
and SFS, PCA, ...

In general there are several feature selection algorithms, some re-
duce the dimensionality by taking out some redundant or irrelevant fea-
tures, other transform the original one into a new set of features. Perfor-
mances of the feature selection algorithm depends on the classifier and
the dataset, due to this, the perfect feature selection algorithm does not
exist.

Classification

In emotion recognition, the major task is to assign the input sig-
nal to one of the given class sets. There are several classification models
like Linear Discriminant Analysis (LDA), k-NN, SVM, Random Forest
(RF), ...
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4.2.3 Deep Learning

Deep Learning (DL) methods have the benefit to be model-free methods,
so they do not depend on the specific model considered.
Examples of DL algorithms are Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), ... NNs in general are particular types
of ML methods which have as fundamental unit the node, loosely based
on the biological neuron.

The relevant aspect of DL is that it can learn the inherent principle
of the data and extract features automatically, so there is no need to
extract features and select the most relevant ones, which could lead to a
better generalization of the problem.

4.2.4 Model assessment and selection

The generalization error of the classifier can be evaluated by experiments,
where a testing set should be used to test the ability of the classifier to
classify the new samples, and the testing error on the testing set could
be viewed approximately as the generalization error.
The dataset is divided into two mutually exclusive sets, the training and
the testing set. It is important to maintain the consistency of the data
distribution as much as possible. In general, the experiment has to be
repeated several times with random division and then calculate the av-
erage value as the evaluation result.

To reinforce model assessment it is possible to use k-fold cross-validation,
where the initial sampling is divided into K sub-samples. One sub-sample
is used as the testing set and the other K − 1 samples are used for train-
ing. Cross-validation is repeated K-times. Each sub-sample is validate
once and the average result of K times is used as the final result. The
most common is the 10-fold cross-validation.

To evaluate the performance of the experiment there is the accuracy,
which is the proportion of samples that are correctly classified to the
total samples.
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4.3 Issues of physiological signals

A lot of efforts have been made in revealing the relationships between
explicit physiological signals and implicit psychological feelings. How-
ever, there are still several challenges in emotion recognition based on
physiological signals:

• Need a very well designed setup in order to obtain high quality
physiological data. The standard setup is the standard lab setting
with subjects with earphones sit motionless in front of a screen
where the emotion stimuli materials are played. This system is
fixed, data are noiseless and stable, but is hard to obtain genuine
emotions.

• Stimulus materials are artificially selected and labels of the mate-
rials are manually set. The problem is that for the same stimulus,
human emotion vary from each other. This could lead to a large
deviation in the rating as explained in [48].

• There is not still clear evidence on which combination of physiologi-
cal signals and extracted features is the most significant to emotion
changes.

• For most studies, the number of subjects is small. Due to limited
samples, the performance of the classifier with subjects who have
not been analyzed during training would be poor. The clear effi-
cient method is to include more subjects from different ages and
backgrounds.

• Emotion perception and experience lead to strong differences.

• The reliability of facial expressions cannot be guaranteed some-
times.
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4.4 Related works based on physiological sig-
nals

In this section some recent works regarding the relationship between EDA
signals and human emotions will be presented.

4.4.1 ECG and GSR signal emotion recognition

In the work [42] ECG and GSR of 11 healthy students were collected
while subjects were listening to emotional music clips. They extracted
Matching Pursuit (MP) coefficients from ECG and GSR signals.

Then, a set of statistical indices are extracted from MP coefficients
and three dimensionality reduction methods has been applied, like PCA,
kernel PCA and LDA. These features were fed into the Probabilistic
Neural Network (PNN) in subject-dependent and subject-independent
modes.

The PNN is fed with a feature vector in the input layer, then the
distance between input and a the weight vector is determined. The sum-
mation of these contributions is computed for each input class to yield
the probability. Finally, the maximum of the resulting probabilities is
selected by a competitive layer and the label 1 is assigned to the class
that produces the maximum, 0 otherwise.

Using PNN was achieved the highest recognition rate of 100%.

4.4.2 ECG sensors for human emotion recognition

In the work presented in [36], it is suggested that ensemble learning
approach for developing a machine learning model that can recognize four
major human emotions (anger, sadness, joy and pleasure) incorporating
ECG signals.

As feature extraction method, the analysis combines four ECG signals
techniques. Several ML methods have been applied to the model, the
most accurate (with an accuracy of 70%) is achieved by using an Extra
Tree Classifier (a variant of the RF that introduce more variation in the
ensemble).

4.4.3 Automatic ECG emotion recognition

An automatic ECG-based emotion recognition algorithm is presented
in [37]. They recorded ECG signal from subjects and extracted some
features from the signal from the time and frequency domain. Then,
performed an algorithm of feature selection, a sequential forward float-
ing selection-kernel-based class separability-based.
Valence and arousal and four types of of emotions are recognized us-
ing Least Square-SVM recognizer. They gained a classification rate for
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positive/negative valence, high/low arousal, and four types of emotion
classification tasks are 82.78%, 72.91%, and 61.52%, respectively.

4.4.4 Classification of music emotions with forehead
biosignals and ECG

In the work presented in [38], a fusion of three-channel (left and right
temporal channel and frontalis) and ECG are used to recognize music-
induced emotions. They employed two parallel SVM as arousal and va-
lence classifiers.

The inputs of the classifiers were obtained by applying a fuzzy-rough
model feature evaluation criterion and sequential forward floating selec-
tion algorithm.
The average classification accuracy is 88.78% (valence classification ac-
curacy of 94.91% and arousal classification accuracy of 93.63%).

4.4.5 Emotion classification with forehead biosignals

The work [39] the feasibility of using 3-channel forehead biosignals is
investigated. Classification in valence arousal space is performed by em-
ploying two parallel cascade-forward NN.
The inputs of the classifiers were obtained by applying a fuzzy rough
model feature evaluation criterion and sequential forward floating se-
lection algorithm. An averaged classification accuracy of 87.05% was
achieved, corresponding to average valence classification accuracy of 93.66
% and average arousal classification accuracy of 93.29 %.

4.4.6 Physiological changes in music listening

The paper [41] investigates the potential of physiological signals as reli-
able channels for emotion recognition. Were used four-channel biosensors
to measure EMG, ECG, SC and RSP changes, as can be seen in Figure
4.3. They extracted some features in various analysis domain i.e. the
time/frequency, entropy, geometric analysis, subband spectra.

Classification of four musical emotion (one for each quadrant of the
valence-arousal diagram) is performed by using an extended LDA (pLDA).
They also provided a novel scheme of emotion-specific multilevel dichoto-
mous classification, gaining an accuracy of 95% for subject-dependent
and 70% for subject-independent classification.

4.4.7 NN based emotion estimation

In order to build a human-computer interface that is sensitive to a user’s
expressed emotion, in [43] a NN based emotion estimation algorithm is
proposed, using HRV and GSR. In this study, a video clip method was
used to elicit basic emotions from subjects while ECG and GSR signals

49



were measured. These signals reflect the influence of emotion on the auto-
nomic nervous system. The extracted features that are emotion-specific
characteristics from those signals are applied to an artificial neural net-
work in order to recognize emotions from new signal collections. Results
show that the proposed method is able to accurately distinguish a user’s
emotion.
They gain a total accuracy of 80.2%.

4.4.8 Recognize emotions by affective sound through
HRV

The research in [45] reports on how emotional states elicited by affective
sounds can be effectively recognized by means of estimates of ANS dy-
namics.

The ANS dynamics is estimated through standard and nonlinear anal-
ysis of HRV exclusively, which is derived from the ECG. A group of 27
people were administered with ECG recordings, then HRV features show-
ing significant changes between valence and arousal dimensions were used
as input of an automatic classification system.

The best accuracy was achieved for a quadratic discriminant classifier,
to 84.72% on the valence dimension and 84.26% on the arousal one.

4.4.9 Emotion recognition from ECG

In [40] carried out the work of affective ECG signal acquisition from 391
subjects through stimulation of film clips. They recognized emotions
divided into Joy and Sadness.
Then, features extraction and feature selection algorithms based on the
DWT and a Fisher-k-NN are implemented to classify the test data.

4.4.10 Relationship between music emotion and phys-
iological signals

In [7] the study explores the possibility of using physiological signals to
detect users emotion response to music, considering individual charac-
teristics (as personality, music preferences, etc.).

A user experiment was conducted with 23 participants, during music
listening, a series of physiological signals like HRV and SC were recorded
using a wearable wristband.
Here, arousal and mood values rated by participants were grouped into
three main categories (i.e. positive, negative, neutral), for mood ratings,
they combined the mood categories into positive, negative and neutral
moods.
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After some data preprocessing, were extracted the features in Table
4.3.

