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Abstract

Population expansion, economic development, and increased frequency and
intensity of extreme climate events are challenging water system management
in many regions worldwide. These trends emphasize the need of accurate
medium- to long-term predictions to timely prompt anticipatory water oper-
ations. State-of-the-art forecasts proved to be skillful over seasonal and longer
time scales especially in regions where climate teleconnections, such as El Niño
Southern Oscillation, or particular hydrological characteristics, such as snow-
and/or baseflow-dominance, enable predictability over such long lead times.
Recent studies have investigated the value of seasonal streamflow forecasts
in informing the operations of water systems in order to improve reservoir
management strategies. However, how to best inform the operations of hy-
dropower systems is still an open question because hydropower reservoir op-
erations can benefit from hydroclimatic services over a broad range of time
scales, from short-term to seasonal and decadal time horizons, for combin-
ing daily and sub-daily operational decisions with strategic planning on the
medium- to long- term. In this work, we propose a machine-learning based
framework to quantify the value of hydroclimatic services as their contribution
to increasing the hydropower production of the Grand Ethiopian Renaissance
Dam (GERD) in Ethiopia. The GERD, with an installed capacity of more than
6,000 MW is considered the largest hydroelectric power plant in Africa and the
seventh largest in the world. Its construction is part of the Ethiopian strategic
hydropower development plan that aims to serve the growing domestic and
foreign electricity demands. The quantification of the forecast value relies on
the Information Selection Assessment framework, which is applied to a ser-
vice based on bias adjusted ECMWF SEAS5 seasonal forecasts used as input
to the World-Wide HYPE hydrological model. First, we evaluate the expected
value of perfect information as the potential maximum improvement of a base-
line operating policy relying on a basic information with respect to an ideal
operating policy designed under the assumption of perfect knowledge of fu-
ture conditions. Second, we select the most informative lead times of inflow
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forecast by employing input variable selection techniques, namely the Iterative
Input Selection algorithm. Finally, we assess the expected value of sample in-
formation as the performance improvement that could be achieved when the
inflow forecast for the selected lead time is used to inform operational deci-
sions. In addition, we analyze the potential value of forecast information un-
der different future climate scenarios. Results show that the GERD operation
informed with seasonal forecasts leads to a small improvement in the annual
hydropower production in both historical and future periods. This potential
gain becomes larger when we focus on the performance during the heavy rainy
season from June to September (Kiremt season), and it further amplifies in the
future scenario. The added production obtained with the forecast-informed
operations of the GERD may represent an additional option in the current ne-
gotiations about the dam impacts on the downstream countries.

IV



Riassunto

La crescita della popolazione, lo sviluppo economico e le condizioni climatiche
sempre piú avverse stanno mettono a dura prova la gestione delle risorse idriche
in molti bacini idrografici nel mondo. In questo contesto, la necessitá di avere
previsioni accurate di medio-lungo periodo che consentano di anticipare le de-
cisioni nella gestione dei sistemi idrici é in costante crescita. I recenti sistemi
previsionali sono ormai capaci di fornire previsioni accurate su orizzonti sta-
gionali, specialmente in regioni dove le teleconnessioni climatiche, come El
Niño Southern Oscillation, o particolari caratteristiche idrologiche, consentono
la prevedibilitá su periodi di tempo lunghi. Recenti studi hanno investigato il
valore delle previsioni di afflusso stagionale per la gestione dei sistemi idrici.
Tuttavia, si sa ancora ben poco di come meglio informare i sistemi idroelettrici
in quanto essi traggono beneficio dai servizi idroclimatici su diverse scale tem-
porali, dal breve periodo fino a orizzonti di tipo stagionale e decadale. In questa
tesi, viene proposto una procedura basata su tecniche di Machine Learning con
l’obiettivo di quantificare il valore dei servizi idroclimatici nel contribuire ad
aumentare la produzione energetica della Grand Ethiopian Renaissance Dam
(GERD) situata in Etiopia. La diga ha una capacitá installata di 6,000 MW ed é
considerata il piú grande impianto idroelettrico in Africa e settimo al mondo.
La sua costruzione fa parte del piano di sviluppo strategico etiope che ha lo
scopo di fronteggiare la crescente richiesta domestica ed estera di elettricitá. La
quantificazione del valore delle previsioni si basa sull’ Information Selection
Assessment framework, applicato ad un servizio che dipende dalle previsioni
stagionali fornite dal sistema SEAS5 dell’European Centre for Medium-Range
Weather Forecasts usate come input al modello idrologico World-Wide HYPE.
Inizialmente, abbiamo valutato il massimo potenziale miglioramento di una
gestione del sistema basata su poche informazioni nei confronti di una polit-
ica ideale che opera sotto la perfetta conoscenza delle condizioni future. Suc-
cessivamente, abbiamo selezionato l’orizzonte previsionale piú rilevante uti-
lizzando un algoritmo di input variable selection. Infine, abbiamo valutato
l’effettivo aumento di produzione energetica che puó essere ottenuta quando

V



le previsioni selezionate vengono utilizzate per informare la gestione del sis-
tema. Abbiamo inoltre analizzato il potenziale valore che le previsioni sta-
gionali avranno in futuro considerando diversi scenari di cambiamento cli-
matico. I risultati mostrano piccoli spazi di miglioramento nella produzione
energetica annua sia nelle condizioni storiche che in quelle future. Tuttavia,
questo potenziale guadagno incrementa valutando la performance durante la
stagione delle piogge da giugno a settembre (Kiremt season), e viene ulterior-
mente ampliato nel futuro. Questa produzione energetica aggiuntiva puó pre-
sentare un’opzione nella attuale negoziazione sugli impatti futuri che la diga
avrá principalmente su Egitto e Sudan.
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1
Introduction

1.1 Global context

The rapid transformations occurring worldwide are putting high pressure on
the availability of freshwater resources (Rodell et al., 2018). One of the great
challenges of the 21st century is represented by climate change: constant rise in
average temperatures and changes in the precipitation pattern are altering the
water cycle, thus leading to an increase in the intensity and frequency of ex-
treme climate conditions. It is expected that water scarcity and stress cases will
grow in many regions around the world. The tendency is to observe increased
occurrences of more severe and less predictable flood and drought events re-
sulting in negative impacts in the society such as poor health, low productivity,
food insecurity, and constrained economic development (IPCC, 2014). In par-
ticular, developing countries and third world countries will face the gravest
risks from the changing climate since they are poorly equipped to adapt and
prevent environmental threats.
On top of that, world population is expected to increase from current 7.6 billion
to 8.6 billion in 2030, 9.8 billion in 2050 and 11.2 billion in 2100, with most of
the population expansion concentrated in urban areas. While developed coun-
tries are growing at slower rates, especially Europe, more than half of global
population increase, between now and 2050, is expected to occur in Africa
(United Nations, 2017). The pressure given by global population growth, urban-
ization expansion, and rising economic prosperity will consequently increase
food, energy, and water demands, thus further accentuating the stress on fresh-

1



1. Introduction

water resources.
In this context, the importance of water-control structures, such as water reser-
voirs is growing. Hydropower systems can play a significant role in decreasing
vulnerabilities of water and minimizing conflicts among multiple water uses.
Moreover, hydropower represents the major source of renewable energy, cor-
responding to 58% of the total global renewable energy generation (IRENA,
2015b). However, managing existing water infrastructures more efficiently by
adopting different technologies and methods, rather than planning new dams,
represents a low-cost and flexible solution that can improve the resilience of the
system against the increased variability of future extreme conditions (Castelletti
et al., 2008; Giuliani et al., 2016b).
The recent advances in the skill of hydroclimatic services for the water sec-
tor have created significant opportunity to adopt these tools in supporting
decision-making. Climate services generate a wide range of information on
past, present, and future climate and they have the potential of becoming a
supportive and flourishing market providing products that can better inform
decision makers at all levels, from public administrations to business operators,
when taking decisions for which the implications of a changing climate are
an issue (EC, 2015). Notably climate services can provide accurate medium-
to long-term climate predictions that can be used in water systems to timely
prompt anticipatory operations, thus reducing the negative impacts given by
extreme climate events.
Recent studies have investigated the value of seasonal streamflow forecasts in
informing the operations of water systems to improve reservoir management
strategies (e.g., Anghileri et al., 2016; Giuliani et al., 2019; Nayak et al., 2018). State-
of-the-art forecasts proved to be skillful over seasonal and longer time scales
especially in regions where climate teleconnections, such as El Niño-Southern
Oscillation (ENSO), or particular hydrological characteristics, such as snow-
and/or baseflow-dominance, enable predictability over such long lead times.
However, how to best inform the operations of hydropower systems is still an
open question. Hydropower reservoirs operate often for multiple purposes
(e.g. domestic/agricultural water supply, environment protection, tourism,
flood protection, etc.) and, for this reason, they can benefit from hydroclimatic
services over a broad range of time scales. Short-term forecasts (from few hours
up to 2-3 days ahead) can improve flood control, which may induce spill of wa-
ter with losses of production and, consequently, of economic revenue; medium-
range forecasts (up to 7-15 days ahead) can support the optimal management
of the production; long-term predictions (months ahead) can help in anticipat-
ing the effects of seasonal changes in water availability and implement drought
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1.2. Objective of the Thesis

management plans (Ramos et al., 2019).

1.2 Objective of the Thesis

The purpose of this thesis is to evaluate the potential value of seasonal forecasts
in informing the operation of hydropower megadams under historical condi-
tions and future scenarios affected by climate change. The objective of the anal-
ysis is to understand in which circumstances hydropower system can effectly
benefit from long-term forecasts in terms of increasing hydropower production.
The assessment of the forecast value relies on the Information Selection Assess-
ment (ISA) framework (Giuliani et al., 2015), which consists of three steps:

1. Quantification of expected value of perfect information as the potential
maximum improvement of a baseline operating policy relying on a basic
information with respect to an ideal operating policy designed under the
assumption of perfect knowledge of future conditions.

2. Selection of the most informative lead times of inflow forecast by employ-
ing input variable selection techniques, namely the Iterative Input Selec-
tion algorithm (Galelli and Castelletti, 2013).

3. Assessment of the expected value of sample information as the perfor-
mance improvement that could be achieved when the inflow forecast for
the selected lead time is used to inform operational decisions.

The quantification of the forecast value under historical conditions relies on
seasonal streamflow forecasts generated by a hydroclimatic service based on
bias adjusted ECMWF SEAS5 seasonal forecasts used as input to the World-
Wide HYPE hydrological model (Arheimer et al., 2020); conversely, a synthetic
forecast generation model was developed to simulates the existing forecast sys-
tem under different climate change projections and estimate the future forecast
value.
The proposed methodology is tested on a real case study, i.e. the Grand Ethiopian
Renaissance Dam (GERD) in Ethiopia. The GERD has an installed capacity of
more than 6,000 MW and is considered the largest hydroelectric power plant
in Africa and the seventh largest in the world. The dam construction, started
in 2011, is part of the Ethiopian strategic hydropower development plan that
aims to serve the growing domestic and foreign electricity demands. More-
over, the GERD reservoir is expeted to partially buffer the effects of extreme
events (floods and droughts) currently occuring in the country given by the
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1. Introduction

high variability of hydro-meteorological process largely correlated to ENSO
phenomenon.

1.3 Thesis Outline

The thesis is structured into the following chapters.

Chapter 2 provides an overview of the state-of-the-art about metereological
and hydrological forecasting in water systems management. It explores the
types of existing forecasts, discussing skill, lead time, uncertainty, and the rela-
tion between forecast skill and forecast value. A focus on seasonal forecasting
systems in the Upper Blue Nile Basin (Ethiopia) is also provided.

Chapter 3 reports a comprehensive description of the Grand Ethiopian Renais-
sance Dam case study, analysing the socio-economic development of Ethiopia,
the hydrological and climatological characteristics of the Upper Blue Nile Basin,
and the benefits and concerns raised by the dam construction. Then, we pro-
vide a description of the mathematical model of the system dynamics and the
formulation of the objective function adopted for representing the interests of
Ethiopia. Finally, the data used in the study are described.

Chapter 4 illustates the proposed methodology, which is composed of the fol-
lowing three main blocks of the ISA framework: 1) Quantification of the ex-
pected value of perfect information; 2) Lead time selection; 3) Assessment of
the expected value of sample information. The procedure is repeated for both
historical and future conditions.

Chapter 5 reports the results following the proposed 3-blocks framework for
both historical and future conditions. A final comparison of the forecast value
in the two periods is provided.

Chapter 6 summarizes the conclusions of this study and suggests possible di-
rections for further research.
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Most existing water reservoirs operating rules are conditioned upon a simple
information set, including the day of the year and the storage, and, in few cases,
also the previous day inflow (Hejazi et al., 2008). However, since these operat-
ing rules are designed under a narrow range of forcing conditions, this type of
approach could lose reliability and performance when these conditions are not
met.
A practicable and zero-cost alternative to improve the management of most
water systems is the direct use of observational data that describes the current
conditions of the water system as indicated by Denaro et al. (2017). Their study,
applied to a water reservoir that operates for flood control and water supply,
showed that considering solely the Snow Water Equivalent (SWE) as additional
information to the existing operating policy, allows for almost 10% improve-
ment in the system performance. In fact, SWE informs the operating policies
about the amount of water stored at high altitudes, which will be available
during spring and allows to accumulate water for providing reliable irrigation
over the summer.
However, relying on observational data to predict future conditions is not al-
ways possible. It might happen that the equipment fails or that the basin is lo-
cated in an area where the conditions are hard to be measured (Toth et al., 2000).
In this context, forecast models or hydroclimatic services can provide advance
information to potentially improve decision-making in water resource manage-
ment and increase societal benefits, especially over the long term (Block, 2011).
Along the past fifty years, there was a considerable improvement in weather
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forecasting, with great advances in lead times, forecast skill and value. Fore-
casts are expected to be even more helpful over the next years, when extreme
weather conditions will be more frequent and intense due to climate change
(Dai, 2011). Several studies have been decently published analysing the mul-
tiples contributions of forecasting to the water resources operations, exploring
different time horizons, different catchment types, and different operational
objectives including flood control, water supply, hydropower generation, and
combination among them.

