

School of Industrial and Information Engineering

Division of Automation and Control Engineering

Master’s Degree in Automation and Control Engineering

HARDWARE DESIGN FIRMWARE DEVELOPMENT &

MULTI-SENSOR BASED CONTROL OF WATER TANK

Submitted by: Atif Jamshaid Person Code: 862452

Supervised by: Prof. Francesco Castelli Dezza Politecnico Di Milano Supervisor

 Ing. Mohamed Eleuche Agena SRL Supervisor

Academic Year 2019-2020

i

HARDWARE DESIGN FIRMWARE DEVELOPMENT &

MULTI-SENSOR BASED CONTROL OF WATER TANK

Master’s Industrial Thesis

Submitted by

Atif Jamshaid

Supervised by

Prof. Francesco Castelli Dezza Politecnico Di Milano Supervisor

 Ing. Mohamed Eleuche Agena SRL Supervisor

School of Industrial and Information Engineering

Division of Automation and Control Engineering

POLITECNICO DI MILANO

Milano, Italia, 2020

ii

ACKNOWLEDGEMENT

First and foremost, I would like to thank the Almighty God to bless me with an opportunity to pursue the

academic path I wished. Secondly, I would like to express my sincere gratitude to Prof. Francesco Castelli Dezza

for guiding me, sparing his valuable time and suggestions during my thesis work.

I would also like to express heartiest indebtedness to Engineer Mohamed Eleuche of Agena S.R.L, for

suggesting this project and continuously guiding and supervising my work. I thank him for providing me all the

hardware: the microcontroller, sensors, LCDs and other electronic devices.

I would like to also thank my parents for their continuous support in all fields of my life, for inspiring me and

motivating me through ups and downs, my siblings and my friends and colleagues who are constant source of

encouragement for me.

Last but not the least, I would also like to thank Politecnico Di Milano and its academic and organizational staff

for humble dealing in all aspects and for providing me a chance to pursue higher education here that I had

wished once.

iii

ABSTRACT

Hardware Design and embedded firmware development constitutes of four steps: 1) Development of product

requirement 2) System design and algorithm development 3) Coding 4) Testing.

In the first phase, the requirements of the product are defined. In this project an electronic board has been

developed that takes analogue temperature, digital temperature, humidity, level and tilt measurements from

various sensors and based on their values pump, fan, buzzer and LEDs are controlled. An external LCD and

Keypad have been used to determine the status of every component.

In the second phase, schematic and printed circuit board have been designed using Computer Aided Design

software, KiCad. Then Gerber files have been generated and sent to the printed circuit board manufacturer.

Meanwhile all the required components based on Bill of Materials (BOM) have been ordered keeping in mind

the price and requirements of the product

In the third phase, coding has been done using C language based on the following things: 1) Requirements of the

product mentioned in the first phase and algorithm developed in the second phase 2) According to the datasheets

of the electronic components, sensors and microcontroller

In the fourth and final phase, printed circuit board has been assembled and programmed using the code

developed in the third phase. Then working of product has been tested using black box and white box testing

techniques.

iv

SOMMARIO

La progettazione hardware e lo sviluppo del firmware incorporato prevedono quattro passaggi: 1) Sviluppo del

requisito del prodotto 2) Progettazione del sistema e sviluppo dell'algoritmo 3) Codifica 4) Test.

Nella prima fase vengono definiti i requisiti del prodotto. In questo progetto è stata sviluppata una scheda

elettronica che prende misure analogiche di temperatura, temperatura digitale, umidità, livello e inclinazione da

vari sensori e in base ai loro valori sono controllati pompa, ventola, cicalino e LED.

Nella seconda fase, schematic e printed circuit board sono stati progettati utilizzando il software Computer

Aided Design, KiCad. Quindi i file Gerber sono stati generati e inviati al produttore del circuito stampato. Nel

frattempo tutti i componenti richiesti basati su bill of materials (BOM) sono stati ordinati tenendo presente il

prezzo e i requisiti del prodotto.

Nella terza fase, la codifica è stata eseguita usando il linguaggio C secondo le seguenti cose: 1) Requisiti del

prodotto menzionati nella prima fase e algoritmo sviluppato nella seconda fase 2) Secondo le schede tecniche dei

componenti elettronici, sensori e microcontrollore.

Nella quarta e ultima fase, il circuito stampato è stato assemblato e programmato utilizzando il codice sviluppato

nella terza fase. Quindi la lavorazione del prodotto è stata testata usando le tecniche di test "Black Box" e "White

Box".

v

This page is intentionally left blank

1

Table of Contents

1 INTRODUCTION ..8

1.1 Problem Statement ..9

1.2 Objectives ...9

1.3 Project Overview ... 10

1.4 Requirement Analysis - Phase-I ... 11

1.4.1 Data Collection Devices ... 11

1.4.2 Control Devices .. 11

1.4.3 Indication Devices .. 11

1.4.4 Input Devices ... 11

1.5 Computer Aided Design - PHASE-II .. 11

1.5.1 Schematic .. 12

1.5.2 PCB Layout ... 12

1.5.3 GERBERS .. 12

1.5.4 PCB Manufacturing .. 12

1.5.5 Assembly .. 12

1.6 Coding - PHASE-III .. 12

1.6.1 Configurations ... 12

1.6.2 Algorithm implementation .. 13

1.7 Testing - PHASE-IV ... 13

1.7.1 Black Box Testing ... 13

1.7.2 White Box Testing .. 13

2 REQUIREMENT ANALYSIS .. 14

2.1 Specifications ... 14

2.2 Data Collection Devices ... 15

2.2.1 Micro Controller .. 15

2.2.2 Analogue Temperature Sensor .. 16

2.2.3 Digital Temperature and Humidity Measurement .. 17

2.2.4 Level Sensor ... 18

2.2.5 Tilt Measurement .. 19

2

2.3 Control Devices .. 20

2.3.1 Fan ... 20

2.3.2 Pump .. 20

2.4 Indication Devices .. 21

2.4.1 LCD ... 21

2.4.2 LED ... 22

2.4.3 Buzzer .. 22

2.5 Input Device ... 23

2.5.1 Keypad ... 23

3 COMPUTER AIDED DESIGN .. 24

3.1 Schematic .. 24

3.1.1 NTC 10K Schematic .. 24

3.1.2 DHT22 Schematic ... 26

3.1.3 59630 Reed Level Sensors Schematic .. 27

3.1.4 I2C Connector for IMU Module ... 28

3.1.5 12 V Pump Schematic .. 29

3.1.6 12 V Fan Schematic .. 31

3.1.7 Buzzer Schematic ... 33

3.1.8 LCD Schematic ... 33

3.1.9 Darlington Connections Schematic.. 34

3.1.10 Key Pad Schematic ... 36

3.1.11 Programmer Schematic ... 37

3.1.12 12V-5V Voltage Regulation Schematic .. 37

3.1.13 3.3V Regulator ... 40

3.1.14 Switch Button Schematics ... 41

3.1.15 Complete Schematic .. 42

3.2 PCB Layout ... 43

3.2.1 Footprints Design ... 43

3.2.2 Size of the board .. 44

3.2.3 Components Placing .. 44

3.2.4 Routing... 45

3.2.5 3D View .. 46

3

3.3 GERBERS .. 48

3.4 PCB Manufacturing .. 49

3.5 Assembly .. 52

4 CODING .. 53

4.1 Configurations ... 53

4.1.1 Analogue Temperature .. 53

4.1.2 Level Measurement ... 54

4.1.3 DHT22 Measurement .. 54

4.1.4 IMU Configuration ... 57

4.1.5 Fan Pin Configuration .. 61

4.1.6 Pump Pin Configuration ... 61

4.1.7 Buzzer Pin Configuration ... 62

4.1.8 LCD Configuration .. 62

4.1.9 Keypad Configuration .. 65

4.1.10 LED Configuration .. 65

4.2 Source Codes ... 66

5 TESTING ... 67

5.1 Black Box Testing ... 67

5.2 White Box Testing .. 68

5.3 Test Cases and Results ... 69

5.3.1 Sensors ... 69

5.3.2 Control Devices Check ... 72

5.3.3 Complete Test .. 75

6 CONCLUSION ... 79

Appendix A .. 80

Source Codes ... 80

Main C File ... 80

Main Header File ... 89

DHT22 C File ... 91

DHT22 Header File ... 94

MPU6050 C File ... 94

MPU6050 Header File .. 98

4

LCD 1602 C File .. 101

LCD1602 Header File ... 106

REFERENCES... 109

5

LIST OF FIGURES

Figure 1: STM32F1RB Nucleo Board .. 15

Figure 2: NTC10K ... 16

Figure 3 DHT22 Module ... 17

Figure 4: 59630 Sensor .. 18

Figure 5: MPU 6050 IMU Module .. 19

Figure 6: 12V Fan ... 20

Figure 7:12V Pump .. 20

Figure 8: LCD1602 .. 21

Figure 9: HSMx-C150 LED .. 22

Figure 10: Piezo Buzzer .. 22

Figure 11: KeyPad .. 23

Figure 12: NTC10K Schematic .. 24

Figure 13: LM358D .. 25

Figure 14: Zener Diode .. 25

Figure 15: DHT22 Schematic .. 26

Figure 16: DHT22 Internal View ... 26

Figure 17: Humidity Measuring Components ... 27

Figure 18: NTC Working ... 27

Figure 19: 59630 Sensors Schematic ... 27

Figure 20: MPU6050 .. 28

Figure 21: Pump Schematic ... 29

Figure 22: Durevole 12V DC Pump .. 29

Figure 23: G5LE Relay .. 30

Figure 24: Relay Function .. 30

Figure 25: Fan Schematic ... 31

Figure 26: DC Axial Fan .. 32

Figure 27: FDD5612 MOSFET ... 32

Figure 28: Buzzer Schematic .. 33

Figure 29: LCD16x02 Connector .. 33

Figure 30: LED Schematic .. 34

Figure 31: ULN2003D (each driver) ... 35

Figure 32KeyPad Schematic... 36

Figure 33: Programmer Schematic .. 37

Figure 34: 5V Regulation Circuit .. 37

Figure 35: LM7805 PINOUT ... 38

Figure 36: LM7805 schematic .. 39

Figure 37: 3.3V Regulator Circuit ... 40

Figure 38: LD1117 .. 41

Figure 39: Switch Button Schematic .. 41

Figure 40: Footprints ... 43

6

Figure 41: Components Placement ... 44

Figure 42: Front Side Copper ... 45

Figure 43: Back Side Copper .. 46

Figure 44: 3D View front .. 46

Figure 45: 3D View Tilt ... 47

Figure 46: 3D View Back .. 47

Figure 47: Front Cu Gerber .. 48

Figure 48: Front Mask Gerber ... 48

Figure 49: Front paste Gerber ... 48

Figure 50: Back Cu Gerber ... 48

Figure 51: Back Mask Gerber ... 48

Figure 52: PCB Top View .. 49

Figure 53: PCB Bottom View .. 49

Figure 54: Top Layer Image ... 50

Figure 55: Bottom Layer Image ... 50

Figure 56: Top Mechanical view .. 51

Figure 57: Final PCB ... 52

Figure 58: DHT22 with 3 Pin Connector .. 54

Figure 59:DHT22 Overall Timing Diagram ... 55

Figure 60: Step 1 DHT22 .. 55

Figure 61: Step 2 DHT22 .. 56

Figure 62: Step 3 DHT22 .. 56

Figure 63: GY521/MOU6050 ... 57

Figure 64: I2C START and STOP Condition ... 58

Figure 65: Acknowledge on the I2C Bus .. 59

Figure 66: Complete I2C Data Transfer .. 59

Figure 67: Single Byte Write Sequence ... 60

Figure 68: Burst Write Sequence ... 60

Figure 69: Single-Byte Read Sequence .. 60

Figure 70: Burst Read Sequence .. 60

Figure 71: LCD 1602 ... 62

Figure 72: Write Sequence .. 63

Figure 73: Read Sequence ... 63

Figure 74: Initialization Sequence ... 64

Figure 75: Testing approaches ... 67

Figure 76: NTC10K Test Results ... 69

Figure 77: Level and Tilt Check .. 70

Figure 78: DHT22 Check .. 71

Figure 79: Fan Control Check ... 72

Figure 80: Pump Control Check ... 73

Figure 81: Buzzer Control Check .. 74

7

LIST OF TABLES

Table 1 : NTC10K .. 16

Table 2: DHT22 Technical Specifications ... 17

Table 3: Electrical Ratings .. 18

Table 4: Electrical Characteristics .. 21

Table 5: LM7805 Pins ... 39

Table 6: GY521/MPU6050 Pins Description .. 57

Table 7: I2C Terms ... 61

Table 8: LCD Pins Description .. 62

Table 9: LCD Pins Connection .. 65

Table 10: KeyPad Pins Connection .. 65

Table 11: KeyPad Pins Connection .. 66

Table 12: Test Case 1 Result .. 75

Table 13: Test Case 2 Result .. 76

Table 14: Test Case 3 Result .. 77

Table 15: Test Case 4 Result .. 78

8

CHAPTER 1

1 INTRODUCTION

In electronic development projects hardware design and firmware development are two most integral parts. In

engineering, hardware design refers to the identification of a system's physical components and their

interrelationships.[1] Hardware design of electronic boards refers to the development of schematics on computer

aided design software based on the specifications of the product and then using that schematic to develop printed

circuit boards. Circuit is designed keeping in mind the product specifications, price of the components and

availability of the components.

In the field of technology there are two very important terms: hardware and software. Hardware refers to the

physical devices which run programs or other applications. On the other hand, software is what is run on the

hardware. Firmware is a term that lies in the middle ground between hardware and software. Firmware is a type

of software that is more integrally linked with the device that it is managing so the commands that are received

from a remote control are essentially firmware. Software is typically separate from the device itself, and it

simply uses the hardware to run, but firmware is part of the machine, and it would not function without it. To

summarize, the firmware is essentially the software that manages a device’s core functions and allows it to

interact with media and other hardware. The most crucial reason why businesses need to focus on firmware

when releasing new products is that hardware can often end up bricked by malfunctioning firmware. For those

that want to release reliable products consistently and improve their customer experience, stable firmware is a

must.[2]

Hardware and firmware engineering design teams often run into problems and conflicts when trying to work

together. They come from different development environments, have different tool sets and use different

terminology. Often, they are in different locations within the same company or work for different companies.

The two teams have to work together, but often have conflicting differences in procedures and methods. Since

their resulting hardware and firmware work have to integrate successfully to build a product, it is imperative that

the hardware/firmware interface – including people, technical disciplines, tools and technology – be designed

properly.[3]

9

1.1 Problem Statement

In industries fluid tanks ranging from small size to huge size are present that are exposed to normal and severe

environmental conditions like heat and humidity levels. High levels of temperature and humidity are not ideal

working conditions for the workers around the tank. Therefore, it is necessary to control the temperature and

humidity levels and their status should be known to operator.

Additionally, in many applications the need to maintain the level of fluid inside the tank is of extreme

importance and appropriate action is required if level of fluid gets out of nominal range. Finally, it is of great

important to keep orientation of tank exactly straight in order to measure accurately the level of fluid inside the

tank and to take appropriate steps to control fluid level.

1.2 Objectives

1. Measure the following sensor values

• Analogue Temperature

• Digital Temperature

• Humidity

• Fluid Level

• Tilt Measurement

2. Control following devices based on sensor values

• Fan

• Pump

• Buzzer

• LEDs

3. Display statuses of devices and sensor values on LCD

4. Control display using Keypad

10

1.3 Project Overview

Requirement Analysis – PHASE I

Data

Collection

Devices

Control

Devices

Indication

Devices

Input

Devices

Computer Aided Design – PHASE II

GERBERS

Coding – PHASE III

Configurations and

Drivers

Algorithm

Implementation

Testing – PHASE IV

Black Box Testing White Box Testing

PCB

Manufacturing

Assembly Schematic PCB Layout

11

1.4 Requirement Analysis - Phase-I

First phase of the project revolved around the analysis of the components required to carry out the objectives

mentioned in Section 1.2. A brief overview of components used is as follows:

1.4.1 Data Collection Devices
These devices correspond to all the sensors required and microcontroller used to process information received

from the sensors and act on control and indication devices. Following sensors have been used:

• NTC10k for Analogue Temperature measurement

• DHT22 for Digital Temperature and Humidity measurements

• 59630 Floating Device for Level Indication

• MPU6050 IMU Module for Tilt Measurement

STM32F103RBT6 micro controller has been used.

