POLITECNICO
MILANO 1863

School of Industrial and Information Engineering

Division of Automation and Control Engineering

Master’s Degree in Automation and Control Engineering

HARDWARE DESIGN FIRMWARE DEVELOPMENT &
MULTI-SENSOR BASED CONTROL OF WATER TANK

Submitted by: Atif Jamshaid Person Code: 862452

Supervised by: Prof. Francesco Castelli Dezza Politecnico Di Milano Supervisor

Ing. Mohamed Eleuche Agena SRL Supervisor

Academic Year 2019-2020

HARDWARE DESIGN FIRMWARE DEVELOPMENT &
MULTI-SENSOR BASED CONTROL OF WATER TANK

Master’s Industrial Thesis

Submitted by

Atif Jamshaid

Supervised by

Prof. Francesco Castelli Dezza Politecnico Di Milano Supervisor

Ing. Mohamed Eleuche Agena SRL Supervisor

School of Industrial and Information Engineering
Division of Automation and Control Engineering
POLITECNICO DI MILANO
Milano, Italia, 2020

ACKNOWLEDGEMENT

First and foremost, | would like to thank the Almighty God to bless me with an opportunity to pursue the
academic path | wished. Secondly, | would like to express my sincere gratitude to Prof. Francesco Castelli Dezza

for guiding me, sparing his valuable time and suggestions during my thesis work.

| would also like to express heartiest indebtedness to Engineer Mohamed Eleuche of Agena S.R.L, for
suggesting this project and continuously guiding and supervising my work. | thank him for providing me all the

hardware: the microcontroller, sensors, LCDs and other electronic devices.

| would like to also thank my parents for their continuous support in all fields of my life, for inspiring me and
motivating me through ups and downs, my siblings and my friends and colleagues who are constant source of

encouragement for me.

Last but not the least, | would also like to thank Politecnico Di Milano and its academic and organizational staff
for humble dealing in all aspects and for providing me a chance to pursue higher education here that | had

wished once.

ABSTRACT

Hardware Design and embedded firmware development constitutes of four steps: 1) Development of product
requirement 2) System design and algorithm development 3) Coding 4) Testing.

In the first phase, the requirements of the product are defined. In this project an electronic board has been
developed that takes analogue temperature, digital temperature, humidity, level and tilt measurements from
various sensors and based on their values pump, fan, buzzer and LEDs are controlled. An external LCD and

Keypad have been used to determine the status of every component.

In the second phase, schematic and printed circuit board have been designed using Computer Aided Design
software, KiCad. Then Gerber files have been generated and sent to the printed circuit board manufacturer.
Meanwhile all the required components based on Bill of Materials (BOM) have been ordered keeping in mind

the price and requirements of the product

In the third phase, coding has been done using C language based on the following things: 1) Requirements of the
product mentioned in the first phase and algorithm developed in the second phase 2) According to the datasheets

of the electronic components, sensors and microcontroller

In the fourth and final phase, printed circuit board has been assembled and programmed using the code
developed in the third phase. Then working of product has been tested using black box and white box testing

techniques.

SOMMARIO

La progettazione hardware e lo sviluppo del firmware incorporato prevedono quattro passaggi: 1) Sviluppo del

requisito del prodotto 2) Progettazione del sistema e sviluppo dell'algoritmo 3) Codifica 4) Test.

Nella prima fase vengono definiti i requisiti del prodotto. In questo progetto é stata sviluppata una scheda
elettronica che prende misure analogiche di temperatura, temperatura digitale, umidita, livello e inclinazione da

vari sensori e in base ai loro valori sono controllati pompa, ventola, cicalino e LED.

Nella seconda fase, schematic e printed circuit board sono stati progettati utilizzando il software Computer
Aided Design, KiCad. Quindi i file Gerber sono stati generati e inviati al produttore del circuito stampato. Nel
frattempo tutti i componenti richiesti basati su bill of materials (BOM) sono stati ordinati tenendo presente il
prezzo e i requisiti del prodotto.

Nella terza fase, la codifica é stata eseguita usando il linguaggio C secondo le seguenti cose: 1) Requisiti del
prodotto menzionati nella prima fase e algoritmo sviluppato nella seconda fase 2) Secondo le schede tecniche dei

componenti elettronici, sensori e microcontrollore.

Nella quarta e ultima fase, il circuito stampato € stato assemblato e programmato utilizzando il codice sviluppato
nella terza fase. Quindi la lavorazione del prodotto é stata testata usando le tecniche di test "Black Box" e "White

Box".

This page is intentionally left blank

Table of Contents

1

INTRODUGCTION ..ttt ettt et sttt et et e s bt e she e sae e st e et e e beesbeesaeesaeesaseeab e e bt e b e e abeesaeesaeeeateeabeenbeesbeesanenas 8
11 Problem StatE@MENToo et sttt et e st e e s bt e e be e e nar e e sbeeesareean 9
1.2 (0] o [=Tot 41V PP UPUPPRN 9
13 PrOJECT OVEIVIEW ..ciiiiiiiiitiie ettt ettt et e e e e e ettt e e e s e s aabeeeeeeeessasassbeeeeeeesesassseaaeeeesesanssnnaens 10
1.4 RequiremMent ANalYsis - PRASE-l......coouiiii ittt ettt e e e et e e e e ebte e e e sbae e e e snteeeeenns 11

141 Data COllECTION DEVICES ...coveeiieriiieitieieeteest ettt ettt ettt st sttt et e b e sbe e sae e et e et e e nbeesaeesanenane 11

1.4.2 CONEIOI DBVICESeeeeieitieieete ettt ettt b e sb e s ae e et e b e s bt e sheesaee s st e bt e beeabeeameesmeeeneeenneeneeens 11

143 INICALION DBVICES...eiuiiiiiieeitee ettt ettt et et e st e st e e s bt e e sabeesabeesbeeesabeeesbbeesnseesneeesareens 11

144 INPUL DBVICES ..evvviiieeeie ettt ettt e e e ettt e e e e e s ettt e e e e e e s s atbtaaeeeesssasasbtaaaeeesssnssssseaaeeeeenns 11
1.5 Computer Aided DesigN - PHASE-..........ooi ittt et e e et e e e esaae e e s sataeeeesanaeeesnsaeeesnnneeens 11

1.51 SCREMALIC ettt ettt et e b e s bt e s he e st s bt e bt e be e be e beesaeeeareeneen 12

1.5.2 @1 B = Y 1 T PPN 12

1.5.3 GERBERS .. s 12

1.5.4 (012 1Y T oYU = Tor U o T Y- PRSPPI 12

1.5.5 F X Y=T 011 o 1Y PRSP 12
1.6 (0o o [T T= el o o XY =2 | USRS 12

1.6.1 (00T o] 1= {U T 1 A Lo T2 3RS 12

1.6.2 Algorithm iIMPlEMENTATION ..o et e e et e e e e eabe e e e e abee e e e anes 13
1.7 TeSHING - PHASE-IV ..ottt sttt ettt st st s e s e e e e e et e e sreesenesane e 13

1.7.1 2] Yol S 2o D VG =Ty 4o T~ PSPPI 13

1.7.2 T =l = o D T o1 T =PSRRI 13

REQUIREMENT ANALYSIS ettt ettt ettt e e e e e ettt e e e e e e e ne bttt e e e e e e e aneneeeeeeeeesaannsreneaaaeann 14
2.1 Y oJTol 1 or=] 4 o] o TSRS 14
2.2 Data COllECLION DVICESeeiuiieeitieiiie ettt etee ettt ee et e st e s bt e s bt e e sae e sar e e s bee e sareesaneeesareesanenesaneesanes 15

221 MICIO CONTIOIIET ...ttt st ettt e bt st et e b e sreesanesanenane 15

2.2.2 ANAIOZUE TEMPEIATUIE SENSOI ...iiiiiiiiiieeeiiee e cettee e ecte e e eetre e e e ebee e e e sbreeeesabaeeeesabeeeeesnbaeeesnnseeeeennsees 16

2.2.3 Digital Temperature and Humidity Measurementccoccuvveeeicieie et evree e 17

224 LEVEI SBNSON ...ttt ettt sttt e s bt e st e st e e me e e s b e e e ehe e e s re e s ne e e s be e e beeeanreesneeennreeaa 18

2.25 Tilt MEASUIEMENT ..ottt st e st st e e st e e sbee e sare e ebeeesmeeesaneeesnneeas 19

2.3 CONTIO| DBVICES . .uuuuuuuueiiiiiiiiitiiiiiiiiitrattataastaeasaaaaaaaaaaaaa—a—aaaaasasasssasasssssssssssssssssssssnsssnsssssnsnsssnssnssnsnnnsnnnnnnn 20

23.1 = o E PP PP P PP PPPPPPPPPPPPPPPPPRE 20
2.3.2 PUMIP ettt ettt ee ettt e et e e st eeeee et e et et et erese e er e eee e eeneees 20
2.4 INAICATION DBVICES...ceutieiiieetee ettt ettt ettt e st e st e sttt e sae e e s bt e e sab e e sabeesbeeesabeeesbeesnseesaneeesabeesanes 21
24.1 LCD ettt b e b et a et et e bt e b e e e b e e e h et e bt e bt e b e e beeah et eae e et e e beenheenheesarenane 21
242 LED ettt bbbt a ettt b e e bt e e b e e e a et e bt e bt e bt e b e e eh et eae e e et e beenheenheesarenane 22
2.4.3 210 7= PP PP PP P PP PP PP PPPPPPPPPPPPPRE 22
2.5 INPUL DBVICE ...ttt ettt e e ettt e e e e e e bbbt e e e e s e e bt e e e e e e e e e s aansbaaeeeeeeesaasssaaaeeeesenannsrneaes 23
251 (N1 o - o PP URPRP 23
COMPUTER AIDED DESIGNceiiiiiiiiiiiitetee ettt e e ettt e e e e s e s e b et et e e e s e s anbeaeeeeeeeesaannnereneeeeesesannnenenens 24
3.1 SCREMALIC Lttt sttt ettt e be e s bt e s bt e s at e e bt e b e e b e e be e beeebeesateeteereen 24
3.1.1 NTC 10K SCREMIATIC ..ttt ettt ettt b e bt sae e et e sbe e sbeesaeesare e 24
3.1.2 DHT22 SCREMATIC. cueteiuiieeiie ettt ettt ettt sat e st e e sate e s bt e sbeeesabeeebbeesabeesneeesaneenns 26
3.13 59630 Reed Level SeNsors SCheMALiC......c.uiiiiiiiiiiiiee ettt st 27
3.14 12C Connector fOr IMU MOGUIEc..eiiiiieieeee ettt ettt et et e sbe e esareeeas 28
3.15 12 V PUMP SCREMATIC ..utiiiiiiiec ettt e et e e e e e bte e e e ebte e e e ebteeeesnraeeeestaeaesnns 29
3.1.6 12V Fan SCREMATIC. e cuteeteetieete ettt et ettt b e bt sae e et e nbe e sbeesaeesare e 31
3.1.7 BUZZET SCREMIATIC .. ittt ettt ettt b e b e s bt e sat e et e e sbeesbeesaee st e eane 33
3.1.8 LCD SCREMATIC ..ttt ettt sttt e s e st e e e e b e s re e sanesane e 33
3.1.9 Darlington Connections SChEMAtiC........uiiiiiiiii e e e 34
20 001 0 T (oA o= Yo I Yol o 1= = oSSR 36
3.1.11 Programmer SCHEMATICciiiiiiieeciiiee ettt e ettt e ettt e e et e e e et e e e e eaba e e e e abaee e e asaeeesnsaeeeeansseeesannsneens 37
3.1.12 12V-5V Voltage Regulation SChEMATICccccuiiieeciiei et ettt e e e aaee s 37
T 0 s . TR AV 2 U= Y= (U1 =Y o | R 40
3.1.14 Switch BUTEON SChEMALICS .. .eeiiiiiieiieiecece et 41
20 0 R 0 T4 Y o] (= IVl V=T s o - oSSR 42
3.2 @12 = Y Lo U | PP PP P PP PPPPPPPPPPPPPPPRE 43
3.2.1 Lo Yo X o o T 0] K3l =] = o 1P 43
3.2.2 SiZE OF ThE DOAIT...cneiiiee ettt sttt et e be e st st et e eeeneeen 44
3.2.3 (@foT 0] 0T g 1T o] £ ol - Tol [oV~ 44
3.24 0o T UL oY <SP PP PP PP PP PPPPPPPPPPPPPRE 45
3.25 3D VIBW ettt ettt ettt ettt sttt et e bt s bt st e e e et e bt e e b e e s R et st e bt e bt e bt e reenraesnaeereeneen 46

3.3 GERBERS ... s 48

3.4 O Y YoYU = Vot {0 o T o = PP 49
3.5 FAX Y=Y 011 o] 1 PSPPI 52

A CODINGL. s 53
4.1 (00T oY iT={UT = 4 o o - 53
4.1.1 F YA CoY={ U TR N=T 0] o 1T = L (] o <D U RR 53
4.1.2 LeVEl MBASUIEMENTeeiiiieeiie ittt ettt ettt et st e s bt e e sate e s abeesbeeesabeesabaeesnseesaneeesaneenns 54
4.1.3 DHT22 MEASUIEMENTeeeiiiiiiiiii ittt e e e s s e e e e e e s s enrree e e e e e s 54
414 IMU CONFIGUIATION 1eeiitieie ettt s e s st e e s st te e e s s bae e e s sabtaeeesntaeessnsaeassnns 57
4.1.5 Fan Pin CONFIGUIAtIONceiiiiiie ettt ettt e e e e tte e e e et te e e s e bae e e e enraeeeentaeaeanns 61
4.1.6 PUMP PiN CONFIUIATION....c.iiiii ettt e ette e e e e bte e e e ebae e e e ebteeeeeasraeeeestaeaeenns 61
4.1.7 Buzzer Pin CoONFIUIAtIONueiiiiiieee ettt ettt e e e et e e e e bae e e e e bae e e e eabeeeeesntaeaeeans 62
4.1.8 (@D @foT o 11U 17 | 4 oo F PP 62
4.1.9 Y oo M@oY g i T-{W] =Y o o [PPSR 65
I O I8 D N @o o =W T | 4 o Y o PP 65

4.2 SOUICE COUBS ...ttt ettt ettt ettt ettt b e s bt e s bt e s at e e at e et e e be e s bt e sbeesabesabeeabe e bt e beeabeesbeesatesareenseens 66

I I =N 1 1\ PP PP PPTPPPPPTNt 67
5.1 BIACK BOX TESTING ..eeeeietiieeiiiiiee ettt e ettt e e ettt e e e e tte e e e ett e e e e ebteeeeeabtaeeeabaeeaeassaeeeassasassstasaesassanaesassenasanns 67
5.2 LV T =l T D =T o = PP 68
5.3 Test Cases aNd RESUITS......coouiiiiiiiiiiieieeeee ettt st s r e b e ne e smeesaeeeneenneens 69
5.3.1 Y] 0 o] PP 69
5.3.2 CONLIOl DEVICES CRECKneiiieiieeite ettt ettt et ettt sbe e st st sttt e sbe e s beesmeeeaeeeeeeeeens 72
5.3.3 (070T 0] o] 1=y (=T =T SRR 75

B CONGCLUSION ...ttt ettt ettt h e st s ettt e bt e bt e s bt e sht e sateeas e e abe e beeebeesaeesabeeabeeabeebeeabeesbeeenteeseeseens 79
Y oY1= g Lo [N PRSP 80
SOUNCE COUBS ...ttt ettt ettt sttt et et e bt e s ae e s ae e st e bt e bt e bt e s be e she e sas e et e e bt e sbeesaeesasesmbesab e e s eeareesmeesneeenneenneens 80
IVEGIN € FILE ettt sttt et e b e e b e s bt e s et e st e bt e bt e b e e s be e sae e s at e et e e beenheesanenanenane 80

Y 1Tl o =TT [Tl o PO TSP UU R TOUPROPRPRP 89
DHT22 € Rl ettt ettt et h ettt et e bt e eb e e she e sat e sa b e et e e b e e bt e sbeesaeeeateeateebeesbeesaeesatenane 91
DHT22 HEAAET Fil@ ..ttt ettt st sttt e b e b e s be e sae e st e et e ebeesbeesneesanenane 94
IMPUBOS0 € FIlE ..ttt sttt sttt e b e st sat e st st e bt e b e be e s b e e smeesae e e s e eneenbeesanesanesane 94
MPUBOS50 HEAAET FilE... ittt st st sttt b e b e s e st e e n e e n e e sbeesmeesmnesane 98

LCD 1602 C Rl wcuviiiiiiitieiieie sttt et s e b s e st r e et a e nr e e

(01D K0 A == To [gl =1 (=IO

REFERENCES

LIST OF FIGURES

Figure 1: STM32F1RB NUCIEO BOAIT.....ccccuiiiieieiiie e ciee ettt ee e e ettt e e e ette e e s eabae e e e abaee s eeataeeeeenbaeeeenareeeeennnens 15
FIBUIE 21 INTCLOK .. tteee ettt ettee e ettt ee e ettt e sttt e e st e e s aabeee e sube e e e s abeeessubeeessubaaessaabaeeeenbeeeseanbaeessnsaeesenaseaesennnens 16
= U B o 10 1Y/ o Yo [PP 17
FIBUIE 41 59630 SONS O ittt 18
Figure 5: MPU 6050 IIMU MOGUIE.........cciiiiiee ettt e et e e e e e tae e e s eatae e e e enbaee e eeabaeeeeenbaeeeennreeeeennsens 19
FISUIE B: L2V FaN .ttt ettt e e e ettt et e e s ettt e e e e e e e s bbb aeeeeeeeesaabebaeeeeeesaaannbebaaeeeeesannnsbaeaeeesens 20
FIUIE 7112V PUMI c oo 20
FIGUIE 8: LEDLO0D2.... . eeeeeiieieeeitee e sttt e ettt e e s ettt e s s ebee e e senbeeeesaabeeesssbeeesaasbeeeesanbaeeseanbaeeeesaseaeeeasseaessnssenesenssenessnnsens 21
FIUIE 9: HSIMIX=CL50 LEDceiiiuiiiieiiiiie e cciiee s eetee e sttt e s st e e e s et e e e s abee e s s sabe e e e s eabaeessanbaeeeesbeaesennbeaesensseaessnssenessnnnens 22
FIBUIE 10: PIEZO BUZZE ..., 22
= U T TR (=1 T PRI 23
= U T e N O X0 | QR Yol =T s o - [PPSR 24
FIBUIE 13: LIMB58D .. 25
= U I T o 1T DT Yo [T SRR 25
= U I BT B o B I Yol o 1T o - oS PPIP 26
FIgure 16: DHT22 INTEINAI VIEW...ccoi ittt e et e e e tte e e ettt e e e e eabae e e senbae e e e abaeeeeeasteeeeansaeeeennreneeennnens 26
Figure 17: Humidity Measuring COMPONENTSeiiiiciiieiiiiieeeieitee e eeitee e esitee e ssteee s ssabeeeessnbeeesssabeeessanseeessnnseeessnnsens 27
FIGUIE 18: NTC W OTKING . cuteieeiiiiie ettt e ettt e et e e et e e e s ettt e e e s s bte e e s sabeeeeesabaeeesssbaee e e sseeeeasnseeeesnsseeesansseeesennsens 27
Figure 19: 59630 SENSOIS SCREMATIC .. .cciciiiii et ree e e et e e e et ee e e e abeee e e nbaeeeesabeeeeennnees 27
FIGUIE 20: IMPUBDS0 ... ciiiie ettt citee s ettt e e sttt e e ettt e e et e e e e s sabeee e e abaeeeeasbeeeesaasaeesaanbaeesesseeesaanseeesaasseeesennseeessnnsens 28
= U N e o] oo BT ol o 1=T - L Lol SRR UPR 29
Figure 22: DUreVOlE 12V DC PUMIP «...viiii ittt ettt e e et e e e e tee e s e tte e e e e s ataee e seabaeeeeenbaseeesnbeeeeeansaneeeanseneeennsens 29
= U I E 1 I N 2 U] - 1Y PRSP 30
FIUre 24: REIAY FUNCLION ..uiiii ittt et e e et e e st e e e et ae e e s eabae e e esnbaeeeennbaeeeensaeesennraeesennsens 30
FIUIE 25: FAN SCNEMATIC. . .eiii ittt et e e e tte e e e ettt e e e e e bee e e s eabaeeeesabeeeeeeabeeeeessaneeenntenesennsens 31
FIGUIE 26: DC AXIAl FAN ciiiiiei ettt sttt e e ettt e e et e e e et e e e e eabe e e e e abaeeessnbaeeeeabeaeeennbaeesennsaeesennseeesennsens 32
Figure 27: FDDS5612 IMIOSFETcoiiiitiee ittt ettt ettt e e sttt e s st e e s sabeee s sabaee e ssabeeesssaneeeesanreeesennrenesennnens 32
FIUre 28: BUZZEI SCNEMATIC.viiiiiiiiie ettt ettt e e et e e e e ettt e e e e e bae e e seabaeeeesabeaeeeenseeeeeansaneeeanseeeeennsens 33
FIGUre 29: LCDLOX02 CONNECTON ..uuviiiiiiiiiiiiiieteeeeseisiittteeeessssstarteeeesssssssssssaeeeesssssssssssaeeeesssssssssssseeesssnssssssaseeessss 33
= U T 0 W T D Yol o T=T o o = [SRR 34
Figure 31: ULN2003D (EACH AIIVEL) ...uviieiiiie ettt ettt e ettt e e ettt e e e e et e e e e e abae e e e e abaeeeesabaeeeeansaeeeennseneeennsens 35
Figure 32KeyPad SCREMAtiC......uiii et ere e e s ebae e e et ae e e e s bte e e e sabaeeeesabeeeeennnees 36
Figure 33: Programmer SCHEMIALIC ..cciii i e e e e e st e e e e e e e e nn b e e e e e e e e e sennnnreaeeeaaeean 37
Figure 34: 5V ReGUIAION CIrCUILuiiiiei ittt ettt e e e e e e et e e e e e e e e st e e e e e e e seasanssraaeeeeessasnnntenneeaanean 37
FIUre 35: LIM7805 PINOUTeeiiiieiiteeeeitee ettt et ee e sttt e e st e e e sabte e s s sabe e e e ssubteesssmbaeesenbeeeeesnbeeesesnsanessnanenesannnens 38
FIgure 36: LM7805 SChEMALIC......uuiiiieiiiicciiiieee ettt e e e e e e ettt e e e e e e e s e saabtaaeeeeeeeasnnstaaaeeeessasnnsrenneeaenean 39
TN ol A T AV 2 =Y U] =1 o] 1T o U USSP 40
FIGUIE 38: LDLAL7 .. e iiieee ettt ettt e e ettt e e ettt e e sttt e e sabe e e e s abee e s ssbe e e e s abeeessabaeeeeabeeesenbeeesennbanessnabeeesennnes 41
Figure 39: SWitch BUtton SCREMAtIC....cci e e e e e e e et e e e e e s e e ennrraeeeeeeeas 41
FIBUIE 40: FOOTPIINES oo 43