Category Features
Descriptive statistics
of raw signal

Mean, Standard deviation, median,
range

Time series features Means of the abs of the 1st/2nd dif-
ferences of the raw/normalized sig-
nals

Physiological signal
specific features

SCR, HRV

Table 4.3: Features extracted from physiological signals in [7]

A ML approach was applied to measure the extent to which physiologi-
cal signals could be used to recognize users’ emotion responses to music
listening, in positive and negative categories of arousal and mood. Specif-
ically, they trained and compared the performance of several classification
models, namely decision tree, k-NN, naïve Bayes and SVM.
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4.5 Related works based on EDA signals

In this section some recent works regarding the relationship between EDA
signals and human emotions will be presented.

4.5.1 DL model for human emotion recognition with
EDA

The work in [49] had the main objective of ensure that elderly and/or
disabled people perform/live well in their immediate environments. This
can be monitored by among others the recognition of emotions based on
non-highly intrusive sensors such as EDA sensors.
However, designing a learning system or building a machine-learning
model to recognize human emotions while training the system on a spe-
cific group of persons and testing the system on a totally a new group of
persons is still a serious challenge in the field, as it is possible that the
second testing group of persons may have different emotion patterns.

They contributed to the field of human emotion recognition by propos-
ing a CNN architecture which promises robustness for both subject-
dependent and subject independent human emotion recognition.
Subject-independent emotion recognition is a challenging field due to:

• Physiological expressions of emotion depend on age, gender, culture
and other social factors.

• Depends on the environment in which a subject lives.

• The lab-setting independent nature of emotion recognition is re-
lated to the fact that the classifier can/will be trained locally once
using sensors of a given lab-setting and after that tested considering
different datasets that are collected based on different lab settings.

Authors converted EDA signals into matrices whereby the goal is to make
the application of CNN model possible.
They tested the CNN on two datasets, MAHNOB and DEAP, which are
four-classes labeled and they increased the accuracy up to 78% for MAH-
NOB and 82% for DEAP in subject-independent classification, while up
to 81% for MAHNOB and 85% for DEAP in subject-dependent classifi-
cation.

4.5.2 VA recognition of affective sounds based on
EDA

In [25] tried to automatically classify the emotional state of healthy sub-
jects. They proposed the use of convex optimization based on EDA
framework and clustering algorithms to automatically discern arousal
and valence levels induced by affective stimuli.
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EDA recordings were gathered from 25 healthy volunteers, using only
one EDA sensor to be placed on fingers.
In model-based approaches, models describe and estimate the underlying
psychological process that generates the observed data (EDA measure-
ments).
The model based analysis of EDA has fundamental advantages, such as
a propensity to reduce the effects of measurement noise and the essential
ability to improve the temporal resolution of inference in rapid event-
related paradigms.

EDA data, in this experiment was analyzed with the cvxEDA1 al-
gorithm, presented in [50], which proposed a representation of the SCR
parts of EDA as the output of a linear time-invariant system to a sparse
non-negative driver signal.

They extracted several features form EDA both from phasic and tonic
components output of the cvxEDA. For each feature, two levels of valence
(positive and negative) and three levels of arousal (low, medium and high)
were compared.
The supervised classification was implemented using a k-NN classifier.

Results, thanks to cvxEDA showed a recognition accuracy of 80 % on
the arousal dimension and 84 % in valence classification.

1https://github.com/Iciti/cvxEDA
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4.6 Conclusions

In this chapter we have shown a review of the state of the art about hu-
man emotion recognition based on physiological data. A schematic block
of the general algorithm can be seen in Figure 4.4.
Summing up, the majority of the works deal with a small number of
subjects (25/30 maximum) and they evaluated their accuracy based on
valence-arousal space grouped in four main labels as schematized in Fig-
ure 4.5.

Figure 4.5: Valence and Arousal space divided in four main groups
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5
Proposed Framework

In this chapter is presented the overall description of the dataset used in
the experiment and the related work already done.

5.1 PMEmo dataset

This thesis is based on the paper The PMEmo dataset for Music Emotion
Recognition [8]. K. Zhang, H. Zhang and S.Li created a novel dataset
called Popular Music with Emotional annotations (PMEmo) containing
emotions of 794 songs as well as EDA signals.

Most researchers working on MER adopt methods in supervised ML
to implement music emotion prediction [51], which usually need a large
number of songs with emotion labels provided by listeners to train the
models.

A musical experiment was well-designed for collecting the affective
annotated music corpus oh high quality, which recruited 457 subjects.
The dataset (about 1.3Gb) is publicly available to the research commu-
nity at this link1.
It is intended for benchmarking in MIR and MER, it involves precom-
puted audio features sets and manually selected chorus excerpts (in .mp3)
of songs, to facilitate the development of chorus-related research.

5.1.1 Dataset structure

The dataset contains 794 music clips annotated by 457 subjects, where
participants come from different countries and majors, in order to elimi-

1https://drive.google.com/drive/folders/1qDk6hZDGVlVXgckjLq9LvXLZ9EgK9gw0

55

https://drive.google.com/drive/folders/1qDk6hZDGVlVXgckjLq9LvXLZ9EgK9gw0


nate the effects of cultural and educational background [52].
Chorus parts are manually selected from students majoring in music.

Meanwhile, the EDA of subjects when listening to these music pieces
are also recorded, making it possible to analyze emotion states in multi-
ple modes. All annotations are stored in CSV files delimited by comma.
The dataset is composed of:

• annotations: valence and arousal values for each song. There are:

– static_annotations : valence and arousal standard deviation
values for each song, one value for each song.

– static_annotations_std : valence and arousal mean values for
each song, one value for each song.

– dynamic_annotations : valence and arousal standard devia-
tion values for each song, acquired at a sampling rate of 2Hz.

– dynamic_annotations_std : valence and arousal mean values
for each song, acquired at a sampling rate of 2Hz.

• chorus: all chorus excerpts of 794 songs manually selected.

• comments: songs comments taken from NetEase2 and SoundCloud3.

• EDA: EDA data for each song, each one extracted by at least 10
subjects, with a sampling rate of 50Hz.

• features: all features extracted by the authors of [8]:

– EDA_features : features extracted from the EDA signals:

∗ EDA_features_static: EDA static features for each song
for each subject.

∗ EDA_features_dynamic: EDA dynamic features for each
song for each subject with a sampling rate of 50Hz.

∗ static_features : audio static features for each song.
∗ dynamic_features : audio dynamic features for each song

with a sampling rate of 50Hz.

• lrc_dataset : lyrics text of all music excerpts.

• lyrics : lyrics text of all music excerpts divided by each timestamp.

• metadata: metadata of the songs, containing music_ID, title, artist,
album, duration, chorus_start_time and chorus_end_time.

2https://music.163.com
3https://soundcloud.com
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Since the early years of MER, there have been numerous efforts to
build datasets with emotional annotations, to facilitate the development
and evaluation of music emotion recognition. Table 5.1 from [8] summa-
rize some works on that.

Name Stimulus Data Audio
Emotify4 400 excerpts induced emotion yes
Moodswing5 240 excerpts (30s) valence and arousal no
Amg16086 1608 excerpts (30s) valence and arousal no
emoMusic7 744 excerpts (45s) valence and arousal yes
DEAM8 1802 excerpts valence and arousal yes
SoundTracks9 360 + 110 excerpts valence, energy, ten-

sion, mood
yes

GMD10 1400 songs genre, valence and
arousal

yes

DEAPDataset11 120 music excerpts valence, arousal,
dominance and
physiological data

no

PMEmo 794 music chorus valence, arousal and
physiological data

yes

Table 5.1: Some existing music datasets with emotion annotations from
[8]

PMEmo is a valid alternative to the datasets listed in Table 5.1 due to
the fact that it is wide enough compared with the others and it gives the
possibility to apply ML methods.
PMEmo is also great because it gives original audio files, chorus parts
manually selected.

5.1.2 Song acquisition and subject selection

They collected 1000 songs from the "Billboard Hot 100", the "iTunes top
100 songs" and the "UK top 40 single charts". They late discovered a
set of duplicates and filtered double music obtaining a full song set of
794 pop songs.
Each datasets in MER utilize music segments, here each clip is manually
selected as one of the chorus parts of each song, which is implemented

4http://www.projects.science.uu.nl/memotion/emotifydata/
5http://music.ece.drexel.edu/research/emotion/moodswingsturk
6https://amg1608.blogspot.ca/
7http://cvml.unige.ch/databases/emoMusic/
8http://cvml.unige.ch/databases/DEAM/
9https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/projects2/

pastprojects/coe/materials/emotion/soundtracks/Index
10https://hilab.di.ionio.gr/en/music-information-research/
11http://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html
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by university students in music major. The clips are of various length,
exactly the duration of the chorus parts.