1.4.2 Control Devices

Based on sensor values following external devices have been used:

• 12V Fan to keep control of temperature

• Pump to maintain level of fluid inside the tank

1.4.3 Indication Devices
In order to know the status of Control Devices and values obtained from sensors following indication devices

have been used:

• LCD1602 for Display

• HSMC150 Red, Green and Yellow LEDs to show status of Control Devices and Power

• Buzzer 1233 as an Alarm device

1.4.4 Input Devices

External Keypad has been used to switch results on LCD.

1.5 Computer Aided Design - PHASE-II

This second phase of project constitutes of three parts.

12

1.5.1 Schematic

Schematic of the project has been developed in KiCad software. For proper selection of electronic components,

circuit analysis has been done. Proper footprints have been either downloaded or manually developed and

inserted inside components so that proper PCB Layout could be developed in second part of this phase.

1.5.2 PCB Layout

After creation of schematics and testing them for connections, PCB Layout has been developed in this part of the

project. Components according to their footprints are placed on PCB keeping in mind easy routing and size of

the printed circuit board.

1.5.3 GERBERS

Once PCB layout has been designed, output Gerber files have been generated which describes various layers of

the PCB

1.5.4 PCB Manufacturing

After sending Gerber files to the manufacturer, PCB is manufactured and sent back to us

1.5.5 Assembly

Once the PCB has arrived back after manufacturing, all components are assembled according to the design.

1.6 Coding - PHASE-III

In this third phase of thesis, software part of the project has been developed. All coding has been done using C

language using Eclipse IDE. STM32 Nucleo Board has been used in this phase to test and debug the code. This

phase constitutes of two major parts:

1.6.1 Configurations

Several sensors have been used and they need to communicate with the microcontroller. So, in this part of

coding various modules of microcontroller have been configured to receive data from sensors e.g. ADC, GPIOs,

I2C. Additionally LCD and Keypad has been configured. All these configurations are based on datasheet of

STM32 microcontroller and datasheets of corresponding device with which micro controller is communicating.

13

1.6.2 Algorithm implementation

In second part of coding algorithm has been implemented in order to achieve the desired objectives of the

project.

1.7 Testing - PHASE-IV

Once the coding part is done and PCB has arrived and assembled using the components of schematic, code is

tested on the hardware to complete the firmware development of the project. Two basic methods of testing have

been used

1.7.1 Black Box Testing

In this type of testing desired output has been checked without going through the implementation.

1.7.2 White Box Testing

In this type of testing code has been modified to achieve the desired result.

Testing phase completes the project.

14

CHAPTER 2

2 REQUIREMENT ANALYSIS

This is the first phase of an electronic development project. In this phase all the specifications of the project are

determined and how an end user will see the final product. Along with the specifications it is determined which

are the devices or sensors that are needed, in order to achieve the final product. Therefore, firstly the

specifications of the product are covered in detail and then description of devices and sensors used to achieve

those specifications are discussed.

2.1 Specifications
• In order to guarantee safety of the workers around the fluid tank it is very important to measure the

temperature of the environment. This can be achieved by using an analogue temperature sensor and

digital temperature sensor.

• Secondly humidity measurement is very important to guarantee ideal working condition for the workers.

Therefore, a humidity sensor is required to measure the humidity of the environment.

• Another important specification is to maintain the fluid level of the tank. For this either proximity sensor

could be used, or floating device could be used. As it is required to maintain fluid level in a nominal

range at least two sensors would be required to determine low level and high level of fluid.

• Finally, in order to measure fluid level accurately it is important for tank to be exactly horizontal. As

there is no support available for the tank in this application it is required to measure tilt value of the tank

in order to guarantee accurate level measurement.

Once these sensor measurements are taken, they are sent to the microcontroller and depending on the values of

these measurements following actions should be taken:

• If temperature is above a certain level fan is turned on unless temperature gets in the nominal range. In

normal situation fan should be off and if temperature is too high that fan cannot lower its level then it is

useless to use fan and therefore it should be off. In such case buzzer should turn on to indicate

emergency.

• In this project no device has been used to control level of humidity. Therefore, if humidity is above

nominal value, buzzer should be turned on to indicate emergency.

• If level of fluid is below the low level, pump should be turned on to increase level of fluid to its nominal

value. Similarly, if level of fluid is above the high-level fluid should be drained manually as no device

has been used to drain fluid out in this project.

• Finally, if tilt measurement is not in a range then buzzer should beep to indicate that level measurements

cannot be done accurately.

15

Other Specification include:

• Eight different LEDs are used to indicate working of various devices

o One green LED should be used to indicate a running power supply.

o One green LED should be used to indicate a Turned-On fan.

o One green LED should be used to indicate a Turned-on Pump.

o Three red LEDs are used to indicate sensor measurements taken correctly from analogue

temperature sensor, humidity sensor and digital temperature sensor.

o One green LED should be used to indicate up level of fluid

o One Yellow LED should be used to indicate down level of fluid

• LCD is used to indicate the values of all sensor measurements and status of fan, pump and buzzer

• Keypad is used to display on LCD as following:

o Temperature Value and Fan Status when Key 1 is pressed

o Humidity Value and Buzzer Status when Key 2 is pressed

o Level Status and Pump Status when Key 3 is pressed

2.2 Data Collection Devices

2.2.1 Micro Controller

Micro Controller family used in this project is STM32. Reason to use STM32 is prior know how and knowledge

of this microcontroller. Specifically, STM32F103RBT6 is used on the PCB. For coding and debugging STM

Nucleo board is used.

It is a 64-pin microcontroller in LQFP64 package with 12-bit ADC Channel, I2C supported by 7 channel DMA

controller. Those functionalities that have been used in the project are only mentioned here.

Figure 1: STM32F1RB Nucleo Board

16

2.2.2 Analogue Temperature Sensor

Thermistor is a type of resistor whose resistance is dependent on temperature.[4] Negative temperature

coefficient thermistors are widely used as temperature sensors. In NTC thermistors, with the increase of

temperature, resistance decreases. Therefore, by measurement of resistance, temperature value can easily be

determined. Following NTC10K sensor has been used to measure analogue temperature of the environment.

Figure 2: NTC10K

NTC10K sensor has nominal resistance value of 10K at nominal temperature i.e 25 oC. The variation of

resistance with temperature can be seen from the table below that is taken from the datasheet of the sensor.[5]

Table 1 : NTC10K

17

2.2.3 Digital Temperature and Humidity Measurement

DHT22 is a Digital-output relative humidity & temperature sensor/module which is used in this project to

measure the digital value of temperature and humidity. Small size, low power consumption and long

transmission distance enables DHT22 to be suited in all kinds of harsh application occasions.

Figure 3 DHT22 Module

Single row packaged with four pins, making the connection very convenient. Technical specifications of the

module are mentioned in the table below taken from the datasheet of the module.[6]

Table 2: DHT22 Technical Specifications

18

2.2.4 Level Sensor

In order to determine the level of the fluid in the tank, two 59630 sensors have been used. The 59630 is a reed

level sensor with integral float actuator and an M8 x 1.25mm pitch thread with a choice of normally open,

normally open high voltage, normally closed or change over contacts. It can switch up to 265Vac/300Vdc at

10VA.

Figure 4: 59630 Sensor

Two such sensors have been used in order to read high and low-level values. Electrical characteristics of the

sensor are mentioned in the table below which is taken from the data sheet of the device.[7]

Table 3: Electrical Ratings

19

2.2.5 Tilt Measurement

MPU 6050 IMU module has been used to measure tilt value of the tank. The module features 3 axis

accelerometer and 3 axis gyroscope. This is one of the most common IMU module used in microcontrollers.

Figure 5: MPU 6050 IMU Module

Main features of the accelerometer are:

• User programmable full scale range 2g/4g/8g/16g

• I2c serial interface

• 16 bit data output

• Magnetic field scale 1.3 to 8.1 gauss

Main features of gyroscope are:

• User programmable full scale range of 250/500/1000/2000 dps

• I2C digital output interface

• 16 bit data output

• Wide supply voltage: 2.4 V – 3.6V

More details will be discussed in Coding part of the report.

20

2.3 Control Devices

2.3.1 Fan

To control the temperature an external 12 V fan with DC brushless motor has been used.

Figure 6: 12V Fan

Main features of the Fan taken from the datasheet[8] are

• Motor: Brushless DC

• Motor Protection: Impedance Protected

• Bearing Type: Two ball, Sleeve or Hydro Dynamic

2.3.2 Pump

To control the level of fluid in the tank a 12 V pump has been used.[9]

Figure 7:12V Pump

21

2.4 Indication Devices

2.4.1 LCD

The 1602 LCD has been used in this project to display the status of various sensors and indication devices. As

the name suggests it has 16 characters and 2 lines.

Figure 8: LCD1602

Other features of LCD include:

• Input Data: 4 Bits or 8 Bits interface available

• Display Font: 5 x 8 Dots

• Single 5V Power Supply

• Back Light: LED(White)

Electrical characteristics of the LCD taken from the datasheet [10] are shown in the table below:

Table 4: Electrical Characteristics

22

2.4.2 LED

HSMx-C150 LEDs[11] have been used in this project to indicate the status of sensors and whether control

devices are turned on or off.

Figure 9: HSMx-C150 LED

Main features of this series of LEDs are:

• Small size

• Industry standard footprint

• Compatible with IR solder

• Diffused optics

• Operating temperature range of -30 to +85 oC

• Various colors available

2.4.3 Buzzer

To indicate if humidity or temperature values are above nominal values, we use a piezo buzzer[12] which beeps

to indicate warning. Beep frequency is 2 KHz. Applied voltage is between 3V – 5V.

Figure 10: Piezo Buzzer

23

2.5 Input Device

2.5.1 Keypad

A four button Keypad[13] has been used to switch the display of LCD showing the status of sensors and control

devices upon the discretion of user.

Figure 11: KeyPad

After doing detailed analysis of specifications and main devices to be used in the project next step is design.

24

CHAPTER 3

3 COMPUTER AIDED DESIGN

This is the second phase of the project. After analyzing the specifications and major devices that would be used

it is required to design the schematic diagram of the whole system. Next part after schematic is to design the

printed circuit board. Once printed circuit board has been designed, Gerber files have been generated and sent to

the PCB manufacturer for developing PCB. KiCad software has been used in this project for computer aided

design.

3.1 Schematic
To design the schematic, many important considerations are kept in mind. The values of resistors, capacitors and

inductors and type of ICs and electronic components all depends on the electrical requirements of the application

and individual components. In the following sections every schematic of this project has been discussed.

3.1.1 NTC 10K Schematic

Figure 12: NTC10K Schematic

25

3.1.1.1 Description

This temperature sensing circuit uses a resistor in series with a negative temperature coefficient (NTC)

thermistor to form a voltage divide, which has the effect of producing an output voltage that is linear over

temperature. The circuit uses an operational amplifier in a non-inverting configuration with inverting reference

to offset and gain the signal, which helps to utilize the full ADC resolution and increase measurement

accuracy.[14]

3.1.1.1.1 LM358D

LM358D[15] has been used as operational amplifier. These amplifiers have several distinct advantages over

standard operational amplifier types in single supply applications. They can operate at supply voltages as low as

3.0 V or as high as 32 V. Some features of LM358D are:

• Short Circuit Protected Outputs

• True Differential Input Stage

• Single Supply Operation: 3.0 V to 32 V

• Low Input Bias Currents • Internally Compensated

• Common Mode Range Extends to Negative Supply

• Single and Split Supply Operation

Figure 13: LM358D

3.1.1.1.2 Other Components

CN1 is the connector where temperature sensor has to be connected. A Zener diode D11 is used in order to avoid

the flow of current in opposite direction.

Figure 14: Zener Diode

26

3.1.2 DHT22 Schematic

Figure 15: DHT22 Schematic

3.1.2.1 Description

The DHT22 sensors have four pins, VCC, GND, data pin and a not connected pin which has no usage. A pull-up

resistor from 5K to 10K Ohms is required to keep the data line high and in order to enable the communication

between the sensor and the microcontroller. Zener diode D12 is connected to block reverse current.

3.1.2.1.1 DHT22

DHT22 consist of a humidity sensing component, a NTC temperature sensor (or thermistor) and an IC on the

back side of the sensor.

Figure 16: DHT22 Internal View

For measuring humidity it uses the humidity sensing component which has two electrodes with moisture holding

substrate between them. So, when the humidity changes, the conductivity of the substrate changes, or the

resistance between these electrodes changes. This change in resistance is measured and processed by the IC

which makes it ready to be read by a microcontroller.

27

Figure 17: Humidity Measuring Components

On the other hand, for measuring temperature these sensors use a NTC temperature sensor or a thermistor. A

thermistor is actually a variable resistor that changes its resistance with change of the temperature. These sensors

are made by sintering of semi conductive materials such as ceramics or polymers in order to provide larger

changes in the resistance with just small changes in temperature. The term “NTC” means “Negative Temperature

Coefficient”, which means that the resistance decreases with increase of the temperature.[16]

Figure 18: NTC Working

3.1.3 59630 Reed Level Sensors Schematic

Figure 19: 59630 Sensors Schematic

28

3.1.3.1 Description

59630 sensor has two cables connected through CN3 and CN4 connectors. Resistor capacitor connection shown

in the schematic is used to make output on controller pin low when sensor contact is open. The other side of

schematic is directly connected to micro controllers GPIO pins to read the value.

3.1.4 I2C Connector for IMU Module

3.1.4.1 Description

In the project MPU6050 IMU module has been used to measure the value of accelerometer and gyroscope.

MPU6050 module uses I2C to connect to microcontroller. The data and clock lines of both available I2C pins of

the microcontroller are connected to J1 connector along with power and ground connections.

Figure 20: MPU6050

It can be seen in the figure that MPU has data and clock pins and they are connected to the I2C pin connector for

serial data transfer from IMU module to microcontroller.

29

3.1.5 12 V Pump Schematic

Figure 21: Pump Schematic

3.1.5.1 Description

In the schematic of Pump in order to isolate the rest of the circuit from the pump a relay has been used. There is

an LED in the circuit which turns on when microcontroller gives one on the pump pin. and therefore, turning on

the pump. A diode has been connected to relay to avoid damaging nearby components sensitive to high voltage.

Relay is not directly connected to the microcontroller. A Darlington pair has been used instead which would be

described in a later section.

3.1.5.2 Pump

A pump is a device whose purpose is to push the liquid to a certain place. In this project we are using pump to

push the fluid inside the tank in case it is below nominal value. A Durevole 12V DC pump has been used here. It

has a diaphragm structure and high-pressure capability.

Figure 22: Durevole 12V DC Pump

30

3.1.5.3 Relay

Relay are the switches which aim at closing and opening the circuits electronically as well as

electromechanically. It controls the opening and closing of the circuit contacts of an electronic circuit. When the

relay contact is open, the relay is not energized with the open contact. However, if it is closed (NC), the relay is

not energized given the closed contact. Relay can detect overcurrent, overload, undercurrent and reverse current

to ensure the protection of electronic equipment. Relay used in this project to isolate pump from the rest of the

circuit is G5LE PCB Power Relay.