Figure 41:
Figure 42:
Figure 43:
Figure 44
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:

(@oT] oo a =T 0 s o - ol =T s =T o | A 44
o] Y Ay o LI oY o] o 1= oSSR RORP 45
2 F Lol QY To [T @0 o] o 1T USSR 46
] DoAY o) o | TP PRSP 46
BD VW Tl ieiiiieiee ettt e ettt e e e e e e et re e e e e e e e e saabraaeeeeeeeesassrsaaseaaeeaaasssssaasaaeeaasasnssaaseaeesesansnns 47
3D VIEW BACK 1.ttt ettt ettt ettt sttt e ettt e st e e e at e e s te e sbe e e sabeeeabee e ateesabaeesabeeeabeeebteeebaeenareenas 47
o] oY A LU CT=T g o 1= PRSP 48
o] N Y T =T o o 1T SRR 48
o] oYl o F= 1 (I =T 0 o 1= (USRI 48

2 ol QL O =T o o 1T PRSP 48
2 ol QY T [=T o o 1= PSR 48
PCB TOP ViBW i 49
PCB BOTEOM VIBW.ciiiiiiiiiiiiiiiee ettt ettt e et s sttt e e e e s s s bbbt e e e e e e s s ssbbbeeaaeeesssasssseaaeeeesssssnsseees 49
TOP LAYl IMAEE . e e e e e e e e e e e e e e e e e e e aaaaeeens 50
BOttOM Layer IMage oo, 50
TOP MECNANICAI VIBW ..ttt ettt e e e sbee e e e st e e e e eabee e e sasbeeeeesnbeeeesnnbeneeenanees 51
T 0T Y I = TSRS 52
(] AV d o IS 3 T T 0] oV g 1=t o SRR 54

Figure 59:DHT22 Overall TIMING DI@Zramcccccuuiiiieiiieeceiiee ettt este e s e sttt e s sveee s s sbae e s ssabeeesssabeeesssbeeessnsseeessnnsens 55

Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:

Ry =T I T I 2RSSR 55
=T oI DL I 7 PSSP 56
Y =T o B T 1 TSP 56
GYS521/MOUBDS0ceveeieniesieeeiesieeetetesteeeesteeseestesteessessesseessesseessesseessessesseassessesssessesseensensesssensessensesses 57
[2C START @nd STOP CONAITION ..eiiiiiiieeiiiiiiee ittt ettt ste e st e s s sbee e s s sabee e s ssabae e s ssbeeessnarees 58

AckNOWIedge 0N the 120 BUSciiiiiiieecieee ettt e e e et e e e s e e e e s abe e e e s ntaeeeennraeeeenanees 59
Complete 12C Data TranS eI ...t e e et ee e e st e e e e s abe e e e s sbeeeeenaseeeesnarees 59
SiNGlE BYte WILE SEQUENCEveiieeiiiee ettt ettt e ettt e e e ettt e e e s tae e e s et e e e seabaeeeensraeasasbaeeeenraeaeennseneeennsens 60
BUIST WHITE SEOUEBNCE .. eeiiiii ittt ettt e ettt e e e s s sttt e e e e e s s saaberaeeeeesenssssbenaaeaesssnnsssrenaeeessens 60
SiNGlE-BYte REAA SEOQUENCEueeieeiieeeeettee ettt e ettt e e et e e e ettt e e e e e baeeeeeabeeesannbaeasasbaeeeenreeeeennseneeennsens 60
S TU Tl 2T Yo IRY=To TN =Y o ol USSR 60
LCD 1B02......eeeeeuiteee ettt e ettt e e e ettt e e s ettt e e s ettt e e s eabe e e e s saba e e e saabe e e e e e bb e e e e e bae e e e e bt e e e e e baeee e e baeeesebreeeesanrneeesans 62
VWO SEOUEBNCE .ttt snnnnnannnnnnnnnnnnnnnnnn 63
RS o Y=o [U =T ool SRR 63
INItIAlIZAtION SEQUENCE .. .evveii ittt e e e et e e e e e e e e et ae e s e sabeeeeesnbaeeeesnbeeeeennrees 64
RS T T3 T o] oo X- ol o 1= SRR 67
NTCLOK TEST RESUILS ..eeeeiitiiiiiiiieeeseitee ettt et e e st e e s st e e e st ee e s ssbeeesseabeeesssabeeesesabeeessnaseeessnarens 69
LeVEl aNd Tilt CHECK c...viiieeetieeeee ettt et e st s be e e sabe e e sabeesabaesbaeesaraesnses 70
(D] 137 O =T o TP PUPTPPPPPRNS 71
FAn CoNtrol ChECK......vii i bee e e s e e e e s bee e s e sabeee s ssabeeesenares 72
PUMP CONEIOL CRECKviiiieiieee ettt e et e e et e e e st e e e e ebteeeesntaeeesntaeeesntaeesanns 73
BUZZEN CONEIOI ChECK...ciiiiiiii ittt s st ee e s st ee e s s sabee e e s sabeeesesabeeesenares 74

LIST OF TABLES

B o] L= A I 0 TSP 16
Table 2: DHT22 Technical SPeCIfiCatioNScciicuiiii ittt s e e e e sbee e s s sbee e e ennes 17
LI o] TSR B ol =Y ot d o | I LT Y-SR 18
Table 4: Electrical CharaCteriSTiCSuiiiiiiiriiiiiiesiee ettt st se et ste e s sbe e e s be e s bee e sateesbaesssbeesasaesnssessnbeeenseeas 21
LIE] (T BV 74 <101 T o1 LSRR 39
Table 6: GY521/MPUBO050 Pins DESCIIPLION ...uvecuieciieteeitiesieesteesteeteesteesteestaesaesabeeteesaesseessaesssessseesesssessssesssennns 57
NI o] LI A 1 O =T s o LT ST 61
Table 8: LCD PiNs DESCIIPLION . .uviiiiiiiiiee ittt e ettt e e et ee s e sttt e e sstee e e s eabee e e ssabeeeessabeeesesabeeesensbeeesesnseeeesssseeeesnseeeesnnsens 62
LI o1 1SR M T T @o T o o =Tt d o o ISR 65
Table 10: KeyPad PiNs CONNECLIONceiiiiiieeieiiie e eeieee ettt ettt e e e etee e e ettt e e e e e bte e e esabeeeeesabaeeeesnbaeeeeanseeeesanseeeeennsens 65
Table 11: KeYPad PiNs CONNECLION ..uuviiiiiiicciiiieeee ettt e e eeeerre e e e e e e e e s bbbaeeeeeeeeseatbssaaeeaeeeesssssssseseeeeeessnsrsseees 66
I o LT A T A O L 2 =TT | RSP 75
Table 13: TeSt CASE 2 RESUIT ..c.eieiiiii ettt ettt e et e st e et e s s te e ebeeesateeeateesaseesnseeenneeeenseeenseens 76
Table 14: TESt CaSE 3 RESUIL .. .ceiiiei ittt ettt et e e st e e et e e e e st e e e e sabee e e esnbeeeeessbeeeeesaseeeeesnseeeeesnseeeeannsees 77
I o] LI R W A O T 2 T U | S SRR 78

CHAPTER 1

1 INTRODUCTION

In electronic development projects hardware design and firmware development are two most integral parts. In
engineering, hardware design refers to the identification of a system's physical components and their
interrelationships.[1] Hardware design of electronic boards refers to the development of schematics on computer
aided design software based on the specifications of the product and then using that schematic to develop printed
circuit boards. Circuit is designed keeping in mind the product specifications, price of the components and

availability of the components.

In the field of technology there are two very important terms: hardware and software. Hardware refers to the
physical devices which run programs or other applications. On the other hand, software is what is run on the
hardware. Firmware is a term that lies in the middle ground between hardware and software. Firmware is a type
of software that is more integrally linked with the device that it is managing so the commands that are received
from a remote control are essentially firmware. Software is typically separate from the device itself, and it
simply uses the hardware to run, but firmware is part of the machine, and it would not function without it. To
summarize, the firmware is essentially the software that manages a device’s core functions and allows it to
interact with media and other hardware. The most crucial reason why businesses need to focus on firmware
when releasing new products is that hardware can often end up bricked by malfunctioning firmware. For those
that want to release reliable products consistently and improve their customer experience, stable firmware is a
must.[2]

Hardware and firmware engineering design teams often run into problems and conflicts when trying to work
together. They come from different development environments, have different tool sets and use different
terminology. Often, they are in different locations within the same company or work for different companies.
The two teams have to work together, but often have conflicting differences in procedures and methods. Since
their resulting hardware and firmware work have to integrate successfully to build a product, it is imperative that

the hardware/firmware interface — including people, technical disciplines, tools and technology — be designed

properly.[3]

1.1 Problem Statement

In industries fluid tanks ranging from small size to huge size are present that are exposed to normal and severe
environmental conditions like heat and humidity levels. High levels of temperature and humidity are not ideal
working conditions for the workers around the tank. Therefore, it is necessary to control the temperature and
humidity levels and their status should be known to operator.

Additionally, in many applications the need to maintain the level of fluid inside the tank is of extreme
importance and appropriate action is required if level of fluid gets out of nominal range. Finally, it is of great
important to keep orientation of tank exactly straight in order to measure accurately the level of fluid inside the
tank and to take appropriate steps to control fluid level.

1.2 Objectives

1. Measure the following sensor values
e Analogue Temperature
e Digital Temperature
e Humidity
e Fluid Level

e Tilt Measurement

2. Control following devices based on sensor values

e Fan

e Pump
e Buzzer
e LEDs

3. Display statuses of devices and sensor values on LCD

4. Control display using Keypad

1.3 Project Overview

Requirement Analysis — PHASE |

Data Control Indication Input
Collection Devices Devices Devices
Devices
(Computer Aided Design — PHASE |l \
Schematic PCB Layout GERBERS PCB Assembly
Manufacturing
(Coding — PHASE I \
Configurations and Algorithm
Drivers Implementation
(Testing — PHASE IV \
Black Box Testing White Box Testing

10

1.4 Requirement Analysis - Phase-I

First phase of the project revolved around the analysis of the components required to carry out the objectives
mentioned in Section 1.2. A brief overview of components used is as follows:

1.4.1 Data Collection Devices
These devices correspond to all the sensors required and microcontroller used to process information received
from the sensors and act on control and indication devices. Following sensors have been used:

e NTC10k for Analogue Temperature measurement

e DHT22 for Digital Temperature and Humidity measurements
o 59630 Floating Device for Level Indication

e MPUG6050 IMU Module for Tilt Measurement

STM32F103RBT6 micro controller has been used.

1.4.2 Control Devices
Based on sensor values following external devices have been used:

e 12V Fan to keep control of temperature
e Pump to maintain level of fluid inside the tank

1.4.3 Indication Devices
In order to know the status of Control Devices and values obtained from sensors following indication devices
have been used:

e LCD1602 for Display
¢ HSMC150 Red, Green and Yellow LEDs to show status of Control Devices and Power
e Buzzer 1233 as an Alarm device

1.4.4 Input Devices
External Keypad has been used to switch results on LCD.

1.5 Computer Aided Design - PHASE-II

This second phase of project constitutes of three parts.
11

1.5.1 Schematic

Schematic of the project has been developed in KiCad software. For proper selection of electronic components,
circuit analysis has been done. Proper footprints have been either downloaded or manually developed and
inserted inside components so that proper PCB Layout could be developed in second part of this phase.

1.5.2 PCB Layout

After creation of schematics and testing them for connections, PCB Layout has been developed in this part of the
project. Components according to their footprints are placed on PCB keeping in mind easy routing and size of
the printed circuit board.

1.5.3 GERBERS
Once PCB layout has been designed, output Gerber files have been generated which describes various layers of
the PCB

1.5.4 PCB Manufacturing
After sending Gerber files to the manufacturer, PCB is manufactured and sent back to us

1.5.5 Assembly
Once the PCB has arrived back after manufacturing, all components are assembled according to the design.

1.6 Coding - PHASE-III

In this third phase of thesis, software part of the project has been developed. All coding has been done using C
language using Eclipse IDE. STM32 Nucleo Board has been used in this phase to test and debug the code. This
phase constitutes of two major parts:

1.6.1 Configurations

Several sensors have been used and they need to communicate with the microcontroller. So, in this part of
coding various modules of microcontroller have been configured to receive data from sensors e.g. ADC, GPIOs,
12C. Additionally LCD and Keypad has been configured. All these configurations are based on datasheet of
STM32 microcontroller and datasheets of corresponding device with which micro controller is communicating.

12

1.6.2 Algorithm implementation
In second part of coding algorithm has been implemented in order to achieve the desired objectives of the
project.

1.7 Testing - PHASE-IV

Once the coding part is done and PCB has arrived and assembled using the components of schematic, code is
tested on the hardware to complete the firmware development of the project. Two basic methods of testing have
been used

1.7.1 Black Box Testing
In this type of testing desired output has been checked without going through the implementation.

1.7.2 White Box Testing
In this type of testing code has been modified to achieve the desired result.

Testing phase completes the project.

13

CHAPTER 2

2 REQUIREMENT ANALYSIS

This is the first phase of an electronic development project. In this phase all the specifications of the project are
determined and how an end user will see the final product. Along with the specifications it is determined which
are the devices or sensors that are needed, in order to achieve the final product. Therefore, firstly the
specifications of the product are covered in detail and then description of devices and sensors used to achieve
those specifications are discussed.

2.1 Specifications

In order to guarantee safety of the workers around the fluid tank it is very important to measure the
temperature of the environment. This can be achieved by using an analogue temperature sensor and
digital temperature sensor.

Secondly humidity measurement is very important to guarantee ideal working condition for the workers.
Therefore, a humidity sensor is required to measure the humidity of the environment.

Another important specification is to maintain the fluid level of the tank. For this either proximity sensor
could be used, or floating device could be used. As it is required to maintain fluid level in a nominal
range at least two sensors would be required to determine low level and high level of fluid.

Finally, in order to measure fluid level accurately it is important for tank to be exactly horizontal. As
there is no support available for the tank in this application it is required to measure tilt value of the tank
in order to guarantee accurate level measurement.

Once these sensor measurements are taken, they are sent to the microcontroller and depending on the values of
these measurements following actions should be taken:

If temperature is above a certain level fan is turned on unless temperature gets in the nominal range. In
normal situation fan should be off and if temperature is too high that fan cannot lower its level then it is
useless to use fan and therefore it should be off. In such case buzzer should turn on to indicate
emergency.

In this project no device has been used to control level of humidity. Therefore, if humidity is above
nominal value, buzzer should be turned on to indicate emergency.

If level of fluid is below the low level, pump should be turned on to increase level of fluid to its nominal
value. Similarly, if level of fluid is above the high-level fluid should be drained manually as no device
has been used to drain fluid out in this project.

Finally, if tilt measurement is not in a range then buzzer should beep to indicate that level measurements
cannot be done accurately.

14

Other Specification include:

o Eight different LEDs are used to indicate working of various devices

o

o

o

o

o

o

One green LED should be used to indicate a running power supply.
One green LED should be used to indicate a Turned-On fan.
One green LED should be used to indicate a Turned-on Pump.

Three red LEDs are used to indicate sensor measurements taken correctly from analogue
temperature sensor, humidity sensor and digital temperature sensor.

One green LED should be used to indicate up level of fluid

One Yellow LED should be used to indicate down level of fluid

e LCD is used to indicate the values of all sensor measurements and status of fan, pump and buzzer
o Keypad is used to display on LCD as following:

(0]

(0]

(0]

Temperature Value and Fan Status when Key 1 is pressed
Humidity Value and Buzzer Status when Key 2 is pressed

Level Status and Pump Status when Key 3 is pressed

2.2 Data Collection Devices

2.2.1 Micro Controller

Micro Controller family used in this project is STM32. Reason to use STM32 is prior know how and knowledge
of this microcontroller. Specifically, STM32F103RBT6 is used on the PCB. For coding and debugging STM
Nucleo board is used.

It is a 64-pin microcontroller in LQFP64 package with 12-bit ADC Channel, 12C supported by 7 channel DMA
controller. Those functionalities that have been used in the project are only mentioned here.

=
=
=
o
§
=
El
Cns
0o
=
<
o
3

Figure 1: STM32F1RB Nucleo Board

15

2.2.2 Analogue Temperature Sensor

Thermistor is a type of resistor whose resistance is dependent on temperature.[4] Negative temperature
coefficient thermistors are widely used as temperature sensors. In NTC thermistors, with the increase of
temperature, resistance decreases. Therefore, by measurement of resistance, temperature value can easily be
determined. Following NTC10K sensor has been used to measure analogue temperature of the environment.

