
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e

dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

TEXTUAL DATA QUALITY

Relatore

Prof. Pier Luca Lanzi

Correlatore

Dott. Andrea Lui

Candidato

Giuseppe Carone
Mat. 896669

Anno Accademico 2019-2020

Contents

Abstract IX

1 Introduction 1

1.1 What is Data Quality? . 2

1.2 Data Quality for Textual Data 3

1.3 Contents of the Work . 4

2 Data Mining On Textual Data 5

2.1 Previous Works on Data Quality of Textual Data 6

2.2 Text Features Extraction . 10

2.2.1 Bag Of Words . 10

2.2.2 TF-IDF . 11

2.2.3 Word2Vec . 13

2.2.4 FastText . 16

2.3 Transfer Learning . 18

2.3.1 CoVe . 18

2.3.2 ELMo . 18

2.3.3 ULM-FiT . 19

2.3.4 Transformer Models 21

2.4 Prediction Model . 27

2.4.1 BERT . 27

2.4.2 DistilBert . 30

2.5 Unsupervised Data Augmentation for Consistency Training . 34

2.6 Summary . 38

3 Proposed Methodology 39

3.1 Proposed Pipeline . 43

3.2 Task Selection . 45

3.3 Fine-Tuning . 45

3.4 First Inference Step . 46

I

3.5 Training Data Building . 48

3.6 Inference Model Training . 53

3.7 Second Inference Step . 53

3.8 Summary . 55

4 Experimental Results 57

4.1 Evaluation Methodology . 57

4.2 Performance Metrics . 58

4.2.1 Accuracy, Precision and Recall 58

4.2.2 Confusion Matrix . 60

4.2.3 ROC curve and AUC 60

4.2.4 Matthew Correlation Coefficient 63

4.3 Results . 64

4.4 Further Works And Developments 68

Bibliography 71

A On Sentiment Analysis 79

A.1 Types of Sentiment Analysis 80

A.2 Why Sentiment Analysis . 83

A.3 Common Workflow . 84

A.4 Sentiment Analysis Challenges 87

A.5 How Accurate Is Sentiment Analysis? 88

List of Figures

2.1 Learning stages proposed by Liu et al. [35] 7

2.2 Convolutional recurrent neural network proposed by Taghipour

et al. [74] . 8

2.3 Textual Data Quality metrics proposed by [27] 8

2.4 BOW representation of two sample sentences 10

2.5 Stemming Example . 11

2.6 Lemmatisation Example . 11

2.7 2D-visualization for CBOW (left) and Skip-gram (right) em-

beddings trained on IMDB dataset. 13

2.8 The CBOW model is trained to predict the current word given

the context, while the Skip-gram predicts the context given

an input word . 13

2.9 Some of the word level relationships is it possible to capture

using word2vec approach . 14

2.10 Skip-gram architecture . 15

2.11 CBOW architecture . 16

2.12 Steps to go from biLSTM hidden states to ELMo embeddings 19

2.13 ULMFiT consists of three stages: a) The LM is trained on

a general-domain corpus to capture general features of the

language in different layers. b) The full LM is fine-tuned

on target task data using discriminative fine-tuning (’Discr’)

and slanted triangular learning rates (STLR) to learn task-

specific features. c) The classifier is fine-tuned on the target

task using gradual unfreezing, ’Discr’, and STLR to preserve

low-level representations and adapt high-level ones (shaded:

unfreezing stages; black: frozen). 20

2.14 Transformer architecture from the original implementation . . 21

2.15 The stack of encoder and decoder layers proposed by Vaswani

et al. 22

2.16 Encoder layer in detail . 22

III

2.17 Words Embedding X1 and X2 are multiplied with matrices

WQ,WK and W V to obtain query, key and value vectors

respectively . 23

2.18 Visualization of the scaled dot-product attention (on the left)

and multi-headed attention (on the right) calculations 24

2.19 Visualization of multi-headed attention calculations in matrix

form . 24

2.20 A real example of positional encoding for 20 words (rows)

with an embedding size of 512 (columns) 25

2.21 Encoder Decoder architecture in Transformers 26

2.22 Test on Multi-Genre Natural Language Inference task [83] . . 28

2.23 BERT architecture . 28

2.24 Different approaches to extract embeddings from BERT’s en-

coders stack . 29

2.25 Comparison of number of parameters of different language

models proposed in recent years 30

2.26 Distillation Process for BERT 31

2.27 Token predicted by BERT model to complete the famous

quote from Casablanca film. 32

2.28 Overview of UDA [86] training objective 35

2.29 Back-Transaltion Example . 36

3.1 Text Classification Workflow proposed on Google Developers

Website . 39

3.2 Metrics Measures From IMDb data 40

3.3 Simple Counts over IMDb Data 40

3.4 Stats on IMDb Records . 41

3.5 Text classification flowchart proposed by Google Developers

blog . 42

3.6 Overview Of Proposed Methodology 43

3.7 Bert fine-tuning illustration from [17] 46

3.8 Sentence encoding example 46

3.9 Input representation for BERT. Input embeddings is the sum

of token embeddings, the segmentation embeddings and the

position embeddings. 48

3.10 Class 1 probabilities from experiments on IMDb data 48

3.11 Number of samples assigned to class 1 with different proba-

bility thresholds . 49

3.12 Counts of Samples divided by label, before augmentation . . 49

3.13 Random swap example . 50

3.14 Random deletion example . 50

3.15 TF-IDF insertion example . 50

3.16 TF-IDF substitution example 51

3.17 distilBert insertion example 51

3.18 distilBert substitution example 51

3.19 GPT2 sentence-level augmentation 52

3.20 Different Learning Rate Scheduling Strategies 53

4.1 Sample from test batch. The first tensor contains encoded

sentences, the second tensor hold the vector mask for each

sample and the last tensor stores the label of each sample in

current batch. 57

4.2 Distribution of class 1 probability over test samples 58

4.3 Precision and recall overview 59

4.4 Confusion Matrix . 60

4.5 ROC curve . 61

4.6 ROC space example . 62

4.7 Loss functions at different granularity during 10 training epochs 64

4.8 Loss functions at different granularity during training, detail

at the first 3 epochs . 65

4.9 Clustermap of the probability distribution of class 1 over test

samples. 66

4.10 AUC and ROC curve for the model trained for 5 epochs with

an augmentation factor of 5 67

4.11 Ablation over BERT model size from original paper [17]. #L

= the number of layers; #H = hidden size; #A = number of

attention heads. ”LM (ppl)” is the masked LM perplexity of

held-out training data. 69

A.1 Tracking public mood responses to presidential election and

thanksgiving from tweets posted between October 2008 to

December 2008 shows. From paper [9] 79

A.2 Wheel of Emotions proposed by Plutchik 82

A.3 SentiWordNet Visualization. Each word s is associated with

three scores: Obj(s), Pos(s) and Neg(s) 85

A.4 General Workflow . 86

List of Tables

2.1 Flesch reading-ease test results 6

3.1 Small sample of BERT and distilBert pre-trained models avail-

able on [84] . 47

4.1 Performance of the pipeline are measured on IMBb test set

with a support of 12.500 samples. 68

A.1 Scherer typology of affective states from [25] 80

VII

Abstract

The term Data Quality nowadays brings a broad set of meanings. It is often

referred as the fitness of data with regard to the intended uses [62] [81].

Specifically, Textual Data Quality refers to the analysis of natural language

data. Being textual data one of the most abundant source of information

available to companies, it is clear why more and more attention is posed on

such problem.

The main goal of this work is hence to build a framework that allows to

evaluate a set of target textual records given that it is not known a priori the

classification task we are going to perform and hence without having prior

knowledge of the label distribution among the records. We present an ap-

proach to effectively train a model in an unsupervised setting by leveraging

advanced textual augmentation techniques and transfer learning. We will

show how the use of a model pre-trained on similar data, with respect to

target data, combined with different augmentation strategies can produce

labels that can be effectively used to train a model on target data.

Eventually we tested the performance of the proposed approach on Imdb

dataset (reference for sentiment analysis classification [42]) showing compet-

itive results with others machine learning and deep learning approaches in

a fully-supervised regime.

IX

Chapter 1

Introduction

The massive amount of unstructured data that is available nowadays to big

companies rises the issue of being able to leverage such data to extract rel-

evant and useful information. More and more attention is posed on textual

data as they represent by far the most abundant source of available data

and yet understanding and producing valuable results from them represent

a tough challenge.

1.1 What is Data Quality?

Information and communication technologies have extraordinarily increased

the amount of information that is managed within organizational processes.

It is estimated that almost 80% of world’s data is unstructured [40]. In the

last years has come to attention an high correlation between information

and organizational processes that either consume or produce data. As a

natural consequence of this, quality assumes a crucial role when it comes to

data [63]. In fact, low quality of data on one hand can be an indicator of

either low process quality or loose control of process performance, and on

the other hand can have an impact on the organizations’ ability to fulfill the

needs of their customers and create value efficiently and effectively. Since

data are almost ubiquitous in modern organizations, assessing and improv-

ing their quality can be complex. In the first place it should be considered,

as [62] [81] points out when expressing the concept of quality as fitness for

use, that data are always given with a specific context and hence its quality

must always be evaluated according to expectations of users and consumers.

In the second place organizational data are increasingly distributed in het-

erogeneous resources and represented with different formats, ranging from

unstructured, to highly structured. As showed by [14] data sources are com-

monly classified depending on the level of structure that characterizes them.

Data is distinguished between different sources in terms of:

1. Structured data, if their formal schema (i.e., formats, types, con-

straints, relationships) is defined and explicit.

2. Semi-structured data, if data are something in between raw data and

strictly typed data, i.e., when they have some structure, but it is not

as rigidly structured as in databases [1]. They are usually represented

with XML markup language.

3. Unstructured data, if they are sequences of symbols, e.g., a string in

natural language where no specific structure, type domains and formal

constraints are defined.

Differences in the format of data are necessarily reflected in the methods

and techniques that needed to assess and improve the quality of their data.

The aim of this work is to focus on natural language data, by meaning with

this all records containing human language data that can be analyzed and

studied using all tools available in the NLP area from simple statistics to

more complex language modeling.

2

1.2 Data Quality for Textual Data

Many data quality indicators for structured data exist (e.g., [70], [81], [4]).

On the other hand, few works that present first conceptual ideas for data

quality methods applied to text (e.g. [73]) can be found. The work proposed

by Liu et al. [34] gives a former definition of data quality for textual data

but is restricted to Judgment Documents area.

Data quality research on natural language data is still in its beginnings,

but other related works can be found in the literature that may represent a

good starting point for our research. In particular, works to automatically

grade written student essays ([48], [52]) or Automatic Essay Scoring (AES)

and posts in online discussions ([82]) have been shown as practical applica-

tions of NLP. In particular works on AES showed how an effective feature

engineering and a rich text representation can lead to models trained to

evaluate texts matching human hand-labeled samples with high correlation

(0.76 Average Weighted Kohen Kappa Score in [52]).

Starting with these premises, it is clear that there is not a well-defined frame-

work to work with, even thought the problem of unstructured data quality is

known to the research community. Finding a way to evaluate in an effective

way data that inherently have no structure and that is provided without its

original context seems to pose a great challenge. The aim of this work is

hence to propose a novel approach to address the ’lack of context’ common

in unstructured data quality settings by proposing a procedure that can be

effectively applied to perform different types of classification tasks of tex-

tual data leveraging well known labeled datasets and the latest techniques

in terms of language modelling ([79]), transfer learning ([17], [84]) and un-

supervised data augmentation ([86]). The key concept is that, given that it

is not known a priori the task that would be mostly suited to evaluate the

quality of textual records, it would be appreciable if it was possible to design

an approach that makes very easy to obtain high-confidence predictions on

different classification task of such texts. In the following will be showed

how to train a model to predict sentiment polarity on the Internet Movie

Database (IMDb) [42] without using any of the label provided along with

the data and with few epochs of training by leveraging transfer learning and

textual data augmentation. Such approach could be extended to any clas-

sification task with the only requisite that it is available a labeled reference

dataset for such task.

3

1.3 Contents of the Work

In the next chapters the work will be structured as follows:

• In Chapter 2 we will expose a brief overview of the main theoretical

concepts employed in this research. Many of the works presented in

this chapter are used or are directly related with the methodologies

and the techniques used in the work. A brief overview of common

approaches to data mining applied to textual data is presented fol-

lowed by an in-depth illustration of most relevant concepts adopted

in modern approaches. Eventually, we will present also a brief digres-

sion on knowledge distillation techniques as models obtained via this

technique are employed to keep the number of parameters as small as

possible.

• In Chapter 3 we will expose the methodology followed in this research

and the architectural choices. We will show a general text classification

pipelines and how our work relates to such framework, always focusing

on the main differences and the reasons behind the implementation

choices.

• In Chapter 4 we will expose the results of the experiments carried on

following the proposed methodology. We will illustrate the model per-

formances and metrics along all algorithm stages by highlighting the

most relevant findings. Comparisons of the performances with different

hyper-parameter settings will be showed, concluding with considera-

tions on the obtained results and ideas for further developments.

4

Chapter 2

Data Mining On Textual

Data

In this chapter will be introduced the main theoretical concepts taken into

account while developing the proposed approach. In particular, we will start

from the most relevant findings in the area of textual data quality assess-

ment, proceeding with techniques for textual feature extraction and text

classification (e.g. those proposed by Mikolov et al. [24]) ranging from sim-

ple approaches to more sophisticated techniques, including those that make

use of transfer learning [84] applied in the context of semi-supervised learn-

ing [86] which will represent a starting point for the unsupervised approach

proposed. Eventually, unsupervised data augmentation techniques for tex-

tual data will be showed and subsequently used in the following chapters

along with other concepts exposed here.

2.1 Previous Works on Data Quality of Textual

Data

Assessing the quality of text data have been a long-lasting challenge for

researchers.