Figure 23: G5LE Relay

The diagram below sheds focus on the internal section of the relay in the circuit. There is an iron core delimited

with the control coin. The power source has been connected with electromagnet through load contacts and a

control switch. When energy is supplied to the circuit through the control coil, magnetic fields are intensified

given the commencement of energizing. This way, upper contact arms gets attracted by the lower fixed arm

which closes the contacts leading to the short circuit. However, if the relay was de-energized, an open circuit is

created with the opposite movement of the contact.[17]

Figure 24: Relay Function

3.1.5.4 Flywheel Diode

A flyback/flywheel diode is placed with reverse polarity from the power supply and in parallel to the relay’s

inductance coil. The use of a diode in a relay circuit prevents huge voltage spikes from arising when the power

supply is disconnected. When the power supply is connected to the relay, the inductance coil’s voltage builds up

to match that of the power source. The speed at which current can change in an inductor is limited by its time

31

constant. In this case, the time it takes to minimize current flow through the coil is longer than the time it takes

for the power supply to be removed. Upon disconnection, the inductance coil reverses its polarity to keep current

flowing according to its dissipation curve (i.e., % of maximum current flow with respect to time). This causes a

huge voltage potential to build up on the open junctions of the component that controls the relay. This voltage

built up is called flyback voltage. It can result in an electrical arc and damage the components controlling the

relay. It can also introduce electrical noise that can couple into adjacent signals or power connections and cause

microcontrollers to crash or reset. To mitigate this issue, a diode is connected with reverse polarity to the power

supply. Placing a diode across a relay coil passes the back EMF and its current through the diode when the relay

is energized as the back EMF drives the flyback protection diode in forward bias. When the power supply is

removed, the voltage polarity on the coil is inverted, and a current loop forms between the relay coil and

protection diode; the diode again becomes forward biased. The diode allows current to pass with minimal

resistance and prevents flyback voltage from building up.[18]

3.1.6 12 V Fan Schematic

Figure 25: Fan Schematic

3.1.6.1 Description

A 12 V fan is used to get temperature in control. Fan is not connected directly to microcontroller instead it is

isolated through a MOSFET and switch the fan. An LED is connected in series with a resistor which will turn on

when Fan will receive power from microcontroller. The series resistor is used because supply is 12 V and LED

has low power rating. A flywheel diode is connected in reverse bias to avoid any reverse current.

http://www.eetimes.com/document.asp?doc_id=1274125

32

3.1.6.2 12 V Fan

A 12 V fan with DC brushless motor is connected to connector CN7

Figure 26: DC Axial Fan

3.1.6.3 MOSFET

60V, 18A N Channel MOSFET FDD5612 is used to switch the fan. From the datasheet [8] of fan it can be noted

that fan consumes 50 mA current. From the datasheet[19] of this MOSFET following values can be recorded:

𝑅𝐷𝑆(𝑜𝑛) = 64𝑚Ω

𝑃𝐷 = 1.6𝑊

If we compute power dissipation it can be found by:

𝑃 = 𝐼2 𝑅

𝑃 = 50𝑚𝐴2 𝑥 64𝑚Ω

𝑃 = 0.16 𝑚𝑊

As FDD5612 can support maximum of 1.6 W therefore 0.16mW consumption is well inside the range.

Therefore, this MOSFET has been used to switch the fan and isolate the circuitry of Fan from micro Controller.

Figure 27: FDD5612 MOSFET

3.1.6.4 Other Components

A flywheel diode is used to stop the reverse current. Detailed explanation is mentioned in last section. An

HSMG C150 green LED is connected in parallel to fan. It will turn on when the fan will turn on. A series

resistance is used with the LED to get voltage across LED to nominal value i.e. 3V.

33

3.1.7 Buzzer Schematic

Figure 28: Buzzer Schematic

3.1.7.1 Description

Buzzer is connected to microcontroller according to the circuitry shown above. Again, diode is connected to

avoid reverse current towards microcontroller. A very small 10Ω resistor is used to supple complete 3.3 V to the

buzzer. Buzzer is not directly connected to the microcontroller. A Darlington pair has been used instead which

would be described in a later section

3.1.8 LCD Schematic

Figure 29: LCD16x02 Connector

34

3.1.8.1 Description

LCD 16x02 is used to display status of sensors and indication devices. LCD 16x02 has 16 pins which are

connected to CN12 connector. First 3 pins of the connector are attached to a potentiometer which is used to

control the brightness of LCD screen. Pin 4,5 and 6 are Register Select (RS), Read/Write (R/W) and Enable (E)

respectively and they are connected to microcontroller GPIOS. There are eight data lines and only four of them

are used to transmit data from controller to LCD. Therefore, first four data lines are not connected while last four

are connected to GPIOs of microcontroller.

3.1.9 Darlington Connections Schematic

Figure 30: LED Schematic

3.1.9.1 Description

LEDs are used to show the status of sensors. LEDs are not connected directly to microcontroller but isolated

through transistors. Similarly pump and buzzer are also connected to microcontroller through transistors. More

specifically Darlington pair has been used.

35

3.1.9.2 HSMx-C150 LED

Five LEDs are connected in series with small value resistances to Darlington pair. These resistances are used to

give optimal voltages to LEDs.

3.1.9.3 ULN2003D

The ULN2003[20] are high-voltage (50V), high-current Darlington arrays each containing seven open collector

Darlington pairs with common emitters. Each channel is rated at 500 mA and can withstand peak currents of 600

mA. Suppression diodes are included for inductive load driving and the inputs are pinned opposite the outputs to

simplify board layout.

Figure 31: ULN2003D (each driver)

A Darlington pair is two transistors that act as a single transistor but with a much higher current gain. This mean

that a tiny amount of current from a sensor, micro-controller or similar can be used to drive a larger load for

example in this project a fan. Transistors have a characteristic called current gain. This is referred to as its hFE.

The amount of current that can pass through the load in the circuit above when the transistor is turned on is:

Load current = input current x transistor gain (hFE)

The current gain varies for different transistors and can be looked up in the data sheet for the device. For a

normal transistor this would typically be about 100. This would mean that the current available to drive the load

would be 100 times larger than the input to the transistor. In some applications the amount of input current

available to switch on a transistor is very low. This may mean that a single transistor may not be able to pass

enough current required by the load.

Now as Load current equals the input current x the gain of the transistor (hFE). If it is not possible to increase

the input current, then the gain of the transistor will need to be increased. This can be achieved by using a

Darlington Pair. A Darlington Pair acts as one transistor but with a current gain that equals:

Total current gain (hFE total) = current gain of transistor 1 (hFE t1) x current gain of transistor 2 (hFE t2)

36

So, for example if there are two transistors with a current gain (hFE) = 100:

(hFE total) = 100 x 100

(hFE total) = 10,000

This gives a vastly increased current gain when compared to a single transistor. Therefore, this will allow a very

low input current to switch a much bigger load current. Normally to turn on a transistor the base input voltage of

the transistor will need to be greater than 0.7V. As two transistors are used in a Darlington Pair this value is

doubled. Therefore, the base voltage will need to be greater than 0.7V x 2 = 1.4V. It will not be a problem in our

case because microcontroller pin gives 3.3V.[21]

It is also worth noting that the voltage drops across collector and emitter pins of the Darlington Pair when the

turn on will be around 0.9V. Therefore, if the supply voltage is 3.3V (as above) the voltage across the load will

be around 2.2V (3.3V – 0.9V) which is optimal in case of HSMx C150 LEDs.

3.1.10 Key Pad Schematic

Figure 32KeyPad Schematic

3.1.10.1 Description

An external 4 button keypad has been used which is attached to connector CN11. The connector is attached to

microcontroller GPIO pins according to the above shown circuitry. The resistors of 10kΩ are used to pull down

the value when no button is pressed.

37

3.1.11 Programmer Schematic

Figure 33: Programmer Schematic

3.1.11.1 Description

In order to program the microcontroller on the printed circuit board, an external programming device is required.

Programmer is connected to CN6 connector. Pins of connector are connected to supply and ground. Other pins

are connected to TMS, TCK and Reset of the microcontroller.

3.1.12 12V-5V Voltage Regulation Schematic

Figure 34: 5V Regulation Circuit

38

3.1.12.1 Description

In laboratory 12V power supply is available but many devices and components need 5V supply. So, in order to

achieve 5V regulation circuit has been design as shown in the above figure. 12V power supply is connected to

CN5 connector which is connected to LM7805 Voltage Regulator IC. Several capacitors have been used to

reduce the ripples in the supply voltage and in the output voltage. A diode is used in reverse bias to avoid reverse

current.

3.1.12.2 LM7805

Voltage sources in a circuit may have fluctuations resulting in not providing fixed voltage outputs. A voltage

regulator IC maintains the output voltage at a constant value. 7805 IC, a member of 78xx series of fixed linear

voltage regulators used to maintain such fluctuations, is a popular voltage regulator integrated circuit (IC). The

xx in 78xx indicates the output voltage it provides. 7805 IC provides +5 volts regulated power supply with

provisions to add a heat sink. IC ratings are:

• Input voltage range 7V- 35V

• Current rating Ic = 1A

• Output voltage range VMax=5.2V ,VMin=4.8V

Figure 35: LM7805 PINOUT

39

Table 5: LM7805 Pins

It can be noticed, there is a significant difference between the input voltage & the output voltage of the voltage

regulator. This difference between the input and output voltage is released as heat. The greater the difference

between the input and output voltage, more the heat generated. If the regulator does not have a heat sink to

dissipate this heat, it can get destroyed and malfunction. Hence, it is advisable to limit the voltage to a maximum

of 2-3 volts above the output voltage. So, we now have 2 options. Either design the circuit so that the input

voltage going into the regulator is limited to 2-3 volts above the output regulated voltage or place an appropriate

heatsink, that can efficiently dissipate heat.

3.1.12.2.1 Schematic of LM7805 IC

Figure 36: LM7805 schematic

40

The heart of the 7805 IC is a transistor (Q16) that controls the current between the input and output and thus

controlling the output voltage. The bandgap reference (yellow) keeps the voltage stable. It takes the scaled

output voltage as input (Q1 and Q6) and provides an error signal (to Q7) for indication if the voltage is too high

or low. The key task of the bandgap is to provide a stable and accurate reference, even as the chip’s temperature

changes.

The error signal from the bandgap reference is amplified by the error amplifier (orange). This amplified signal

controls the output transistor through Q15. This closes the negative feedback loop controlling the output voltage.

The startup circuit (green) provides initial current to the bandgap circuit, so it doesn’t get stuck in an “off” state.

The circuit in purple provides protection against overheating (Q13), excessive input voltage (Q19) and excessive

output current (Q14). These circuits reduce the output current or shutdown the regulator, protecting it from

damage in case of a fault. The voltage divider (blue) scales down the voltage on the output pin for use by the

bandgap reference.[22]

3.1.13 3.3V Regulator

Figure 37: 3.3V Regulator Circuit

3.1.13.1 Description

STM microcontroller needs 3.3V supply. So LD1117S33[23] regulator IC is used to get 3.3V from 5V.

Capacitor before the regulator and after it has been used to remove the ripple in DC voltage. A green HSMG

C150 LED has been used to indicate when power in on.

41

3.1.13.2 LD1117

The LD1117 is a LOW DROP Voltage Regulator able to provide up to 800mA of Output Current, available even

in adjustable version (Vref=1.25V). Concerning fixed versions, are offered the following Output Voltages:

1.2V,1.8V,2.5V,2.85V, 3.0V 3.3V and 5.0V. Here it is used for 3.3V.

Figure 38: LD1117

3.1.14 Switch Button Schematics

Figure 39: Switch Button Schematic

3.1.14.1 Description

Switch button is used to reset the Micro Controller. Capacitor is used to smoothen the signal.

42

3.1.15 Complete Schematic

43

3.2 PCB Layout

Once the schematic of the project has been designed on the KiCad, printed circuit board needs to be designed in

order to assemble the electronic components on the board. KiCad allows to make a PCB layout. Main steps of

PCB design are:

• Footprints Design

• Defining the size of the board

• Placing the components on the board according to their footprints and schematic

• Clean Routing

• 3D view

3.2.1 Footprints Design

First and the foremost step of PCB Design is to design the footprints of all the components that would be used in

the project. KiCad has an extensive library which has footprints of most of the very commonly used components.

In the datasheet of the components, footprints are defined in terms of dimensions. If the components footprints

are not available in libraries, they need to be designed manually. There is a footprint editor section in KiCad

where new footprints are designed. The footprints used in this project are shown in the diagram below.

Figure 40: Footprints

44

3.2.2 Size of the board

After analyzing the size of the components, the board size used in this project is 93mm x 52mm.

3.2.3 Components Placing

Components are placed on the PCB keeping in mind the schematic structure build on KiCad schematic. Another

important factor kept in notice while placing the component is the routing connections. There should be enough

space between components for routing. General rule of thumb is that micro controller should be at the centre of

the board as most of the connections to the components come from controller.

Figure 41: Components Placement

It can be seen in the PCB Layout; all sensor connectors are placed on the left side of the board. On the right of

each connector their respective components are placed keeping in mind the common connections and aesthetic

look of the board. At the center of the board, U1 is the STM microcontroller. Below the controller CN12

connector is for LCD and on the right CN11 connector is for Keypad. Above LCD connector there is J1

connector for I2C pins used for IMU module. Exactly on the right of microcontroller there is U4 which is

ULN2003D Darlington IC and right to the IC there are LEDs. On the extreme right bottom K1 is Relay for the

pump and above it is the connector for the pump at extreme top right there is buzzer BZ1 and on the left of

buzzer, the connector CN7 is for Fan. On the top of microcontroller, there is push button and power supplies. On

the top left of micro controller external oscillators are placed.

45

3.2.4 Routing

Once components are placed on the PCB, next step is to route the connections. Thumb rule is to leave all

supplies and ground and connect all other connections. Once connections other that supplies are done, connect

supplies directly if possible or through vias. As ground is widespread across the board, lower and upper sides are

completely filled with ground and therefore all ground connections are either done directly if possible or through

vias to the downside of the board.

Figure 42: Front Side Copper

The above diagram is the front side of the board showing copper connections (Red) between various pads.

Copper connections are separate for each label. Apart from the normal connections all other Red part is

grounded. Connections are made always with some angle different than 90 degree. It is considered a good

practice. Other important thing to note is routes are not made in between two consecutive pads even if it is

allowed be CAD software.

In the figure below back side of the Printed Circuit Board is shown. Green color shows the copper connections.

There are vias present which connect one side of the board to the other side of the board. Use of vias is very

important as it reduces the complexity of routing and from aesthetic point of view, board appears more elegant.

As mentioned before both upper and bottom side is filled with ground copper, therefore all the green connections

other than connections of components and supplies is ground

46

Figure 43: Back Side Copper

3.2.5 3D View
There is a feature available in KiCad which allows to view the printed circuit board as it would appear in Real

World. It is called 3D Viewer. While designing PCB this feature is very useful because designer can see the real

component as it is placed. So, if component seems to be not in the right place one can change its position so that

it looks more elegant.

Figure 44: 3D View front

47

Figure 45: 3D View Tilt

Figure 46: 3D View Back

48

3.3 GERBERS

The Gerber format is an open ASCII vector format for printed circuit board (PCB) designs. It is the de facto

standard used by PCB industry software to describe the printed circuit board images: copper layers, solder mask,

legend, drill data, etc. Gerber is used in PCB fabrication data. PCBs are designed on a specialized electronic

design automation (EDA) or a computer-aided design (CAD) system. The CAD systems output PCB fabrication

data to allow fabrication of the board. This data typically contains a Gerber file for each image layer (copper

layers, solder mask, legend or silk).[24][25] Typically, all these files are "zipped" into a single archive that is

sent to the PCB bare board fabrication shop. The fabricator loads them into a computer-aided manufacturing

(CAM) system to prepare data for each step of the PCB production process. Below are the various Gerber files

generated by KiCad for this project:

Figure 47: Front Cu Gerber

Figure 48: Front Mask Gerber

Figure 49: Front paste Gerber

Figure 50: Back Cu Gerber

Figure 51: Back Mask Gerber

https://en.wikipedia.org/wiki/Open_format
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/File_formats#Vector_formats
https://en.wikipedia.org/wiki/Printed_circuit_board
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/Gerber_format#Guide
https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/Printed_circuit_board#Design
https://en.wikipedia.org/wiki/Printed_circuit_board#Legend_printing
https://en.wikipedia.org/wiki/Zip_(file_format)
https://en.wikipedia.org/wiki/Printed_circuit_board#Manufacturing
https://en.wikipedia.org/wiki/Printed_circuit_board#Manufacturing

49

3.4 PCB Manufacturing

Once the Gerber files are sent to the manufacturer, after two weeks printed circuit board is ready. Following are

the pictures of real PCB after manufacturing:

Figure 52: PCB Top View

Figure 53: PCB Bottom View

50

Figure 54: Top Layer Image

Figure 55: Bottom Layer Image

51

Figure 56: Top Mechanical view

52

3.5 Assembly

Once printed circuit board has arrived from the manufacturer, next is to assemble the components of the project

on the board. Following is the final board look after it is assembled.