2.1 Forecast lead time

Forecasts are usually divided in two categories: short-term and long-term or
seasonal forecasts. The first range from one day to five days, rarely exceeding
one week, while the second range from months to multiple years. Forecasts are
usually skillful over short lead time and predictability tends to decrease over
longer lead times (Denaro et al., 2017). However, the value of a forecast does
not only depend on the time horizon but also on other factors such as reservoir
capacity, the operating objectives, and the catchment type.
Short-term forecasts are more valuable when the reservoir has a capacity smaller
than its annual inflow volume, and it is operated for short-term operation pur-
poses such as flood protection (Saavedra Valeriano et al., 2010): a short lead time
is generally sufficiently accurate to characterize the fast dynamics of the peak
flow and to predict its magnitude and timing. Short-term forecasts can be
based on direct observational data through the use of radars and gauges to
capture the precipitation states or on more advanced models, such as numeri-
cal weather prediction and ensemble prediction systems that ensures accuracy,
quickness, reliability, and robustness of the forecast system (Adamowski, 2008;
Cloke and Pappenberger, 2009).
Nayak et al. (2018) demonstrated the value of short-term forecasts for the opera-
tions of Folsom Reservoir (California) for both flood control and water supply
objectives. Results showed that water supply can be markedly improved with-
out increasing the risk of floods due to the prediction of major flood events by
a forecast model. However, they also found that longer-lead forecasts (30-day)
do not improve performance much beyond the short-term (3-day) forecasts,
even under perfect information.
On the other hand, long-term forecasts are more valuable for large reservoirs
with medium to long-term operating objectives such as hydropower genera-
tion and water supply (Anghileri et al., 2016). Long-term forecasts mostly rely
on slow climate dynamics and, consequentially, require different weather infor-
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mation to be generated. Seasonal forecasts proved to be skillfull in some spe-
cific areas where climate teleconnection, such as El Niño-Southern Oscillation
(ENSO) may enable predictability over longer lead times. During the last few
decades, there has been wide recognition that natural oscillations in areas of the
Pacific Ocean have a significant impact on the patterns of weather and climate
around the world (e.g., Eltahir, 1996; Zaroug et al., 2014). The most dominant
among these oscillations is known as the El Niño Southern Oscillation, a cou-
pled ocean-atmosphere phenomenon observed over the tropical Pacific Ocean
with a 2-7 years return period. ENSO involves Sea Surface Temperatures (SSTs)
oscillation along the years, with a warm-phase called El Niño and a cold-phase
called La Niña (figure 2.1).
Several studies attempted to use oceanic and atmospheric variables as predic-
tors in seasonal hydrologic forecasting. Forecasts based on ENSO were shown
to keep the skill from 6 to 9 months of lead time for some regions along the
coastline of the Pacific Ocean (Hamlet and Lettenmaier, 1999). However, while
in some locations such as the United States (e.g., Hamlet and Lettenmaier, 1999),
western South America (e.g., Poveda et al., 2011), or East Africa (e.g., Block and
Rajagopalan, 2007), ENSO teleconnection is well defined, some regions are not
substantially affected by ENSO. For example, in Europe local conditions de-
pend on the concurrent state of other climate signals, particularly the North
Atlantic Oscillation (NAO) (e.g., Kingston et al., 2006).

Figure 2.1: Representation of both El Niño and La Niña, figure by National Oceanic and Atmospheric
Administration.
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A recent study by Giuliani et al. (2019) detected the presence of potential tele-
connections between multiple climate signals (e.i., ENSO and NAO), with the
local precipitation in the Lake Como basin (Italy) and exploited these telecon-
nections to generate skillful forecast of local meteorological variables on a sea-
sonal time scale. Results showed that the use of streamflow forecasts improves
the performance over the baseline solutions by 44%; this gain increases 59%
when observed preseason SST is directly used in informing water system oper-
ation.
Long term forecasts prove to be skillfull also in snow-dominated river basins
as indicated by Anghileri et al. (2016). They developed a forecast-based adap-
tive control framework for a water system characterized by large inter-annual
variability in precipitation and temperature. Results showed that season-long
Ensamble Streamflow Prediction (ESP) forecasts improved operations with re-
spect to the baseline, remaining 35% below the perfect forecast value and that
the inter-annual component of the ESP forecast contributes 20-60% of the to-
tal forecast value. Moreover, they investigated which type of forecast could
generated most value with respect to the baseline under the assumption of dif-
ferent stress situations: for high demands with respect to the storage capac-
ity or inter-annual carryover, only a perfect forecast would be able to prop-
erly anticipate the streamflow; seasonal ESP forecast value is highest when
the demand is medium-high and the reservoir is relatively small; inter-annual
forecasts worked best for big storages while their contribution is negligible for
small reservoirs.

2.2 Types of forecast models

Hydrologic forecasts are typically generated via either dynamic, process-based
climate models with outputs (e.g., precipitation and temperature) fed into hy-
drologic models, or via empirical, data-driven models which produce either
meteorological forecasts to feed hydrologic models or directly predict future
streamflows. The first approach models the physical dynamics between the
principal interacting components of the hydroclimatic system (Yuan et al., 2015).
A classical example is the numerical weather prediction (NWP). NWP focuses
on taking current observations of weather and processing these data with com-
puter models to forecast the future state of weather. However, there are lim-
its to how far into the future NWP could perform, since they are sensitive to
the initial conditions. Small errors in the initial conditions can lead to large
errors in the forecast. Furthermore, predictability is limited by model errors
due to the approximate simulation of atmospheric processes of the state- of-
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the-art numerical models (Buizza, 2002). A way to overcome this problem is to
conceive an ensemble of forecasts or an ensemble prediction system (EPS), in
which multiple predictions of possible states are put together, providing differ-
ent values of forecasting and thus giving an indication of the range of possible
future climate state. The concept of ensembles can be applied also for stream-
flow forecasting, called ensemble streamflow prediction (ESP), where historical
sequences of climate data (precipitation, potential evapotranspiration, and/or
temperature) at the time of forecast are used to force hydrological models, pro-
viding a plausible range of representations of the future streamflow states (Har-
rigan et al., 2018).
Over the last decade, a new approach that combine the ESP with General Cir-
culation Models (CGMs) into a climate model-based seasonal hydrologic fore-
casting is receiving more attention. CGMs describe the global behaviour of
atmosphere, ocean, and land in an integrated way and they are skillful in pre-
dicting large-scale precursors, such as ENSO, over long lead times (Yuan et al.,
2015). In general, physical models are accurate, since parameters of these mod-
els have direct physical interpretation, and their values might be established
through field or laboratory investigation and they can simulate a wide range of
flow situations. However, they require more data to be constructed, and cannot
integrate observed data directly to improve model results (Elsafi, 2014).
The second class of forecast models are the data-driven models, also known as
black box models (Sharma, 2000). They are based on modeling the statistical
relationship between input and output data, without explicitly considering the
physical processes that are involved. An example of this approch is the linear
regression model based on large-scale climate predictors correlated in a linear
way. These forecasting models suffer from two main drawbacks. Regression
coefficients are largely influenced by a small number of outliers due to limited
data length and correlations between predictors and, moreover, nonlinear rela-
tionships cannot be captured. An alternative proposed by Block and Rajagopalan
(2007) was to use local polynomial regression model, a nonparametric meth-
ods, to overcome the drawbacks of traditional linear regression. The method
first identifies the K nearest neighbours (observed data points) in proximity of
a specific point of interest, then it locally parametrizes the data with a poly-
nomial function, and finally adds random residuals with the same standard
deviation of the polynomial to generate an ensemble. This approach allows to
minimize outliers’ disturbance, detection of local correlations, and elimination
of multicollinearity.
Other non-linear, data-driven methods commonly used are the K-Nearest Neigh-
bour Method (KNN) and Artificial Neural Networks (ANNs), where no a priori

9



2. State-of-the-art

relationship between parameters and observed values has to be hypothesised
and no knowledge of the underlying process is needed. The KNN method ex-
ploits the closeness between the most recent observations and K ’similar’ sets
of observations chosen in an adequately large training sample (Toth et al., 2000).
ANNs are computing systems inspired by the biological neural networks that
are trained for recognizing relationships between a set of inputs and outputs.
Many studies showed ANNs overcoming the more basic methods such as lin-
ear regression (Toth et al., 2000; Elsafi, 2014). It is worth mentioning that despite
data-driven hydrological methods are becoming increasingly popular in fore-
casting applications due to their rapid development times, minimum informa-
tion requirements, and ease of real-time implementation, they are restricted to
stationary data, which makes them potentially unreliable when projected into
future conditions affected by climate change (Adamowski, 2008).

2.3 Forecast uncertainty

The last decade has seen growing research in producing probabilistic hydro-
meteorological forecasts and increasing their reliability (Ramos et al., 2013). Fore-
casts can better anticipate hydrologic extremes and can contribute to inform the
operation of water systems in order to increase the performance of water man-
agement strategies. However, they cannot provide an exact prediction of future
conditions due to many sources of uncertainty, which especially increases with
the increase of forecast lead time. Generally, the major source of uncertainty
of a long-term forecast is the one related to the meteorological input (Cloke
and Pappenberger, 2009). Observational uncertainty, related to data collection,
is also relevant because of the temporal and spatial uncertainties that can alter
the system. Moreover, the geometry of the system and approximations in the
construction of forecast models can further reduce the forecast accurancy.
However, knowing the uncertainty information can play an important role in
the decision-making process as indicate by Ramos et al. (2013). Their study
showed how decisions may differ when providing forecasted value with the
associated uncertainty. The results suggested that the higher the uncertainty of
a prediction, the more conservative and risk averse the decisions taken were.
Moreover, with uncertain information, more optimal decisions were also taken,
improving the overall performance of the system.
Another study by Giuliani et al. (2020) showed that the added value of a forecast
might be undermined if end-users are not able to adequately interpret the un-
certainty associated to the forecast ensemble. They explored increasing levels
of risk aversion in the use of forecasts by informing the operating policy with
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the mean, the 25th and 10th percentiles, and the minimum of the forecast en-
semble. Their results showed that a solution that uses the ensemble minimum
produces a 0.14% higher performance than using the ensemble mean, whereas
the 25th percentile of the ensemble generates a 0.31% reduction of system per-
formance. These numerical results pointed out the importance of adopting in-
tegrated frameworks that include decision models and account for end-user
behavioral factors capturing different perception of risk and uncertainty.

2.4 Forecast value and skill

In the literature, the term forecast value indicates the operational value of us-
ing a forecasting system to support water management (Anghileri et al., 2016).
The forecast value is measured in terms of system performance improvement
as defined by the operating objectives (Murphy, 1993). The forecast skill is in-
stead defined as the ability of a model to accurately predict the reality within
given upper and lower bound (Hamlet and Lettenmaier, 1999).
Over the past 50 years, there has been a continuous improvement with the de-
veloping of new technologies and models that contributed in greatly advancing
forecast skills (Lynch, 2008). However, an increase in forecast skill does not nec-
essarily translate into an improvement in the forecast value.
In a study on farmers decisions based on forecasts, Li et al. (2017) identified a
clear non linear relationship between skill and value. Their study showed that
some institutional forecast products attain both high forecast quality and high
decision performance, but in many cases the decisions were still optimal even
though farmers were informed by products with low forecast quality. More-
over, farmers’ different perceptions of risk were shown to be a relevant variable
influencing the system performance: while a risk-neutral profile presented an
increase of 3% with respect to the baseline case, a risk-prone profile experienced
10% of increment.
In another study developed in the Lake Como system (Italy), a regulated lake
operated for flood protection and irrigation supply, Giuliani et al. (2020) iden-
tified an exponential relation between the increase in forecast skill and the re-
sulting gain in system performance. Results showed a 10 to 1 relation between
skill and forecast value, meaning that large gains in forecast skills are necessary
to generate moderate gains in end-user profit.

11



2. State-of-the-art

Figure 2.2: Scatterplot of forecast quality of predicted crop productivity (y axis) and farmers’ crop
decisions performance (x axis) under different forecast products. Figure by Li et al. (2017).