Figure 2: NTC10K

NTC10K sensor has nominal resistance value of 10K at nominal temperature i.e 25 °C. The variation of
resistance with temperature can be seen from the table below that is taken from the datasheet of the sensor.[5]

T(°C) Bacneo = 4300 K, R, = 100000, T, =25°C, ARJ/R, == 5%
R,..10] R..[Q] R[] ARL/RA£%)] | AT[2C] o (%6/K)

-55.0 | 1214600 | 960540 1468600 |20.9 2.9 7.3
-50.0 | 844390 678960 1009800 | 19.6 2.7 7.1
-45.0 | 592430 |483870 701000 |[18.3 2.6 7.0
-40.0 | 419380 |347620 491150 [17.1 2.5 6.9
350 | 299480 [251710 347240 [16.0 2.4 6.7
-30.0 | 215670 | 183670 247670 |14.8 2.3 6.5
-25.0 | 156410 | 134870 177940 | 13.8 2.2 6.3
~20.0 | 114660 | 100050 120270 | 12.7 2.1 6.2
-15.0 | 84510 74576 94443 118 2.0 6.0
100 | 62927 56128 69726 [10.8 1.9 58
-50 | 47077 42421 51733 9.9 1.8 5.6
0.0 | 35563 32359 38767 9.0 16 55
50 | 27119 24905 29332 8.2 15 5.3
100 | 20860 19328 22391 7.3 14 52
150 | 16204 15143 17266 6.6 13 5.0
200 | 12683 11949 13418 5.8 1.2 49
25.0 | 10000 9500 10500 5.0 1.1 4.7
30.0 7942 7484 8400 5.8 1.3 46
35.0 6327 5918 6735 6.5 1.4 45
40.0 5074 4713 5435 7.1 16 43
45.0 4103 3784 4421 7.8 1.8 42
50.0 3336 3056 3616 8.4 2.0 41
55.0 2724 2479 2970 9.0 2.3 4.0
60.0 2237 2022 2452 9.6 2.5 3.9
65.0 1846 1658 2034 10.2 2.7 3.8
70.0 1530 1366 1695 |10.7 2.9 37
75.0 1275 1132 1419|113 31 36
80.0 1068 941.9 1194 1.8 3.4 as
85.0 899.3 788.7 1010 |12.3 3.6 34
0.0 760.7 663.4 858.0 |12.8 3.8 33
95.0 645.2 559.6 7309 |13.3 4.1 3.2
100.0 549.4 473.9 6249 |13.7 43 32
105.0 470.0 403.3 536.8 |14.2 46 3.1
110.0 403.6 3445 4627 |14.6 4.8 3.0
115.0 347.4 295.0 3998 |15.1 5.1 3.0
120.0 300.1 2535 3466 |155 5.4 29
125.0 260.1 218.7 3015 |15.9 5.6 238

Table 1: NTC10K

16

2.2.3 Digital Temperature and Humidity Measurement

DHT22 is a Digital-output relative humidity & temperature sensor/module which is used in this project to
measure the digital value of temperature and humidity. Small size, low power consumption and long
transmission distance enables DHT22 to be suited in all kinds of harsh application occasions.

Figure 3 DHT22 Module

Single row packaged with four pins, making the connection very convenient. Technical specifications of the
module are mentioned in the table below taken from the datasheet of the module.[6]

Model DHT22

Power supply 3.3-6V DC

Output signal digital signal via single-bus

Sensing element Polymer capacitor

Operating range humidity 0-100%RH: temperature -40~80Celsius
Accuracy humidity +-2%RH(Max +-5%RH); temperature <+-0.5Celstus
Resolution or sensitivity | humidity 0.1%RH;: temperature 0.1Celsius
Repeatability humidity +-1%RH: temperature +-0.2Celsius
Humidity hysteresis +-0.3%RH

Long-term Stability +-0.5%RH/year

Sensing period Average: 2s

Interchangeability fully interchangeable

Dimensions small size 14*18*5.5mm; big size 22*28*5mm

Table 2: DHT22 Technical Specifications

17

2.2.4 Level Sensor
In order to determine the level of the fluid in the tank, two 59630 sensors have been used. The 59630 is a reed
level sensor with integral float actuator and an M8 x 1.25mm pitch thread with a choice of normally open,
normally open high voltage, normally closed or change over contacts. It can switch up to 265Vac/300Vdc at

10VA.

\

Figure 4: 59630 Sensor

Two such sensors have been used in order to read high and low-level values. Electrical characteristics of the
sensor are mentioned in the table below which is taken from the data sheet of the device.[7]

Contact Type

Switch Type
Contact Rating '

Voltage *

Current ¢

Resistance *

Capacitance
Temperature

Switching *

Breakdown *

Switching *
Canry

Contact, Initial
Insulation

Contact
Operating

VAMWatt - max.

Ve - max.
Vac - max.
Vde - min.

Adc - max.
Aac - max.
Ade - max.

() - max.
{) - min.

pF - typ.
oC

Normally
Open

1
10

200
140
250

0.5
0.35
12

02
«'01.)

03
4010 +105

Normally Open
High Voltage

2
10

300
265
400

04
0.30
14

02
10

0.2
2010 +105

Change
Over

3
5

175
120
200

0.25
0.18
15

0.2
107

03
4010 +105

Normally
Closed

i
10

200
120
250

0.5
0.18
12

02
10"

03
4010 +105

Table 3: Electrical Ratings

18

2.2.5 Tilt Measurement

MPU 6050 IMU module has been used to measure tilt value of the tank. The module features 3 axis

accelerometer and 3 axis gyroscope. This is one of the most common IMU module used in microcontrollers.

Figure 5: MPU 6050 IMU Module

Main features of the accelerometer are:

e User programmable full scale range 29/49/8g/16g
e |2c serial interface

o 16 bit data output

e Magnetic field scale 1.3 to 8.1 gauss

Main features of gyroscope are:

e User programmable full scale range of 250/500/1000/2000 dps
e 12C digital output interface

e 16 bit data output

o Wide supply voltage: 2.4V — 3.6V

More details will be discussed in Coding part of the report.

19

2.3 Control Devices

2.3.1 Fan
To control the temperature an external 12 V fan with DC brushless motor has been used.

Figure 6: 12V Fan

Main features of the Fan taken from the datasheet[8] are

e Motor: Brushless DC
e Motor Protection: Impedance Protected
e Bearing Type: Two ball, Sleeve or Hydro Dynamic

2.3.2 Pump
To control the level of fluid in the tank a 12 V pump has been used.[9]

Figure 7:12V Pump

20

2.4 Indication Devices

2.4.1 LCD

The 1602 LCD has been used in this project to display the status of various sensors and indication devices. As
the name suggests it has 16 characters and 2 lines.

O o

:U

=52 =

83}_’ O = N D WO~ g

s E E £ s £535
E ss2S2oocaaaocaaO

= 8 .
P>t Dol S S8 68 €88 oo
._ugooocmmcmwmmwmm
o O Xrcwooooooao0 a4
B $ @ & 0 ¢ @ P & & & @
w w N ™ o A
w E o0 (=] 8
- == |

Figure 8: LCD1602

Other features of LCD include:

e Input Data: 4 Bits or 8 Bits interface available
e Display Font: 5 x 8 Dots
e Single 5V Power Supply
e Back Light: LED(White)

Electrical characteristics of the LCD taken from the datasheet [10] are shown in the table below:

(1a=25 U;Vdd=3.0V=10%,0therwise specitied)

Item Symbol | Test Condition | Min. | Typ. | Max. | Unit
Power Supply for Logic Vdd -- 47 1 50 | 55 V
Operating Voltage for LCD Vdd-Vo -- - | 50| -- V
Input High voltage Vih -- 22 | - | Vdd V
Input Low voltage Vil -- 03[- [06 V
Output High voltage Voh -loh=0.2mA 24 | -- -- \'
Output Low voltage Vol lol=1.2mA -- - | 04 V
Power supply current Idd Vdd=3.0v - | L1] - mA

Table 4: Electrical Characteristics

21

2.4.2 LED
HSMx-C150 LEDs[11] have been used in this project to indicate the status of sensors and whether control
devices are turned on or off.

Figure 9: HSMx-C150 LED

Main features of this series of LEDs are:

e Small size

e Industry standard footprint

o Compatible with IR solder

e Diffused optics

e Operating temperature range of -30 to +85 oC
e Various colors available

2.4.3 Buzzer
To indicate if humidity or temperature values are above nominal values, we use a piezo buzzer[12] which beeps
to indicate warning. Beep frequency is 2 KHz. Applied voltage is between 3V —5V.

Figure 10: Piezo Buzzer

22

2.5 Input Device

2.5.1 Keypad
A four button Keypad[13] has been used to switch the display of LCD showing the status of sensors and control
devices upon the discretion of user.

Figure 11: KeyPad

After doing detailed analysis of specifications and main devices to be used in the project next step is design.

23

CHAPTER 3

3 COMPUTER AIDED DESIGN

This is the second phase of the project. After analyzing the specifications and major devices that would be used
it is required to design the schematic diagram of the whole system. Next part after schematic is to design the
printed circuit board. Once printed circuit board has been designed, Gerber files have been generated and sent to
the PCB manufacturer for developing PCB. KiCad software has been used in this project for computer aided
design.

3.1 Schematic

To design the schematic, many important considerations are kept in mind. The values of resistors, capacitors and
inductors and type of ICs and electronic components all depends on the electrical requirements of the application
and individual components. In the following sections every schematic of this project has been discussed.

3.1.1 NTC 10K Schematic

+3.3V
Bk ~ GND
pte RELE
‘ D_Zener—3.3‘ | . |
S _ ga, , 1,5
o ¢ :
CN1 Lo | o =
NTC10K =
~ <
7 M) z
. GND - % Rz T
- _I_:Ilk s

Figure 12: NTC10K Schematic

24

3.1.1.1 Description

This temperature sensing circuit uses a resistor in series with a negative temperature coefficient (NTC)
thermistor to form a voltage divide, which has the effect of producing an output voltage that is linear over
temperature. The circuit uses an operational amplifier in a non-inverting configuration with inverting reference
to offset and gain the signal, which helps to utilize the full ADC resolution and increase measurement
accuracy.[14]

3.1.1.1.1 LM358D

LM358DJ[15] has been used as operational amplifier. These amplifiers have several distinct advantages over
standard operational amplifier types in single supply applications. They can operate at supply voltages as low as
3.0 V or as high as 32 V. Some features of LM358D are:

e Short Circuit Protected Outputs

o True Differential Input Stage

e Single Supply Operation: 3.0 V to 32 V

e Low Input Bias Currents * Internally Compensated
e Common Mode Range Extends to Negative Supply
e Single and Split Supply Operation

SOIC-8
D, VD SUFFIX
CASE 751

Figure 13: LM358D

3.1.1.1.2 Other Components
CNL1 is the connector where temperature sensor has to be connected. A Zener diode D11 is used in order to avoid
the flow of current in opposite direction.

Figure 14: Zener Diode

25

3.1.2 DHT22 Schematic

+ == PC3—DHT22—SDA
2—|2 — D12
3 D_Zener—5
e Dy
CN2 |

DHT22 | V7
ST I GND

Figure 15: DHT22 Schematic

3.1.2.1 Description

The DHT22 sensors have four pins, VCC, GND, data pin and a not connected pin which has no usage. A pull-up
resistor from 5K to 10K Ohms is required to keep the data line high and in order to enable the communication
between the sensor and the microcontroller. Zener diode D12 is connected to block reverse current.

3.1.2.1.1 DHT22
DHT22 consist of a humidity sensing component, a NTC temperature sensor (or thermistor) and an IC on the
back side of the sensor.

Humidity Sensing
Component

NTC Temeperature Sensor
Thermistor

Figure 16: DHT22 Internal View

For measuring humidity it uses the humidity sensing component which has two electrodes with moisture holding
substrate between them. So, when the humidity changes, the conductivity of the substrate changes, or the
resistance between these electrodes changes. This change in resistance is measured and processed by the I1C
which makes it ready to be read by a microcontroller.

26

Moisture Holding
Substrate

Electrode

Electrode

Solder Pad

Figure 17: Humidity Measuring Components

On the other hand, for measuring temperature these sensors use a NTC temperature sensor or a thermistor. A
thermistor is actually a variable resistor that changes its resistance with change of the temperature. These sensors
are made by sintering of semi conductive materials such as ceramics or polymers in order to provide larger
changes in the resistance with just small changes in temperature. The term “NTC” means “Negative Temperature
Coefficient”, which means that the resistance decreases with increase of the temperature.[16]

3.1.3 59630 Reed Level Sensors Schematic

Resistance

+ B3
10k
R8
| :
| M|
™ O
-~ M)
3 oz M
N 100
! C

59630—Level

.GND .

Temperature

Preasure

Figure 18: NTC Working

LevelUp

Figure 19: 59630 Sensors Schematic

+3.3V
10k
R7
® it [T |
| M|
— o
2]
5 o M)
S 100n
S il c1 -
CN4
- 59630~Level
GND

LevelDown

27

3.1.3.1 Description

59630 sensor has two cables connected through CN3 and CN4 connectors. Resistor capacitor connection shown
in the schematic is used to make output on controller pin low when sensor contact is open. The other side of
schematic is directly connected to micro controllers GP10O pins to read the value.

3.1.4 12C Connector for IMU Module

o
=
T
2\

PB11-12C2-SDA
PB10-12C2-SCL
PB7—-12C1-SDA
PB6—12C1-SCL

+3.3V

[« J1
M Conn_01x06

6
<
L
K.
2

3.1.4.1 Description

In the project MPU6050 IMU module has been used to measure the value of accelerometer and gyroscope.
MPUG050 module uses 12C to connect to microcontroller. The data and clock lines of both available 12C pins of
the microcontroller are connected to J1 connector along with power and ground connections.

Figure 20: MPU6050

It can be seen in the figure that MPU has data and clock pins and they are connected to the 12C pin connector for
serial data transfer from IMU module to microcontroller.

28

3.1.5 12 V Pump Schematic
e v 58

-

o+

Figure 21: Pump Schematic

3.1.5.1 Description

In the schematic of Pump in order to isolate the rest of the circuit from the pump a relay has been used. There is
an LED in the circuit which turns on when microcontroller gives one on the pump pin. and therefore, turning on
the pump. A diode has been connected to relay to avoid damaging nearby components sensitive to high voltage.
Relay is not directly connected to the microcontroller. A Darlington pair has been used instead which would be
described in a later section.

3.1.5.2 Pump

A pump is a device whose purpose is to push the liquid to a certain place. In this project we are using pump to
push the fluid inside the tank in case it is below nominal value. A Durevole 12V DC pump has been used here. It
has a diaphragm structure and high-pressure capability.

Figure 22: Durevole 12V DC Pump

29

3.1.5.3 Relay

Relay are the switches which aim at closing and opening the circuits electronically as well as
electromechanically. It controls the opening and closing of the circuit contacts of an electronic circuit. When the
relay contact is open, the relay is not energized with the open contact. However, if it is closed (NC), the relay is
not energized given the closed contact. Relay can detect overcurrent, overload, undercurrent and reverse current
to ensure the protection of electronic equipment. Relay used in this project to isolate pump from the rest of the
circuit is G5LE PCB Power Relay.

Figure 23: G5LE Relay

The diagram below sheds focus on the internal section of the relay in the circuit. There is an iron core delimited
with the control coin. The power source has been connected with electromagnet through load contacts and a
control switch. When energy is supplied to the circuit through the control coil, magnetic fields are intensified
given the commencement of energizing. This way, upper contact arms gets attracted by the lower fixed arm
which closes the contacts leading to the short circuit. However, if the relay was de-energized, an open circuit is
created with the opposite movement of the contact.[17]

From | —{ To load
power °

source
/ (. _— «—t Contacts
Control T__ open
switch
S
Control
Coll
= Iron Core

Figure 24: Relay Function

3.1.5.4 Flywheel Diode

A flyback/flywheel diode is placed with reverse polarity from the power supply and in parallel to the relay’s
inductance coil. The use of a diode in a relay circuit prevents huge voltage spikes from arising when the power
supply is disconnected. When the power supply is connected to the relay, the inductance coil’s voltage builds up
to match that of the power source. The speed at which current can change in an inductor is limited by its time

30

constant. In this case, the time it takes to minimize current flow through the coil is longer than the time it takes
for the power supply to be removed. Upon disconnection, the inductance coil reverses its polarity to keep current
flowing according to its dissipation curve (i.e., % of maximum current flow with respect to time). This causes a
huge voltage potential to build up on the open junctions of the component that controls the relay. This voltage
built up is called flyback voltage. It can result in an electrical arc and damage the components controlling the
relay. It can also introduce electrical noise that can couple into adjacent signals or power connections and cause
microcontrollers to crash or reset. To mitigate this issue, a diode is connected with reverse polarity to the power
supply. Placing a diode across a relay coil passes the back EMF and its current through the diode when the relay
is energized as the back EMF drives the flyback protection diode in forward bias. When the power supply is
removed, the voltage polarity on the coil is inverted, and a current loop forms between the relay coil and
protection diode; the diode again becomes forward biased. The diode allows current to pass with minimal
resistance and prevents flyback voltage from building up.[18]

3.1.6 12V Fan Schematic

- .
N
N :
+ :
1A i o
HS&{‘C\;%? :::“‘;.“1:”,
- 5k a4 2ﬂ‘
R19 ,,,_,ij;, 18
. FAN. .
CN7
PC9-FAN__— 03
o FDD5612

GND -

Figure 25: Fan Schematic

3.1.6.1 Description

A 12 V fan is used to get temperature in control. Fan is not connected directly to microcontroller instead it is
isolated through a MOSFET and switch the fan. An LED is connected in series with a resistor which will turn on
when Fan will receive power from microcontroller. The series resistor is used because supply is 12 V and LED
has low power rating. A flywheel diode is connected in reverse bias to avoid any reverse current.

31

http://www.eetimes.com/document.asp?doc_id=1274125

3.1.6.2 12V Fan
A 12 V fan with DC brushless motor is connected to connector CN7

Figure 26: DC Axial Fan

3.1.6.3 MOSFET
60V, 18A N Channel MOSFET FDD5612 is used to switch the fan. From the datasheet [8] of fan it can be noted
that fan consumes 50 mA current. From the datasheet[19] of this MOSFET following values can be recorded:

RDS(OTL) = 64‘mQ
P, = 1.6W

If we compute power dissipation it can be found by:

P=1I?R
P = 50mA? x 64mQ
P =016 mW

As FDD5612 can support maximum of 1.6 W therefore 0.16mW consumption is well inside the range.
Therefore, this MOSFET has been used to switch the fan and isolate the circuitry of Fan from micro Controller.

TO-252

Figure 27: FDD5612 MOSFET

3.1.6.4 Other Components

A flywheel diode is used to stop the reverse current. Detailed explanation is mentioned in last section. An
HSMG C150 green LED is connected in parallel to fan. It will turn on when the fan will turn on. A series
resistance is used with the LED to get voltage across LED to nominal value i.e. 3V.

32

3.1.7 Buzzer Schematic

>~
I"? ‘‘‘‘‘
M
£
10
R23
[:
© i
g i BZ1
LS | | 71
BEA 2| / Buzzer 1233
¢
Buzzef

Figure 28: Buzzer Schematic

3.1.7.1 Description

Buzzer is connected to microcontroller according to the circuitry shown above. Again, diode is connected to
avoid reverse current towards microcontroller. A very small 10Q resistor is used to supple complete 3.3 V to the
buzzer. Buzzer is not directly connected to the microcontroller. A Darlington pair has been used instead which
would be described in a later section

3.1.8 LCD Schematic

+3.3V
}L|

LAAAS
RV1
[e TG =S
SpkiEdd S ¢—]>GND
=== L

o ot 2‘ g‘ :l aTc\TooTr\Tno’ Te! d—‘ Mo | —
||.| o o o o & o o°© o o o +u I

CN12

16x04

Figure 29: LCD16x02 Connector

33

3.1.8.1 Description

LCD 16x02 is used to display status of sensors and indication devices. LCD 16x02 has 16 pins which are
connected to CN12 connector. First 3 pins of the connector are attached to a potentiometer which is used to
control the brightness of LCD screen. Pin 4,5 and 6 are Register Select (RS), Read/Write (R/W) and Enable (E)
respectively and they are connected to microcontroller GPIOS. There are eight data lines and only four of them
are used to transmit data from controller to LCD. Therefore, first four data lines are not connected while last four

are connected to GPIOs of microcontroller.

3.1.9 Darlington Connections Schematic

___________ +3.3V
___________ z B IQ ’
e
e HSMH C150
o
“““ oo, "/K_’|: 'I‘D‘* |
o el HSMH-C150
o : ;
PC7-Buzzer__1| 1 6Buzzer 1 |/|/I<} —a
- Red—ATemp__ 2, el = c150‘ |
Red—Humldlty__3| ik A o
~ Red=DTemp__4,, i S v o v g S S SR S iR
- Green—LevelUP__5 b & B 8 G 2 o ‘ :
wdlin *I s
"~ Yellow-LevelDown__6| TSLLEE T g e
16 HSMG~C150
. PC8-PUMP__7/, 10PUMP.:::::i T Ty
—:L :

Figure 30: LED Schematic

3.1.9.1 Description

{jq

HSMY C150

LEDs are used to show the status of sensors. LEDs are not connected directly to microcontroller but isolated
through transistors. Similarly pump and buzzer are also connected to microcontroller through transistors. More

specifically Darlington pair has been used.

