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Abstract
From high frequency data, it is evident that log-volatility behaves essentially
as a fractional Brownian motion. Because of this, rough volatility models
have been recently created, in order to reproduce the historical and the im-
plied volatility behaviour. In particular, we study the rough Heston model
and its market foundations. However, this model is no longer Markovian and
this feature creates some difficulties when dealing with the derivatives pric-
ing world. The rough model can be derived through a market model based
on Hawkes processes. Starting from this approach, we are able to compute
the log-price characteristic function in the rough volatility framework. We
can obtain the rough Heston characteristic function as a solution of a frac-
tional Riccati equations, but this computation is expensive and it requires
advanced numerical methods. This is the reason why we present a Markovian
approximation of the rough model, called "lifted Heston model", in order to
conciliate the simplicity of the classical Heston model and the precision of
the rough one.

Keywords : Stochastic volatility; option pricing; fractional Brownian motion;
Heston model; rough volatility; Riccati equations
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Sommario
É chiaro dai dati dei mercati ad alta frequenza che il logaritmo della volatil-
ità si comporta essenzialmente come un moto Browniano frazionario. Perciò,
per riprodurre il comportamento della volatilità storica e implicita, sono stati
creati i modelli a volatilità ruvida. In particolare, analizziamo il modello di
Heston ruvido e le sue radici nel mercato. Tuttavia, questo modello non è
più Markoviano e questa caratteristica crea dei problemi quando si devono
prezzare delle opzioni. Il "rough Heston" può essere derivato attraverso un
modello di mercato basato sui processi di Hawkes. Seguendo questo ap-
proccio, possiamo trovare la funzione caratteristica del log-price nel contesto
della volatilità ruvida. Possiamo ottenere la funzione caratteristica come
soluzione di un’equazione di Riccati frazionaria, ma questi calcoli sono dis-
pendiosi e richiedono metodi numerici avanzati. Ecco perchè presentiamo
un’approssimazione Markoviana del modello ruvido, chiamata "lifted Heston
model", così da conciliare la semplicità del modello di Heston classico con la
precisione di quello ruvido.

Parole chiave: volatilità stocastica; prezzare opzioni; moto Browniano frazionario;
volatilità ruvida; equazioni di Riccati
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Introduction

One dimensional stochastic volatility models are able to capture the price
movements on a short time scale, improving the precision of the risk deriva-
tives computation.
One of the most famous models of this type is the Heston model, defined as:

dSt = St
√
VtdWt

dVt = γ(θ − Vt)dt+ γν
√
VtdBt

ρdt = 〈dWt, dBt〉

where S is the asset price, γ, θ and ν are suitable parameters, while W and
B are two correlated Brownian motions.
This model is popular among the practitioners because it enjoys a closed
form for the characteristic function, allowing fast pricing methods based on
the Fourier trasform.
However, one main criticality arises: the Heston model fails in reproducing
the at-the-money skew of the implied volatility observed in the market.

The ATM volatility skew is the derivative of the implied volatility with re-
spect to log-strike and it is defined as

ψ(τ) :=
∣∣∣∂σBS(k, τ)

∂k

∣∣∣
k=0
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Figure 1: ATM skew of the implied volatility for the FTSE MIB index on
October 14, 2014. The real values are the blue cross, while the red curve is
the power-law fit ψ(t) = 0.39 · t−0.25

In order to fit both the implied and the historical volatility, rough volatil-
ity models have been introduced. The price to pay in order to have an
higher precision in the derivativatives computation is that these models are
no longer Markovian and the volatility process is no more a semi-martingale.
This fact makes the pricing and the calibration a difficult task.

Recently, El Euch and Rosenbaum in [9] create a rough "counterpart" of
the Heston model, exploiting more advance mathematical tools, such as frac-
tional Brownian motion and fractional integrals.

More precisely, they state this model:

dSt = St
√
VtdWt

Vt = V0 +
1

Γ(α)

∫ t

0

(t− s)α−1γ(θ − Vs) ds+
1

Γ(α)

∫ t

0

(t− s)α−1γν
√
Vs dBs

The additional parameter α belongs to (1/2, 1) and it governs the smooth-
ness of the volatility sample paths. When α = 1, we retrieve the classical
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Heston model.

The two models share the possibility to compute the log-price character-
istic function, which allows the pricing procedure through Fourier methods,
but they differ in the fact that the ordinary Riccati equation in the classical
Heston is replaced by a fractional equation.
This feature leads to consider the Adams-Bashforth-Moulton algorithm pre-
sented in [1] in order to deal with the fractional case. This is a standard
numerical method for obtaining solutions of fractional differential equations.
However, a large number of steps and computational time are required to
achieve satisfactory accuracy.

The justification of the rough model is based on the typical behaviors of
market participants at the high frequency scale. A simple microscopic model
for an asset price based on Hawkes processes can be built. In this model
some of the main features of market microstructure can be encoded: high
degree of endogenous orders, no-arbitrage property, buying/selling asymme-
try and presence of metaorders. Encoding these features in the model, in the
limit an Heston-type model can be obtained, where leverage effect and rough
volatility are generated.

Since there are no efficient methods to price derivatives with the rough Heston
model, in [6], Abi Jaber and El Euch propose a multi-factor approximation
for the rough Heston model, creating the lifted Heston model.
Here, the variance process is built as a weighted sum of n factors driven by
the same one-dimensional Brownian motion.

The new model is defined as:

dSnt = Snt
√
V n
t dWt

V n
t = gn(t) +

n∑
1=1

cni V
n,i
t

where
dV n,i

t = (−βni V
n,i
t − γV n

t )dt+ ν
√
V n
t dBt

gn(t) = V0 + θ

∫ t

0

Kn(t− s)ds
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endowed with the initial conditions

Sn0 = S0, V n,i
0 = 0

The model is Markovian with respect to the spot price and n variance factors
(V n,i)1≤i≤n.

If we consider the two extreme cases in the multi-factor model, we recover the
classical Heston if n = 1 and its rough counterpart when n goes to infinity.
The lifted model enjoys the best of the two worlds: it can reproduce the
ATM skew and it is Markovian. So, we can easily obtain the log-price char-
acteristic function solving a finite system of ordinary Riccati equations.

Finally, Table 1 shows the differences between the tree models.

Characteristics Heston Rough Heston Lifted Heston
Markovianity X 7 X
Semimartingale X 7 X

Fit short maturities skew 7 X X
Characteristic function Closed Fractional Riccati n Riccati

Pricing Fast Slow Fast

Table 1: Summary of the characteristics of the different models

The aim of this thesis is to start from the well-known Heston model and
to develop a model which is more realistic from the point of view of the im-
plied volatility.
Starting from the existing literature, we talk about the rough and the lifted
Heston model. We aim to resume in one work the three models presented
above and to construct an organic Matlab code, which allows us to compare
the models and to produce a realistic implied volatility surface.

The overall benefit of this work is to create an algorithm that is more precise
than the classical Heston one from the implied volatility point of view.
However, this new code doesn’t renounce to the feature that has made the
previous model very famous among the practitioners: the presence of a
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closed-form characteristic function which allows to use fast pricing and cali-
bration methods.

In the last part, in Appendix B, we introduce and explain our attempt to
produce a calibration algorithm. Unfortunately, we were not able to obtain
satisfactory results. We generally explain how we worked and the encoun-
tered criticalities. We describe our starting ideas and we leave our comments
as suggestion for future developments.

Our work is organized as follows:

• in chapter 1, we talk about the meaning of the volatility process rough-
ness, defining the general Rough Fractional Stochastic Volatility Model

• in chapter 2, we recall the well-known Heston model

• in chapter 3, we talk about the thesis main focus, the Rough Heston
model and how we can construct it starting from the Hawkes processes
framework

• in chapter 4, we discuss about the Fourier method for option pricing

• in chapter 5, we describe the numerical methods which allow us to price
under the rough Heston model

• in chapter 6, we construct and explain the multi-factor approximation
of the rough Heston model

The Matlab codes that generates the results described in the thesis are rele-
gated in the Appendix A.
In the Appendix B, we talk about the calibration and the future develop-
ments.
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Chapter 1

Volatility is rough

1.1 Introduction
In this chapter, we analyze the history of the volatility modeling, starting
from the original Black and Scholes work and arriving to the most recent
approach, the rough volatility model.
This model involves a sophisticated mathematical tool such as the fractional
Brownian motion. We define it and we explain its property.
At the end, we talk about the Rough Fractional Stochastic Volatility model,
which is the starting general framework where we can introduce our analysis
on rough volatility.

1.2 Volatility modeling
In derivatives world, the most adopted way to model log-price is a continuous
semi-martingale (the sum between a local martingale and a finite variation
process). Called Yt the log-price of a given asset, the dynamic takes the form

dYt = µ(t, Yt)dt+ σ(t, Yt)dWt

where µ is a drift process and Wt is a one-dimensional Brownian motion.
The term σ is the volatility process that assumes the most important role in
derivatives pricing and hedging.

The first volatility model was produced by Black and Scholes, who con-
sidered µ and σ as deterministic constants or as deterministic functions of
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time.
This model turned out to be rich of criticalities, in particular it produces
prices inconsistent with observed prices for liquid European options. More-
over, benchmark prices are characterized by fat tails and excess kurtosis in
return distribution, while the proposed model is not able to show these be-
haviours.

In order to explain deviation between predicted and real prices, Merton
(1976) tried to add jumps in prices dynamics.
After Black and Scholes, Dupire provided a local volatility model, where
σ(Yt, t) is a deterministic function of the underliyng price and of the time.
Such a model, nevertheless, produces unrealistic dynamics for Yt and this is
a problem when dealing with exotic options.

Another approach is to use the stochastic volatility model: σ is modeled
with a continuos Brownian semi-martingale. The most remarkable models
are the "Hull and White" and the "Heston".
While stochastic volatility models produce a realistic dynamics, the gener-
ated option prices are not consistent with the observed ones.

Nowadays, some models have introduced the local-stochastic volatility in
order to enjoy the best of the two worlds. These models can fit the Euro-
pean options market exactly, producing a realistic dynamics for the implied
volatility.
The volatility is modeled as the product of a deterministic component σ(St, t),
where St is the spot price and a stochastic factor vt:

dSt = µStdt+
√
vtσ(St, t)StdWt

dvt = a(vt, t)dt+ b(vt, t)dBt

ρdt = E [dWtdBt]

where W and B are two correlated Brownian motions.
The models mentioned above offers two possibilities: regular sample paths
or volatility trajectories with regularity close to the Brownian motion one.

Recent high frequency data have highlighted the problem of the smooth-
ness of the volatility.
Gatheral, Jaisson and Rosenbaun in [11] discovered that the log-volatility

13



behaves as fractional Brownian motion (fBM for short) with Hurst exponent
H of order 0.1 at any reasonable time scale (from few days to two years).
This leads them to adopt the fractional stochastic volatility (FSV) model
of Comte and Renault [5]. In particular, they were able to reproduce the
stylized fact that volatility is a long memory process choosing a fBM with
H>1

2
. Gatheral, Jaisson and Rosenbaun call their model rough fractional

stochastic volatility (RSFV) in order to underline that, in contrast to the
previous result, H<1

2
.

RSFV is a particular case of FSV but the key difference is in the choice of
H: both in [5] and in [11] authors decided the parameters to fit the volatility
skew for small maturities.

1.3 The fractional Brownian motion
Several authors have used fractional Brownian motion to model the volatility
regularity. The fBM is a generalization of the classical Brownian motion, but
in the former the increments are not independent.
The fBM is a continuous-time centered self-similar Gaussian process indi-
cated as

{
WH
t ; t ∈ R

}
on [0, T ], which starts at zero, has expectation zero

for all t ∈ [0, T ], stationary increments and covariance function

E
[
WH
t W

H
s

]
=

1

2

{
|t|2H + |s|2H − |t− s|2H

}
where H is a real number in (0, 1), called Hurst parameter. This parameter
describes the "roughness" of the motion.
For H = 1/2, we retrieve the classical Brownian motion.

There are multiple representations of fBm in terms of Brownian motion.
The most common is the Mandelbrot-Van Ness representation, where we can
build a fractional Brownian motion WH from a two sided Brownian motion:

WH
t =

1

Γ(H + 1/2)

∫ 0

−∞
((t− s)H−1/2 − (−s)H−1/2dWs+

+
1

Γ(H + 1/2)

∫ t

0

(t− s)H−1/2dWs
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The kernel (t− s)H−1/2 in the equation above plays the most important role
in the rough dynamic. In particular, it is possible to show that the process∫ t

0

(t− s)H−1/2dWs

enjoys an Holder regularity H − ε for any ε > 0, where H is obviously the
Hurst index.

The most important properties of the fractional Brownian motion are listed
here:

• For any t ∈ R, ∆ ≥ 0, q > 0, it holds that:

E
[∣∣WH

t+∆ −WH
t

∣∣q] = Kq∆
qH

where Kq is the moment of order q of the absolute value of a standard
Gaussian variable.

• Long memory property:

∞∑
k=0

Cov
[
WH

1

(
WH
k −WH

k−1

)]
= +∞ ∀H > 1/2

Indeed, Cov
[
WH

1 ,W
H
k −WH

k−1

]
is of order k2H−2 as k → +∞.