2.5 Seasonal forecast in the Upper Blue Nile Basin

In the previous section, we saw how global climate oscillations and particu-
larly ENSO may contribute to extending forecast lead times. Since the aim of
this thesis is to assess the value of streamflow seasonal forecasts in informing
the operation of the Grand Ethiopian Renaissance dam which is located on the
Blue Nile river in Ethiopia, we briefly discuss in this section state-of-art studies
applied in the Upper Blue Nile Basin (UBNB) in order to provide evidences of
the potential of seasonal forecasting in this region.
ENSO is significantly correlated with rainfall variations over the eastern side
of the African continent (Camberlin et al., 2001). Especially, Ethiopian seasonal
precipitations are characterized by a strong intra- and interannual variability
that are mainly driven by ENSO. This hydrologic variability resulting from
low-frequency oscillations can produce extended periods of above- or below-
normal precipitation making the country particularly vulnerable to the effects
of flood and drought events. In this context, a successful seasonal forecasting
system would have great economic and social value.
Interannual variability of precipitation within the UBNB has been investigated
by previous researchers. Eltahir (1996) found that 25% of the natural variability
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in the annual flow of the Nile is associated with ENSO and proposed using this
observed correlation to improve the predictability of the Nile floods. Amarasek-
era et al. (1997) showed that ENSO episodes are negatively correlated with the
floods of the Blue Nile. Abtew et al. (2009) found that high rainfall is likely to
occur during La Niña years and low rainfall conditions during El Niño years.
He also discovered that extremely dry years are highly likely to occur during
El Niño years and extremely wet years are highly likely to occur during La
Niña years. Seleshi and Zanke (2004) reported that the June-September rainfall
in the Ethiopian Highlands is positively correlated to the Southern Oscillation
Index (SOI) and negatively correlated to the equatorial eastern Pacific SST. Fi-
nally, Zaroug et al. (2014) highlighted the impact of timing and sequence of El
Niño and La Niña on the drought and flood conditions over the UBNB. Re-
sults showed that ENSO exerts a significant influence on the June-September
rainfall season and that 83% of El Niño events starting in April-June results in
droughts while there is a 67% chance for occurrence of an extreme flood when
an El Niño event is followed by a La Niña. They also recommended to use the
main rainy season from June to September, called also the Kiremt season, in the
seasonal forecasting of the Blue Nile due to its highly correllation with ENSO
phenomenon.
Few studies attempted to use oceanic and atmospheric variables as predictors
in seasonal hydrologic forecasting focusing on the June-September rainfall in
Ethiopia. Elsanabary and Gan (2014) developed a rainfall predictive tool for fore-
casting June−September precipitations at weekly time steps in order to prevent
flood events. The framework combines a wavelet principal component analysis
(WPCA) to identify regions of Sea Surface Temperatures (SSTs) that are strongly
teleconnected to the seasonal rainfall, an artificial neural networks-genetic al-
gorithm to forecast the rainfall season over the UBNB from the above-selected
SSTs at one-season lead time, and a statistical algorithm to disaggregate the
seasonal rainfall forecasts to weekly rainfall. Their results showed that the fore-
casted seasonal rainfall agreed well with the observed data for the UBNB with
a correlation value between 0.68 and 0.77. As an extension to their work, they
used the disaggregated, weekly rainfall data to drive a basin-scale hydrologic
(rainfall-runoff) to forecast the streamflow of the UBNB at up to one season
lead time, which is useful for an optimal allocation of water among various
competing users in the river basin.
Block and Rajagopalan (2007) developed a robust framework for generating en-
semble forecasts of the Kiremt season precipitation in the UBNB. A suite of
SST-related predictors that capture various aspects of the summer rainfall, in-
cluding the large-scale ENSO teleconnections were first identified. Using the
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best set of predictors, cross-validated ensemble predictions of the Kiremt sea-
son rainfall were generated from a local polynomial regression model. The
forecast ensembles demonstrated significant skills during extreme wet and dry
years compared to climatological forecasts utilized by the Ethiopian National
Meteorological Services Agency.
In another study, Block (2011) also demonstrated the improved economic value
and reliability resulting from a seasonal climate forecast coupled with hydropower
system applied to the Upper Blue Nile Basin in Ethiopia. He explored forecast
value under different managerial risk preferences and he found that even risk-
averse actions, if coupled with forecasts, exhibits superior benefits and reliabil-
ity compared with risk-taking tendencies relying on climatology. Moreover, a
hydropower sensitivity test revealed a propensity toward poor-decision mak-
ing when forecasts over-predict wet conditions: if the forecast predicts a wetter
than normal year and is wrong, the cost is higher than when the forecast pre-
dicts a dryer than normal year and is wrong. If the reservoir operators release
too much water downstream, expecting rainfall that doesn’t come, then the fol-
lowing year there might not be enough water to meet production needs, while
having held back too much water in expectation of a dry year that turns out to
be wet has a smaller impact.

In summary, several studies explored the hydrologic variability of the Blue
Nile river connected to ENSO, highlighting the potential for long-term fore-
cast system in anticipating extreme events. However, just a few studies (e.g.,
Block, 2011) tried to assess the economic and social value of these forecasts in
informing operational decisions and especially hydropower system operation.
This quantification of the forecast value is however extremely important in a
country like Ethiopia where hydropower represents the main source of energy
and that can also contribute to the mitigation of adverse climate extremes.
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3.1 Ethiopia

Ethiopia, officially named the Federal Democratic Republic of Ethiopia, is a
country located in the northeastern part of the Horn of Africa. As shown in fig-
ure 3.5, it is bordered by Eritrea to the north and northeast, Djibouti to the east,
Somalia to the east and southeast, Kenya to the south, Sudan and South Sudan
to the west. With over 112 million inhabitants, Ethiopia is the most populous
landlocked country in the world and the second-most populated nation on the
entire African continent after Nigeria. It occupies a total area of 1,100,000 km2,
and its capital, and also largest city, is Addis Ababa.

3.1.1 A growing country

Over the last decade, Ethiopia has made important development gains in edu-
cation, health, food security, and economic growth. In 2015, the World Bank
highlighted that the country had witnessed a rapid economic growth with
Gross Domestic Product (GDP) increasing about 10.9% between 2004 and 2014,
making the country one of the fastest growing economies in the world (fig-
ure 3.1). This improvement was mostly driven by government investment in
infrastructure, as well as sustained progress in the agricultural and service sec-
tors. Despite all this progress, Ethiopia still remains one of the poorest countries
in the world, with an estimated annual per capita income of $772 (WorldBank,
2019). According to the United Nations’ Committee for Development Policy
(CDP, 2018), Ethiopia is listed among the least developed countries. Besides,
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Ethiopia is also facing an increase in population which has grown from 18 mil-
lions in 1950 to almost 100 millions in 2015, with a population growth rate of
2.85%, a birth rate of 36.5 births per 1,000 total population and, a death rate
of 7.7 deaths per 1,000 total population (CIA, 2016). The most recent United
Nations estimates predict an increase of the population from the actual 112
millions to 205 millions in 2050 and about 295 millions in 2100 (figure 3.2).
Moreover, the country is home to the second largest refugee population on the
continent, hosting 928,600 registered refugees from South Sudan, Somalia, Su-
dan, Eritrea, and Kenya. Ethiopia is also experiencing a rapid urbanization
with an increase in urban population of 8.1% from 1975 to 2000 and, from the
most recent estimates, the phenomenon is destined to persist, with an urban-
ization rate estimated at 4.64% between 2015 and 2020 (CIA, 2016). In addition,
extreme climatic and weather conditions, such as droughts and floods, have
become increasingly common and costly in the country, leading to severe im-
pacts on agricultural production, livestock, water resources, and human health.
In this context, Ethiopia has to provide services and guarantee a better quality
of life for a constantly increasing population that continues to move from ru-
ral to urbanized areas and that will be vulnerable to climate change impacts.
This will require several economic investments, to ensure sufficient food, wa-
ter availability, and easy access to electricity.
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Figure 3.1: Ethiopian Gross Domestic Product. Data from WorldBank (2019).
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Figure 3.2: Ethiopian Population. Data from UnitedNations (2019).
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3.1.2 Energy and hydropower

Ethiopia has 14 major rivers, including the Nile, which flow from its highlands
and represent the largest water reserve in Africa. Ethiopia’s hydropower capac-
ity has been described as a blue gold that could contribute to economic growth
of the country (Verhoeven, 2011). Ethiopia ranks second only to the Democratic
Republic of Congo in economically feasible hydropower production among all
the African nations (King and Block, 2014). According to CIA (2016), hydroelec-
tric plants in the country represent around 86% of the total installed electricity
capacity, while the remaining electrical power is generated from fossil fuels
(3%) and other renewable sources (11%). Several reasons are behind Ethiopia’s
motivation to develop reservoir capacity and hydropower. First, the climate
and hydrology of the country is extremely variable, on both interannual and
intra-annual time scales, and floods and droughts are a recurring problem. A
strong correlation between annual rainfall and the GDP growth rate has been
demonstrated (Bank, 2006), and because the majority of Ethiopians rely on rain-
fed agriculture, this variability leads to severe vulnerabilities. Therefore the de-
velopment of storage may partially buffer the effects of such climate extremes
(Zhang et al., 2015). Second, energy demand is expected to increase from 605
MW in 2012 to an estimated 2,540 MW in 2030 due to population, quality of
life, and urbanization growth (figure 3.3). In this context, Ethiopia aims at be-
coming a regional power hub by exploiting its exceptional renewable energy
resource and is undertaking a larger program of dam construction on several
rivers (Block and Strzepek, 2012). Currently, Ethiopia acquires the majority of
its energy from 15 different hydropower plants ranging in capacity from 11.4
to 1,870 MW, totaling 4,336.6 MW. The Ethiopian Electric Power Corporation
EEPCo (2013), state-owned electric power producer, is implementing additional
hydropower projects, in order to increase the internal hydropower production
of nearly 15 GW. Three dams are under construction (table 3.1) and the most
ambitious of these projects is the Grand Ethiopian Renaissance Dam (GERD)
on the Blue Nile River, that, with its 6 GW of nominal hydropower capacity,
will increase the electricity generation capacity in the country of 138%.
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Figure 3.3: Ethiopian electricity demand. Historical data from (WorldBank, 2019), estimate demand
data from Ethiopia Growth and Transformation Plan.

Table 3.1: Operating and under construction (U.C.) dam in Ethiopia.

Dam 1st use 2nd use Commissioned River
Reservoir

Capacity (Km3)
Installed

capacity (MW)
Aba Samuel Hydropower Flood Control 1932 Akaki 0.035 -

Koka Hydropower Flood Control 1969 Awash 1.9 42
Fincha Hydropower Drinking water 1973 Fincha 0.65 100

Melka Wakena Hydropower Drinking water 1989 Shebelle 0.75 153
Gibe I Hydropower Flood Control 2004 Gilgel Gibe 0.92 180
Beles Hydropower Irrigation 2010 Beles 9.12 460

Tekeze Hydropower Flood Control 2010 Tekeze 9.3 300
Gibe II Hydropower - 2010 Omo 0.92 420
Gibe III Hydropower Flood Control 2015 Omo 14.7 1870

Genale Dawa III Hydropower Flood Control 2017 Ganale 2.6 256
Genale Dawa VI Hydropower Irrigation U.C. Ganale 0.18 257

GERD Hydropower Flood Control U.C. Blue Nile river 74 6,000
Koysha Hydropower Irrigation U.C. Omo 6 2,200
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3.2 Grand Ethiopian Renaissance Dam (GERD)

The GERD’s construction project started in 2011 and today is almost completed.
The dam builder is the Italian company Salini Costruttori, which also served as
primary contractor for the Gilgel Gibe II, Gibe III, and Tana Beles dams. The
GERD, with an installed capacity of more than 6,000 MW and a catchment area
of nearly 200,000 km2 (King and Block, 2014), is considered to be the largest hy-
droelectric power plant in Africa and the seventh largest in the entire world
(IRENA, 2015a).

The GERD is located 700 km northeast of the capital city Addis Ababa, in the
Benishangul-Gumaz region of Ethiopia, along the Blue Nile River and not far
from the border with Sudan. The Ethiopian Upper Blue Nile Basin is the largest
Ethiopian river basin in terms of discharge, the second largest in terms of area
and it hosts the largest tributary of the Main Nile (Conway, 2000). The Blue
Nile River begins at Lake Tana in the northwestern Ethiopia highlands and is
joined by many tributaries before reaching the Sudanese border. Then, it con-
tinues 650 km north-west until it converges with the White Nile in the city of
Karthoum (Sudan), forming the Nile River. The Nile then enters Lake Nasser
on the Sudanese-Egyptian border, created by the High Aswan Dam, and sub-
sequently flows through Egypt to the Mediterranean Sea (figure 3.4). Although
the White Nile Basin size is more than five times that of the Blue Nile Basin,
the latter contributes significantly more streamflow to the main Nile River. Ac-
cording to El-Fadel et al. (2003) and Conway (1997), the majority (about 80%) of
the annual Nile flow to Lake Nasser originates from the Ethiopian highlands,
and the Blue Nile alone, with its 1,450 km (800 of which are inside Ethiopia)
provides about 53% (50 km3) of the annual flow.
The flow of the Blue Nile varies considerably over its yearly cycle due to the
large inter-annual variation in precipitation driven mainly by El Niño- South-
ern Oscillation (ENSO) phenomenon (Block and Rajagopalan, 2007). Ethiopia is
characterized by three main seasons (Avery and Eng, 2012):

• dry season from October to February (Bega season);

• a light rainy season from March to May (Belg season);

• a heavy rainy season from June to September (Kiremt season).

During the dry season the natural discharge of the Blue Nile can be as low as
113 m3/s, while during the wet season the peak flow of the Blue Nile often ex-
ceeds 5,663 m3/s in late August.
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Figure 3.4: Map of the Nile River Basin and ethiopian dams.
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Figure 3.5 shows some technical data of the GERD. The GERD reservoir is to
be place in a deep gorge, producing a relatively small surface area considering
its volume, and in a region with relatively cooler temperatures, allowing for a
lower evaporation when compared to reservoirs further downstream, particu-
larly those in desert locations (Taye et al., 2016). The main dam ground level will
be at an altitude of about 500 m asl, corresponding roughly to the level of the
river bed of the Blue Nile. Counting from the ground level, the main gravity
dam will be 155 m high (from 500 to 655 m asl), 1,780 m long and composed
of roller-compacted concrete. A curved 5.2 km long and 50 m high rock-fill
saddle dam will support the main dam and reservoir. The reservoir will have
a storage capacity of 74 km3 and a surface area of 1,874 km2, when at the full
supply level of 640 m asl. Hydropower generation can run between reservoir
levels of 90 m, the so-called minimum operating level, and 140 m above ground
level, the full supply level. The first 90 m of the height of the dam will be a
dead height for the reservoir, leading to a dead storage volume of the reser-
voir of 14.8 km3. A system of three spillways safeguards the project against a
30,200 m3/s peak discharge, an event not considered to happen at all, as this
discharge volume is the so-called Probable Maximum Flood. All waters from
the three spillways are designed to discharge into the Blue Nile before the river
enters Sudanese territory. The first 2 spillways activates when the level reaches
140 m above ground level, while the 3rd one, located on the right abutment of
the saddle dam, activates at 142 m, when the combined discharge of the other
two spillways equals the 1,000-year flood. Two powerhouses located at the toe

Figure 3.5: Cross-section of the Grand Ethiopian Renaissance Dam with assumed hydraulic capacities.
Source: MIT (2014).
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of the dam will house 16 Francis turbines at 375 MW each, totaling 6,000 MW
in capacity, for an expected annual generation of 15 TWh. Once completed,
the reservoir will take from 5 to 15 years to fill with water and different filling
and managing reservoir policies will directly impact the millions of people in
downstream countries, who rely on the Blue Nile water (King and Block, 2014).