34

3.1.9.2 HSMx-C150 LED

Five LEDs are connected in series with small value resistances to Darlington pair. These resistances are used to
give optimal voltages to LEDs.

3.1.9.3 ULN2003D

The ULN2003[20] are high-voltage (50V), high-current Darlington arrays each containing seven open collector
Darlington pairs with common emitters. Each channel is rated at 500 mA and can withstand peak currents of 600
mA.. Suppression diodes are included for inductive load driving and the inputs are pinned opposite the outputs to
simplify board layout.

|

|
l__“___._-._.__ e
EACH DRIVER S~ 1589

Figure 31: ULN2003D (each driver)

A Darlington pair is two transistors that act as a single transistor but with a much higher current gain. This mean
that a tiny amount of current from a sensor, micro-controller or similar can be used to drive a larger load for
example in this project a fan. Transistors have a characteristic called current gain. This is referred to as its hFE.
The amount of current that can pass through the load in the circuit above when the transistor is turned on is:

Load current = input current x transistor gain (hFE)

The current gain varies for different transistors and can be looked up in the data sheet for the device. For a
normal transistor this would typically be about 100. This would mean that the current available to drive the load
would be 100 times larger than the input to the transistor. In some applications the amount of input current
available to switch on a transistor is very low. This may mean that a single transistor may not be able to pass
enough current required by the load.

Now as Load current equals the input current x the gain of the transistor (hFE). If it is not possible to increase
the input current, then the gain of the transistor will need to be increased. This can be achieved by using a
Darlington Pair. A Darlington Pair acts as one transistor but with a current gain that equals:

Total current gain (hFE total) = current gain of transistor 1 (hFE t1) x current gain of transistor 2 (hFE t2)

35

So, for example if there are two transistors with a current gain (hFE) = 100:
(hFE total) = 100 x 100
(hFE total) = 10,000

This gives a vastly increased current gain when compared to a single transistor. Therefore, this will allow a very
low input current to switch a much bigger load current. Normally to turn on a transistor the base input voltage of
the transistor will need to be greater than 0.7V. As two transistors are used in a Darlington Pair this value is
doubled. Therefore, the base voltage will need to be greater than 0.7V x 2 = 1.4V. It will not be a problem in our
case because microcontroller pin gives 3.3V.[21]

It is also worth noting that the voltage drops across collector and emitter pins of the Darlington Pair when the
turn on will be around 0.9V. Therefore, if the supply voltage is 3.3V (as above) the voltage across the load will
be around 2.2V (3.3V —0.9V) which is optimal in case of HSMx C150 LEDs.

+3.3V

el N

10k | |10k | SEEITRR kR
r20 | |R24 KEYL. 1 [
i | ‘ | o REYI P s Sg dRY] -
KEY4 | KEY3 § KEY2) KEY1 O KEYS__ S L i
""'_2‘_KEY‘*_=. t 3 % 0
{oon’ OQY » v v o o s g o » (DI

GND

Figure 32KeyPad Schematic

3.1.10.1 Description

An external 4 button keypad has been used which is attached to connector CN11. The connector is attached to
microcontroller GPIO pins according to the above shown circuitry. The resistors of 10kQ are used to pull down
the value when no button is pressed.

36

3.1.11 Programmer Schematic

+3.3V

"] rRe | [R5
10k 10k erk ; —vec
| 5 bk
s o] 5
GND GND
PROG
CNE

Figure 33: Programmer Schematic

3.1.11.1 Description

In order to program the microcontroller on the printed circuit board, an external programming device is required.
Programmer is connected to CN6 connector. Pins of connector are connected to supply and ground. Other pins
are connected to TMS, TCK and Reset of the microcontroller.

3.1.12 12V-5V Voltage Regulation Schematic

o
2 .
0
A
e us
g 014 TWRFLAG X | M7805_T0220
O LL4148 ?. 1 1) 3 5V
o VI VO P
> = (]
Jo =
+)
skl

0.0 U s 100n . 100n—1oou
l ' 12
. ® .
s
=z
W0

Figure 34: 5V Regulation Circuit

37

3.1.12.1 Description
In laboratory 12V power supply is available but many devices and components need 5V supply. So, in order to
achieve 5V regulation circuit has been design as shown in the above figure. 12V power supply is connected to
CN5 connector which is connected to LM7805 Voltage Regulator IC. Several capacitors have been used to
reduce the ripples in the supply voltage and in the output voltage. A diode is used in reverse bias to avoid reverse

current.

3.1.12.2 LM7805

Voltage sources in a circuit may have fluctuations resulting in not providing fixed voltage outputs. A voltage
regulator IC maintains the output voltage at a constant value. 7805 IC, a member of 78xx series of fixed linear
voltage regulators used to maintain such fluctuations, is a popular voltage regulator integrated circuit (IC). The
xX in 78xx indicates the output voltage it provides. 7805 IC provides +5 volts regulated power supply with
provisions to add a heat sink. IC ratings are:

Input voltage range 7V- 35V
Current rating Ic = 1A
Output voltage range VMax=5.2V ,VMin=4.8V

LM7805 PINOUT DIAGRAM

o

1 LM7805 3
input output

ground

Figure 35: LM7805 PINOUT

38

Pin

Pin Function Description
No.

In this pin of the IC positive
1 INPUT Input voltage (7V-35V) unregulated voltage is given in

regulation.

In this pin where the ground is
2 GROUND Ground (0V) given. This pin is neutral for
equally the input and output.

The output of the regulated 5V
Regulated output; 5V) o
3 OUTPUT volt is taken out at this pin of
(4.8V-5.2V)
the IC regulator.

Table 5: LM7805 Pins

It can be noticed, there is a significant difference between the input voltage & the output voltage of the voltage
regulator. This difference between the input and output voltage is released as heat. The greater the difference
between the input and output voltage, more the heat generated. If the regulator does not have a heat sink to
dissipate this heat, it can get destroyed and malfunction. Hence, it is advisable to limit the voltage to a maximum
of 2-3 volts above the output voltage. So, we now have 2 options. Either design the circuit so that the input
voltage going into the regulator is limited to 2-3 volts above the output regulated voltage or place an appropriate
heatsink, that can efficiently dissipate heat.

3.1.12.2.1 Schematic of LM7805 IC

{1 INPUT

RI
Q
\ T/
‘
Q

+ Q15
R Q16
-~ Yoz | I\‘ _L, 1 = E%
- o R14
\l I o4 o> [:
! {l L { =
e~ i‘) E; ’ ‘ =
= i {3 OUTPUT
Ns .
Coix o1 < =3
~ 3
s r [
= B 3 =
Z1 A =< = ct
e o - ;

A\
w
R
fim
/0
3
1

RI3
R4
R
Rb
RS

Figure 36: LM7805 schematic
39

The heart of the 7805 IC is a transistor (Q16) that controls the current between the input and output and thus
controlling the output voltage. The bandgap reference (yellow) keeps the voltage stable. It takes the scaled
output voltage as input (Q1 and Q6) and provides an error signal (to Q7) for indication if the voltage is too high
or low. The key task of the bandgap is to provide a stable and accurate reference, even as the chip’s temperature
changes.

The error signal from the bandgap reference is amplified by the error amplifier (orange). This amplified signal
controls the output transistor through Q15. This closes the negative feedback loop controlling the output voltage.
The startup circuit (green) provides initial current to the bandgap circuit, so it doesn’t get stuck in an “off” state.
The circuit in purple provides protection against overheating (Q13), excessive input voltage (Q19) and excessive
output current (Q14). These circuits reduce the output current or shutdown the regulator, protecting it from
damage in case of a fault. The voltage divider (blue) scales down the voltage on the output pin for use by the
bandgap reference.[22]

3.1.13 3.3V Regulator

U2

' ' =
LDI11 7S 33TR _S0T223 e
N)
+5Y_o 30 Vol e
= 5
— LAB—L 5 =]
el | 150 100 U DgSZ\

' & —
<T7GMD =3

Figure 37: 3.3V Regulator Circuit

3.1.13.1 Description

STM microcontroller needs 3.3V supply. So LD1117S33[23] regulator IC is used to get 3.3V from 5V.
Capacitor before the regulator and after it has been used to remove the ripple in DC voltage. A green HSMG
C150 LED has been used to indicate when power in on.

40

3.1.13.2 LD1117

The LD1117 is a LOW DROP Voltage Regulator able to provide up to 800mA of Output Current, available even
in adjustable version (Vref=1.25V). Concerning fixed versions, are offered the following Output Voltages:
1.2V,1.8V,2.5V,2.85V, 3.0V 3.3V and 5.0V. Here it is used for 3.3V.

SOT-223

Figure 38: LD1117

3.1.14 Switch Button Schematics

RESET

swi = 1 . E5
SW_Push

GND

Figure 39: Switch Button Schematic

3.1.14.1 Description
Switch button is used to reset the Micro Controller. Capacitor is used to smoothen the signal.

41

._.o__.._.oqnﬁ_:.n Sensor
..(Analogue)

Wila g 8 PRTE

oV Volatage
Regulator

e

PC13
PCiy
PC1E
Poo
vcu

._.u__._u_._ umidity

Sensor (Digltal)

+3:3,

10,
kB

Down Level
ﬂmmn:moq

J.ULE;»»?.;.

7

e

i0¢

ULE“EEH:.!.CS

UpP r._.éu—

2 SENSOR

LEDS

Y-L16d
LA

ABCLINLA [LanslPY 1 el
AUCUML 2 (LaveiBettan) 1 pry

PL3-DHT22-5BA il pcz
ADCLINA Temp) 1

N0 i3
a7 14
res___ 15

- es__1H

Rio]
115 10
g a L
oRl R 9 g%
4 E = =3
43 = 28 E]

3.3V Volatage
Regulator

: PROGRAMMER

Qm HMU ﬁ.ﬁuﬂﬁ_

ununr

16x04 LCD

§
KEYPAD —
.ﬁt\w__uum s)E v.w.ll"\.l
quun_#cuzwamma - e B I
MicroController it 2 [

Buxx

L5 PB4D-I12C2-SCL
| 4 PBT-4201-SO%
| 3 PBE-2C1-SCL

£
4
&
:

= AUXILLARY|

BIL
Buzowr 12703

NFT-03C BUZZER

Shawt
Fll= STMach

Sioa: A%

| Few:

¥iCad E0A Wiced _.‘|_.5 ==

|

3.1.15 Complete Schematic

42

3.2 PCB Layout

Once the schematic of the project has been designed on the KiCad, printed circuit board needs to be designed in
order to assemble the electronic components on the board. KiCad allows to make a PCB layout. Main steps of
PCB design are:

e Footprints Design

o Defining the size of the board

e Placing the components on the board according to their footprints and schematic
e Clean Routing

e 3D view

3.2.1 Footprints Design

First and the foremost step of PCB Design is to design the footprints of all the components that would be used in
the project. KiCad has an extensive library which has footprints of most of the very commonly used components.
In the datasheet of the components, footprints are defined in terms of dimensions. If the components footprints
are not available in libraries, they need to be designed manually. There is a footprint editor section in KiCad
where new footprints are designed. The footprints used in this project are shown in the diagram below.

Figure 40: Footprints

43

3.2.2 Size of the board
After analyzing the size of the components, the board size used in this project is 93mm x 52mm.

3.2.3 Components Placing

Components are placed on the PCB keeping in mind the schematic structure build on KiCad schematic. Another
important factor kept in notice while placing the component is the routing connections. There should be enough
space between components for routing. General rule of thumb is that micro controller should be at the centre of
the board as most of the connections to the components come from controller.

Figure 41: Components Placement

It can be seen in the PCB Layout; all sensor connectors are placed on the left side of the board. On the right of
each connector their respective components are placed keeping in mind the common connections and aesthetic
look of the board. At the center of the board, Ul is the STM microcontroller. Below the controller CN12
connector is for LCD and on the right CN11 connector is for Keypad. Above LCD connector there is J1
connector for 12C pins used for IMU module. Exactly on the right of microcontroller there is U4 which is
ULN2003D Darlington IC and right to the IC there are LEDs. On the extreme right bottom K1 is Relay for the
pump and above it is the connector for the pump at extreme top right there is buzzer BZ1 and on the left of
buzzer, the connector CN7 is for Fan. On the top of microcontroller, there is push button and power supplies. On
the top left of micro controller external oscillators are placed.

44

3.2.4 Routing

Once components are placed on the PCB, next step is to route the connections. Thumb rule is to leave all
supplies and ground and connect all other connections. Once connections other that supplies are done, connect
supplies directly if possible or through vias. As ground is widespread across the board, lower and upper sides are
completely filled with ground and therefore all ground connections are either done directly if possible or through
vias to the downside of the board.

© D

o
o
o
O

- r o—-—,
or—ror WIr— =] ’
1] (RS R 1S [il [
i 4 [__‘.ﬂ

ol o

Figure 42: Front Side Copper

The above diagram is the front side of the board showing copper connections (Red) between various pads.
Copper connections are separate for each label. Apart from the normal connections all other Red part is
grounded. Connections are made always with some angle different than 90 degree. It is considered a good
practice. Other important thing to note is routes are not made in between two consecutive pads even if it is
allowed be CAD software.

In the figure below back side of the Printed Circuit Board is shown. Green color shows the copper connections.
There are vias present which connect one side of the board to the other side of the board. Use of vias is very
important as it reduces the complexity of routing and from aesthetic point of view, board appears more elegant.
As mentioned before both upper and bottom side is filled with ground copper, therefore all the green connections
other than connections of components and supplies is ground

45

Figure 43: Back Side Copper

3.2.5 3D View

There is a feature available in KiCad which allows to view the printed circuit board as it would appear in Real
World. It is called 3D Viewer. While designing PCB this feature is very useful because designer can see the real
component as it is placed. So, if component seems to be not in the right place one can change its position so that
it looks more elegant.

a7 .l;]

|
0
3
T |

(L
(]
(T
-
(L

n
=
>

N RO R o

-]
B

&

Figure 44: 3D View front
46

Qo0 B8O

o
a
(€]
&

Figure 45: 3D View Tilt

000000060000000008 0000O

© seco0H 000)

Figure 46: 3D View Back

47

3.3 GERBERS

The Gerber format is an open ASCII vector format for printed circuit board (PCB) designs. It is the de facto
standard used by PCB industry software to describe the printed circuit board images: copper layers, solder mask,
legend, drill data, etc. Gerber is used in PCB fabrication data. PCBs are designed on a specialized electronic
design automation (EDA) or a computer-aided design (CAD) system. The CAD systems output PCB fabrication
data to allow fabrication of the board. This data typically contains a Gerber file for each image layer (copper
layers, solder mask, legend or silk).[24][25] Typically, all these files are "zipped" into a single archive that is
sent to the PCB bare board fabrication shop. The fabricator loads them into a computer-aided manufacturing
(CAM) system to prepare data for each step of the PCB production process. Below are the various Gerber files
generated by KiCad for this project:

Figure 47: Front Cu Gerber Figure 48: Front Mask Gerber
D14 D14

D14 D14

Figure 49: Front paste Gerber

B o e e e

pie DIy

nnnnnnnnn

Figure 50: Back Cu Gerber Figure 51: Back Mask Gerber

48

https://en.wikipedia.org/wiki/Open_format
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/File_formats#Vector_formats
https://en.wikipedia.org/wiki/Printed_circuit_board
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/Gerber_format#Guide
https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/Printed_circuit_board#Design
https://en.wikipedia.org/wiki/Printed_circuit_board#Legend_printing
https://en.wikipedia.org/wiki/Zip_(file_format)
https://en.wikipedia.org/wiki/Printed_circuit_board#Manufacturing
https://en.wikipedia.org/wiki/Printed_circuit_board#Manufacturing

3.4 PCB Manufacturing

Once the Gerber files are sent to the manufacturer, after two weeks printed circuit board is ready. Following are
the pictures of real PCB after manufacturing:

UL

01 02 O3 O DS

" S s

§ o

a = /2
— : ®

Ci6 R2s R2% AT

saaanie ~ 7
e g o @ @

N

S0 | || - :

VS A o L1 ST
15‘

— e = R e = e '
C NG R N N R R N R N O R I R ‘ng—| E1187033

Figure 52: PCB Top View

~ U E_-‘ E

. '»'.
Atif Jamshaid weseee seeseccscscccccee -

Figure 53: PCB Bottom View

49

O O 0O0D G

b
:
Layer: E1187035-60

Symbol | Type Kind | End Dia (mm) | Tool Dia (mm) | Count +Tol |- Tol
o | Via Drill 0.40 0,50 58 | 0.0 | 0.10
4 | Plated Drill 0.65 0.75 6 | 0.10 | 0.10
¢ | Plated Drill 0.70 0,80 2 | 0,10 | 0,10
« | Plated Drill 0,80 0,90 9 | 0,10 | 0,10
o | Plated Drill 1,00 1.10 8 | 0.0 | 0.10
o | Plated Drill 1.10 1.20 7 | 0.0 | 0.10
« | Plated Drill 1,30 1.40 20 | 010 | 0.10

Figure 56: Top Mechanical view

3.5 Assembly

Once printed circuit board has arrived from the manufacturer, next is to assemble the components of the project
on the board. Following is the final board look after it is assembled.

= 1 1 'y 17
lgli' J!‘;L = L

(ST o~

3
8
-8
-
3

Figure 57: Final PCB

52

CHAPTER 4

4 CODING

After developing the computer aided hardware design, third phase of the project is coding. In this part,
programming is done in order to achieve the objectives of the project. The programming language used for this
project is C. Eclipse IDE is used as a developing environment software. STM32 Nucleo board[26] is used to
program the code and debug it. All the separate modules and devices that are used in the project are discussed
ahead. How these devices and modules are configured and how data is transmitted or received from these
devices has been discussed in detail in this section.

4.1 Configurations

4.1.1 Analogue Temperature

Data received from NTC10K is a continuous data. In order to read this data Analogue to Digital converter should
be used. There are several modes of ADC configuration available: Discontinuous mode, Continuous mode and
Scan mode. Since we need only one single channel pin as there are no other ADC conversions required in this
project discontinuous mode could be selected. Instead continuous mode has been used in circular configuration
so that ADC channel is continuously scanned. In this mode ADC will acquire data nonstop unlike a single
conversion where we trigger it if we want to get conversion and then go to sleep. Here ADC will continuously
convert the data and send it to memory. In this mode it is a good idea to use timer trigger for the ADC so that the
ADC does not go as fast as it can. It is a good mode when data is needed to be transferred to the memory using
Direct Memory Access (DMA). DMA will take converted data straight from the ADC output data register and
take them to the memory. Timer 3 has been used and its configuration is as follows:

e Prescaler =800

e CounterMode=Up

e Period=1000

e AutoRelaodPreload=Disable

e Clock running frequency = 8 MHz

Time = (Prescaler * Period) / Clock Running Frequency = 0.1s
This implies ADC will convert data after every 0.1s. Now ADC configuration parameters are following:

e Resolution = 12 bits

e Mode = SCAN

e Data Alignment = Right

e Sampling Time = 239.5 ADC clock cycles

53

DMA request setting are following:

e Data Width = WORD
e Mode = Circular

ADC global interrupt has been enabled so that after every sequence of conversion ADC will interrupt and could
do operations like blink LED or read the data. Finally, PC3 pin which can be used as ADC1 Input 13, has been
used for getting data from NTC10K. If we look in the schematic of the microcontroller it is pin 11.

4.1.2 Level Measurement

For level measurement two simple floating devices have been used. Whenever liquid comes in contact with the
devices, switch closes and output switches from 0 to 1. Therefore, we do not need any Analogue to digital
converter in this case. Simple configuration of two GPIOs as inputs is required. For this project PC0O and PC1 are
used to take inputs from the floating devices. They are pin 8 and pin 9 of the microcontroller. Therefore,
following configurations are done for PCO and PC1

e Mode = Input
e Pull = Pull Down

4.1.3 DHT22 Measurement

As discussed in previous sections, DHT22 is a digital-output temperature and humidity sensor/module. It uses
single one wire interface. It has simple connections which requires 3.3V, ground and connect a data line to a
digital input or output on the STM because we need to swap between input and output for data to go in both
directions

Figure 58: DHT22 with 3 Pin Connector

As there is only one data line so PC2 (Pin 10) has been configured as GPIO output which will be later changed
into input when data would be received from the sensor. Configuration of DHT22 can be done using the timing
diagram available in the data sheet[6] of the device.