A total of 457 subjects, 236 females and 221 males were recruited to
participate. Among them, 366 are Chinese university students who were
in non-music majors while 44 were majoring in music recruited to ensure
high quality labeling. To weaken the impact of cultural background, 47
English speakers were invited to annotate the datasets.
Each song received a total of at least 10 emotion annotations including
one by music-majoring and one by English speaker.

5.1.3 Experiment design

To monitor and obtain EDA continuously they used MP150 Biopac sys-
tem12 with a sampling rate of 50Hz and export signals from AcqKnowl-
edge software.
To annotate songs was developed a desktop application shown in Figure
5.1.

Figure 5.1: Annotation interface for PMEmo

The annotation was done with the sliding area collecting dynamics anno-
tations , from 1 to 9, at a sampling rate of 2Hz. Annotators should make
a statistic annotation for the whole music excerpts on nine-point scale
after the dynamic labeling. Furthermore, annotators were asked to listen
to the same music twice to annotate on valence and arousal separately.

12https://www.biopac.com/product/eda-finger-transducer-bsl/
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In Figure 5.2 is shown the flow diagram of the experiment, where each
subject spent 50 minutes on average.

Figure 5.2: Experimental procedure for PMEmo

Each subject listened to 20 excerpts and one of those was duplicated to
guarantee the high quality data as what was done in [53]. The annota-
tions from this subjects were accepted only if the bias between duplicate
clips were within 0.25 in the VA space (they did not inform subjects
about the duplicated excerpt).
In total 457 subjects have participated but 401 were considered valid an-
notations (87.7%). Each music clip was annotated by at least 10 subjects
including English speakers and semi-experts from music academy.

5.1.4 Data reliability

Annotators need some preliminary time before they can give meaningful
and reliable annotations, this is called Initial Orientation Time (IOT).
Schubert in [54] found that median IOT for valence was 8s while for
arousal 12s. Other researchers showed that annotations began to con-
verge after 10s. The PMEmo authors decided to discard first 15s for the
dynamic annotations from the data.

To evaluate annotation consistency they used the Chronbach’s α,
which represents the degree to which a set of items measures a single
unidimensional latent construct. In [8] computed the Chronbach’s α on
the sequence of annotations for each song.
They processed annotations by:

aj,i = aj,i + (Āj − Ā) (5.1)

where:

• aj,i is the label annotated by subject j at time i

• Ā is the mean of all the labels for this song by all subjects
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• Āj is the mean of dynamic labels by subject j

The mean (averaged across songs) and the standard deviation of the
Chronbach’s α for the annotation in the PMEmo dataset are shown in
Table 5.2.

Dimension Mean Std Dev
Valence 0.998 0.005
Arousal 0.998 0.008

Table 5.2: Mean and standard deviation of the Chronbach’s α for
PMEmo dataset annotations

5.1.5 Feature set

As already mentioned before in Chapter 2.5, for generic MER there has
been no attempt made at defining a "standard" feature set. In PMEmo
work [8] they based on the INTERSPEECH 2013 Computational Par-
alinguistic Evaluation (ComPaRe) [55] and extracted a feature set of
6373-dimension scale.
They provided all 6373-dimension features in song level for the sake of
static emotion task. They extracted only the core of 260-dimension fea-
tures in segment level (calculated in 1s window with 0.5s overlap) for
dynamic recognition task to properly reduce the computing load.
Extraction of the features is done with the open-source toolkit openS-
MILE13 [56].
No feature selection procedure was implemented in PMEmo work.

13https://www.audeering.com/opensmile/
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5.2 General framework

We decided to start from the results of PMEmo and try to improve them.
We will first look at a general framework description and then will follow
explanation of the single parts.
The main idea of the thesis is to find if there is a real connection between
audio and EDA signals, if emotions felt during the listening of the music
are correlated to the ideal emotions extracted from the audio data, the
perceived emotions.
Our goal is to improve PMEmo work, focusing on the lacks of PMEmo
work in [8]. Their main lacks are:

• The use of a huge number of features, because this worsens the per-
formances of the model predictor. Considering too many features
this cause an overfitting in the model, because many of them could
be strongly correlated and just worst the model. Having a feature
vector of 6373-dimension is definitely too large.

• Related to the previous point, they used audio features that are
automatically extracted from a software, open SMILE, which was
created more for the analysis of the speech, unlike for audio.

• No feature selection method was applied to the feature space, they
brought all the features as an input to the ML model.

In the following section we introduce the reader to the framework we
decided to implement, based on the idea of resolving PMEmo lacks listed
before. For example, we extracted audio features that are more audio-
related, starting from audio low level descriptors as tempo and beats and
moving to higher level features as harmony.

Another improvement we implemented was to add a feature selection
step before passing to the ML model. We deployed different algorithms
of feature selection, in order to use the one that best fits with our model
and gives best results.

As already presented in Chapter 4.2 in Figure 4.4, it is possible to
infer a model analyzing the emotion elicitation. Since we will try to deal
with both audio and EDA data, we decided to develop a model based on
a traditional ML framework.
General framework implemented is represented in Figure 5.3. Differently
from Figure 4.4, here, the starting point is dataset files given from the
PMEmo dataset.

Figure 5.3: General framework

The input of this process is the PMEmo dataset, and we starts from
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taking audio files from all the songs, and also EDA files from every subject
in the experiment.
Will follow now, a list of symbols and terminology used in the explanation
of the framework:

• A is the vector of all the audio files contained in the dataset.

• an is the nth song excerpt of the vector A.

• E is the vector of all the EDA files contained in the dataset.

• en is the nth EDA signal of the vector E.

• FA is the matrix of features related to audio, while FE is the matrix
of features related to EDA.

• fn
A is the vector of the nth feature contained into the matrix FA.

• fn
E is the vector of the nth feature contained into the matrix FE.

• F∗
A is the matrix of audio features that are extracted after a feature

selection method.

• F∗
E is the matrix of EDA features that are extracted after a feature

selection method.

• The sum of F∗
A and F∗

E is denoted as x, as the vector of audio and
EDA features.

• The output variable of the system is Y , which is composed of the
Valence and the Arousal values, Y = (Ya, Yv) and the objective of
the model is to estimate mean(Ya), mean(Yv), std(Ya) and std(Yv).

From the dataset containing audio and EDA files, we extracted a certain
number of features, creating a matrix for all the features extracted. This
is the way to represents the input data to the ML model.
From the feature matrix, several feature selection algorithms were applied
in order to reduce the number of features, to improve the model, because
having too many features it will cause an overfitting in the model and
worst overall performances.
At last, some ML process is applied to create the model for the emotion
classification task and then it is tested. This is the main step, that creates
the bridge from the input data to the output, the step that gives the real
answer.
In this dataset were present two different types of data, audio and EDA
and our main goal was to combine:

• audio data connected to perceived emotions

• EDA data related to felt emotions
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Figure 5.4: General framework with audio and EDA division

The general framework, with these two process divided is shown in Figure
5.4 which is based on the one presented before at Figure 5.3.
As can be seen in Figure 5.4, the first step is to take from the PMEmo
dataset A and E, this will be the starting line of the whole process,
represented in Figure 5.4 as the first block of Data preprocessing.
Now, audio and EDA will be treated as two separate parts that will be
fused together in the last part of the process.
EDA features need a preprocessing step, which will be explained later on.
After this preprocessing step, both on A and E are extracted features
in the feature extraction step ending up with FA and FE. This step is
needed because the raw input data is often too large, noisy and redundant
for analysis.
It follows the step of feature selection both for audio and EDA files, which
takes as input FA and FE and with different algorithms gives as output
subsets of FA and FE, called F∗

A and F∗
E.

Than, F∗
A and F∗

E are fused together and they are sent to the emotion
classification step, which using ML models is able to create a model
assessment.

In the next sections we are going to present all the blocks of this
general framework, starting with feature extraction. In particular, several
features can be extracted from audio, thanks to the hard work done in
the past years. On the other side, EDA features are less common in the
literature and they are mostly statistical features.
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5.3 Audio feature extraction

In this section, for explaining audio feature extraction, we will use as an
example song, a4 under the name 4.mp3. Its waveform and audio specs
can be seen in Figure 5.5.

Figure 5.5: Waveform and audio specs of the song number 4

Features were extracted both in a static way, taking into account the
whole excerpt and, in a dynamic way, by dividing the musical excerpt in
windows of 1s with 50% overlap.
After the process of feature extraction, every feature was normalized in
the range [0, 1].
Audio features extracted can be grouped into:

• Temporal features: Tempo, Beats and Zero Crossing Rate.

• Chroma features: Chroma STFT, Chroma cqt and Chroma cens.