Figure 57: Final PCB

53

CHAPTER 4

4 CODING

After developing the computer aided hardware design, third phase of the project is coding. In this part,

programming is done in order to achieve the objectives of the project. The programming language used for this

project is C. Eclipse IDE is used as a developing environment software. STM32 Nucleo board[26] is used to

program the code and debug it. All the separate modules and devices that are used in the project are discussed

ahead. How these devices and modules are configured and how data is transmitted or received from these

devices has been discussed in detail in this section.

4.1 Configurations

4.1.1 Analogue Temperature

Data received from NTC10K is a continuous data. In order to read this data Analogue to Digital converter should

be used. There are several modes of ADC configuration available: Discontinuous mode, Continuous mode and

Scan mode. Since we need only one single channel pin as there are no other ADC conversions required in this

project discontinuous mode could be selected. Instead continuous mode has been used in circular configuration

so that ADC channel is continuously scanned. In this mode ADC will acquire data nonstop unlike a single

conversion where we trigger it if we want to get conversion and then go to sleep. Here ADC will continuously

convert the data and send it to memory. In this mode it is a good idea to use timer trigger for the ADC so that the

ADC does not go as fast as it can. It is a good mode when data is needed to be transferred to the memory using

Direct Memory Access (DMA). DMA will take converted data straight from the ADC output data register and

take them to the memory. Timer 3 has been used and its configuration is as follows:

• Prescaler = 800

• CounterMode=Up

• Period=1000

• AutoRelaodPreload=Disable

• Clock running frequency = 8 MHz

Time = (Prescaler * Period) / Clock Running Frequency = 0.1s

This implies ADC will convert data after every 0.1s. Now ADC configuration parameters are following:

• Resolution = 12 bits

• Mode = SCAN

• Data Alignment = Right

• Sampling Time = 239.5 ADC clock cycles

54

DMA request setting are following:

• Data Width = WORD

• Mode = Circular

ADC global interrupt has been enabled so that after every sequence of conversion ADC will interrupt and could

do operations like blink LED or read the data. Finally, PC3 pin which can be used as ADC1 Input 13, has been

used for getting data from NTC10K. If we look in the schematic of the microcontroller it is pin 11.

4.1.2 Level Measurement

For level measurement two simple floating devices have been used. Whenever liquid comes in contact with the

devices, switch closes and output switches from 0 to 1. Therefore, we do not need any Analogue to digital

converter in this case. Simple configuration of two GPIOs as inputs is required. For this project PC0 and PC1 are

used to take inputs from the floating devices. They are pin 8 and pin 9 of the microcontroller. Therefore,

following configurations are done for PC0 and PC1

• Mode = Input

• Pull = Pull Down

4.1.3 DHT22 Measurement

As discussed in previous sections, DHT22 is a digital-output temperature and humidity sensor/module. It uses

single one wire interface. It has simple connections which requires 3.3V, ground and connect a data line to a

digital input or output on the STM because we need to swap between input and output for data to go in both

directions

Figure 58: DHT22 with 3 Pin Connector

As there is only one data line so PC2 (Pin 10) has been configured as GPIO output which will be later changed

into input when data would be received from the sensor. Configuration of DHT22 can be done using the timing

diagram available in the data sheet[6] of the device.

55

Figure 59:DHT22 Overall Timing Diagram

4.1.3.1 Step 1: MCU send out start signal to DHT22

Data-bus's free status is high voltage level. When communication between MCU and DHT22 begin, program of

MCU will transform data-bus's voltage level from high to low level and this process must beyond at least 1ms to

ensure DHT22 could detect MCU's signal, then MCU will wait 20-40us for DHT22's response. At this point

after waiting GPIO Pin Mode changed from output to input.

Figure 60: Step 1 DHT22

56

4.1.3.2 Step 2: DHT22 send response signal to MCU

When DHT22 detect the start signal, DHT22 will send out low-voltage-level signal and this signal last 80us as

response signal, then program of DHT22 transform data-bus's voltage level from low to high level and last 80us

for DHT22's preparation to send data.

Figure 61: Step 2 DHT22

4.1.3.3 Step 3: DHT22 send data to MCU

When DHT22 is sending data to MCU, every bit's transmission begin with low-voltage-level that last 50us, the

following high-voltage-level signal's length decide the bit is "1" or "0".

Figure 62: Step 3 DHT22

57

4.1.4 IMU Configuration

4.1.4.1 GY521/MPU6050

In order to measure the level of water tank, it has to be straight. If there is any tilt, then level measurement is not

accurate. There GY521/MPU6050 sensor module is used in this project to measure if there is any tilt in the tank

through the measurement of 3 axis accelerometer values. Basically, GY521 is a breakout board for the so called

MPU6050 which is a micro electromechanical system. This device has

• 3 axis accelerometer

• 3 axis gyroscope

• Temperature sensor

• Digital Motion Processor

An accelerometer measures non gravitational acceleration whereas gyroscope uses earth gravity to measure

orientation. The digital motion processor can be used to process many complex algorithms directly on the board.

Usually it processes algorithms to turn the raw values from the sensors into stable position data. From the

datasheet of MPU6050[27] it can be seen; it is a very powerful but complex device. Our scope of project only

needs to extract raw sensor values from the device.

Figure 63: GY521/MOU6050

PIN Description
VCC Voltage Supply
GND Ground
SCL Serial Clock line of the I2C
SDA Serial Data line of the I2C
XDA Auxiliary Data line of the I2C
XCL Auxiliary Clock line of the I2C
AD0 Address Pin
INT Interrupt Pin

Table 6: GY521/MPU6050 Pins Description

58

Supply Voltage can be both 3.3V or 5V as there is an onboard voltage regulator. SCL and SDA are serial clock

and data lines are part of I2C interface. These are used as I2C Slave while STM32 microcontroller as I2C

Master. XDA and XCL are Auxiliary data and Auxiliary clock pins which are used to connect the module with

external sensors. In this case module is used as I2C Master while external sensors are used as I2C. AD0 is the

address pin. If it is low address is 0x68 and if it is high address is 0x69. Interrupt pin is used to handle the

interrupts. In this project only first four pins are used.

4.1.4.2 I2C Interface

I2C[27] is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the

lines are open-drain and bi-directional. In a generalized I2C interface implementation, attached devices can be a

master or a slave. The master device puts the slave address on the bus, and the slave device with the matching

address acknowledges the master. The MPU-60X0 always operates as a slave device when communicating to the

system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDD.

The maximum bus speed is 400 kHz. The slave address of the MPU-60X0 is b110100X which is 7 bits long. The

LSB bit of the 7-bit address is determined by the logic level on pin AD0. This allows two MPU-60X0s to be

connected to the same I2C bus. When used in this configuration, the address of the one of the devices should be

b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin AD0 is logic high).

4.1.4.3 I 2C Communications Protocol

4.1.4.3.1 START (S) and STOP (P) Conditions

Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is

defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is

considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to

HIGH transition on the SDA line while SCL is HIGH (see figure below). Additionally, the bus remains busy if a

repeated START (Sr) is generated instead of a STOP condition.

Figure 64: I2C START and STOP Condition

59

4.1.4.3.2 Data Format / Acknowledge

I 2C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data

transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the

acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by

pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse. If a slave is

busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold

SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and

releases the clock line (refer to the following figure).

Figure 65: Acknowledge on the I2C Bus

4.1.4.3.3 Communications

After beginning communications with the START condition (S), the master sends a 7-bit slave address followed

by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is

writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK)

from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave

device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is

always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the

master can generate a repeated START condition (Sr), and address another slave without first generating a STOP

condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All

SDA changes should take place when SCL is low, with the exception of start and stop conditions

Figure 66: Complete I2C Data Transfer

60

To write the internal MPU-60X0 registers, the master transmits the start condition (S), followed by the I2C

address and the write bit (0). At the 9th clock cycle (when the clock is high), the MPU-60X0 acknowledges the

transfer. Then the master puts the register address (RA) on the bus. After the MPU-60X0 acknowledges the

reception of the register address, the master puts the register data onto the bus. This is followed by the ACK

signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK

signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the MPU-60X0

automatically increments the register address and loads the data to the appropriate register. The following figures

show single and two-byte write sequences.

Figure 67: Single Byte Write Sequence

Figure 68: Burst Write Sequence

To read the internal MPU-60X0 registers, the master sends a start condition, followed by the I2C address and a

write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the MPU-

60X0, the master transmits a start signal followed by the slave address and read bit. As a result, the MPU-60X0

sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop

bit from master. The NACK condition is defined such that the SDA line remains high at the 9 th clock cycle. The

following figures show single and two-byte read sequences.

Figure 69: Single-Byte Read Sequence

Figure 70: Burst Read Sequence

61

4.1.4.4 I 2C Terms

Table 7: I2C Terms

4.1.4.5 Micro Controller Connection

There are two I2C connections available on the STM32F103RB. These connections are available on J1

Connector. PB6 is used for clock signal and PB7 is used for data signal. Connection of the first four pins of

GY521/MOU6050 is done with first four pins of J1 connector. To measure the value of tilt we just need raw

acceleration values which are obtained through accelerometer values.

4.1.5 Fan Pin Configuration

In the project Fan is turned on or off depending on the value of temperature. Fan’s configuration itself is very

simple. A single GPIO pin PC9 (PIN 40) of the micro controller is used to control the fan. It is configured as

following:

• Mode = Output

• Pull = Pull Down

• Speer = Low

Pin has been configured as pull down so that when there is no signal provided to the pin, it is low which means

fan is off.

4.1.6 Pump Pin Configuration

Pump control is like fan control. In this as well we must control a single GPIO pin PB12 (PIN 33) of the micro

controller to control the pump. It is configured as following:

• Mode = Output

• Pull = Pull Down

• Speer = Low

62

4.1.7 Buzzer Pin Configuration

To control the buzzer PC8 (PIN 39) of the micro controller has been configures as following:

• Mode = Output

• Pull = Pull Down

• Speed = Low

Pin has been configured as pull down so that when there is no signal provided to the pin, it is low which means

fan is off.

4.1.8 LCD Configuration

4.1.8.1 LCD 1602

LCD 1602 [10] is used to display all the sensors and indication devices statuses. It is a 16 pin LCD module with

following pin interface:

Figure 71: LCD 1602

4.1.8.2 Pins Description

Table 8: LCD Pins Description

63

4.1.8.3 Timing Diagram

Figure 72: Write Sequence

Figure 73: Read Sequence

As only write operation is done on the LCD R/W pin is always set to ground.

64

4.1.8.4 Initialization Sequence

Last four data bits are used instead of all 8 bits. Therefore initialization sequence of 4 bit interface is mentioned

below:

Figure 74: Initialization Sequence

65

4.1.8.5 Micro Controller Connection

Other than power supplies, 6 pin of STM32 are connected with the LCD. These pins include Data pins, Enable

and Register Select Pin. All these pins are configured as following:

• Mode = Output

• Pull = No Pull

• Speed = Low

LCD Pin STM Pin

DB4 PA3 (PIN 17)

DB5 PA2 (PIN 16)

DB6 PA1 (PIN 15)

DB7 PA0 (PIN 14)

E PA4 (PIN 20)

RS PA5 (PIN 21)

Table 9: LCD Pins Connection

4.1.9 Keypad Configuration

Keypad is connected to STM32 though the schematic mentioned in the last chapter. It is a 4 button Keypad so

four GPIO pin are configured as following:

• Mode = Input

• Pull = No Pull

Button STM Pin

KEYPAD1 PC5 (PIN 25)

KEYPAD1 PC4 (PIN 24)

KEYPAD1 PA7 (PIN 23)

KEYPAD1 PA6 (PIN 22)

Table 10: KeyPad Pins Connection

4.1.10 LED Configuration

Final components which need to be configured are the LEDs which are directly controlled by the micro

controller based on the algorithm. The pins connected to the Darlington which is connected to LEDS are

configured as following:

• Mode = Output

• Pull = No Pull

• Speed = Low

66

LED STM Pin

KEYPAD1 PC5 (PIN 25)

KEYPAD1 PC4 (PIN 24)

KEYPAD1 PA7 (PIN 23)

KEYPAD1 PA6 (PIN 22)

Table 11: KeyPad Pins Connection

4.2 Source Codes
Once all the pins are configured, now is the time to implement the algorithm. Source Codes can be seen in

Appendix A section.

67

CHAPTER 5

5 TESTING

One of the most important part of any project is Testing. Before explaining how testing has been used and

implemented in our project, it is worth mentioning two common types of testing approaches: Black box and

White Box Testing. In the following it is explained how these methods of testing work and how they are applied

in this case.

Figure 75: Testing approaches

5.1 Black Box Testing
Black-box testing (also known as functional testing) treats software under test as a black-box without knowing

its internals. Tests use software interfaces and try to ensure that they work as expected. As long as functionality

of interfaces remains unchanged, tests should pass even if internals are changed. Tester is aware of what the

program should do but does not have the knowledge of how it does it. Black-box testing is most used type of

testing in traditional organizations that have testers as a separate department, especially when they are not

68

proficient in coding and have difficulties to understand the code. It provides external perspective of the software

under test. Some of the advantages of black-box testing are:

• Efficient for large segments of code

• Code access is not required

• Separation between user’s and developer’s perspectives

Some of the disadvantages of black-box testing are:

• Limited coverage since only a fraction of test scenarios is performed

• Inefficient testing due to tester’s luck of knowledge about software internals

• Blind coverage since tester has limited knowledge about the application

The way we use black box testing approach is that during the implementation, modular approach is used. When a

function or a peripheral is implemented, it is tested using the LCD Display and results have been noted Once all

the separate peripherals are tested then combination of various peripherals and logics is tested. Different test

cases have been discussed later.

5.2 White Box Testing
White-box testing (also known as clear box testing, glass box testing, transparent box testing, and structural

testing) looks inside the software that is being tested and uses that knowledge as part of the testing process. If,

for example, exception is thrown under certain conditions, test might want to reproduce those conditions. White-

box testing requires internal knowledge of the system and programming skills. It provides internal perspective of

the software under test. Some of the advantages of white-box testing are:

• Efficient in finding errors (hidden) and problems

• Helps optimizing the code

• Due to required internal knowledge of the software, maximum coverage is obtained

Some of the disadvantages of white-box testing are:

• Might not find unimplemented or missing features

• Requires high level knowledge of internals of the software under test

• Requires code access

It is evident that, accessing to the code, having enough know-how about both the code and the way it works,

provide us the opportunity to use white box testing. To this end, we put break point in any part we had a problem

during black box testing procedure or those parts that are complicated to trace. In this way, we verify that our

code works in any scenario. As mentioned in previous part, LCD helps us to recognize problems faster,

especially in tracking easily our vital variables.