Investments in large dam projects are often controversial. Supporters often de-
note benefits such as flood control, water supply, and hydroelectric generation,
while critics frequently highlight permanent ecosystem changes, modification
of river flows, reduction of fish passage and sediment accumulation, and com-
munity displacement (Taye et al., 2016). The GERD’s construction has been one
of the most controversial issues in northern Africa, because of the potential neg-
ative effects for Sudan and Egypt, whose populations also live in the Nile Basin
and depend on its water. Due to its massive dimensions, the GERD will surely
change the Nile water flow, decreasing the downstream water availability at
least during its filling period, constituting a breach of the 1959 Nile Treaty. In
1959, in preparation for the construction of the High Aswan Dam, Egypt and
an independent Sudan signed one of the most important agreements for the
geopolitical situation of the region, the 1959 Nile Waters Agreement for full
control utilization of the Nile waters. This agreement (Treaty, 1959) allocated
55.5 billion and 18.5 billion m3 of the Nile River water to Egypt and Sudan,
respectively. Moreover, annual water loss due to evaporation and other factors
were agreed to be about 10 billion m3 and no consumptive allocations to other
upstream riparian countries (Ethiopia, Uganda, Kenya, Tanzania, Rwanda, Bu-
rundi, Democratic Republic Congo (DRC), and Eritrea) were prescribed. The
upstream Nile basin nations, including Ethiopia, contested these treaties (Wa-
terbury, 2008) and, in 1999, all Nile Basin countries (Burundi, DRC, Egypt,
Ethiopia, Kenya, Rwanda, Sudan, Tanzania, and Uganda) came together to
form the Nile Basin Initiative (NBI, 2012) with the objective to establish a basin-
wide water management institution (Conway, 2000). Since May 2010, Ethiopia
and the other upper riparian states have launched the Cooperative Framework
Agreement (CFA) to ensure an equitable and reasonable utilization of the Nile
waters and the obligation to avoid significant harm to its riparian neighbors.
However, Egypt and Sudan have opted not to sign the CFA, highlighting the
tensions that existed even before the announcement of the GERD.
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Here, we briefly summerize the potential benefits and concerns raised on the
GERD’s construction. The GERD will be the hub for clean and renewable en-
ergy supply for Ethiopia and other African countries. According to the Ethiopian
government (MoFED, 2010), hydroelectricity from the GERD is expected to pri-
marily satisfy national demand in order to reduce energy poverty among the
almost 60% of Ethiopians who lack access to electricity, while surplus energy
will be exported to East Africa countries to improve the coverage of the electric-
ity. GERD’s benefits are not limited with power supply but the dam can bring
advantages also to other sectors: the volume of the reservoir will be two to three
times that of Lake Tana (Ethiopia), which allows to expect up to 7,000 tonnes
of fish annually, representing a significant food and commercial source for the
region. Moreover, the reservoir could become an hotspot for tourism (ENA,
2017) and navigation. The dam could also serve as a bridge across the Blue Nile,
complementing another bridge that was under construction in 2009 further up-
stream (Ethiopia, 2011). From a social point of view, the GERD will develop local
industry, and it has already created up to 12,000 jobs during the construction
phase (Yihdego et al., 2017). In addition, the dam’s ability to regulate hydro-
logic variability will lead to a reduction in property losses due to flooding and
will allow for increased agricultural production in downstream countries, es-
pecially in Sudan, ensuring reliable all season supply to irrigation schemes, and
reducing harvest losses caused by water shortages during dry periods. Water
conservation is another major benefit given by the GERD which will minimize
the evaporation losses from dams located in less favourable downstream desert
locations. Since much of the Nile water is presently lost to evaporation and in-
filtration as it flows north toward the Mediterranean Sea (Guariso and Whitting-
ton, 1987), such losses can be significantly reduced storing water in Ethiopia.
The evaporation rate in Ethiopian highlands is equal to 1,150 mm/year while
in Sudan it reaches 2,500 mm/year (Block, 2011), which is similar to the one
of High Aswan Dam (i.e. 2,400 mm/year) (Mulat and Moges, 2014). These dif-
ferences may save 25% of the current evaporation losses conserving water in
the GERD rather than the High Aswan dam (Egypt). Moreover, the GERD is
expected to reduce sediment loads thus extending reservoir life in Sudan and
Egypt and decreasing silt build-up in irrigation canals (Taye et al., 2016). It is
estimated that Sudan could save $50 million per year in dredging costs (Tesfa,
2013) and that silt and sedimentation reduction could improve water quality
and reduce treatment costs for drinking water supply (Taye et al., 2016).
However, one of the main issues in debate about the GERD construction is the
time of filling the reservoir. Egypt and Sudan will be especially vulnerable to
the time frame of filling the dam, which may take anywhere from 5 to 15 years.
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Egypt fears a temporary reduction of water availability thus impacting its hy-
dropower, water supply, and irrigation systems. On the other hand, despite
Sudan has recognized the benefits that the dam is likely to provide in the coun-
try, there are concerns that the sediment yield reduction will decrease down-
stream soil fertility, particularly affecting flood-recession agriculture with esti-
mated losses in recession agricultural land on the order of tens of thousands of
hectares (Taye et al., 2016). Moreover, the GERD will also bring some drawbacks
even in Ethiopia itself. Exporting the electricity from the dam towards other
countries would require the construction of massive transmission lines to ma-
jor consumption centers such as the Sudanese capital Khartoum, located more
than 400 km away from the dam. A cost of 4.8 billion US$ has already been
spent for the GERD construction which corresponds to about 5% of Ethiopia’s
GDP and adding power transmission lines will require more funding. More-
over, the dam is displacing thousands of people in the Benishangul-Gumuz
Region. An estimated 5,110 people were resettled from the downstream area
in 2013 and close to 20,000 people are being relocated. The majority of the af-
fected population are indigenous people of Gumuz and Berta, who live in some
of the worst economic conditions with little access to development infrastruc-
ture (Rivers, 2012).

Since the aim of this thesis is to asses the value of seasonal hydroclimatic ser-
vices in informing the GERD operation to increase hydropower production,
we neglect in the following analysis the presence of Sudan and Egypt and we
assume that the GERD reservoir is already filled and operated in regime con-
ditions.
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3.3 GERD Model

The conceptual model of the GERD system is composed of the regulated GERD
reservoir and its hydropower plant. The system dynamics is based on a mass
balance equation of the water storage using a monthly timestep:

st+1 = st + nt+1 − rt+1 (3.1)

where st is the storage of the reservoir at time t, while nt+1 is reservoir’s inflow
and rt+1 is the released water volume from t to t+1. The time notation indicates
the instant when the variable is deterministically known. The reservoir storage
is measured at time t, while the water volumes entering and exiting the reser-
voir are evaluated in the time interval [t; t+1) and so they are known at time
t+1. The released volume is a nonlinear function of storage, inflow, and the re-
lease decisions ut at each time step, which accounts for any possible deviation
of the actual release rt+1 from the decision ut due to unintentional spills or any
other physical legal constraint (Soncini-Sessa et al., 2007). The effective release
of the GERD is calculated as:

rt+1 = min(Rmax(st), max(Rmin(st), ut)) (3.2)

where Rmin and Rmax are the minimum and maximum monthly GERD release,
respectively, which integrate over the time step the instantaneous functions rmin

and rmax that depend on the reservoir’s level (ht), that is directly linked to the
storage (st), defined as:

rmin =


0[m3/s] ht ≤ 140m

22785.7[m3/s] ht ≤ 142m

24285.7[m3/s] ht > 142m

(3.3)

rmax =



0[m3/s] ht ≤ 90m

qTMax ht ≤ 140m

22785.7[m3/s] ht ≤ 142m

24285.7[m3/s] ht > 142m

(3.4)

where qTMax is the maximum turbine discharge, equal to 4,985.7 m3/s. Ac-
cording to equation 3.1, evaporation is neglected due to the lack of reliable
data. The release decision variable ut in equation 3.2 is determined by a closed
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loop policy, defined as a periodic sequence of control laws with period T which
depend on the reservoir storage and previous month inflows:

ut = µt(st, nt) p = [µ0(·), ...µT−1(·)] (3.5)

In this work, we consider one stakeholder which is Ethiopia and its corrispon-
dent objective is formulated as maximization of the GERD hydropower pro-
duction, defined as:

JHP
0,H =

1
H
(

H−1

∑
t=0

gHP
t+1) (3.6)

where

gHP
t+1 =

η · g · γ · rt+1 · (ht − hdown)

1000
(3.7)

where η is the turbines’ efficiency equal to 0.95, g is the gravity acceleration,
approximated at 9.8 m/s2, γ is water specific weight equal to 1000 Kg/m3, rt+1

is the GERD actual release, ht is the reservoir water level, and hdown is water
level downstream the main dam equal to 10 m.
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3.4 Available data

The model of the GERD reservoir and power plant is based on the data reported
in tables 3.2 and 3.3. These data have been retrieved mostly from the Nile
Basin Initiative (NBI, 2012), except for the spillway (Ferraro et al., 2015), and the
hydropower production (EEPCo, 2013).

Table 3.2: Grand Ethiopian Renaissance Dam’s data.

Number of turbines 16
Tot. max. month discharge (turbines) [Mm3/month] 12,923
Tot. max. month discharge (turbines) [m3/s] 4,985.7
Nominal hydropower production [MW] 6,000
Minimum operational level [m] 90
Maximum operational level [m] 140
Turbine efficiency 0.95
Downstream water body level [m] 10
Number of spillways 3
1st spillway activation level [m] 140
2nd spillway activation level [m] 140
3rd spillway activation level [m] 142
1st spillway discharge [m3/s] 15,000
2nd spillway discharge [m3/s] 2,800
3rd spillway discharge [m3/s] 1,500

Table 3.3: Grand Ethiopian Renaissance Dam’s elevation, storage and surface.

Elev.
[m]

Storage
[Mm3]

Surface
[Mm^2]

500 0 3
510 10 11
520 20 29
530 50 61
540 750 111
550 2,000 180
560 3,000 272
570 6,000 387
580 9,800 531
590 15,000 703
600 21,500 905
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The GERD inflow data are derived from monthly inflow observations collected
at El Diem during the time period 1965-2017 (Wheeler et al., 2018). Figure 3.6
illustrates the historical inflow data over the period 1965-2017, along with the
ciclostationary mean (red line) and shows that inflows exhibit a clear periodic
pattern with large hydrologic variability during August, September, and Octo-
ber where inflow values range from less than 1,000 to more than 8,000 m3/s.
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Figure 3.6: Monthly inflow: cyclostationary mean and historical data (1965-2017).

The data related to forecasted inflows in the historical period are provided by
the Swedish Meteorological and Hydrological Institute (SMHI), which gener-
ates seasonal streamflow forecasts from the World-Wide HYPE hydrological
model using as input data bias adjusted ECMWF SEAS5 seasonal forecasts.
Bias-adjustment is conducted on all members of SEAS5 using the Hydro Global
Forcing Dataset (HydroGFD) as reference, an internal SMHI operational sys-
tem for generating corrected re-analysis fields of precipitation and tempera-
ture. The World-Wide HYPE model is a semi-distributed catchment model
that aims to reproduce streamflow and water balance at global scale (Arheimer
et al., 2020). It covers an area of 135 million km2, divided into some 131,300
catchments following the river networks, with an average size of catchments
1020 km2. The model uses a large number of open databases and is calibrated
against time-series of various sources of observations (both from in situ mon-
itoring and Earth observations). The hydrological forecasts are delivered once
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a month in the form of a 25-member ensemble with a 7-month lead time from
1993 to 2014.

The data related to climate change scenarios are also provided by SMHI. They
correspond to a monthly mean value of the expected percent change of water
discharge defined as

δ = 100 ∗ Future period− Reference period
Reference period

(3.8)

for three future time periods (i.e., 2011-2040, 2041-2070, 2071-2100) using as
reference period the 1971-2000 and considering two Representative Concentra-
tion Pathway (RCPs), RCP 4.5 (moderate emission scenario) and RCP 8.5 (high
emission scenario). These scenarios are originated from different CMIP5 Gen-
eral Circulating Models (table 3.4) where precipitation and temperature were
bias adjusted against HydroGFD prior to running World-Wide HYPE model.
These data were used to compute future projected inflows, as follows:

Future inflows = Historical inflows +
δ ∗Historical inflows

100
(3.9)

where Historical inflows are the observed GERD inflows over the time period
1993-2014. Prior to compute the projected inflows (equation 3.9), a statistical
analysis based on historical data was first performed in order to remove cli-
mate models that simulates historical inflows that are largely out of the range of
the historical hydrological variablity. To combine delta values of the remained
climate models, the median is computed in order to filter possible anomalous
spikes. Moreover, a correction factor calculated as the ratio between the sim-
ulated inflows by climate models and observed inflows over historical period,
was applied to the future inflows of the first three months (January, February,
March) of the year in order to remove a systematic bias introduced by the model
that clearly overestimates the observed inflow values.
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Table 3.4: CMIP5 General Circulating Models considered reporting modeling center and model name.