54

Host computer send out

start signal. Data transmission finished,
S r send out and RL pull up bus's voltage
response signal. Output data: 1bit"0" for next transmission
—= THRTF -— —-: DHT 1% ?-— —-: ¥ |L..._ f§g§§§
2

l wn | s | O I Ra
i B Y | R - — oy iy
B
——]
EHES DHT{i S
Pull up and wait Host's signal Sc*l\f's signal L)ulpul data: 1bit "1"
response from sensor Sensor pull down
Pull up voltage and pget bus's voltage
ready for sensor’s output.

Slkle-bus output

Figure 59:DHT22 Overall Timing Diagram

4.1.3.1 Step 1: MCU send out start signal to DHT22

Data-bus's free status is high voltage level. When communication between MCU and DHT22 begin, program of
MCU will transform data-bus's voltage level from high to low level and this process must beyond at least 1ms to
ensure DHT22 could detect MCU's signal, then MCU will wait 20-40us for DHT22's response. At this point
after waiting GPIO Pin Mode changed from output to input.

Host computer send start signal Sensor send out response signal
and keep this signal at least 1ms and keep this signal 80us

Host pul up voltage

-and wait sepsor’s response Sensor pull up bup's voltage

o | ourfEs
4
Signal from host Start data transmissi

Signal from sensor

Single-bus signal

Figure 60: Step 1 DHT22

55

4.1.3.2 Step 2: DHT2Z2 send response signal to MCU

When DHT22 detect the start signal, DHT22 will send out low-voltage-level signal and this signal last 80us as
response signal, then program of DHT22 transform data-bus's voltage level from low to high level and last 80us
for DHT22's preparation to send data.

Start transmit 1bit data Start transmit next bit data

26-28us voltage-length means data "0"

| 1vicdFEs | I
PRI e s50us f— |

& S£RBil:
fe=———x]
?éﬂl i DHI &S
Host signal Sesnor's signal

Single-bus signal
Figure 61: Step 2 DHT22

4.1.3.3 Step 3: DHT22 send data to MCU
When DHT22 is sending data to MCU, every bit's transmission begin with low-voltage-level that last 50us, the
following high-voltage-level signal's length decide the bit is "1" or "0".

70us voltage-length means 1bit data "1"

A

Start transmit 1bit data Start trapsmit next bit data

G
= | 1BicFEs | |
B sk / — ;Ous fr—— |

fESLEBi:

EYEs HT {55

Host signal Sesnor's signal

Single-bus signal

Figure 62: Step 3 DHT22

56

4.1.4 IMU Configuration

4.1.4.1 GY521/MPU6050

In order to measure the level of water tank, it has to be straight. If there is any tilt, then level measurement is not
accurate. There GY521/MPUG6050 sensor module is used in this project to measure if there is any tilt in the tank
through the measurement of 3 axis accelerometer values. Basically, GY521 is a breakout board for the so called
MPUB050 which is a micro electromechanical system. This device has

e 3 axis accelerometer

e 3 axis gyroscope

e Temperature sensor

o Digital Motion Processor

An accelerometer measures non gravitational acceleration whereas gyroscope uses earth gravity to measure
orientation. The digital motion processor can be used to process many complex algorithms directly on the board.
Usually it processes algorithms to turn the raw values from the sensors into stable position data. From the
datasheet of MPU6050[27] it can be seen; it is a very powerful but complex device. Our scope of project only
needs to extract raw sensor values from the device.

PIN
VCC
GND
SCL
SDA
XDA
XCL
ADO
INT

Figure 63: GY521/MOU6050

Description

Voltage Supply

Ground

Serial Clock line of the 12C
Serial Data line of the 12C
Aucxiliary Data line of the 12C
Aucxiliary Clock line of the 12C
Address Pin

Interrupt Pin

Table 6: GY521/MPU6050 Pins Description

57

Supply Voltage can be both 3.3V or 5V as there is an onboard voltage regulator. SCL and SDA are serial clock
and data lines are part of 12C interface. These are used as 12C Slave while STM32 microcontroller as 12C
Master. XDA and XCL are Auxiliary data and Auxiliary clock pins which are used to connect the module with
external sensors. In this case module is used as 12C Master while external sensors are used as 12C. ADO is the
address pin. If it is low address is 0x68 and if it is high address is 0x69. Interrupt pin is used to handle the
interrupts. In this project only first four pins are used.

4.1.4.2 12C Interface

12C[27] is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the
lines are open-drain and bi-directional. In a generalized 12C interface implementation, attached devices can be a
master or a slave. The master device puts the slave address on the bus, and the slave device with the matching
address acknowledges the master. The MPU-60X0 always operates as a slave device when communicating to the
system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDD.
The maximum bus speed is 400 kHz. The slave address of the MPU-60X0 is b110100X which is 7 bits long. The
LSB bit of the 7-bit address is determined by the logic level on pin ADO. This allows two MPU-60X0s to be
connected to the same 12C bus. When used in this configuration, the address of the one of the devices should be
b1101000 (pin ADO is logic low) and the address of the other should be b1101001 (pin ADO is logic high).

4.1.4.3 12C Communications Protocol

4.1.43.1 START (S) and STOP (P) Conditions

Communication on the 12C bus starts when the master puts the START condition (S) on the bus, which is
defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is
considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to
HIGH transition on the SDA line while SCL is HIGH (see figure below). Additionally, the bus remains busy if a
repeated START (Sr) is generated instead of a STOP condition.

START Data Transfer STOP
Condition Condition

Figure 64: 12C START and STOP Condition

58

4.1.4.3.2 Data Format / Acknowledge

| 2C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data
transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the
acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by
pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse. If a slave is
busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold
SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and
releases the clock line (refer to the following figure).

|
DATA OUTPUT BY | -
TRANSMITTER (SDA) ' / X -
|
not acknowled
|) acknow ge‘
' N—7
] acknowledg
SCL FROM
MASTER l_:-_/—1_/_2_ _____ M

K clock pulse for

START acknowledgement
condition

|

DATA OUTPUT BY '
RECEIVER (SDA) l
|

Figure 65: Acknowledge on the 12C Bus

4.1.4.3.3 Communications

After beginning communications with the START condition (S), the master sends a 7-bit slave address followed
by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is
writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK)
from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave
device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is
always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the
master can generate a repeated START condition (Sr), and address another slave without first generating a STOP
condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All
SDA changes should take place when SCL is low, with the exception of start and stop conditions

WV\I_/W_/ |

_II J

START ADDRESS RW ACK DATA ACK DATA ACK STOP
condition condition

Figure 66: Complete I12C Data Transfer

59

To write the internal MPU-60X0 registers, the master transmits the start condition (S), followed by the 12C
address and the write bit (0). At the 9th clock cycle (when the clock is high), the MPU-60X0 acknowledges the
transfer. Then the master puts the register address (RA) on the bus. After the MPU-60X0 acknowledges the
reception of the register address, the master puts the register data onto the bus. This is followed by the ACK
signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK
signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the MPU-60X0
automatically increments the register address and loads the data to the appropriate register. The following figures
show single and two-byte write sequences.

Master | S | AD+W RA DATA P
Slave ACK ACK ACK

Figure 67: Single Byte Write Sequence

Master | S | AD+W RA DATA DATA P
Slave ACK ACK ACK ACK

Figure 68: Burst Write Sequence

To read the internal MPU-60XO0 registers, the master sends a start condition, followed by the 12C address and a
write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the MPU-
60X0, the master transmits a start signal followed by the slave address and read bit. As a result, the MPU-60X0
sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop
bit from master. The NACK condition is defined such that the SDA line remains high at the 9 th clock cycle. The
following figures show single and two-byte read sequences.

Master | S | AD+W RA S | AD+R NACK | P
Slave ACK ACK ACK | DATA

Figure 69: Single-Byte Read Sequence

Master | S | AD+W RA S | AD+R ACK NACK | P
Slave ACK ACK ACK | DATA DATA

Figure 70: Burst Read Sequence

60

4.1.4.4 12CTerms
Signal | Description
S Start Condition: SDA goes from high to low while SCL is high
AD Slave I°C address
w Write bit (0)
R Read bit (1)

ACK Acknowledge: SDA line is low while the SCL line is high at the
9" clock cycle

NACK | Not-Acknowledge: SDA line stays high at the 9" clock cycle
RA MPU-60X0 internal register address
DATA | Transmit or received data
P Stop condition: SDA going from low to high while SCL is high

Table 7: 12C Terms

4.1.4.5 Micro Controller Connection

There are two 12C connections available on the STM32F103RB. These connections are available on J1
Connector. PB6 is used for clock signal and PB7 is used for data signal. Connection of the first four pins of
GY521/MOUB050 is done with first four pins of J1 connector. To measure the value of tilt we just need raw
acceleration values which are obtained through accelerometer values.

4.1.5 Fan Pin Configuration

In the project Fan is turned on or off depending on the value of temperature. Fan’s configuration itself is very
simple. A single GPIO pin PC9 (PIN 40) of the micro controller is used to control the fan. It is configured as
following:

¢ Mode = Output
e Pull = Pull Down
e Speer=Low

Pin has been configured as pull down so that when there is no signal provided to the pin, it is low which means
fan is off.

4.1.6 Pump Pin Configuration
Pump control is like fan control. In this as well we must control a single GPIO pin PB12 (PIN 33) of the micro
controller to control the pump. It is configured as following:

e Mode = Output
e Pull = Pull Down
e Speer = Low

61

4.1.7 Buzzer Pin Configuration
To control the buzzer PC8 (PIN 39) of the micro controller has been configures as following:

e Mode = Output
e Pull = Pull Down
e Speed = Low

Pin has been configured as pull down so that when there is no signal provided to the pin, it is low which means

fan is off.

4.1.8 LCD Configuration

4.1.8.1 LCD 1602

LCD 1602 [10] is used to display all the sensors and indication devices statuses. It is a 16 pin LCD module with

following pin interface:

4.1.8.2 Pins Description

punois -q31 L
cugde

[IY » SSA

108185 19)s160Yy
Jo1ju03 jsenuo) SEEN

Figure 71: LCD 1602

PIN NO. [SYMBOL DESCRIPTION FUNCTION
1 VSS _ |GROUND 0V (GND)
— |POWER SUPPLY FOR LOGIC
2 cC
* VEC |ereurr i
| LCD CONTRAST
> VEE | DJUSTMENT
" w5 |INSTRUCTION/DATA RS =0 _INSTRUCTION REGISTER
‘ REGISTER SELECTION RS = 1 : DATA REGISTER
v v e st |R/W =0 : REGISTER WRITE
5 RW [READWRITESELECTION |00 =07 PP e B
6 E__ |ENABLE SIGNAL
7 DBO
3 DBI
5 DB2
10 DB3 - 8 S e S e -
DATA INPUT/OUTPUT LINES 8 BIT: DBO-DB7
1 DB4
12 DB5
13 DB6
14 DB7
SuU Y VOLTAGE FO
o - PPLY VOLTAGE FOR -
ED+ | ppa
6 LED-__|SUPPLY VOLTAGE FOR LED-[0V

Table 8: LCD Pins Description

62

4.1.8.3 Timing Diagram

J
‘~.’m1K
S
R Vit
tH
I\
R/W l/‘»’lu
- .|oo-|
tH thot
¢ Vit Vit
Vit Viut Vi
tsez
tr
\/ \/
o \VIH1 . VH1
DB7 -0 Valid Data ¢
Vi VI
| |
d tc 1
Figure 72: Write Sequence
1}
& ViH
RS VL1
tHo1
/
R /W ViH
b’a\'
tH tron
c ViH Vi
Vet Vi Vi
to e
DB7 -0 Vikn — Vi
- Valid Data
ity Vi
[t >

Figure 73: Read Sequence

As only write operation is done on the LCD R/W pin is always set to ground.

63

4.1.8.4 Initialization Sequence
Last four data bits are used instead of all 8 bits. Therefore initialization sequence of 4 bit interface is mentioned

below:

Power On

Waittime > 15 ms
afler VDD > 4.5V

I

RS RAW D87 DB6 DBS DB4
0o 0 0 0 1 1
Waittims >4 1 ms
RS RW D87 DB6 DBS DB4
o 0 0 0 1 1
Wait time > 100 us
RS RW DB7 0BG DBS DB4
o o0 0 g 1 1
RS RAY DB7 DB6 DBS DB4
o 0 0) 1 0
0 0 0 0o 0
0 0 N = X X
0 0 0 o 0 0
0 0 1 0 0 0
n o 0 0 0 0
0 0 0 0 0 1
0 Q Q) 0 1]
0 0 0 1 w S

Initialization Ends

[4-BitInterface]

Function s=t{ Interface is & bits length |,)

{ | BF carnmot be checked before this instruction |

{ | BF cannot be checked before this instruction .

Function set(Interface is 3 bits kanath .)

{ | BF cannot be checked before this instruction .

Function s=1{ Interface is 8 bits k=ngth |,)

BF can be checked after the folowing
instructions

Function sat (Satintertace o be 4 bits length)

Interface is 2 bis length .

Function s=t (Interface is 4 bits l=ngth
Specify the number of the display linss
and character font)

The number of display lines and character
font cannot be changed afterwards |

Deplay off
Display dear

Entry mode set

Figure 74: Initialization Sequence

64

4.1.8.5 Micro Controller Connection

Other than power supplies, 6 pin of STM32 are connected with the LCD. These pins include Data pins, Enable
and Register Select Pin. All these pins are configured as following:

4.1.9 Keypad Configuration

Mode = Output

Pull = No Pull

Speed = Low

LCD Pin STM Pin
DB4 PA3 (PIN 17)
DB5 PA2 (PIN 16)
DB6 PA1 (PIN 15)
DB7 PAO (PIN 14)

E PA4 (PIN 20)
RS PAS (PIN 21)

Table 9: LCD Pins Connection

Keypad is connected to STM32 though the schematic mentioned in the last chapter. It is a 4 button Keypad so
four GPIO pin are configured as following:

4.1.10 LED Configuration

Mode = Input
Pull = No Pull

Button STM Pin
KEYPAD1 | PC5 (PIN 25)
KEYPAD1 | PC4 (PIN 24)
KEYPAD1 | PA7 (PIN 23)
KEYPAD1 | PA6 (PIN 22)

Table 10: KeyPad Pins Connection

Final components which need to be configured are the LEDs which are directly controlled by the micro
controller based on the algorithm. The pins connected to the Darlington which is connected to LEDS are

configured as following:

Mode = Output

Pull = No Pull
Speed = Low

65

4.2 Source Codes

LED STM Pin
KEYPAD1 | PC5 (PIN 25)
KEYPAD1 | PC4 (PIN 24)
KEYPAD1 | PA7 (PIN 23)
KEYPAD1 | PA6 (PIN 22)

Table 11: KeyPad Pins Connection

Once all the pins are configured, now is the time to implement the algorithm. Source Codes can be seen in

Appendix A section.

66

CHAPTER 5

5 TESTING

One of the most important part of any project is Testing. Before explaining how testing has been used and
implemented in our project, it is worth mentioning two common types of testing approaches: Black box and
White Box Testing. In the following it is explained how these methods of testing work and how they are applied
in this case.

Black

Box

Figure 75: Testing approaches

5.1 Black Box Testing

Black-box testing (also known as functional testing) treats software under test as a black-box without knowing
its internals. Tests use software interfaces and try to ensure that they work as expected. As long as functionality
of interfaces remains unchanged, tests should pass even if internals are changed. Tester is aware of what the
program should do but does not have the knowledge of how it does it. Black-box testing is most used type of
testing in traditional organizations that have testers as a separate department, especially when they are not

67

proficient in coding and have difficulties to understand the code. It provides external perspective of the software
under test. Some of the advantages of black-box testing are:

o Efficient for large segments of code
e Code access is not required
e Separation between user’s and developer’s perspectives

Some of the disadvantages of black-box testing are:

e Limited coverage since only a fraction of test scenarios is performed
o Inefficient testing due to tester’s luck of knowledge about software internals
¢ Blind coverage since tester has limited knowledge about the application

The way we use black box testing approach is that during the implementation, modular approach is used. When a
function or a peripheral is implemented, it is tested using the LCD Display and results have been noted Once all
the separate peripherals are tested then combination of various peripherals and logics is tested. Different test
cases have been discussed later.

5.2 White Box Testing

White-box testing (also known as clear box testing, glass box testing, transparent box testing, and structural
testing) looks inside the software that is being tested and uses that knowledge as part of the testing process. If,
for example, exception is thrown under certain conditions, test might want to reproduce those conditions. White-
box testing requires internal knowledge of the system and programming skills. It provides internal perspective of
the software under test. Some of the advantages of white-box testing are:

e Efficient in finding errors (hidden) and problems
e Helps optimizing the code
e Due to required internal knowledge of the software, maximum coverage is obtained

Some of the disadvantages of white-box testing are:

e Might not find unimplemented or missing features
e Requires high level knowledge of internals of the software under test
e Requires code access

It is evident that, accessing to the code, having enough know-how about both the code and the way it works,
provide us the opportunity to use white box testing. To this end, we put break point in any part we had a problem
during black box testing procedure or those parts that are complicated to trace. In this way, we verify that our
code works in any scenario. As mentioned in previous part, LCD helps us to recognize problems faster,
especially in tracking easily our vital variables.

68

5.3 Test Cases and Results

5.3.1 Sensors

5.3.1.1 NTC10K Check

The value of ADC pin which is connected to NTC10K amplifier output is displayed on LCD. The temperature
value should vary depending on the temperature of the environment. So first of all, temperature is measured at
room temperature and then temperature is varied by touching the sensor as body heat increases the temperature
and result is checked on the LCD. Below are the displays of LCD at various temperature conditions:

| HTC g L

| HTC:38. 1 ‘CH

Figure 76: NTC10K Test Results

69

5.3.1.2 Level and Tilt Check
In order to check whether level sensors and accelerometer are working fine first LCD output is checked for low
liquid level. Then level has been increased to nominal range and result has been verified. Similarly, level above

upper sensor has been checked. Finally, container is tilted and result is check for level. Below are the displays of
LCD at various level and tilt conditions:

| LeveL: i,] | LEVEL: WRALETY |

| LEVEL: ERROR ,
Tilted) ,' i

£

Figure 77: Level and Tilt Check

70

5.3.1.3 DHT22 Check

DHT22 output is checked on the LCD as before. In order to change humidity different conditions have been
applied like checking output in Kitchen with boiling water and in normal room condition. For temperature room
heater has been used to control the temperature and for higher temperature kitchen environment has been
considered as well. Below are the displays of LCD at various temperature and humidity conditions:

Humiditas 47, 5%
T- i e ‘ g,
efEs 16, 7L | Humiditu: 47, 8%

' Tenr: e

H”Nldltl:" :114..-
Temps 34.8°C

Figure 78: DHT22 Check

71

5.3.2 Control Devices Check

5.3.2.1 Fan Control

Fan control is checked in such a way that FAN turns on when temperature exceeds 35°C. When it is below this
temperature fan should be off. Status of FAN appears alongside temperature on LCD. LCD result has been
displayed for various temperature values. One thing to note is that only temperature and fan control is
implemented, other part of the code is commented.

-

o
Far: OFF H

Figure 79: Fan Control Check

72

5.3.2.2 Pump Control

In this test case pump control is checked. If level is low pump should turn on and status should appear on LCD.
If level is nominal or full pump should be off and status should display off. If container is tilted, then error
message should appear and pump should be off. Following pictures show the result of LCD:

UEL: L0k O
TR | LEVEL: HORMAL
P2 OH_ f FUMP: OFF

-

LLEUEL: ERROE
| %%L%L& PUHP=DFF_' LEVEL: FLLL

FUMF: OFF§

Figure 80: Pump Control Check

73

5.3.2.3 Buzzer Control

In this test case temperature is controlled using kitchen stove and heater while humidity is increased by boiling
water. If either of temperature or humidity values are above nominal values buzzer turns on. Following pictures
show the results on LCD:

DH: 4. 4% BUZZER B SV
D290 OFF |

IR, 1L UM

DH:31.5% BUZZER | URida, 3 BUZZER
'[T-_._..".’_. M _ | PDT:38.5°C ON_

Figure 81: Buzzer Control Check

74

5.3.3 Complete Test

In final test whole code is run and display on LCD is checked. All sensor values and control device statuses
should appear. Whenever a key is pressed from the KEYPAD specific results should appear All possible test
cases have been selected

5.3.3.1 Test Case No 1 (FAN OFF; PUMP OFF; BUZZER OFF)
No Button Pressed

| DH:d7.2% BUZZERY O

PHTC:1E.5°C F:OFFY | frca BllZERY
DT:16.3°C OFFRY |

LEU=H PUMP:OFF ! !