69

5.3 Test Cases and Results

5.3.1 Sensors

5.3.1.1 NTC10K Check

The value of ADC pin which is connected to NTC10K amplifier output is displayed on LCD. The temperature

value should vary depending on the temperature of the environment. So first of all, temperature is measured at

room temperature and then temperature is varied by touching the sensor as body heat increases the temperature

and result is checked on the LCD. Below are the displays of LCD at various temperature conditions:

Figure 76: NTC10K Test Results

70

5.3.1.2 Level and Tilt Check

In order to check whether level sensors and accelerometer are working fine first LCD output is checked for low

liquid level. Then level has been increased to nominal range and result has been verified. Similarly, level above

upper sensor has been checked. Finally, container is tilted and result is check for level. Below are the displays of

LCD at various level and tilt conditions:

Figure 77: Level and Tilt Check

71

5.3.1.3 DHT22 Check

DHT22 output is checked on the LCD as before. In order to change humidity different conditions have been

applied like checking output in kitchen with boiling water and in normal room condition. For temperature room

heater has been used to control the temperature and for higher temperature kitchen environment has been

considered as well. Below are the displays of LCD at various temperature and humidity conditions:

Figure 78: DHT22 Check

72

5.3.2 Control Devices Check

5.3.2.1 Fan Control

Fan control is checked in such a way that FAN turns on when temperature exceeds 35’C. When it is below this

temperature fan should be off. Status of FAN appears alongside temperature on LCD. LCD result has been

displayed for various temperature values. One thing to note is that only temperature and fan control is

implemented, other part of the code is commented.

Figure 79: Fan Control Check

73

5.3.2.2 Pump Control

In this test case pump control is checked. If level is low pump should turn on and status should appear on LCD.

If level is nominal or full pump should be off and status should display off. If container is tilted, then error

message should appear and pump should be off. Following pictures show the result of LCD:

Figure 80: Pump Control Check

74

5.3.2.3 Buzzer Control

In this test case temperature is controlled using kitchen stove and heater while humidity is increased by boiling

water. If either of temperature or humidity values are above nominal values buzzer turns on. Following pictures

show the results on LCD:

Figure 81: Buzzer Control Check

75

5.3.3 Complete Test

In final test whole code is run and display on LCD is checked. All sensor values and control device statuses

should appear. Whenever a key is pressed from the KEYPAD specific results should appear All possible test

cases have been selected

5.3.3.1 Test Case No 1 (FAN 0FF; PUMP 0FF; BUZZER OFF)

No Button Pressed

KeyPad 1 Pressed

KeyPad 2 Pressed

KeyPad 3 Pressed

Table 12: Test Case 1 Result

76

5.3.3.2 Test Case No 2 (FAN 0N; PUMP 0FF; BUZZER ON due to temperature only)

No Button Pressed

KeyPad 1 Pressed

KeyPad 2 Pressed

KeyPad 3 Pressed

Table 13: Test Case 2 Result

77

5.3.3.3 Test Case No 3 (FAN 0FF; PUMP 0N; BUZZER ON due to Humidity only)

No Button Pressed

KeyPad 1 Pressed

KeyPad 2 Pressed

KeyPad 3 Pressed

Table 14: Test Case 3 Result

78

5.3.3.4 Test Case No 4 (FAN 0N; PUMP 0N; BUZZER ON due to Temperature & Humidity both)

No Button Pressed

KeyPad 1 Pressed

KeyPad 2 Pressed

KeyPad 3 Pressed

Table 15: Test Case 4 Result

79

CHAPTER 6

6 CONCLUSION

The focus of this thesis work was to develop an electronic board that takes data from various sensors and after

processing this data control certain devices in order to maintain environmental conditions for the workers and to

maintain level of water in a tank.

In order to achieve these objectives standard electronic development project steps have been followed. These

steps include 1) Requirement Specification 2) Design 3) Coding and 4) Testing

In Requirement Specification phase all the objectives were defined. These objectives include getting temperature

measurements both analogue and digital, humidity measurement, tilt measurement and level measurements.

Then based on temperature measurements fan should be controlled, humidity measurement buzzer should be

controlled and based on tilt and level measurements pump should be controlled. All the results should be

displayed on LCD and LEDs should indicate the statuses of sensors and control devices.

In Design phase first, all the schematics were developed to achieve the objectives defined in the first phase:

which ICs, operational amplifiers, values of resistors and capacitors to be used were calculated and defined in

this phase. Additionally, based on electrical characteristics, sensors, control devices and microcontroller were

selected. After the completion of schematics, all footprints of the devices were developed manually or using

KiCad libraries and PCB Layout was developed. After completing the design of PCB, Gerber files were

generated and sent to PCB manufacturer. Once PCB was returned by manufacturer, it was assembled with the

components of the schematic.

In Coding phase, all the devices were configured using datasheets of the devices and micro Controller

STM32F1RB. These configurations include initialization of DHT22 sensor, NTC10k ADC, floating sensors

GPIOs, MPU6050, I2C, fan, pump buzzer and LED GPIOs and finally LCD1602 initialization sequence. After

these configurations algorithm was developed to get reading from sensors, control fan, pump, buzzer and LEDs

and display results and statuses on LCD.

In Testing phase, code was programmed on the electronic board and tested using black box and white box

techniques. Various test cases were defined, and results were verified according to desired objectives mentioned

in first phase of the project. This concludes the thesis work.

80

Appendix A

Source Codes

Main C File
/* Includes */
#include "main.h"
#include "STM_MY_LCD16X2.h"
#include <stdbool.h>
#include <math.h>
#include "MY_DHT22.h"
#include "TJ_MPU6050.h"

/* Peripheral Instances */
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
I2C_HandleTypeDef hi2c1;
TIM_HandleTypeDef htim3;

/* Functions Declaration */
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM3_Init(void);
static void MX_I2C1_Init(void);

/* Global Variables */
uint32_t adcVal[2];
uint32_t Level[2];
uint8_t DHT22_data[5];
uint32_t data=0;
uint8_t checksum=0;
int button=0;
float Vout;
float invB=(float)1/3950;
float NTC_Voltage, NTC_Res;
float Atemp_reciprocal;
float Atemp;
float Dtemp, Humidity;
RawData_Def myAccelRaw, myGyroRaw;
ScaledData_Def myAccelScaled, myGyroScaled;
/* Main Function */
int main(void)
{
 int level;
 MPU_ConfigTypeDef myMpuConfig;

 /* Configure the system clock */
 SystemClock_Config();

81

 /* Initialize all configured peripherals */
 MX_GPIO_Init();
 MX_DMA_Init();
 MX_ADC1_Init();
 MX_TIM3_Init();
 MX_I2C1_Init();

 /* Start Timer */
 HAL_TIM_Base_Start(&htim3);
 /* Start ADC as DMA */
 HAL_ADC_Start_DMA(&hadc1, adcVal, 2);
 /* LCD Initialization*/
 LCD1602_Begin4BIT(RS_GPIO_Port, RS_Pin, E_Pin, DB4_GPIO_Port, DB4_Pin, DB5_Pin, DB6_Pin, DB7_Pin);
 /* DHT22 Initialization */
 DHT22_Init(DHT22_SDA_GPIO_Port,DHT22_SDA_Pin);
 /* Initialize the MPU6050 module and I2C */
 MPU6050_Init(&hi2c1);
 /* Configure Accel and Gyro parameters */
 myMpuConfig.Accel_Full_Scale = AFS_SEL_4g;
 myMpuConfig.ClockSource = Internal_8MHz;
 myMpuConfig.CONFIG_DLPF = DLPF_184A_188G_Hz;
 myMpuConfig.Gyro_Full_Scale = FS_SEL_500;
 myMpuConfig.Sleep_Mode_Bit = 0;
 MPU6050_Config(&myMpuConfig);

 while (1)
 {
 /* Scaled Acceleration and Gyroscope Data */
 MPU6050_Get_Accel_Scale(&myAccelScaled);
 MPU6050_Get_Gyro_Scale(&myGyroScaled);

 /* NTC10K data and Display on LCD */
 Vout= (adcVal[0]*3.3)/4032;
 NTC_Voltage=Vout/1.1;
 NTC_Res=(NTC_Voltage*8000/3.3)/(1-(NTC_Voltage/3.3));
 Atemp_reciprocal=0.003354+log((double)NTC_Res/10000)*invB;
 Atemp=1/Atemp_reciprocal-273.15;
 LCD1602_clear();
 LCD1602_print("NTC:");
 LCD1602_PrintFloat(Atemp,1);
 LCD1602_print("'C");
 /* Level Data and Display on LCD */
 LCD1602_print(" LEV:");
 Level[0]=HAL_GPIO_ReadPin(LevelUp_GPIO_Port, LevelDown_Pin);
 Level[1]=HAL_GPIO_ReadPin(LevelDown_GPIO_Port, LevelUp_Pin);
 if(Level[0]==0 && Level[1]==0)
 {
 LCD1602_print("L");
 level=0;
 HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 0);
 HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 0);
 }

82

 else if (Level[0]==1 && Level[1]==1)
 {
 LCD1602_print("F");
 level=1;
 HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 1);
 HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 1);
 }
 else if (Level[0]==1 && Level[1]==0)
 {
 LCD1602_print("N");
 level=1;
 HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 1);
 HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 0);
 }
 else
 {
 LCD1602_print("E");
 level=2;
 HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 1);
 HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 0);
 }

 /* Pump,Fan and their respective LEDs Control and Display on LCD */
 LCD1602_2ndLine();
 if (Atemp>35)
 {
 HAL_GPIO_WritePin(FAN_GPIO_Port, FAN_Pin,1);
 LCD1602_print("FAN:ON ");
 HAL_GPIO_WritePin(NTC_LED_GPIO_Port, NTC_LED_Pin, 1);
 }
 else
 {
 HAL_GPIO_WritePin(FAN_GPIO_Port, FAN_Pin,0);
 LCD1602_print("FAN:OFF ");
 HAL_GPIO_WritePin(NTC_LED_GPIO_Port, NTC_LED_Pin, 0);
 }

 if (level==0)
 {
 HAL_GPIO_WritePin(PUMP_GPIO_Port, PUMP_Pin, 1);
 LCD1602_print("PUMP:ON");
 }
 else if (level==1)
 {
 HAL_GPIO_WritePin(PUMP_GPIO_Port, PUMP_Pin, 0);
 LCD1602_print("PUMP:OFF");
 }
 else
 {
 LCD1602_print("TILTED");
 }
 HAL_Delay(1000);

83

 /* DHT22 Data and Display on LCD */
 LCD1602_clear();
 LCD1602_1stLine();
 LCD1602_print("DH:");
 LCD1602_PrintFloat(Humidity,1);
 LCD1602_print("% ");
 LCD1602_print("DT:");
 LCD1602_PrintFloat(Dtemp,1);
 LCD1602_print("'C ");

 /* Buzzer Control and Display on LCD */
 LCD1602_2ndLine();
 if (Humidity>=30 && Humidity<=50 && Dtemp>35)
 {
 HAL_GPIO_WritePin(Buzzer_GPIO_Port, Buzzer_Pin, 1);
 LCD1602_print(" Buzzer:ON ");
 }
 else
 {
 HAL_GPIO_WritePin(Buzzer_GPIO_Port, Buzzer_Pin, 0);
 LCD1602_print(" Buzzer:OFF ");
 }
 HAL_Delay(1000);

 /* KeyPad Control */
 while (HAL_GPIO_ReadPin(Button_GPIO_Port,Button_Pin)==0 ||

HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==0 ||
HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0 ||

 HAL_GPIO_ReadPin(KEY3_GPIO_Port,KEY3_Pin)==0 ||
 HAL_GPIO_ReadPin(KEY4_GPIO_Port,KEY4_Pin)==0)
 {
 if (HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==0)
 {
 LCD1602_clear();
 LCD1602_1stLine();
 Vout= (adcVal[0]*3.3)/4032;
 NTC_Voltage=Vout/1.1;
 NTC_Res=(NTC_Voltage*8000/3.3)/(1-(NTC_Voltage/3.3));
 Atemp_reciprocal=0.003354+log((double)NTC_Res/10000)*invB;
 Atemp=1/Atemp_reciprocal-273.15;
 LCD1602_print("NTC:");
 LCD1602_PrintFloat(Atemp,1);
 LCD1602_print("'C");
 LCD1602_2ndLine();
 if (Atemp>35)
 {
 HAL_GPIO_WritePin(FAN_GPIO_Port, FAN_Pin,1);
 LCD1602_print("FAN:ON ");
 HAL_GPIO_WritePin(NTC_LED_GPIO_Port, NTC_LED_Pin, 1);
 }
 else
 {
 HAL_GPIO_WritePin(FAN_GPIO_Port, FAN_Pin,0);
 LCD1602_print("FAN:OFF ");

84

 HAL_GPIO_WritePin(NTC_LED_GPIO_Port, NTC_LED_Pin, 0);
 }
 HAL_Delay(1000);
 }

else if (HAL_GPIO_ReadPin(Button_GPIO_Port,Button_Pin)==0 ||
HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0)

 {
 LCD1602_clear();
 LCD1602_1stLine();
 LCD1602_print(" LEVEL: ");
 Level[0]=HAL_GPIO_ReadPin(LevelUp_GPIO_Port, LevelDown_Pin);
 Level[1]=HAL_GPIO_ReadPin(LevelDown_GPIO_Port, LevelUp_Pin);
 if(Level[0]==0 && Level[1]==0)
 {
 LCD1602_print("LOW");
 level=0;
 HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 0);
 HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 0);
 }
 else if (Level[0]==1 && Level[1]==1)
 {
 LCD1602_print("FULL");
 level=1;
 HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 1);
 HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 1);
 }
 else if (Level[0]==1 && Level[1]==0)
 {
 LCD1602_print("NOMINAL");
 level=1;
 HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 1);
 HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 0);
 }
 else
 {
 LCD1602_print("ERROR");
 level=2;
 HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 1);
 HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 0);
 }
 LCD1602_2ndLine();
 if (level==0)
 {
 HAL_GPIO_WritePin(PUMP_GPIO_Port, PUMP_Pin, 1);
 LCD1602_print("PUMP STATUS: ON");
 }
 else if (level==1)
 {
 HAL_GPIO_WritePin(PUMP_GPIO_Port, PUMP_Pin, 0);
 LCD1602_print("PUMP STATUS: OFF");
 }
 else
 {

85

 LCD1602_print("TILTED");
 }
 HAL_Delay(1000);

 }
 else if (HAL_GPIO_ReadPin(KEY3_GPIO_Port,KEY3_Pin)==0)
 {
 LCD1602_clear();
 LCD1602_1stLine();
 LCD1602_print("DH:");
 LCD1602_PrintFloat(Humidity,1);
 LCD1602_print("% ");
 LCD1602_print("DT:");
 LCD1602_PrintFloat(Dtemp,1);
 LCD1602_print("'C ");

 LCD1602_2ndLine();
 if (Humidity>=30 && Humidity<=50 && Dtemp>35)
 {
 HAL_GPIO_WritePin(Buzzer_GPIO_Port, Buzzer_Pin, 1);
 LCD1602_print(" Buzzer:ON ");
 }
 else
 {
 HAL_GPIO_WritePin(Buzzer_GPIO_Port, Buzzer_Pin, 0);
 LCD1602_print(" Buzzer:OFF ");
 }
 HAL_Delay(1000);
 }
 else if (HAL_GPIO_ReadPin(KEY4_GPIO_Port,KEY4_Pin)==0)
 {
 LCD1602_clear();
 LCD1602_print("MPU6050/GY521");
 LCD1602_2ndLine();
 LCD1602_print(" NOT CONNECTED");
 HAL_Delay(1000);
 }
 }
 }
}
/* System Clock Configuration */
void SystemClock_Config(void)
{
 RCC_OscInitTypeDef RCC_OscInitStruct = {0};
 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

 /* Initializes the CPU, AHB and APB busses clocks */
 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
 RCC_OscInitStruct.HSIState = RCC_HSI_ON;
 RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;

86

 RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL2;
 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 {
 Error_Handler();
 }
 /* Initializes the CPU, AHB and APB busses clocks */
 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
 {
 Error_Handler();
 }
 PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
 PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2;
 if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
 {
 Error_Handler();
 }
}

/* Initialization Function */
static void MX_ADC1_Init(void)
{
 ADC_ChannelConfTypeDef sConfig = {0};
 ADC_InjectionConfTypeDef sConfigInjected = {0};

