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Abstract  

This thesis deals with the control of an automated manufacturing plant, the theory behind 

the control algorithm is Model Predictive Control. 

The plant under study is a manufacturing system with one or more “nodes”; each node is 

composed of a first machine which carries out a specific process (machine “M” – 

Manufacturing) followed by a second machine which is responsible for testing the result of 

the process just performed (machine “T” – Testing). 

In the case that a part does not pass the test successfully, it will be moved in a buffer (br) 

waiting to be reworked by the same machine as before. 

The plant includes also a heuristic algorithm that has the task to verify at every instant if 

machine M can work raw parts or if it must do the setup to rework from br. The decision of 

the heuristic algorithm is determined by the number of parts contained in buffer br, that has 

to be always smaller than a predefined value. 

The MPC algorithm, implemented in three different approaches, has the task to decide every 

instant of time if the parts contained in br have to be reworked; in other words, MPC has the 

possibility to modify, in real time, the limit value of parts in br. 

The obtained results show that Model Predictive Control is a good method to control this 

kind of manufacturing plant, the algorithm designed in this work has the capability to avoid 

deadlocks and optimize the production time. 

 

Keywords: Model Predictive Control, manufacturing, optimization, rework, simulation, 

plant. 

  



  



 

Sommario  

Questa tesi si occupa del controllo di un impianto di produzione automatizzato, la teoria alla 

base dell'algoritmo di controllo è Model Predictive Control. 

L'impianto in analisi è un sistema di produzione costituito da uno o più "nodi"; ogni nodo è 

composto da una prima macchina che esegue una lavorazione specifica (macchina “M” - 

Manufacturing) seguita da una seconda macchina che è responsabile del test del risultato del 

processo appena eseguito (macchina “T” - Test). 

Nel caso in cui un pezzo non superi correttamente il test, la parte lavorata difettosa verrà 

spostata in un buffer (br) in attesa di essere rilavorata dalla macchina precedente. 

L'impianto include anche un algoritmo euristico che ha il compito di verificare ogni istante 

se la macchina M può lavorare pezzi grezzi o se deve eseguire la procedura di setup per 

rilavorare da br. La decisione dell'algoritmo euristico è determinata dal numero di pezzi 

contenuti nel buffer br, che deve sempre essere minore di un valore predefinito. 

L'algoritmo MPC, implementato in tre diversi approcci, ha il compito di decidere in ogni 

istante di tempo se i pezzi contenuti in br devono essere rilavorati; in altre parole ha la 

possibilità di modificare, in real time, il valore limite che comporta il setup. 

I risultati ottenuti dimostrano che il Modello Predictive Control è un buon metodo per 

controllare questo tipo di impianto di produzione, l'algoritmo progettato in questo lavoro ha 

la capacità di evitare deadlock e ottimizzare i tempi di produzione. 

 

Parole chiave: Model Predictive Control, produzione, ottimizzazione, rilavorazione, 

simulazione, impianto. 
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Chapter 1 

Introduction 

 

 

 

 

 

 

1.1 Motivation and Goals 

The main purpose of this thesis is to optimize production time in an automated 

manufacturing system using Model Predictive Control (MPC) technique.  

In a global market it’s mandatory to maximize productivity and efficiency to maintain 

competitiveness, it’s also essential to pay attention to energy savings both for economic and 

for environmental reasons that in recent years are gaining particular importance. 

For these reasons, in industry, many resources are dedicated to finding management and 

control solutions going in this direction and Model Predictive Control, among the variety of 

control techniques, is an advanced strategy that allows to solve optimization problems 

accounting for scheduling, lot sizing and energy consumption objectives. 

The manufacturing system modelled in this thesis is a production plant which presents one 

or more machines in series executing different working procedures. Each machine is 

followed by a testing machine that has the task to verify the quality of the job just performed, 

every pair of manufacturing and testing machines is called “node”, the plant can be 

composed of one or more nodes. 

The core of the problem is that every manufacturing machine can choose if is better to work 

a raw part or rework an old one which didn’t pass the test, and is added to a buffer. This 
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choice, as will be demonstrated later, can produce different effects in terms of production 

time and consequently energy consumption.  

The entire plant is assumed to be controlled by a heuristic algorithm that, in a simple way, 

decides at each time step the best choice for each machine, as will be demonstrated this 

algorithm does not provide satisfactory performance especially in stressed conditions. 