• Self-similarity:
WH
at ∼ |a|

HWH
t

This property is due to the fact that the covariance function is homoge-
neous of order 2H. Fractional Brownian motion is the only self-similar
Gaussian process.

• Stationary increments:

WH
t −WH

s ∼ WH
t−s

Motion increments on equally long time intervals are identically dis-
tributed.

15



• Dependence of increments:
Assume that s1 < t1 < s2 < t2

E
[(
WH
t1
−WH

s1

) (
WH
t2
−WH

s2

)]
< 0 for H ∈

(
0,

1

2

)
E
[(
WH
t1
−WH

s1

) (
WH
t2
−WH

s2

)]
> 0 for H ∈

(
1

2
, 1

)
Thus, for H ∈ (0, 1/2), the fBm increments are negatively correlated,
while for H ∈ (1/2, 1), the fBm is persistent.

• Regularity:
Sample-paths are almost nowhere differentiable. However, almost all
trajectories are Holder continuous of any order strictly less than H: for
almost each trajectory, for every T > 0 and for every ε > 0 there exists
a constant c such that∣∣WH

t −WH
s

∣∣ ≤ c |t− s|H−ε

for 0 < s, t < T

1.4 The Rough Fractional Stochastic Volatility
Model

Statistical tests on high frequency market data support the idea that the
that the spot volatility behaves in a way "rougher" than the one previously
supposed.
In more recent works, the financial community has started to model the
log-volatility dynamics as a fractional Brownian motion WH with Hurst pa-
rameter H < 1

2
.

The models which exploit this approach are called rough volatility models.
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One general formulation is:

dSt = µStdt+
√
ξt(t)StdWt

dξt(u) = λ(t, u, ξt)dW
H
t

ρdt = E
[
dWtdW

H
t

]
where, as we said above, WH is a fractional Brownian motion with H < 1

2
.

Differently from stochastic and local volatility models, the rough one al-
lows to fit both the implied volatility surface and the historical dynamics of
volatility.
The most remarkable upgrade of rough world is the fact that the models can
reproduce the exploding term structure of the at-the-money skew when ma-
turity goes to zero. The observed term structure of at-the-money volatility
skew

ψ(τ) :=
∣∣∣∂σBS(k, τ)

∂k

∣∣∣
k=0

(the derivative of the implied volatility with respect to log-strike) is well
approximated by a power-law function of time to expiry τ . In particular,
Fukusawa in [2] discovered that the rough volatility model generates a skew
of the form ψ(τ) ∼ τH−1/2 for small τ .
Usual conventional volatility models produce a term structure that is con-
stant for small τ and similar to a sum of decaying exponential for larger τ .

In this section, we talk about the RFSV (Rough Fractional Stochastic Volatil-
ity) defined by Gatheral, Jaisson and Rosenbaum in [11].
Log-volatility shows increments enjoying a scaling property with a constant
smoothness parameter. The increments distribution is close to be Gaussian.
In [11],the authors suggest the simple model:

log(σt+∆)− log(σt) = ν
(
WH
t+∆ −WH

t

)
(1.4.1)

where WH is a fractional Brownian motion with Hurst parameter equal to
the measured smoothness of the volatility and ν is a positive constant.

An alternative formulation is:

σt = σ exp
{
νWH

t

}
17



where σ is a positive constant.

The problem of this model is the absence of stationarity, that is a suitable
property in order to have a manageable model from the mathematical point
of view and to assure a tractable model at very large times.
So it is convenient to impose a fractional Ornstein-Uhlenbeck (fOU for short)
dynamics to the log-volatility process with a very long reversion time scale.

A stationary fOU process (Xt) is defined as the stationary solution of the
stochastic differential equation

dXt = νdWH
t − α(Xt −m)dt

where m ∈ R, ν and α are positive parameters.
The advantage of Ornstein-Uhlenbeck processes is the presence of an explicit
solution:

Xt = ν

∫ t

−∞
e−α(t−s) dWH

t +m (1.4.2)

So we have derived the Rough Fractional Stochastic Volatility (RFSV) model
for the volatility on the time interval [0,T]:

σt = exp {Xt} , t ∈ [0, T ]

where Xt satisfies the previous equation for some ν > 0, α > 0, m ∈ R and
H < 1/2. This model enjoys stationarity property.
If α� 1/T , the log-volatility behaves locally (at time scales smaller than T)
as a fBM as described by this proposition:

Proposition 1 Let WH be a fBM and Xα as in (1.4.2) for a given α > 0.
As α tends to zero,

E

[
sup
t∈[0,T ]

∣∣Xα
t −Xα

0 − νWH
t

∣∣]→ 0

So under the hypothesis α� 1/T , in RSFV model, the log-volatility process
can be considered a fBM.
Setting α = 0, we recover the non stationary model (1.4.1) that is equivalent
to:

Xt −Xs = ν(WH
t −WH

s )
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Starting from the following corollary, we can deduce that the scaling property
of the fBM is approximately reproduced by the fOU process when α is small.

Corollary 1 Let q > 0, t > 0, ∆ > 0. As α tends to zero, we have

E
[∣∣Xα

t+∆ −Xα
t

∣∣q]→ νqKq∆
qH

where Kq is the moment of order q of the absolute value of a standard Gaus-
sian variable.

The RFSV model is a particular case of FSV model of Comte and Renault
[5]. The differences are that in the rough case H < 1

2
and α� 1

T
.

Comte and Renault chooseH > 1
2
in order to obtain long memory and 1

T
� α

to obtain a decreasing structure for the volatility skew. The problem is that
for short maturities this model generates an inadequate term structure.
In contrast with this fact, opposite choices in RSFV enable to reproduce the
observed smoothness for the volatility process and the ATM skew exploding
structure.
The parameter H < 1

2
is also consistent with the "mean reversion" property:

if volatility is too high, it tends to decrease and viceversa. On the other
hand, α very small allows the log-volatility dynamics to be close to a fBM.
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Chapter 2

The Heston model

2.1 Introduction
The Heston model is a one-dimensional stochastic volatility model where the
asset price S follows the following dynamic:

dSt = St
√
VtdWt

dVt = γ(θ − Vt)dt+ γν
√
VtdBt

ρdt = 〈dWt, dBt〉

Here the parameters γ, θ, V0 and ν are positive, while W and B are two
correlated Brownian motions.

The popularity of this model is due to three main reasons:

• It can reproduce several important stylized facts of low frequency price
data, namely leverage effect, time-varying volatility and fat tails.

• It generates very reasonable shapes and dynamics for the implied volatil-
ity surface. Indeed, the “volatility of volatility” parameter ν enables us
to control the smile, the correlation parameter ρ to deal with the skew
and the initial volatility V0 fix the at-the-money volatility level. Fur-
thermore, as observed in markets and in contrast to local volatility
models, in Heston model, the volatility smile moves in the same direc-
tion as the underlying.
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• There is an explicit formula for the characteristic function of the asset
log-price. From this formula, efficient numerical methods have been
developed, allowing for instantaneous model calibration and pricing of
derivatives.

In this classical model, the volatility follows a Brownian semi-martingale,
while as said in the previous sections the historical volatility of time-series
behaves in a rougher way.

2.2 Characteristic function for Heston model
The closed formula for the characteristic function in Heston model is obtained
exploiting the Markovianity and the time-homogeneity.
Applying Ito’s formula to the function

L(t, a, Vt) = E
[
eia log(ST ) | Ft

]
, Ft = σ(Ws, Bs; s ≤ t), a ∈ R

the following Feynman-Kac partial differential equation for L can be derived,
since the process L is a martingale:

−∂tL(t, a, S, V ) = (γ(θ−V )∂v+
1

2
(γν)2V ∂2

vv+
1

2
S2V ∂2

ss+ρνγSV ∂
2
sv)L(t, a, S, V )

with boundary condition L(T, a, S, V ) = eia log(S). From this PDE, we can
check that the characteristic function of the log-price Xt = log(St/S0) satis-
fies

E
[
eiaXt

]
= exp (g(a, t) + V0h(a, t))

where h is the solution of the following Riccati equation:

∂th =
1

2
(−a2 − ia) + γ(iaρν − 1)h(a, s) +

(γν)2

2
h2(a, s), h(a, 0) = 0

and

g(a, t) = θγ

∫ t

0

h(a, s) ds

The solution of the Riccati equation leads to a closed-form formula for the
characteristic function of the log-price.
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Chapter 3

The Rough Heston Model

3.1 Introduction
Our aim is to derive a rough counterpart of the Heston model. The rough
Heston model is not Markovian and its variance process is not longer a semi-
martingale. So it seems difficult to adapt the classical Heston model to our
framework.
The approach proposed in [9] is followed: the microstructural models called
Hawkes processes are able to reproduce the stylized facts observed in the
high frequency markets and in the long run they show a rough behaviour.
Briefly, a suitable sequence of Hawkes processes can converge to rough He-
ston model and, in particular, their characteristic functions approximate in
the limit the one of the rough Heston model.
We will arrive to a characteristic function for the log-price that exhibits the
same structure of the classical Heston model. The only difference is that the
Riccati equation will have a fractional counterpart.

However, the solution of the "rough" equation is no longer explicit and we
have to find numerical scheme in order to compute it. This is the reason why
we solve the fractional Riccati equation thanks to the Adams-Bashforth-
Moulton algorithm for first-order equations presented in [1].

Moreover, the microscopic model for the price based on Hawkes process leads
to well-known stylized facts of financial data.
The microscopic interactions between agents naturally introduce the lever-
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age effect at large time scale. Following the Black’s definition, we explain the
phenomenon in this way: when the price of an asset is increasing, its volatil-
ity drops, while, when it decreases, the volatility tends to become larger.
The rough Heston model, obtained considering the usual behaviour of market
partecipants, leads to a price dynamics showing the leverage effect.

3.2 Hawkes processes
A Hawkes process (Nt)t≥0 is a self-exciting point process, whose intensity at
time t, denoted by λt, is of the form

λt = µ+
∑

0<Ji<t

φ(t− Ji) = µ+

∫
(0,t)

φ(t− s) dNs

where µ is a positive real number, φ a regression kernel and the Ji are the
points (past jumps) of the process before time t.
In recent years, the availability of ultra high-frequency data has made finance
one of the main domains of application of Hawkes processes.
They have been introduced in order to study the midquotes prices changes
and to estimate the value at risks. More recently, Bacry et al. have devel-
oped a microstuctural model for midquote prices based on the difference of
two Hawkes processes (see [4]).

Hawkes processes have become popular in price modeling because of two
features:

• this type of processes represents a natural extension of Poisson pro-
cesses.
Comparing point processes and conventional time series, Poisson pro-
cesses can be seen as the counterpart of i.i.d. random variables, while
Hawkes processes as autoregressive processes.

• the so-called "branching property" gives a practical interpretation to
Hawkes processes. Under the assumption ‖φ‖1 < 1, where ‖φ‖1 in-
dicate the L1 norm of φ, Hawkes processes can be represented as a
population process where migrants arrive according to a Poisson pro-
cess with parameter µ.
Each migrant gives birth to children according to a non-homogeneous
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Poisson process with intensity function φ. Then this holds for the chil-
dren, giving birth to their sons according to the same non-homogeneous
Poisson process.
Considering the market orders world, migrants can be seen as exoge-
nous orders whereas children are viewed as orders triggered by other
orders.

The assumption ‖φ‖1 < 1 is fundamental in order to allow us to follow the
population framework. Let us place ourselves in the classical framework
where the Hawkes process (Nt) starts at −∞. In that case, if we want to
get a stationary intensity with finite first moment, we need the condition
‖φ‖1 < 1. This condition is called stability condition in the Hawkes litera-
ture.

‖φ‖1 (called branching ratio) in a practical approach is used to measure
the degree of endogeneity of the market.
The idea is the following: ‖φ‖1 is the average number of children of an in-
dividual, (‖φ‖2

1) is the average number of grandchildren and so on. All the
descendants of a migrant are computed as the average size of its family:∑

k≥1

‖φ‖k1 =
‖φ‖1

(1− ‖φ‖1)
(3.2.1)

In the financial framework, the proportion of endogenous events is (3.2.1)
divided by 1+‖φ‖1 /(1 + ‖φ‖1) and, in conclusion, it is equal to ‖φ‖1.

Following [4] and [8], we study the behaviour at large time scales of nearly
unstable Hawkes processes (when ‖φ‖1 is close to 1).
We consider a sequence of Hawkes processes observed on [0, T ], where T goes
to infinity. In the case of a fixed kernel (not depending on T ) with norm
strictly smaller than one, a deterministic limit for a properly normalized
sequence of Hawkes processes can be obtained.
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3.3 Rough Fractional Diffusion as scaling limits
of nearly unstable Hawkes processes

We consider a sequence of point processes (NT
t )t ≥ 0 indexed by T , where T

means Tn with n ∈ N tending to infinity.
Fixed T , (NT

t ) satisfies NT
0 = 0 and the process is observed on the time

interval [0, T ]. In our framework, we consider the observation scale T going
to infinity.