 /* Common config */
 hadc1.Instance = ADC1;
 hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
 hadc1.Init.ContinuousConvMode = DISABLE;
 hadc1.Init.DiscontinuousConvMode = DISABLE;
 hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
 hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
 hadc1.Init.NbrOfConversion = 1;
 if (HAL_ADC_Init(&hadc1) != HAL_OK)
 {
 Error_Handler();
 }
 /* Configure Regular Channel */
 sConfig.Channel = ADC_CHANNEL_13;
 sConfig.Rank = ADC_REGULAR_RANK_1;
 sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
 {
 Error_Handler();
 }

87

 /* Configure Injected Channel */
 sConfigInjected.InjectedChannel = ADC_CHANNEL_13;
 sConfigInjected.InjectedRank = ADC_INJECTED_RANK_1;
 sConfigInjected.InjectedNbrOfConversion = 2;
 sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_239CYCLES_5;
 sConfigInjected.ExternalTrigInjecConv = ADC_INJECTED_SOFTWARE_START;
 sConfigInjected.AutoInjectedConv = DISABLE;
 sConfigInjected.InjectedDiscontinuousConvMode = DISABLE;
 sConfigInjected.InjectedOffset = 0;
 if (HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected) != HAL_OK)
 {
 Error_Handler();
 }

 /* Configure Injected Channel */
 sConfigInjected.InjectedChannel = ADC_CHANNEL_8;
 sConfigInjected.InjectedRank = ADC_INJECTED_RANK_2;
 if (HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected) != HAL_OK)
 {
 Error_Handler();
 }
}

/* I2C1 Initialization Function */
static void MX_I2C1_Init(void)
{
 hi2c1.Instance = I2C1;
 hi2c1.Init.ClockSpeed = 100000;
 hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
 hi2c1.Init.OwnAddress1 = 0;
 hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
 hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
 hi2c1.Init.OwnAddress2 = 0;
 hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
 hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
 if (HAL_I2C_Init(&hi2c1) != HAL_OK)
 {
 Error_Handler();
 }
}
/* TIM3 Initialization Function */
static void MX_TIM3_Init(void)
{
 TIM_ClockConfigTypeDef sClockSourceConfig = {0};
 TIM_MasterConfigTypeDef sMasterConfig = {0};

 htim3.Instance = TIM3;
 htim3.Init.Prescaler = 800;
 htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
 htim3.Init.Period = 1000;
 htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
 htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
 if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
 {

88

 Error_Handler();
 }
 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
 if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
 {
 Error_Handler();
 }
 sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
 if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
 {
 Error_Handler();
 }
}

/* Enable DMA controller clock */
static void MX_DMA_Init(void)
{
 /* DMA controller clock enable */
 __HAL_RCC_DMA1_CLK_ENABLE();

 /* DMA interrupt init & DMA1_Channel1_IRQn interrupt configuration */
 HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
 HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);

}

/* GPIO Initialization Function */
static void MX_GPIO_Init(void)
{
 GPIO_InitTypeDef GPIO_InitStruct = {0};

 /* GPIO Ports Clock Enable */
 __HAL_RCC_GPIOC_CLK_ENABLE();
 __HAL_RCC_GPIOA_CLK_ENABLE();
 __HAL_RCC_GPIOB_CLK_ENABLE();

 /*Configure GPIO pin Output Level */
 HAL_GPIO_WritePin(GPIOC, DHT22_SDA_Pin|DH_LED_Pin|NTC_LED_Pin|Buzzer_Pin
 |FAN_Pin, GPIO_PIN_RESET);
 /*Configure GPIO pin Output Level */
 HAL_GPIO_WritePin(GPIOB, DB6_Pin|DB7_Pin|PUMP_Pin|Down_LED_Pin
 |Up_LED_Pin|DT_LED_Pin|DB5_Pin|DB4_Pin
 |E_Pin|RS_Pin, GPIO_PIN_RESET);

 /*Configure GPIO pins : Button_Pin KEY2_Pin KEY1_Pin */
 GPIO_InitStruct.Pin = Button_Pin|KEY2_Pin|KEY1_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

 /*Configure GPIO pins : LevelUp_Pin LevelDown_Pin */
 GPIO_InitStruct.Pin = LevelUp_Pin|LevelDown_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

89

 GPIO_InitStruct.Pull = GPIO_PULLDOWN;
 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

 /*Configure GPIO pins : DHT22_SDA_Pin DH_LED_Pin NTC_LED_Pin Buzzer_Pin FAN_Pin */
 GPIO_InitStruct.Pin = DHT22_SDA_Pin|DH_LED_Pin|NTC_LED_Pin|Buzzer_Pin
 |FAN_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

 /*Configure GPIO pins : KEY4_Pin KEY3_Pin */
 GPIO_InitStruct.Pin = KEY4_Pin|KEY3_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

 /*Configure GPIO pins : DB6_Pin DB7_Pin PUMP_Pin Down_LED_Pin Up_LED_Pin DT_LED_Pin DB5_Pin DB4_Pin E_Pin

RS_Pin */
 GPIO_InitStruct.Pin = DB6_Pin|DB7_Pin|PUMP_Pin|Down_LED_Pin
 |Up_LED_Pin|DT_LED_Pin|DB5_Pin|DB4_Pin
 |E_Pin|RS_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
 HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}
/* This function is executed in case of error occurrence */
void Error_Handler(void)
{}

#ifdef USE_FULL_ASSERT
/* Reports the name of the source file and the source line number where the assert_param error has occurred.*/
void assert_failed(uint8_t *file, uint32_t line)
{}
#endif

Main Header File
/* Define to prevent recursive inclusion */
#ifndef __MAIN_H
#define __MAIN_H

#ifdef __cplusplus
extern "C" {
#endif

/* Includes */
#include "stm32f1xx_hal.h"

/* Exported functions prototypes */
void Error_Handler(void);

90

/* Private defines */
#define Button_Pin GPIO_PIN_13
#define Button_GPIO_Port GPIOC
#define LevelUp_Pin GPIO_PIN_11
#define LevelUp_GPIO_Port GPIOC
#define LevelDown_Pin GPIO_PIN_10
#define LevelDown_GPIO_Port GPIOC
#define DHT22_SDA_Pin GPIO_PIN_2
#define DHT22_SDA_GPIO_Port GPIOC
#define NTC10K_Pin GPIO_PIN_3
#define NTC10K_GPIO_Port GPIOC
#define KEY4_Pin GPIO_PIN_6
#define KEY4_GPIO_Port GPIOA
#define KEY3_Pin GPIO_PIN_7
#define KEY3_GPIO_Port GPIOA
#define KEY2_Pin GPIO_PIN_4
#define KEY2_GPIO_Port GPIOC
#define KEY1_Pin GPIO_PIN_5
#define KEY1_GPIO_Port GPIOC
#define DB6_Pin GPIO_PIN_10
#define DB6_GPIO_Port GPIOB
#define DB7_Pin GPIO_PIN_11
#define DB7_GPIO_Port GPIOB
#define PUMP_Pin GPIO_PIN_12
#define PUMP_GPIO_Port GPIOB
#define Down_LED_Pin GPIO_PIN_13
#define Down_LED_GPIO_Port GPIOB
#define Up_LED_Pin GPIO_PIN_14
#define Up_LED_GPIO_Port GPIOB
#define DT_LED_Pin GPIO_PIN_15
#define DT_LED_GPIO_Port GPIOB
#define DH_LED_Pin GPIO_PIN_6
#define DH_LED_GPIO_Port GPIOC
#define NTC_LED_Pin GPIO_PIN_7
#define NTC_LED_GPIO_Port GPIOC
#define Buzzer_Pin GPIO_PIN_8
#define Buzzer_GPIO_Port GPIOC
#define FAN_Pin GPIO_PIN_9
#define FAN_GPIO_Port GPIOC
#define TMS_Pin GPIO_PIN_13
#define TMS_GPIO_Port GPIOA
#define TCK_Pin GPIO_PIN_14
#define TCK_GPIO_Port GPIOA
#define SWO_Pin GPIO_PIN_3
#define SWO_GPIO_Port GPIOB
#define DB5_Pin GPIO_PIN_4
#define DB5_GPIO_Port GPIOB
#define DB4_Pin GPIO_PIN_5
#define DB4_GPIO_Port GPIOB
#define E_Pin GPIO_PIN_8
#define E_GPIO_Port GPIOB
#define RS_Pin GPIO_PIN_9
#define RS_GPIO_Port GPIOB

91

#ifdef __cplusplus
}
#endif

#endif

DHT22 C File
/* Header files */
#include "MY_DHT22.h"

/* Bit fields manipulations */
#define bitRead(value, bit) (((value) >> (bit)) & 0x01)
#define bitSet(value, bit) ((value) |= (1UL << (bit)))
#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))
#define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) : bitClear(value, bit))

/* 1. One wire data line */
static GPIO_TypeDef* oneWire_PORT;
static uint16_t oneWire_PIN;
static uint8_t oneWirePin_Idx;

/* Functions prototypes */
/* OneWire Initialise */
void DHT22_Init(GPIO_TypeDef* DataPort, uint16_t DataPin)
{
 oneWire_PORT = DataPort;
 oneWire_PIN = DataPin;
 for(uint8_t i=0; i<16; i++)
 {
 if(DataPin & (1 << i))
 {
 oneWirePin_Idx = i;
 break;
 }
 }
}
/* Change pin mode */
static void ONE_WIRE_PinMode(OnePinMode_Typedef mode)
{
 GPIO_InitTypeDef GPIO_InitStruct;
 GPIO_InitStruct.Pin = oneWire_PIN;
 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
 GPIO_InitStruct.Pull = GPIO_NOPULL;

 if(mode == ONE_OUTPUT)
 {
 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
 }
 else if(mode == ONE_INPUT)
 {
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

92

 }
 HAL_GPIO_Init(oneWire_PORT, &GPIO_InitStruct);
}
/* One Wire pin HIGH/LOW Write */
static void ONE_WIRE_Pin_Write(bool state)
{
 if(state) HAL_GPIO_WritePin(oneWire_PORT, oneWire_PIN, GPIO_PIN_SET);
 else HAL_GPIO_WritePin(oneWire_PORT, oneWire_PIN, GPIO_PIN_RESET);
}
static bool ONE_WIRE_Pin_Read(void)
{
 return (1&HAL_GPIO_ReadPin(oneWire_PORT, oneWire_PIN));
}

/* Microsecond delay */
static void DelayMicroSeconds(uint32_t uSec)
{
 uint32_t uSecVar = uSec;
 uSecVar = uSecVar* ((SystemCoreClock/1000000)/3);
 while(uSecVar--);
}

/* DHT Begin function */
static void DHT22_StartAcquisition(void)
{
 /* Change data pin mode to OUTPUT */
 ONE_WIRE_PinMode(ONE_OUTPUT);
 /* Put pin LOW */
 ONE_WIRE_Pin_Write(0);
 /* 500uSec delay */
 DelayMicroSeconds(500);
 /* Bring pin HIGH */
 ONE_WIRE_Pin_Write(1);
 /* 30 uSec delay */
 DelayMicroSeconds(30);
 /* Set pin as input */
 ONE_WIRE_PinMode(ONE_INPUT);
}
/* Read 5 bytes */
static void DHT22_ReadRaw(uint8_t *data)
{
 uint32_t rawBits = 0UL;
 uint8_t checksumBits=0;

 DelayMicroSeconds(40);
 while(!ONE_WIRE_Pin_Read());
 while(ONE_WIRE_Pin_Read());
 for(int8_t i=31; i>=0; i--)
 {
 while(!ONE_WIRE_Pin_Read());
 DelayMicroSeconds(40);
 if(ONE_WIRE_Pin_Read())
 {

93

 rawBits |= (1UL << i);
 }
 while(ONE_WIRE_Pin_Read());
 }

 for(int8_t i=7; i>=0; i--)
 {
 while(!ONE_WIRE_Pin_Read());
 DelayMicroSeconds(40);
 if(ONE_WIRE_Pin_Read())
 {
 checksumBits |= (1UL << i);
 }
 while(ONE_WIRE_Pin_Read());
 }

 /* Copy raw data to array of bytes */
 data[0] = (rawBits>>24)&0xFF;
 data[1] = (rawBits>>16)&0xFF;
 data[2] = (rawBits>>8)&0xFF;
 data[3] = (rawBits>>0)&0xFF;
 data[4] = (checksumBits)&0xFF;
}

/* Get Temperature and Humidity data */
bool DHT22_GetTemp_Humidity(float *Temp, float *Humidity)
{
 uint8_t dataArray[6], myChecksum;
 uint16_t Temp16, Humid16;
 /* Implement Start data Aqcuisition routine */
 DHT22_StartAcquisition();
 /* Aqcuire raw data */
 DHT22_ReadRaw(dataArray);
 /* calculate checksum */
 myChecksum = 0;
 for(uint8_t k=0; k<4; k++)
 {
 myChecksum += dataArray[k];
 }
 if(myChecksum == dataArray[4])
 {
 Temp16 = (dataArray[2] <<8) | dataArray[3];
 Humid16 = (dataArray[0] <<8) | dataArray[1];

 *Temp = Temp16/10.0f;
 *Humidity = Humid16/10.0f;
 return 1;
 }
 return 0;
}

94

DHT22 Header File
/* Header files */
#include "stm32f1xx_hal.h"
#include <stdbool.h>
#include <string.h>
#include <math.h>

/* Pin Mode enum */
typedef enum
{
 ONE_OUTPUT = 0,
 ONE_INPUT,
}OnePinMode_Typedef;

/ Functions prototypes */
/* One Wire Initialize */
void DHT22_Init(GPIO_TypeDef* DataPort, uint16_t DataPin);
/* Change pin mode */
static void ONE_WIRE_PinMode(OnePinMode_Typedef mode);
/* One Wire pin HIGH/LOW Write */
static void ONE_WIRE_Pin_Write(bool state);
static bool ONE_WIRE_Pin_Read(void);
/* Microsecond delay */
static void DelayMicroSeconds(uint32_t uSec);
/* Begin function */
static void DHT22_StartAcquisition(void);
/* Read 5 bytes */
static void DHT22_ReadRaw(uint8_t *data);
/* Get Temperature and Humidity data */
bool DHT22_GetTemp_Humidity(float *Temp, float *Humidity);

MPU6050 C File
/* Header files */
#include "TJ_MPU6050.h"

/* Library Variable */
/* 1- I2C Handle */
static I2C_HandleTypeDef i2cHandler;
/* 2- Accel & Gyro Scaling Factor */
static float accelScalingFactor, gyroScalingFactor;
/* 3- Bias varaibles */
static float A_X_Bias = 0.0f;
static float A_Y_Bias = 0.0f;
static float A_Z_Bias = 0.0f;

static int16_t GyroRW[3];

/* Fucntion Definitions */
/* 1- i2c Handler */
void MPU6050_Init(I2C_HandleTypeDef *I2Chnd)
{
 /* Copy I2C CubeMX handle to local library */
 memcpy(&i2cHandler, I2Chnd, sizeof(*I2Chnd));

95

}

/* 2- i2c Read */
void I2C_Read(uint8_t ADDR, uint8_t *i2cBif, uint8_t NofData)
{
 uint8_t i2cBuf[2];
 uint8_t MPUADDR;
 /* Need to Shift address to make it proper to i2c operation */
 MPUADDR = (MPU_ADDR<<1);
 i2cBuf[0] = ADDR;
 HAL_I2C_Master_Transmit(&i2cHandler, MPUADDR, i2cBuf, 1, 10);
 HAL_I2C_Master_Receive(&i2cHandler, MPUADDR, i2cBif, NofData, 100);
}

/* 3- i2c Write */
void I2C_Write8(uint8_t ADDR, uint8_t data)
{
 uint8_t i2cData[2];
 i2cData[0] = ADDR;
 i2cData[1] = data;
 uint8_t MPUADDR = (MPU_ADDR<<1);
 HAL_I2C_Master_Transmit(&i2cHandler, MPUADDR, i2cData, 2,100);
}

/* 4- MPU6050 Initialaztion Configuration */
void MPU6050_Config(MPU_ConfigTypeDef *config)
{
 uint8_t Buffer = 0;
 I2C_Write8(PWR_MAGT_1_REG, 0x80);
 HAL_Delay(100);
 Buffer = config ->ClockSource & 0x07; //change the 7th bits of register
 Buffer |= (config ->Sleep_Mode_Bit << 6) &0x40; // change only the 7th bit in the register
 I2C_Write8(PWR_MAGT_1_REG, Buffer);
 HAL_Delay(100); // should wait 10ms after changing the clock setting.