Figure 1 presents an example of a node: parts flow from left to right and if they do not pass 

the test (machine T) at the end of the job, they wait to be reworked in buffer br. 

 

 

Figure 1: Node example 

 

The role of the heuristic algorithm chosen as “benchmark” is to receive as input the state of 

the plant and to return as output the best commands for the machines, in particular the 

algorithm has a value called θ that corresponds to the limit of parts buffer br can contain 

until has to be emptied. In the benchmark solution, the value of θ is fixed. The resulting 

control system is shown in Figure 2. 

 

 

Figure 2: Benchmark system without MPC 
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The MPC algorithm is added to the system just illustrated without modifying it but taking 

care of the control at a higher level, so the role of MPC is to find the best θ at any time instant 

modifying its value in real time and providing the result of the optimizing problem to the 

benchmark. 

Figure 3 shows how MPC algorithm interacts with the whole system. Such a control strategy 

is hierarchical: the MPC law acts as a supervisor for the implemented heuristic. 

 

 

Figure 3: Role of MPC in the system 

 

1.2 Developed MPC Approaches 

In this thesis project, MPC algorithm has been implemented following different approaches 

and different levels of complexity. Three versions of the algorithm have been developed and 

tested. 

A common feature of the MPC algorithms is that they do not return an arbitrary value of θ, 

but they can modify the actual value by increasing or decreasing it of one unit, otherwise 

they can obviously maintain it the same as the previous instant.  
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According to the receding horizon approach, after having evaluated the best sequence of θ 

along the prediction horizon, the plant will apply only the first value of the sequence, then 

in the following instant the MPC algorithm will be recalled returning a new value of θ. 

Main difference between the three versions is the way how is built the best sequence of θ 

along the prediction horizon, the three approaches will be quickly presented: 

• MPC V1: is the simplest version of MPC, when the algorithm is called it simulates 

the behaviour of the system generating three sequence of same θ along the prediction 

horizon (θ_old – 1, θ_old, θ_old + 1). If the plant is composed by more than one 

node, the algorithm will return the same θ for every node. 

Sequences evaluated every instant: 3. 

• MPC_V2: in this case the algorithm evaluates the best combination of different θ 

along the prediction horizon (PH). As in the previous case, if the plant is composed 

by more than one node the algorithm will return the same θ for every node. 

Sequences evaluated every instant: 3PH  

• MPC_V3:  this is the most complex version; it is valid only for plants composed by 

more than one node. The sequences of θ are generated as in MPC_V2 but, unlike in 

the previous case, here every node receives its best θ. In other words, every node is 

optimized on its own. 

Sequences evaluated every instant: #nodes*3PH 

 

1.3 State of the Art 

This section introduces at the state of the art of MPC control techniques in manufacturing, 

main topic of this thesis. 

Regarding manufacturing plants different studies and researches have been taken because as 

anticipated in Section 1.1, it’s very important to optimize production to be competitive in 

global market.  

About energy efficiency, MPC gave a great contribution (see [1], [2], [3]) because of its 

feature to have an optimization function related to the future behaviour of the system.  

This function in fact can contain, between the various constraints, also data regarding energy 

consumption. 
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Great attention in research, related MPC theory, was dedicated to Automated Storage and 

Retrieval Systems; the reason is that in a lot of situations this kind of systems are controlled 

by heuristic algorithms [4].  

In this field an important research was published [5]; despite this work is related parallel 

machines, was important for the present thesis because deals with reworks and scheduling 

of production.  

There are two major categories that characterize the structure of manufacturing plants: with 

machines in parallel and with machines in series; these two categories determine different 

problems and different control techniques starting from their need and priorities. 

About series of machines an important research has to be mentioned; So and Tang in [6] 

studied an algorithm that computes, before a processing, the optimal batch dimension in a 

manufacturing plant with random rework.  

The difference in this thesis is that will be presented an online MPC algorithm that every 

instant can evaluate the best behaviour of the plant.   

 

1.4 Original Contributions of this Thesis  

Based on what explained in the previous sections, the main original contributions of this 

thesis are: 

• Mathematical modelling of a customizable automated production plant composed 

by manufacturing and testing machines. 

• Design and development of a heuristic algorithm used to control the plant previously 

presented. 

• Design and development of three different MPC algorithms with the role of real time 

optimization and deadlock avoidance  

• Testing of all the developed algorithms in simulation, and analysis of the obtained 

results. 