• Spectral features: Spectral contrast, centroid, bandwidth, rolloff,
poly.

• Cepstrum features: MFCCs, tonal centroid.

5.3.1 Tempo

In musical terminology, tempo is the speed or pace of a given piece. In
classical music, tempo is typically indicated with an instruction at the
start of a piece and is usually measured in beats per minute (or bpm).
Tempo for a4 is about 152bpm.

5.3.2 Beats

To extract beats is used a beat extractor, which output is an estimation
of the tempo and an array of frame numbers corresponding to detected
beat events.
Beats are detected in three stages:

1. Measure onset strength
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2. Estimate tempo from onset correlation

3. Pick peaks in onset strength approximately consistent with esti-
mated tempo

In Figure 5.6 it is shown beats detected and the array of frame numbers.

Figure 5.6: Beat and array of frames of a4

5.3.3 Zero crossing rate

The Zero Crossing Rate (ZCR) is the rate of sign-changes along a signal.
It is the rate at which the signal changes from positive to zero to negative
or to negative or from negative to zero to positive. It is useful to recognize
percussive sounds. The ZCR is evaluated as:

ZCR =
1

T

T−1∑
t=1

|sign(st)| − |sign(st−1)|
2

(5.2)

where T is the length of the time window, st is the magnitude of the tth

time domain sample.
The ZCR of song 4 is shown in Figure 5.7.

Figure 5.7: ZCR extracted from song a4

ZCR is computed on windows for A and then mean, std and variance are
computed.
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5.3.4 Chroma

The chroma feature, also called chromagram, relates to the twelve dif-
ferent pitch classes. Chroma features capture harmonic and melodic
characteristic of music, while being robust to changes in timbre and in-
strumentation.
Humans perceive two musical pitches as similar if they differ by an oc-
tave. A pitch can be separated into two components, referred as height
(the octave where the pitch is) and chroma. The twelve chroma values
are represented by the set:

C,C#, D,D#, E, F, F#, G,G#, A,A#, B

that consists of the twelve pitch spelling attributes as used in Western
music notation.
In the Figure 5.8 from [4] it is shown a chromagram (b) obtained from
the score (a) and a chromagram (d) obtained from an audio recording of
the C-major scale played on a piano (c).

Figure 5.8: (a) Musical score of a C-major scale, (b) Chromagram ob-
tained from the score, (c) audio recording of the C-major scale played on
a piano, (d) chromagram obtained from the audio recording from [4]

There are different ways to convert an audio recording into a chroma-
gram, as performing Short Time Fourier Transform (STFT) in combina-
tion with binning strategies or using multirate filter banks.

Chroma features can be significantly changed by introducing pre-
processing and post-processing steps that modify spectral, temporal and
dynamical aspects. This leads to a large number of chroma variants.
For the chromagram, we extracted three different types of chroma:
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• Chroma STFT, which is obtained through the STFT.

• Chroma cqt, extracted using the constant-Q transform.

• Chroma cens which consider short-time statistics over energy distri-
bution. In Chroma Energy Normalized Statistics (CENS) features,
a temporal smoothing is introduced.

Three different chromagrams are shown in Figure 5.9 for a4.

(a) Chroma stft

(b) Chroma cqt

(c) Chroma cens

Figure 5.9: Different chromagram extracted from song number 4

We compute chromagram on windows of the signal and then we extracted
mean, standard deviation, skewness and kurtosis.

5.3.5 Spectral contrast

Spectral contrast divide the signal in sub-bands, and from each sub-band
it works with peaks and valleys.

67



More in general spectral peaks correspond to harmonic components and
spectral valleys correspond to non-harmonic components or noise in a
music piece as evaluated in [57].
Therefore, the difference between spectral peaks and spectral valleys will
reflect the spectral contrast distribution.
The spectral contrast of a4 is shown in Figure 5.10.

Figure 5.10: Spectral contrast extracted from a4

We compute spectral contrast on windows of the signal and then we
extracted mean, standard deviation, skewness and kurtosis.

5.3.6 Spectral centroid

Spectral centroid is a measure to characterize a spectrum. It indicates
where is located the center of mass of the spectrum. It has connection
with the brightness of a sound.
Spectral centroid is calculated as a weighted mean of the frequencies
present in the signal, determined using a Fourier transform, with their
magnitudes as the weights:

cent =

∑N−1
n=0 f(n)x(n)∑N−1

n=0 x(n)
(5.3)

where x(n) is the weighted frequency value (or magnitude) of bin number
n and f(n) represents the center frequency of that bin.
The spectral centroid of a4 is shown in Figure 5.11.

Figure 5.11: Spectral centroid extracted from a4

We compute spectral centroid on windows of the signal and then we
extracted mean, standard deviation, skewness and kurtosis.
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5.3.7 Spectral bandwidth

The spectral bandwidth is the order-p spectral bandwidth as:(∑
k

S(k)(f(k)− fc)
p

)1/p

(5.4)

where S(k) is the spectral magnitude at frequency bin k, f(k) is the
frequency at bin k and fc is the spectral centroid.
The spectral bandwidth of a4 is shown in Figure 5.12.

Figure 5.12: Spectral bandwidth extracted from song 4

We compute spectral bandwidth on windows of the signal and then we
extracted mean, standard deviation, skewness and kurtosis.

5.3.8 Spectral rolloff

Spectral rolloff is defined as the N th percentile of the power spectral
distribution, where N is usually 85% or 95%. The rolloff point is the fre-
quency below which the N of the magnitude distribution is concentrated.
This can be used to, e.g., approximate the maximum (or minimum) fre-
quency by setting roll_percent to a value close to 1 (or 0).
The spectral rolloff of a4 is shown in Figure 5.13.

Figure 5.13: Spectral rolloff extracted from a4

We compute spectral rolloff on windows of the signal and then we ex-
tracted mean, standard deviation, skewness and kurtosis.
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5.3.9 Spectral poly

Get coefficients of fitting an nth order polynomial to the columns of a
spectrogram.
In the Figure 5.14 can be seen different poly extracted from a4, with
different degrees, 0-order fit a degree-0 polynomial (constant) to each
frame, 1-order fit a linear polynomial to each frame and 2-order fit a
quadratic to each frame.

Figure 5.14: Spectral poly extracted from a4

We compute spectral poly on windows of the signal and then we extracted
mean, standard deviation, skewness and kurtosis.

5.3.10 Tonal centroid

Computes the tonal centroid features (tonnetz), following the method of
[58].
In musical tuning and harmony, the Tonnetz, is a conceptual lattice
diagram representing tonal space first described by Euler in 1739. Various
visual representations of the Tonnetz can be used to show traditional
harmonic relationships in European classical music.
Close harmonic relations are modeled as short distances on an infinite
Euclidian plane. Chords become geometric structure on the plane and
chords become geometric structures on the plane, keys are defined by
regions in the harmonic network
An example is shown in Figure 5.15.
The Tonnetz of the a4 is shown in Figure 5.16.
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Figure 5.15: Representation in the Euclidian plane of the tonnetz

Figure 5.16: Tonnetz extracted in a4

5.3.11 Melspectrogram

The melspectrogram is a mel-scaled spectrogram. A spectrogram is a
visual representation of the spectrum of frequencies of a signal as it varies
with time. It can be generated by a bank of band-pass filter, by Fourier
transform or DWT.

In order to have a more comprehensible spectrogram, when dealing
with audio signals, it is scaled. The axis representing the frequencies is
transformed to log scale, and the color axis representing the amplitude,
is represented in Decibels.

The Mel-scale is a different scale, based on non-linear transformation
of the frequency scale. It is constructed such that sounds of equal distance
from each other on the Mel-scale also sound to humans as they are equal
in distance from one another.
In practice it partitions the Hz scale into bins, and transforms each bin
into a corresponding bin in the Mel Scale, using a overlapping triangular
filters.
To convert a frequency in Hz into its equivalent in mel, the following
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formula is used:

pitch[mel] = 1127.0148 log

[
1 +

f

100

]
(5.5)

Finally, a melspectrogram is a spectrogram properly filtered such that
the frequency axis is in mel-scale.
The melspectrogram of a4 is shown in Figure 5.17.

Figure 5.17: Melspectrogram extracted from a4

We compute melspectrogram on windows of the signal and then we ex-
tracted mean, standard deviation, skewness and kurtosis.

5.3.12 Mel Frequency Cepstral Coefficients

The MFCC are coefficients based on the extraction of the signal energy
within critical frequency bands by means of a series of triangular filters
(in Figure 5.18) whose center frequencies are equally spaced according to
the mel scale.