The intensity process (λTt ) is defined for t ≥ 0 by

λTt = µ+
∑

0<Ji<t

φT (t− Ji) = µ+

∫
(0,t)

φT (t− s) dNT
s

where µ is a positive real number and φT a nonnegative measurable function
on R+ which satisfies ‖φ‖1 < +∞. For a given T , the process (NT

t ) is defined
on a probability space (ΩT ,FT ,PT ) equipped with the filtration (FTt )t∈[0,T ],
where FTt is a σ-algebra generated by (NT

s )s≤t. The process NT is called a
Hawkes process.

Let us now give more specific assumptions on the function φT .

Assumption 1 For t ∈ R+,

φT (t) = aTφ(t)

where (aT )T≥0 is a sequence of positive numbers converging to one such that
for all T , aT < 1 and φ is a nonnegative measurable function such that∫ +∞

0

φ(s) ds = 1 and
∫ +∞

0

sφ(s) ds = m <∞

Moreover, φ is differentiable with derivative φ′ such that ‖φ′‖∞ < +∞ and
‖φ′‖1 < +∞.

Under Assumption 1, ‖φ‖∞ is finite.
Thus, the form of the function φT depends on T so that its shape is fixed,
but its L1 norm changes with T . For a given T , this L1 norm is equal to aT
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and it is smaller than one, so the stability condition holds.
Under these hypothesis, we have almost surely no explosion,

lim
n→∞

JTn = +∞

However, we do not work in the stationary setting since our process starts at
time t = 0 and not at t = −∞.

In our framework, two parameters degenerate at infinity: T and (1− aT )−1.
The relationship between these two sequences will determine the scaling be-
havior of the sequence of Hawkes processes.
Recall that when ‖φ‖1 is fixed and smaller than one, after appropriate scal-
ing, the limit of the sequence of Hawkes processes is deterministic.
In our setting, if 1 − aT tends “slowly” to zero, we can state the following
theorem.

Theorem 1 Assume T (1 − aT ) → +∞. Then, under Assumption 1, the
sequence of Hawkes processes is asymptotically deterministic, in the sense
that the following convergence in L2 holds:

sup
v∈[0,1]

1− aT
T

∣∣NT
Tv − E

[
NT
Tv

]∣∣→ 0

On the contrary, if 1− aT tends too rapidly to zero, the situation is likely to
be quite intricate, showing instability even if T is not large enough.

The last case, the most interesting one, is the intermediate case, where 1−aT
tends to zero in such a manner that a nondeterministic scaling limit is ob-
tained, while not being in the preceding degenerate setting.

Let MT be the martingale process associated to NT , that is, for t ≥ 0,

MT
t = NT

t −
∫ t

0

λTs ds

We also set ψT the function defined on R+ by

ψT =
∞∑
k=1

(φT )∗k(t)
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where (φT )∗1 = φT and for k ≥ 2, (φT )∗k denotes the convolution product
of (φT )∗(k−1) with the function φT . Note that ψT (t) is well defined since∥∥φT∥∥

1
< 1.

In the sequel, it will be convenient to work with an other form for the inten-
sity.

Proposition 2 For all t ≥ 0, we have

λTt = µ+

∫ T

0

ψT (t− s)µ ds+

∫ t

0

ψT (t− s) dMT
s

Now recall that we observe the process (NT
t ) on [0, T ]. In order to be able

to give a proper limit theorem, where the processes live on the same time
interval, we rescale our processes so that they are defined on [0, 1]. We
consider for t ∈ [0, T ]

λTtT = µ+

∫ tT

0

ψT (Tt− s)µ ds+

∫ Tt

0

ψT (Tt− s) dMT
s

The multiplicative factor for the space scaling is (1− aT ).
Indeed, in the stationary case, the expectation of λTt is µ/(1−

∥∥φT∥∥
1
). Thus

the order of magnitude of the intensity is (1− aT )−1. This is the reason why
we define

CT
t = λTtT (1− aT )

The derivation of a suitable scaling limit for renormalized processes is based
on the asymptotic behaviour of CT

t , closely connected to ψT .
About ψT , the function defined for x ≥ 0 by

ρT (x) = T
ψT

‖ψT‖1

(Tx)

is the density of the random variable

XT =
1

T

IT∑
i=1

Xi

where the (Xi) are i.i.d. random variables with density φ and IT is a geo-
metric random variable with parameter 1 − aT . The characteristic function
of the random variable XT , called ρ̂T , can be defined as

ρ̂T =
1

i− izm/(T (1− aT ))
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Thus, the condition which allows us to obtain a nontrivial limiting law for
XT is that there exist λ > 0 such that

T (1− aT )→ λ as T → +∞ (3.3.1)

When this holds, we write d0 = m/λ. Consider the following proposition.

Proposition 3 Assume that (3.3.1) holds. Under Assumption 1, the se-
quence of random variable XT converges in law toward an exponential ran-
dom variable with parameter 1/d0.

Assume from now on that (3.3.1) holds and set uT = T (1 − aT )/λ (so that
uT tends to one). Proposition 2 is particularly important since it gives us
the asymptotic behavior of ψT in this setting:

ψT (Tx) = ρT (x)
aT
λuT

≈ λ

m
e−x(λ/m) 1

λ
=

1

m
e−x(λ/m)

Let us rewrite the process CT
t as

CT
t = (1−aT )µ+µ

∫ t

0

uTλψ
T (Ts) ds+

∫ t

0

√
λψT (T (t−s))

√
CT
s dB

T
s (3.3.2)

with

BT
t =

1√
T

√
uT

∫ tT

0

dMT
s√
λTs

By observing its quadratic variation, it can be shown that BT represents a
sequence of martingales which converges to a Brownian motion. So, heuris-
tically replacing BT by a Brownian motion B and ψT (Tx) by 1

m
e−xλ/m in

(3.3.2),

C∞t = µ(1− e−t(λ/m)) +
λ

m

∫ t

0

e−(t−s)(λ/m)
√
C∞s dBs

Applying Ito’s formula, this gives

C∞t =

∫ t

0

(µ− C∞s )
λ

m
ds+

λ

m

∫ t

0

√
C∞s dBs

which precisely corresponds to the stochastic differential equation satisfied
by a CIR process.
Before making the heuristic derivation rigorous, consider an additional as-
sumption.
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Assumption 2 There exists Kρ > 0 such that for all x ≥ 0 and T > 0,∣∣ρT (x)
∣∣ < Kρ

Theorem 2 Assume that (3.3.1) holds. Under Assumptions 1 and 2, the
sequence of renormalized Hawkes intensities (CT

t ) converges in law, for the
Skorokhod topology, toward the law of the unique strong solution of the fol-
lowing Cox–Ingersoll–Ross stochastic differential equation on [0, 1]:

Xt =

∫ t

0

(µ−Xs)
λ

m
ds+

√
λ

m

∫ t

0

√
Xs dBs

Furthermore, the sequence of renormalized Hawkes process

V T
t =

1− aT
T

NT
tT

converges in law, for the Skorokhod topology, toward the process∫ t

0

Xs ds, t ∈ [0, 1]

This theorem implies that when ‖φ‖1 is close to 1 and the observation time
T is of order 1/(1 − ‖φ‖1), a non degenerate behaviour (neither explosive,
nor deterministic) can be obtained for a rescaled Hawkes process.
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3.4 Heston model as limit of nearly unstable
Hawkes processes

In the previous section, we have studied one-dimensional nearly unstable
Hawkes processes. For financial applications, they can, for example, be used
to model the arrival of orders in the electronic markets when the number of
endogenous orders is much larger than the number of exogenous orders. This
framework seems to be very realistic in practice.

In this section, we consider the high-frequency price model which is essentially
defined as a difference of two Hawkes processes. We consider a tick-by-tick
price model based on a bi-dimensional Hawkes process Nt = (N+

t , N
−
t ), with

intensity λt = (λ+
t , λ

−
t ) defined by(

λ+
t

λ−t

)
=

(
µ+
t

µ−t

)
+

∫ t

0

(
φ1(t− s) φ3(t− s)
φ2(t− s) φ4(t− s)

) (
dN+

s

dN−s

)
where µ+ and µ− are positive constants and

φ =

(
φ1 φ3

φ2 φ4

)
: R+ →M2(R∗+)

is a kernel matrix whose components φi are positive and locally integrable.
Our model for the ultra high frequency transaction price Pt is simply given
by

Pt = N+
t −N−t

Pt is the price of an asset whose bid-ask spread is almost always equal to one
tick and moves by one tick jumps. The tick is defined as the minumum price
variation for a financial instrument.

Thus N+
t is the number of upward jumps of one tick of the asset in the

time interval [0, t] and N−t is the number of downward jumps of one tick of
the asset in the time interval [0, t].
The instantaneous probability to get an upward (downwards) jump depends
on the arrival times of the past upward and downward jumps.
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The tick-by-tick model allows us to encode in the model the following
stylized facts:

• Markets are highly endogenous (the most of the orders are sent only in
order to react to other orders).

• In high frequency markets, there are some mechanisms in order to avoid
statistical arbitrage.

• There is an asymmetry on the bid-ask side of order book. For instance,
if we consider a market maker with a positive inventory, selling and
buying are not the same thing. He prefers to raise the prices following a
buy order rather than lower them with the same size sell order. Indeed,
its inventory becomes smaller after a buy order, which is a good thing
for him, whereas it increases after a sell order. This creates a liquidity
asymmetry on the bid and ask sides of the order book.

• The presence of large orders which are split in time by trading algo-
rithms. They are called metaorders.

The first property corresponds to the nearly unstable Hawkes processes frame-
work, while the second and the third impose some conditions on the kernel
matrix. Starting from now, a model which encodes all the features presented
above is developed.

Let us now interpret the intensity process λ+
t (λ−t is similar). At time t,

the probability to get a new one-tick upward jump between t and t + dt is
given by λ+

t dt. This probability can be decomposed into three terms:

• µ+dt, which is the Poissonian part of the intensity and corresponds
to the probability that the price goes up because of some exogenous
reasons

•
(∫ t

0
φ1(t− s) dN+

s

)
dt, which is the probability of upwards jump in-

duced by past upward jumps

•
(∫ t

0
φ3(t− s) dN−s

)
dt, which is the probability of downwards jump in-

duced by past upward jumps
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Recalling the markets stylized facts described above, we can encode them
from the mathematical point of view in term of Hawkes process parameters.
The stylized facts translation in term of parameters can be explained as
follows:

• Markets are highly endogenous: as said above, most orders have no
real economic motivation and they are sent by algorithms as reaction
to other orders. This means that the stability condition for Hawkes
processes

S
(∫ +∞

0

aTφ(s) ds

)
< 1

where S denotes the spectral radius operator, should almost be satu-
rated and that the intensity of exogenous orders, namely µT , should be
small. In term of model parameters, suitable constraints are therefore

aT → 1, S
(∫ +∞

0

φ(s) ds

)
= 1, µT → 0

• Since it is difficult to make money with high frequency strategies on
highly liquid electronic markets, we can state that a “no statistical
arbitrage” mechanism is in force. We translate this assuming that, in
the long interval, there are on average as many upward than downward
jumps. This corresponds to the assumptions

φ1 + φ3 = φ2 + φ4

and
µ+ = µ−

• Buying is not the same action as selling (consider the market maker
example). This can be modeled in the Hawkes framework assuming
that

φ3 = βφ2

for some β > 1.

Summarizing, we assume the following structure for the intensity process:(
λ+
t

λ−t

)
= µ

(
1
1

)
+

∫ t

0

φ(t− s) ·
(
dN+

s

dN−s

)
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where
φ =

(
φ1 βφ2

φ2 φ1 + (β − 1)φ2

)
with µ > 0 and β ≥ 1.

Following the intuition in [10], the market endogeneity degree is defined as
the spectral radius

S
(∫ +∞

0

φ(s) ds

)
= ‖φ1‖1 + β ‖φ2‖2

This spectral radius must be close to unity, but smaller than one.

To respect this assumption, an asymptotic framework can be introduced:
in particular, we work in a sequence of probability spaces (ΩT ,FT ,PT ), in-
dexed by T > 0, on which NT = (NT,+, NT,−) is a bi-dimensional Hawkes
process defined on [0,T] and with intensity

λTt =

(
λT,+t

λT,−t

)
= µ

(
1
1

)
+

∫ t

0

φ(t− s) ·
(
dN+

s

dN−s

)
Fixed T, the probability space is equipped with the filtration (FTt )t≥0, where
FTt is the σ-algebra generated by (NT

s )s≤t.
In order to respect all the constraints above, consider this assumption on λTt :

Assumption 3 We have µT > 0 and

φT = aTφ , φ =

(
φ1 βφ2

φ2 φ1 + (β − 1)φ2

)
where β ≥ 1, φ1 and φ2 are two positive measurable functions such that

S
(∫ +∞

0

φ(s) ds

)
= ‖φ1‖1 + β ‖φ2‖2 = 1

and aT is an increasing sequence of positive numbers converging to one.
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Now, we give the convergence result for the microscopic price P T towards
a Heston model. We need two more assumptions:

Assumption 4 There exist positive parameters λ, µ, and m such that

T (1− aT )→T→∞ λ, µT = µ

and

S
(∫ +∞

0

xφ(x) dx

)
= m <∞

Assume that the kernel L1 norm aT goes to unity in such a way that T (1−aT )
is of order one. This is the only asymptotic framework enabling us to recover
a non-degenerate limit. Now let

ψT =
∑
k≥1

(φT )∗k

where (φT )∗1 = φT and for k > 1, (φT )∗k =
∫ t

0
φT (s)(φT )∗(k−1)(t− s) ds.