The first part of the work was focused on developing a realistic mathematical model for the 

plant, it’s a discrete-time model completely customizable.  

Before starting a simulation it’s necessary to provide information about how to build the 

system, i.e the number of nodes, size of buffers, times to work, test and setup, time to move 

one part from the testing machine to buffer of parts to be reworked and so on. 
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A simulation is based on the number of parts the user wants to work, so when all parts have 

been worked simulation finishes. 

Implementing the heuristic algorithm was the second part of the work of this thesis, this 

algorithm is basic for the correct operation of the system. Goal of the algorithm is to 

complete the entire working cycle following instructions it contains in its code, it’s not 

programmed to optimize production but only to bring it at the end. 

The last and most important part of the work was to implement the optimization part which 

is contained in the three MPC algorithms. After identifying the three approaches to build the 

algorithms, they were implemented in different ways. Common features between the three 

algorithms is the cost function evaluating the best θ to return, the cost function has the goal 

to permit the algorithm to find the sequence of θ that along the prediction horizon  move 

forward many parts as possible and performs the least number of setups. 

Results will be presented in detail in Chapter 4, in general it’s possible to conclude that MPC 

algorithm is robust against deadlocks and bottlenecks management compared to the heuristic 

algorithm that needs to receive the right θ at the beginning of a simulation.  

MPC algorithms implemented in this work can improve production time by a limited 

percentage factor.  

In conclusion MPC could be a solution to optimize production for a plant like the one in 

analysis in terms of better and more robust management. 

 

1.5 Thesis Outline 

• Chapter 2 deals with the modelling of the plant and development of the heuristic 

algorithm. 

• In Chapter 3 are presented the three MPC algorithms.  

• Chapter 4 deals with the conclusions of this thesis and some considerations about 

future works. 
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Chapter 2 

System Model 

 

 

 

 

 

 

2.1 Introduction 

The model created, as anticipated in the introductory part, refers to a generic automatic 

industrial production plant; the main features of the system being analysed are the presence 

of one or more "nodes" in series. 

Each node is composed of a first machine which carries out a specific process (machine “M” 

– Manufacturing) followed by a second machine which is responsible for testing the result 

of the process just performed (machine “T” – Testing). 

The entire model is discrete-time, variable k corresponds to time. 

For simplicity in the dissertation and for the significantly different level of complexity, the 

system is considered first in a single node configuration and secondly in a multi node 

configuration. 

 

2.2 Single Node Configuration 

The single node configuration (Figure 4) consists of two machines (M and T) and four 

buffers (bn, bm, br, bf), containing respectively raw parts, worked parts, fault parts and 

finished parts. Boolean variables un, ur and ut indicate activation of the movement of the 

parts and are enabled by the algorithm that controls the system. 
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At the end of a process, be it in M or in T, the part leaving the machine is automatically 

moved in the reference buffer, so from M parts will be moved in bm while from T, depending 

from test result, parts will be moved in br or in bf. 

All the movements from a buffer to a machine and vice versa are considered instantaneous 

except for the movement of a part from T to br which instead presents a delay. 

The main reasons for inserting this delay in the model are two: the first is that it is quite 

likely that more time is needed to bring parts back along the chain, the second is that, through 

this delay, the MPC algorithm will be able to predict with certainty the behaviour of the node 

after the result (a priori uncertain) of the test. 

 

 

Figure 4: Single node configuration 

 

The buffers bn and bf which contain the raw and finished parts respectively are considered 

simply as counters that assume a value equal to the number of parts they contain. 

Buffers bm and br are vectors of predefined size by the operator and in this way oblige the 

control algorithm to avoid any overloads and bottlenecks, the buffer bm knows the origin of 

the parts it contains. 

Every position of the buffer bm can assume value 0, 1 or 2 depending on whether it is empty, 

occupied by a part worked only once or occupied by a reworked part.  

In non-critical conditions the bm and br buffers work according to the "first in first out" 

(FIFO) logic, this means that the first part that enters the buffer will be the first to exit; as it 

will be illustrated later, only in some situations the control algorithm has the possibility to 

violate this rule. 
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2.2.1 Machine M: Finite State Automaton 

Machine M can be represented through a finite state automaton (Figure 5) and considers six 

different states: L1 (free, position 1), L2 (free, position 2), W1 (raw part processing), W2 

(rework of damaged part), S1 (setup 1), S2 (setup 2).  