 /* Set the Digital Low Pass Filter */
 Buffer = 0;
 Buffer = config->CONFIG_DLPF & 0x07;
 I2C_Write8(CONFIG_REG, Buffer);
 /* Select the Gyroscope Full Scale Range */
 Buffer = 0;
 Buffer = (config->Gyro_Full_Scale << 3) & 0x18;
 I2C_Write8(GYRO_CONFIG_REG, Buffer);

 /* Select the Accelerometer Full Scale Range */
 Buffer = 0;
 Buffer = (config->Accel_Full_Scale << 3) & 0x18;
 I2C_Write8(ACCEL_CONFIG_REG, Buffer);
 /* Set SRD To Default */
 MPU6050_Set_SMPRT_DIV(0x04);

 /* Accelerometer Scaling Factor, Set the Accelerometer and Gyroscope Scaling Factor */

96

 switch (config->Accel_Full_Scale)
 {
 case AFS_SEL_2g:
 accelScalingFactor = (2000.0f/32768.0f);
 break;

 case AFS_SEL_4g:
 accelScalingFactor = (4000.0f/32768.0f);
 break;

 case AFS_SEL_8g:
 accelScalingFactor = (8000.0f/32768.0f);
 break;

 case AFS_SEL_16g:
 accelScalingFactor = (16000.0f/32768.0f);
 break;

 default:
 break;
 }
 /* Gyroscope Scaling Factor */
 switch (config->Gyro_Full_Scale)
 {
 case FS_SEL_250:
 gyroScalingFactor = 250.0f/32768.0f;
 break;

 case FS_SEL_500:
 gyroScalingFactor = 500.0f/32768.0f;
 break;

 case FS_SEL_1000:
 gyroScalingFactor = 1000.0f/32768.0f;
 break;

 case FS_SEL_2000:
 gyroScalingFactor = 2000.0f/32768.0f;
 break;

 default:
 break;
 }

}

/* 5- Get Sample Rate Divider */
uint8_t MPU6050_Get_SMPRT_DIV(void)
{
 uint8_t Buffer = 0;

 I2C_Read(SMPLRT_DIV_REG, &Buffer, 1);
 return Buffer;

97

}

/* 6- Set Sample Rate Divider */
void MPU6050_Set_SMPRT_DIV(uint8_t SMPRTvalue)
{
 I2C_Write8(SMPLRT_DIV_REG, SMPRTvalue);
}

/* 7- Get External Frame Sync.*/
uint8_t MPU6050_Get_FSYNC(void)
{
 uint8_t Buffer = 0;

 I2C_Read(CONFIG_REG, &Buffer, 1);
 Buffer &= 0x38;
 return (Buffer>>3);
}

/* 8- Set External Frame Sync. */
void MPU6050_Set_FSYNC(enum EXT_SYNC_SET_ENUM ext_Sync)
{
 uint8_t Buffer = 0;
 I2C_Read(CONFIG_REG, &Buffer,1);
 Buffer &= ~0x38;

 Buffer |= (ext_Sync <<3);
 I2C_Write8(CONFIG_REG, Buffer);

}

/* 9- Get Accel Raw Data */
void MPU6050_Get_Accel_RawData(RawData_Def *rawDef)
{
 uint8_t i2cBuf[2];
 uint8_t AcceArr[6], GyroArr[6];

 I2C_Read(INT_STATUS_REG, &i2cBuf[1],1);
 if((i2cBuf[1]&&0x01))
 {
 I2C_Read(ACCEL_XOUT_H_REG, AcceArr,6);
 /* Accel Raw Data */
 rawDef->x = ((AcceArr[0]<<8) + AcceArr[1]); // x-Axis
 rawDef->y = ((AcceArr[2]<<8) + AcceArr[3]); // y-Axis
 rawDef->z = ((AcceArr[4]<<8) + AcceArr[5]); // z-Axis
 /* Gyro Raw Data */
 I2C_Read(GYRO_XOUT_H_REG, GyroArr,6);
 GyroRW[0] = ((GyroArr[0]<<8) + GyroArr[1]);
 GyroRW[1] = (GyroArr[2]<<8) + GyroArr[3];
 GyroRW[2] = ((GyroArr[4]<<8) + GyroArr[5]);
 }
}

/* 10- Get Accel scaled data (g unit of gravity, 1g = 9.81m/s2) */
void MPU6050_Get_Accel_Scale(ScaledData_Def *scaledDef)

98

{
 RawData_Def AccelRData;
 MPU6050_Get_Accel_RawData(&AccelRData);
 /* Accel Scale data */
 scaledDef->x = ((AccelRData.x+0.0f)*accelScalingFactor);
 scaledDef->y = ((AccelRData.y+0.0f)*accelScalingFactor);
 scaledDef->z = ((AccelRData.z+0.0f)*accelScalingFactor);
}

/* 11- Get Accel calibrated data */
void MPU6050_Get_Accel_Cali(ScaledData_Def *CaliDef)
{
 ScaledData_Def AccelScaled;
 MPU6050_Get_Accel_Scale(&AccelScaled);
 /* Accel Scale data */
 CaliDef->x = (AccelScaled.x) - A_X_Bias; // x-Axis
 CaliDef->y = (AccelScaled.y) - A_Y_Bias; // y-Axis
 CaliDef->z = (AccelScaled.z) - A_Z_Bias; // z-Axis
}

/* 12- Get Gyro Raw Data */
void MPU6050_Get_Gyro_RawData(RawData_Def *rawDef)
{
 /* Accel Raw Data */
 rawDef->x = GyroRW[0];
 rawDef->y = GyroRW[1];
 rawDef->z = GyroRW[2];
}

/* 13- Get Gyro scaled data */
void MPU6050_Get_Gyro_Scale(ScaledData_Def *scaledDef)
{
 RawData_Def myGyroRaw;
 MPU6050_Get_Gyro_RawData(&myGyroRaw);
 /* Gyro Scale data */
 scaledDef->x = (myGyroRaw.x)*gyroScalingFactor; // x-Axis
 scaledDef->y = (myGyroRaw.y)*gyroScalingFactor; // y-Axis
 scaledDef->z = (myGyroRaw.z)*gyroScalingFactor; // z-Axis
}

MPU6050 Header File
/* Header Files */
#include "stm32f1xx_hal.h"
#include <string.h>
#include <stdbool.h> //Boolean
#include <math.h> //Pow()

/* Define Registers */
#define WHO_AM_I_REG 0x75
#define MPU_ADDR 0x68
#define PWR_MAGT_1_REG 0x6B
#define CONFIG_REG 0x1A
#define GYRO_CONFIG_REG 0x1B
#define ACCEL_CONFIG_REG 0x1C

99

#define SMPLRT_DIV_REG 0x19
#define INT_STATUS_REG 0x3A
#define ACCEL_XOUT_H_REG 0x3B
#define TEMP_OUT_H_REG 0x41
#define GYRO_XOUT_H_REG 0x43
#define FIFO_EN_REG 0x23
#define INT_ENABLE_REG 0x38
#define I2CMACO_REG 0x23
#define USER_CNT_REG 0x6A
#define FIFO_COUNTH_REG 0x72
#define FIFO_R_W_REG 0x74

/* TypeDefs and Enums */
/* 1- MPU Configuration */
typedef struct
{
 uint8_t ClockSource;
 uint8_t Gyro_Full_Scale;
 uint8_t Accel_Full_Scale;
 uint8_t CONFIG_DLPF;
 bool Sleep_Mode_Bit;
}MPU_ConfigTypeDef;
/* 2- Clock Source ENUM */
enum PM_CLKSEL_ENUM
{
 Internal_8MHz = 0x00,
 X_Axis_Ref= 0x01,
 Y_Axis_Ref= 0x02,
 Z_Axis_Ref= 0x03,
 Ext_32_768KHz= 0x04,
 Ext_19_2MHz= 0x05,
 TIM_GENT_INREST= 0x07
};
/* 3- Gyro Full Scale Range ENUM (deg/sec) */
enum gyro_FullScale_ENUM
{
 FS_SEL_250 = 0x00,
 FS_SEL_500 = 0x01,
 FS_SEL_1000 = 0x02,
 FS_SEL_2000= 0x03
};
/* 4- Accelerometer Full Scale Range ENUM (1g = 9.81m/s2) */
enum accel_FullScale_ENUM
{
 AFS_SEL_2g= 0x00,
 AFS_SEL_4g,
 AFS_SEL_8g,
 AFS_SEL_16g
};
/* 5- Digital Low Pass Filter ENUM */
enum DLPF_CFG_ENUM
{
 DLPF_260A_256G_Hz = 0x00,
 DLPF_184A_188G_Hz = 0x01,

100

 DLPF_94A_98G_Hz = 0x02,
 DLPF_44A_42G_Hz = 0x03,
 DLPF_21A_20G_Hz = 0x04,
 DLPF_10_Hz = 0x05,
 DLPF_5_Hz = 0x06
};
/* 6- e external Frame Synchronization ENUM */
enum EXT_SYNC_SET_ENUM
{
 input_Disable = 0x00,
 TEMP_OUT_L= 0x01,
 GYRO_XOUT_L= 0x02,
 GYRO_YOUT_L= 0x03,
 GYRO_ZOUT_L= 0x04,
 ACCEL_XOUT_L= 0x05,
 ACCEL_YOUT_L= 0x06,
 ACCEL_ZOUT_L= 0x07
};

/* 7. Raw data typedef */
typedef struct
{
 int16_t x;
 int16_t y;
 int16_t z;
}RawData_Def;

/* 8. Scaled data typedef */
typedef struct
{
 float x;
 float y;
 float z;
}ScaledData_Def;

/* Function Prototype */
/* 1- i2c Handler */
void MPU6050_Init(I2C_HandleTypeDef *I2Chnd);
/* 2- i2c Read */
void I2C_Read(uint8_t ADDR, uint8_t *i2cBuf, uint8_t NofData);
/* 3- i2c Write 8 Bit */
void I2C_Write8(uint8_t ADDR, uint8_t data);
/* 4- MPU6050 Initialization Configuration */
void MPU6050_Config(MPU_ConfigTypeDef *config);
/* 5- Get Sample Rate Divider */
uint8_t MPU6050_Get_SMPRT_DIV(void);
/* 6- Set Sample Rate Divider */
void MPU6050_Set_SMPRT_DIV(uint8_t SMPRTvalue);
/* 7- External Frame Sync.*/
uint8_t MPU6050_Get_FSYNC(void);
/* 8- Set External Frame Sync.*/
void MPU6050_Set_FSYNC(enum EXT_SYNC_SET_ENUM ext_Sync);
/* 9- Get Accel Raw Data */

101

void MPU6050_Get_Accel_RawData(RawData_Def *rawDef);
/* 10- Get Accel scaled data */
void MPU6050_Get_Accel_Scale(ScaledData_Def *scaledDef);
/* 11- Get Accel calibrated data */
void MPU6050_Get_Accel_Cali(ScaledData_Def *CaliDef);
/* 12- Get Gyro Raw Data */
void MPU6050_Get_Gyro_RawData(RawData_Def *rawDef);
/* 13- Get Gyro scaled data */
void MPU6050_Get_Gyro_Scale(ScaledData_Def *scaledDef);

LCD 1602 C File
/* Header files */
#include "STM_MY_LCD16X2.h"

/* Variables */
static const uint32_t writeTimeConstant = 10;
static uint8_t mode_8_4_I2C = 1;
static GPIO_TypeDef* PORT_RS_and_E; // RS and E PORT
static uint16_t PIN_RS, PIN_E; // RS and E pins
static GPIO_TypeDef* PORT_LSB; // LSBs D0, D1, D2 and D3 PORT
static uint16_t D0_PIN, D1_PIN, D2_PIN, D3_PIN; // LSBs D0, D1, D2 and D3 pins
static GPIO_TypeDef* PORT_MSB; // MSBs D5, D6, D7 and D8 PORT
static uint16_t D4_PIN, D5_PIN, D6_PIN, D7_PIN; // MSBs D5, D6, D7 and D8 pins

static uint8_t DisplayControl = 0x0F;
static uint8_t FunctionSet = 0x38;

/* Functions definitions */
/* Private functions */
/* 1) Enable EN pulse */
static void LCD1602_EnablePulse(void)
{
 HAL_GPIO_WritePin(PORT_RS_and_E, PIN_E, GPIO_PIN_SET);
 LCD1602_TIM_MicorSecDelay(writeTimeConstant);
 HAL_GPIO_WritePin(PORT_RS_and_E, PIN_E, GPIO_PIN_RESET);
 LCD1602_TIM_MicorSecDelay(60);
}
/* 2) RS control */
static void LCD1602_RS(_Bool state)
{
 if(state) HAL_GPIO_WritePin(PORT_RS_and_E, PIN_RS, GPIO_PIN_SET);
 else HAL_GPIO_WritePin(PORT_RS_and_E, PIN_RS, GPIO_PIN_RESET);
}

/* 3) Write Parallel interface */
static void LCD1602_write(uint8_t byte)
{
 uint8_t LSB_nibble = byte&0xF, MSB_nibble = (byte>>4)&0xF;

 if(mode_8_4_I2C == 1) //8bits mode
 {

102

 /* write data to output pins */
 /* LSB data */
 HAL_GPIO_WritePin(PORT_LSB, D0_PIN, (GPIO_PinState)(LSB_nibble&0x1));
 HAL_GPIO_WritePin(PORT_LSB, D1_PIN, (GPIO_PinState)(LSB_nibble&0x2));
 HAL_GPIO_WritePin(PORT_LSB, D2_PIN, (GPIO_PinState)(LSB_nibble&0x4));
 HAL_GPIO_WritePin(PORT_LSB, D3_PIN, (GPIO_PinState)(LSB_nibble&0x8));
 /* MSB data */
 HAL_GPIO_WritePin(PORT_MSB, D4_PIN, (GPIO_PinState)(MSB_nibble&0x1));
 HAL_GPIO_WritePin(PORT_MSB, D5_PIN, (GPIO_PinState)(MSB_nibble&0x2));
 HAL_GPIO_WritePin(PORT_MSB, D6_PIN, (GPIO_PinState)(MSB_nibble&0x4));
 HAL_GPIO_WritePin(PORT_MSB, D7_PIN, (GPIO_PinState)(MSB_nibble&0x8));
 /* Write the Enable pulse */
 LCD1602_EnablePulse();
 }
 else if(mode_8_4_I2C == 2) //4 bits mode
 {
 /* write data to output pins */
 /* MSB data */
 HAL_GPIO_WritePin(PORT_MSB, D4_PIN, (GPIO_PinState)(MSB_nibble&0x1));
 HAL_GPIO_WritePin(PORT_MSB, D5_PIN, (GPIO_PinState)(MSB_nibble&0x2));
 HAL_GPIO_WritePin(PORT_MSB, D6_PIN, (GPIO_PinState)(MSB_nibble&0x4));
 HAL_GPIO_WritePin(PORT_MSB, D7_PIN, (GPIO_PinState)(MSB_nibble&0x8));
 /* Write the Enable pulse */
 LCD1602_EnablePulse();