Readability Indexes

First attempts to represent quantitatively a quality for textual data have

been done via readability measures. Readability represents the ease with

which a reader can understand a written text. Such measure is somehow

related to the content (the complexity of its vocabulary and syntax) and the

presentation (such as typographic aspects like font size, line height, and line

length) of the text itself. One of the firsts example of readability measure

dates back to 1975 and is known as Flesh Readability index [29]. It tries to

capture how easy and fast a human may read and understand a text. Flesch’s

formula is based on the number of words per sentence and the number of

syllables per word. The original formulation proposed by Kincaid et al. is:

206.835− 1.015(total words
total sentences)− 84.6(total syllablestotal words)

The formula above returns a score that maps each text to an instruction

grade level as in the table below. Many other indices of this kind have been

Score Instruction Level Notes

100.00-90.00 5th grade Very easy to read.

90.0-80.0 6th grade Easy to read.

80.0-70.0 7th grade Fairly easy to read.

70.0-60.0 8th ot 9th grade Plain English.

60.0-50.0 10th to 12th grade Fairly difficult to read.

50.0-30.0 College Difficult to read.

30.0-0.0 College graduate Very difficult to read.

Table 2.1: Flesch reading-ease test results

presented during years (Dale-Chall formula [11] or Gunning fog index [21]

to cite few). These readability measures by the way only capture a very

limited set of text characteristics, namely the number of words, syllables

and sentences.

6

Automatic Essay Scoring

Starting from these measures, a new research area spread in the field of

NLP. The task proposed was that of assigning grades to essays written in an

educational setting. Despite being applied to a very narrow and specialized

area, these kind of approaches showed many different aspects that can be

considered when assessing the quality of a text. Many different works have

been proposed to address this task and an official competition (i.e. The

Hewlett Foundation: Automated Essay Scoring [19]) hosted on Kaggle has

been held. Most recent works on this field include publication from Liu et

al. [35] who proposed a two-stage learning approach. The idea exposed in

Figure 2.1: Learning stages proposed by Liu et al. [35]

this work is to leverage LSTM networks to model complex features e.g. text

semantics and Coherence and then to use these features along with other

(e.g. words statistics as POS-tags counts, number of grammar errors, words

counts and so on), to train an XGboost model to output text scores. Specif-

ically, in this work word embeddings are obtained via BERT models while

the algorithms employed leverage hidden representations given by LSTMs

networks to get scores about semantics, coherence and prompt-relevance.

According to the authors of the publication, such approach revealed to be

effective and outperformed all previous AES systems.

Another approach to this task was proposed by Taghipour et al. [74]. In the

work published they proposed a convolutional recurrent neural network to

efficiently extract representation of the text and map them to a score. Even-

tually, the great amount of research in this area and the increasing interest of

big corporaitons and institutions (e.g. AES are effectively employed to score

7

Figure 2.2: Convolutional recurrent neural network proposed by Taghipour et al. [74]

TOEFL/TOEIC written essays) lead to the development of new companies

that specialized and focused on the task of correctly and reliably score texts

(e.g. Educational Testing Service (ETS), founded in 1947, is the world’s

largest private nonprofit educational testing and assessment organization).

General Framework

In the following years many works appeared regarding Data Quality of struc-

tured data in many different domains but, as discussed before, applying such

techniques to textual data showed to be a challenging task. The work pre-

sented by [27] proposes and illustrates a basic framework to analyse textual

data. According to his definitions, a good quality measures considers two

main components when evaluating such data: (1) the raw text itself (2) the

text analysis modules. Moreover, he proposed a list of 9 data quality indexes

to be evaluated. The evaluation procedures proposed by this paper, by the

Figure 2.3: Textual Data Quality metrics proposed by [27]

way, relies partially on gold labels annotated by human experts to assess

the overall quality indexes and hence does not meet the requirements of our

work. Other works in this area follows. Sonntag et al. [73] shows in his

8

work an empirical approach for natural language text data, putting at the

center the expectations of the consumer, human or machine. He proposed to

split data quality measures into two different scores. If on one hand quality

depends on the expectations of the user on the other hand it must be evalu-

ated according to its suitability with respect to natural language processing

tasks. Unfortunately, no practical implementation of such approach is given

nor proposed. One of the main issue exposed by Sonnetag et al. is that:

”components lack methods to get at the real content of texts, especially the

inferable knowledge contained in the text”

Assessing the Quality of Natural Language Text Data [73]

Interestingly, text quality for NLP traces back to questions of text rep-

resentation.

9

2.2 Text Features Extraction

Leveraging textual data to extract information has always have been a chal-

lenging task for researchers as understanding natural language proved to be

a tough task. The very first problem posed by such kind of data is how to

represent them. On one hand all existing algorithms needs some numerical

feature to work on, on the other hand textual data seemed not to be so

prone to be numerically represented.

2.2.1 Bag Of Words

The bag-of-words (BOW) model is one of the earlier approaches to informa-

tion retrieval in natural language processing.

In this model, a text (it can be a sentence or a document) is represented as

the set of its words, disregarding grammar and even word order but keep-

ing multiplicity. Each text is represented by a vector of the count of the

Figure 2.4: BOW representation of two sample sentences

words composing it as if the text were not much more than the set of its

words. From this the name of the approach. Despite its success this model

has many drawbacks as, for example, it builds a sparse representation of

texts that is highly biased towards short words counts (i.e. stopwords) that

frequently occur in texts but that carry very low semantic information. In

addition to that, such representation completely ignores the word order and

the context information carried. To remedy these shortcomings more sophis-

ticated techniques increased the representative power of such count vectors

by weighting counts.

Reducing Vocabulary Size

A first attempt to build more reliable representation of text document can be

done by ignoring stopwords when building count vectors. BOW approach

relies on the idea that most frequent words are also most relevant when

extracting meaning from text. As pointed out in many reference manual

(e.g. [33]) this approach proved to be not so effective as the most frequent

10

words will most surely be the common words such as ”the” or ”and” which

help build ideas but do not carry any significance themselves. For this reason

all such words (called stopwords) are removed from text before applying any

algorithm for classification or feature extraction.

Another useful technique is to reduce inflected words to their base form also

called stem. This procedure, also called Stemming, is known to the literature

since many years (see works from Julie Lovins [38] and Martin Porter [58]

who built de facto standard algorithm used for english stemming).

Figure 2.5: Stemming Example

Eventually, another technique commonly employed to reduce vocabulary

size is lemmatisation. With this term it is usually indicated the process

of determining the lemma of a word (i.e. its vocabulary form) based on its

intended meaning. The main difference with stemming is that lemmatisation

depends on correctly identifying the intended part of speech and meaning

of a word in a sentence and hence represents a complex task that is still an

open research area (e.g. [5])

Figure 2.6: Lemmatisation Example

2.2.2 TF-IDF

When employing Term Frequency-Inverse Document Frequency approach (

as [25] [30] each text is represented by the frequency of the terms appearing

in input sequences, weighted by the inverse frequency of appearance of such

words in all documents collection. In a more formal way we can define two

terms:

• Term Frequency

tfi,j =
ni,j

|dj |

11

where tfi,j stands for term frequency of term i in document j, ni,j
for the number of times term i appears in document j and dj for the

number of terms in document j.

• Inverse Document Frequency

idfi = log |D|
{d:i∈d}

Where the numerator represents the total number of documents in the

collection while the denominator represents the number of documents

containing term i.

By combining these two terms we get:

(tf-idf)i,j = tfi,j ∗ idfi

This approach revealed to be very effective for a number of tasks but it also

showed many drawbacks. Again, being this a ”bag-of-words” representation

of text, such technique does actually sees text as a set of words where the

word order and co-occurrences as well as grammatical rules relating them

are not relevant. To address some of these issues researchers moved towards

dense representation of text called word embeddings. This term refer to a

feature learning technique in which each word or phrase from the vocabulary

is mapped to a N dimension vector of real numbers. Among these models

Word2Vec, GloVe and fastText achieved outstanding results in the task of

building models that are aware of words context when representing them.

12

2.2.3 Word2Vec

Figure 2.7: 2D-visualization for CBOW (left) and Skip-gram (right) embeddings trained

on IMDB dataset.

Word2Vec [45] is a shallow three-layers neural network (it has two forms:

CBOW model and Skip-gram model) with the objective of building context-

aware representations of the words. More in detail a CBOW architecture

Figure 2.8: The CBOW model is trained to predict the current word given the context,

while the Skip-gram predicts the context given an input word

is trained to predict a word given its context, while Skip-gram predicts

the context given a word. If on one hand Skip-gram works well with a

13

small amount of the training data (it represents well even rare words or

phrases), on the other hand CBOW is several times faster to train and has

slightly better accuracy for the frequent words. In both cases, Word2Vec

takes as input a large corpus of text and produces a vector space with each

unique word in the corpus being assigned a corresponding vector in the

space. Word vectors are positioned in the vector space such that words

that share common contexts in the corpus are located close to one another

in the space. Specifically, as showed by the work of Mikolov et al. [45]

such representations allows for basic operations among word vectors such as

computing the embedded representation X of the word ”smallest” as the

result of:

X = vector(”biggest”) - vector(”big”) + vector(”small”)

Figure 2.9: Some of the word level relationships is it possible to capture using word2vec

approach

Skip-Gram

This model takes a word as input and outputs a probability distribution

over the size of the vocabulary considered (V) The first issue we have to

address when feeding a neural network with text is how to represent the

input, given that no model can work with raw text. This step is performed

via One-Hot Encoding, a procedure that maps each target word ”W ” to a

vector of the same size V of the vocabulary and filled with zeroes except

for the position corresponding to the target word ”W ”. The dimensions of

the input vector will hence be 1xV - where V is the number of words in

the vocabulary. Following, the input is passed to a single dense hidden layer

with dimension V×E, where E is the size of the word embedding and is

a hyper-parameter of the model. The output from the hidden layer would

14

Figure 2.10: Skip-gram architecture

be of the dimension 1xE, which we will feed into an softmax layer. The

dimensions of the output layer will be 1×V, where each value in the vector

will be the probability score of the target word at that position. The back

propagation for training samples corresponding to a source word is done

in one back pass. As showed in the work [46], given a sequence of words

〈w1, w2, ..., wT 〉 the model is trained to maximize the average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt)

where c is the size of the training context (is an hyper-parameter).

CBOW

CBOW architecture is somehow opposite to Skip-gram, as here we try to

predict a single word given a context vector. The dimension of our hidden

layer and output layer will remain the same as in Skip-gram so that we will

have an hidden dimension N representing the size of the embedding of each

word, and an output vector with shape 1×V representing the predicted

word in the vocabulary. Only the dimension of our input layer and the

calculations of hidden layer activation will change. Given C input words,

15

Figure 2.11: CBOW architecture

each mapped to a 1×V vector, our input will be a C×V matrix. This

matrix will be multiplied with V×N embedding matrix to obtain a C×N

representation of the input. These vectors will then be averaged element-

wise to obtain the final N -dimensional activation vector which then will be

fed into the softmax layer to get our 1xV output.

2.2.4 FastText

One of the main issues of such models is related to the fact that they ig-

nore the morphology of the words by assigning different vectors to different

words. To handle this issue Facebook AI Research proposed a novel method

(fastText [8]) in which sub-word level information is added to vector rep-

resentations. In such context, words are considered as bags of character n-

grams and then word-level embedding is obtained as the sum of sub-words

representations. As an example, taking the word ”where” and n=3 we would

represent such word as the following char n-grams

〈wh,whe, her, ere, re〉

and the special sequence

〈where〉

16

This model allows sharing the representations across words, thus making

possible to learn reliable representation for rare words. This lead to state-of-

the-art accuracy in many NLP downstream tasks with very fast and reusable

algorithms [24].

17

2.3 Transfer Learning

With the feature extraction techniques becoming more and more sophisti-

cated, the idea was to build bigger and bigger models that were able to

capture finest relationships among words by training them on enormous

amount of data that internet offered with ease of access. By following this

idea one would end up with a model of the language able to capture many

aspect of the text that can be combined with a custom model head, e.g.

for classification, and fine tuned for different downstream tasks (e.g. using

discriminative learning rates in multiple stages).

2.3.1 CoVe

When modeling language, all the algorithms considered until now have the

drawback of representing each word of a sentence with a vector that does not

account for the context of the word itself. In such scenario the word ”bank”

in the sentences ”bank institution” or ”river bank” actually have the same

representation. To address this issue, works from Peters et al. ([54]) tried

to build word embeddings for adding pre-trained context embeddings from

bidirectional language models to NLP systems. In a similar way, research

from McCann et. al. ([43]) introduced CoVe (Context Vectors) a new type of

contextualized word representation obtained extracting hidden states from

a deep LSTM encoder trained in an attentional sequence-to-sequence model

for machine translation (MT). Published results show that adding these

context vectors (CoVe) improves performance over using only unsupervised

word and character vectors on a wide variety of common NLP tasks. In

both cases the key concept was to add context to words in order to better

model the representation of each words based not only on the current word

itself but also on the surrounding context.

2.3.2 ELMo

Soon contextualized representations of words become the main trend when

it comes to word representation. A significant forward step is represented

by ELMo embeddings [55] that models both (1) complex characteristics of

word use (e.g., syntax and semantics), and (2) how these uses vary across

linguistic contexts (i.e., to model polysemy). In this setting word vectors

are learned functions of the internal states of a deep bidirectional language

model (biLM), which is pre-trained on a large text corpus. The main novelty

of this approach was indeed in the way such representations are obtained.

Peters et al. trained a bidirectional LSTM network on the next word pre-

18

diction task. This is usually referred as Language Modelling and is an useful

technique that can be used to train models in unsupervised settings. Being

the model bidirectional, the model will perform two steps. Taken a sequence

of N tokens (t1, t2, ..., tN), the model computes its inner states by taking a

forward step and a backward step. In the forward step the task is to predict

the probability of the next token tk given the history

(t1, t2, ..., tk−1)

. In a formal way this is expressed as:

p(t1, t2, ..., tN) =
∏N
k=1 p(tk|t1, t2, ..., tk−1)

In the same way we take the backward step. The only difference here is that

it runs over the sequence in reverse and thus predicting the previous token

given the future context. Again in a formal way we can define:

p(t1, t2, ..., tN) =
∏N
k=1 p(tk|tk+1, tk+2, ..., tN)

Once the forward and backward steps are taken the model is trained to

jointly maximize the log likelihood of the forward and backward directions:∑N
k=1(logp(tk|t1, t2, ..., tk−1) + logp(tk|tk+1, tk+2, ..., tN))

Figure 2.12: Steps to go from biLSTM hid-

den states to ELMo embeddings

Once the model learned its pa-

rameters, the hidden states of the

models itself are concatenated and

then summed by linear combina-

tion with different and task-specific

weights to obtain rich input repre-

sentations for many different tasks.