 

 

Figure 5: Finite state automaton machine M 

 

From the starting state L1 machine M can enter in state W1 (working raw part) enabling the 

command un that, as written in section 2.2, takes care of activating the movement of one part 

to the machine. Otherwise starting from state L1 as before, machine M can start the setup 

procedure to be able, at the end of the process, to work on parts that have already undergone 

processing and have previously failed the test. 

The machining procedures, that take place in states W1 and W2, end when the time necessary 

for the machining itself has elapsed, note that the model has the possibility of considering 

different times depending on whether a new part or an already worked part is being processed 
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( Time_MN and Time_MR). Similarly to the previous situation, from state L2 it is possible 

to carry out the setup procedure to subsequently start working on raw parts. 

The transitions are of two different types: transitions controlled by the algorithm and 

transitions determined automatically at the end of a process. Transitions un, ur and setup 

belong to the first category while the other ones (k = end_setup, tm = Time_MN and tm = 

Time_MR) belong to the second category and are related to the variable time. 

 

2.2.2 Machine T: Finite State Automaton 

 

Figure 6: Finite state automaton machine T 

 

Unlike machine M, machine T is simpler (Figure 6); it is initialized to the L (free) state and 

when the control algorithm verifies that there are conditions for testing a part, it enables the 

ut variable together with the testing variable that indicates whether a new or reworked part 

is being tested. 

The information about the type of tested part (new or reworked) is necessary because the 

hypothesis that has been made is that this condition entails a different probability of success 

of the test.  

More precisely the probability with which a generic part will pass the test can be less than 

one only the first time a part is worked, while for reworked parts the test is passed with 

probability one. 

Before starting to test a part, the machine checks that there is place in the two buffers where 

it is possible that the part will have to be placed at the end of the test, therefore both br and 

bf must not be full, this in case is tested a new part. 

If the machine has to test a reworked faulty part, since it will be certain that it will obtain a 

positive result in the test, the availability check in the buffers will only take place against bf. 
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2.3 Multi Node Configuration 

In the multi node configuration (Figure 7, Figure 8, Figure 9) it was necessary to differentiate 

the first and the last node from all the others within the chain, the reason is that, as in the 

single node configuration, the first buffer bn and the last bf are counters that assume a value 

equal to the number of parts they contain. 

In a similar way to the previous configuration, all the buffers excluding those just mentioned 

are vectors with a length predefined by the operator. 

 

 

Figure 7: First node 

 

Figure 8: Generic i-th node 

 

Figure 9: Last node 
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 In this configuration it is useful to remember and better explain a concept anticipated in 

paragraph 2.2 i.e. the FIFO rule that is used to manage 

the operation of the buffers and how this rule can be 

violated in particular cases. The case in which the 

machine has the possibility to not respect the required 

logic is shown in the example in Figure 10.  

In this example, where buffers can contain a 

maximum of five parts, the situation looks like this: 

the buffer bm is full and contains both raw parts 

worked only one time (value 1) and parts that didn’t 

pass the test and have been reworked (value 2) , the buffer br is full while bf still has free 

positions. 

According to FIFO logic, machine T in the L state should pick up the part of bm which is in 

first position to test it but is unable to do so because the part it should test would be a part 

worked only once and being full br, as illustrated in paragraph 2.2.2, it’s necessary to avoid 

the risk of having to send a part in an already full buffer, in the case the test will have negative 

result. 

In this situation, since the buffer bf is instead not full, the machine T has the possibility to 

search within bm for a reworked part (value 2) and test it immediately, being sure that at the 

end of the test the part itself will be placed in the buffer bf. 

There are no other differences to report between this configuration and the previous one, 

obviously in this case the level of complexity becomes considerably higher because this type 

of structure is more likely to generate slowdowns and bottlenecks. 

 

2.4 Heuristic Algorithm for Machines Management 

The algorithm that is presented in this paragraph is the one that has been chosen as the 

"benchmark" to evaluate any performance improvement by inserting the MPC algorithm. As 

anticipated in the introductory chapter, this algorithm behaves quite simply, based mainly 

on the quantity of parts in the buffer br (value θ): if the number of parts in br will be greater 

than θ then the machine will have to rework  the failed parts to avoid full filling the buffer 

itself. 