Assumption 5 The function ψT is uniformly bounded and φ is differentiable
such that each component φij satisfies

∥∥φ′ij∥∥∞ <∞ and
∥∥φ′ij∥∥1

<∞.

We now state the convergence result, recalling the fact that β > 1 in order
to ensure the liquidity asymmetry which origins of leverage at low frequency.

Theorem 3 Under Assumptions 3, 4 and 5, as T tends to infinity, the
rescaled microscopic price

1

T
P T
tT =

NT,+
tT −N

T,−
tT

T

converges in law for the Skorokhod topology to the following Heston model:

Pt =
1

1− (‖φ1‖)1 − (‖φ2‖)1

√
2

1 + β

∫ t

0

√
Xs dWs

with

dXt =
λ

m

(
(β + 1)µ

λ
−Xt

)
dt+

1

m

√
1 + β2

1 + β

√
XtdBt, X0 = 0

where (W,B) is a correlated bi-dimensional Brownian motion with

d 〈W,B〉t =
1− β√

2(1 + β2)
dt
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When β > 1, the asymmetry in the liquidity generates a negative correlation
between low frequency price returns and volatility increments and this is
what we call leverage effect.

3.5 Rough Heston model as limit of nearly un-
stable heavy tailed Hawkes processes

The presence of metaorders on the market is not encoded in the model seen
above. This can be translated in the Hawkes framework by adding the con-
dition that the kernel matrix exhibits heavy tails, as observed in practice.
Consequently, we need to replace Assumption 4 in order to get a slowly de-
caying behavior for the kernel matrix. This implies a modification in the
asymptotic setting in order to retrieve a non-degenerate scaling limit.
More precisely, Assumption 4 can be substituted with the following one:

Assumption 6 There exist α ∈ (1/2, 1) and C > 0 such that

αxα
∫ ∞
x

φ1(s) + βφ2(s) ds→x→∞ C

Moreover, for some λ∗ > 0 and µ > 0,

Tα(1− aT )→T→∞ λ∗ > 0, T 1−αµT →T→∞ µ

Note that in practice, estimated values for α are actually close to 1/2.
We have the following result for the long term limit of our microscopic model:

Theorem 4 Under Assumptions 3 and 6, as T tends to infinity, the rescaled
microscopic price √

1− aT
µTα

P T
tT , t ∈ [0, 1]

converges in the sense of finite dimensional laws to the following rough Heston
model:

Pt =
1

1− (‖φ1‖)1 − (‖φ2‖)1

√
2

1 + β

∫ t

0

√
Ys dWs

with Y the unique solution of

Yt =
1

Γ(α)

∫ t

0

(t− s)α−1λ((1 + β)− Ys) ds+
1

Γ(α)

∫ t

0

(t− s)α−1λν
√
Ys dBs
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where (W,B) is a correlated bi-dimensional Brownian motion with correlation

ρ =
1− β√

2(1 + β2)

and

ν =

√
2(1 + β2)

λ∗µ(1 + β)2
, λ =

αλ∗

CΓ(1− α)

Furthermore, the process Yt has Holder regularity α− 1/2− ε for any ε > 0.

Comparing this statement with the Theorem 3, we see that the only remark-
able difference is the presence of the kernel (t − s)α−1 in the two integrals.
This is the fractional kernel responsible for the rough behavior of the volatil-
ity, where obviously α− 1/2 is the Hurst index.

Inspired by this result, our idea is to study the characteristic function of
some kind of microscopic price processes in order to deduce the proper one
of our rough Heston macroscopic price.
However, the developments presented above cannot be directly applied, since
Y0 = 0.
This is not useful in practice, since we are interested in a non-zero initial
volatility model. Thus we need to modify the Hawkes processes sequence to
obtain a non-degenerate initial volatility in the limit.
This feature can be achieved replacing µT by an inhomogeneous Poisson in-
tensity µ̂T (t).

We recall the asymptotic framework of the previous section: consider se-
quence of probability spaces (ΩT ,FT ,PT ) on which NT = (NT,+, NT,−) is a
bi-dimensional Hawkes process defined on [0,T] and with intensity λTt defined
as (3.4.1). Since our goal is to design a sequence of processes leading in the
limit to a rough Heston dynamic, we can consider specific assumptions on
the matrix φT .
As described in [9], we use the heavy-tailed Mittag-Leffler function in order
to define φT .

Assumption 7 There exist β ≥ 0, 1/2 < α < 1 and λ > 0 such that

aT = 1− λT−α , φT = φTχ
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where
χ =

1

β + 1

(
1 β
1 β

)
, φT = aTφ , φ = fα,1

with fα,1 the Mittag-Leffer density function.

This function is defined for (α, γ) ∈ (0, 1) x R+ as

fα,γ(t) = γtα−1Eα,α(−γtα), t > 0

where, given (α, β) ∈ (R∗+)2, Eα,β is the Mittag-Leffler function defined for
z ∈ C as

Eα,β(z) =
∑
n≥0

zn

Γ(αn+ β)

We recall we are working in the nearly unstable heavy tail case since∫ ∞
0

φ(s) ds = 1

and
αxα

∫ ∞
x

φ(t) dt→x→∞
α

Γ(1− α)

According to [9], we can state

Assumption 8 The baseline intensity µ̂T is given by

µ̂T = µT + ξµT

(
1

1− aT

(
1−

∫ t

0

φT (s) ds

)
−
∫ t

0

φT (s) ds

)
with ξ > 0 and µ = µTα−1 for some µ > 0.

We now state the behavior in the limit of our specific sequence of bi-dimensional
nearly unstable Hawkes processes with heavy tails. For t ∈ [0, 1], we define

XT
t =

1− aT
Tαµ

NT
tT , ΛT

t =
1− aT
Tαµ

∫ tT

0

λTs ds , ZT
t =

√
Tαµ

1− aT
(XT

t − ΛT
t )
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We obtain the following result:

Theorem 5 As T →∞, the process (ΛT
t , X

T
t , Z

T
t )t∈[0,1], under Assumptions

7 and 8, converges in law for the Skorokhod topology to Λ, X, Z where

Λt = Xt =

∫ t

0

Ys ds

(
1
1

)
, Zt =

∫ t

0

√
Ys

(
dB1

s

dB2
s

)
and Y is the unique solution of the rough stochastic differential equation

Yt = ξ+
1

Γ(α)

∫ t

0

(t−s)α−1λ(1−Vs) ds+λ

√
1 + β2

λµ(1 + β2)

1

Γ(α)

∫ t

0

(t−s)α−1
√
Ys dBs

where
B =

B1 + βB2√
1 + β2

and (B1, B2) is a bi-dimensional Brownian motion. Furthermore, for any
ε > 0, Y has Holder regularity α− 1/2− ε.
Indeed, thanks to Theorem 5, we are now able to build the desired micro-
scopic processes. For θ > 0, let us define

P T
t =

√
θ

2

√
1− aT
Tαµ

(NT,+
tT −N

T,−
tT )−θ

2

1− aT
Tαµ

NT,+
tT =

√
θ

2
(ZT,+−ZT,−)−θ

2
XT,+

(3.5.1)
We have the following corollary of Theorem 5.

Corollary 2 As T →∞, under Assumptions 7 and 8, the sequence of pro-
cesses (P T

t )t∈[0,1] converges in law for the Skorokhod topology to

Pt =

∫ t

0

√
Vs dWs −

1

2

∫ t

0

Vs ds

where V is the unique solution of the rough stochastic differential equation

Vt = θξ+
1

Γ(α)

∫ t

0

(t−s)α−1λ(θ−Vs) ds+λ

√
θ(1 + β2)

λµ(1 + β2)

1

Γ(α)

∫ t

0

(t−s)α−1
√
Vs dBs

with (W,B) a correlated bi-dimensional Brownian motion which satisfies

d 〈W,B〉t =
1− β√

2(1 + β2)
dt

So we have found a sequence of microscopic process as defined in (3.5.1)
which converges to the rough Heston process.
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3.6 Characteristic function of Rough Heston
model

We set

V0 = ξθ , ρ =
1− β√

2(1 + β2)
, ν =

√
θ(1 + β2)

λµ(1 + β2)
, λ = γ

where λ and θ are the same as those in the dynamic of P T . Remark that
this implies that ρ ∈ (−1/

√
2, 1/
√

2]. We also write Pt = log(St/S0).

We consider the rough Heston model:

dSt = St
√
VtdWt

Vt = V0 +
1

Γ(α)

∫ t

0

(t− s)α−1γ(θ − Vs) ds+
1

Γ(α)

∫ t

0

(t− s)α−1γν
√
Vs dBs

The parameters γ, θ, V0 and ν are positive and play the same role as in the
Heston model. W and B are two Brownian motions with correlation ρ.

The additional parameter α belongs to (1/2, 1) and it governs the smoothness
of the volatility sample paths. When α = 1, we retrieve the classical Heston
model. Therefore it is natural to view it as a rough version of Heston model
and to call it rough Heston model. In the case α < 1, the rough Heston model
is not Markovian and the volatility process is no longer a semi-martingale.

Our main result is that, quite surprisingly, the characteristic function of
the log-price in rough Heston models exhibits the same structure as the
one obtained in the classical Heston model. The difference is that the Ric-
cati equation is replaced by a fractional Riccati equation, where a fractional
derivative appears instead of a classical derivative. More precisely, we obtain

Theorem 6 Consider the rough Heston model with a correlation between the
two Brownian motions ρ satisfying ρ ∈ (−1/

√
2, 1/
√

2]. For all t ≥ 0, we
have

L(a, t) = exp (g1(a, t) + V0g2(a, t))

where

g1(a, t) = θγ

∫ t

0

h(a, s) ds , g2(a, t) = I1−αh(a, t)
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and h(a, ·) is solution of the following fractional Riccati equation:

Dαh(a, t) =
1

2
(−a2−ia)+γ(iaρν−1)h(a, s)+

(γν)2

2
h2(a, s) , I1−αh(a, 0) = 0

with Dα and I1−α the fractional derivative and integral operators.

Remark that when α = 1, this result coincides with the classical Heston re-
sult. However, note that for α < 1, the solutions of such Riccati equations
are no longer explicit.

We define the fractional integral of order r ∈ (0, 1] of a function f as

Irf(t) =
1

Γ(r)

∫ t

0

(t− s)r−1f(s) ds

and the fractional derivative of order r ∈ [0, 1) as

Drf(t) =
1

Γ(1− r)
d

dt

∫ t

0

(t− s)−rf(s) ds

whenever they exist.

Thus we have been able to obtain a semi-closed formula for the characteristic
function in rough Heston models.
The difference between the classical case and the rough one is essentially the
fact that, in the Riccati equation, the classical derivative is replaced by a
fractional derivative. The drawback is that such fractional Riccati equation
does not have explicit solutions.
However, they can be solved numerically, as we will see in the following
chapters.
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Chapter 4

Fourier method for option pricing

4.1 Introduction
In the first years of this century, the Fourier transform techniques have played
an important role in the derivative pricing world.
Fourier inversion methods allow us to price different types of derivatives
contracts in the case we know analitically or numerically the characteristic
function of the underlying stochastic price process.
This is the reason why we use these techniques when dealing with Heston
model.
In this section, we will explain both the theoretical framework and the prac-
tical approach of the Fourier transform in the financial world (see [7]).

In particular, in our codes, all the computation are explicit (see Appendix
A) and we don’t use the Fast Fourier transform.
All the formulas listed below produce reasonable result but, when we imple-
ment the code, we decide to follow the Lewis’ one. This is a widely adopted
formula because of its simplicity.
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4.2 Fourier transform and Inversion Theorem
Directly modelling the option payoff with an analytical stochastic process is
not an easy task.
Usually the option values are computed by mapping the characteristic func-
tion of the density of these processes to the payoff in the Fourier space. This
idea gives rise to the inversion methods.

These procedures allow us to take an integral of the payoff function over
the probability distribution obtained by inverting the corresponding Fourier
transform. Calculation in Fourier space are usually less complex than the
ones in spatial domains. The solution of the problem in the Image space is
described through an Image function and, finally, to obtain the solution in
the original space, we need to invert the Fourier function with the inversion
method.
Transform tools become very effective when we deal with complex models
which are more simply specified through a characteristic function rather than
a probability distribution.

The inversion method was first proposed by Stein and Stein (1991) in or-
der to find the underlying distribution in stochastic volatility model. Then
Heston in 1993 found an analytical formula for European option valuation
where the volatility of the underlying was a function of time.
Starting from these two works, Bankshi and Madan (2000) developed a gen-
eral pricing formula using the characteristic function.
Carr and Madan in 1999 introduced a numerical method based on the fast
Fourier Transform, mapping the Fourier transform directly to call option
prices via the price process characteristic function.
Following them, Lewis and others developed pricing algorithm based on
Fourier transformed payoff function. We will list them in the next sections.