2.3.3 ULM-FiT

By following this path, text repre-

sentations became richer and richer

with the introduction of transfer

learning techniques to train big-

ger models that can be effectively

used on a number of downstream

task. Universal Language Model

Fine-tuning (ULM-FiT) [23] repre-

sents a milestone in this path be-

cause for the first time authors pro-

posed novel techniques to avoid catastrophic forgetting [44] and to effectively

19

Figure 2.13: ULMFiT consists of three stages: a) The LM is trained on a general-

domain corpus to capture general features of the language in different layers. b) The

full LM is fine-tuned on target task data using discriminative fine-tuning (’Discr’) and

slanted triangular learning rates (STLR) to learn task-specific features. c) The classifier

is fine-tuned on the target task using gradual unfreezing, ’Discr’, and STLR to preserve

low-level representations and adapt high-level ones (shaded: unfreezing stages; black:

frozen).

utilize a lot of what the model learned during pre-training. ULM-FiT intro-

duced a language modeling approach and a process to effectively fine-tune

that language model for various tasks. NLP had a way to do transfer learn-

ing as effectively as Computer Vision models could.

20

2.3.4 Transformer Models

In recent years the world of NLP has been taken by storm with the introduc-

tion of Transformer models and Attention [79]. Transformer architecture has

Figure 2.14: Transformer architecture from the original implementation

proven to be a disruptive approach to almost all NLP tasks. In few months,

transformer models have taken the top of almost all the leaderboards in the

NLP area [80].

The approach proposed by Vaswani et al. produced outstanding results as

the architecture proposed was not only highly parallelizable (i.e. faster) with

respect to all models with comparable performances, but also outperformed

all convolutional or recurrent based model in seq2seq task like language

translation. This was really because transformers deal with long-term de-

pendencies better than LSTMs. What Vaswani et. al. proposed in his paper

is an encoder-decoder model composed of stacked identical (yet they do not

share weights) layers. By taking a closer look to encoder layers we can notice

21

Figure 2.15: The stack of encoder and decoder layers proposed by Vaswani et al.

that each one is composed by two basic sub-blocks: a Self-Attention layer

followed by a Feed Forward Layer. The output of each layer is added first

to residual value for regularization, and then to the input tensor. Finally

such value is normalized before being propagated to the next layer. The real

Figure 2.16: Encoder layer in detail

power of such layers is given by the representation of the input built at each

step. When the attention layer is fed with input text, each word embedding

is used to produce a triplet of vectors: Query, Key and Value by multiplying

22

the embedding of each word with a matrix that is trained as a parameter

of the model. These vectors represent an abstraction needed to evaluate

Figure 2.17: Words Embedding X1 and X2 are multiplied with matrices WQ,WK and

WV to obtain query, key and value vectors respectively

attention. Next the score of each word is evaluated by weighting its value

vector with the softmax of the dot product between query and key vectors

normalized for the square root of the dimension of the key vector (fixed to

64 in the paper). The intuition here is to keep intact the values of the words

we want to focus on, and drown-out irrelevant words (by multiplying them

by very small numbers). In a more formal way we can define:

Attention(Q,V,K) = Softmax(QK
T

√
dk

)V

where Q,V and K are the query, value and key matrices respectively and dk
is the dimension of the key vectors.

In the paper ”Attention is All you Need” [79] this process is taken even

further by employing ”multi-headed” attention. The authors replicated

the computations just shown many times giving the model multiple sets of

Query/Key/Value weight matrices WQ,WK and W V each of them trained

as a new parameter of the model and initialized randomly. With this en-

hancement the model is supposed to have different ”representation sub-

spaces” of the input and to expand its ability to focus on different positions

of the text. Eventually, it should be noted that all these calculations are

performed in matrix form to evaluate multiple query,value and key vectors

simultaneously.

One critical issue with this architecture is that the model actually sees

the text as a bag of words, without accounting for the word order in the

23

Figure 2.18: Visualization of the scaled dot-product attention (on the left) and multi-

headed attention (on the right) calculations

Figure 2.19: Visualization of multi-headed attention calculations in matrix form

input text. To address this, a vector is added to each input embedding.

These vectors follow a specific pattern that the model learns, which helps

it determine the position of each word, or the distance between different

words in the sequence. The intuition here is that adding these values to the

embeddings provides meaningful distances between the embedding vectors

once they’re projected into Q/K/V vectors and during dot-product atten-

tion. In the original implementation this is achieved via sine and cosine

functions at different frequencies:

PE(pos,2i) = sin(pos

100002i/dmodel
)

PE(pos,2i+1) = cos(pos

100002i/dmodel
)

where pos is the position, i is the i-th dimension and dmodel is the dimension

of the model embeddings. In other words, to each dimension of the encoding

24

corresponds a different sinusoid. The intuition was that this approach would

allow the model to easily learn to attend by relative positions, since for any

fixed offset k, PEpos+k can be represented as a linear function of PEpos. If

one wants to visualize the learned encoding it would be possible to color

code such values. In the following the encoding of 20 words is represented.

Each row represents the 512-valued positional encoding of the corresponding

word. It can be noted that the encoding has a vertical split in the center.

Figure 2.20: A real example of positional encoding for 20 words (rows) with an embed-

ding size of 512 (columns)

This comes from the concatenation of two halves produced by different en-

codings, the leftmost is associated with a sine function and the rightmost is

associated with a cosine function.

Once having all this set up, we can start the decoding step of the model.

Each decoder layer receives the output matrices K and V of the last en-

coder in the encoder stack. These values are used in the ”encoder-decoder

attention” layer which helps the decoder focus on appropriate places in the

input sequence. At each time step t, the output of the decoder stack at each

previous time step t− i with 0 < i < t, is used as input along with the K and

V values of the encoder stack. Also here, the embedded input is enriched

with positional encoding. The self attention layers in the decoder operate

in a slightly different way than the one in the encoder: in this second stack,

the self-attention layer is only allowed to attend to earlier positions of the

output sequence. This is done by masking future positions (setting them to

-inf) before the softmax step in the self-attention calculation. The ”Encoder-

Decoder Attention” layer works just like multi-headed self-attention, except

25

it creates its Queries matrix from the layer below it, and takes the Keys and

Values matrix from the output of the encoder stack. Eventually, the output

Figure 2.21: Encoder Decoder architecture in Transformers

of the decoder is fed to a feed forward layer that outputs a logits vector

having the size of the vocabulary and then to a softmax layer to get token

probabilities. This model was effectively employed for WMT 2014 English-

to-German outperforming all previous models. The architecture presented

was the first able to model complex language relations without using recur-

sive or convolutional layers in its computations. Moreover it proved to be

extremely effective on seq2seq task by achieving state-of-the-art results in

machine translation task and many others.

26

2.4 Prediction Model

Once text samples are mapped into a feature vector we will need a model to

learn patterns among such features in order to accurately classify our data.

The models exposed below belongs to the family of supervised algorithms

hence are are trained to minimize a loss function relating model’s output to

input labels. We will pay particular attention to the models that leverage

transfer-learning as this plays a key aspect to exploit powerful representa-

tions built with techniques previously exposed. Moreover, using pre-trained

models and then fine-tuning for downstream task allows to build accurate

models with few training epochs (i.e. decreasing time-requirements) allow-

ing analysis on large scale datasets for different sub-tasks in few hours.

Most pre-trained models comes from Google Official repository, and train-

ing techniques are documented and exposed in the publications relative to

each model as we will show shortly.

2.4.1 BERT

Among all transformers-based models, BERT [17] (Bidirectional Encoder

Representation from Transformers) succeeded in the task of producing trans-

former’s representation of words while taking into account right and left con-

ditioning (i.e. by taking into account surrounding context). Since BERT’s

goal is to generate a language model, only the encoder mechanism from

transformers is necessary. In the original implementation from [17] the

model was trained to perform two unsupervised tasks. The first one is

Masked Language Modeling (MLM). When feeding BERT’s encoder stack,

15% of the words in the input sequence are selected for the prediction. For

each token i among those selected, the replacement policy works as follows:

• The i -th item is replaced with the token [MASK] with a probability

of 0.8

• The i -th item is replaced with a random word from the vocabulary

with a probability of 0.1

• The i -th item is replaced with the original token with a probability of

0.1

. The purpose of this masking strategy is to reduce the mismatch between

pre-training and subsequent fine-tuning, as the [MASK] token would never

appear during the fine-tuning stage. The model then attempts to predict the

original value of the masked words using standard cross-entropy and based

27

on the context provided by the other, non-masked, words in the sequence. A

drawback of this approach is that the model converges slower then classical

language modeling, but this technique still leads to better performances in

few epochs of training as showed by [17]. The second one is Next Sentence

Figure 2.22: Test on Multi-Genre Natural Language Inference task [83]

Prediction. Many important downstream tasks such as Question Answering

(QA) and Natural Language Inference (NLI) are based on understanding

the relationship between two sentences, which is not directly captured by

language modeling. In order to train a model that understands sentence

relationships, the authors pre-trained the model for a binarized next sen-

tence prediction task that can be trivially generated from any monolingual

corpus. Specifically, when choosing the sentences A and B for each pretrain-

ing example, 50% of the time B is the actual next sentence that follows A

(labeled as IsNext), and 50% of the time it is a random sentence from the

corpus (labeled as NotNext) [17]. In order to perform prediction for both of

the task, on top of the encoder stack it is additionally required:

Figure 2.23: BERT architecture

28

1. Adding a classification layer on top of the encoder output.

2. Multiplying the output vectors by the embedding matrix, transforming

them into the vocabulary dimension.

3. Calculating the probability of each word in the vocabulary with soft-

max

Moreover, to make BERT handle a variety of down-stream tasks, input rep-

resentation is able to unambiguously represent both a single sentence and

a pair of sentences (e.g., 〈 Question, Answer 〉) in one sequence. A ”se-

quence” refers to the input token sequence to BERT, which may be a single

sentence or two sentences packed together while a ”sentence” can be an ar-

bitrary span of contiguous text, rather than an actual linguistic sentence.

In the original work, embeddings are produced via WordPiece embeddings

[85] which has a vocabulary of 30,000 token. The first token of every se-

quence is always set to be a special classification token ([CLS]). This token

aggregates the sequence representation for the classification task. Moreover,

as sentence pairs are packed together into a single sequence, another special

token ([SEP]) is be added to differentiate the two sentences. It is important

to notice that this is the first attempt to build a truly bidirectional language

model, as for the first time this model was able to take a whole sentence as

input and compute its representations for each of such sequences at once, in

contrast with previous approaches where the bidirectional conditioning was

obtained combining a left-to-right and a right-to-left context (as in ELMo’s

bidirectional LSTMs). Moreover, it should be noticed, as the authors of the

Figure 2.24: Different approaches to extract embeddings from BERT’s encoders stack

original work [17] point out, that once the model is trained, not only it can

29

be used in a fine-tuning fashion, but also to extract input representations

from the encoder stack. Specifically, combinations of the embeddings at dif-

ferent encoding layers (second-to-last hidden, last Hidden, weighted sum of

the last four hidden, concatenation of the last four hidden, weighted sum

of all 12 layers) showed different F1-scores for NER task on CoNLL-2003

dataset [77]. The hidden representations of the model are again used to build

vectors to represent the input. The model can hence be used to extract con-

textualized representations of the input words. Such contextualization spans

along all the layers of the encoder stack and each layer is able to capture a

different aspect of the input text. As said, different layers, or combinations

of them, can lead to better performance depending on the task. The main

drawback of the proposed model lies in the hardware requirements as the

implementation proposed is not intended for CPU-only systems but relies

on parallelizable GPUs to keep execution time low. To partially address

this issue, we decided to explore techniques to reduce model’s number of

parameters while preserving performances.

2.4.2 DistilBert

Figure 2.25: Comparison of number of parameters of different language models pro-

posed in recent years

When it comes to language models, research trends in the last few years

show clearly that there is a strong correlation between model size, available

data and performance obtained. It actually seems that bigger and bigger

models in terms of parameter (e.g. Turing Natural Language Generation or

30

T-NLG [65] which is a 17 billion parameter language model by Microsoft)

trained on more and more data (e.g. RoBERTa model from Facebook AI [36]

was trained on 160GB corpus) leads to better performances. In the opposite

sense, research from Sanh et al. [68] aims to produce smaller transformer

models with comparable performance with regard to their bigger versions.

Knowledge distillation is not a model compression technique, but it has the

same goals and effects. After training a big and slow model (the teacher),

a smaller model (the student) is trained to mimic the teacher’s behaviour -

whether its outputs or its internal data representations. This leads to very

straightforward improvements in both speed and size across different types

of networks, from CNNs [64] to LSTMs [28]. Very interesting is the effect

of teacher-student architectural differences: while [64] recommend students

deeper and thinner than teachers, [39] and [49] present tricks for better

knowledge transfer between very different architectures. In [75], the authors

successfully learn a small biLSTM student from BERT. This process was

Figure 2.26: Distillation Process for BERT

introduced by Bucila et al. [10] and further analyzed by Hinton et al. [22]

a few years later. In [68] authors followed the latter method. In supervised

learning, a classification model is generally trained to predict a gold class by

maximizing its probability (softmax of logits) using the log-likelihood signal.

In many cases, a good performance model will predict an output distribu-

tion with the correct class having a high probability, leaving other classes

with probabilities near zero. But, some of these ”almost-zero” probabilities

are larger than the others, and this reflects, in part, the generalization ca-

pabilities of the model. This can be easily visualized when evaluating token

probabilities in language models. Here follows an example. We can clearly

see how the model predicts two tokens with an high probability (i.e. ’day’

and ’life’) followed by a long tail of low-probability tokens. In a common

31

Figure 2.27: Token predicted by BERT model to complete the famous quote from

Casablanca film.

teacher-student training hence, we train a student network to mimic the

full output distribution of the teacher network (its knowledge). The idea is

training the student to generalize the same way as the teacher by matching

the output distribution. To achieve this, rather than training with a cross-

entropy over the true hard targets (one-hot encoding of the gold class), we

transfer the knowledge from the teacher to the student with a cross-entropy

over the soft targets (probability distribution over classes of the teacher).