Figure 10: Example of a FIFO rule violation 
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In this benchmark, the value of θ is chosen at the beginning of the simulation and remains 

constant for the entire duration of the process. This will be different in the MPC approach, 

where the controller will be able to change θ at each time step by solving a finite horizon 

optimal control problem (see Chapter 3). 

It is possible to set different values of θ between the various nodes. 

 

 

Figure 11: Heuristic algorithm, machine M 

 

Figure 11 presents the decision tree of the algorithm: it is composed of ten conditions and 

depending on whether they are respected or not different paths are taken, the conditions 

represented in the rectangles with rounded corners can be true or false. 

As illustrated in paragraph 2.2.1, the possible commands that the algorithm can deliver to 

machine M are three: ur, un and setup. 

State M: L2
br>0
bm not full

YES

NO

ur

br>θ

YES

k=end_setup
setup=2
bm not full

NO

YES NO
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YES

setup=2

bn>0

YES
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State M: L1
bm not full

YES

NO
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setup=1
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State M: L2
bm not full

YES

ur

NO

State M: L1

YES

setup=2
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By observing the tree it is possible to identify three branches that develop vertically, starting 

from the left the first branch that is visited by the algorithm (conditions: 1,2,3,4) is used to 

consider the processing of faulty parts, it is important that the first branch is dedicated to the 

buffer br because it risks, if completely filled, to block the functioning of the whole system. 

The second branch (conditions: 5,6,7) evaluates the processing of raw parts, therefore if the 

parts in br are less than θ, while the third branch (conditions: 8,9,10) deals with considering 

the situation in which there are no parts in buffer bn and therefore only the parts left in br 

remain to be processed, even if they are less than θ. 

The first condition of the scheme has the purpose of allowing the machine M to work all the 

parts that are present in the buffer br, thus completely emptying it before eventually 

commuting back to work on raw parts. Therefore, when br contains more elements than the 

parameter θ, the machine will perform the setup to rework parts, and once the setup is 

finished it will empty the entire buffer before returning to work new parts. 

It should also be noted that all the conditions preceding the enabling of the ur or un variables, 

which therefore lead to the actual start of a process (conditions: 1,3,6,9), check that the bm 

buffer is not full. 

The algorithm in "simple" conditions, i.e. when has to 

work a small batch or when times are distributed so as 

not to create bottlenecks, achieves very satisfactory 

performance in terms of the total production time of a 

batch, however problems arise when the processing 

times are very heterogeneous and therefore tend to 

generate bottlenecks that the algorithm cannot handle. 

Part of the algorithm is also the one that deals with 

managing the operation of the T machine. This part of 

the code is much simpler, the decision tree is shown in 

Figure 12. 

Obviously also the tree is less complex than the one 

that manages the machine M; the final command is in 

fact always the same the difference is that with ut(1) 

we mean the operation of testing the first part available 

in bm, while with ut(x), as can be seen from the way in 
Figure 12: Heuristic algorithm, machine T 

State T: L
bm>0
br and bf not full

YES NO

ut(1) State T: L
bm>0
bf not full

State T: L
bm(x)=2

YES

YES

ut(x)

1

2

3
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which the right branch develops, means the operation of testing the first part already 

reworked which is in bm, if present obviously (violation of the FIFO rule). 

 

2.5 Heuristic Algorithm: Simulation Results 

This section describes the results of numerical simulations executed to test the benchmark 

algorithm. Tests have been executed both on single node and multi node configuration, each 

test shows the strengths and weaknesses of the algorithm. 

 

2.5.1 Test 1: Single Node 

• Number of parts: 100 

• Buffer dimensions: 5 parts 

• θ = 4 

• Time machining raw parts: 1 

• Time machining fault parts: 1 

• Time testing: 1 

• Probability test passed: 80% 

• Moving time from T to br: 10 

• Setup time: 40 

 

In the following test (Figure 13) is possible to see how the algorithm can work in “normal” 

conditions, at the beginning it starts to work raw parts and when the number of parts in buffer 

br reaches value θ, machine M starts to do the setup. 

Setups are visible in the graph because in those cases both buffer bn and br remain constant 

or increase, obviously during setup the number of parts in those buffers can’t decrease. 

In this test θ was chosen equal to the maximum value it can take so buffer dimension minus 

one, this value permits to have maximum performance from the algorithm because 

minimizes the total number of setups during the cycle and setups are the most important 

waste of time. 