Modeling center Model name
Beijing Normal University BNU-ESM

Centre National de Recherches Mété orologiques and
Centre Européen de Recherche et de

Formation Avancée en Calcul Scientifique
CNRM-CM5

Commonwealth Scientific and
Industrial Research Organisation (CSIRO) and

Bureau of Metereology (BOM), Australia

ACCESS1.0
ACCESS1.3

Irish Centre for High-End Computing EC-EARTH

Institute Pierre-Simon Laplace
IPSL-CM5A-LRI
IPSL-CM5A-MR
IPSL-CM5B-LR

Met Office Hadley Centre HadGEM2-CC
HadGEM2-ES

Max Planck Institute of Meteorology MPI-ESM-LR
MPI-ESM-MR

Norwegian Climate Centre NorESM1-M

NOAA Geophysical Fluid Dynamics Laboratory
GFDL-CM3

GFDL-ESM2G
GFDL-ESM2M

Beijing Climate Center, China Metereological Administration BCC-CSM1.1
BCC-CSM1.1(m)
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4
Methods and tools

In this thesis, we propose a machine-learning based framework to quantify
the value of hydroclimatic services as their contribution to increasing the hy-
dropower production of the Grand Ethiopian Renaissance Dam. A flowchart of
the methodology used in this work is illustrated in figure 4.1. We quantify the
forecast value by relying on the Information Selection Assessment framework
(ISA) (Giuliani et al., 2015). First, we evaluate the expected value of perfect
information as the potential maximum improvement of a baseline operating
policy relying on a basic information with respect to an ideal operating policy
designed under the assumption of perfect knowledge of future conditions. Sec-
ond, we select the most informative lead times of inflow forecast by employing
input variable selection techniques, namely the Iterative Input Selection algo-
rithm (Galelli and Castelletti, 2013). Finally, we assess the expected value of sam-
ple information as the performance improvement that could be achieved when
the inflow forecast for the selected lead time is used to inform operational de-
cisions. The potential value of forecast information is assessed under historical
hydroclimatic conditions and under future climate chage scenarios in order to
understand if forecasts are able to improve the system performance and to mit-
igate the negative impacts of climate change. For this purpose, we developed
a synthetic forecast model that allows the generation of inflow forecasts over
future time periods.
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Figure 4.1: Methodological flowchart of the thesis.
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4.1 Information Selection and Assessment (ISA) framework

The ISA framework (Giuliani et al., 2015) was first designed to identify and se-
lect the most valuable information from a set of observational data for inform-
ing water systems’ operations (figure 4.2). The aim was to remove data with
observational error and estimation biases that could possibly negatively affect
the system performance. The process can also be used to support the identifi-
cation and selection of the most valuable forecasts. The analysis is performed
considering two type of conditions: historical hydroclimatic conditions and
future conditions under climate change and it consists of three main steps as
follows:

1. Expected Value of Perfect Information
We evaluate the Expected Value of Perfect Information (EVPI) as the po-
tential maximum improvement of a baseline operating policy (BOP) rely-
ing on a basic set of information with respect to an ideal operating policy
(POP) designed under the assumption of perfect knowledge of future con-
ditions.
The policy design problem is formulated as follows:

p∗ = arg min
p
| − J| (4.1)

where p is a closed loop operating policy (see equation 3.5) and J is the
GERD hydropower production defined in equation 3.6.
Since we are dealing with just one objective, the EVPI can be computed as
a scalar difference:

EVPI = JPOP − JBOP (4.2)

where JPOP is the perfect operating policy performance obtained by solv-
ing problem 4.1 with the full trajectory of historical inflow deterministi-
cally known over the entire evaluation horizon. The problem is solved via
Deterministic Dynamic Programming (DDP) (Bellmann, 1957), while JBOP

is the value of the objective functions that could be obtained by an operat-
ing policy relying on a basic set of policy inputs, namely month of the year,
GERD’s storage, and previous month inflow. This latter was designed
by means of Evolutionary MultiObjective Direct Policy Search (EMODPS)
(Giuliani et al., 2016a), thus defining the operating policy within a class of
function pθ and searching for the best parametrization θ ∈ Θ for the given
class (see Section 4.2.2).
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2 Lead time selection

The input candidates can be different forecast models, different forecast
variables, or different forecast lead times. Since this thesis is focusing on
assesing the value of long-term or seasonal forecasts, we considered, as
possible candidates, streamflow forecasts at different lead times from one
month up to seven months. We select the most informative lead times of
inflow forecast by employing input variable selection techniques, namely
the Iterative Input Selection algorithm (IIS) (Galelli and Castelletti, 2013)
coupled with Extremely Randomized Trees (Geurts et al., 2006);(Galelli and
Castelletti, 2013). The IIS algorithm is based on an iterative procedure,
which allows the ranking of the candidate input variables according to
their significance in explaining the output variable (see Section 4.2.3). The
algorithm is run multiple time in order to filter the randomness associated
to the construction of the extra-trees models that are used as regression
model in describing the non linear input-output relationship. We consid-
ered as input variables perfect seasonal streamflow forecasts over different
monthly lead times up to a maximum of 7 months ahead and as output
variable the difference between the sequence of reservoir releases derived
under the perfect operating policy and the baseline operating policy.

3 Expected Value of Sample Information

The Expected Value of Sample Information (EVSI) is assessed as perfor-
mance improvement that could be achieved when the inflow forecast for
the selected lead time is used to inform operational decisions. To perform
the forecast informed operating policy (IOP) we used again the Evolution-
ary MultiObjective Direct Policy Search method. The Expected Value of
Sample Information is computed as:

EVSI = JIOP − JBOP (4.3)

where J IOP is the improved operating policy performance obtained by
solving problem 4.1 when the inflow forecast Ft+τ with the selected lead
time τ is used in informing the operation of the hydropower system (i.e.,
ut = p(t, st, nt, Ft+τ)). For historical conditions, SMHI forecasts were con-
sidered, while for future conditions, syntetic forecasts were generated (see
Section 4.2.4). The process consists in comparing forecasted inflows to the
observed ones over the historical period in order to model the forecast er-
rors and propagating the forecast uncertainty to any inflow trajectory.
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Figure 4.2: Flowchart of the Information Selection and Assessment (ISA) framework. Figure from
(Giuliani et al., 2015)
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4.2 Methods and Tools

In this section, we provide an overview of the algorithms that were used to
perform the main steps of the framework illustrated in figure 4.1.

4.2.1 Deterministic Dynamic Programming (DDP)

The perfect operating policy is designed by assuming the sequence εt+1 of fu-
ture disturbance known over the entire time horizon and solving problem 4.1
via deterministic dynamic programming (DDP)(Bellmann, 1957). DDP recur-
sively computes the optimal cost-to-go defined as

Ht(xt) = minut Ψεt+1 [Φ[gt(xt, ut, εt+1), Ht+1(xt+1)]] (4.4)

where Ht is the optimal cost-to-go at time t with respect to the state xt (i.e. the
reservoir storage), Ψ (i.e. expected value) is a statistic used to filter the distur-
bance, Φ is the average operator for aggregation over time, gt is the monthly
production, ut the release decision variable and ε the reservoir’s inflow vector.
Once the function H∗(·) is known, the optimal policy is completely defined as:

m∗t (xt) = argminut Ψεt+1 [Φ[gt(xt, ut, εt+1), Ht+1(xt+1)]] (4.5)

Due to its recursive nature, this method for computing the optimal cost-to-go
(and thus determining the optimal policy) can be applied only if the objectives
are expressed by separable cost functionals. This is why the design indicators
must be separable as well (Soncini-Sessa et al., 2007).

4.2.2 Evolutionary MultiObjective Direct Policy Search (EMODPS)

Optimal management policies for water reservoir operation are usually de-
signed using Stochastic Dynamic Programming (SDP). However, the adoption
of SDP in complex real-world problems is challenged by three major limita-
tions, known as curse of dimensionality, curse of modeling, and curse of multi-
ple objectives. The curse of dimensionality, first introduced by Bellmann (1957)
means that computational cost grows exponentially with state, control and dis-
turbance dimension. For this reason SDP would be inapplicable when the di-
mensionality of the system exceeds two or three storages (Loucks et al., 2005).
The curse of modelling, introduced by Tsitsiklis and Van Roy (1996), means that
exogenous information can be considered only as a stochastic disturbance, in-
dependent in time, with and associated probability density function, or they
must be dynamically modeled (i.e. including additional state variables), thus
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adding to the curse of dimensionality. The curse of multiple objectives indicates
that computational cost has a factorial grow rate with the number of objectives
considered (Powell, 2007), since SDP is a single objective approach, and it must
be reiteratively used to solve multi-objective problems.
The Evolutionary MultiObjective Direct Policy Search (EMODPS) approach was
introduced to alleviate the restrictions of the three main curses of SDP by com-
bining Direct Policy Search (DPS), nonlinear approximating networks, and mul-
tiobjective evolutionary algorithms to design Pareto-approximate closed-loop
operating policies for multipurpose water reservoirs (Giuliani et al., 2016a). DPS
(Rosenstein and Barto, 2001) is a simulation based approach, which assumes that
the operating rule belongs to a given family of parameterized functions and
searches the optimal solution in the policy parameters space. Nonlinear ap-
proximating networks, such as Artificial Neural Networks (ANNs) and Gaus-
sian Radial Basin Functions (RBFs), are often selected since they are able to
deal with high system’s complexity, to provide more flexible structures, and to
avoid restricting the search for the optimal policy to a subspace of the decision
space that could not include the optimal solution. As demonstrated in Giu-
liani et al. (2016a), RBFs outperform ANNs when dealing with water resources
system because they have a smoother shape, a limited domain of parameters,
and allow coordination mechanisms in reservoir networks. In the case of using
RBFs to parameterize the policy, the release decision ut is defined as

ut = α +
N

∑
i=1

ωi ϕi(It) (4.6)

where N is the number of RBFs ϕi (·) and ωi the weight of the i-th RBF. The
single RBF ϕi (·) is defined as follow:

ϕi(It) = exp

[
−

M

∑
j=1

((It)j − cj,i)
2

b2
j,i

]
(4.7)

where M is the number of input variables It and ci ,bi are the M-dimensional
center and radius vectors of the i-th RBF. According to Busoniu et al. (2010) the
centers of the RBF must lie within the bounded input space c ∈[-1; 1] and the
radii must strictly be positive b ∈[0; 1].
The parameter vector can so be defined as

θ = [α, ci,j, bi,j, ωi] (4.8)
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and the numbers of policy parameters is:

nθ = N(2M + nu) + 1 (4.9)

When DPS problems involve multiple objectives, they can be coupled with
multiobjective optimization methods, such as MultiObjective Evolutionary al-
gorithms (MOEAs). MOEAs evolve a Pareto-approximate set of solutions by
mimicking the randomized mating, selection, and mutation operations that
occur in nature (Coello et al., 2007). The algorithm works as follows: given a
dataset D, a model structure M, an objective (fitness) function J(θ, D, M) at
first the MOEA randomly generates a population of P individuals (θ1, θ2, ..., θP)
and for each individual in the population (i=1,...P), it computes the objective
function J(θi, D, M). The algorithm then selects a subset of individuals based
on their fitness value (using the Pareto-optimality principle) calculated in the
previous step. Once the best individuals are selected, a new population has
to be generated, applying to the best individuals genetic operators, such as
crossover, mutation and replacement. The cross-over generates new offspring
by random combination of the selected individuals, while mutation randomly
modifies some offspring components. The replacement operator replaces some
(or all) the population individuals by the offspring to obtain a new population.
The new generation is then evaluated and the previous steps are repeated until
a termination condition is achieved and the algorithm returns the population
that minimize the objectives values (figure 4.3).
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J,...,J1            q
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policy parameters θk
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Figure 4.3: Schematization of the evolutionary multiobjective direct policy search (EMODPS) ap-

proach; dashed line represents the model of the system and the gray box represents the MOEA algo-
rithm. Figure from (Giuliani et al., 2016a)
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The EMODPS employs the Borg MOEA which has been demonstrated to meet
or exceed the performance of other state-of-the- art MOEAs (Salazar et al., 2016).
The Borg MOEA assimilates several design principles from existing MOEAs
and introduces several novel components (Hadka and Reed, 2013), which in-
clude:

• multiple recombination operators to enhance search in a wide assortment
of problem domains. The Borg MOEA is not a single algorithm but a class
of algorithms whose genetic operators are adaptively selected based on
the problem and the decision variable (Hadka and Reed, 2013), adapting
well to real-world problems where information about the most performing
operator is unknown a priori.

• ε-box dominance archive for maintaining convergence and diversity through-
out search. The Borg MOEA divides the objective space into hyperboxes
with a side length ε, and if two or more solutions reside in the same hy-
perbox, the algorithm keeps only the non-dominated one, adding it to the
archive.

• ε-progress which is a computationally efficient measure of search progres-
sion and stagnation. The Borg MOEA verifies that the optimization peri-
odically produces at least one solution whose improvement exceeds the
minimum threshold ε to avoid stagnation; if this condition is not met,
appropriate actions are taken to either revive search, through the restart
mechanism, or terminate the algorithm (Hadka and Reed, 2013).

4.2.3 Iterative input selection algorithm (IIS)

Input variable selection (IVS) is an important issue associated with the devel-
opment of several hydrological applications. Selecting irrelevant, redundant
inputs from a large set of candidates to characterize a preselected output can
greatly influence model accuracy and add unnecessary model complexity influ-
encing its reliability. IVS methods can be distinguished between model-based
(or wrapper) and model-free (or filter) approaches. Each of these methods has
different benefits and disadvantages.
The model-based approach relies on the idea of calibrating and validating a
number of models with different sets of inputs and to select the set that ensures
the best model performance. Generally, they could achieve better performance
since they are tuned to the specific interactions between the model class and the
data. However, computational costs are very high: a large number of calibra-
tion and validation processes must be performed to select the best combination
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of inputs and so the method does not scale well to a large data set (Kwak and
Choi, 2002);(Chow and Huang, 2005). Moreover, the optimal set of inputs ob-
tained with a particular model is not guaranteed for other model with different
class and architecture (Maier et al., 2010).
On the other hand, in the model-free algorithms, the variable selection is based
on the information content of the candidate input data set, as measured by
interclass distance, statistical dependence, or information-theoretic measure.
This approach has a strong computational efficiency; however, the significance
measure is generally monotonic and, thus, without a predefined cutoff crite-
rion, the algorithm tends to select very large subsets of input variables, with
high risk of redundancy. Given the high number of candidate input variables in
these problems, model-free methods are generally preferred over model-based
approaches (Maier et al., 2010).
Galelli and Castelletti (2013) developed a new method named tree-based iterative
input variable selection algorithm (IIS) that incorporates some of the features
of model-based approaches into a fast model-free method in order to handle
very large candidate input sets. The IIS algorithm is capable of selecting the
most significant and nonredundant inputs with strong ability in characterizing
nonlinear relationships, computational efficiency, and scalability with respect
to input dimensionality.
The IIS algorithm is composed of the following steps (figure 4.4)

1. Given the sample data set D and n candidate inputs, the IIS algorithm runs
an input ranking (IR) algorithm to sort the n candidate inputs according
to a nonlinear statistical measure of significance (e.g., the explained vari-
ance). In principle, the first variable in the ranking should be the most
significant in explaining the output. In practice, in the presence of several
potentially significant, but redundant, inputs, their contribution to the out-
put explanation is equally partitioned and they might not be listed in the
very top positions. To reduce the risk for mis-selection, the first p vari-
ables xj ∈ Xp ⊆ Xi j=1, ...,p in the ranking are individually evaluated in
the following step.