Our training loss function, according to [22], should hence have the following

structure:

L = −
∑

i ti × log(si)

where ti are logits from the teacher and si those of the student In the same

work Hinton et al. also introduced softmax temperature function:

pi = exp(zi/T)∑
j exp(zj/T)

where zi are model’s output logits and T is the Temperature. When T −→ 0,

the distribution becomes a Kronecker (and is equivalent to the one-hot tar-

get vector), when T −→ +∞, it becomes a uniform distribution. The same

temperature parameter is applied both to the student and the teacher at

training time, further revealing more signals for each training example. At

inference, T is set to 1 and recover the standard Softmax. In our setting, we

will not consider softmax temperature function but we will employ, accord-

ingly to [22], Kullback-Leibler function as loss over soft labels. Following

Hinton et al., the training loss is a linear combination of the distillation loss

and the masked language modeling loss. The resulting student network is a

small version of BERT in which the token-type embeddings and the pooler

32

(used for the next sentence classification task) are removed, while preserv-

ing the rest of the architecture identical. This process reduces the number

of layers by a factor of two. Overall, the distilled version of BERT model,

DistilBERT, has about half the total number of parameters of BERT base

but retains 95% of BERT’s performances on the language understanding

benchmark GLUE. Moreover, to boost performances, a few training tricks

from the recent RoBERTa paper [36] (which showed that the way BERT

is trained is crucial for its final performance) are performed. For example,

following [36], DistilBERT was trained on very large batches leveraging gra-

dient accumulation (up to 4000 examples per batch), with dynamic masking

but without the next sentence prediction objective.

33

2.5 Unsupervised Data Augmentation for Consis-

tency Training

Recent advances in semi-supervised learning allows to train model in very

low-label regime. Work from Xie et al. [86] showed that BERT model

can be trained with as much as 20 labels to achieve state-of-the-art results

compared with models trained in a fully-supervised regime (25,000 labels).

These achievements shows room for further investigations to evaluate how

well this kind of approaches perform when the labeled data comes from

a teacher model. Among all semi-supervised solutions, those employing

consistency training framework ([3], [61], [76]) produced good results on

many benchmarks. Specifically, the work from Xie et al. [86] shows how to

effectively noise unlabeled examples, pointing out that the quality of data

augmentation techniques plays a crucial role in the learning stage of the

model. As discussed in [86], a focus on the methods employed to augment

data can give many extra advantages with respect to simple approaches

under many aspects:

• Advanced data augmentation methods that achieve great performance

in supervised learning usually generate realistic augmented examples

that share the same ground-truth labels with the original example.

Thus, it is safe to encourage the consistency between predictions on the

original unlabeled example and the augmented unlabeled examples.

(valid noise)

• Advanced data augmentation can generate a diverse set of examples

since it can make large modifications to the input example with-

out changing its label, while simple Gaussian noise only make local

changes. Encouraging consistency on a diverse set of augmented ex-

amples can significantly improve the sample efficiency. (diverse noise)

• Different tasks require different inductive biases. Data augmentation

operations that work well in supervised training essentially provides

the missing inductive biases (targeted inductive biases).

Results showed in this work are a promising starting point for the purpose

of this research as combines many concepts involved in the methodology

proposed showing that transfer learning of transformer’s language models

can be effectively employed in a low-label regime using consistency training.

As discussed before, recent works in semi-supervised learning make use of

unlabeled examples to enforce smoothness of the model. The general form

of these approaches can be summarized in two main steps:

34

Figure 2.28: Overview of UDA [86] training objective

• Given an input x, compute the output distribution pθ(y|x) given x and

a noised version pθ(y|x, ε) by injecting a small noise ε. The noise can

be applied to x or hidden states.

• Minimize a divergence metric between the two distributions

D(pθ(y|x)||pθ(y|x, ε)).

The idea underlying consistency training is that model predictions can be

regularized to be invariant to noise applied to the input ([50], [67], [15])

or to the hidden states ([3], [31]). This intuitively makes sense because a

model should be invariant in its prediction to small perturbations in the

input example or in its hidden states. This procedure enforces the model

to be less sensible to noise ε and hence smoother with respect to changes

in the input space. Said in other words, minimizing the consistency loss

gradually helps propagating prediction confidence from labeled examples to

unlabeled ones. What the authors of [86] noticed was that the ”quality”

of noising operations on the input can largely influence the performance

of the consistency training framework. They showed that stronger data

augmentations techniques, in contrast with simple Gaussian noise and trivial

input augmentations, can also lead to better performance when used to noise

unlabeled examples in the semi-supervised consistency training framework,

since it has been shown that more advanced data augmentations that are

more diverse and natural can lead to significant performance gain in the

supervised setting. This opens to the use of large amounts of new samples

built to let the model be more confident in its predictions. To account for

such samples in the learning stage, the loss functions has to consider two

components. The first one is supervised cross entropy, while the second

one is KL divergence. The relative magnitude of the two is set using the

hyper-parameter λ. Eventually, the training objective function was set to:

minθ J (θ) = Ex,y∗∈L[− log(pθ(y
∗|x)] +λEx∈UEx̂∼q(x̂|x)[DKL(pθ̂(y|x)||pθ(y|x̂))]

35

where q(x̂|x) is a data augmentation transformation, L and U represent

Labeled and Unlabeled sets respectively, DKL refers to Kullback-Leibler

divergence and θ̂ is a fixed copy of the current parameters θ indicating that

the gradient is not propagated through θ̂, as suggested by [50]. As already

highlighted, another key aspect, other than the objective function, is the

strategy used to augment data. The strategy proposed in [86] for textual

data augmentation are:

• Back-Translation ([71],[18]) refers to the procedure of translating an

Figure 2.29: Back-Transaltion Example

existing example x in language A into another language B and then

translating it back into A to obtain an augmented example x̂ (as ob-

served by [87], back-translation can generate diverse paraphrases while

preserving the semantics of the original sentences leading to significant

performance improvements).

• TF-IDF based word replacement that allows to have more con-

trol on the retained words at the cost of loss in the overall semantic

of the sentence. Such aspect is crucial when approaching tasks, e.g.

topic classification, in which some keywords are more informative than

other and hence retaining some specific words is relevant to preserve

fundamental concepts of the sentence. In the proposed implementa-

tion words are replaced on the base of their tf-idf score, which is used

as an ”informativeness” metric of words inside the text.

Both these techniques show a great capability of building sentences that

relates semantically to the original one by still differing in some structural

or syntactical aspect. By taking these two techniques as a starting point we

will show how the use of other approaches can be beneficial to the model

learning stage. This is because different techniques produces different per-

turbations of the same input and help the model learn to discern among

classes. Other examples of effective use of back-translation as augmenta-

tion technique can be found also in [16]. In this work several approaches

to augment text are compared keeping the attention on their scalability.

In the experiment proposed in such work, besides back-translation, other

36

techniques to generate paraphrase or to noise input are showed. In all the

experiments reported, models trained using an high number of noising meth-

ods appeared to perform better than their counterparts fed with a smaller

number of augmentation strategies.

37

2.6 Summary

In this chapter we showed the main theoretical concepts that will be involved

in our experiments. Starting from previous works on natural language qual-

ity assessment we over-viewed the main aspects that plays crucial role when

measuring data quality for such data. We then moved to expose main con-

cepts that comes useful when building rich text representations that allows

models to learn robust function mapping samples to correct labels. Even-

tually we focused on Transformer Models, a real breakthrough in the field

of NLP, both for their architecture lacking of any convolutional or recurrent

layer and for the ease they can be used in many down-stream tasks.

38

Chapter 3

Proposed Methodology

According to Google developers best practices, the above steps should be

Figure 3.1: Text Classification Workflow proposed on Google Developers Website

followed when classifying text data. The first data gathering step,as will be

better explained in the following pages, is crucial for the applicability of the

proposed methodology. The data exploration step is then fundamental to

assess the effectiveness of collected data. The first and easiest approach we

can use is manual inspection. We can pick randomly some sentence from

our set and verify that is consistent with our expectation. Once inspected

the data, it turns useful to collect the following important metrics that can

help characterize the current text classification problem:

• Number of samples: Total number of examples you have in the data.

• Number of classes: Total number of topics or categories in the data.

• Number of samples per class: Number of samples per class (topic/category).

In a balanced dataset, all classes will have a similar number of sam-

ples; in an imbalanced dataset, the number of samples in each class

will vary widely.

• Number of words per sample: Median number of words in one sample.

• Frequency distribution of words: Distribution showing the frequency

(number of occurrences) of each word in the dataset.

• Distribution of sample length: Distribution showing the number of

words per sample in the dataset.

Figure 3.2: Metrics Measures From IMDb data

(a) Word Counts (b) Sentence Length

(c) Sentence Length Dived By Class La-

bel

Figure 3.3: Simple Counts over IMDb Data

For further inspection we may evaluate textual heterogeneity. For this

purpose it may be useful to evaluate n-grams counts and average sentence

length as showed below.

Once data we will be working on is fully explored and its main features

and characteristics are outlined, next step is to select a model to correctly

and effectively extract features from text starting from most relevant features

highlighted from analysis. To this purpose the following flowchart comes in

help when approaching a text classification task. This flowchart answers two

key questions: (1) Which learning algorithm better fits our data (2) How

should data be preprocessed to efficiently learn the relationship between

samples and assigned label.

40

(a) Top 20 Unigrams Counts Before Re-

moving Stopwords

(b) Top 20 Unigrams Counts After Re-

moving Stopwords

(c) Top 20 Bigrams Counts Before Re-

moving Stopwords

(d) Top 20 Bigrams Counts After Re-

moving Stopwords

(e) Top 20 Trigrams Counts Before Re-

moving Stopwords

(f) Top 20 Trigrams Counts After Re-

moving Stopwords

Figure 3.4: Stats on IMDb Records

These two questions are clearly correlated; the way we preprocess data

to be fed into a model will depend on what model we choose. Models

here are broadly divided into two categories: those that use word ordering

information (sequence models), and ones that employ a bag of words ap-

proach (n-gram models). Types of sequence models include convolutional

neural networks (CNNs), recurrent neural networks (RNNs), and Trans-

former Models. Types of n-gram models include logistic regression, simple

multi- layer perceptrons (MLPs, or fully-connected neural networks), gra-

dient boosted trees and support vector machines. As exposed in Machine

41

Figure 3.5: Text classification flowchart proposed by Google Developers blog

Learning Guides for Text Classification from Google, the ratio of ”number

of samples” (S) to ”number of words per sample” (W) correlates with which

model performs well. When the value for this ratio is small (< 1500), small

multi-layer perceptrons that take n-grams as input perform better or at least

as well as sequence models. MLPs are simple to define and understand, and

they take much less compute time than sequence models. When the value

for this ratio is large (≥ 1500), use a sequence model should be preferred. In

the case of our IMDb review dataset, the samples/words-per-sample ratio

is ∼ 144 hence suggesting a simple MLP model. We will, by the way, re-

cover to a Transformer Model as SOTA results obtained by employing this

solution for many different tasks suggest that transformers are able to build

a powerful representation of input data and to obtain high performance on

heterogeneous natural language data sources.

42

3.1 Proposed Pipeline

Figure 3.6: Overview Of Proposed Methodology

All the concepts introduced in chapter 2 converges in the proposed ap-

proach exposed in this section. As previously introduced the aim of the

work is to develop a framework to score text with different possible task

(e.g. sentiment polarity or linguistic acceptability, among many). Such

approach rises from the necessities pointed out from previous works that

repeatedly underline that quality in textual context is much a matter of

what quality means to the user. Given that the end classification task is

not known a priori, we should include the task itself as an input variable

of the pipeline proposed. The framework hence should be capable of pro-

ducing different labels for the same target data, depending on the chosen

task, and accordingly train a given model to evaluate such data with the

produced labels. This is achieved by leveraging knowledge extracted from

other labeled dataset. Taken sentiment polarity as task, a standard reference

dataset can be Stanford Sentiment Treebank [72]. Models like BERT can be

used jointly with transfer learning to obtain instances pre-trained on huge

corpora to unsupervisedly capture words relationship and sentence ordering

(see chapter 2 for further details). This gives the model generalizing capa-

bilities for many downstream tasks. In the following we will always make

use of pre-trained instances unless differently specified. More in detail we

will employ two instances of distilBert (66M parameters) both pre-trained

on lower cased english text. The first one will be fine tuned on reference

data (i.e. SST-2) to learn its parameters for the target task. The second

one will be trained both supervisedly on the most-confident labels produced

by the first one and unsupervisedly on the augmented remaining data to

enforce consistency in its predictions.

As showed above, the algorithm spans for 6 different stages:

43

1. Task Selection Select the classification task to perform on target

data and a reference dataset. As said, in our experiments ”Sentiment

Polarity” will be used as classification task and the Stanford Sentiment

Treebank as reference data.

2. Fine-Tuning Fine-tune on reference data an instance of distiBert

model.

3. First Inference Step Use the obtained model to perform inference

on target data. In our scenario target data will be IMDb records.

4. Training Data Building Split target data in:

• Labeled Set: Samples with a predicted probability higher than

a given threshold k (in our experiments k is set to the 85th per-

centile of the prediction probabilities on target data)

• Unlabeled Set: All the other samples from target data, aug-

mented n times (in our experiments n is set to 5) using dif-

ferent unsupervised augmentation strategies sampled randomly

from a set of several techniques (random word swapping, ran-

dom word deletion, TF-IDF word insertion, TF-IDF word substi-

tution, word substitution via GloVe contextualized embeddings,

word insertion via GloVe contextualized embeddings, word sub-

stitution via XLNet contextualized embeddings, word insertion

via XLNet contextualized embeddings, back-translation)

5. Inference Model Training Train a new instance of DistilBertForSe-

quenceClassification model on the newly built dataset using:

• Standard CrossEntropy on Labeled Set

• Minimization of the KL divergence between Softmax(O1) and

Softmax(O2) where O1 represents the logits of the fine-tuned

model on the Unlabeled Set and O2 those of the model we are

training

6. Second Inference Step Once the model is trained use the confidence

on predictions as a score for the given task.