Figure 5.18: Triangular filters for the MFCC extraction

The log-energy of the spectrum is measured within the pass-band of each
filter, resulting in a reduced representation of the spectrum. The cep-
stral coefficients are finally obtained through a Discrete Cosine Transform
(DCT) of the reduced log-energy spectrum.
In Figure 5.19 is shown the MFCC graph for 12 mfccs for a4.
For each of the 12 MFCCs are extracted the mean, standard deviation,
median, kurtosis and skewness.
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Figure 5.19: MFCC for a4

5.4 EDA feature extraction

For the continuity, also in the explanation of EDA features extracted,
will be used the e4 Its EDA signal and its specs, can be seen in Figure
5.20.

Figure 5.20: EDA for e4

EDA signal was preprocessed following the pipeline highlighted in the
pyphysio library [24] and resumed in Figure 5.21.

Figure 5.21: Pyphysio pipeline
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They divide the pipelines into three separate steps:

1. Filtering and Preprocessing: this step includes all the procedures
aiming at increasing the signal/noise ratio, typically band-pass fil-
tering, smoothing, removal of artifacts. The output of this step is
a new version of the input signal with improved signal quality (less
noise).

2. Information Extraction: this step aims at extracting the informa-
tion of interest from the physiological signal. The output is a new
signal containing only the information of interest.

3. Physiological Indicators: this steps produces a list of scalar values
able to describe the characteristics of the input signal. This step is
usually performed on small segments of the input signals which are
extracted using a sliding window on the whole length of the signal.

Taking into account the initial signal shown in Figure 5.20 the filter-
ing and preprocessing stage was done by an IIR filter to remove high
frequency noise, a low-pass filter of 0.6Hz to diminish the noise from
motion and artifacts as can be seen in Figure 5.22.

Figure 5.22: EDA signal in blue and filtered EDA in orange for e4

Following the procedure introduced by [24], the library is able to extract
tonic and phasic component of an EDA data by evaluating a driver func-
tion. The graph can be seen in Figure 5.23.

Figure 5.23: EDA signal in blue, driver in orange and tonic part in green
for e4

Now will follow a list of features extracted during the process.
Features were extracted both in a static way, taking into account the
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whole excerpt and in a dynamic way, by dividing the musical excerpt in
windows of 1s with 50% overlap.
After the process of feature extraction, every feature was normalized in
the range [0, 1].

5.4.1 Statistic

As already mentioned before in 3.4, most extracted EDA features are
statistical. We extracted the mean of the signal, the standard deviation,
kurtosis and the skewness. They were extracted both in the time domain
and in the frequency domain.

Median value was also extracted, where the median is the value sepa-
rating the higher half from the lower half of the data. It is like the middle
value, but differently from the mean, the median gives a better idea of a
typical value.
While other statistics were already described in 3.4, the median can be
described in a caseless formula as:

median(a) =

a⎡⎢⎢⎢
l + 1

2

⎤⎥⎥⎥
+ a⎢⎢⎢⎣ l + 1

2

⎥⎥⎥⎦
2

(5.6)

where a is an ordered list of l numbers, ⌈·⌉ is the ceil function (gives
the least integer greater than or equal to the input) and ⌊·⌋ is the floor
function (gives the greatest integer less than or equal to the input).

We extracted also the maximum value, the minimum and the differ-
ence between these two, the range.

5.4.2 Other features

Some other features were extracted thanks to pyphisio library [24], they
are:

• Area Under the Curve (AUC) between two points can be found by
doing a definite integral between the two points:

AUC =

∫ t2

t1

ende (5.7)

• Root Mean Square Squared Difference (RMSSD) compute the Root
Mean Square Error (RMSE) of the squared 1st order discrete dif-
ferences

• Standard Deviation Discrete Differences (SDSD) calculate the stan-
dard deviation of the 1st order discrete differences
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5.4.3 Power and Peak inband

The power spectrum Sxx(f) of a time series an describes the distribution
of power into frequency components composing the signal. Any discrete
signal, according to Fourier analysis, can be decomposed into a number
of discrete frequencies, or a spectrum of frequencies over a continuous
range.
The statistical average of a certain signal as analyzed in terms of its
frequency content, is called its spectrum.

The PSD, also called power spectrum, applies to signal over all time,
that theoretically could be an infinite time interval. The PSD than, refers
to the spectral energy distribution that would be found per unit time,
since the total energy of such a signal over all time would generally be
infinite.
We extracted the power and the peak frequency for each frequency band.
We decided to set the same frequency ranges as in PMEmo:

• 0Hz − 0.1Hz

• 0.1Hz − 0.2Hz

• 0.2Hz − 0.3Hz

• 0.3Hz − 0.4Hz

• 0.4Hz − 0.5Hz

5.4.4 Mel Frequency Cepstral Coefficients

As for the audio features, we extracted MFCC features. We kept 12
MFCC coefficients.
For each of the 12 MFCCs are extracted the mean, standard deviation,
median, kurtosis and skewness.
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5.5 Feature selection

Feature selection become an important step while performing a ML task.
Given a dataset, every column of the dataset is a feature, and not neces-
sarily every feature is going to have an impact on the output variable.
Adding these irrelevant features in the model, it will make the model
worst.
The feature selection methods that we are going to present are valid for
a regression problem, where both the input and the output variables are
continuous in nature.

Feature selection can be done in multiple ways but there are broadly
3 categories of it:

1. Filter Method by filtering and taking only the subset of the relevant
features, the filtering is done using correlation matrices.

2. Wrapper Method which needs a ML algorithm and uses its perfor-
mance as evaluation criteria.

3. Embedded Method,an iterative method. It takes care of each itera-
tion of the model training process and extract those features which
contribute the most to the training for a particular iteration.

Feature selection step is a very important passage, because the output
of this step goes directly into the ML process. If is putted in the ML
process noise data, will come out noise results and a model less accurate.
This became more important where the number of features are large. It
reduces the training time and the evaluation one.
Using less features, applying feature selection algorithms:

• It reduces overfitting.

• It enables the ML algorithm to train faster.

• It reduces the complexity of the model and make it easy to inter-
pret.

• It improves the accuracy of the model if the right subset is chose.

The last point of the list is very important, because feature selection
improve the model only if the right subset is chosen. In the implementa-
tion we evaluated the model score, and we saw that applying a feature
selection algorithm, the score is improved.

Feature selection methods can be divided into:

1. Filter methods:
Filter methods are independent from the ML algorithms. Here,
features are selected on the basis of their scores in statistical tests
for their correlation with the outcome variable. Filter methods are
Pearson’s correlation, LDA, ANalysis Of VAriance (ANOVA) and
Chi-square.
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Figure 5.24: Filter methods scheme

2. Wrapper methods:

Figure 5.25: Wrapper methods scheme

The idea is to use a subset of features and train the model using
them. Basing on the inferences that are drawn from the previous
model, is decided to add or remove features from the subset. This
problem can be seen as a search problem and of course, these mod-
els are computationally expensive due to their nature. Wrapper
methods are forward selection, backward elimination and recursive
feature elimination.

3. Embedded methods:

Figure 5.26: Embedded methods scheme

They combine the quality of the filter and wrapper methods. It
is implemented by algorithms that have their own built-in feature
selection methods.

In the following paragraphs are taken into account all the audio features
extracted for the whole song, in the static case.

5.5.1 Pearson correlation

Pearson correlation is a filter method for feature selection. In this method
a filter process is done which select only the subset of the relevant fea-
tures. The model is built after selecting the features.
The filtering is done using Pearson correlation.
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In statistics, the Pearson correlation coefficient is a measure of the
linear correlation between two variables X and Y .
The correlation coefficient has values between -1 to 1:

• A value closer to 0 implies weaker correlation (exact 0 implying no
correlation)

• A value closer to 1 implies stronger positive correlation

• A value closer to −1 implies stronger negative correlation

Pearson’s correlation coefficient is the covariance of the two variables
divided by the product of their standard deviations. The form of the
definition involves a product moment, that is, the mean (the first moment
about the origin) of the product of the mean-adjusted random variables:

ρX,Y =
cov(X, Y )

σXσY

(5.8)

where:

• cov(X, Y ) is the covariance (the measure of the joint variability of
the two random variables X and Y )

• σX is the standard deviation of X

• σY is the standard deviation of Y

In Figure 5.27 is shown the Pearson correlation heatmap of all the fea-
tures, before applying any feature selection method, which represents the
correlation of independent variables with the output variable.
Then are selected just the features that have a Pearson coefficient greater
than a certain value, for example features that have a Pearson coefficient
greater than 0.5 based on the output variable of Valence (mean) are
shown in Figure 5.28.
Features that have a Pearson coefficient greater than 0.5 based on the
output variable of Valence (mean) are:

Feature P-coeff. > 0.5

Valence (mean) 1.0
medianMFCC[0] 0.606916
meanMFCC[0] 0.593028
stdMFCC[1] 0.541788
stdMFCC[2] 0.538732
spec_bw_std 0.514848
poly_mean 0.503954

Table 5.3: Selected features with Pearson correlation method
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Figure 5.27: Pearson heatmap

5.5.2 Backward elimination

Backward elimination is a wrapper feature selection method. The model
is fed at first with all the features, than the performance of the model is
checked and iteratively is removed the worst performing features one by
one till the overall performance of the model comes in acceptable range.
The performance metric used here to evaluate feature performance is
pvalue. If the pvalue is above 0.05 then we remove the feature, else it is
kept.
Features that have a pvalue smaller than 0.05 are shown in Table 5.4.