2. The relative significance of the first p-ranked variables is assessed against
the observed output and p single-input-single-output (SISO) models f j(·)
j=1, ...,p, are identified with an appropriate model building (MB) algorithm
and compared in terms of a suitable distance metric (e.g., coefficient of
determination, mean-squared error, etc.) between the output y and each
SISO model prediction f j(xj). The best performing input x∗ among the p
considered is added to the Xi

y set of the variables selected to explain the y.
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3. A MB algorithm is then run to identify a multi-input-single output (MISO)
model m(·) mapping the input variables Xi

y so far selected into the output
y.

The procedure is repeated using the residuals between (y- m(Xi
y)) the output of

the model and the observed data as the new output variable in steps 1 and 2,
and these operations are iterated until either the best variable returned by the
IR algorithm is already present in the input selected set Xi

y or the performance
of the underlying model, measured with the metric D, does not significantly
improve. The reevaluation of the ranking on the model residuals every time a
candidate variable is selected ensures that all the candidates that are highly cor-
related with the selected variable, and thus may become useless, are discarded
(Galelli and Castelletti, 2013).

Figure 4.4: Flowchart of the Iterative Input Variable Selection (IIS) algorithm (Galelli and Castelletti,
2013).
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The IIS algorithm is combined with Extremely Randomized Trees (Geurts et al.,
2006) as regression model that describes the relationship between input and
output variables. Tree-based regressors are characterized by a tree-like struc-
tures, composed of decision nodes, branches, and leaves, which form a cascade
of rules leading to numerical values. The tree is obtained by first partitioning
at the top decision node, with a proper splitting criterion, the set of the input
variables into two subsets, thus creating two branches. The splitting process is
then repeated in a recursive way on each derived subset, until some termina-
tion criterion is met. When this process is over, the tree branches represent the
hierarchical structure of the subset partitions, while the leaves are the smallest
subsets associated to the terminal branches. Each leaf is finally labeled with a
numerical value.
There are three parameters M, K, and nmin that characterize the model building
algorithm and diversely affect the ensemble performance and overall method
efficiency. M defines the number of trees that compose a forest. This parameter
controls the reduction of variance aggregate model. High values of M reduce
the variance of the final estimate, but they also considerably increase the cal-
culation time. K identifies the number of regression input chosen randomly at
each node and it controls the level of randomness in the tree building process.
Its value can be chosen from 1 to n, with n being the number of input variables.
The smaller K, the stronger the randomization of the trees and the weaker the
dependence of their structure on the values of the output variable in the train-
ing dataset. In the extreme case, when K is equal to 1, the splits (cut-directions
and cut-points) are chosen in a totally independent way of the output vari-
able and the method builds totally randomized trees. Finally, nmin parameter
specifies the minimum sample size for splitting a node. The threshold nmin is
used to balance bias and variance reduction. Large values of nmin lead to small
trees, with high bias and small variance; conversely, low values of nmin lead to
fully-grown trees, which may overfit the data. The optimal tuning of nmin can
depend on the level of noise in the training dataset: the noisier the outputs, the
higher the optimal value of nmin should be. A value of nmin between 5 and 50
represents a robust choice in a broad range of typical conditions (Geurts et al.,
2006).
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4.2.4 Synthetic forecast generation

Synthetic forecast ensembles have increasingly been used in the context of long-
term planning exercises and multidecadal climate projections (Herman et al.,
2015; Kasprzyk et al., 2013; Steinschneider et al., 2015). As an example, Nayak
et al. (2018) developed synthetic, short-term meteorological forecasts for a past
period when forecasts were not available. Synthetic precipitation and tempera-
ture forecasts were then converted into streamflow value by adopting a run-off
model. Dumont Goulart (2019) extended Nayak et al. (2018) work by directly
generating a synthetic inflow forecast into future periods and assessing fore-
cast value under different climate change scenarios. In this thesis, we adopted
the same method to produce synthetic traces of an existing forecast model, by
using the K-Nearest Neighbor algorithm (KNN).
The model requires two datasets, one is the simulation dataset corresponding
to the projected inflows, and the second is the training dataset which includes
historical observations that have corresponding forecast data. The algorithm
measures the Euclidean distance between each inflow value in the simulation
dataset, Qt, and all the inflows from the training dataset observed in the same
month as Qt. Only the K closest values are then considered when selecting the
best match Qt∗, and these values do not have equal weight, as they follow a
kernel density function. The closer to the observed data a value is, the higher
its weight is and the more probable it is to be chosen. Moreover, for each ob-
servation qt in the training dataset, the forecast error can be computed as :

ε̂q,t = log q̂t − log qt (4.10)

where ε̂q,t is the error originated by the difference between the observed qt and
the forecasted q̂t inflows. The formulation in eq. 4.10 assumes an additive resid-
ual in logarithmic form based on the results obtained by Dumont Goulart (2019).
Then, the model generates the synthetic forecast for the simulation period by
using the forecast errors of the observations in the training data associated by
the KNN algorithm.
It is highly important to remind that this approach implicitly assumes that the
forecast error residual propagation of the synthetic forecast is stationary over
time.
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4.3 Experiment setting

The assessment of the forecast value under historical hydrologic conditions was
performed over the period 1993-2014 for which the SMHI forecasts are avail-
able, while we focus on the period 2071-2100 for the climate change analysis.

The baseline and informed operating policies for both historical and future con-
ditions are solved by the EMODPS method. The operating policies are defined
as Gaussian Radial Basis Functions (RBFs). For baseline operating policies,
the RBFs were defined using 4 basis (N), 3 inputs (M) and 1 output (nu), for
a total of 29 parameters. Conversely, for the informed operating policies, the
RBFs were defined using 6 basis (N), 5 inputs (M) and 1 output (nu), for a to-
tal of 67 parameters (equation 4.9). The policy parameters are optimized using
the self-adaptive Borg MOEA (Hadka and Reed, 2013), by setting the Number
of Function Evaluation (NFE) equal to 1,000,000 and by considering 10 repeti-
tions (NSEEDS) of the optimization process to filter the uncertainty caused by
the random operators of the Borg MOEA.

In the selection of the most informative lead time, perfect streamflow fore-
casts with different lead times were considered as input variables in the IIS
algorithm. Perfect forecasts of cumulative inflows from 1965 to 2016 were com-
puted over seven different lead times, ranging from 1 month to 7 months ahead.
In addition to the cumulative future streamflow, both the minimum and maxi-
mum from 2 months to 7 months are also included to account for the extreme
events. The 19 considered input variables are summarized in table 4.1. We
consider as output variable the difference between the sequence of reservoir
releases derived under the perfect operating policy and the baseline operating
policy obtained under historical hydrological conditions. IIS algorithm param-
eters were set as: numer of trees in the forest M=500, minimum sample size for
splitting a node nnmin= 20, number of regression input K= 19 and number of IIS
algorithm runs nrun=15. Further analysis justifying the use of the parameters is
reported in Appendix A.2.

Table 4.1: Set of perfect seasonal inflow forecasts over different lead times.

Name Description

Lead 1, ..., 7 Cumulative future inflow
over 1,. . . ,7 months

Leadmin 2, ..., 7 Minimum future inflow
over 2,. . . ,7 months

Leadmax 2, ..., 7 Maximum future inflow
over 2,. . . ,7 months
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Results

In this chapter the numerical results obtained are presented for the histori-
cal and future conditions by adopting the Information Selection Assessment
framework. A final comparison of the forecast value under these two time pe-
riods is also provided.

5.1 Historical conditions

This section reports the results obtained following the three blocks of the ISA
framework for assessing the value of seasonal streamflow forecasts in inform-
ing the GERD operation during the historical time period 1993-2014.

The first step aims at quantifying the expected value of perfect information
(EVPI) as the gap between the Baseline and Perfect Solutions, which provides
a measure of the maximum improvement in the system performance. The ob-
tained value of EVPI is reported in table 5.1: the ideal solution designed under
the assumption of perfect knowledge of future inflows allows gaining 283.41
GWh/y in the annual hydropower production with respect to the Baseline So-
lution, which corresponds to a 1.73% improvement. The maximum space for
increasing the hydropower production of the GERD baseline operations not
informed by any forecast is relatively small, making the use of additional in-
formation like streamflow forecast non promising. After this first result, we fo-
cused on the system’s performance during the wet season from June to Septem-
ber (Kiremt season), when most of hydropower production is allocated be-
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cause of high inflow values. This season, as reported in section 2.5, was rec-
ommended by state-of-art researches for seasonal forecasting due to the cor-
relation to ENSO phenomenon. Figure 5.1 (a) illustrates the monthly inflow
boxplots over the period 1965-2017, along with the corresponding cyclosta-
tionary mean (red line), and shows the strong hydrologic variability existing
in the wet season (Kiremt season) of the basin. In addition, figure 5.1 (b) re-
ports the cyclostationary mean of the hydropower production obtained under
the perfect (black line) and baseline (blue line) operating policies over the pe-
riod 1965-2017, showing that most of hydropower production occurs during
the June-September season. However, the perfect operating policy keeps the
hydropower production higher during the wet season, while the baseline op-
erating policy produces more energy during the dry season from November to
May. Table 5.1 summarizes the system’s performance improvement between
Perfect and Baseline Solutions comparing the annual and June-September (wet
season) hydropower production and the corresponding absolute gain and rel-
ative gain. The performance difference between Perfect and Baseline Solutions
evaluated only in the Kiremt season is equal to 18.25%, suggesting that fore-
casts could have a great value in this particular time of the year.
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Figure 5.1: (a) Cyclostationary mean and boxplots of monthly inflow; (b) Cyclostationary mean of the
hydropower production obtained under the perfect (black) and baseline (blue) operating policy. Time
period: 1965-2017.

Table 5.1: Expected value of perfect information: the performance improvement between the perfect and
baseline solution considering annual hydropower production and June-September (Kiremt season)
hydropower production.

Policy Hydropower production Absolute gain Relative gain
Baseline solution 16.430 TWh/y - -
Perfect solution 16.714 TWh/y +283.41 GWh/y +1.73%

Baseline solution Kiremt season 10.761 TWh - -
Perfect solution Kiremt season 12.725 TWh +1963.64 GWh +18.25%
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In the second step of the ISA framework, the selection of the most informative
lead time was performed via IIS algorithm. Figure 5.2 reports the results of 15
runs of the algorithm, where the repetition of the experiments aims at filter-
ing the randomness associated to the construction of the extra-trees models. In
this parallel axes representation, each variable, corresponding to a candidate
forecast with different lead times (see Table 4.1), is represented as a coloured
line crossing the three axes at the values of the related performance in terms
of frequency of selection, average position, and average relative contribution
expressed as coefficient of determination R2. The reported performance is nor-
malized between their minimum and maximum values and the axes are ori-
ented so that the direction of preference is always upward. Consequently, the
most relevant forecast lead time would be represented by a horizontal line run-
ning along the top of all the axes, meaning a variable that is selected with high
frequency, in the first position, and with the largest relative contribution (Giu-
liani et al., 2015). Figure 5.2 (a) identifies variables Lead1 and Leadmin3 (solid
lines), namely inflow value over one month and minimum over three months,
as the first and second most relevant forecast, respectively. This result shows
that inflow volumes can be more important in the first month, while extremes
can prevail at longer time horizons.
In the following analysis, the two selected lead times are considered together to
design GERD informed operating policy. Indeed, the cumulated performance
of the regression model for 12th run (see figure 5.2 b) shows that the two vari-
ables indipendently account for almost an equal R2 contribution of 38.6% and
39.51%, respectively, leading to a high cumulated coefficient of variation (R2)
of 78.11%.
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Figure 5.2: Information selection results obtained via 15 runs of the IIS algorithm setting M= 500, K
=19, nmin=20: (a) for each lead times, the frequency of selection, the average position, and the average
relative contribution in terms of coefficient of determination R2; (b) Cumulated performance of the
regression model for 12th run.
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In the variable selection, we considered as input candidates, perfect forecasts
built from historical observational data. However, in order to reproduce a re-
alistic decision making environment, we then test the value of the seasonal
forecasts provided by the SMHI. Figure 5.3 illustrates the scatterplot between
observed and forecasted inflow over the two selected lead times, showing no
particular bias with a Pearson correlation coefficient equal to 0.785 and 0.85 for
Lead1 and Leadmin3, respectively. Figures 5.4 (a), (b) compare the trajectory of
observed (black line) and forecasted (red line) inflow for Lead1 and Leadmin3.
In general, SMHI forecasts tend to underestimate inflow values during the dry
season (January-May), while the peak value (August) is overestimated for some
years and underestimated for others. Figures 5.4 (c),(d) represent the cyclosta-
tionary mean of observed (black line) and forecasted inflow (red line) showing
that the two trajectories have the same annual pattern and that forecasts on av-
erage underestimate observed inflows.
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Figure 5.3: (a) Scatterplot between observed and forecasted inflow over one month; (b) scatterplot be-
tween observed and forecasted minimum inflow over three months.

The last step of the ISA framework quantifies the expected value of sample
information as the performance difference between Baseline and Forecast So-
lutions. Forecasted inflows for Lead1 and Leadmin3 are used as inputs to inform
the GERD operating policy. Results show that forecasts produce an absolute
gain with respect to the baseline operation policy in the annual hydropower
production of 80.57 GWh/y, which corresponds to a 0.49% improvement. As
expected, this result confirms our first supposition that forecasts slightly im-
prove the system performance if we evaluate the objective over all months of
the year. We then restrict the analysis to the system performance during the
wet June-September season (Kiremt season) and we obtained a relative gain
between the Baseline and Forecast Solutions of 16.66%. This final result shows
clearly that forecast information becomes mostly valuable during the wet sea-
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Figure 5.4: (a) Trajectory of observed and forecasted inflow over one month; (b) Trajectory of observed
and forecasted minimum inflow over three months; (c) Cyclostationary mean of observed and fore-
casted inflow over one month; (d) Cyclostationary mean of observed and forecasted minimum inflow
over three months.
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son with gains almost near to Perfect Solution. Table 5.2 summarizes the overall
results obtained while assesing the forecast value considering historical condi-
tions (1993-2014).