We will now see details of each step to understand the relevance of each

proposed step in the given pipeline.

44

3.2 Task Selection

The first step is to select the task we want to perform on target data. As

already discussed before this step is crucial as it also defines the way the

quality of the textual records will be evaluated. In our experiments the

selected task is binary sentiment classification. This is a standard classi-

fication task included in many different benchmarks and evaluation tools.

Once the task is selected a reference labeled dataset must be found. For

our purposes, we selected the Stanford Sentiment Treebank (SST-2) as this

dataset is often referenced in the literature as a standard for binary sen-

timent analysis and is also included in the GLUE benchmark [80]. In the

context of our work we will show only models handling one sentence at time,

by the way, all used model can be extended to the case of pair of sentences

(e.g. question answering).

3.3 Fine-Tuning

The model used for fine-tuning is, as said, an instance of distilBert. Although

a larger version of the model may lead to an increase of accuracy, the choice

was driven by performance in terms of total execution time and hardware

requirements. This step can be performed in two ways to optimize execution

time. (1) By leveraging the increasing amount of fine-tuned checkpoints

that are open-sourced it can be easy to find the needed instance ready to

import. This is often the case of reference task e.g. the one considered in

out our. A version of the model pretrained on SST-2 is available in the

reference repository used for the project (i.e. HuggingFace [84]) and hence

can be used as checkpoint. (2) If a specific fine-tuned model is not available,

a fine-tuning step should be performed following the approach showed in

the original implementation. This involves preprocessing data and encoding

it, hence an instance of the desired model’s parameters can be learned by

following the approach exposed along with the original implementation as

shown above. For fine-tuning, most model hyper-parameters are the same as

in pre-training. Particularly, bigger batch size and smaller learning rate are

used. However, authors from [17] points that the model seem to be invariant

to hyper-parameter choice when applied to large dataset (e.g. 100k samples)

which will be often the application case of our pipeline.

45

Figure 3.7: Bert fine-tuning illustration from [17]

3.4 First Inference Step

Once our fine-tuned model is available we can perform inference on target

data. To perform this step, textual records need to be preprocessed first,

as we’ve done in the previous step. This time we will make use of the tar-

get dataset. Once our model is fine-tuned to discern task-specific patterns

among natural language data we can employ it to infer a probability dis-

tribution for out target dataset (i.e. IMDb). According to the training

methodologies proposed along with the model implementation, input sen-

tences must be tokenized and then words mapped to vocabulary indexes.

The encoding employed is based on wordpiece. Once the sequence of to-

Figure 3.8: Sentence encoding example

ken IDs is obtained we must pad these sequences to a fixed length. This

happens because input sentences are of variable length but our model feeds

on fixed length inputs. For performance reasons we fixed such value to 64

tokens. Subsequently an attention mask for each sample is evaluated. Such

masks are vectors of the same length of model’s input, with a 1 in each

46

Model Name Available Fine-Tuned Models

BERT

bert-base-uncased

bert-large-uncased

bert-base-cased

bert-large-cased

bert-base-multilingual-uncased

bert-base-multilingual-cased

bert-base-chinese

bert-base-german-cased

bert-large-uncased-whole-word-masking

bert-large-cased-whole-word-masking

bert-large-uncased-whole-word-masking-finetuned-squad

bert-large-cased-whole-word-masking-finetuned-squad

bert-base-cased-finetuned-mrpc

bert-base-german-dbmdz-cased

bert-base-german-dbmdz-uncased

bert-base-japanese

bert-base-japanese-whole-word-masking

bert-base-japanese-char

bert-base-japanese-char-whole-word-masking

bert-base-finnish-cased-v1

bert-base-finnish-uncased-v1

bert-base-dutch-cased

DistilBERT

distilbert-base-uncased

distilbert-base-uncased-distilled-squad

distilbert-base-cased

distilbert-base-cased-distilled-squad

distilbert-base-german-cased

distilbert-base-multilingual-cased

distilbert-base-uncased-finetuned-sst-2-english

Table 3.1: Small sample of BERT and distilBert pre-trained models available on [84]

position corresponding to a word in the padded input vector and a 0 for all

the padded positions. As explained before, such vector helps the model to

learn the pattern of words’ relative positions into the sentence. Token IDs

along with attention masks are then fed with a random sampling strategy to

the model. Output logits are hence calculated for each sample. A softmax

head is added to return the probability distribution of the input over the

output classes.

47

Figure 3.9: Input representation for BERT. Input embeddings is the sum of token

embeddings, the segmentation embeddings and the position embeddings.

3.5 Training Data Building

At the end of the first inference step each sample of the target data is

mapped to a probability distribution over the output classes. As the model

that provided such distribution was trained on a different dataset, we can

not expect reliable prediction over the whole set but still many samples will

be predicted with high confidence. As showed in the work [86] as much

as 20 labeled examples are necessary to achieve state of the art examples

on sentiment classification task. The 85th and the 15th percentile of the

probability distribution of class 1 is then calculated.

Figure 3.10: Class 1 probabilities from experiments on IMDb data

We split the dataset as follows:

• All the samples with a predicted probability below the 15th percentile

(i.e. red line in the plot above) are assigned to the Labeled Set with

label 0

• All the samples with a predicted probability below the 85th percentile

(i.e. red line in the plot above) are assigned to the Labeled Set with

label 1

• All other samples are assigned to the Unlabeled Set

48

Figure 3.11: Number of samples assigned to class 1 with different probability thresholds

Such strategy was preferred against fixed threshold to ensure the popula-

tion of the Labeled Set with variable ranges of confidence by, at the same

time, keeping their count small. This was necessary as the model is prone

to also shown in [86, p. 5] and addressed unfreezing gradually the number of

labeled samples that the model is fed with. All samples belonging to Unla-

Figure 3.12: Counts of Samples divided by label, before augmentation

beled Set undergoes further preprocessing steps. First records are tokenized

and cleaned from numbers and stopwords. This step is necessary to build

models based on words statistics. As exposed in chapter 2 models based on

words counts are higly biased towards stopwords hence we need to remove

them from our data first. Now, text is ready to be used to train a TF-IDF

model. At this point, each sample is augmented n times, with n being an

hyper-parameter of the model. This step represents a bottleneck in terms of

speed for the whole algorithm. In this stage several models are involved and

computational time requirements increase accordingly. In our experiments

n is empirically set to 2. Few experiments are performed on this parameter,

as we will show in next pages, as computational time scales very fast for

higher values. Each text produce hence 2 different augmented samples, each

of them obtained with a different augmentation strategy sampled randomly

from a dictionary. Many augmentation techniques are based on works from

[16] and [86]. The implementations are based on [41] work. Techniques

considered are:

1. Random Augmentation These augmentation are based on random

49

guess. An action is perfored by sampling randomly a token in the text.

• Random Word Swapping: 10% of the words in the sentence (ex-

cluding stopwords) are swapped randomly. This approach is sim-

ilar to next sequence prediction unsupervised technique used in

[17] and is employed to enforce consistency in predictions on sam-

ples with small perturbations in word ordering.

Figure 3.13: Random swap example

• Random Word Deletion: 20% of the words in the sentence (ex-

cluding stopwords) are deleted randomly. This augmentation

technique takes from the unsupervised pre-training objective func-

tion proposed with the original implementation of BERT [17] in

which the model is trained to predict randomly masked tokens

given the sentence (see section 2.4.1 for further details). This

augmentation helps the model to be robust with respect to ran-

dom word missing among similar sentences.

Figure 3.14: Random deletion example

2. Augmentations based on Word Statistics The augmentations are

based on word counts. Particularly, a TF-IDF approach showed to be

effective, as also exposed in [86].

• TF-IDF Random Word Insertion: A number equal to the 20%

of the words in the sentence (excluding stopwords) is inserted in

the sentence itself. A new word is injected to random position

according to TF-IDF calculation. Top 15 score token are used for

augmentation. As proposed in [86] we set a high probability for

replacing words with low TF-IDF scores and a low probability

for replacing words with high TF-IDF scores.

Figure 3.15: TF-IDF insertion example

50

• TF-IDF Random Word Substitution: A number equal to the 20%

of the words in the sentence (excluding stopwords) is replaced

according to TF-IDF calculations as before. Top 15 score token

are used for augmentation. Probabilities are calculated as before.

Figure 3.16: TF-IDF substitution example

3. Augmentations based on Word Embeddings Calculations made

for these approaches are similar to previous ones, except that repre-

sentations for words are taken from GloVe.

• Word Insertion via GloVe embeddings: A number equal to the

20% of the words in the sentence (excluding stopwords) is inserted

according to GloVe embeddings. Such vectors are used to find top

10 similar word for augmentation.

• Word Substitution via GloVe embeddings: A number equal to

the 20% of the words in the sentence (excluding stopwords) is

replaced according to GloVe embeddings. Such vectors are used

to find top 10 similar word for augmentation.

4. Augmentations based on Contextualized Word Embeddings

• Word Insertion via distilBert contextualized embeddings: A num-

ber equal to the 50% of the words in the sentence (excluding stop-

words) is injected according to distilBert predictions.

Figure 3.17: distilBert insertion example

• Word Substitution via distilBert contextualized embeddings: A

number equal to the 50% of the words in the sentence (excluding

stopwords) is substituted according to distilBert predictions.

Figure 3.18: distilBert substitution example

51

• Sentence Insertion via GPT2 contextualized embeddings: A num-

ber equal to the 50% of the words in the sentence (excluding stop-

words) is injected according to GPT2 [60] predictions.

Figure 3.19: GPT2 sentence-level augmentation

5. Back-Translation

• According to works like [18], [16] and [86] this is one of the best

performing technique to build paraphrases of the input as it al-

lows to produce different reliable semantic-equivalent sentences

from a single sample. This is achieved using two models from

Facebook AI Research Sequence-to-Sequence [53] published for

WMT’19 [51] trained respectively on English to Russian and Rus-

sian to English tasks.

This step relates to [86]. As exposed in this work, augmentation techniques

accurately designed to enforce consistency allows to gradually propagate

confidence on prediction from labeled samples to unlabeled ones. With

respect to mentioned approach we increased the pool of augmentation tech-

niques. Some are inspired to objective task used to unsupervisedly pre-train

BERT, others are variations of approaches presented in chapter 2. While

random strategies are used to increase model capabilities to generalize over

common mistakes in natural language data (e.g. missing word, uncommon

word ordering), embeddings techniques focus on producing similar versions

of the input that share the semantics of the original sentence and hence

represent a valid sample for the model. A special mention goes to sentence

augmentation approach that employs GPT2 [60] to build sentences com-

pletely new given an input sample.1 Once the augmentation step is taken,

sentences are encoded and masks are calculated. Resulting data is then fed

to the model using a random sampling strategy.

1This can be interactively used in the tool provided at: https://talktotransformer.com/

52

3.6 Inference Model Training

Following the approach proposed by [86], we change the original loss func-

tion implemented by [84] in distilBert model. In our implementation the

model is trained with two different losses, depending on the current input

being labeled or unlabeled. Once logits are calculated from model, if a label

is available CrossEntropyLoss is evaluated, otherwise the model is forced to

minimize consistency loss, that is the Kullback-Leibler divergence (as pro-

posed by [50]), between the probability distribution predicted on the original

data in the first inference step and the current predicted probability distribu-

tion. By employing this strategy, one enforces the model to be insensitive to

the noise ε introduced by augmentations and hence smoother with respect to

changes in the input (or hidden) space. In other words, minimizing the con-

sistency loss gradually propagates label information from labeled examples

to unlabeled ones. Results exposed in the paper [86] shows that following

this training strategy on binary sentiment analysis tasks, with only 20 su-

pervised examples, BERT outperforms the previous SOTA trained with full

supervised data on IMDb. Most of the hyper-parameters are leaft as in

the original implmentaion. Specifically, batch size was incresed to 32 and

the optimizer was set to AdamW which is Adam with weight decay [37].

Eventually a linear schedule with warmup is set.

(a) Linear Schedule With Warmup (b) Constant Schedule With Warmup

(c) Linear Schedule With Warmup and

Hard Restarts

(d) Cosine Schedule With Warmup

Figure 3.20: Different Learning Rate Scheduling Strategies

3.7 Second Inference Step

In this last step we will employ the model just built to get metrics from

target dataset. The obtained model is eventually used to predict labels for

the target dataset. In this work, we will use a test set of 25.000 samples

as provided in [42] to compare our performance evenly with other models.

53

Each sample is hence mapped to a probability distribution over the classes.

The probability assigned to each class, in our framework, will be used as

a confidence metric of the model with respect to its predictions and hence

used as a quality index of the prediction itself.

54

3.8 Summary

In this Chapter we have seen how to apply many of the concepts exposed in

chapter 2 to train a model on unlabeled data and to evaluate a confidence

score for its predictions. We showed the various steps that makes up the

evaluation pipeline. From task-selection and subsequent model fine-tuning

to label generation on unseen data. We focused on how to perform thresh-

olding for Labeled Set population and how to augment Unlabeled Set to

enforce consistency in model’s predictions with several different approaches

as they represents the key aspects for the pipeline.

55

56

Chapter 4

Experimental Results

In this chapter we will expose the evaluation approach used to measure

the results of our experiments together with comparisons of performance in

different settings. We will dive deeper in the training loop analyzing how

our evaluation metrics and loss function varies, at different granularities

(both at epoch-level and step-level). A brief overview of some metrics used

to evaluate performances is presented along with reasons that lead to such

choices.

4.1 Evaluation Methodology

Figure 4.1: Sample from test batch. The first tensor

contains encoded sentences, the second tensor hold the

vector mask for each sample and the last tensor stores

the label of each sample in current batch.

In all the process ex-

posed in chapter 3 we do

not make use of any true

label to train the model

on target data. By the

way, to evaluate the per-

formances of a classi-

fication model a refer-

enced labeled dataset is

needed. The choice of

IMDb is indeed useful

because its samples are

labeled and, even if true

classes are ignored dur-

ing the whole algorithm, its original labels can be retrieved for samples

belonging to the test set. We then split 25.000 samples from the original

dataset [42] along with their labels, and use this set for evaluation purposes.