The power of Fourier transform methods is linked with the fact that it is
always possible to obtain the characteristic function of a random variable,
while we cannot state the same about the analytical expression.
If we know (analytically o numerically) the characteristic function, we can
compute the distribution function via Inversion theorem. There is a bijective
relation between characteristic function and distribution function and this is
the message state by the theorem mentioned above. The link between the
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two faces of the medal is an inverse Fourier transform.

Following [7], we state two formulas based on the Gil-Peleaz inversion in-
tegral, which shows the reciprocal link between the characteristic function
φX(u) and the probability density function fX(x) of a real valued random
variable X:

φX(u) = E[eiuX ] =

∫ ∞
−∞

eiuxfX(x)dx

fX(x) = F−1[φX(u)] =
1

2π

∫ ∞
−∞

e−iuxφX(u)du

where F[·] denotes the Fourier transform.

4.3 Pricing Formulas using Characteristic func-
tion

In literature, there are two classes of invertion methods.
The first approach provides a Black-Scholes like formula for option prices in-
verting the cumulatuve distribution function FX(x) = P(X ≤ x) =

∫ x
−∞ fX(x)dx.

The most remarkable result based on this idea is obtained by Bakshi and
Madan.
The second class is composed by the methods which invert the probability
density function. Carr and Madan related the characteristic function to the
Fourier transform of an option. Also Lewis exploited the same idea, but the
domain of integration is different between the two models. This happens in
order to ensure the trasformation existence.
Both the approaches are applicable to a wide range of European options.

Consider the problem of valuing a European call of maturity T , written on
the spot price at maturity ST of some underlying asset. The characteristic
function of xT = log(St) is defined by

φ(u; t, T, x, v) = E [exp(iuxT ) | xt = x, Vt = v]

Assume that the characteristic function is known analytically.
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4.3.1 The Black–Scholes Style Formula - Bakshi and
Madan (2000)

Assuming no dividends and constant interest rates r, the initial option value
can be determined as

C(S0, K, T ) = S0Π1 −Ke−rTΠ2

where

Π1 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)φT (u− i)

iuφT (−i)

)
du

Π2 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)φT (u)

iu

)
du

Moreover, the two integrals Π1 and Π2 can be combined into one integral.
By rearranging the involved equations the Black and Scholes style formula
for a call option reduces to

C(S0, K, T ) =
1

2
(St − e−rTK)+

+
1

π

∫ ∞
0

[
S0Re

(
eiu log(K)φT (u− i)

iu

)
+

− e−rTKRe
(
eiu log(K)φT (u)

iu

) ]
du

4.3.2 Attari’s approach (2004)

Attari was able to obtain a formula involving a single one dimensional inter-
gral.
Starting from a Black-Scholes style solution,

C(S0, K, T ) = S0Π1 −Ke−rTΠ2

where

Π1 = 1 +
elogK

2π

∫ ∞
−∞

e−iu log(K)φT (u)

i(u+ i)
du

Π2 =
1

2
+

1

2π

∫ ∞
−∞

e−iu log(K)φT (u)

iu
du
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the call value can be obtained

C(S0, K, T ) = S0

(
1 +

elogK

2π

∫ ∞
−∞

e−iu log(K)φT (u)

i(u+ i)
du

)
+

−e−rTK
(

1

2
+

1

2π

∫ ∞
−∞

e−iu log(K)φT (u)

iu
du

)
Rearranging the terms and exploiting Euler identity and symmetry for real
valued function,

C(S0, K, T ) =
1

2
(St − e−rTK)+

+ e−rTK
1

π

∫ ∞
0

[(Re[φ(u)] +
Im[φ(u)]

u

)
cos(u log(K))

1 + u2
+

+

(
Im[φ(u)]− Re[φ(u)]

u

)
sin(u log(K))

1 + u2

]
du

which is a single one dimensional integration formula. The quadratic term
at denominator ensures a faster convergence.

4.3.3 Bates’ approach (2006)

As the previous result, this formulation requires only one integration and the
integrand converge faster than the Black-Scholes type solution, due to the
quadratic term in the denominator.

C(S0, T,K) = S0 − e−rTK

(
1

2
+

1

2π

∫ ∞
−∞

e
−iu log( K

S0
)
φT (u)

iu(1− iu)
du

)

= S0 − e−rTK

(
1

2
+

1

π

∫ ∞
0

Re

(
e
−iu log( K

S0
)
φT (u)

iu(1− iu)

)
du

)

where S0 is an integration constant (value of a zero-strike call).
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4.3.4 Carr and Madan approach (1999)

Carr and Madan developed a different approach based on the fast Fourier
transform (FFT). Unfortunately, the FFT cannot be applied to evaluate the
previous integrals, since the integrands are singular at the evaluation point
u = 0.
The new idea consists in calculating the Fourier transform of a modified call
option price with respect to the logarithmic strike price k. The advantage of
the FFT is explained by the name itself: if allows to price an high number
of options within a single Fourier inversion.
Defined

CT (k) = e−rTEQ[(ST −K)+]

where Q is the martingale measure, C(k) is not L1 and a Fourier transform
does not exist. Nevertheless, introducing an exponential damping factor eαk
with α > 0 allows us to define

cT (k) = eαkCT (k)

where the modified call price cT (k) is an integrable function, since∫ ∞
−∞

∣∣eαkCT (k)
∣∣ dk <∞

The Fourier transform of c(k) is given by

ψ(u) =

∫ ∞
−∞

eiukc(k) dk =
e−rTφT (u− (α + 1)i)

α2 + α− u2 + i(2α + 1)u

where ψ(u) is expressed in terms of the characteristic function φT . A com-
plete proof of this last formula is present in [7].
Given ψ(u), an inverse Fourier transform multiplied by the reciprocal of the
exponential factor yields to the undamped call prices

CT (k) =
e−αk

2π

∫ ∞
−∞

e−iukψ(u) du

=
e−αk

π

∫ ∞
0

Re
(
e−iukψ(u)

)
du

(4.3.1)

We can use this method when α allows a good computational behaviour. A
sufficient condition for the integrability of cT (k) is given by ψ(0) being finite.
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The Carr and Madan approach is different from other models because not
only the density function, but the whole option price is Fourier transformed.
The most relevant difference stays in the formula (4.3.1) which practically is
a generalized Fourier transform:

1

2π

∫ izi+∞

izi−∞
e−izkψ(z)dzr =

1

π

∫ izi

izi+∞
Re[e−izkψ(z)]dzr

=
ezik

π

∫ ∞
0

Re[e−zrkψ(zr + izi)]dzr

This feature removes the pole in the origin and shifts it in the imaginary
axis. This leads to a less sensitive numerical evaluation.

4.3.5 Lewis’ approach (2001)

Lewis followed the Carr-Madan route.
The core of his work is the idea to express the option value as convolution
of generalized Fourier transforms. The transform representations of option
prices can be seen as contour integrals in the complex plane. By shifting the
contours, Lewis generated a new pricing formula.

Each derivative has its own payoff function w(ST ). Carr and Madan trans-
formed the whole option price including the payoff function, while Lewis
represented also the payoff functions in Fourier space

ŵ(z) =

∫ ∞
−∞

eizxw(x) dx

The problem is that (ex−K)+ is not a L1 function and the Fourier transform
does not exist.

Like in Carr-Madan approach, Lewis introduced an exponential damping
factor. For the modified payoff, we obtain the regular Fourier transform,
since (ex − K)+e−zix → 0 as x → ∞ for some appropriate zi. This corre-
sponds to a Fourier transform along a line in the complex plane where the
path of integration is parallel to the real axis. The calculation (see [7]) for
the call option payoff yields to

ŵ(z) = − Kiz+1

z2 − iz
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with z being a complex valued number. The upper limit x = ∞ only ex-
ists under the condition Im[z] > 1 which implies that the Fourier transform
well behaves only within a certain strip of regularity Sw in the complex plain.

Given the generalized payoff transform, the corresponding inverse transfor-
mation is

w(x) =
1

2π

∫ izi+∞

izi−∞
e−izxŵ(z) dz

Assuming that we have a well defined characteristic function φT (u) for an
arbitrary price dynamics and a transformed payoff ŵ(z) with z ∈ Sw, we can
obtain the option value

V (S0, K, T ) = e−rTEQ [w(x)]

=
e−rT

2π
EQ
[∫ izi+∞

izi−∞
e−izxŵ(z) dz

]
=
e−rT

2π

∫ izi+∞

izi−∞
EQ [e−izx] ŵ(z) dz

=
e−rT

2π

∫ izi+∞

izi−∞
φT (−z)ŵ(z) dz

Applying the payoff transform of a call option, the call price is given by

C(S0, K, T ) = S0 −
Ke−rT

2π

∫ izi−∞

izi+∞
e−izkφT (−z)

dz

z2 − iz

with k = log S0

K
+ rT in the phase factor e−izk and zi ∈ Sv.

By moving the integration contour to zi ∈ (0, 1) and choosing zi = 1
2
, we

obtain a simmetric path of integration. Finally, we can change the variable
z = u+ i

2
and obtain these alternative formulas:

C(S0, K, T ) = S0 −
√
SKe

−rT
2

π

∫ ∞
0

Re

[
e−iukφT (−u− i

2
)

]
du

u2 + 1
4

= S0 −
√
SKe

−rT
2

π

∫ ∞
0

Re

[
eiukφT (u− i

2
)

]
du

u2 + 1
4

In particular, in our implementation, we will evaluate the price with this last
formula (see Appendix A).
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Chapter 5

Numerical analysis of convolution
equations

5.1 Introduction
In rough volatility models, due to the non-Markovian nature of the fractional
driver, partial differential equations can no longer be used and simulation is
the only available route.
Despite the availability of efficient Monte Carlo schemes, pricing and model
calibration in rough volatility models remain time-consuming.
We focus on the description of the short-time behavior of the at-the-money
implied volatility skew of the stochastic volatility process. Fukusawa in [2]
established that the blow-up in this slope (observed in real market data) can
be described by a volatility process σ such that ATM volatility skew has
the form ψ(τ) ∼ τH−1/2, at least for small τ . This property is satisfied by
stochastic volatility models based on the fractional Brownian motion with
Hurst parameter H < 1

2
.
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5.2 The Predictor-Corrector approach
In our computation, we follow the general pseudo code of the classical one
step Adams-Bashforth-Moulton algorithm for first-order equations presented
in [1].
In this section, we will explain the general setting where the results provided
in [1] holds true.

A fractional differential equation can be defined as{
Dαy(x) = f(x, y(x))

y(k)(0) = y
(k)
0 , k = 0, 1...m− 1

(5.2.1)

where m := dαe is just the value α rounded up to the nearest integer.
This initial value problem is equivalent to the Volterra integral equation

y(x) =

dαe−1∑
k=0

y
(k)
0

xk

k!
+

1

Γ(α)

∫ x

0

(x− t)α−1f(t, y)dt (5.2.2)

in the sense that a continuos function is a solution of the initial value problem
if and only if is a solution of (5.2.2).

This is the exact framework where we will work: we need a method to
approximate a solution of the Volterra integral equation derived from the
Heston model.

However, a large number of steps and computational time are required to
achieve satisfactory accuracy. We choose a scheme with 1000 steps.
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5.3 Numerical scheme
In the following section, we show how to compute numerically the log-price
characteristic function in the rough Heston model.
Starting from the Theorem 6, Lp(a, t) can be described through the fractional
Riccati equation

Dαh(a, t) = F (a, h(a, t)) , I1−αh(a, 0) = 0

where
F (a, x) =

1

2
(−a2 − ia) + γ(iaρν − 1)x+

(γν)2

2
x2 (5.3.1)

These equations imply the following Volterra equation:

h(a, t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (a, h(a, s))ds

which enjoys the property mentioned in the section above and so we can
follow the pseudo-algorithm described in [1].
The necessary specification in order to use it are listed below.

We write g(a, t) = F (a, h(a, t)). Over a regular time grid (tk)k∈R with mesh
∆(tk = k∆), we estimate

h(a, tk+1) =
1

Γ(α)

∫ tk+1

0

(tk+1 − s)α−1g(a, s)ds

with
1

Γ(α)

∫ tk+1

0

(tk+1 − s)α−1ĝ(a, s)ds

where

ĝ(a, t) =
tj+1 − t
tj+1 − tj

ĝ(a, tj) +
t− tj
tj+1 − tj

ĝ(a, tj+1), t ∈ [tj, tj+1), 0 ≤ j ≤ k

This is a trapezoidal discretization of the fractional integral and we are led
to the scheme:

ĥ(a, tk+1) =
∑

0≤j≤k

aj,k+1F (a, ĥ(a, tj)) + ak+1,k+1F (a, ĥ(a, tk+1)) (5.3.2)
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with
a0,k+1 =

∆α

Γ(α + 2)
(kα+1 − (k − α)(k + 1)α)

aj,k+1 =
∆α

Γ(α + 2)
((k − j + 2)α+1 − 2(k − j + 1)α+1), 1 ≤ j ≤ k

ak+1,k+1 =
∆α

Γ(α + 2)

Being ĥ(a, tk+1) on the right and on the left of (5.3.2), the scheme is implicit.
In a first step, we need to compute a pre-estimation of ĥ(a, tk+1) in order to
plug it in the trapezoidal formula. This predictor is denoted by ĥP (a, tk+1)
and defined as:

ĥP (a, tk+1) =
1

Γ(α)

∫ t

0

(t− s)α−1g̃(a, s)ds

with
g̃(a, t) = ĝ(a, tj), t ∈ [tj, tj+1), 0 ≤ j ≤ k

So,
ĥP (a, tk+1) =

∑
0≤j≤k

bj,k+1F (a, ĥ(a, tj))

where
bj,k+1 =

∆α

Γ(α + 1)
((k − j + 1)α − (k − j)α), 0 ≤ j ≤ k

The final explicit numerical scheme is:

ĥ(a, tk+1) =
∑

0≤j≤k

aj,k+1F (a, ĥ(a, tj)) + ak+1,k+1F (a, ĥP (a, tk+1)), ĥ(a, 0) = 0

where the weights aj,k+1 are given by (5.3).