Table 5.2: The performance improvement between the Perfect and Baseline Solution and between Fore-
cast and Baseline Solution considering the annual hydropower production and the June-September
(Kiremt season) hydropower production.

Policy Hydropower production Absolute gain Relative gain
Baseline solution 16.430 TWh/y - -
Perfect solution 16.714 TWh/y +283.41 GWh/y +1.73%

Forecast solution 16.511 TWh/y +80.57 GWh/y +0.49%
Baseline solution Kiremt season 10.761 TWh - -
Perfect solution Kiremt season 12.725 TWh +1963.64 GWh +18.25%

Forecast solution Kiremt season 12.554 TWh +1793.17 GWh +16.66%

Additionally, we analyzed the dynamic behavior of the system under different
operating policies conditioned over distinct information as reported in figure
5.5. An operating policy with a perfect knowledge of future inflows (black
line) is able to maintain the highest level (approximately at 140 m) by storig
water during the dry season (January-May) and releasing it in the wet season
(June-September), thus producing more energy. Conversely, GERD operating
policy informed with basic information (blue line) can not anticipate the high
inflow variability occuring in the wet season, thus preferring to release more
water during the dry season and leading to values of level that oscillate from
140 m to 135 m. Consequently, the hydropower production in the wet season
is lower with respect to the perfect solution (black line). Forecasts (red line) are
able to inform the policy about the incoming inflow despite the large hydrolog-
ical variability, allowing to get higher values of hydropower production than
the Baseline Solution, with the trajectory of reservoir level that remains closer
to the one obtained with the Perfect Solution. Figure 5.6 illustrates the level,
the release and the hydropower production along the entire historical time pe-
riod 1993-2013. It’s important to note in figure 5.6 (a) that for years 1997, 1998,
2009, and 2010 the Forecast Solution (red line) leads to lower levels than under
the Baseline (blue) and Perfect (black) Solutions. This is due to the fact that,
in these particular years, forecasts largely overestimate the peak of the actual
inflow (figure 5.4(a),(b)).
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Figure 5.5: System dynamics under the perfect (black line) baseline (blue) and forecast (red) operating
policies: (a) cyclostationary mean of GERD level; (b) cyclostationary mean of GERD release; (b)
cyclostationary mean of GERD hydropower production.
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Figure 5.6: The system dynamics under the baseline (blue line), perfect (black line), and forecast (red
line) operating policies for historical time period 1993-2013. (a) Gerd’s level; (b) Gerd’s release; (c)
Gerd’s hydropower production.
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5.2 Future conditions

As explained in chapter 4, we adopted the same methodology to assess the
value of seasonal forecasts under future climate scenarios. However, to de-
sign the perfect, baseline, and forecast operating policy, the trajectories of "ob-
served" and "forecasted" inflows projected into future condition should be gen-
erated. We first report the analysis and results that led us to obtain these two
trajectories and we then invastigate the forecast value.

5.2.1 In�ow projection

In order to compute the projected inflows, we need to understand which are the
climate scenarios to be considered. We anaylized δ values defined as monthly
mean value of expected percent change of water discharge (eq. 3.8) given by the
different climate models listed in table 3.4 for the RCP 4.5 and the RCP 8.5 sce-
narios over the time periods 2011-2040, 2041-2070, 2071-2100 as shown in figure
5.7. We can notice that there are some models that return anomalous (high) val-
ues of δ. To identify the models producing non realistic scenarios, we compare
the historical simulated inflows by each climate model with monthly boxplots
of observed data. Results in figure 5.8 show that all models underestimate in-
flows for the first three months of the year (January-February-March) and there
are also models that largely overestimate inflows during the wet season (June-
September). Therefore, we removed climate models that produce inflows that
are out of the range of historical hydrological variability, in particular, mod-
els number 4, 6, and 7, corresponding to models ACCESS1.3, IPSL-CM5A-LRI,
IPSL-CM5A-MR 3.4 that simulate value of inflow outside the boxplot of the ob-
servations for at least 2 months during the wet season.
However, most of climate models also compute high values of δ in the first
three months of the year (dry season). To further adjust these values, we first
combined the remained climate models by computing the median value of δ

for each month in order to filter possible additional spikes. Then, we calcu-
lated the projected inflows following equation 3.9 and, finally, we applied a
correction factor to the first three months of the year definied as the ratio be-
tween simulated and observed inflows during the historical period. Moreover,
we considered as future reference period the 2071-2100 since δ curves for the
selected future horizon, as reported in figure 5.7, are quite smooth and also
amplify the differences between the future scenarios and the historical period.
Figure 5.9 compares the cyclostationary mean of projected inflows for the RCP
4.5 and the RCP 8.5 scenarios with the observed historical data. We can no-
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Figure 5.7: δ monthly mean value of expected percent change of water discharge for each climate scenar-
ios: black lines represent δ values computed by different climate models, red line indicates the median
value for each month.
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Figure 5.8: Simulated historical inflows by each climate model compared with the boxplots of historical
observed inflows. 57



5. Results

tice that future scenarios will be characterized by a reduction of inflows during
the dry season (January-March) and an increase during the wet season (June-
September); overall, the annual inflow (figure 5.10) increases with respect the
historical period. These results seem reasonable since climate change is ex-
pected to accentuate extreme climate conditions (Coffel et al., 2019).
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Figure 5.9: Cyclostationary mean of projected inflows for the RCP 4.5 (green line) and the RCP 8.5 (red
line) scenarios in period 2071-2100 compared with the cyclostationary mean of historical inflows
(blue dashed line).
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Figure 5.10: Annual projected inflows for the RCP 4.5 (green line) and the RCP 8.5 (red line) scenarios
in period 2071-2100 compared with historical annual inflow (blue dashed line) 1993-2014.
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5.2.2 Forecast projection

To assess the forecast value under future conditions, we also developed a syn-
thetic generator model that mimics the existing SMHI forecasts and produces
a forecast ensemble for the future scenarios. The KNN approach described in
section 4.2.4 is used to generate a 25-member forecast ensemble working on
the additive log-scale residuals. The algorithm compares forecasted inflows to
the observed ones over the historical period in order to model the forecast er-
rors and then propagates the forecast uncertainty to the projected inflow. It is
worth reminding that this approach assumes stationarity in the forecast skill,
assuming that forecasts in the future will be characterized by the same level
of accuracy (i.e., same residuals) shown in the historical period. The model
is calibrated over the training period 1993-2014, validated over the 1965-2016
and then applied to each scenario of projected inflows for the time period 2071-
2092. Two type of forecast lead times are considered, namely one month ahead
(Lead1) and the minimum over three months (Leadmin3) based on the results ob-
tained in section 5.1. Figure 5.11 illustrates a scatterplot between observed and
forecasted inflows, including both the real forecasts which are available only
over the time period 1993-2014 and the synthetic one generated for the histori-
cal period 1965-2016. The figure shows that the synthetic forecasts successfully
reproduce the skill of the real forecasts. Figure 5.12 gives further evidence to
the quality of the synthetic results by showing that the synthetic forecasts are
again similar to the observed ones in terms of residual-observation relation-
ship. Both sets of data are distributed according to a triangular shape with the
majority of the errors being close to zero. The histograms presented in figure
5.13 also show some similarities between real and synthetic forecasts. Figures
5.14 and 5.15 report scatterplots between observed and forecasted inflows, in-
cluding both real forecasts for historical period 1993-2014 (black triangles) and
the synthetic forecasts generated for the future climate scenarios in period 2071-
2092 (blue circles). In the future scenarios synthetic forecasted inflows deviate
more from the historical data and the peak values are amplified due to inflow
increase.
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Figure 5.11: Scatterplot presenting the forecasted inflow based on the observed inflow over one month
Lead1 (top panel) and minimum inflow over 3 months Leadmin3 (low panel). Black triangles repre-
sent the historical data (1993-2014) and the red circles the synthetic forecast generated for the time
period (1965-2016).
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Figure 5.12: Relationship between the residual inflow and the observed inflow over one month Lead1
(top panel) and minimum inflow over 3 months Leadmin3 (low panel). Black triangles represent the
historical data (1993-2014) and the red circles the synthetic forecast generated for the time period
(1965-2016).
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Figure 5.13: Histogram with magnitude and frequencies of the residuals for both historical (1993-2014)
and synthetic cases (1965-2016). Black represents the historical and red the synthetic generated
inflow over one month Lead1 (top panel) and minimum inflow over three months Leadmin3 (low
panel).
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Figure 5.14: Scatterplot presenting the forecasted inflow based on the observed inflow over one month
Lead1 (top panel) and minimum inflow over 3 months Leadmin3 (low panel). Black triangles repre-
sent the historical data (1993-2014) and the red circles the synthetic forecast generated for the RCP
4.5 scenario in the time period (2071-2092).
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Figure 5.15: Scatterplot presenting the forecasted inflow based on the observed inflow over one month
Lead1 (top panel) and minimum inflow over 3 months Leadmin3 (low panel). Black triangles repre-
sent the historical data (1993-2014) and the red circles the synthetic forecast generated the RCP 8.5
scenario in the time period (2071-2092).
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5.2.3 Forecast value

Once we obtained the trajectories of "inflows" and "forecasts" projected into fu-
ture climate change scenarios, we quantified the EVPI as the performance im-
provement between the Perfect and Baseline Solutions by obtaining an absolute
gain in the annual hydropower production of 690.13 GWh/y for the RCP 4.5
scenario and 625.89 GWh/y for the RCP 8.5 scenario corresponding to a relative
gain of 3.62% and 2.96%, respectively. As we did for the historical conditions,
we also investigated the system performance during the June-September wet
(Kiremt) season. In this case, results show again larger gains in hydropower
production corresponding to a 79.31% and 61.58% improvement for RCP 4.5
and RCP 8.5. Finally, we assessed the projected forecast value by computing
the difference in system performance between the Forecast and Baseline So-
lutions. Once again, results demonstrate the high potential value of forecast
information during the wet season: we obtained a relative gain in hydropower
production of 40.47% and 34.27% for the RCP 4.5 and the RCP 8.5 scenarios,
respectively (tables 5.3- 5.4). The system dynamics under the three operating
policies for the two climate scenarios is reported in figures 5.16 and 5.17 show-
ing the GERD’s level, release, and hydropower production. We can notice that
the perfect operating policy (black line) is able to keep a high reservoir level
around 140 m by storing water during the dry season and releasing it in the
wet season, allowing for high hydropower production. The baseline operating
policy (blue line) can not anticipate the large amount of water coming during
the wet season and prefers releasing more water in the dry season leading to a
trajectory of level that oscillates from 140 m to 130 m. The forecast operating
policy (red line) is instead able to predict future inflows and attains a higher
hydropower production than the Baseline Solution.
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Figure 5.16: The system dynamics under the baseline (blue line), perfect (black line), and forecast (red
line) operating policies for climate scenario RCP 4.5 in time period 2071-2091. (a) Gerd’s level; (b)
Gerd’s release; (c) Gerd’s hydropower production.
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Figure 5.17: The system dynamics under the baseline (blue line), perfect (black line), and forecast (red
line) operating policies for climate scenario RCP 8.5 in time period 2071-2091. (a) Gerd’s level; (b)
Gerd’s release; (c) Gerd’s hydropower production.
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5.3 Comparison: historical and future conditions

A final comparison of the system performance under historical and future con-
ditions is reported in figures 5.18- 5.19 and tables 5.3- 5.4, in terms of both
annual and wet season hydropower production. We can notice (figure 5.18)
that the annual hydropower productions obtained by the different operating
policies in the future scenarios are higher than those in the historical period,
especially in the RCP 8.5 scenario. In particular, the perfect operating policy
attains a production of 19.761 TWh/y and 21.785 TWh/y for the RCP 4.5 and
the RCP 8.5 scenarios compared to the historical performance of 16.714 TWh/y.
These results can be explained by the large increase of annual inflow volumes
in future scenarios. The baseline operating policy attains production slightly
lower than the Perfect Solution in both historical and future conditions.
When focusing on the wet (Kiremt) season (figure 5.19), results show that the
perfect operating policy in future scenarios leads to values of hydropower pro-
duction equal to 14.278 TWh and 15.123 TWh for the RCP 4.5 and the RCP 8.5
scenarios with respect to the historical performance of 12.725 TWh. However,
the projected hydropower production under the baseline operating policy de-
creases since the policy is conservative with respect to the increasing inflow
caused by climate change. This strategy increases the gap with respect to the
perfect operating policy, thus enlarging the space for benefitting from forecast
information.
Table 5.3 summarizes the overall results, showing that the maximum space for
increasing the annual hydropower production in the future increases mainly
for the scenario RCP 4.5, with an improvement between the Perfect and Base-
line solutions of 3.62% and a gain between the Forecast and Baseline Solutions
of 1.27%. During the Kiremt season (table 5.4), seasonal forecasts lead to very
large gains of 40.47% and 34.276% for the RCP 4.5 and the RCP 8.5 scenarios,
respectively, confirming their high potential value in projected conditions.
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Figure 5.18: Comparison of the performance improvement between different operating policies under
the historical and the future conditions in terms of annual hydropower production.
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Figure 5.19: Comparison of the performance improvement between different operating policies under
the historical and the future conditions in terms of hydropower production during the wet (Kiremt)
season.
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Table 5.3: Comparison of the performance improvement between different operating policies under the
historical and the future conditions in terms of annual hydropower production.

Period Policy Hydropower production Absolute gain Relative gain Economic gain

Historical
Baseline solution 16.430 TWh/y - - -
Perfect solution 16.714 TWh/y +283.41 GWh/y +1.73% +22.67 M USD/y

Forecast solution 16.51 TWh/y +80.57 GWh/y +0.49% +6.45 M USD/y

Future RCP 4.5
Baseline solution 19.071 TWh/y - - -
Perfect solution 19.761 TWh/y +690.13 GWh/y +3.62% +55.21 M USD/y

Forecast solution 19.313 TWh/y +241.91 GWh/y +1.27% +19.35 M USD/y

Future RCP 8.5
Baseline solution 21.159 TWh/y - - -
Perfect solution 21.785 TWh/y +625.89 GWh/y +2.96% +50.07 M USD/y

Forecast solution 21.257 TWh/y +98.379 GWh/y +0.465% +7.87 M USD/y

Table 5.4: Comparison of the performance improvement between different operating policies under the
historical and the future conditions in terms of hydropower production during the wet (Kiremt)
season.