[

a
v

KeyPad 1 Pressed

HTC:16.2°C
' FAN:ZOFF _

KeyPad 2 Pressed

LEVEL: HOMIHAL
FUMF STATLS: OFF 3

KeyPad 3 Pressed

EUZZERY |
oFFg Y !

[

Table 12: Test Case 1 Result

75

5.3.3.2 Test Case No 2 (FAN ON; PUMP OFF; BUZZER ON due to temperature only)
No Button Pressed

BiTca37. 37 POl OH:dE. o ELZZER
LEU:N PUMP:OFF ! DT:36.9°C (B

KeyPad 1 Pressed

BICaE’. 470
FAM: OH

KeyPad 2 Pressed

LEVEL: HOMI
PUMP STATUS

Table 13: Test Case 2 Result

[]

76

5.3.3.3 Test Case No 3 (FAN OFF; PUMP ON; BUZZER ON due to Humidity only)
No Button Pressed

| HTC: 38,770 F: HFF ':".'::EF

LEL:L Fll1F"uH§

KeyPad 1 Pressed

WTC: 38, 9°C
FAN:OFF -

KeyPad 2 Pressed

LEVEL: Lol
PUMP STATLS

Table 14: Test Case 3 Result

[

77

5.3.3.4 Test Case No 4 (FAN ON; PUMP ON; BUZZER ON due to Temperature & Humidity both)
No Button Pressed

KeyPad 1 Pressed

PHTC: 3. 77

FAM:OH

KeyPad 2 Pressed

FUMF STAT

3% EUZZER]

OH_ |

Table 15: Test Case 4 Result

78

CHAPTER 6

6 CONCLUSION

The focus of this thesis work was to develop an electronic board that takes data from various sensors and after
processing this data control certain devices in order to maintain environmental conditions for the workers and to
maintain level of water in a tank.

In order to achieve these objectives standard electronic development project steps have been followed. These
steps include 1) Requirement Specification 2) Design 3) Coding and 4) Testing

In Requirement Specification phase all the objectives were defined. These objectives include getting temperature
measurements both analogue and digital, humidity measurement, tilt measurement and level measurements.
Then based on temperature measurements fan should be controlled, humidity measurement buzzer should be
controlled and based on tilt and level measurements pump should be controlled. All the results should be
displayed on LCD and LEDs should indicate the statuses of sensors and control devices.

In Design phase first, all the schematics were developed to achieve the objectives defined in the first phase:
which ICs, operational amplifiers, values of resistors and capacitors to be used were calculated and defined in
this phase. Additionally, based on electrical characteristics, sensors, control devices and microcontroller were
selected. After the completion of schematics, all footprints of the devices were developed manually or using
KiCad libraries and PCB Layout was developed. After completing the design of PCB, Gerber files were
generated and sent to PCB manufacturer. Once PCB was returned by manufacturer, it was assembled with the
components of the schematic.

In Coding phase, all the devices were configured using datasheets of the devices and micro Controller
STM32F1RB. These configurations include initialization of DHT22 sensor, NTC10k ADC, floating sensors
GPIOs, MPUG6050, 12C, fan, pump buzzer and LED GPIOs and finally LCD1602 initialization sequence. After
these configurations algorithm was developed to get reading from sensors, control fan, pump, buzzer and LEDs
and display results and statuses on LCD.

In Testing phase, code was programmed on the electronic board and tested using black box and white box
techniques. Various test cases were defined, and results were verified according to desired objectives mentioned
in first phase of the project. This concludes the thesis work.

79

Appendix A

Source Codes

Main C File

/* Includes */

#include "main.h"

#include "STM_MY_LCD16X2.h"
#include <stdbool.h>

#include <math.h>

#include "MY_DHT22.h"
#include "TJ)_MPU6050.h"

/* Peripheral Instances */
ADC_HandleTypeDef hadcl;
DMA_HandleTypeDef hdma_adcl;
12C_HandleTypeDef hi2ci;
TIM_HandleTypeDef htim3;

/* Functions Declaration */
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM3_Init(void);
static void MX_I2C1_Init(void);

/* Global Variables */
uint32_t adcVal[2];
uint32_t Level[2];
uint8_t DHT22_data[5];
uint32_t data=0;
uint8_t checksum=0;
int button=0;
float Vout;
float invB=(float)1/3950;
float NTC_Voltage, NTC_Res;
float Atemp_reciprocal;
float Atemp;
float Dtemp, Humidity;
RawData_Def myAccelRaw, myGyroRaw;
ScaledData_Def myAccelScaled, myGyroScaled;
/* Main Function */
int main(void)
{
int level;
MPU_ConfigTypeDef myMpuConfig;

/* Configure the system clock */
SystemClock_Config();

/* Initialize all configured peripherals */
MX_GPIO_Init();

MX_DMA_Init();

MX_ADC1_lInit();

MX_TIM3_Init();

MX_I2C1_Init();

/* Start Timer */
HAL_TIM_Base_Start(&htim3);

/* Start ADC as DMA */
HAL_ADC_Start_DMA(&hadc1, adcVal, 2);
/* LCD Initialization*/

LCD1602_Begin4BIT(RS_GPIO_Port, RS_Pin, E_Pin, DB4_GPIO_Port, DB4_Pin, DB5_Pin, DB6_Pin, DB7_Pin);

/* DHT22 Initialization */
DHT22_Init(DHT22_SDA_GPIO_Port,DHT22_SDA_Pin);
/* Initialize the MPU6050 module and 12C */
MPU6050_Init(&hi2c1);

/* Configure Accel and Gyro parameters */
myMpuConfig.Accel_Full_Scale = AFS_SEL_4g;
myMpuConfig.ClockSource = Internal_8MHz;
myMpuConfig.CONFIG_DLPF = DLPF_184A_188G_Hz;
myMpuConfig.Gyro_Full_Scale = FS_SEL_500;
myMpuConfig.Sleep_Mode_Bit = 0;
MPU6050_Config(&myMpuConfig);

while (1)

{
/* Scaled Acceleration and Gyroscope Data */
MPUG6050_Get_Accel_Scale(&myAccelScaled);
MPU6050_Get_Gyro_Scale(&myGyroScaled);

/* NTC10K data and Display on LCD */

Vout= (adcVal[0]*3.3)/4032;

NTC_Voltage=Vout/1.1;
NTC_Res=(NTC_Voltage*8000/3.3)/(1-(NTC_Voltage/3.3));
Atemp_reciprocal=0.003354+log((double)NTC_Res/10000)*invB;
Atemp=1/Atemp_reciprocal-273.15;

LCD1602_clear();

LCD1602_print("NTC:");

LCD1602_PrintFloat(Atemp,1);

LCD1602_print("'C");

/* Level Data and Display on LCD */

LCD1602_print(" LEV:");
Level[0]=HAL_GPIO_ReadPin(LevelUp_GPIO_Port, LevelDown_Pin);
Level[1]=HAL_GPIO_ReadPin(LevelDown_GPIO_Port, LevelUp_Pin);
if(Level[0]==0 && Level[1]==0)

{
LCD1602_print("L");
level=0;
HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 0);
HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 0);
}

81

else if (Level[0]==1 && Level[1]==1)

{
LCD1602_print("F");
level=1;
HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 1);
HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 1);
}
else if (Level[0]==1 && Level[1]==0)
{
LCD1602_print("N");
level=1;
HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 1);
HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 0);
}
else
{
LCD1602_print("E");
level=2;
HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 1);
HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 0);
}

/* Pump,Fan and their respective LEDs Control and Display on LCD */

LCD1602_2ndLine();

if (Atemp>35)

{
HAL_GPIO_WritePin(FAN_GPIO_Port, FAN_Pin,1);
LCD1602_print("FAN:ON ");
HAL_GPIO_WritePin(NTC_LED_GPIO_Port, NTC_LED_Pin, 1);

}

else

{
HAL_GPIO_WritePin(FAN_GPIO_Port, FAN_Pin,0);
LCD1602_print("FAN:OFF ");
HAL_GPIO_WritePin(NTC_LED_GPIO_Port, NTC_LED_Pin, 0);

}

if (level==0)

{
HAL_GPIO_WritePin(PUMP_GPIO_Port, PUMP_Pin, 1);
LCD1602_print("PUMP:ON");

}

else if (level==1)

{
HAL_GPIO_WritePin(PUMP_GPIO_Port, PUMP_Pin, 0);
LCD1602_print("PUMP:OFF");

}

else

{
LCD1602_print("TILTED");

}

HAL_Delay(1000);

82

/* DHT22 Data and Display on LCD */
LCD1602_clear();

LCD1602_1stLine();
LCD1602_print("DH:");
LCD1602_PrintFloat(Humidity,1);
LCD1602_print("%");
LCD1602_print("DT:");
LCD1602_PrintFloat(Dtemp,1);
LCD1602_print("'C");

/* Buzzer Control and Display on LCD */
LCD1602_2ndLine();
if (Humidity>=30 && Humidity<=50 && Dtemp>35)

{
HAL_GPIO_WritePin(Buzzer_GPIO_Port, Buzzer_Pin, 1);
LCD1602_print(" Buzzer:ON");

}

else

{
HAL_GPIO_WritePin(Buzzer_GPIO_Port, Buzzer_Pin, 0);
LCD1602_print(" Buzzer:OFF");

}

HAL_Delay(1000);

/* KeyPad Control */

while (HAL_GPIO_ReadPin(Button_GPIO_Port,Button_Pin)==0 | |
HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==0 | |
HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0 | |
HAL_GPIO_ReadPin(KEY3_GPIO_Port,KEY3_Pin)==0 | |
HAL_GPIO_ReadPin(KEY4_GPIO_Port,KEY4_Pin)==0)

if (HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==0)
{
LCD1602_clear();
LCD1602_1stLine();
Vout= (adcVal[0]*3.3)/4032;
NTC_Voltage=Vout/1.1;
NTC_Res=(NTC_Voltage*8000/3.3)/(1-(NTC_Voltage/3.3));
Atemp_reciprocal=0.003354+log((double)NTC_Res/10000)*invB;
Atemp=1/Atemp_reciprocal-273.15;
LCD1602_print("NTC:");
LCD1602_PrintFloat(Atemp,1);
LCD1602_print("'C");
LCD1602_2ndLine();
if (Atemp>35)
{
HAL_GPIO_WritePin(FAN_GPIO_Port, FAN_Pin,1);
LCD1602_print("FAN:ON ");
HAL_GPIO_WritePin(NTC_LED_GPIO_Port, NTC_LED_Pin, 1);

else

HAL_GPIO_WritePin(FAN_GPIO_Port, FAN_Pin,0);
LCD1602_print("FAN:OFF ");

83

}

HAL_GPIO_WritePin(NTC_LED_GPIO_Port, NTC_LED_Pin, 0);

}
HAL_Delay(1000);

else if (HAL_GPIO_ReadPin(Button_GPIO_Port,Button_Pin)==0 | |

{

HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0)

LCD1602_clear();

LCD1602_1stLine();

LCD1602_print(" LEVEL: ");
Level[0]=HAL_GPIO_ReadPin(LevelUp_GPIO_Port, LevelDown_Pin);
Level[1]=HAL_GPIO_ReadPin(LevelDown_GPIO_Port, LevelUp_Pin);
if(Level[0]==0 && Level[1]==0)

{
LCD1602_print("LOW");
level=0;
HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 0);
HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 0);
}
else if (Level[0]==1 && Level[1]==1)
{
LCD1602_print("FULL");
level=1;
HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 1);
HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 1);
}
else if (Level[0]==1 && Level[1]==0)
{
LCD1602_print("NOMINAL");
level=1;
HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 1);
HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 0);
}
else
{
LCD1602_print("ERROR");
level=2;
HAL_GPIO_WritePin(Up_LED_GPIO_Port, Up_LED_Pin, 1);
HAL_GPIO_WritePin(Down_LED_GPIO_Port, Down_LED_Pin, 0);
}
LCD1602_2ndLine();
if (level==0)
{
HAL_GPIO_WritePin(PUMP_GPIO_Port, PUMP_Pin, 1);
LCD1602_print("PUMP STATUS: ON");
}
else if (level==1)
{
HAL_GPIO_WritePin(PUMP_GPIO_Port, PUMP_Pin, 0);
LCD1602_print("PUMP STATUS: OFF");
}
else
{

84

LCD1602_print("TILTED");

}
HAL_Delay(1000);

}

else if (HAL_GPIO_ReadPin(KEY3_GPIO_Port,KEY3_Pin)==0)

{
LCD1602_clear();
LCD1602_1stLine();
LCD1602_print("DH:");
LCD1602_PrintFloat(Humidity,1);
LCD1602_print("%");
LCD1602_print("DT:");
LCD1602_PrintFloat(Dtemp,1);
LCD1602_print("'C");

LCD1602_2ndLine();

if (Humidity>=30 && Humidity<=50 && Dtemp>35)

{
HAL_GPIO_WritePin(Buzzer_GPIO_Port, Buzzer_Pin, 1);
LCD1602_print(" Buzzer:ON");

HAL_GPIO_WritePin(Buzzer_GPIO_Port, Buzzer_Pin, 0);
LCD1602_print(" Buzzer:OFF");
}
HAL_Delay(1000);
}
else if (HAL_GPIO_ReadPin(KEY4_GPIO_Port,KEY4_Pin)==0)
{
LCD1602_clear();
LCD1602_print("MPU6050/GY521");
LCD1602_2ndLine();
LCD1602_print(" NOT CONNECTED");
HAL_Delay(1000);

}

1

/* System Clock Configuration */

void SystemClock_Config(void)

{
RCC_OsclInitTypeDef RCC_OsclnitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkinit = {0};

/* Initializes the CPU, AHB and APB busses clocks */
RCC_OsclnitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OsclnitStruct.HSIState = RCC_HSI_ON;
RCC_OsclInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OsclnitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OsclnitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;

85

RCC_OsclnitStruct.PLL.PLLMUL = RCC_PLL_MUL2;
if (HAL_RCC_OscConfig(&RCC_OsclnitStruct) != HAL_OK)
{

Error_Handler();
}
/* Initializes the CPU, AHB and APB busses clocks */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClIkInitStruct. AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct. APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
PeriphClkinit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkinit.AdcClockSelection = RCC_ADCPCLK2_DIV2;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}

/* Initialization Function */

static void MX_ADC1_lInit(void)

{
ADC_ChannelConfTypeDef sConfig = {0};
ADC_InjectionConfTypeDef sConfiglnjected = {0};

/* Common config */
hadcl.Instance = ADC1;
hadcl.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadcl.Init.ContinuousConvMode = DISABLE;
hadcl.Init.DiscontinuousConvMode = DISABLE;
hadcl.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
hadcl.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadcl.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{

Error_Handler();
}
/* Configure Regular Channel */
sConfig.Channel = ADC_CHANNEL_13;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{

Error_Handler();

}

86

/* Configure Injected Channel */
sConfiglnjected.InjectedChannel = ADC_CHANNEL_13;
sConfiglnjected.InjectedRank = ADC_INJECTED_RANK_1;
sConfiglnjected.InjectedNbrOfConversion = 2;
sConfiglnjected.InjectedSamplingTime = ADC_SAMPLETIME_239CYCLES_5;
sConfiglnjected.ExternalTrigInjecConv = ADC_INJECTED_SOFTWARE_START;
sConfiglnjected.AutolnjectedConv = DISABLE;
sConfiglnjected.InjectedDiscontinuousConvMode = DISABLE;
sConfiglnjected.InjectedOffset = 0;
if (HAL_ADCEx_InjectedConfigChannel(&hadcl, &sConfiglinjected) != HAL_OK)
{

Error_Handler();

}

/* Configure Injected Channel */
sConfiglnjected.InjectedChannel = ADC_CHANNEL_S;
sConfiglnjected.InjectedRank = ADC_INJECTED_RANK_2;
if (HAL_ADCEx_InjectedConfigChannel(&hadcl, &sConfiginjected) != HAL_OK)
{
Error_Handler();
}
}

/* 12C1 Initialization Function */
static void MX_I2C1_Init(void)
{
hi2cl.Instance = 12C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = 12C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2cl.Init.AddressingMode = 12C_ADDRESSINGMODE_7BIT;
hi2cl.Init.DualAddressMode = 12C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2cl.Init.GeneralCallMode = 12C_GENERALCALL_DISABLE;
hi2cl.Init.NoStretchMode = 12C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
}
/* TIM3 Initialization Function */
static void MX_TIM3_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};

htim3.Instance = TIM3;

htim3.Init.Prescaler = 800;

htim3.Init.CounterMode = TIM_COUNTERMODE_UP;

htim3.Init.Period = 1000;

htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)

{

87

Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) 1= HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEXx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
}

/* Enable DMA controller clock */
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();

/* DMA interrupt init & DMA1_Channell_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channell_IRQn, O, 0);
HAL_NVIC_EnablelRQ(DMA1_Channell_IRQn);

}

/* GPIO Initialization Function */
static void MX_GPIO_Init(void)

{
GPIO_InitTypeDef GPIO_InitStruct = {0};

/* GPIO Ports Clock Enable */

__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();

/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, DHT22_SDA_Pin|DH_LED_Pin|NTC_LED_Pin|Buzzer_Pin
|[FAN_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, DB6_Pin|DB7_Pin|PUMP_Pin|Down_LED_Pin
|Up_LED_Pin|DT_LED_Pin|DB5_Pin|DB4_Pin
|E_Pin|RS_Pin, GPIO_PIN_RESET);

/*Configure GPIO pins : Button_Pin KEY2_Pin KEY1_Pin */
GPIO_InitStruct.Pin = Button_Pin|KEY2_Pin|KEY1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

/*Configure GPIO pins : LevelUp_Pin LevelDown_Pin */
GPIO_lInitStruct.Pin = LevelUp_Pin|LevelDown_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

88

GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

/*Configure GPIO pins : DHT22_SDA_Pin DH_LED_Pin NTC_LED_Pin Buzzer_Pin FAN_Pin */
GPIO_InitStruct.Pin = DHT22_SDA_Pin|DH_LED_Pin|NTC_LED_Pin|Buzzer_Pin
| FAN_Pin;
GPIO_lInitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_lInitStruct.Pull = GPIO_NOPULL;
GPIO_lInitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

/*Configure GPIO pins : KEY4_Pin KEY3_Pin */
GPIO_InitStruct.Pin = KEY4_Pin|KEY3_Pin;
GPIO_lInitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

/*Configure GPIO pins : DB6_Pin DB7_Pin PUMP_Pin Down_LED_Pin Up_LED_Pin DT_LED_Pin DB5_Pin DB4_Pin E_Pin
RS_Pin */
GPIO_InitStruct.Pin = DB6_Pin|DB7_Pin|PUMP_Pin|Down_LED_Pin
|Up_LED_Pin|DT_LED_Pin|DB5_Pin|DB4_Pin
| E_Pin|RS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* This function is executed in case of error occurrence */
void Error_Handler(void)

{}

#ifdef USE_FULL_ASSERT

/* Reports the name of the source file and the source line number where the assert_param error has occurred.*/
void assert_failed(uint8_t *file, uint32_t line)

{}

#endif

Main Header File

/* Define to prevent recursive inclusion */
#ifndef _ MAIN_H
#define __ MAIN_H

#ifdef __cplusplus
extern "C" {
#endif

/* Includes */
#include "stm32f1xx_hal.h"

/* Exported functions prototypes */
void Error_Handler(void);