In particular, we can guarantee from [9] that for a given t > 0 and a ∈ R,

maxtj∈[0,t]|ĥ(a, tj)− h(a, tj)| = o(∆)

and
maxtj∈[ε,t]|ĥ(a, tj)− h(a, tj)| = o(∆2−α)

for any ε > 0.
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5.4 The Predictor-Corrector algorithm
In order to reproduce the exact framework we talk about in the section 5.2,
we recall from (5.3.1) that F is a function of two variables. So in our algo-
rithm we fix the variable a and we consider F as a variable of h(t).
Since we don’t have the derivative in time, the pseudo algorithm presented
in [1] can be simplified.

Here we propose the version that we have used in our computation.

α in (5.2.1) represents the order of the derivative, but, since we are deal-
ing with a fractional derivative, dαe is equal to one. So in (5.2.2), we can
ignore the summation.

Considering the inputs:

• f: the function which define the right side of the differential equation
(the F defined in (5.3.1))

• T: time to expiry

• N: number of time steps

we can state this pseudo-algorithm:

1. h:=T/N

2. for k=1 to N
b(k) := kα − (k − 1)α

a(k) := (k + 1)α+1 − 2kα+1 + (k − 1)α+1

end

3. y(0) = y0
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4. for j=1 to N

p =
hα

Γ(α + 1)

j−1∑
k=0

b(j − k)f(kh, y(k))

y(j) =
hα

Γ(α + 2)

(
f(jh, p) + ((j − 1)α+1 − (j − 1− α)jα)f(0, y(0))

+

j−1∑
k=1

a(j − k)f(kh, y(k))
)

end

The output y contains the approximate solution in each point of the time
grid (so the ĥ in the section 5.3).
This is only a general representation of the Adams scheme. One can find the
exact implementation of the algorithm for the rough Heston model in the
Appendix A.2.

5.5 Numerical illustration
Considering the following parameters:

ν = 0.05, γ = 2, ρ = −0.5, θ = 0.04, V0 = 0.04, α = 0.62

we compare in figure 5.1 the ATM skew produced by the classical Heston
model and its rough counterpart. We highligt that the rough Heston model
is able to reproduce the exploding structure of the skew when the time to
maturity goes to zero.
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Figure 5.1: ATM skew as a function of maturity
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Chapter 6

Multifactor Approximation

6.1 Introduction
Rough volatility models are very appealing because they fit both historical
and implied volatility. However, they are not longer Markovian and there is
not a simple way to simulate efficiently these models. So derivatives pricing
and hedging are a problematic task.
The introduction of the fractional kernel implies the loss of the Markovian
property and the semi-martingale structure of the volatility process.
Following [6] and [3], we approximate the rough Heston model with a simpler
one that we can use in practice. We aim to design a "multi-factor" stochastic
model which enjoys the Markov property.

Recalling the rough Heston model

dSt = St
√
VtdWt

Vt = V0 +
1

Γ(α)

∫ t

0

(t− s)α−1γ(θ − Vs) ds+
1

Γ(α)

∫ t

0

(t− s)α−1ν
√
Vs dBs

and the equivalence between α and the Hurst index

H = α +
1

2
,

the basic idea is to approximate the fractional kernel K(t) = tH−1/2

Γ(H+1/2)
as a

Laplace transform of a positive measure µ

K(t) =

∫ ∞
0

e−βtµ(dβ); µ(dβ) =
β−H−1/2

Γ(H + 1/2)Γ(1/2−H)
dβ
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Then we approximate µ by a finite sum of Dirac measures µn =
∑n

i=1 c
n
i δβn

i

with positive weights (cni )1≤i≤n and mean reversion (βni )1≤i≤n, for n ≥ 1.
Finally, we obtain a sequence of smoothed kernels (Kn)n≥1 given by

Kn(t) =
n∑
i=1

cni e
−βn

i t, n ≥ 1

This approximation allows us to define the multi-factor Heston model (Sn, V n) =
(Snt , V

n
t )t≤T :

dSnt = Snt
√
V n
t dWt

V n
t = gn(t) +

n∑
1=1

cni V
n,i
t

(6.1.1)

where
dV n,i

t = (−βni V
n,i
t − γV n

t )dt+ ν
√
V n
t dBt

gn(t) = V0 + θ

∫ t

0

Kn(t− s)ds

endowed with the initial conditions

Sn0 = S0, V n,i
0 = 0

The model is Markovian with respect to the spot price and n variance factors
(V n,i)1≤i≤n.

The factors share the same dynamics, but they mean revert at different speed
(βni )1≤i≤n.
In [6], the authors assure the strong existence and uniqueness of the model
(Sn, V n). In particular, they guarantee that the multi-factor approximation
converges to the rough volatility model, when the number of factors goes to
infinity and the coefficients (cni , β

n
i )1≤i≤n are chosen in a suitable way.

In particular, in the previous chapters, we derive the characteristic func-
tion of the log-price in the rough Heston model as a solution of a fractional
Riccati equation.
The multifactor approximation inherits an affine structure: the fractional
Riccati equation can be substitued for a n-dimensional classical Riccati equa-
tion. So, considering a large n, we can solve numerically n ordinary Riccati
equation instead of computing the solution with the Adams scheme.
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6.2 The multi-factor scheme for the fractional
Riccati equation

Consider the model defined in (6.1.1).
The dynamics of (Sn, V n) in terms of Volterra equation with the smoothed
kenel Kn is:

dSnt = Snt
√
V n
t dWt

V n
t = gn(t)−

∫ t

0

Kn(t− s)γV n
s ds+

∫ t

0

Kn(t− s)ν
√
V n
s dBs

We slightly modify the characteristic function formula and we state that

Ln(t, a) = E
[
eiaXt

]
is given by

exp

(∫ t

0

F (a, ψn(t− s, a))gn(s)ds

)
where ψn(·, a) is the unique solution of the Riccati equation

ψn(t, a) =

∫ t

0

Kn(t− s)F (a, ψ(s, a))ds, t ∈ [0, T ]

and
F (a, x) =

1

2
(−a2 − a) + (uρν − γ)x+

ν2

2
x2

for a ∈ C, with Re(u) ∈ [0, 1] .

As established in [6], (Sn, V n)n≥1 converges in law to the rough Heston model
(S, V) when n tends to infinity.
Moreover, the pointwise convergence of Ln(t, a) to the original characteristic
function implies that ψn(·, a) is close to the solution of the fractional Riccati
equation.

Because of this, in [6], the authors suggest a new numerical method aimed
to compute the fractional Riccati solution. Given that

ψn,i(t, a) =

∫ t

0

e−β
n
i (t−s)F (a, ψn(s, a))ds, i ∈ {1, ..., n}
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define

ψn(t, a) =
n∑
i=1

cni ψ
n,i(t, a).

(ψn,i(·, a))1 leqi≤n solves the n-dimensional system of ordinary Riccati equa-
tion {

∂tψ
n,i(t, a) = −βni ψn,i(t, a) + F (a, ψ(t, a))

ψn,i(0, a) = 0, i ∈ {1, ..., n}

We can solve the system with standard finite difference method and, at the
end, we obtain ψn(·, a) that is the approximation of the fractional Riccati
solution.

6.3 The lifted Heston model
Following [3], in this section we introduce the lifted Heston model, a specifi-
cation of the multi-factor approximation for stochastic volatility models.
As said above, the approximated variance process is built as a weighted sum
of n factors driven by the same one-dimensonal Brownian motion.

If we consider the two extreme cases in the multi-factor model, we recover
the classical Heston if n = 1 and its rough counterpart when n goes to infin-
ity. The lifted model enjoys the best of the two worlds: it can reproduce the
ATM skew as a rough volatility model and it is Markovian like the classical
Heston. So, we can obtain the log-price characteristic function solving a fi-
nite system of ordinary Riccati differential equations.
The lifted model can be more easily implemented than the rough one, but it
still remains precise about the implied volatility.

Recalling the multi-factor model (6.1.1), we stress that all the factors (V n,i)1≤i≤n
start from zero and share the same one-dimensional Brownian motion W, but
the mean-reverting speed (βni )1≤i≤n is different for each volatility factor.

Since we need to compare the lifted model to the other considered in this
work, we focus on the structure of gn. This function allows us to plug in the
initial term-structure in the model.
As suggested in [3], we will consider only a certain type of gn, in particular
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the form:

gn0 (t) = V0 + γθ

n∑
i=1

cni

∫ t

0

e−β
n
i (t−s)ds (6.3.1)

where V0 and θ are non-negative parameters.

Setting n = 1, c1
1 = 1 and β1

1 = 0, the lifted Heston model degenerates
into the classical one. In the Appendix A.4, we provide a function to com-
pare the two models. In particular, we obtain that the Mean Squared Error
between the two models prices is in the order of 1e-05.

At first glance, the model seems over-parametrized since we need to con-
sider all the coefficients (cni , β

n
i )1≤i≤n. So, the lifted model has the same five

parameters (V0, θ, γ, ν, ρ) of the Heston model plus 2n additional parameters
for weights and mean reversion.
However, we can provide a good parametrization of these 2n factors in terms
of two coefficients, the Hurst index and the artificial parameter rn. In this
way, we are able to reduce our problem dimension.
So, we start with (2n+ 5) parameters and we end up with only 7 coefficients
(V0, θ, γ, ν, ρ,H, rn). This result is remarkable especially when dealing with
the model calibration.

For a fixed even number of factors n, we fix rn > 1 and we consider the
following parametrization for weights and mean reversion coefficients:

cni =
(r1−α
n − 1)r

(α−1)(1+n/2)
n

Γ(α)Γ(2− α)
r(1−α)i
n

βni =
1− α
2− α

r2−α
n − 1

r1−α
n − 1

ri−1−n/2
n

(6.3.2)

where i = 1, ..., n and α := H + 1/2 for some H ∈ (0, 1/2).
Moreover, if the sequence (rn)n≥1 satisfies

rn ↓ 1 and n · ln(rn)→∞ as n→∞, (6.3.3)

it can be proven the convergence of the lifted Heston model towards the
rough one (for the proof, see [3]).

Here we state the convergence theorem towards the rough Heston.
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Theorem 7 Consider a sequence (rn)n≥1 satistisfying (6.3.3), set gn as in
(6.3.1) and (cni , β

n
i )1≤i≤n as in (6.3.2), for every even n=2p, with p ≥ 1.

Assume Sn0 = S0 for all n, then the sequence of solutions (Sn, V n)n=2p,p≥1

defined as (6.1.1) converges weakly on the space of continuous functions on
[0,T] endowed with the uniform topology, towards the rough Heston model for
any T > 0.

6.4 Numerical analysis

6.4.1 Numerical scheme

In our computation, we follow the approximation scheme for the n-dimensional
Riccati equations system given in the appendix of [3].

We consider an explicit-implicit discretization scheme as follows:ψ
n,i
tk+1

=
1

1 + βni ∆t

(
ψn,itk + F

(
a,
∑n

j=1 c
n
jψ

n,j
tk

))
ψn,i0 = 0, i = 1, ..., n

for a regular time grid tk = k∆t for all k = 1, ..., N , where T is the terminal
time, N is the number of time steps and ∆t = T/N .

6.4.2 Quality of the approximation

For each n ∈ {10, 20, 50}, we generate the implied volatility surface with
the Lifted Heston considering n factors. We observe the convergence of the
approximation to the rough result.