Period Policy Hydropower production Absolute gain Relative gain Economic gain

Historical
Baseline solution 10.761 TWh - - -
Perfect solution 12.725 TWh +1963.64 GWh +18.25% +157.09 M USD

Forecast solution 12.554 TWh +1793.17 GWh +16.66% +143.45 M USD

Future RCP 4.5
Baseline solution 7.963 TWh/y - - -
Perfect solution 14.278 TWh +6315.64 GWh +79.31% +505.25 M USD

Forecast solution 11.185 TWh +3222.51 GWh +40.47% +257.80 M USD

Future RCP 8.5
Baseline solution 9.359 TWh - - -
Perfect solution 15.123 TWh +5763.5 GWh +61.58% +461.08 M USD

Forecast solution 12.567 TWh +3207.99 GWh +34.276% +256.64 M USD

The results discussed so far can be integrated to provide an estimate of
the economic value of the forecasts used in conditioning the GERD opera-
tions. This monetary value can also be considered an estimate of the maximum
amount a decision maker might be willing to pay in order to acquire the hydro-
climatic service offered by SMHI in order to increase the GERD hydropower
production. In this analysis, we transform the production into a gross revenue
by using a constant energy price equal to 0.08 USD per kilowatt hour (Block
and Strzepek, 2010; Jeuland and Whittington, 2014). The economic gains obtained
under the forecast operating policy correspond to +6.45 Million USD/y for the
historical period, +19.35 Million USD/y for the RCP 4.5 and +7.87 Million US-
D/y for the RCP 8.5 scenarios (table 5.3). These results show that even though
relative gains of the annual hydropower production are very low suggesting
that forecasts might not be relevant, the energy produced in any case is high
leading to large economic values. The economic gains by adopting the fore-
cast operating policy is further expanded during the wet season with values of
+143.45 Million USD for the historical period, +257.80 Million USD for the RCP
4.5 and +256.64 Million USD for the RCP 8.5 scenarios (table 5.4).
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The recent advance in skills of hydroclimatic services are motivating the uptake
of these systems in order to improve water resource management strategies.
Forecasts can anticipate both short-term events like floods and long-term phe-
nomena such as droughts, and many studies indicate the advantages of using
forecast information in water system operations. However, how to best inform
hydropower systems operations is still an open question since hydropower can
benefit from hydroclimatic services over a broad range of time scales, from
short-term to seasonal and decadal time horizons.

This thesis contributes a novel machine-learning procedure to quantify the
value of seasonal forecasts as their contribution to increasing the hydropower
production of the Grand Ethiopian Renaissance Dam (GERD) in Ethiopia. The
quantification of the forecasts value, relies on the Information Selection Assess-
ment framework, which is applied to a service based on bias adjusted ECMWF
SEAS5 seasonal forecasts used as input to the World-Wide HYPE hydrological
model. First, we evaluated the expected value of perfect information as the
potential maximum improvement of a baseline operating policy relying on a
basic information with respect to an ideal operating policy designed under the
assumption of perfect knowledge of future conditions. Results show that the
maximum space for increasing the hydropower production of the GERD base-
line operations not informed by any forecast is relatively small, corresponding
to 1.73% of improvement with respect the solution given by a perfect operating
policy. However, this potential gain becomes larger (18.25%) when we focused
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on the performance during the heavy rainy season from June to September
(Kiremt season), making room for the uptake of forecast information. This sea-
son was recommended by state-of-the-art researches for seasonal forecasting in
the region due to the high correlation with ENSO phenomenon which may con-
tribute to extending hydrologic predictability. In the second step, we selected
the most informative lead times of inflow forecast by employing the Iterative
Input Selection algorithm (IIS) and we identified inflows over one month and
the minimum over three months as first and second most relevant lead times,
meaning that inflow volumes can be more important in the first month while
extremes can prevail at longer time horizons. Finally, we assessed the expected
value of sample information as the performance improvement that could be
achieved when the inflow forecasts for the selected lead times are used to in-
form operational decisions. As expected, results show a small improvement of
0.49% when considering an annual hydropower production and a large gain
16.66% when focusing on the system performance during the wet (Kiremt) sea-
son. This final result shows clearly that forecast information becomes mostly
valuable during the wet season since seasonal forecasts allow to promtly antici-
pate the hydropower operation by predicting the large hydrological variability
that characterizes this particular period of the year.
In addition, we analyzed the potential value of forecast information under dif-
ferent future climate scenarios. We first generate the projected inflows over
climate change scenarios and develop a synthetic forecast model to generate
streamflow forecasts for the future scenarios. We then applied the same method-
ology as we did in the historical conditions. The overall results show an in-
crease of annual hydropower production in the future, when evaluating the
system perfomance with and without forecasts since annual inflows are ex-
pected to increase. However, the gains in the annual production by adopt-
ing forecast information are still small, corresponding to 1.27% for the RCP 4.5
scenario and 0.46% for the RCP 8.5 scenario over the period 2071-2100. The
forecast value is again larger during the wet season with gains of 40.47% and
34.276% for the RCP 4.5 and the RCP 8.5 scenarios, respectively. These large
improvements obtained in the future scenarios with respect to the historical
conditions are probably due to the fact that climate change is expected to ac-
centuate extreme events by further decreasing inflows in the dry season and
increasing it in the wet season. Therefore, having a forecast system that can
anticipate future inflow volumes allows a better allocation of water during the
year, thus producing more hydroelectric energy. Our final analysis converted
the forecast value into economic terms showing large gains during the Kiremt
season of +143.45 Million USD for the historical period, +257.80 Million USD
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for the RCP 4.5 scenario, and +256.64 Million USD for the RCP 8.5 scenario.

It is worth reminding that these results were obtained making different as-
sumptions. We first assumed that the Grand Ethiopian Renaissance Dam (GERD)
is all completed and the reservoir is fully filled. Today the dam construction is
almost finished and it will require from 5 to 15 years to fill the reservoir. More-
over, we neglected the presence of the downstream countries, mainly Sudan
and Egypt that will be affected by a reduction of water availability at least dur-
ing the filling period. In particular, Egypt has voiced concerns that the GERD
would negatively impact the country’s water supply, especially in light of over-
population fears, and has thus insisted throughout negotiations that measures
has to be put in place to protect downstream countries in case of droughts dur-
ing the filling process of the dam. An agreement on the GERD will be trans-
formational for the region, resulting in significant transboundary cooperation,
regional development and economic integration, and improvement in the lives
of the more than 250 million people of Egypt, Ethiopia, and Sudan. In this con-
text, the added production obtained with the forecast-informed operations of
the GERD may represent an additional option in the current negotiations about
the dam impacts.
Further research effort could be addressed to assess the forecast value consid-
ering downstream countries’ interest such as the minimization of water deficit
for Egypt and minimization of irrigation water deficit for Sudan.
Additionally, since seasonal forecasts lead to an increase of hydropower pro-
duction especially during the Kiremt season, it could be interesting to translate
this gain in production into economic terms by adopting a time-varying price.
The energy market in Ethiopia is set politically and most of hydropower dams,
electricity network, and the distribution stations are all owned by the govern-
mental monopoly, the Ethiopian Electric Power. The existing electric power
generation costs are about 0.09 USD per kilowatt-hour (kWh) and the current
price of electricity is at 0.06 USD per kWh, one of the lowest in Africa. So far the
difference of 0.03 USD per kWh has been subsidized by the Ethiopian govern-
ment (Damte Beyene, 2019). In this thesis, we assumed a constant energy price
equal to 0,08 USD KWh (Block and Strzepek, 2010; Jeuland and Whittington, 2014);
however, this price is expected to rise considerably since the government can
no longer afford to subsidize electricity consumption and is changing its eco-
nomic strategy to guarantee continued interest of foreign investors to invest
into electricity generation projects in Ethiopia.
Finally, the overall methodology adopted in this thesis for quantifying forecast
value could be applied to other case studies characterized by different hydro-
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logical regimes, inflow predictability, and hydropower systems with different
installed and storage capacity.
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Appendix
A

Additional material

A.1 EMODPS: runtime analysis

In order to filter the random components of MOEA algortithms, the optimiza-
tions were reiteraited for 10 seeds where solutions were then combined into a
final reference set and the algorithm is terminated after a fixed number of func-
tion evaluations (NFE). With the runtime analysis we want to verify the conver-
gence of the optimizazion problem through three performance metrics, namely
the Generetional distance, the Additive ε-indicator, and the Hypervolume in-
dicator accounting respectively for convergence, consistency, and diversity.
Generetional distance (figure A.1 (b)) is a measure of convergence and it con-
sists of the minimum point in the average Euclidean distance vector between
solutions in an approximation set and its corresponding nearest solutions in
the reference set (Van Veldhuizen and Lamont, 1998). A large value for this met-
ric implies that MOEA has failed to find a single solution close to the reference
set.
Additive ε-indicator measures the worst case distance (versus the average dis-
tance) required to translate an approximation set solution to dominate its near-
est neighbor in the reference set (Reed et al., 2013). The indicator is very sensitive
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to gaps in tradeoffs and can be viewed as a measure of an approximation set
consistency with the reference set (i.e., all portions of the trade-off are present
as illustrated in figure A.1 (c)). A low value for this metric is desired as it con-
siders the worst-case distance from the reference set (Hadka and Reed, 2013).
The Hypervolume is a measure of diversity and proximity and it quantifies the
volume of the objective space dominated by an approximation set; therefore,
this metric is to be maximized. The hypervolume calculation is performed
across the normalized objective function values, so the values are between 0
and 1, with 1 being the case in which the approximation set dominates the
same volume as the reference set (figure A.1 (d)) (Zitzler et al., 2003).
Figure A.2 illustrates the three performance metrics and the contribution to the
reference set, for the baseline policy optimization under historical conditions
(1993-2014). Each colour line represents one of the 10 seeds of the optimization
process with respect to the increase number of function evaluations. Results
shows that each metric gets better with the increase of NFE, reaching almost a
flat line for all the seeds by the end of the 1 million evaluations, thus confirming
that the selected number of function evaluations are enough to reach conver-
gence. For this reason, we designed Baseline and Forecast operating policy
for historical and future conditions adopting the same number of optimization
seeds and number of function evaluations (NFE).
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A.1. EMODPS: runtime analysis

Figure A.1: llustration of how different metrics capture convergence, diversity, and consistency. (a) A
good approximation to the reference set, is indicated by the dashed line. (b) Generational distance
averages the distance between the approximation set and reference set, requiring only one point near
the reference set to attain ideal performance. (c) The ε-indicator metric focuses on the worst case
distance required to translate a point to dominate its nearest neighbor in the reference set. (d) Hy-
pervolume rigorously captures both convergence and diversity making it the most difficult metric to
satisfy (Reed et al., 2013)
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Figure A.2: Results of the performance metrics for for the baseline policy optimization under historical
conditions (1993-2014).
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Appendix A. Additional material

A.2 IIS algorithm: setting parameters

As reported in section 4.2.3, there are three parameters that characterize the
model building algorithm, namely M the number of trees that compose a forest,
K the number of regression input chosen randomly at each node, and nmin the
minimum sample size for splitting a node. However, this latter mainly affects
the ensemble performance and overall method efficiency since large values of
nmin lead to small trees, with high bias and small variance and low values of
nmin lead to fully-grown trees, which may overfit the data. In this section we
present the results obtained by setting M= 500, K=19 (number of input vari-
ables) for nmin values of 50, 40, 30, 20, 10, 5. The algorithm was run 15th times
in order to filter the randomness associated to extra trees models. Results show
that with high values of nmin, the IIS algorithm ranks the variables in same po-
sition through different runs, but the model performance expressed in term of
the coefficient of determination R2 is low. In contrary, low values of nmin lead to
an increase in R2 value, but the variable ranking along runs is not same, making
difficult to establish which are the most informative variables. A value of nmin

= 20 is chosen in our analysis since IIS algorithm can reach high model perfor-
mance preserving almost the same variable ranking among the different runs.
The following figures represent information selection results obtained via 15
runs of the IIS algorithms for different value of nmin: graph (a) illustrates input
variable ranking through different runs, where blocks with different colour rep-
resent the selected variable; graph (b) shows model perfermance (R2) through
different runs; graph (c) represents for each input variable (forecast lead times),
the frequency of selection, the average position, and the average relative con-
tribution in terms of coefficient of determination R2.
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Figure A.3: Information selection results obtained via 15 runs of the IIS algorithm setting M= 500, K
=19, nmin=50.

(a)

2 4 6 8 10 12 14

IIS run

1

2

3

4

5

6

in
p
u

t 
ra

n
k
in

g

2 4 6 8 10 12 14

IIS run

0.6

0.62

0.64

0.66

m
o
d

e
l 
p

e
rf

o
rm

a
n

c
e
 R

2

(b)

(c)
Leadmin7

Leadmin6

Leadmin5

Leadmin4

Leadmin3

Leadmin2

Leadmax7

Leadmax6

Leadmax5

Leadmax4

Leadmax3

Leadmax2

Lead7

Lead6

Lead5

Lead4

Lead3

Lead2

Lead1
Frequency Avg. position Rel. R2(%)

Direction of

preference

Figure A.4: Information selection results obtained via 15 runs of the IIS algorithm setting M= 500, K
=19, nmin=40.
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Figure A.5: Information selection results obtained via 15 runs of the IIS algorithm setting M= 500, K
=19, nmin=30.
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Figure A.6: Information selection results obtained via 15 runs of the IIS algorithm setting M= 500, K
=19, nmin=20.
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Figure A.7: Information selection results obtained via 15 runs of the IIS algorithm setting M= 500, K
=19, nmin=10.
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Figure A.8: Information selection results obtained via 15 runs of the IIS algorithm setting M= 500, K
=19, nmin=5.
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