In this conditions buffer bm can always work off the parts without accumulating them. 
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Figure 13: Test 1 – buffers behaviour 

 

2.5.2 Test 2a: Single Node, deadlock 

• Number of parts: 100 

• Buffer dimensions: 5 parts 

• θ = 4 

• Time machining raw parts: 1 

• Time machining fault parts: 1 

• Time testing: 5 

• Probability test passed: 80% 

• Moving time from T to br: 10 

• Setup time: 50 

 

Test 2a (Figure 14) have been executed to show the first limit of the algorithm, the difference 

from Test 1 is that in this case the time for testing a part is increased to accumulate parts in 

buffer bm. At the beginning all works perfectly, the algorithm waits the growth of the number 

of parts in br; the problem is that when br reaches value θ and M starts setup it’s too late 

because bm is full. 
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During setup, machine T can’t test because it contains parts worked only once and it is 

programmed to avoid the risk to send parts in the already full buffer br (in case of negative 

test result). 

When setup finishes both bm and br are full so that nothing can be done to continue the 

working process. 

 

 

Figure 14: Test 2a – buffers behaviour 

 

2.5.3 Test 2b: Single Node, deadlock avoided 

• Number of parts: 100 

• Buffer dimensions: 5 parts 

• θ = 3 

• Time machining raw parts: 1 

• Time machining fault parts: 1 

• Time testing: 5 

• Probability test passed: 80% 

• Moving time from T to br: 10 

• Setup time: 50 
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Test 2b (Figure 15) shows the solution for deadlock problem presented in Test 2a, the 

difference from the previous test is that value θ is decreased of one unit.  

With this modification the system can finish its working cycle and the general behaviour of 

the machines is quite good.  

It’s important to know that decreasing of one unit value θ was a good solution for this specific 

test, in different situations with different timings it might be necessary to decrease the value, 

from the maximum possible, of more than one unit. On the other hand if θ takes the minimum 

value, i.e. θ=1, many setups occur leading to performance degradation. 

 

 

Figure 15: Test 2b – buffers behaviour 
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2.5.4 Test 3: Multi Node 

• Number of nodes: 3 

• Number of parts: 50 

• Buffer dimensions: 5 parts 

• θ = 3 

• Time machining raw parts: [1, 1, 3] 

• Time machining fault parts: [1, 1, 3] 

• Time testing: [1, 5, 30] 

• Probability test passed: [70%, 80%, 75%] 

• Moving time from T to br: [10, 10, 10] 

• Setup time: [50, 50, 50] 

 

Test 3 is important to understand how the algorithm works in the multi node configuration, 

Figure 16 and Figure 17 report respectively the behaviour of nodes 2 and 3. 

 

 
Figure 16: Test 3, Node #2 
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Figure 17: Test 3, Node #3 

 

This test is important because highlights another problem of the heuristic algorithm, problem 

that could be solved by contribution of MPC. 

Recalling the decision tree of the algorithm presented in section 2.4, an important feature of 

it is that is possible for the algorithm to execute setup also if bm has no place for new parts. 

In the following test is possible to see that both in node #2 and #3 buffers br often are not 

completely empty, this behaviour is motivated by the concept just mentioned. 

Every situation in which the algorithm decides to stop emptying br is because bm is full, so 

following the decision tree the only thing that it can do is to setup to work raw parts. We will 

show that the MPC algorithm will be able to solve this problem by decreasing in real time 

the value of θ, thus forcing machine M to wait to continue emptying buffer br. 
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Chapter 3 

MPC Algorithm 

 

 

 

 

 

 

This Chapter describes the design and development of the MPC algorithm proposed in this 

thesis, including the plant model that the algorithm employs, the way it generates a sequence 

of optimal inputs, and what is its relationship with the heuristic approach. 

The last part is concerned with the differences among the three MPC algorithms that have 

been implemented in this work, presented both through code explanations and test results. 

 

3.1 Model Predictive Control 

Model Predictive Control (MPC) is a family of advanced control algorithms that uses an 

explicit process model to predict the future response of a plant. The algorithm, at each time 

step, computes the best sequence of the manipulated input variables to optimize the future 

output [7]. Only the first input of the optimal sequence is applied to the system and a new 

sequence is computed at the next time step, this principle is called Receding Horizon.  