Test set will eventually be composed of 12.500 class 1 and 12.500 class 0

labeled examples. This again helps the model to avoid any bias towards

more numerous classes. Preprocessing steps are taken again for these sam-

ples hence sentences are encoded, padded and masks are computed. Logits

are then calculated with the model and probability distribution over classes

is assigned to each sample by applying a softmax head over the logits pre-

dicted. Once our predicted labels are available a set of performance metric

Figure 4.2: Distribution of class 1 probability over test samples

is evaluated against true label distribution.

4.2 Performance Metrics

To test results of our experiments, many different metrics are considered.

Accuracy metric is useful to have a measure of how many labels were as-

signed correctly to proper class. In binary classification this equals to the

Jaccard distance between outputs and true labels, i.e. the ratio between

the intersection size and the union size of the two vectors. On the other

hand, Matthew Correlation Coefficient resumes into a score the relatedness

between inferred label distribution and the original one. Eventually, meth-

ods to visualize performance like confusion matrix and receiver operating

characteristic will be presented and used to get different insights of model’s

prediction capabilities.

4.2.1 Accuracy, Precision and Recall

In classification tasks and information retrieval, precision is the fraction of

relevant instances among the retrieved instances, while recall is the fraction

of the total amount of relevant instances that were actually retrieved. Both

precision and recall are a measure of relevance. In a classification task, the

precision for a class is the number of true positives (i.e. the number of items

correctly labeled as belonging to the positive class) divided by the total

58

Figure 4.3: Precision and recall overview

number of elements labeled as belonging to the positive class (i.e. the sum

of true positives and false positives, which are items incorrectly labeled as

belonging to the class). Recall in this context is defined as the number of

true positives divided by the total number of elements that actually belong

to the positive class (i.e. the sum of true positives and false negatives, which

are items which were not labeled as belonging to the positive class but should

have been). By keeping this naming we can evaluate precision and recall as:

Precision = TP
TP+FP

Recall = TP
TP+FN

Accuracy is often referred as the closeness of a measured value to a known

value. This measure is commonly used to evaluate statistical models, as

it measures its statistical bias, the difference between the expect value of

the results and the true underlying quantitative parameter being estimated.

Within our framing we can define accuracy as the closeness of predicted

label distribution to target one. It is evaluated as follows:

Accuracy = TP+TN
TP+TN+FP+FN

Lastly we will also use F1-score, a measure that combines precision and

recall by using the harmonic mean. It is evaluated as:

F = 2 · Precision·Recall
Precision+Recall

This measure may show some drawbacks since it gives equal importance to

precision and recall. In general, different types of mis-classifications incur

different costs. In other words, the relative importance of precision and recall

is an aspect of the problem. By the way, as we have seen, our target test

data consist of 12.500 labeled samples for each class hence we do not needed

59

to address this problem directly. Nevertheless, to be in line with benchmarks

and other works in related area, we moved towards more informative metrics

so we can have a clearer image of algorithm performance.

4.2.2 Confusion Matrix

A common performance measurement for classification problems is confu-

sion matrix. In a binary classification setting it is a specific table layout

with 4 different combinations of predicted and actual values that allows vi-

sualization of the performance of an algorithm. It is useful for measuring

Recall, Precision, and Accuracy.

Figure 4.4: Confusion Matrix

• True Positive: Model predicted positive and it’s true.

• True Negative: Model predicted negative and it’s true.

• False Positive: Model predicted positive and it’s false.

• False Negative: Model predicted negative and it’s false.

Each row of the matrix represents the instances in a predicted class while

each column represents the instances in an actual class (or vice versa). The

name stems from the fact that it makes it easy to see if the system is often

mislabeling samples of a class as another.

4.2.3 ROC curve and AUC

The idea behind this metric is that a classification model is a mapping

of instances between certain classes/groups. Because the classifier result

can be an arbitrary real value (continuous probability values over [0,1]), the

classifier boundary between classes must be determined by a threshold value.

60

Figure 4.5: ROC curve

A receiver operating characteristic

curve (i.e. ROC curve) is a graphi-

cal plot that illustrates the diagnos-

tic ability of a binary classifier sys-

tem as its discrimination threshold

is varied. To correctly understand

this metric we should define further

concepts. Particularly, keeping the

naming defined just above, we can

define true positive rate as

TPR = TP
TP+FN

this is the recall defined before; and

false positive rate as:

FPR = FP
FP+TN

this is a way to measure how often our model in our particular classification

task is falsely rejecting the null hypothesis for the particular test. The false

positive rate is calculated as the ratio between the number of negative events

wrongly categorized as positive (false positives) and the total number of ac-

tual negative events (regardless of classification). The ROC curve is created

by plotting the true positive rate (TPR) against the false positive rate (FPR)

at various threshold settings. ROC analysis provides tools to select possibly

optimal models and to discard sub-optimal ones independently from (and

prior to specifying) the cost context or the class distribution. ROC analysis

is related in a direct and natural way to cost/benefit analysis. ROC space

is defined by FPR and TPR as x and y axes, respectively, which depicts

relative trade-offs between true positive (benefits) and false positive (costs).

Each prediction result or instance of a confusion matrix represents one point

in the ROC space. The best possible prediction method would yield a point

in the upper left corner or coordinate (0,1) of the ROC space, representing

100% sensitivity (no false negatives) and 100% specificity (no false posi-

tives). The (0,1) point is called a perfect classification. A random guess

would give a point along a diagonal line (no-discrimination is performed)

from the left bottom to the top right corners. The diagonal divides the

ROC space. Points above the diagonal represent good classification results

(better than random); points below the line represent bad results (worse

than random). Note that the output of a consistently bad predictor could

simply be inverted to obtain a good predictor. In the plot showed above 4

different points are highlighted each corresponding to a different classifier.

61

Figure 4.6: ROC space example

The result of method A clearly shows the best predictive power among A,

B, and C. The result of B lies on the random guess line (the diagonal line),

and hence we can expect an accuracy of 50% for such model. Among all,

C is the worst performing method. However, when C is mirrored across

the center point (0.5, 0.5), one could obtain a method C’ that is even bet-

ter than the best A. Mirroring a model in the ROC space simply means to

reverse the predictions of whatever algorithm that produced C confusion

matrix. When the C method predicts positive (p) class or negative (n), the

C’ method would predict n or p, respectively. In this manner, the C’ test

would perform the best. The closer a point (representing a model) is to the

upper left corner, the better it predicts.

The area under the curve (AUC) instead provides an aggregate measure

of performance across all possible classification thresholds. One way of in-

terpreting AUC is as the probability that the model ranks a random positive

example more highly than a random negative example. AUC ranges in value

from 0 to 1. A model whose predictions are 100% wrong has an AUC of 0.0;

one whose predictions are 100% correct has an AUC of 1.0. AUC has two de-

sirable properties: (1) it is scale-invariant. It measures how well predictions

are ranked, rather than their absolute values. (2) AUC is invariant with

respect to classification threshold. It measures the quality of the model’s

predictions irrespective of what classification threshold is chosen. However,

both these reasons come with caveats, which may limit the usefulness of

AUC in certain use cases: (1) Scale invariance is not always desirable. For

example, sometimes we actually need differently weighted probability out-

puts, and AUC won’t tell us about that. This however is not our test case

62

as the in the dataset employed samples are well balanced among classes. (2)

Invariance to classification threshold is not always desirable. In cases where

the relative importance of false negatives and false positives is crucial, it is

often relevant to only minimize one type of classification error. AUC isn’t a

useful metric for this type of optimization. Again, this is not our test case

as for our task false negatives and false positives are indifferently weighted.

4.2.4 Matthew Correlation Coefficient

Matthew Correlation Coefficient takes into account true and false positives

and negatives and is generally regarded as a balanced measure which can be

used even if the classes are of very different sizes. The MCC is in essence a

correlation coefficient between the observed and predicted binary classifica-

tions; it returns a value between -1 and +1. A coefficient of +1 represents a

perfect prediction, 0 no better than random prediction and -1 indicates total

disagreement between prediction and observation. By employing the same

naming introduced before, we can evaluate Matthew Correlation Coefficient

as:

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

As explained in works like [13] by Jurman or [12] by Chicco, the Matthews

correlation coefficient is more informative than F1 score and accuracy in

evaluating binary classification problems, because it takes into account the

balance ratios of the four confusion matrix categories (true positives, true

negatives, false positives, false negatives). Matthews correlation coefficient

is generally regarded as being one of the best way of describing the confusion

matrix of true and false positives and negatives by a single number [59].

63

4.3 Results

Here we present results of the approach explained. As all experiments are

performed on Nvidia Tesla K80 GPU offered on Google Colab cloud plat-

form. As we can see below, loss function decrease fastly in few epochs,

being both below 0.1 after 2 epochs of training. It should be noted that

each training loop was implemented to perform a supervised learning step

and an unspervised learning step in sequence. In the picture below we can

see the model trained on 10 ”global” epochs meaning that each iteration

takes both a supervised and an unsupervised step (for a total of 20 epochs

in the strict sense). These plots show the model quickly learning the param-

(a) Supervised training loss by epoch (b) Unsupervised training loss by epoch

(c) Supervised training loss by step (d) Unsupervised training loss by step

Figure 4.7: Loss functions at different granularity during 10 training epochs

eters for classification task, as we can see that both curves quickly flattens

when the number of epochs increase. Moreover, letting the algorithm learn

its parameters for an increasing number of steps, leads eventually to a de-

crease of performance as the model tends to overfit on supervised samples

(as also showed in the work [86]). We hence decided to train our model for

a total of 3 epochs as time requirements scales rapidly for higher numbers.

Such number was chosen as an equilibrium between performance and evalu-

ation time. We can see here a detail on 3 ”global” epochs of training of loss

functions both measured at each step and as an average at each epoch.

On the left we show performances of our model when the number of

augmentations n is set to 2, while on the left we can see our model slightly

64

(a) Supervised training loss by epoch (b) Unsupervised training loss by epoch

(c) Supervised training loss by step (d) Unsupervised training Loss by step

Figure 4.8: Loss functions at different granularity during training, detail at the first 3

epochs

(a) Classification report from test data

for a model trained for 3 epochs and with

n = 2

(b) Classification report from test data

for a model trained for 3 epochs and with

n = 5

benefits from further increasing n. As we can see, performance are well

balanced among both classes and obtained F1 scores are comparable with

other CNN or RNN approaches trained in a fully supervised regime. Sup-

port refers to the number of samples involved in the scoring calculations.

Both class have 12.500 instances, this avoids the model learning any bias

related to unbalanced counts. As said before, these metrics are summaries

of techniques used to represent visually classification power of our model.

By further inspecting predicted label distribution we can analyze how pre-

diction accuracy varies among classes. By evaluating the number of True

Positive, True Negative, False Positive and False Negative one can, as said,

represent such values in a tabular form. Value shown below are normalized

over rows (true values). The matrix shows that prediction error is balanced

among classes. Specifically, we can calucalate:

65

(c) Confusion matrix on test set (nor-

malized by rows) with n = 2

(d) Confusion matrix on test set (nor-

malized by rows) and with n = 5

1. TP = 9875

2. TN = 9750

3. FP = 2625

4. FN = 2750

5. TPR = 0.78

6. FPR = 0.20

7. MCC = 0.58

8. AUC = 0.87

Another useful representation technique to understand output label prob-

ability distribution is a cluster map. As we have two classes it is easy to

visualize with such tool the distribution of probabilities assigned over the

whole dataset. Probability assigned to each sample for a given class is color

coded following the scale reported in the picture. As we can see, the ma-

Figure 4.9: Clustermap of the probability distribution of class 1 over test samples.

jority of samples are markedly divided in two classes, while there is also a

small fraction of the whole data where the model is less confident. These

66

data may account for the ∼ 0.21 loss in accuracy and may probably be bet-

ter classified by enforcing consistency in predictions for a longer number of

epochs. Our classificator performs well overall, by showing slightly better

performance on negative samples when increasing the hyper-parameter n.

Additionally, we present the ROC curve of the model. As explained before,

our model appears to be near to upper left corner of the grid below, showing

good classification capabilities. We evaluated the area under such curve and

reported in the figure itself. Moreover, a dashed dotted line is plotted from

point (0,0) t0 (1,1) to compare our model to a random classifier. Finally we

Figure 4.10: AUC and ROC curve for the model trained for 5 epochs with an augmen-

tation factor of 5

conclude with a table showing the results of a comparison of distilBert model

trained with our approach on IMDb data. The results are showed in terms

of Matthew correlation coefficient (MCC) and accuracy, as the number of

epochs and the hyper-parameter n, representing the number of augmenta-

tions per sample, changes. As we can see, using our pipeline our model

learns correctly its parameters from both labeled and unlabeled samples. If

it would be possible to train such model with the given approach for a large

number of epochs, consistency would be further enforced and this would be

very beneficial to the model as directly results in an increased number of

correctly labeled samples at inference time.

67

Epochs Accuracy MCC n

1 0.78 0.56 2

2 0.786 0.571 2

3 0.786 0.572 2

4 0.787 0.574 2

5 0.788 0.576 2

6 0.788 0.576 2

7 0.789 0.577 2

5 0.789 0.579 5

10 0.79 0.581 5

Table 4.1: Performance of the pipeline are measured on IMBb test set with a support

of 12.500 samples.

(a) Accuracy score for different number

of epochs

(b) Matthew correlation coefficient score

for different number of epochs

4.4 Further Works And Developments

The pipeline of operations proposed largely relies on works like [86], [79], [17]

or [84] and plays with many concepts of recent NLP findings. Nevertheless it

stands as a former step to build a framework for textual data quality assess-

ment without the need of labels on target data. As the number of algorithms

and concepts involved in the process is considerable, the work proposed seem

to show room for many further developments. By having higher hardware

capabilities and less requirements on computational time, many experiments

with bigger model and higher number of augmentation could be performed.

Even the quality of augmentations itself could be dramatically improved.

With proper hardware settings, better adversarial samples could be built

using not only augmentation techniques exposed in previous chapters but

also language models like GPT2 [60] accurately fine-tuned to reproduce style

from target corpus. Moreover, as pointed out by several works on this area,

68

bigger models in term of size often are directly related to an increase in

terms of performances, as shown in the picture below. This can also be

Figure 4.11: Ablation over BERT model size from original paper [17]. #L = the

number of layers; #H = hidden size; #A = number of attention heads. ”LM (ppl)” is

the masked LM perplexity of held-out training data.

easily noted also giving a look to models that are populating top position in

all NLP benchmarks, as in recent months their size kept increasing. More

experiments should be performed also with different model architecture (e.g.