Considering the following parameters:

ν = 0.3, γ = 0.3, ρ = −0.7, θ = 0.02, V0 = 0.02, α = 0.6

we obtain figure 6.1 and 6.2 that represent how well we can approximate the
rough model with the multifactor approach. We consider two distinct time
to maturity, T=1 week and T=1 year.
In both cases, we can see some numerical instabilities in the right part of the
figures. This happens because our numerical scheme is not accurate if the
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Call option is out of the money. In order to satisfy the condition (6.3.3), we
define the following sequence

rn = 1 + 10n−0.9, n ≥ 1

Figure 6.1: Comparison between the Lifted and the Rough model considering
a different number of volatility factors when the time to maturity is one week
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Figure 6.2: Comparison between the Lifted and the Rough model considering
a different number of volatility factors when the time to maturity is one year
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Tables 6.1 and 6.2 show the choice of the parameter rn in accord to [3] and
the quality of the approximation thanks to the Mean Squared Error (MSE)
for the same times to expiry considered above.

n rn = 1 + 10n−0.9 MSEPrice MSEvol
Lifted Heston 10 2.26 1.7721e-08 1.7225e-02

20 1.67 6.9630e-09 6.5956e-04
50 1.3 1.2964e-09 1.6194e-04

Table 6.1: Lifted Heston model parameters and errors when T=1 week

n rn = 1 + 10n−0.9 MSEPrice MSEvol
Lifted Heston 10 2.26 2.9915e-07 1.4664e-04

20 1.67 1.002e-07 1.0431e-04
50 1.3 2.3463e-08 2.6583e-05

Table 6.2: Lifted Heston model parameters and errors when T=1 year

6.4.3 Computational time

Here we show how long the our algorithm takes to produces the graph pre-
sented in Figure 6.2. We consider 49 different strikes and one single maturity.

n rn = 1 + 10n−0.9 Time(seconds)
Lifted Heston 10 2.26 16.06

20 1.67 17.22
50 1.3 24.57

Rough Heston 50.28

Table 6.3: Lifted Heston computational time
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Chapter 7

Conclusions

First, we resume the structure and the contents of this work.

Stochastic volatility models are able to capture the price movements on a
short time scale. One of the most popular models among practitioners is
the Heston model, which enjoys a closed form for the characteristic function.
This feature allows fast pricing methods based on the Fourier transform.
However, the Heston model fails in reproducing the at-the-money skew of
the implied volatility observed in the market.

In order to fit both the implied and the historical volatility, rough volatility
models have been introduced. However, these models are no longer Marko-
vian and the volatility process is no more a semi-martingale.

Recent works create the rough counterpart of the Heston model. Trasforming
the Heston model time derivative in a fractional derivative, we can compute
also the characteristic function in the rough framework.
The loss of the Markovian property leads to adopt the Adams-Bashforth-
Moulton algorithm in order to solve the fractional derivative.

The introduction of the rough model is justified by the typical behaviors
of the participants in high frequency markets. A microscopic model based
on Hawkes processes, which are able to reproduce stylized facts observed in
the market, is built. In the limit, the rough Heston model is obtained.

Since the Adams method requires a lot of resources to compute the fractional
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derivative solution, we introduce the Lifted Heston model, a multi-factor ap-
proximation for the rough one.
Here, the variance process is built as a weighted sum of n factors driven by
the same one-dimensonal Brownian motion.

The lifted model enjoys the best of the two worlds: it can reproduce pre-
cisely the ATM skew and it is Markovian. So, we can easily obtain the
log-price characteristic function solving a finite system of ordinary Riccati
equations.
This fact is translated in a remarkable speed up in the code execution, while
the final result remains very accurate with respect to the rough model.

Table 7.1 resumes the differences between the tree models.

Characteristics Heston Rough Heston Lifted Heston
Markovianity X 7 X
Semimartingale X 7 X

Fit short maturities skew 7 X X
Characteristic function Closed Fractional Riccati n Riccati

Pricing Fast Slow Fast

Table 7.1: Comparison between the three analyzed models

We conclude stating that, starting from the existing literature, this work ana-
lyzes in details the three models presented above, building an organic Matlab
code which allows us to compare the three algorithms and to construct a
realistic implied volatility surface in a reasonable computational time.
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Appendix A

Main Codes

A.1 Pricing under Heston model

Call price
1 f unc t i on P =

Call_Price_Heston (S ,K,T, r , kappa , theta , sigma , rho ,V, alpha ,L)
2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This f un c t i on p r i c e s a Ca l l op t i on wi th Matur i ty T and
5 % S t r i k e K us ing the c h a r a c t e r i s t i c f un c t i on o f t he p r i c e and
6 % Lewis ’ approach
7 %
8 % No FFT used
9 %

10 %
11 % INPUT:
12 % S : i n i t i a l s po t p r i c e
13 % r : r i s k f r e e r a t e
14 % kappa , the ta , sigma , rho : Heston model parameters
15 % V : i n i t i a l v o l in Heston model
16 % alpha : damping f a c t o r ( a lpha >0)
17 % L : t r unca t i on bound f o r the i n t e g r a l
18 %
19 %
20 % OUTPUT:
21 % P : European Ca l l p r i c e
22 %
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24
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25

26 %Heston c h a r a c t e r i s t i c f un c t i on
27

28 b=@(nu) ( kappa−1 i ∗ rho∗ sigma .∗ nu) ;
29 gamma=@(nu) ( sq r t ( sigma^2∗(nu.^2+1 i .∗ nu)+b(nu) .^2) ) ;
30 a=@(nu) (b(nu) . /gamma(nu) ) .∗ s inh (T∗0 . 5 .∗gamma(nu) ) ;
31 c=@(nu) (gamma(nu) .∗ coth ( 0 . 5∗T.∗gamma(nu) )+b(nu) ) ;
32 d=@(nu) ( kappa∗ theta ∗T.∗b(nu) / sigma^2) ;
33

34 f=@(nu) (1 i ∗( l og (S)+r ∗T) .∗ nu+d(nu) ) ;
35 g=@(nu) ( cosh (T∗

0 . 5 . ∗gamma(nu) )+a (nu) ) .^(2∗ kappa∗ theta / sigma^2) ;
36 h=@(nu) (−(nu.^2+1 i .∗ nu) ∗V./ c (nu) ) ;
37

38 phi=@(nu) ( exp ( f (nu ) ) .∗ exp (h(nu) ) . / g (nu) ) ;
39

40

41 %func t i on hand le f o r t he Four ier t rans form o f the
42 %c h a r a c t e r i s t i c f un c t i on
43 in tegrand=@(u) ( r e a l ( phi (u−1 i /2) .∗ exp (1 i ∗ l og (K) ∗u) ) . / ( u .^2+.25) ) ;
44

45 %e x p l i c i t i n t e g r a t i o n
46 I I = i n t e g r a l ( integrand , 0 ,L) ;
47

48

49 % Lewis ’ Pr i c ing formula
50 P = S − ( ( sq r t (S∗K) ∗exp(−r ∗T/2) / pi ) ∗ I I ) ;
51

52 end
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A.2 Pricing under rough Heston model

Call price
1 f unc t i on [P ] = Call_RoughHeston (S0 ,K,T, r , x )
2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This f un c t i on p r i c e s a Ca l l op t i on us ing Lewis ’ approach and
5 % Adams ’ method f o r t he c h a r a c t e r i s t i c func t i on , c on s i d e r i n g
6 % the Rough Heston model f o r t he v o l a t i l i t y
7 %
8 %
9 % INPUT:

10 % S0 : i n i t i a l s po t p r i c e
11 % K : s t r i k e p r i c e
12 % T : time to e x p i r y ( in year s )
13 % r : r i s k f r e e r a t e
14 % x : Rough Heston parameters
15 %
16 %
17 % OUTPUT:
18 % P : European Ca l l p r i c e
19 %
20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21

22 %func t i on hand le f o r t he Four ier t rans form o f the
23 %c h a r a c t e r i s t i c f un c t i on
24

25 in tegrand=@(u) ( r e a l ( t r_ f ou r i e r (x ,T, u) .∗ exp ( i ∗ l og (K) ∗u) ) ) ;
26

27 %e x p l i c i t i n t e g r a t i o n
28 I I = i n t e g r a l ( integrand , 0 , 100 ) ;
29

30 %Lewis ’ Pr i c ing formula
31 P = S0 − ( ( sq r t ( S0∗K) ∗exp(−r ∗T/2) / pi ) ∗ I I ) ;
32

33 end
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Fourier trasform
1 f unc t i on f i i = t r_ fou r i e r (x ,T, v )
2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This f un c t i on computes t he Four ier t rans form o f the
5 % c h a r a c t e r i s t i c f un c t i on f o r a v e c t o r o f l o g s t r i k e g r i d p o i n t s
6 %
7 %
8 % INPUT:
9 % x : Heston models parameters

10 % T: op t i on s t ime to matur i t y ( s c a l a r )
11 % v : l o g s t r i k e g r i d p o i n t s
12 %
13 %
14 % OUTPUT:
15 % f i i : Four ier t rans form o f the c h a r a c t e r i s t i c f un c t i on
16 %
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 %Number o f p o i n t s in the log−s t r i k e g r i d
20 L=l ength ( v ) ;
21

22 %I n i t i a l i z a t i o n
23 CF=ze ro s (1 ,L) ;
24

25

26 %Computing the c h a r a c t e r i s t i c f un c t i on f o r each log−s t r i k e
27 %gr i d po in t
28

29 f o r i =1:L
30 CF( i )=phi (x ,T, v ( i )−1 i /2) ;
31 end
32

33 %Computing the Four ier t rans form argument ( Lewis ’ approach )
34 f i i = CF. / ( v .^2+0.25) ;
35 end
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Characteristic function (Adams’ algorithm)
1 f unc t i on [ char_f ] = phi (x ,T, u)
2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This f un c t i on computes t he c h a r a c t e r i s t i c
5 % func t i on f o r a l o g s t r i k e g r i d po in t
6 %
7 %
8 % INPUT:
9 % x : Heston models parameters

10 % T: op t i on s t ime to matur i t y ( s c a l a r )
11 % u : l o g s t r i k e g r i d po in t
12 %
13 %
14 % OUTPUT:
15 % char_f : c h a r a c t e r i s t i c f un c t i on e v a l u a t e d in u
16 %
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 %Number o f s t e p s in the Adams scheme
20 N=1e3 ;
21 dt = T/N;
22

23 % rough Heston model parameters
24 nu = x (1) ;
25 Gamma= x (2) ;
26 rho = x (3) ;
27 theta = x (4) ;
28 V0 = x (5) ;
29 alpha = x (6) ;
30

31 % Frac t i ona l R i c c a t i e qua t i on
32 F = @(v ) (0.5∗(−u .∗u−1 i ∗u) + Gamma.∗ ( 1 i ∗u∗ rho∗nu−1) .∗ v +

(0 . 5∗ (Gamma∗nu∗v ) .^2) ) ;
33

34 % So l u t i on o f f r a c t i o n a l r i c c a t i e qua t i on wi th ze ro i n i t i a l
35 % cond i t i on
36 y0 = 0 ;
37 y = ze ro s (1 ,N) ;
38

39 % Arrays con t a in in g the we i g h t s o f t h e c o r r e c t o r and p r e d i c t o r
40 % formulas
41 a = ze ro s (1 ,N) ;
42 b = ze ro s (1 ,N) ;
43
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44 % Co e f f i c i e n t s computat ion
45 f o r k=1:N
46 b(k ) = (k^alpha − (k−1)^alpha ) ;
47 a (k ) = (k+1)^( alpha+1) − 2∗k^( alpha+1) + (k−1)^( alpha+1) ;
48 end
49

50 F0 = F( y0 ) ;
51 F_y = ze ro s (1 ,N) ;
52

53 % F i r s t s t e p
54 p = b (1) ∗F0 ;
55 y (1 ) = ( ( dt^alpha ) ∗(F(p)−(−alpha ) ∗F0) ) /gamma( alpha+2) ;
56 F_y(1) = F(y (1 ) ) ;
57

58

59 % Corrector−p r e d i c t o r a l g o r i t hm
60

61 f o r j =2:N
62 p = ( ( dt^alpha ) ∗(b( j ) ∗F0 + . . .
63 sum ( ( f l i p l r (b ( 1 : j−1) ) ) .∗F_y( 1 : j−1) ) ) ) / . . .
64 gamma( alpha+1) ;
65

66 y ( j ) = ( dt^alpha ∗(F(p) +(( j−1)^( alpha+1)−( j−1−alpha ) ∗ . . .
67 ( j^alpha ) ) ∗F0+sum ( ( f l i p l r ( a ( 1 : j−1) ) ) .∗F_y( 1 : j−1) ) ) ) / . . .
68 gamma( alpha+2) ;
69

70 F_y( j ) = F(y ( j ) ) ;
71 end
72

73 %Computing the f i r s t i n t e g r a l o f t h e c h a r a c t e r i s t i c f un c t i on
74 %with t h e t r a p e z o i d a l r u l e
75

76 % Trapezo ida l we i g h t s
77 w = [ 0 . 5 ones (1 ,N−2) 0 . 5 ] ;
78 i n t 1 = dt ∗(w∗y ’ ) ;
79

80

81 % Adams we i g h t s
82

83 W=ones (1 ,N+1) ;
84

85 W(1)=(N−1)^(2−alpha )−(N−2+alpha ) ∗N^(1−alpha ) ;
86

87 W(2 :N)=(N:−1:2) .^(2− alpha )+(N−2:−1:0) .^(2− alpha ) − . . .
88 2∗(N−1:−1:1) .^(2− alpha ) ;
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89

90 W=((dt )^(1−alpha ) /gamma(3−alpha ) ) ∗W;
91

92

93 % Frac t i ona l i n t e g r a l w i th t r a p e z o i d a l r u l e
94 i n t 2 = W(1 :N+1) ∗ [ 0 ; y ’ ] ;
95

96 %Cha r a c t e r i s t i c f un c t i on
97 char_f = exp ( theta ∗Gamma∗ i n t 1+V0∗ i n t 2 ) ;
98