 /* LSB data */
 HAL_GPIO_WritePin(PORT_MSB, D4_PIN, (GPIO_PinState)(LSB_nibble&0x1));
 HAL_GPIO_WritePin(PORT_MSB, D5_PIN, (GPIO_PinState)(LSB_nibble&0x2));
 HAL_GPIO_WritePin(PORT_MSB, D6_PIN, (GPIO_PinState)(LSB_nibble&0x4));
 HAL_GPIO_WritePin(PORT_MSB, D7_PIN, (GPIO_PinState)(LSB_nibble&0x8));
 /* Write the Enable pulse */
 LCD1602_EnablePulse();
 }
}
/* 4) Microsecond delay functions */
static void LCD1602_TIM_Config(void)
{
 RCC_ClkInitTypeDef myCLKtypeDef;
 uint32_t clockSpeed;
 uint32_t flashLatencyVar;
 HAL_RCC_GetClockConfig(&myCLKtypeDef, &flashLatencyVar);
 if(myCLKtypeDef.APB1CLKDivider == RCC_HCLK_DIV1)
 {
 clockSpeed = HAL_RCC_GetPCLK1Freq();
 }
 else
 {
 clockSpeed = HAL_RCC_GetPCLK1Freq()*2;
 }
 clockSpeed *= 0.000001;
 /* Enable clock for TIM2 timer */
 RCC->APB1ENR |= RCC_APB1ENR_TIM2EN; // 0x1
 /* Set the mode to Count up */

103

 TIM2->CR1 &= ~(0x0010);
 /* Enable Update Event */
 TIM2->CR1 &= ~(0x0001);
 /* Update request source */
 TIM2->CR1 &= ~(1UL << 2);
 /* Set bit 3 High to enable One-Pulse mode */
 TIM2->CR1 |= (1UL << 3);
 /* Set the Prescalar */
 TIM2->PSC = clockSpeed-1;
 /* Set and Auto-Reload Value to delay the timer 1 sec */
 TIM2->ARR = 10-1; // The Flag sets when overflows
 /* Event generation handling to reset the counter */
 TIM2->EGR = 1; //Update generate auto
 TIM2->SR &= ~(0x0001); //Clear Update interrupt flag
}
void LCD1602_TIM_MicorSecDelay(uint32_t uSecDelay)
{
 TIM2->ARR = uSecDelay-1;
 TIM2->SR &= ~(0x0001); // Clear UEV flag
 TIM2->CR1 |= 1UL;
 while((TIM2->SR&0x0001) != 1);
}
/* 5) Write command */
static void LCD1602_writeCommand(uint8_t command)
{
 /* Set RS to 0 */
 LCD1602_RS(0);
 /* Call low level write parallel function */
 LCD1602_write(command);
}
/* 6) Write 4 bits command, *FOR 4 BITS MODE ONLY */
static void LCD1602_write4bitCommand(uint8_t nibble)
{
 uint8_t LSB_nibble = nibble&0xF;
 /* Set RS to 0 */
 LCD1602_RS(0);
 /* LSB data */
 HAL_GPIO_WritePin(PORT_MSB, D4_PIN, (GPIO_PinState)(LSB_nibble&0x1));
 HAL_GPIO_WritePin(PORT_MSB, D5_PIN, (GPIO_PinState)(LSB_nibble&0x2));
 HAL_GPIO_WritePin(PORT_MSB, D6_PIN, (GPIO_PinState)(LSB_nibble&0x4));
 HAL_GPIO_WritePin(PORT_MSB, D7_PIN, (GPIO_PinState)(LSB_nibble&0x8));
 /* Write the Enable pulse */
 LCD1602_EnablePulse();
}
/* Public functions */
/* 1) LCD begin 4 bits function */
void LCD1602_Begin4BIT(GPIO_TypeDef* PORT_RS_E, uint16_t RS, uint16_t E, GPIO_TypeDef* PORT_MSBs4to7, uint16_t
D4, uint16_t D5, uint16_t D6, uint16_t D7)
{
 /* Set GPIO Ports and Pins data */
 PORT_RS_and_E = PORT_RS_E;
 PIN_RS = RS;
 PIN_E = E;

104

 PORT_MSB = PORT_MSBs4to7;
 D4_PIN = D4;
 D5_PIN = D5;
 D6_PIN = D6;
 D7_PIN = D7;
 /* Initialise microsecond timer */
 LCD1602_TIM_Config();
 /* Set the mode to 4 bits */
 mode_8_4_I2C = 2;
 /* Function set variable to 4 bits mode */
 FunctionSet = 0x28;
 /* Initialise LCD */
 /* 1. Wait at least 15ms */
 HAL_Delay(100);
 /* 2. Attentions sequence */
 LCD1602_write4bitCommand(0x3);
 HAL_Delay(50);
 LCD1602_write4bitCommand(0x3);
 HAL_Delay(10);
 LCD1602_write4bitCommand(0x3);
 HAL_Delay(10);
 LCD1602_write4bitCommand(0x2); //4 bit mode
 HAL_Delay(10);
 /* 3. Display control (Display ON, Cursor ON, blink cursor) */
 LCD1602_writeCommand(LCD_DISPLAYCONTROL | LCD_DISPLAY_B | LCD_DISPLAY_C | LCD_DISPLAY_D);
 /* 4. Clear LCD and return home */
 LCD1602_writeCommand(LCD_CLEARDISPLAY);
 HAL_Delay(30);
 /* 5. Function set; Enable 2 lines, Data length to 8 bits */
 LCD1602_writeCommand(LCD_FUNCTIONSET | LCD_FUNCTION_N);
 HAL_Delay(30);
}
/* 2) LCD print string */
void LCD1602_print(char string[])
{
 for(uint8_t i=0; i< 16 && string[i]!=NULL; i++)
 {
 LCD1602_writeData((uint8_t)string[i]);
 }
}
/* 3) set cursor position */
void LCD1602_setCursor(uint8_t row, uint8_t col)
{
 uint8_t maskData;
 maskData = (col-1)&0x0F;
 if(row==1)
 {
 maskData |= (0x80);
 LCD1602_writeCommand(maskData);
 }
 else
 {
 maskData |= (0xc0);

105

 LCD1602_writeCommand(maskData);
 }
}
void LCD1602_1stLine(void)
{
 LCD1602_setCursor(1,1);
}
void LCD1602_2ndLine(void)
{
 LCD1602_setCursor(2,1);
}
/* 4) Enable two lines */
void LCD1602_TwoLines(void)
{
 FunctionSet |= (0x08);
 LCD1602_writeCommand(FunctionSet);
}
void LCD1602_OneLine(void)
{
 FunctionSet &= ~(0x08);
 LCD1602_writeCommand(FunctionSet);
}
/* 5) Cursor ON/OFF */
void LCD1602_noCursor(void)
{
 DisplayControl &= ~(0x02);
 LCD1602_writeCommand(DisplayControl);
}
void LCD1602_cursor(void)
{
 DisplayControl |= (0x02);
 LCD1602_writeCommand(DisplayControl);
}
/* 6) Clear display */
void LCD1602_clear(void)
{
 LCD1602_writeCommand(LCD_CLEARDISPLAY);
 HAL_Delay(3);
}
/* 7) Blinking cursor */
void LCD1602_noBlink(void)
{
 DisplayControl &= ~(0x01);
 LCD1602_writeCommand(DisplayControl);
}
void LCD1602_blink(void)
{
 DisplayControl |= 0x01;
 LCD1602_writeCommand(DisplayControl);
}
/* 8) Display ON/OFF */
void LCD1602_noDisplay(void)
{

106

 DisplayControl &= ~(0x04);
 LCD1602_writeCommand(DisplayControl);
}
void LCD1602_display(void)
{
 DisplayControl |= (0x04);
 LCD1602_writeCommand(DisplayControl);
}
/* 9) Shift Display, right or left */
void LCD1602_shiftToRight(uint8_t num)
{
 for(uint8_t i=0; i<num;i++)
 {
 LCD1602_writeCommand(0x1c);
 }
}
void LCD1602_shiftToLeft(uint8_t num)
{
 for(uint8_t i=0; i<num;i++)
 {
 LCD1602_writeCommand(0x18);
 }
}
/* Print numbers to LCD */
/* 1. Integer */
void LCD1602_PrintInt(int number)
{
 char numStr[16];
 sprintf(numStr,"%d", number);
 LCD1602_print(numStr);
}
/* 2. Float */
void LCD1602_PrintFloat(float number, int decimalPoints)
{
 char numStr[16];
 sprintf(numStr,"%.*f",decimalPoints, number);
 LCD1602_print(numStr);
}

LCD1602 Header File
/* Header files */
#include <stdbool.h>
#include "stm32f1xx_hal.h"
#include <stdlib.h>

/* List of COMMANDS */

#define LCD_CLEARDISPLAY 0x01
#define LCD_RETURNHOME 0x02
#define LCD_ENTRYMODESET 0x04
#define LCD_DISPLAYCONTROL 0x08
#define LCD_CURSORSHIFT 0x10
#define LCD_FUNCTIONSET 0x20

107

#define LCD_SETCGRAMADDR 0x40
#define LCD_SETDDRAMADDR 0x80

/* List of commands Bitfields */

/* 1) Entry mode Bitfields */
#define LCD_ENTRY_SH 0x01
#define LCD_ENTRY_ID 0x02
/* 2) Entry mode Bitfields */
#define LCD_ENTRY_SH 0x01
#define LCD_ENTRY_ID 0x02
/* 3) Display control */
#define LCD_DISPLAY_B 0x01
#define LCD_DISPLAY_C 0x02
#define LCD_DISPLAY_D 0x04
/* 4) Shift control */
#define LCD_SHIFT_RL 0x04
#define LCD_SHIFT_SC 0x08
/* 5) Function set control */
#define LCD_FUNCTION_F 0x04
#define LCD_FUNCTION_N 0x08
#define LCD_FUNCTION_DL 0x10

/* Functions prototypes */

/* Private functions */
/* 1) Enable EN pulse */
static void LCD1602_EnablePulse(void);
/* 2) RS control */
static void LCD1602_RS(bool state);
/* 3) Write Parallel interface */
static void LCD1602_write(uint8_t byte);
/* 4) Microsecond delay functions */
static void LCD1602_TIM_Config(void);
/* 5) Write command */
static void LCD1602_writeCommand(uint8_t command);
/* 6) Write 4 bits command, *FOR 4 BITS MODE ONLY* */
static void LCD1602_write4bitCommand(uint8_t nibble);
/* Public functions */
/* 1) LCD begin 8 bits function */
void LCD1602_Begin8BIT(GPIO_TypeDef* PORT_RS_E, uint16_t RS, uint16_t E, GPIO_TypeDef* PORT_LSBs0to3, uint16_t
D0, uint16_t D1, uint16_t D2, uint16_t D3, GPIO_TypeDef* PORT_MSBs4to7, uint16_t D4, uint16_t D5, uint16_t D6,
uint16_t D7);
/* 2) LCD begin 4 bits function */
void LCD1602_Begin4BIT(GPIO_TypeDef* PORT_RS_E, uint16_t RS, uint16_t E, GPIO_TypeDef* PORT_MSBs4to7, uint16_t
D4, uint16_t D5, uint16_t D6, uint16_t D7);
/* 3) LCD print string */
void LCD1602_print(char string[]);
/* 4) set cursor position */
void LCD1602_setCursor(uint8_t row, uint8_t col);
void LCD1602_1stLine(void);
void LCD1602_2ndLine(void);
/* 5) Enable two lines */

108

void LCD1602_TwoLines(void);
void LCD1602_OneLine(void);
/* 6) Cursor ON/OFF */
void LCD1602_noCursor(void);
void LCD1602_cursor(void);
/* 7) Clear display */
void LCD1602_clear(void);
/* 8) Blinking cursor */
void LCD1602_noBlink(void);
void LCD1602_blink(void);
/* 9) Display ON/OFF */
void LCD1602_noDisplay(void);
void LCD1602_display(void);
/* 10) Shift Display, right or left */
void LCD1602_shiftToRight(uint8_t num);
void LCD1602_shiftToLeft(uint8_t num);

void LCD1602_TIM_MicorSecDelay(uint32_t uSecDelay);

/* Print numbers to LCD */
/* 1. Integer */
void LCD1602_PrintInt(int number);
/* 2. Float */
void LCD1602_PrintFloat(float number, int decimalPoints);

109

REFERENCES

[1] S. J. (2008) Rai, L.; Kang, “Rule-based modular software and hardware architecture for multi-shaped
robots using real-time dynamic behavior identification and selection". Knowledge-Based Systems,” pp.
273–283.

[2] FOUNDERS GUIDE, “What is Firmware and Why is Firmware Development Crucial?,” FOUNDERS GUIDE,
2018. http://foundersguide.com/firmware-and-why-firmware-development-crucial/.

[3] Embedded Staff, “Basics of hardware/firmware interface codesign,” 2013.
https://www.embedded.com/basics-of-hardware-firmware-interface-codesign/.

[4] “Thermistor.” http://wiki.sunfounder.cc/images/d/d1/Thermistoren.pdf.

[5] E. Ag, “NTC thermistors for temperature measurement,” no. March, pp. 1–22, 2013.

[6] L. Aosong ELectronics Co, “Dht22 (Am2302),” vol. 22, pp. 1–10, 2015, Available:
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf%0Ahttps://cdn-
shop.adafruit.com/datasheets/Digital+humidity+and+temperature+sensor+AM2302.pdf.

[7] R. Sensors, “59630 Sensor with Integral Float Actuator 59630 Sensor with Integral Float Actuator,” 2015.

[8] “DC Fan.” Available: https://www.farnell.com/datasheets/1878245.pdf

[9] “Durevole Dc 12 V 70PSI 3.5L/Min Agricola Pompa Ad Acqua Elettrica Nero Micro a Membrana Ad Alta
Pressione Spruzzatore di Acqua Auto di Lavaggio 12 V.”

[10] “WaveShare LCD1602.”

[11] “HSMx-Cxxx Surface Mount Chip LEDs.”

[12] TDK, “Pin terminal / Lead Without oscillator circuit PS series Piezoelectronic Buzzers (without circuit)
PS Series (Pin Terminal / Lead),” 2011. .

[13] adafruit, “MEMBRANE 1X4 KEYPAD + EXTRAS.” https://www.adafruit.com/product/1332.

[14] Texas Instruments, “Temperature sensing with NTC circuit,” 2018. .

[15] ON Semiconductor, “Single Supply Dual Operational Amplifiers,” Order A J. Theory Ordered Sets Its
Appl., pp. 1–14, 2003.

[16] Dejan, “DHT11 & DHT22 Sensors Temperature and Humidity,” 2016.
https://howtomechatronics.com/tutorials/arduino/dht11-dht22-sensors-temperature-and-humidity-
tutorial-using-arduino/.

[17] ELECT GO, “Relay,” 2019. https://www.electgo.com/what-is-a-relay/.

[18] Altium Designer, “Using Flyback Diodes in Relays Prevents Electrical Noise in Your Circuits,” 2017.
https://resources.altium.com/p/why-you-should-use-a-flyback-diode-in-a-relay-to-prevent-electrical-
noise-in-your-circuits.

[19] M. Brown, “FDD5612.” http://www.mouser.com/ds/2/308/LM7805-1124977.pdf.

https://www.farnell.com/datasheets/1878245.pdf

110

[20] STM, “Uln2001, uln2002 uln2003, uln2004,” 2019. .

[21] Kitronik, “Kitronik Ltd - How a Darlington pair transistor works What is a Darlington Pair ? What is
current gain? Why use a Darlington Pair? Base Activation Voltage.”
https://www.kitronik.co.uk/blog/how-a-darlington-pair-transistor-works/.

[22] electronicsforu, “All About IC 7805 | Voltage Regulator,” 2019.
https://www.electronicsforu.com/resources/learn-electronics/7805-ic-voltage-regulator.

[23] STM, “Adjustable and fixed low drop positive voltage regulator,” no. November, pp. 1–44, 2013,
[Online]. Available: http://www.ti.com/lit/ds/symlink/tlv1117-50.pdf.

[24] A. Williams, “Build your own printed circuit board.” p. 206, 2003.

[25] C. Schroeder, “PCB Design Using AutoCAD,” PCB Design Using AutoCAD. 1997, doi: 10.1016/b978-0-
7506-9834-4.x5000-0.

[26] ST, “STM32F101xx,102xx,103xx,105xx 107 Reference manual,” 2018. .

[27] InvenSense, “MPU-6000 and MPU-6050 Product Specification,” vol. 1, no. 408, 2012.