Albert model [32]) to assess its impact in the proposed pipeline. As the use

of BERT-like models is widespread, many open-sourced architectures are

available, each built to better extract specific features from text. This may

turn in a performance boost if combining a specific architecture to our work.

Another critical issue that should be addressed in a more specific way is the

approach used to select labeled samples after the first inference step. Even

if thresholding using percentiles solves some of the issues related to such

step, it is possible to take as labeled some samples assigned to the wrong

class. This would introduce unwanted noise into the supervised step of our

loss function. Overall, more ablation studies on the performance of each

involved step should be performed as each step may be further optimized

to reduce computational requirements. Moreover, further efforts should be

made to identify specific metrics to evaluate textual quality, for example

evaluating correlation between prediction confidence on different tasks for

each record. As already introduced at the beginning of this work, data qual-

ity in the setting of natural language data is a broad open field which is now

setting its frameworks for further developments.

69

70

Bibliography

[1] Serge Abiteboul. Querying semi-structured data. Proc. ICDT 97, 02

1970.

[2] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiword-

net 3.0: an enhanced lexical resource for sentiment analysis and opinion

mining. In Lrec, volume 10, pages 2200–2204, 2010.

[3] Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with

pseudo-ensembles, 2014.

[4] Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Mau-

rino. Methodologies for data quality assessment and improvement.

ACM computing surveys (CSUR), 41(3):1–52, 2009.

[5] Toms Bergmanis and Sharon Goldwater. Context sensitive neural

lemmatization with Lematus. In Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long Papers),

pages 1391–1400, New Orleans, Louisiana, June 2018. Association for

Computational Linguistics.

[6] Adam Bermingham and Alan F Smeaton. A study of inter-annotator

agreement for opinion retrieval. In Proceedings of the 32nd international

ACM SIGIR conference on Research and development in information

retrieval, pages 784–785, 2009.

[7] Victoria Bobicev and Marina Sokolova. Inter-annotator agreement in

sentiment analysis: Machine learning perspective. In RANLP, pages

97–102, 2017.

[8] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.

Enriching word vectors with subword information. Transactions of the

Association for Computational Linguistics, 5:135–146, 2017.

71

[9] Johan Bollen, Huina Mao, and Xiao-Jun Zeng. Twitter mood predicts

the stock market. CoRR, abs/1010.3003, 2010.

[10] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model

compression. In Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 535–541,

2006.

[11] Jeanne Sternlicht Chall and Edgar Dale. Readability revisited: The new

Dale-Chall readability formula. Brookline Books, 1995.

[12] Davide Chicco. Ten quick tips for machine learning in computational

biology. BioData mining, 10(1):35, 2017.

[13] Davide Chicco and Giuseppe Jurman. The advantages of the matthews

correlation coefficient (mcc) over f1 score and accuracy in binary clas-

sification evaluation. BMC genomics, 21(1):6, 2020.

[14] C. Cichy and S. Rass. An overview of data quality frameworks. IEEE

Access, 7:24634–24648, 2019.

[15] Kevin Clark, Minh-Thang Luong, Christopher D. Manning, and

Quoc V. Le. Semi-supervised sequence modeling with cross-view train-

ing, 2018.

[16] Claude Coulombe. Text data augmentation made simple by leveraging

NLP cloud apis. CoRR, abs/1812.04718, 2018.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: pre-training of deep bidirectional transformers for language un-

derstanding. CoRR, abs/1810.04805, 2018.

[18] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Under-

standing back-translation at scale, 2018.

[19] Hewlett Foundation. The hewlett foundation: Automated essay scor-

ing, 12.

[20] Gaël Guibon, Magalie Ochs, and Patrice Bellot. From emojis to senti-

ment analysis, 2016.

[21] Robert Gunning et al. Technique of clear writing. McGraw-Hill, 1952.

[22] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge

in a neural network, 2015.

72

[23] Jeremy Howard and Sebastian Ruder. Universal language model fine-

tuning for text classification, 2018.

[24] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov.

Bag of tricks for efficient text classification, 2016.

[25] Daniel Jurafsky and James H Martin. Speech and language processing:

An introduction to speech recognition, computational linguistics and

natural language processing. Upper Saddle River, NJ: Prentice Hall,

2008.

[26] Kian Kenyon-Dean, Eisha Ahmed, Scott Fujimoto, Jeremy Georges-

Filteau, Christopher Glasz, Barleen Kaur, Auguste Lalande, Shruti

Bhanderi, Robert Belfer, Nirmal Kanagasabai, et al. Sentiment anal-

ysis: It’s complicated! In Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long Papers), pages

1886–1895, 2018.

[27] Cornelia Kiefer. Quality indicators for text data. BTW 2019, 2019.

[28] Yoon Kim and Alexander M. Rush. Sequence-level knowledge distilla-

tion, 2016.

[29] J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S

Chissom. Derivation of new readability formulas (automated readabil-

ity index, fog count and flesch reading ease formula) for navy enlisted

personnel. Institute for Simulation and Training, University of Central

Florida, 1975.

[30] Kowsari, Jafari Meimandi, Heidarysafa, Mendu, Barnes, and Brown.

Text classification algorithms: A survey. Information, 10(4):150, Apr

2019.

[31] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised

learning, 2016.

[32] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,

Piyush Sharma, and Radu Soricut. Albert: A lite bert for self-

supervised learning of language representations, 2019.

[33] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining

of Massive Datasets. Cambridge University Press, USA, 2nd edition,

2014.

73

[34] J. Liu, Z. Wang, G. Yan, and H. Lian. Quality measurement of judg-

ment documents. In 2019 IEEE 19th International Conference on Soft-

ware Quality, Reliability and Security Companion (QRS-C), pages 296–

299, July 2019.

[35] Jiawei Liu, Yang Xu, and Yaguang Zhu. Automated essay scoring based

on two-stage learning, 2019.

[36] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi

Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-

anov. Roberta: A robustly optimized bert pretraining approach. arXiv

preprint arXiv:1907.11692, 2019.

[37] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization

in adam. CoRR, abs/1711.05101, 2017.

[38] Julie Beth Lovins. Development of a stemming algorithm. Mech. Trans-

lat. & Comp. Linguistics, 11(1-2):22–31, 1968.

[39] Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang, and Xiaoou Tang.

Face model compression by distilling knowledge from neurons. In Thir-

tieth AAAI conference on artificial intelligence, 2016.

[40] Edward Ma. The biggest data challenges that you might not even know

you have, 2016.

[41] Edward Ma. Nlp augmentation, 2019.

[42] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, An-

drew Y. Ng, and Christopher Potts. Learning word vectors for senti-

ment analysis. In Proceedings of the 49th Annual Meeting of the As-

sociation for Computational Linguistics: Human Language Technolo-

gies, pages 142–150, Portland, Oregon, USA, June 2011. Association

for Computational Linguistics.

[43] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher.

Learned in translation: Contextualized word vectors, 2017.

[44] Michael McCloskey and Neal J. Cohen. Catastrophic interference in

connectionist networks: The sequential learning problem. Psychology

of Learning and Motivation, 24:109 – 165, 1989.

[45] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

estimation of word representations in vector space, 2013.

74

[46] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey

Dean. Distributed representations of words and phrases and their com-

positionality, 2013.

[47] George A Miller. WordNet: An electronic lexical database. MIT press,

1998.

[48] Eleni Miltsakaki and Karen Kukich. Automated evaluation of coherence

in student essays. In Proceedings of LREC 2000, pages 1–8, 2000.

[49] Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Aki-

hiro Matsukawa, and Hassan Ghasemzadeh. Improved knowledge dis-

tillation via teacher assistant, 2019.

[50] T. Miyato, S. Maeda, M. Koyama, and S. Ishii. Virtual adversarial

training: A regularization method for supervised and semi-supervised

learning. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 41(8):1979–1993, Aug 2019.

[51] Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, and

Sergey Edunov. Facebook fair’s wmt19 news translation task submis-

sion. In Proc. of WMT, 2019.

[52] Huyen Nguyen and Lucio Dery. Neural networks for automated essay

grading, 2018.

[53] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross,

Nathan Ng, David Grangier, and Michael Auli. fairseq: A fast, ex-

tensible toolkit for sequence modeling. In Proceedings of NAACL-HLT

2019: Demonstrations, 2019.

[54] Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell

Power. Semi-supervised sequence tagging with bidirectional language

models, 2017.

[55] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,

Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contex-

tualized word representations, 2018.

[56] R Plutchik. The emotions: Facts, theories and a new model. new york,

ny, us, 1962.

[57] Robert Plutchik. A general psychoevolutionary theory of emotion. In

Theories of emotion, pages 3–33. Elsevier, 1980.

75

[58] Martin F Porter et al. An algorithm for suffix stripping. Program,

14(3):130–137, 1980.

[59] David Powers and Ailab. Evaluation: From precision, recall and f-

measure to roc, informedness, markedness & correlation. J. Mach.

Learn. Technol, 2:2229–3981, 01 2011.

[60] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,

and Ilya Sutskever. Language models are unsupervised multitask learn-

ers. OpenAI Blog, 1(8):9, 2019.

[61] Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and

Tapani Raiko. Semi-supervised learning with ladder networks, 2015.

[62] T.C. Redman. Data Driven: Profiting from Your Most Important Busi-

ness Asset. General management. Harvard Business Press, 2008.

[63] Thomas C Redman and A Blanton. Data quality for the information

age. Artech House, Inc., 1997.

[64] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine

Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin

deep nets, 2014.

[65] Corby Rosset. Turing-nlg: A 17-billion-parameter language model by

microsoft. Microsoft Research Blog, 2020.

[66] James A Russell. A circumplex model of affect. Journal of personality

and social psychology, 39(6):1161, 1980.

[67] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regulariza-

tion with stochastic transformations and perturbations for deep semi-

supervised learning, 2016.

[68] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.

Distilbert, a distilled version of bert: smaller, faster, cheaper and

lighter, 2019.

[69] Klaus R Scherer et al. Psychological models of emotion. The neuropsy-

chology of emotion, 137(3):137–162, 2000.

[70] Laura Sebastian-Coleman. Measuring data quality for ongoing improve-

ment: a data quality assessment framework. Newnes, 2012.

[71] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural

machine translation models with monolingual data, 2015.

76

[72] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christo-

pher D Manning, Andrew Y Ng, and Christopher Potts. Recursive

deep models for semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 conference on empirical methods in natural

language processing, pages 1631–1642, 2013.

[73] Daniel Sonntag. Assessing the quality of natural language text data. In-

formatik 2004–Informatik verbindet–Band 1, Beiträge der 34. Jahresta-

gung der Gesellschaft für Informatik eV (GI), 2004.

[74] Kaveh Taghipour and Hwee Tou Ng. A neural approach to automated

essay scoring. In Proceedings of the 2016 Conference on Empirical Meth-

ods in Natural Language Processing, pages 1882–1891, Austin, Texas,

November 2016. Association for Computational Linguistics.

[75] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and

Jimmy Lin. Distilling task-specific knowledge from bert into simple

neural networks, 2019.

[76] Antti Tarvainen and Harri Valpola. Mean teachers are better role mod-

els: Weight-averaged consistency targets improve semi-supervised deep

learning results, 2017.

[77] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the

conll-2003 shared task: Language-independent named entity recogni-

tion. In Proceedings of the Seventh Conference on Natural Language

Learning at HLT-NAACL 2003 - Volume 4, CONLL ’03, pages 142–

147, USA, 2003. Association for Computational Linguistics.

[78] Silvan S Tomkins and Imagery Affect. Consciousness, vol. 1, the positive

affects, 1962.

[79] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. CoRR, abs/1706.03762, 2017.

[80] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,

and Samuel R. Bowman. GLUE: A multi-task benchmark and analysis

platform for natural language understanding. CoRR, abs/1804.07461,

2018.

[81] Richard Y Wang and Diane M Strong. Beyond accuracy: What data

quality means to data consumers. Journal of management information

systems, 12(4):5–33, 1996.

77

78 Chapter 4. Experimental Results

[82] Markus Weimer, Iryna Gurevych, and Max Mühlhäuser. Automatically

assessing the post quality in online discussions on software. In Proceed-

ings of the 45th Annual Meeting of the Association for Computational

Linguistics Companion Volume Proceedings of the Demo and Poster

Sessions, pages 125–128, 2007.

[83] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-

coverage challenge corpus for sentence understanding through inference.

In Proceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), pages 1112–1122. Association

for Computational Linguistics, 2018.

[84] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,

Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi

Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s transformers:

State-of-the-art natural language processing. ArXiv, abs/1910.03771,

2019.

[85] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad

Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,

Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaob-

ing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,

Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei

Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol

Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s

neural machine translation system: Bridging the gap between human

and machine translation, 2016.

[86] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V.

Le. Unsupervised data augmentation for consistency training, 2019.

[87] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai

Chen, Mohammad Norouzi, and Quoc V. Le. Qanet: Combining lo-

cal convolution with global self-attention for reading comprehension,

2018.

Appendix A

On Sentiment Analysis

Figure A.1: Tracking public mood re-

sponses to presidential election and

thanksgiving from tweets posted be-

tween October 2008 to December 2008

shows. From paper [9]

Sentiment analysis is the interpretation

and classification of emotions (positive,

negative and neutral) within text data

using text analysis techniques. Senti-

ment analysis allows businesses to iden-

tify customer sentiment toward prod-

ucts, brands or services in online conver-

sations and feedback. In this Appendix,

details about what sentiment analysis

is, how it works and how it can be used

to detect emotions within text. Sen-

timent analysis models detect polarity

within a text (e.g. a positive or neg-

ative opinion). Categorizing texts by

mining emotions hidden in them is es-

sential for businesses. By automatically

analyzing customer feedback, from sur-

vey responses to social media conversa-

tions, brands are able to listen atten-

80 Appendix A. On Sentiment Analysis

tively to their customers, and tailor products and services to meet their

needs. It may go even further than customer segmentation and evaluation

of products reviews and comments. Work from [9] shows how it is possi-

ble to accurately predict stock market trends by analyzing relevant Twitter

feeds. A relevant effort has been made also in psychology research by works

like [69] who defines each class of affective states by factors like its cognitive

realization and time course.