99 end

A.3 Pricing under lifted Heston model

Call price
1 f unc t i on [P ] = Call_RoughHeston_MF(S0 ,K,T, r , x , n , r_n)
2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This f un c t i on p r i c e s a Ca l l op t i on us ing Lewis ’ approach and
5 % Adams method f o r the c h a r a c t e r i s t i c func t i on , c on s i d e r i n g
6 % the mul t i−f a c t o r Heston model f o r t he v o l a t i l i t y
7 %
8 %
9 % INPUT:

10 % S0 : i n i t i a l s po t p r i c e
11 % K : s t r i k e p r i c e
12 % T : time to e x p i r y ( in year s )
13 % r : r i s k f r e e r a t e
14 % x : nu , lambda , rho , t he ta ,V0 , a lpha
15 % Rough Heston parameters
16 % n : number o f f a c t o r s
17 % r_n : mu l t i f a c t o r c o e f f i c i e n t
18 %
19 %
20 % OUTPUT:
21 % P : European Ca l l p r i c e
22 %
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24

25

26

27

73



28 %func t i on hand le f o r t he Four ier t rans form o f the
29 %c h a r a c t e r i s t i c f un c t i on
30 in tegrand=@(u) ( r e a l ( tr_fourier_MF (x ,T, u , n , r_n) . ∗ . . .
31 exp ( i ∗ l og (K) ∗u) ) ) ;
32

33 %e x p l i c i t i n t e g r a t i o n
34 I I = i n t e g r a l ( integrand , 0 , 100 ) ;
35

36 %Lewis ’ Pr i c ing formula
37 P = S0 − ( ( sq r t ( S0∗K) ∗exp(−r ∗T/2) / pi ) ∗ I I ) ;
38

39 end

Fourier trasform
1 f unc t i on f i i = tr_fourier_MF (x ,T, v , n , r_n)
2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This f un c t i on computes t he Four ier t rans form o f the
5 % c h a r a c t e r i s t i c f un c t i on f o r a v e c t o r o f l o g s t r i k e g r i d p o i n t s
6 %
7 %
8 % INPUT:
9 % x : Heston models parameters

10 % T: op t i on s t ime to matur i t y ( s c a l a r )
11 % v : l o g s t r i k e g r i d p o i n t s
12 % n : number o f f a c t o r s
13 % r_n : mu l t i f a c t o r c o e f f i c i e n t
14 %
15 %
16 % OUTPUT:
17 % f i i : Four ier t rans form o f the c h a r a c t e r i s t i c f un c t i on
18 %
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20

21 %Number o f p o i n t s in the log−s t r i k e g r i d
22 L=l ength ( v ) ;
23

24 %I n i t i a l i z a t i o n
25 CF=ze ro s (1 ,L) ;
26

27 %Computing the c h a r a c t e r i s t i c f un c t i on f o r each log−s t r i k e
28 %gr i d po in t
29 f o r i =1:L
30 CF( i )=phi_LH(x ,T, v ( i )−1 i /2 ,n , r_n) ;
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31 end
32

33 %Computing the Four ier t rans form argument ( Lewis ’ approach )
34 f i i = CF. / ( v .^2+0.25) ;
35 end

Characteristic function (Multi-factor approach)
1 f unc t i on [L_n] = phi_LH(x ,T, u , n , r_n)
2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This f un c t i on computes t he the c h a r a c t e r i s t i c f un c t i on f o r a
5 % log−s t r i k e g r i d po in t f o l l o w i n g the Mu l t i f a c t o r approach
6 %
7 %
8 % INPUT:
9 % x : Heston models parameters

10 % T: op t i on s t ime to matur i t y ( s c a l a r )
11 % u : l o g s t r i k e g r i d po in t
12 % n : number o f f a c t o r s
13 % r_n : mu l t i f a c t o r c o e f f i c i e n t
14 %
15 %
16 %
17 % OUTPUT:
18 % char_f : c h a r a c t e r i s t i c f un c t i on e v a l u a t e d in u
19 %
20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21

22 % rough Heston model parameters
23 nu = x (1) ;
24 lambda= x (2) ;
25 rho = x (3) ;
26 theta = x (4) ;
27 V0 = x (5) ;
28 alpha = x (6) ;
29

30 % Frac t i ona l R i c c a t i e qua t i on
31 u=1 i ∗u ;
32 F = @(v ) ( 0 . 5∗ ( u .∗u−u) + (u∗ rho∗nu−lambda ) .∗ v + (0 . 5∗ ( nu∗v ) .^2) ) ;
33

34 % Mu l t i f a c t o r model c o e f f i c i e n t s
35 i =[1 :n ] ;
36 c=((r_n^(1−alpha )−1)∗( r_n^(( alpha−1)∗(1+n/2) ) ) ∗ . . .
37 ( r_n.^((1− alpha ) .∗ i ) ) ) /(gamma( alpha ) ∗gamma(2−alpha ) ) ;
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38 x=((1−alpha ) ∗( r_n^(2−alpha )−1)∗( r_n .^( i−1−n/2) ) ) / . . .
39 ((2− alpha ) ∗( r_n^(1−alpha )−1) ) ;
40

41

42 %% Computing ph i
43

44 %I n i t i a l i z a t i o n
45 N_times=2e2 ; %number o f p o i n t s on the t ime g r i d
46 dt=T/N_times ;
47 phi=ze ro s (n , N_times+1) ;
48

49 f o r k=1:N_times
50 phi ( : , k+1)=(( ones (n , 1 ) . / ( ones (n , 1 )+dt .∗ x ’ ) ) . ∗ ( phi ( : , k ) . . .
51 +dt∗F( c∗phi ( : , k ) ) ) ) ;
52 end
53

54

55 % Here we propose t h r e e d i f f e r e n t methods in order to compute
56 % g_n . One method i s t he a n a l y t i c a l i n t e g r a t i o n , one i s t he
57 % numerica l i n t e g r a t i o n wi th the t r a p e z o i d a l r u l e and the l a s t
58 % i s the formula ob t a ined s o l v i n g the i n t e g r a l by hand . We
59 % ob ta in the same r e s u l t in the t r e e d i f f e r e n t cases , bu t t he
60 % l a s t one i s t he f a s t e s t .
61 %
62 % Not ice t h a t t he l a s t method can be used on ly i f t h e t a i s a
63 % cons tan t ( our assumption )
64 %
65 %
66 %
67 %% Computing g_n e x p l i c i t l y
68 %
69 % in t 1=ze ro s (n , N_times ) ;
70 % time=l i n s p a c e (0 ,T, N_times ) ;
71 %
72 % fo r i =1:N_times
73 % in t e g rand=@( s ) exp(−x . ∗ ( t ime ( i )−s ) ) ;
74 % in t 1 ( : , i )=i n t e g r a l ( in tegrand , 0 , t ime ( i ) , ’ ArrayValued ’ , t r u e ) ;
75 % end
76 %
77 % g_n=V0.∗ ones (1 , N_times )+t h e t a ∗ lambda ∗( c∗ i n t 1 ) ;
78 %
79 %
80 %% Computing g_n wi th t r a p e z o i d a l r u l e
81 % W=dt ∗ ones (1 , N_times ) ;
82 %

76



83 % DT=[1:N_times ]∗ d t ;
84 %
85 % in t 1=(c∗ exp(−x ’∗DT) ) .∗W;
86 % g_n=V0+th e t a ∗ lambda∗ i n t 1 ;
87

88 %% Computing g_n by hand
89 DT=[0:N_times ]∗ dt ;
90

91 i n t 1=(c . / x )∗(1−exp(−x ’∗DT) ) ;
92 g_n=V0+theta ∗ lambda∗ i n t 1 ;
93

94 %% Computing the c h a r a c t e r i s t i c f un c t i on in each time g r i d node
95 i n t 2=F( c∗phi ) .∗ f l i p (g_n) ;
96

97 % Trapezo ida l r u l e we i g h t s
98 W=dt∗ ones (1 , N_times+1) ;
99 W(1) =0.5∗dt ;

100 W( end ) =0.5∗dt ;
101

102 L_n=exp ( i n t2 ∗W’ ) ;
103

104 end

A.4 Comparing classic and lifted Heston

Characteristic function with n=1
1 f unc t i on [L_n] = phi_LvsH(x ,T, u)
2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This f un c t i on computes t he the c h a r a c t e r i s t i c f un c t i on f o r a
5 % l o g s t r i k e g r i d po in t f o l l o w i n g the rough Heston Mu l t i f a c t o r
6 % approach . These f un c t i on has been produce in order to
7 % compare the mul t i−f a c t o r approach wi th n=1 and the c l a s s i c a l
8 % Heston model .
9 %

10 %
11 % INPUT:
12 % x : Heston models parameters
13 % T: op t i on s t ime to matur i t y ( s c a l a r )
14 % u : l o g s t r i k e g r i d po in t
15 %
16 %
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17 % OUTPUT:
18 % char_f : c h a r a c t e r i s t i c f un c t i on e v a l u a t e d in u
19 %
20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21

22 % rough Heston model parameters
23 nu = x (1) ;
24 Gamma= x (2) ;
25 rho = x (3) ;
26 theta = x (4) ;
27 V0 = x (5) ;
28 alpha = x (6) ;
29

30 % Frac t i ona l R i c c a t i e qua t i on
31 u=1 i ∗u ;
32 F = @(v ) ( 0 . 5∗ ( u .∗u−u) + (u∗ rho∗nu−Gamma) .∗ v + (0 . 5∗ ( nu∗v ) .^2) ) ;
33

34 % Mu l t i f a c t o r model c o e f f i c i e n t s when n=1
35 c=1;
36 x=0;
37

38

39 %% Computing ph i
40

41 %I n i t i a l i z a t i o n
42 N_times=1e3 ; %number o f p o i n t s on the t ime g r i d
43 dt=T/N_times ;
44 phi=ze ro s (1 , N_times ) ;
45

46 f o r k=1:N_times−1
47 phi ( k+1)=((1/(1+dt∗x ’ ) ) . ∗ ( phi ( k )+dt∗F( c∗phi ( k ) ) ) ) ;
48 end
49

50

51 %% Computing g_n wi th t r a p e z o i d a l r u l e
52

53 % Trapezo ida l r u l e we i g h t s
54 W=dt∗ ones (1 , N_times ) ;
55 W(1) =0.5∗dt ;
56 W( end ) =0.5∗dt ;
57

58 DT=[1:N_times ]∗ dt ;
59

60 % We dea l on ly wi th 2 c o e f f i c i e n t s in the mul t i−f a c t o r
61 % approach . The on ly way we can can choose in order to compute
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62 % g_n i s the t r a p e z o i d a l r u l e
63

64 i n t 1=(c∗exp(−x ’∗DT) ) .∗W;
65 g_n=V0+theta ∗Gamma∗ i n t 1 ;
66

67 %% Computing the c h a r a c t e r i s t i c f un c t i on in each time g r i d node
68 i n t 2=F( c∗phi ) .∗ f l i p (g_n) ;
69

70 L_n=exp ( i n t2 ∗W’ ) ;
71

72 end
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Appendix B

Calibration and Future
Developments

In order to go deep with the numerical analysis, we also try to create a cali-
bration algorithm. Obviously, we worked with the functions we used to price
options in the rough and in the lifted frameworks.

We can follow two approaches when we deal with the calibration: we can
calibrate on option prices or on the implied volatility. Obviously, the goal
of the algorithm is to minimize the difference between the prices observed in
the market and the one obtained from the calibrated parameters.
However, the two approaches didn’t lead us to significantly different results
and what we will say in the following paragraphs holds true for both cases.

In order to design our algorithm we analyze three different Matlab functions:
lsqnonlin, fminsearch, fmincon. In each case, the designed algorithms have
to minimize the square norm of the difference between calibrated and "real"
prices. What we called "real" prices are option prices that we artificially ob-
tain from the rough Heston algorithm. In order to find the calibrated prices,
we use the Lifted Heston with n = 20.
Going back to Matlab algorithms, we decide to discard fmincon because it
takes too long time to generate results. lsqnonlin is the fastest function in
this group, but despite of this it is not very accurate. The only function that
provide a good trade-off between computational time and results precision is
fminsearch. Our brief analyses is based on this function.
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Recall that, while the rough model has 6 parameters, the Lifted Heston
has 7 parameters. Fixing n, the additional parameter rn doesn’t need to be
calibrated. So, from now, we consider the vector (V0, θ, γ, ν, ρ,H, rn).

Because of the difficulties encountered, we only talk about a single-parameter
calibration.
It was not possible to calibrate γ and ν and we were not able to provide in-
teresting results. fminsearch, instead, works well when we deal with H,V0, θ
and ρ.

The main problem we encountered is the fact that our algorithm works only
when the the option is at-the-money or near. We obtained meaningful param-
eters only when the log-moneyness k respect the constraint −0.1 < k < 0.1.
If we consider a different part of the surface, we are not able to find the
minimum of the norm and this translates in the fact that a lot of prices are
not a number.

In the future, it can be interesting to go deep with the calibration algo-
rithm, extending it to the whole volatility surface. Maybe it can be possible
to create a multi-parameters calibration.
Another possible development is to analyze why our algorithm doesn’t work
when we deal with certain parameters.

We decide not to include our calibration algorithm because it contains some
errors and it works only on a self-constructed case.
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