This type of algorithm has had a huge impact in the industrial field since its development at 

the beginning of the 80s [8]. Because of the high computational cost that distinguishes this 

technique, MPC was originally developed for chemical plants, characterized by slow 

dynamics.  Nowadays, thanks to the improvement of the numerical solution methodologies 

and, above all, thanks to the increase of the hardware power, it is widely used in all the 

process industry and some applications can be found in other engineering fields [9].  
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To understand the reasons behind its popularity it is important to list the main characteristics 

of the MPC algorithms. The main advantage of Model Predictive Control algorithms is the 

possibility to formulate the control problem as an optimization one, with the additional 

possibility to define constraints on state and input variables. Unlike other optimized controls, 

another advantage of MPC is that hardly a feasible solution for the optimizing problem, leads 

to an unfeasible solution in the future instants. On the other hand, this situation can occur 

using other optimized control because, differently from MPC, because they often do not 

consider the evolution of the model and constraints imposed in future instants.  

These characteristics make MPC algorithms very flexible and suitable for many different 

applications.  

 

3.2 General structure 

When the function is called, it receives as input two variables:  

1. x: is the state of the system and includes all the information related the actual plant 

situation. The array x is composed as follow: 

 

𝑥 = [𝑘 θ 𝑏𝑛 𝑀 𝑡𝑚 𝑤 𝑠 𝑙𝑤 𝑒𝑠 𝑏𝑚_𝑀𝑃𝐶 𝑇 𝑡𝑡 𝑡 𝑏𝑟_𝑀𝑃𝐶 𝑏𝑓_𝑀𝑃𝐶 𝑚𝑝]  

  

 Where:  

• k: is the time instant in which the algorithm has been called  

• θ: is the last value saved by the plant 

• Bn: is the number of parts in the buffer 

• Bm_MPC, br_MPC, bf_MPC: are vectors containing in series the arrays 

related every buffer of every node. 

• M, tm, w (working), lw (last_work): indicate respectively if M is processing 

a part, the counter if M is machining, the type of part in process (raw or 

rework) and the type of the last part processed (raw or rework).  

• T, tt, t: indicate respectively if T is testing a part, the counter if T is testing 

and the last one indicates what type of part is testing machine T. 

• S (setup), es (end_setup): indicate respectively if a machine is executing the 

setup and when will finish. 
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• mp (moving_parts): indicates the number of parts that are moving from T to 

br and when they will arrive in the buffer.  

M, tm, w, lw, T, tt, t, S and es are arrays with dimension corresponding to the number 

of nodes. 

 

2. sim_data: this variable describes the features of the simulation in progress and has 

the following structure: 

Most important information included in this variable is the prediction horizon. Other 

data acquired by the algorithm through this variable are the timings to work and to 

test a part, time to setup a machine, number of nodes, dimension of the buffers, 

probabilities to pass a test. 

 

After having acquired these two long arrays the algorithm extracts every value and rebuilds 

the entire plant in its workspace being ready to start the prediction phase. 

The system rebuilt inside of the algorithm is quite different from the real one. Differences 

can be found from the modelling point of view because the time for testing is considered 

unitary; this modification helps the MPC algorithm to predict with more advance parts 

moving to buffer br.  

On the other hand, a big difference between the real plant and the MPC’s one is the decision 

tree of the heuristic algorithm, obviously included in the fictitious plant. In section 2.5.4, 

testing the heuristic algorithm, was highlighted a problem that was, in some situations, the 

inability, for the plant without MPC, to completely empty buffer br.  

MPC algorithm, for is nature, should be capable to avoid this problem but, due to unitary 

testing times, inserted for the reasons mentioned above, it was necessary to modify the 

decision tree inside of the MPC. 

To understand better the solution applied, the decision tree of the heuristic algorithm that is 

contained in MPC is reported in Figure 18. 
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Figure 18: Decision Tree Heuristic Algorithm, contained in MPC 

 

The solution was to remove, from the decision tree contained in MPC, the first condition, 

that is the one permitting to completely empty buffer br.  

The reason behind this modification is explained by the example presented in Table 1 that 

shows the situation at a general k-time instant. 