Emotion

Relatively brief episode of response to the evaluation

of an external or internal event as being of major

significance.

(angry, sad, joyful, fearful, ashamed, proud, elated,

desperate)

Mood

Diffuse affect state, most pronounced as change in

subjective feeling, of low intensity but relatively long

duration, often without apparent cause.

(cheerful, gloomy, irritable, listless, depressed, buoy-

ant)

Interpersonal

Stance

Affective stance taken toward another person in a spe-

cific interaction, coloring the interpersonal exchange

in that situation.

(distant, cold, warm, supportive, contemptuous,

friendly)

Sentiment

Relatively enduring, affectively colored beliefs, prefer-

ences, and predispositions towards objects or persons.

(liking, loving, hating, valuing, desiring)

Personality

Traits

Emotionally laden, stable personality dispositions and

behavior tendencies, typical for a person.

(nervous, anxious, reckless, morose, hostile, jealous)

Table A.1: Scherer typology of affective states from [25]

A.1 Types of Sentiment Analysis

There exists various blends of sentiment analysis, from models that focus

on polarity (binary: positive or negative) to those that detect feelings and

emotions (angry, happy, sad, etc), or even models that identify intentions

(e.g. interested v. not interested).

Some of the most popular types of sentiment analysis are encompassed as

A.1. Types of Sentiment Analysis 81

follows:

Binary Sentiment Analysis

Is the basic sentiment classification task. The task is to classify texts in two

different categories (i.e. positive or negative) disregarding all possible sub-

categorizations that may be evaluated in such texts. In other words, once

each text is mapped to a value between 0 and 1, where a positive sentiment

is a 1 and a negative is a 0, we consider a positive polarity for each sample

assigned with a value higher than 0.5 and and negative for all the others.

An example dataset is Stanford Sentiment Treebank (SST-2).

Fine-grained Sentiment Analysis

If understanding sentiment polarity is not enough, it is possible expand

sentiment categories to include different shades:

• Strongly positive

• Weakly Positive

• Neutral

• Weakly Negative

• Strongly negative

This is usually referred to as fine-grained sentiment analysis. One can

recover fine-grained sentiment labels from two-label setting by splitting the

label range [0,1] into:

• Strongly Positive: Texts with a score from 0.8 to 1

• Weakly Positive: Texts with a score from 0.6 to 0.8

• Neutral: Texts with a score from 0.4 to 0.6

• Weakly Negative: Texts with a score from 0.2 to 0.4

• Strongly negative: Texts with a score from 0 to 0.2

An example dataset is Stanford Sentiment Treebank (SST-5).

82 Appendix A. On Sentiment Analysis

Emotion detection

Figure A.2: Wheel of Emotions proposed by

Plutchik

One of the most important affec-

tive classes is emotion, which [69]

defines as a ”relatively brief episode

of response to the evaluation of an

external or internal event as being

of major significance”. Detecting

emotion has the potential to im-

prove a number of language pro-

cessing tasks. Automatically de-

tecting emotions in reviews or cus-

tomer responses (anger, dissatisfac-

tion, trust) could help businesses

recognize specific problem areas or

ones that are going well for exam-

ple. According to [25], there are

two widely-held families of theories

of emotion. In one family, emotions

are viewed as fixed atomic units,

limited in number, and from which others basic emotions are generated

([78], [56]). Perhaps most well-known of this family of theories is the wheel

of emotion proposed in [57], consisting of 8 basic emotions in four oppos-

ing pairs: joy-sadness, anger-fear, trust-disgust, and anticipation-surprise,

together with the emotions derived from them, as shown in figure A.2. The

second class of emotion theories views emotion as a space in 2 or 3 dimen-

sions ([66]). Most models include the two dimensions valence and arousal,

and many add a third, dominance. These can be defined as:

• valence: the pleasantness of the stimulus

• arousal: the intensity of emotion provoked by the stimulus

• dominance: the degree of control exerted by the stimulus

In particular, the valence dimension, measuring how pleasant or unpleasant

a word is, is often used directly as a measure of sentiment ([25]).

Emotion detection aims at detecting emotions, like happiness, frustration,

anger, sadness, and so on. Many emotion detection systems use lexicons (i.e.

lists of words and the emotions they convey) or complex machine learning

algorithms. One of the downsides of using lexicons is that people express

emotions in different ways. Some words that typically express anger might

A.2. Why Sentiment Analysis 83

also express happiness. This is commonly known as polysemy and it is a

long-known issue when analyzing text semantics.

Aspect-based Sentiment Analysis

A useful in-depth for companies when analyzing sentiments of texts (e.g.

product reviews) may be to know which particular aspects or features are

mentioned in a positive, neutral, or negative way. The big difference between

sentiment analysis and aspect-based sentiment analysis is that the former

only detects the sentiment of an overall text, while the latter analyzes each

text to identify various aspects and determine the corresponding sentiment

for each one. In other words, instead of classifying the overall sentiment

of a text into positive or negative, this is another way of sub-categorizing

sentiments, by associating specific sentiments with different aspects of a

product or service.

Multilingual sentiment analysis

Multilingual sentiment analysis differentiates from the previous blends of

sentiment analysis for the fact it is performed on texts written in different

languages. Multilingual sentiment analysis can be difficult. It involves a lot

of preprocessing and resources to train effective language models in various

language and to set up a framework to combine them in order to obtain

reliable scores.

A.2 Why Sentiment Analysis

It’s estimated that 80% of the world’s data is unstructured [40]. Huge

amounts of text data (emails, support tickets, chats, social media conversa-

tions, surveys, articles, documents, etc), is created every day but not only

it’s hard but also time-consuming and expensive to analyze and understand

84 Appendix A. On Sentiment Analysis

such data. Sentiment analysis, however, helps businesses make sense of all

this unstructured text by automatically tagging it. Benefits of sentiment

analysis include:

• Processing Data at Scale Sentiment analysis helps businesses pro-

cess huge amounts of data in an efficient and cost-effective way. Cus-

tomer support conversations or customer reviews can be inputted to

a pipeline and undergo several steps to be correctly categorized and

subsequently sorted or further processed using other algorithms.

• Real-Time Analysis Sentiment Analysis Real-Time Analysis Sen-

timent analysis can identify critical issues in real-time (e.g. is an angry

customer about to churn?) Sentiment analysis models can help you

immediately identify these kinds of situations, so you can take action

right away. Work proposed by [9] shows how a real time analysis on

Twitter feeds can help perform accurate predictions on stock market.

• Consistent criteria Tagging text by sentiment is highly subjective,

influenced by personal experiences, thoughts, and beliefs. By using a

centralized sentiment analysis system, companies can apply the same

criteria to all of their data, helping them improve accuracy and gain

better insights.

A.3 Common Workflow

Sentiment analysis uses various Natural Language Processing (NLP) meth-

ods and algorithms, some of them exposed in chapter 2, that we will now see

applied in the context of sentiment analysis. The main types of algorithms

used are divided in:

• Rule-based systems that perform sentiment analysis based on a set

of manually crafted rules. This is an approach that leverages smart

features engineering to get the most from textual representations.

• Automatic systems that rely on machine learning techniques to learn

from data. These approaches are often based on the techniques ex-

posed in chapter 2

• Hybrid systems that combine both rule-based and automatic approaches.

An example of an hybrid system can be seen in one of the works cited

in chapter 2 for AES: [35] proposed an XGBoost model trained on both

engineered features and scores produced by other algorithm’s pipelines

(see fig. 2.1 for further details).

A.3. Common Workflow 85

Rule-based Approaches

Usually, a rule-based system uses a set of human-crafted rules to help iden-

tify subjectivity, polarity or the subject of an opinion. These rules may

include various techniques developed in computational linguistics, such as:

stemming and/or lemmatization (see subsection 2.2.1 for further details),

tokenization, part-of-speech tagging and parsing, or word grouping based

on semantics (WordNet [47]) or emotions (SentiWordNet [2]). This latter

work focuses on Opinion Mining and shows a solution to addresses several

subtasks of this particular NLP field, all of them having to do with tagging

a given text according to expressed opinion. More in detail, each textual

sample is assigned a ternary score: Obj(s), Pos(s) and Neg(s), respectively

describing how Objective, Positive, and Negative the terms are. This was

Figure A.3: SentiWordNet Visualization. Each word s is associated with three scores:

Obj(s), Pos(s) and Neg(s)

obtained performing three related tasks: (1) determining text SO-polarity,

or, in other words, deciding whether a given text has a factual nature (i.e. is

an objective description of an event or a situation) or expresses an opinion

on the exposed matter. This is performed via binary text categorization un-

der categories Subjective and Objective. (2) determining text PN-polarity,

or, in other words, deciding if a given text expresses a Positive or a Negative

opinion on its subject matter (taking as known that the text express a fact

in a subjective way). (3) determining the strength of text PN-polarity, or,

in other words, deciding the opinion expressed in a text has a strong or a

mild polarity.

86 Appendix A. On Sentiment Analysis

By employing Sentiwordnet one could easily build a basic rule-based sys-

tem by defining two lists of polarized words (e.g. negative words and and

positive words) then count the number of positive and negative words that

appear in a given text. If the number of positive word appearances is greater

than the number of negative word appearances, the system returns a pos-

itive sentiment, and vice versa. If the numbers are even, the system will

return a neutral sentiment. Rule-based systems are very naive since they

don’t take into account how words are combined in a sequence. Of course,

more advanced processing techniques can be used, and new rules added to

support new expressions and vocabulary. However, adding new rules may

affect previous results, and the whole system can get very complex. Since

rule-based systems often require fine-tuning and maintenance, they’ll also

need regular investments.

Automatic Approaches

Automatic methods rely on machine learning techniques. A sentiment anal-

ysis task is usually modeled as a classification problem, where a classifier

is fed with a text and returns a category (e.g. positive, negative, or neu-

tral). Usually, a machine learning classifier is designed to perform two steps:

Figure A.4: General Workflow

The training process (a), in which our model learns to associate a particu-

lar input (i.e. a text) to the corresponding output (tag) while minimizing

a problem-specific loss function. The feature extractor maps textual input

A.4. Sentiment Analysis Challenges 87

into a feature vector (see subsection 2.2 for more details on such techniques).

Pairs of feature vectors and tags (e.g. positive, negative, or neutral) are fed

into the machine learning algorithm to train the model. The prediction

process (b), in which the feature extractor is used to transform unseen text

inputs into feature vectors. These feature vectors are then fed into the

model, which generates predictions for such samples (i.e. tags).

Hybrid Approaches

Hybrid systems combine the desirable elements of rule-based and automatic

techniques into one system. One huge benefit of these systems is that results

are often more accurate.

A.4 Sentiment Analysis Challenges

When analyzing words semantics many different challenges may arise from

the fact that often the meaning of a sentence is sometimes more than the sim-

ple sum of its words’ meanings. This is the case, for example, of metaphors,

anaphors and in general of rhetorical structures in text.

Subjectivity and Tone

The detection of subjective and objective texts is just as important as an-

alyzing their tone. In fact, so called objective texts do not contain explicit

sentiments. It often happens indeed, that sentences with similar structure

in terms of POS tags and word ordering have different subjectivity. This

is the case of simple sentences like ’the book is nice’ and ’the book is red’.

Both have the same parse tree but only one of them is subjective. Pred-

icates (adjectives, verbs, and some nouns) should not be treated the same

with respect to how they create sentiment.

Context and Polarity

Communication via natural language, often leverage context to express com-

plex ideas. It is hence common to consider its context when trying to un-

derstand a sentence. In the same way, analyzing sentiment without context

gets pretty difficult. However, machines cannot learn about contexts if they

are not mentioned explicitly and this leads to model always increasing in

complexity. Many steps have been taken in these years to address this is-

sue and modern transformer models have shown the ability to consistently

address contextualization when building words representations.

88 Appendix A. On Sentiment Analysis

Irony, Sarcasm and other Rhetorical Structures

When it comes to irony and sarcasm, people express their negative senti-

ments using positive words, which can be difficult for machines to detect

without having a thorough understanding of the context of the situation

in which a feeling was expressed. The biggest problem is that there is no

textual cue that can help the algorithm to learn, or in any other way discern

that sentiment from the meaning conveyed by its words. This same issue

extends to many other rhetorical structures (e.g. metaphors), and indeed

represent one of the main problem when trying to build tools capable of

correctly represent semantics of text.

Emojis

There are two types of emojis according to [20]: Western emojis (e.g. :D) are

encoded in only one or two characters, whereas Eastern emojis (e.g.
_
("))/

_

) are a longer combination of characters of a vertical nature. Emojis play

an important role in the sentiment of texts, particularly in tweets analysis

as they represent a clear and intentional reference to sentiment regarding

the fact exposed. To account for these additional features in texts, in ad-

dition to word-level analysis, character-level analysis should be performed

too. Specific preprocessing might also be needed as some emoji may not

apply to the encoding used for other text. For example, you might want to

preprocess social media content and transform both Western and Eastern

emojis into tokens and whitelist them (i.e. turn them in a subset of features)

in order to help improve sentiment analysis performance.

Defining Neutral

Defining what we mean by ”neutral” is another challenge to tackle in order

to perform accurate sentiment analysis. As in all classification problems,

defining categories -and, in this case, the neutral tag- is one of the most

important parts of the problem. What you mean by neutral, positive, or

negative does matter when you train sentiment analysis models. Since clas-

sifying data requires tagging criteria to be consistent, a good definition of

the problem is a must.

A.5 How Accurate Is Sentiment Analysis?

Sentiment analysis is a complex task even for human beings. According to

works like [6], [7] or [26] disagreement is not always negligible even between

A.5. How Accurate Is Sentiment Analysis? 89

human annotators. With these premises it is easy to imagine that classifiers

trained for such task might not be as precise as other types of classifiers.

This is because machines learn from the data they are fed with (as said

above) and if labeling is not consistent among data, models may be not able

to correctly learn its parameters. On the other hand, by the way, it should

be kept in mind that these noisy data represents often a small fraction of

the huge amount of the data that modern models use to be trained.