5.5.3 Recursive feature elimination

The Recursive Feature Elimination (RFE) method is another wrapper
method and works by recursively removing attributes and building a
model on those attributes that remain.
It uses accuracy metric to rank the feature according to their importance.
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Figure 5.28: Pearson most relevant features

Feature pvalue < 0.05 Feature pvalue < 0.05

chroma_cq_mean 1.178195e-03 chroma_cq_std 1.880319e-02
chroma_cq_var 1.078829e-02 chroma_cens_mean 1.128383e-07

melspectrogram_mean 2.689379e-02 cent_mean 2.045630e-04
contrast_mean 3.953641e-03 contrast_std 3.293580e-02
tonnetz_std 1.684936e-02 tonnetz_var 2.160709e-02
harm_var 5.003698e-03 perc_std 2.241721e-03
frame_std 1.172305e-02 frame_var 1.691725e-02

stdMFCC[0] 6.128907e-05 skewMFCC[0] 3.544928e-02
medianMFCC[1] 7.279576e-07 skewMFCC[1] 3.116653e-05
meanMFCC[2] 1.603156e-02 medianMFCC[2] 4.386178e-03
stdMFCC[3] 1.041871e-02 medianMFCC[3] 2.085640e-02

skewMFCC[3]’ 1.353325e-03 kurtMFCC[4] 1.293951e-03
skewMFCC[4] 3.583275e-03 stdMFCC[5] 2.307732e-02

medianMFCC[5] 5.428031e-03 skewMFCC[5] 2.791598e-02
meanMFCC[7] 1.521483e-02 stdMFCC[8] 3.149996e-06

medianMFCC[8] 1.441910e-04 meanMFCC[9] 4.847923e-04
meanMFCC[11] 1.331274e-03 mfcc_delta_std 8.903809e-03
mfcc_delta_var 1.039878e-02 const 1.503598e-8

Table 5.4: Selected features with Backward elimination method
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The RFE method takes the model to be used and the number of required
features as input. As output it gives the ranking of all the variables,
where 1 is the most important.
Most relevant features extracted are shown in Table 5.5.

Feature Ranking
chroma_stft_std 1
chroma_stft_var 1
chroma_cq_mean 1
chroma_cens_std 2

melspectrogram_mean 2
cent_mean 3

contrast_std 3
contrast_var 3

zcr_std 3
zcr_var 4

harm_std 5
harm_var 5
perc_std 5
frame_var 5

meanMFCC[0] 7
meanMFCC[1] 7

medianMFCC[2] 8
meanMFCC[2] 9
meanMFCC[3] 9

medianMFCC[6] 9
meanMFCC[2] 9
meanMFCC[6] 9
meanMFCC[7] 10

Table 5.5: Selected features with RFE method

5.5.4 Embedded method

Embedded methods are iterative in a sense that takes care of each iter-
ation of the model training process and carefully extract those features
which contribute the most to the training for a particular iteration. Reg-
ularization methods are the most commonly used embedded methods
which penalize a feature given a coefficient threshold. Here we will do
feature selection using Lasso regularization. If the feature is irrelevant,
lasso penalizes its coefficient and make it 0. Hence the features with
coefficient equal to 0 are removed and the rest are taken.
Most relevant features extracted are in Table 5.6.
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Feature
rolloff_var
cent_var

total_beats
chroma_cens_std

melspectrogram_mean
melspectrogram_var

spec_bw_var

Table 5.6: Selected features with Embedded method

5.5.5 RReliefF

As already explained in 2.5.1, the RReliefF algorithm is based on the
quality estimation of each features, between instances that are close each
other.
The main benefit of Relief-based algorithms is that they identify feature
interactions without having to exhaustively check every pairwise interac-
tion, thus taking significantly less time than exhaustive pairwise search.
In this case, features were automatically ordered given a score, based on
the RReliefF algorithm and a random forest classifier with 100 estima-
tors. In this implementation, as input of the function we need to specify
the number of features we want to keep.
Features selected with this method are shown in Table 5.7.

Feature
stdMFCC[0]
rolloff_var

chroma_cens_mean
chroma_cens_std

meanMFCC[1]
frame_var

chroma_cq_var
poly_mean
poly_std

melspectrogram_var

Table 5.7: Selected features with RReliefF method
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5.6 Machine Learning methods

The task of MER is a problem that can be classified in the field of super-
vised ML, because we have an input variable which is given by the sum
of F∗

A and F∗
E, called x.

x is a vector of features composed of audio and EDA features.
The output variable Y , the emotion, and we want to find an algorithm
that lean the mapping function from the input to the output, Y = f(x).
Following the general framework, the input of this process are the audio
features and EDA features, reduced by a feature selection method, de-
fined as F∗

A and F∗
E and the output of the process is the emotion value on

the Valence and Arousal plane. This output is described by two scorer,
the RMSE and the R2. They gives the possibility to show how much
the model is predicting well the emotion based on the initial data of VA
values given by the subjects.

General goal is to approximate the mapping function so well that
when there is a new input, the algorithm can predict the output data.
Supervised ML is divided in two categories, regression and classification.
The main difference between the two tasks is the fact that the dependent
attribute is numerical for regression and categorical for classification.

A regression problem is when the output variable is a real or contin-
uous value. Many different models can be used. They are explained in
detail in the following paragraphs.

We will use two different regressors, one for the Valence and one
for the Arousal, due to the fact that emotions are mapped on the 2-
Dimension space and we want to find separate values for Valence and
Arousal.

5.6.1 Linear Regression

LR is a type of regression analysis where there is a linear relationship
between the independent x variable and the dependent one y.
The Figure 5.29 show a red line referred to the best fit straight line. Dots
are the data points and the task of LR is to try to plot a line that models
the points the best.
The line can be modeled based on the linear equation:

y = a0 + a1 · x (5.9)

Aim of LR is to find the best value for a0 and a1. This is a search problem,
which can be converted into a minimization problem where we would like
to minimize the error between the predicted value and the actual one.
The minimization problem is the cost function J :

minimize
1

n

n∑
i=1

(predi − yi)
2 (5.10)
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Figure 5.29: Linear regression

J =
1

n

n∑
i=1

(predi − yi)
2 =

1

n

n∑
i=1

(a0 + a1 · xi − yi)
2 (5.11)

To update a0 and a1 values in order to reduce the cost function J is used
the gradient descent, which idea is to start with random values of a0 and
a1 and then iteratively update the values reaching minimum cost.

5.6.2 Lasso

Least Absolute Shrinkage and Selection Operator (LASSO) is a regression
analysis method that performs both variable selection and regularization
in order to enhance the prediction accuracy and interpretability of the
statistical model it produces. Taking into account a linear model based
on n features represented as:

ŷ = w[0]x[0] + w[1]x[1] + ...+ w[n]x[n] + b (5.12)

Assuming the dataset has M instances and p values, the cost function
of the regression problem can be written as:

J =
M∑
i=1

(yi − ŷi)
2 =

M∑
i=1

(
yi −

p∑
j=0

wjxij

)2

(5.13)

The LASSO cost function can be written as:

J =
M∑
i=1

(yi − ŷi)
2 =

M∑
i=1

(
yi −

p∑
j=0

wjxij

)2

+ λ

p∑
j=0

|wj| (5.14)

It is evident that for λ = 0, the equation 5.6.2 reduces to equation 5.6.2.
LASSO can have zero coefficient, which lead to neglecting some features
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for the evaluation of the output. This helps as a feature selection step.
Feature selection using LASSO regression can be depicted well by chang-
ing the regularization parameter λ. This is called L2 regularization.

5.6.3 Ridge

Ridge is another regression analysis method, similar to LASSO. Assuming
the linear model described before in 5.6.2, the cost function for Ridge is:

J =
M∑
i=1

(yi − ŷi)
2 =

M∑
i=1

(
yi −

p∑
j=0

wjxij

)2

+ λ

p∑
j=0

(wj)
2 (5.15)

Where is added a penalty equivalent to square of the magnitude of the
coefficients wj. This is called L1 regularization.
The penalty term λ regularizes the coefficients such that if the coefficients
take large value the optimization function is penalized. So, it shrinks the
coefficients and helps to reduce model complexity.