89

/* Private defines */

#define Button_Pin GPIO_PIN_13
#define Button_GPIO_Port GPIOC
#define LevelUp_Pin GPIO_PIN_11
#define LevelUp_GPIO_Port GPIOC
#define LevelDown_Pin GPIO_PIN_10
#define LevelDown_GPIO_Port GPIOC
#define DHT22_SDA_Pin GPIO_PIN_2
#define DHT22_SDA_GPIO_Port GPIOC
#define NTC10K_Pin GPIO_PIN_3
#define NTC10K_GPIO_Port GPIOC
#define KEY4_Pin GPIO_PIN_6
#define KEY4_GPIO_Port GPIOA
#define KEY3_Pin GPIO_PIN_7
#define KEY3_GPIO_Port GPIOA
#define KEY2_Pin GPIO_PIN_4
#define KEY2_GPIO_Port GPIOC
#define KEY1_Pin GPIO_PIN_5
#define KEY1_GPIO_Port GPIOC
#define DB6_Pin GPIO_PIN_10
#define DB6_GPIO_Port GPIOB
#define DB7_Pin GPIO_PIN_11
#define DB7_GPIO_Port GPIOB
#define PUMP_Pin GPIO_PIN_12
#define PUMP_GPIO_Port GPIOB
#define Down_LED_Pin GPIO_PIN_13
#define Down_LED_GPIO_Port GPIOB
#define Up_LED_Pin GPIO_PIN_14
#define Up_LED_GPIO_Port GPIOB
#define DT_LED_Pin GPIO_PIN_15
#define DT_LED_GPIO_Port GPIOB
#define DH_LED_Pin GPIO_PIN_6
#define DH_LED_GPIO_Port GPIOC
#define NTC_LED_Pin GPIO_PIN_7
#define NTC_LED_GPIO_Port GPIOC
#define Buzzer_Pin GPIO_PIN_8
#define Buzzer_GPIO_Port GPIOC
#define FAN_Pin GPIO_PIN_9
#define FAN_GPIO_Port GPIOC
#define TMS_Pin GPIO_PIN_13
#define TMS_GPIO_Port GPIOA
#define TCK_Pin GPIO_PIN_14
#define TCK_GPIO_Port GPIOA
#define SWO_Pin GPIO_PIN_3
#define SWO_GPIO_Port GPIOB
#define DB5_Pin GPIO_PIN_4
#define DB5_GPIO_Port GPIOB
#define DB4_Pin GPIO_PIN_5
#define DB4_GPIO_Port GPIOB
#define E_Pin GPIO_PIN_8

#define E_GPIO_Port GPIOB

#define RS_Pin GPIO_PIN_9

#define RS_GPIO_Port GPIOB

90

#ifdef __cplusplus

}
#endif

#endif

DHT?22 C File

/* Header files */
#include "MY_DHT22.h"

/* Bit fields manipulations */

#define bitRead(value, bit) (((value) >> (bit)) & 0x01)

#define bitSet(value, bit) ((value) |= (1UL << (bit)))

#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))

#define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) : bitClear(value, bit))

/* 1. One wire data line */

static GPIO_TypeDef* oneWire_PORT;
static uintl6_t oneWire_PIN;

static uint8_t oneWirePin_Idx;

/* Functions prototypes */
/* OneWire Initialise */
void DHT22_Init(GPIO_TypeDef* DataPort, uint16_t DataPin)
{
oneWire_PORT = DataPort;
oneWire_PIN = DataPin;
for(uint8_t i=0; i<16; i++)
{
if(DataPin & (1 << i))
{
oneWirePin_ldx = i;
break;

}

1

/* Change pin mode */

static void ONE_WIRE_PinMode(OnePinMode_Typedef mode)

{
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = oneWire_PIN;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pull = GPIO_NOPULL;

if(mode == ONE_OUTPUT)

{
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
}
else if(mode == ONE_INPUT)
{

GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

91

}

HAL_GPIO_Init(oneWire_PORT, &GPIO_InitStruct);
}
/* One Wire pin HIGH/LOW Write */
static void ONE_WIRE_Pin_Write(bool state)

{
if(state) HAL_GPIO_WritePin(oneWire_PORT, oneWire_PIN, GPIO_PIN_SET);
else HAL_GPIO_WritePin(oneWire_PORT, oneWire_PIN, GPIO_PIN_RESET);
}
static bool ONE_WIRE_Pin_Read(void)
{
return (1&HAL_GPIO_ReadPin(oneWire_PORT, oneWire_PIN));
}

/* Microsecond delay */
static void DelayMicroSeconds(uint32_t uSec)

{
uint32_t uSecVar = uSec;
uSecVar = uSecVar* ((SystemCoreClock/1000000)/3);
while(uSecVar--);

}

/* DHT Begin function */
static void DHT22_StartAcquisition(void)
{
/* Change data pin mode to OUTPUT */
ONE_WIRE_PinMode(ONE_OUTPUT);
/* Put pin LOW */
ONE_WIRE_Pin_Write(0);
/* 500uSec delay */
DelayMicroSeconds(500);
/* Bring pin HIGH */
ONE_WIRE_Pin_Write(1);
/* 30 uSec delay */
DelayMicroSeconds(30);
/* Set pin as input */
ONE_WIRE_PinMode(ONE_INPUT);
}
/* Read 5 bytes */
static void DHT22_ReadRaw(uint8_t *data)
{
uint32_t rawBits = 0UL;
uint8_t checksumBits=0;

DelayMicroSeconds(40);
while(!ONE_WIRE_Pin_Read());
while(ONE_WIRE_Pin_Read());
for(int8_t i=31; i>=0; i--)
{
while(!ONE_WIRE_Pin_Read());
DelayMicroSeconds(40);
if(ONE_WIRE_Pin_Read())
{

92

rawBits |= (1UL << i);
}
while(ONE_WIRE_Pin_Read());
}

for(int8_t i=7; i>=0; i--)

{
while(!ONE_WIRE_Pin_Read());
DelayMicroSeconds(40);
if(ONE_WIRE_Pin_Read())
{

checksumBits |= (1UL << i);

}
while(ONE_WIRE_Pin_Read());

}

/* Copy raw data to array of bytes */
data[0] = (rawBits>>24)&O0xFF;
data[1] = (rawBits>>16)&O0xFF;
data[2] = (rawBits>>8)&O0xFF;
data[3] = (rawBits>>0)&O0xFF;
data[4] = (checksumBits)&O0xFF;

}

/* Get Temperature and Humidity data */
bool DHT22_GetTemp_Humidity(float *Temp, float *Humidity)
{
uint8_t dataArray[6], myChecksum;
uintl6_t Temp16, Humid16;
/* Implement Start data Aqcuisition routine */
DHT22_StartAcquisition();
/* Agcuire raw data */
DHT22_ReadRaw(dataArray);
/* calculate checksum */
myChecksum = 0;
for(uint8_t k=0; k<4; k++)

{
myChecksum += dataArray[k];

}

if(myChecksum == dataArray[4])

{
Temp16 = (dataArray[2] <<8) | dataArray[3];
Humid16 = (dataArray[0] <<8) | dataArray[1];
*Temp = Temp16/10.0f;
*Humidity = Humid16/10.0f;
return 1;

}

return O;

DHT22 Header File

/* Header files */

#include "stm32f1xx_hal.h"
#include <stdbool.h>
#include <string.h>
#include <math.h>

/* Pin Mode enum */
typedef enum
{
ONE_OUTPUT =0,
ONE_INPUT,
}OnePinMode_Typedef;

/ Functions prototypes */

/* One Wire Initialize */

void DHT22_Init(GPIO_TypeDef* DataPort, uint16_t DataPin);
/* Change pin mode */

static void ONE_WIRE_PinMode(OnePinMode_Typedef mode);
/* One Wire pin HIGH/LOW Write */

static void ONE_WIRE_Pin_Write(bool state);

static bool ONE_WIRE_Pin_Read(void);

/* Microsecond delay */

static void DelayMicroSeconds(uint32_t uSec);

/* Begin function */

static void DHT22_StartAcquisition(void);

/* Read 5 bytes */

static void DHT22_ReadRaw(uint8_t *data);

/* Get Temperature and Humidity data */

bool DHT22_GetTemp_Humidity(float *Temp, float *Humidity);

MPU6050 C File

/* Header files */
#include "TJ)_MPU6050.h"

/* Library Variable */

/* 1-12C Handle */

static 12C_HandleTypeDef i2cHandler;

/* 2- Accel & Gyro Scaling Factor */

static float accelScalingFactor, gyroScalingFactor;
/* 3- Bias varaibles */

static float A_X_Bias = 0.0f;

static float A_Y_Bias = 0.0f;

static float A_Z_Bias = 0.0f;

static int16_t GyroRW(3];

/* Fucntion Definitions */

/* 1-i2c Handler */

void MPU6050_Init(I12C_HandleTypeDef *12Chnd)

{
/* Copy 12C CubeMX handle to local library */
memcpy(&i2cHandler, 12Chnd, sizeof(*12Chnd));

}

/* 2-i2c Read */
void 12C_Read(uint8_t ADDR, uint8_t *i2cBif, uint8_t NofData)

{

}

uint8_t i2cBuf[2];

uint8_t MPUADDR;

/* Need to Shift address to make it proper to i2c operation */

MPUADDR = (MPU_ADDR<<1);

i2cBuf[0] = ADDR;

HAL_I2C_Master_Transmit(&i2cHandler, MPUADDR, i2cBuf, 1, 10);
HAL_I12C_Master_Receive(&i2cHandler, MPUADDR, i2cBif, NofData, 100);

/* 3-i2c Write */
void 12C_Write8(uint8_t ADDR, uint8_t data)

{

}

uint8_t i2cData[2];

i2cData[0] = ADDR;

i2cData[1] = data;

uint8_t MPUADDR = (MPU_ADDR<<1);
HAL_I2C_Master_Transmit(&i2cHandler, MPUADDR, i2cData, 2,100);

/* 4- MPU6050 Initialaztion Configuration */
void MPU6050_Config(MPU_ConfigTypeDef *config)

{

uint8_t Buffer = 0;

12C_Write8(PWR_MAGT_1_REG, 0x80);

HAL_Delay(100);

Buffer = config ->ClockSource & 0x07; //change the 7th bits of register

Buffer |= (config ->Sleep_Mode_Bit << 6) &0x40; // change only the 7th bit in the register
12C_Write8(PWR_MAGT_1_REG, Buffer);

HAL_Delay(100); // should wait 10ms after changing the clock setting.

/* Set the Digital Low Pass Filter */

Buffer = 0;

Buffer = config->CONFIG_DLPF & 0x07;
12C_Write8(CONFIG_REG, Buffer);

/* Select the Gyroscope Full Scale Range */
Buffer = 0;

Buffer = (config->Gyro_Full_Scale << 3) & 0x18;
12C_Write8(GYRO_CONFIG_REG, Buffer);

/* Select the Accelerometer Full Scale Range */
Buffer = 0;

Buffer = (config->Accel_Full_Scale << 3) & 0x18;
12C_Write8(ACCEL_CONFIG_REG, Buffer);

/* Set SRD To Default */
MPU6050_Set_SMPRT_DIV(0x04);

/* Accelerometer Scaling Factor, Set the Accelerometer and Gyroscope Scaling Factor */

95

switch (config->Accel_Full_Scale)
{
case AFS_SEL_2g:
accelScalingFactor = (2000.0f/32768.0f);
break;

case AFS_SEL_4g:
accelScalingFactor = (4000.0f/32768.0f);
break;

case AFS_SEL_8g:
accelScalingFactor = (8000.0f/32768.0f);
break;

case AFS_SEL_16g:
accelScalingFactor = (16000.0f/32768.0f);
break;

default:
break;

}
/* Gyroscope Scaling Factor */

switch (config->Gyro_Full_Scale)

{
case FS_SEL_250:

gyroScalingFactor = 250.0f/32768.0f;
break;

case FS_SEL_500:
gyroScalingFactor = 500.0f/32768.0f;
break;

case FS_SEL_1000:
gyroScalingFactor = 1000.0f/32768.0f;
break;

case FS_SEL_2000:
gyroScalingFactor = 2000.0f/32768.0f;
break;

default:
break;

}

/* 5- Get Sample Rate Divider */
uint8_t MPU6050_Get_SMPRT_DIV(void)

{
uint8_t Buffer = 0;

I2C_Read(SMPLRT_DIV_REG, &Buffer, 1);
return Buffer;

}

/* 6- Set Sample Rate Divider */
void MPU6050_Set_SMPRT_DIV(uint8_t SMPRTvalue)
{

12C_Write8(SMPLRT_DIV_REG, SMPRTvalue);

}

/* 7- Get External Frame Sync.*/
uint8_t MPU6050_Get_FSYNC(void)

{
uint8_t Buffer = 0;
I12C_Read(CONFIG_REG, &Buffer, 1);
Buffer &= 0x38;
return (Buffer>>3);

}

/* 8- Set External Frame Sync. */
void MPU6050_Set_FSYNC(enum EXT_SYNC_SET_ENUM ext_Sync)
{

uint8_t Buffer = 0;

I2C_Read(CONFIG_REG, &Buffer,1);

Buffer &= ~0x38;

Buffer |= (ext_Sync <<3);
12C_Write8(CONFIG_REG, Buffer);

}

/* 9- Get Accel Raw Data */
void MPU6050_Get_Accel_RawData(RawData_Def *rawDef)
{

uint8_t i2cBuf[2];

uint8_t AcceArr[6], GyroArr[6];

I12C_Read(INT_STATUS_REG, &i2cBuf[1],1);

if((i2cBuf[1]&&0x01))

{
12C_Read(ACCEL_XOUT_H_REG, AcceArr,6);
/* Accel Raw Data */
rawDef->x = ((AcceArr[0]<<8) + AcceArr[1]); // x-Axis
rawDef->y = ((AcceArr[2]<<8) + AcceArr([3]); // y-Axis
rawDef->z = ((AcceArr[4]<<8) + AcceArr[5]); // z-Axis
/* Gyro Raw Data */
12C_Read(GYRO_XOUT_H_REG, GyroArr,6);
GyroRW[0] = ((GyroArr[0]<<8) + GyroArr[1]);
GyroRW[1] = (GyroArr[2]<<8) + GyroArr[3];
GyroRW[2] = ((GyroArr[4]<<8) + GyroArr[5]);

}

/* 10- Get Accel scaled data (g unit of gravity, 1g = 9.81m/s2) */
void MPU6050_Get_Accel_Scale(ScaledData_Def *scaledDef)

97

RawData_Def AccelRData;
MPUG6050_Get_Accel_RawData(&AccelRData);

/* Accel Scale data */

scaledDef->x = ((AccelRData.x+0.0f)*accelScalingFactor);
scaledDef->y = ((AccelRData.y+0.0f)*accelScalingFactor);
scaledDef->z = ((AccelRData.z+0.0f)*accelScalingFactor);

}

/* 11- Get Accel calibrated data */
void MPU6050_Get_Accel_Cali(ScaledData_Def *CaliDef)
{
ScaledData_Def AccelScaled;
MPU6050_Get_Accel_Scale(&AccelScaled);
/* Accel Scale data */
CaliDef->x = (AccelScaled.x) - A_X_Bias; // x-Axis
CaliDef->y = (AccelScaled.y) - A_Y_Bias; // y-Axis
CaliDef->z = (AccelScaled.z) - A_Z_Bias; // z-Axis
}

/* 12- Get Gyro Raw Data */
void MPU6050_Get_Gyro_RawData(RawData_Def *rawDef)
{
/* Accel Raw Data */
rawDef->x = GyroRW/[0];
rawDef->y = GyroRW[1];
rawDef->z = GyroRW[2];
}

/* 13- Get Gyro scaled data */

void MPU6050_Get_Gyro_Scale(ScaledData_Def *scaledDef)

{
RawData_Def myGyroRaw;
MPU6050_Get_Gyro_RawData(&myGyroRaw);
/* Gyro Scale data */
scaledDef->x = (myGyroRaw.x)*gyroScalingFactor; // x-Axis
scaledDef->y = (myGyroRaw.y)*gyroScalingFactor; // y-Axis
scaledDef->z = (myGyroRaw.z)*gyroScalingFactor; // z-Axis

}

MPU6050 Header File

/* Header Files */
#include "stm32f1xx_hal.h"
#include <string.h>

#include <stdbool.h> //Boolean
#include <math.h> //Pow()

/* Define Registers */

#define WHO_AM_|_REG 0x75
#define MPU_ADDR 0x68
#define PWR_MAGT_1_REG 0x6B
#define CONFIG_REG Ox1A
#define GYRO_CONFIG_REG 0x1B
#define ACCEL_CONFIG_REG 0x1C

98

#define SMPLRT_DIV_REG 0x19

#idefine INT_STATUS_REG 0x3A
#define ACCEL_XOUT_H_REG 0x3B
#define TEMP_OUT_H_REG ox41
#define GYRO_XOUT_H_REG 0x43
#define FIFO_EN_REG 0x23
#define INT_ENABLE_REG 0x38
#define 12CMACO_REG 0x23
#define USER_CNT_REG OX6A
#define FIFO_COUNTH_REG 0x72
#define FIFO_R_W_REG 0x74

/* TypeDefs and Enums */

/* 1- MPU Configuration */

typedef struct

{
uint8_t ClockSource;
uint8_t Gyro_Full_Scale;
uint8_t Accel_Full_Scale;
uint8_t CONFIG_DLPF;
bool Sleep_Mode_Bit;

IMPU_ConfigTypeDef;

/* 2- Clock Source ENUM */

enum PM_CLKSEL_ENUM

{
Internal_8 MHz = 0x00,
X_Axis_Ref=0x01,
Y_Axis_Ref= 0x02,
Z_Axis_Ref=0x03,
Ext_32_768KHz= 0x04,
Ext_19_2MHz= 0x05,
TIM_GENT_INREST= 0x07

|3

/* 3- Gyro Full Scale Range ENUM (deg/sec) */

enum gyro_FullScale_ENUM

{
FS_SEL_250 = 0x00,
FS_SEL_500 = 0x01,
FS_SEL_1000 = 0x02,
FS_SEL_2000= 0x03

|3

/* 4- Accelerometer Full Scale Range ENUM (1g = 9.81m/s2) */

enum accel_FullScale_ENUM

{
AFS_SEL_2g= 0x00,
AFS_SEL_4g,
AFS_SEL_8g,
AFS_SEL_16g

b

/* 5- Digital Low Pass Filter ENUM */

enum DLPF_CFG_ENUM

{
DLPF_260A_256G_Hz = 0x00,
DLPF_184A_188G_Hz = 0x01,

DLPF_94A_98G_Hz = 0x02,
DLPF_44A_42G_Hz = 0x03,
DLPF_21A_20G_Hz = 0x04,
DLPF_10_Hz = 0x05,
DLPF_5_Hz = 0x06

|3

/* 6- e external Frame Synchronization ENUM */

enum EXT_SYNC_SET_ENUM

{
input_Disable = 0x00,
TEMP_OUT_L= 0x01,
GYRO_XOUT_L=0x02,
GYRO_YOUT_L= 0x03,
GYRO_ZOUT_L= 0x04,
ACCEL_XOUT_L= 0x05,
ACCEL_YOUT_L= 0x06,
ACCEL_ZOUT_L=0x07

L

/* 7. Raw data typedef */
typedef struct
{
intl6_t x;
intl6_ty;
intl6_t z;
}RawData_Def;

/* 8. Scaled data typedef */

typedef struct

{
float x;
floaty;
float z;

}ScaledData_Def;

/* Function Prototype */

/* 1-i2c Handler */

void MPU6050_Init(I12C_HandleTypeDef *12Chnd);

/* 2-i2c Read */

void 12C_Read(uint8_t ADDR, uint8_t *i2cBuf, uint8_t NofData);
/* 3-i2c Write 8 Bit */

void 12C_Write8(uint8_t ADDR, uint8_t data);

/* 4- MPU6050 Initialization Configuration */

void MPU6050_Config(MPU_ConfigTypeDef *config);

/* 5- Get Sample Rate Divider */

uint8_t MPU6050_Get_SMPRT_DIV(void);

/* 6- Set Sample Rate Divider */

void MPU6050_Set_ SMPRT_DIV(uint8_t SMPRTvalue);

/* 7- External Frame Sync.*/

uint8_t MPU6050_Get_FSYNC(void);

/* 8- Set External Frame Sync.*/

void MPU6050_Set_FSYNC(enum EXT_SYNC_SET_ENUM ext_Sync);
/* 9- Get Accel Raw Data */

100

void MPU6050_Get_Accel_RawData(RawData_Def *rawDef);
/* 10- Get Accel scaled data */

void MPU6050_Get_Accel_Scale(ScaledData_Def *scaledDef);
/* 11- Get Accel calibrated data */

void MPU6050_Get_Accel_Cali(ScaledData_Def *CaliDef);