5.6.4 Elastic Net

Elastic Net is a regularized regression that linearly combines the L1 and
L2 penalties of the Ridge and LASSO methods. Absolute value penal-
ization and squared penalization are combined with a coefficient, Lr

J =
M∑
i=1

(
yi −

p∑
j=0

wjxij

)2

+ (1− r)λ

p∑
j=0

(wj)
2 + rλ

p∑
j=0

(wj)
2 (5.16)

5.6.5 k-nearest neighbors

The k-NN algorithm, is a non-parametric algorithm used for regression,
where input consists of the k closest training examples in the feature
space and the output is the property value for the object. This value is
the average of the values of k nearest neighbors.
k-NN is sensitive to the local structure of the data.

5.6.6 Support Vector

Goal of a regression problem is to minimize the error rate. In SVR tries
to fit the error within a certain threshold.
The error term is handled in constraints by setting the absolute error
less than or equal to a specified margin, called maximum error ε. The

problem is a minimization problem minimize
1

2
||w||2 with the constraint

|yi − wixi| ≤ ε showed in Figure 5.30.

86



Figure 5.30: Support Vector regression

5.6.7 Decision Tree

DT is a supervised ML problem used to predict a target by learning
decision rules from features. Its model is based on a data division by
making a decision based on asking a series of questions.

DT is constructed by recursive partitioning, starting from the root
node, and then each node can be split into left and right child nodes.
These nodes can then be further split and they themselves become parent
nodes of their resulting children nodes.

5.6.8 Random Forest

Random forest is a Supervised Learning algorithm which uses ensemble
learning method for classification and regression.
An ensemble method combines the predictions from multiple ML algo-
rithms together to make more accurate predictions.
Figure 5.31 show an ideal representation of RF.
RF operates by constructing a multitude of decision trees at training
time and outputting the class that is the mean prediction of the individ-
ual trees.
RF allows to aggregate many DT and this gives the possibility to split
the features but limited to some percentage of the total (the hyperpa-
rameter). This allows to have a balanced weight on all the features.
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Figure 5.31: Random Forest regression
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6
Results

In this chapter we present as first PMEmo results and performances, then
we will show how our system perform based on different feature selection
methods and different ML regression methods.

To evaluate how much the ML model is precise and correct we used
two different parameters, the RMSE and the coefficient of determination
R2.

For both cases, to evaluate the score we applied a cross-validation
with 10 fold to train the data and one remaining to test the data.
A division example is shown in figure 6.1.

Figure 6.1: k-fold cross validation
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A well-fitting regression model results in predicted values close to the
observed data values.
The RMSE is the square root of the variance of the residuals:

RMSE =

√∑T
t=1 (ŷt − yt)

2

T
(6.1)

It indicates the absolute fit of the model to the data, how much close
the observed data points are to the model’s predicted values. RMSE is
an absolute measure of fit. It is a good measure of how accurately the
model predicts the response, and it is the most important criterion for
fit if the main purpose of the model is prediction.

R2 is a statistical measure that represents the proportion of the vari-
ance for a dependent variable that is explained by variables in a regression
model.
R2 is evaluated as:

R2 =
ESS

TSS
(6.2)

Where ESS is the sum of squares terms and TSS is the total sum of
squares, defined as:

ESS =
n∑

i=1

(ŷi − ȳ)2 (6.3)

TSS =
n∑

i=1

(yi − ȳ)2 (6.4)

In this case ȳ is the mean of the data observed.
It scales from 0 to 1 where 0 indicates that the proposed model does
not improve prediction over the mean model and 1 indicates the perfect
prediction. It can be also negative, in the case where the model can be
arbitrarily worse.
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6.1 PMEmo performances

In the article, they adopt Multivariate Linear Regression (MLR) and
SVR as the base classifiers to model emotions in valence and arousal.
For the static part, they trained and tested the classifiers using all the
6373-dimension features x1, x2, ..., x6373 and separate static labels of va-
lence yvalence and arousal yarousal respectively.

X1, X2, ..., Xm → e1, e2, ..., em (6.5)

where:

• m is the number of songs

• Xi = x1, x2, ..., x6373 is the feature set of the ith song

• ei is the value of valence or arousal for this song

With respect of continuous mood of a song, is natural to consider a
decoupling into two scales and then recognize them separately.
For the dynamic emotion, defined as:

Li = L̄i +Dti
i (6.6)

where:

• ti is the number of timestamps in the ith song

• L̄i is the mean of dynamic emotion

• Dti
i is the fluctuation at each timestamp

the global model is:

X1, X2, ..., Xm → L̄1, L̄2, ..., L̄m (6.7)

while, the local model is:

Y t1
1 , Y t2

2 , ..., Y tm
m → Dt1

1 , D
t2
2 , ..., D

tm
m (6.8)

where:

• m is the number of songs

• Xi is the global feature set of it

• Y ti
i is a matrix of 260 columns and ti rows
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Dimension Classifier RMSE r
Valence MLR 0.136 0.546
Valence SVR 0.124 0.638
Arousal MLR 0.111 0.719
Arousal SVR 0.102 0.764

Table 6.1: Evaluation results on static emotions

Before the regression models, they resized all the annotations (both for
static and dynamic annotations) into [0, 1].

Static task is to predict the overall emotion of a whole song, repre-
sented by a single valence value and arousal value. To train and test,
they divided the dataset in 11 folds, 10 constituted the training set and
the remaining set used to test the train model. A 10-fold-cross-validation
was used for parameter optimization.
RMSE and Pearson Correlation Coefficient (r) were calculated separately
for valence and arousal. In Table 6.1 is shown the results on static emo-
tions.
About the dynamic case, a hierarchical regression model aiming to recog-
nize the global trend as well as local variation was built. For Global-scale
they extracted, for each song, one global feature and mapped it into one
global emotion. For Local-scale operation, for each song, they divided
it into 1s segment with 50% overlap, then extracting the local features
from these fragments and project them onto mood space.

In Table 6.2 is presented the evaluation results on dynamic emotions.

Dimension Classifier Scale RMSE r
Valence MLR global 0.103 0.673
Valence MLR local 0.016 0.047
Valence SVR global 0.106 0.675
Valence SVR local 0.016 0.095
Arousal MLR global 0.113 0.816
Arousal MLR local 0.020 0.103
Arousal SVR global 0.101 0.844
Arousal SVR local 0.019 0.115

Table 6.2: Evaluation results on dynamic emotions

In PMEmo work, as already mentioned, they also recorded EDA subjects
data when they were listening to music.
On EDA, they employed a low-pass filter of 0.6Hz to diminish the noise
due to motion artifacts.
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Then skin electric conductance was scaled in z-score:

z − score =
X − µ

σ
(6.9)

where µ is the mean of vector X and σ is the standard variation. Last
passage on EDA signal was to resample them, from 50Hz to 2Hz due to
different acquisition of EDA and continuous emotions.
They trained and tested MLR and SVR with pre-processed EDA data in
the dynamic case and results are shown in Table 6.3.

Dimension Classifier Scale RMSE r
Valence MLR global 0.139 0.063
Valence MLR local 0.016 0.060
Valence SVR global 0.141 0.017
Valence SVR local 0.016 0.059
Arousal MLR global 0.186 0.011
Arousal MLR local 0.019 0.097
Arousal SVR global 0.194 0.040
Arousal SVR local 0.019 0.099

Table 6.3: Evaluation results on dynamic EDA
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6.2 Our model performances

In this section we present all the results acquired with different parame-
ters, with and without feature selection, different data types and different
regressors.

6.2.1 No feature selection

Here, in Table 6.4 are shown the results for audio data, where no feature
selection algorithm has been applied. In the Tables, are highlighted the
best results for every dimension, one for the RMSE and one for r2.

Arousal (mean) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.102 0.184 0.184 0.100 0.119 0.113 0.209 0.106 0.129 0.136
R2 0.669 -0.039 -0.039 0.680 0.558 0.606 -1.115 0.644 0.477 0.459

Valence (mean) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.122 0.162 0.162 0.120 0.126 0.119 0.211 0.127 0.143 0.127
R2 0.373 -0.056 -0.056 0.400 0.357 0.418 -2.233 0.333 0.148 0.356

Arousal (std) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.047 0.047 0.047 0.046 0.047 0.050 0.050 0.049 0.051 0.045
R2 0.007 -0.013 -0.013 0.051 -0.009 -0.143 -0.123 -0.097 -0.184 0.136

Valence (std) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.051 0.046 0.046 0.051 0.049 0.047 0.048 0.048 0.052 0.045
R2 -0.349 -0.026 -0.026 -0.334 -0.187 -0.071 -0.136 -0.104 -0.397 -0.011

Table 6.4: No feature selection for audio data, with RMSE and r2 score
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In Table 6.5 are shown the results for EDA data, where no feature
selection algorithm has been applied.

Arousal (mean) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.188 0.184 0.184 0.182 0.136 0.074 0.096 0.055 0.018 0.182
R2 0.560 -0.039 -0.039 0.515 0.435 0.831 0.685 0.807 0.800 0.019

Valence (mean) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.163 0.162 0.162 0.170 0.121 0.073 0.100 0.053 0.018 0.158
R2 0.500 -0.056 -0.056 0.416 0.410 0.780 0.480 0.886 0.855 -0.006

Arousal (std) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.047 0.047 0.047 0.047 0.035 0.048 0.048 0.045 0.044 0.046
R2 -0.013 -0.013 -0.013 0.011 0.439 -0.072 -0.042 0.067 0.070 0.035

Valence (std) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.046 0.046 0.046 0.046 0.035 0.045 0.045 0.43 0.030 0.044
R2 -0.025 -0.026 -0.026 0.205 0.406 0.015 0.012 0.101 0.101 0.026

Table 6.5: No feature selection for EDA data, with RMSE and r2 score

In Table 6.6 are shown the results for fusion data, given by the union of
audio and EDA features, where no feature selection algorithm has been
applied.
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Arousal (mean) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.109 0.184 0.184 0.103 0.126 0.110 0.139 0.112 0.131 0.147
R2 0.622 -0.039 -0.039 0.621 0.510 0.769 0.346 0.599 0.465 0.332

Valence (mean) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.134 0.162 0.162 0.127 0.329 0.645 0.448 0.138 0.142 0.137
R2 0.243 -0.056 -0.056 0.322 0.333 0.389 -0.014 0.204 0.162 0.244

Arousal (std) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.052 0.047 0.047 0.049 0.046 0.050 0.050 0.049 0.051 0.045
R2 -0.222 -0.013 -0.013 -0.101 0.027 -0.160 -0.159 -0.090 -0.223 0.081

Valence (std) dimension
LR Lasso ElasticNet Ridge kNN SVRrbf SVRpoly SVRlinear DT RF

RMSE 0.056 0.046 0.046 0.053 0.048 0.047 0.048 0.052 0.052 0.046
R2 -0.547 -0.026 -0.026 -0.410 -0.140 -0.087 -0.115 -0.116 -0.356 -0.009

Table 6.6: No feature selection for fusion data, with RMSE and r2 score

In the previous Table, 6.4, 6.5 and 6.6 are shown results, where any
feature selection method was applied. We expect that using all the set
of features for audio and EDA that are extracted, it will improve the
PMEmo baseline results. This assumption is based on the idea that
PMEmo extracted features from a software that deal more with speech
features, which may not be so much useful.

We extracted all these results also for every different feature selection
methods and again, we expect to improve the model, thanks to the idea
of feature selection, which should reduce the overfitting in the model and
reduce the computation complexity.

6.2.2 Feature selection

After getting results from the three set of data, audio, EDA and fusion
with all the features, we implemented all the feature selection algorithms
already explained in Chapter 5.5 and get results for every regression
method.

We compared all the different possibilities following the scheme in
Figure 6.2.
To clarify, all regression methods are applied for every feature selection
method. The same is valid for the last part, where every regression
method is analyzed for every VA space.
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Figure 6.2: Evaluation possibilities

6.2.3 Best performances

We observed that the best couple feature selection method and regression
approach, for both the VA in mean and standard deviation is using the
backward elimination method and the Ridge regressor.

An important analysis is that we gain better results not for just au-
dio data type or EDA type, but for the fusion data type, so it become
relevant to use both audio and EDA combined.

For the different evaluation spaces, either Valence or Arousal (mean
and standard deviation) the Backward elimination algorithm extracted
from 30 to 50 features.
Understood that the Ridge regression on fusion data with Backward elim-
ination algorithm gives the best results, we decided to calibrate the Ridge
regression method.
A parameter of the Ridge regressor is α, called complexity parameter
which controls the amount of shrinkage, the larger value of α, the greater
the amount of shrinkage and thus the coefficients become more robust to
collinearity.
The Ridge coefficients minimize a penalized residual sum of squares:

||x− tw||22 + α||w||22 (6.10)

where y is the training data and t the target value (in these cases VA
data) and w the weights.
In the sklearn documentation is reported a graph that related the com-
plexity parameter to the weights, shown in Figure 6.3.
We have found better results for small α values, around α = 0.001. In the
following Table, 6.7 are compared results from PMEmo, results with our
model with no feature selection and results in the best case, mentioned
before.
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Figure 6.3: Relationship between complexity parameter α and weights
of ridge regressor

Since PMEmo evaluated their data only on VA space in mean values, to
have a fair comparison here are shown results for mean values of VA.

Dimension Scorer PMEmo No F.S. F.S. best
Arousal RMSE 0.107 0.103 0.0417
Valence RMSE 0.121 0.115 0.0435
Arousal R2 0.764 0.769 0.780
Valence R2 0.638 0.645 0.834

Table 6.7: Comparisons between PMEmo results, our algorithm with
no feature extraction and with feature extraction and best setup of the
regressor
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7
Conclusions and Future Works

In this chapter we will review the work presented in this thesis and
we will introduce some possible evolution of our system.

7.1 Conclusions

This thesis presented a complete work on a complex task of MER, find
a relationship between music and emotions perceived by human during
the listening.
We tried to solve this task by combining both audio and EDAdata, ex-
tracting several features which theoretically are relevant for the two data
types.

As one could have already understand, the first problem was under-
standing which features are relevant for audio and EDA. Even if audio,
in MIR is a well studied task, there is no evidence on which features are
relevant respect to other, so moves are made by empirical attempts.
Much more complicated is the feature extraction procedure for EDA data,
since there are several problem on figuring out how to threat the data,
how to preprocess them and which features are relevant.

Once features were find out, the following problem was to find a good
algorithm of feature selection, because how teach the ML theory, not all
features have the same value and not all are relevant in the same way.
Most of the feature extraction methods are based on statistical processes,
and they are useful to discard redundant features, which may lead to an
overfitting model. So, also the feature extraction part is done in a certain
empirical sense, by trying different possibilities.

As last, also the ML method is a complex process, it has many differ-
ent implementation and is not clear which is best for the task of MER.
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To summarize, the whole work is not a standard one, there are not
standard rules to be followed and many decision are taken by trying dif-
ferent possibilities and choosing the best solution.

These problems sum to the fact that it is really hard to transform
human being emotions into a numerical vision. What is certain is that
music conveys emotion and modulate a listener’s mood. Also while lis-
tening the same musical piece, one can feel different emotions, due to the
fact that emotions are very complex.
After all these problems we started from the baseline of the work done
by [8] and tried to improve their results. As one can see in the chapter 6
we have increase the model, by resulting in a smaller RMSE and bigger
R2 scores.

By looking the Table 6.7, our results are very positive, because, as
firstly we improved the results, but also because they are aligned with
our theoretical expectations.
We expect that by extracting features that are more relevant and suit-
able for audio we would improve the model, and that is what results tell
us about. Scorer of our model with no feature selection are better than
PMEmo results. This mean that just using audio features, the perfor-
mance increases.

As another important step is to analyze which is the best combination
of data type, feature selection method and regressor.
As data type, the best result is given with the fusion one, it means that
combining audio and EDA features is the right path to follow in order
to have a better model. Perceived and felt emotions are linked together,
and having the possibility to combine them is a grateful opportunity.
This is the crucial point, EDA data are now fundamental to have a bet-
ter prediction of the Valence and Arousal values, which means a better
model and a better detector of music emotions.

7.2 Future Works

As the algorithm of recognizing emotion through audio and EDA data
is a novel task, the algorithm proposed in this thesis opens further im-
provements.

As first, better features for audio can be extracted and can be studied
in a deeper way EDA data, which is not very clear how to process them.
It can be applied different feature selection algorithms and different ML
methods though the regression problem.

As further improvement, we can think to apply also ML implementa-
tions that are not traditional, as deep ML implementations.
A nice test might be to threat the data as images, and apply some ML
methods directly to the images, as the well known CNN.
There are several studies on the use of CNN on the spectrogram of a mu-
sic piece and they are very interesting. In this case, the problem remain
on how to convert EDA data in images, as the spectrogram for the audio.
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An interesting try is done in the work of Chaspari in [59] which creates
a similar spectrogram, called EDA-Gram, but for EDA.
A possible approach would be to combine the spectrogram for audio and
EDA-Gram for EDA and use them as input of a deep neural ML process
in order to avoid all the problems due to feature extraction and selection.
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