/* 12- Get Gyro Raw Data */

void MPU6050_Get_Gyro_RawData(RawData_Def *rawDef);

/* 13- Get Gyro scaled data */

void MPU6050_Get_Gyro_Scale(ScaledData_Def *scaledDef);

LCD 1602 CFile

/* Header files */
#include "STM_MY_LCD16X2.h"

/* Variables */
static const uint32_t writeTimeConstant = 10;
static uint8_t mode_8_4_12C=1;

static GPIO_TypeDef* PORT_RS_and_E; // RS and E PORT

static uint16_t PIN_RS, PIN_E; // RS and E pins

static GPIO_TypeDef* PORT_LSB; // LSBs DO, D1, D2 and D3 PORT
static uint16_t DO_PIN, D1_PIN, D2_PIN, D3_PIN; //LSBs DO, D1, D2 and D3 pins
static GPIO_TypeDef* PORT_MSB; // MSBs D5, D6, D7 and D8 PORT

static uint16_t D4_PIN, D5_PIN, D6_PIN, D7_PIN; // MSBs D5, D6, D7 and D8 pins

static uint8_t DisplayControl = OxOF;
static uint8_t FunctionSet = 0x38;

/* Functions definitions */

/* Private functions */

/* 1) Enable EN pulse */

static void LCD1602_EnablePulse(void)

{
HAL_GPIO_WritePin(PORT_RS_and_E, PIN_E, GPIO_PIN_SET);
LCD1602_TIM_MicorSecDelay(writeTimeConstant);
HAL_GPIO_WritePin(PORT_RS_and_E, PIN_E, GPIO_PIN_RESET);
LCD1602_TIM_MicorSecDelay(60);

}

/* 2) RS control */
static void LCD1602_RS(_Bool state)
{
if(state) HAL_GPIO_WritePin(PORT_RS_and_E, PIN_RS, GPIO_PIN_SET);
else HAL_GPIO_WritePin(PORT_RS_and_E, PIN_RS, GPIO_PIN_RESET);
}

/* 3) Write Parallel interface */
static void LCD1602_write(uint8_t byte)

{
uint8_t LSB_nibble = byte&O0xF, MSB_nibble = (byte>>4)&O0xF;
iflmode_8 4 12C==1) //8bits mode
{

101

/* write data to output pins */

/* LSB data */

HAL_GPIO_WritePin(PORT_LSB, DO_PIN, (GPIO_PinState)
HAL_GPIO_WritePin(PORT_LSB, D1_PIN, (GPIO_PinState)
HAL_GPIO_WritePin(PORT_LSB, D2_PIN, (GPIO_PinState)
HAL_GPIO_WritePin(PORT_LSB, D3_PIN, (GPIO_PinState)
/* MSB data */

HAL_GPIO_WritePin(PORT_MSB, D4_PIN, (GPIO_PinState)(MSB_nibble&0x1));
HAL_GPIO_WritePin(PORT_MSB, D5_PIN, (GPIO_PinState)(MSB_nibble&0x2));
HAL_GPIO_WritePin(PORT_MSB, D6_PIN, (GPIO_PinState)(MSB_nibble&0x4));
HAL_GPIO_WritePin(PORT_MSB, D7_PIN, (GPIO_PinState)(MSB_nibble&0x8));
/* Write the Enable pulse */

LCD1602_EnablePulse();

’

LSB_nibble&0x1)
LSB_nibble&0x2)
LSB_nibble&0x4)
LSB_nibble&0x8)

’

’

’

== ===
—_— — — —

}

else if(mode_8_4 12C==2) //4 bits mode

{
/* write data to output pins */
/* MSB data */
HAL_GPIO_WritePin(PORT_MSB, D4_PIN, (GPIO_PinState)(MSB_nibble&0x1));
HAL_GPIO_WritePin(PORT_MSB, D5_PIN, (GPIO_PinState)(MSB_nibble&0x2));
HAL_GPIO_WritePin(PORT_MSB, D6_PIN, (GPIO_PinState)(MSB_nibble&0x4));
HAL_GPIO_WritePin(PORT_MSB, D7_PIN, (GPIO_PinState)(MSB_nibble&0x8));
/* Write the Enable pulse */
LCD1602_EnablePulse();
/* LSB data */
HAL_GPIO_WritePin(PORT_MSB, D4_PIN, (GPIO_PinState)(LSB_nibble&0x1));
HAL_GPIO_WritePin(PORT_MSB, D5_PIN, (GPIO_PinState)(LSB_nibble&0x2));
HAL_GPIO_WritePin(PORT_MSB, D6_PIN, (GPIO_PinState)(LSB_nibble&0x4));
HAL_GPIO_WritePin(PORT_MSB, D7_PIN, (GPIO_PinState)(LSB_nibble&0x8));
/* Write the Enable pulse */
LCD1602_EnablePulse();

}

1

/* 4) Microsecond delay functions */

static void LCD1602_TIM_Config(void)

{
RCC_ClkInitTypeDef myCLKtypeDef;
uint32_t clockSpeed;
uint32_t flashLatencyVar;
HAL_RCC_GetClockConfig(&myCLKtypeDef, &flashLatencyVar);
if(myCLKtypeDef.APB1CLKDivider == RCC_HCLK_DIV1)

{
clockSpeed = HAL_RCC_GetPCLK1Freq();
}
else
{
clockSpeed = HAL_RCC_GetPCLK1Freq()*2;
}

clockSpeed *=0.000001;

/* Enable clock for TIM2 timer */

RCC->APB1ENR |= RCC_APB1ENR_TIM2EN; // 0x1
/* Set the mode to Count up */

102

TIM2->CR1 &= ~(0x0010);

/* Enable Update Event */

TIM2->CR1 &= ~(0x0001);

/* Update request source */

TIM2->CR1 &= ~(1UL << 2);

/* Set bit 3 High to enable One-Pulse mode */
TIM2->CR1 | = (1UL << 3);

/* Set the Prescalar */

TIM2->PSC = clockSpeed-1;

/* Set and Auto-Reload Value to delay the timer 1 sec */

TIM2->ARR = 10-1; // The Flag sets when overflows
/* Event generation handling to reset the counter */
TIM2->EGR = 1; //Update generate auto

TIM2->SR &= ~(0x0001); //Clear Update interrupt flag
}
void LCD1602_TIM_MicorSecDelay(uint32_t uSecDelay)
{
TIM2->ARR = uSecDelay-1;
TIM2->SR &= ~(0x0001); // Clear UEV flag
TIM2->CR1 |= 1UL;
while((TIM2->SR&0x0001) != 1);
}
/* 5) Write command */
static void LCD1602_writeCommand(uint8_t command)
{
/* Set RSto 0 */
LCD1602_RS(0);
/* Call low level write parallel function */
LCD1602_write(command);
}
/* 6) Write 4 bits command, *FOR 4 BITS MODE ONLY */
static void LCD1602_writedbitCommand(uint8_t nibble)
{
uint8_t LSB_nibble = nibble&O0xF;
/* Set RSto 0 */
LCD1602_RS(0);
/* LSB data */

HAL_GPIO_WritePin(PORT_MSB, D4_PIN, (GPIO_PinState)(LSB_nibble&0x1));
HAL_GPIO_WritePin(PORT_MSB, D5_PIN, (GPIO_PinState)(LSB_nibble&0x2));
HAL_GPIO_WritePin(PORT_MSB, D6_PIN, (GPIO_PinState)(LSB_nibble&0x4));
HAL_GPIO_WritePin(PORT_MSB, D7_PIN, (GPIO_PinState)(LSB_nibble&0x8));

/* Write the Enable pulse */
LCD1602_EnablePulse();

}

/* Public functions */

/* 1) LCD begin 4 bits function */

void LCD1602_Begin4BIT(GPIO_TypeDef* PORT_RS_E, uint16_t RS, uint1l6_t E, GPIO_TypeDef* PORT_MSBs4to7, uintl16_t

D4, uintl6_t D5, uintl6_t D6, uintl6_t D7)
{
/* Set GPIO Ports and Pins data */
PORT_RS_and_E = PORT_RS_E;
PIN_RS =RS;
PIN_E = E;

103

PORT_MSB = PORT_MSBs4to7;
D4_PIN = D4;
D5_PIN = D5;
D6_PIN = D6;
D7_PIN =D7;
/* Initialise microsecond timer */
LCD1602_TIM_Config();
/* Set the mode to 4 bits */
mode_8_4_12C =2;
/* Function set variable to 4 bits mode */
FunctionSet = 0x28;
/* Initialise LCD */
/* 1. Wait at least 15ms */
HAL_Delay(100);
/* 2. Attentions sequence */
LCD1602_write4bitCommand(0x3);
HAL_Delay(50);
LCD1602_writedbitCommand(0x3);
HAL_Delay(10);
LCD1602_writedbitCommand(0x3);
HAL_Delay(10);
LCD1602_write4bitCommand(0x2); //4 bit mode
HAL_Delay(10);
/* 3. Display control (Display ON, Cursor ON, blink cursor) */
LCD1602_writeCommand(LCD_DISPLAYCONTROL | LCD_DISPLAY_B | LCD_DISPLAY_C | LCD_DISPLAY_D);
/* 4. Clear LCD and return home */
LCD1602_writeCommand(LCD_CLEARDISPLAY);
HAL_Delay(30);
/* 5. Function set; Enable 2 lines, Data length to 8 bits */
LCD1602_writeCommand(LCD_FUNCTIONSET | LCD_FUNCTION_N);
HAL_Delay(30);
}
/* 2) LCD print string */
void LCD1602_print(char string[])

{
for(uint8_t i=0; i< 16 && string[i]!=NULL; i++)
{
LCD1602_writeData((uint8_t)string[il);
}
1

/* 3) set cursor position */
void LCD1602_setCursor(uint8_t row, uint8_t col)
{

uint8_t maskData;
maskData = (col-1)&0x0F;
if(row==1)

{
maskData |= (0x80);
LCD1602_writeCommand(maskData);
else

maskData |= (0xc0);

104

LCD1602_writeCommand(maskData);

}
}
void LCD1602_1stLine(void)
{
LCD1602_setCursor(1,1);
}
void LCD1602_2ndLine(void)
{
LCD1602_setCursor(2,1);
}

/* 4) Enable two lines */
void LCD1602_Twolines(void)

{
FunctionSet |= (0x08);
LCD1602_writeCommand(FunctionSet);
}
void LCD1602_Oneline(void)
{
FunctionSet &= ~(0x08);
LCD1602_writeCommand(FunctionSet);
}

/* 5) Cursor ON/OFF */
void LCD1602_noCursor(void)

{
DisplayControl &= ~(0x02);
LCD1602_writeCommand(DisplayControl);
}
void LCD1602_cursor(void)
{
DisplayControl |= (0x02);
LCD1602_writeCommand(DisplayControl);
1

/* 6) Clear display */

void LCD1602_clear(void)

{
LCD1602_writeCommand(LCD_CLEARDISPLAY);
HAL_Delay(3);

}

/* 7) Blinking cursor */

void LCD1602_noBlink(void)

{
DisplayControl &= ~(0x01);
LCD1602_writeCommand(DisplayControl);
}
void LCD1602_blink(void)
{
DisplayControl |=0x01;
LCD1602_writeCommand(DisplayControl);
1

/* 8) Display ON/OFF */
void LCD1602_noDisplay(void)
{

105

DisplayControl &= ~(0x04);
LCD1602_writeCommand(DisplayControl);

}
void LCD1602_display(void)
{
DisplayControl |= (0x04);
LCD1602_writeCommand(DisplayControl);
}

/* 9) Shift Display, right or left */
void LCD1602_shiftToRight(uint8_t num)
{
for(uint8_t i=0; i<num;i++)
{
LCD1602_writeCommand(0x1c);
}
}
void LCD1602_shiftToLeft(uint8_t num)
{
for(uint8_t i=0; i<num;i++)
{
LCD1602_writeCommand(0x18);
}

}
/* Print numbers to LCD */

/* 1. Integer */
void LCD1602_PrintInt(int number)

{
char numStr[16];
sprintf(numStr,"%d", number);
LCD1602_print(numStr);

}

/* 2. Float */

void LCD1602_PrintFloat(float number, int decimalPoints)

{
char numStr[16];
sprintf(numStr,"%.*f",decimalPoints, number);
LCD1602_print(numStr);

}

LCD1602 Header File

/* Header files */

#include <stdbool.h>
#include "stm32flxx_hal.h"
#include <stdlib.h>

/* List of COMMANDS */

#define LCD_CLEARDISPLAY 0x01
#define LCD_RETURNHOME 0x02
#define LCD_ENTRYMODESET 0x04
#define LCD_DISPLAYCONTROL 0x08
#define LCD_CURSORSHIFT 0x10
#define LCD_FUNCTIONSET 0x20

106

#define LCD_SETCGRAMADDR 0x40
#define LCD_SETDDRAMADDR 0x80

/* List of commands Bitfields */

/* 1) Entry mode Bitfields */

#define LCD_ENTRY_SH 0x01
#define LCD_ENTRY_ID 0x02
/* 2) Entry mode Bitfields */

#define LCD_ENTRY_SH 0x01
#define LCD_ENTRY_ID 0x02
/* 3) Display control */

#define LCD_DISPLAY_B 0x01
#define LCD_DISPLAY_C 0x02
#define LCD_DISPLAY_D 0x04
/* 4) Shift control */

#define LCD_SHIFT_RL 0x04
#define LCD_SHIFT_SC 0x08
/* 5) Function set control */

#define LCD_FUNCTION_F 0x04
#define LCD_FUNCTION_N 0x08
#define LCD_FUNCTION_DL 0x10

/* Functions prototypes */

/* Private functions */

/* 1) Enable EN pulse */

static void LCD1602_EnablePulse(void);

/* 2) RS control */

static void LCD1602_RS(bool state);

/* 3) Write Parallel interface */

static void LCD1602_write(uint8_t byte);

/* 4) Microsecond delay functions */

static void LCD1602_TIM_Config(void);

/* 5) Write command */

static void LCD1602_writeCommand(uint8_t command);

/* 6) Write 4 bits command, *FOR 4 BITS MODE ONLY* */

static void LCD1602_writedbitCommand(uint8_t nibble);

/* Public functions */

/* 1) LCD begin 8 bits function */

void LCD1602_Begin8BIT(GPIO_TypeDef* PORT_RS_E, uintl6_t RS, uintl6_t E, GPIO_TypeDef* PORT_LSBsOto3, uint16_t
DO, uint16_t D1, uintl6_t D2, uintl6_t D3, GPIO_TypeDef* PORT_MSBs4to7, uintl6_t D4, uintl6_t D5, uint1l6_t D6,
uintl6_t D7);

/* 2) LCD begin 4 bits function */

void LCD1602_Begin4BIT(GPIO_TypeDef* PORT_RS_E, uintl6_t RS, uintl6_t E, GPIO_TypeDef* PORT_MSBs4to7, uintl6_t
D4, uint16_t D5, uint16_t D6, uint16_t D7);

/* 3) LCD print string */

void LCD1602_print(char string[]);

/* 4) set cursor position */

void LCD1602_setCursor(uint8_t row, uint8_t col);

void LCD1602_1stLine(void);

void LCD1602_2ndLine(void);

/* 5) Enable two lines */

107

void LCD1602_Twolines(void);

void LCD1602_Oneline(void);

/* 6) Cursor ON/OFF */

void LCD1602_noCursor(void);

void LCD1602_cursor(void);

/* 7) Clear display */

void LCD1602_clear(void);

/* 8) Blinking cursor */

void LCD1602_noBlink(void);

void LCD1602_blink(void);

/* 9) Display ON/OFF */

void LCD1602_noDisplay(void);

void LCD1602_display(void);

/* 10) Shift Display, right or left */

void LCD1602_shiftToRight(uint8_t num);
void LCD1602_shiftToLeft(uint8_t num);

void LCD1602_TIM_MicorSecDelay(uint32_t uSecDelay);

/* Print numbers to LCD */

/* 1. Integer */

void LCD1602_PrintInt(int number);

/* 2. Float */

void LCD1602_PrintFloat(float number, int decimalPoints);

108

REFERENCES

[1] S.J. (2008) Rai, L.; Kang, “Rule-based modular software and hardware architecture for multi-shaped
robots using real-time dynamic behavior identification and selection". Knowledge-Based Systems,” pp.
273-283.

[2] FOUNDERS GUIDE, “What is Firmware and Why is Firmware Development Crucial?,” FOUNDERS GUIDE,
2018. http://foundersguide.com/firmware-and-why-firmware-development-crucial/.

[3] Embedded Staff, “Basics of hardware/firmware interface codesign,” 2013.
https://www.embedded.com/basics-of-hardware-firmware-interface-codesign/.

[4] “Thermistor.” http://wiki.sunfounder.cc/images/d/d1/Thermistoren.pdf.
[5] E. Ag, “NTC thermistors for temperature measurement,” no. March, pp. 1-22, 2013.

[6] L. Aosong ELectronics Co, “Dht22 (Am2302),” vol. 22, pp. 1-10, 2015, Available:
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf%0Ahttps://cdn-
shop.adafruit.com/datasheets/Digital+humidity+and+temperature+sensor+AM2302.pdf.

[7] R. Sensors, “59630 Sensor with Integral Float Actuator 59630 Sensor with Integral Float Actuator,” 2015.
[8] “DC Fan.” Available: https://www.farnell.com/datasheets/1878245.pdf

[9] “Durevole Dc 12 V 70PSI 3.5L/Min Agricola Pompa Ad Acqua Elettrica Nero Micro a Membrana Ad Alta
Pressione Spruzzatore di Acqua Auto di Lavaggio 12 V.”

[10] “WaveShare LCD1602.”
[11] “HSMx-Cxxx Surface Mount Chip LEDs.”

[12] TDK, “Pin terminal / Lead Without oscillator circuit PS series Piezoelectronic Buzzers (without circuit)
PS Series (Pin Terminal / Lead),” 2011. .

[13] adafruit, “MEMBRANE 1X4 KEYPAD + EXTRAS.” https://www.adafruit.com/product/1332.
[14] Texas Instruments, “Temperature sensing with NTC circuit,” 2018. .

[15] ON Semiconductor, “Single Supply Dual Operational Amplifiers,” Order A J. Theory Ordered Sets Its
Appl., pp. 1-14, 2003.

[16] Dejan, “DHT11 & DHT22 Sensors Temperature and Humidity,” 2016.
https://howtomechatronics.com/tutorials/arduino/dht11-dht22-sensors-temperature-and-humidity-
tutorial-using-arduino/.

[17] ELECT GO, “Relay,” 2019. https://www.electgo.com/what-is-a-relay/.

[18] Altium Designer, “Using Flyback Diodes in Relays Prevents Electrical Noise in Your Circuits,” 2017.
https://resources.altium.com/p/why-you-should-use-a-flyback-diode-in-a-relay-to-prevent-electrical-
noise-in-your-circuits.

[19] M. Brown, “FDD5612.” http://www.mouser.com/ds/2/308/LM7805-1124977.pdf.
109

https://www.farnell.com/datasheets/1878245.pdf

[20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

STM, “UIn2001, uln2002 uln2003, uln2004,” 2019. .

Kitronik, “Kitronik Ltd - How a Darlington pair transistor works What is a Darlington Pair ? What is
current gain? Why use a Darlington Pair? Base Activation Voltage.”
https://www.kitronik.co.uk/blog/how-a-darlington-pair-transistor-works/.

electronicsforu, “All About IC 7805 | Voltage Regulator,” 2019.
https://www.electronicsforu.com/resources/learn-electronics/7805-ic-voltage-regulator.

STM, “Adjustable and fixed low drop positive voltage regulator,” no. November, pp. 1-44, 2013,
[Online]. Available: http://www.ti.com/lit/ds/symlink/tlv1117-50.pdf.

A. Williams, “Build your own printed circuit board.” p. 206, 2003.

C. Schroeder, “PCB Design Using AutoCAD,” PCB Design Using AutoCAD. 1997, doi: 10.1016/b978-0-
7506-9834-4.x5000-0.

ST, “STM32F101xx,102xx,103xx,105xx 107 Reference manual,” 2018. .

InvenSense, “MPU-6000 and MPU-6050 Product Specification,” vol. 1, no. 408, 2012.

110