 

 

 

 

 

State M: L2
br>0
bm not full

YES NO
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br>θ
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k=end_setup
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bm not full
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Table 1: Plant situation at instant k 

Data Value 

Buffers capacity 

Time for machining 

Time for testing 

State M 

5 

1 

10 

L2 

State T T1, time steps to finish 8 

Parts in br 4 

Parts in bm 5 

Actual θ 

Time to setup 

4 

100 

 

As explained in section 2.5.4 in this kind of situation, being bm full, the heuristic algorithm 

would go through conditions 1,2,3,5,7 of the decision tree and would begin the setup to work 

raw parts. The MPC algorithm should force the plant to wait until the testing phase is 

finished, because in that moment machine T will test another part and will be freed a place 

in bm permitting machine M to process one part from br.  

Table 2 and Table 3 represent respectively the real plant situation and the prediction executed 

by the MPC algorithm after two k-steps. 

 

Table 2: Plant situation at instant k+2 

 

Data Value 

Buffers capacity 

Time for machining 

Time for testing 

State M 

5 

1 

10 

L2 

State T T1, time steps to finish 6 

Parts in br 4 

Parts in bm 5 

Actual θ 

Time to setup 

3 

100 

Table 3: Plant prediction at instant k+2 

 

Data Value 

Buffers capacity 

Time for machining 

Time for testing 

State M 

5 

1 

1 

W2 

State T T1, time steps to finish 1 

Parts in br 3 

Parts in bm 4 

Actual θ 

Time to setup 

3 

100 

 

From Table 3 is possible to understand the reason why MPC algorithm return θ = 3 as best 

solution. Instead, being the real situation represented by Table 2, thanks to these 
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modifications, the heuristic algorithm will go through conditions 1-2-3-4 and, because 

condition 4 will be false, the plant will wait without doing nothing as desired. 

 

3.3 Deadlock Avoidance 

One of the reasons why MPC algorithm is necessary is for its ability to work at the maximum 

production speed avoiding deadlocks. In section 2.5.2, testing the heuristic algorithm, was 

highlighted the problem of choosing, at the beginning of a simulation, the right θ that could  

avoid deadlocks. 

In the plant in analysis, deadlock is defined as the situation in which both br and bm are full, 

and bm contains parts worked only once. In this situation both machines M and T can’t work 

because after them they find full buffers, for this reason, from this point, all the process is 

blocked. 

When MPC algorithm is called, it executes the prediction along the horizon and if it reaches 

a deadlock situation it begins the deadlock avoidance procedure.  

This procedure cancels temporarily, so until the problem is solved, the optimization problem 

returning directly the smallest value of θ; in this way machine M will stop immediately 

production and will execute the setup as soon as possible. Obviously the prediction horizon 

should be long enough to have the time to effectively avoid the deadlock. 

 

3.4 MPC_V1 

The first version of MPC algorithm is the one that has the smaller computational cost and, 

in the theory, the minor predictive capacity; will be demonstrated later that the second 

version returns worst results. 

When MPC_V1 is called, after having rebuilt the entire plant, executes three different 

simulations with the length of the prediction horizon. The difference between the three 

simulation is that the first one consider as θ the value received from the plant minus one, the 

second one uses the value of θ same as the one received from the plant and the third 

simulation increments the value of “old” θ by one unit. 

The minimum value for θ is 0 while the maximum value is the dimension of the buffers 

minus one, it would not make sense return a value of θ equal to the dimension of the buffers 

because it would be impossible to find in br more than θ parts.   
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It’s important to underline that during the simulation θ is maintained constant but, thanks to 

the receding horizon approach, the value that the algorithm will consider as the best will be 

applied on the plant only for one time instant, the next time the algorithm will be recalled 

and will return a new value for θ. 

At the end of every simulation the MPC algorithm evaluates function J that permits to choose 

the best θ between the three possible, the structure of the function is the following: 

 

𝐽 = 𝑏𝑛 + ∑ (𝑄1 ∗ 𝑀𝑖 + 𝑄2 ∗ 𝑏𝑚𝑖 + 𝑄3 ∗ 𝑏𝑟𝑖

𝑛_𝑛𝑜𝑑𝑒𝑠

𝑖=1

+ 𝑄4 ∗ 𝑇𝑖 + 𝑄5 ∗ 𝑏𝑓𝑖) ∗ 𝑖 − 𝑄6 ∗ 𝑠𝑒𝑡𝑢𝑝𝑖 

With 

 

𝑄6 > 𝑄5 > 𝑄4 ≥ 𝑄1 > 𝑄3 > 𝑄2 

 

 

Figure 19: Structure of a Generic i-th Node 

 

Remembering how is built a general node reported in Figure 19, is possible to understand 

the reason of the structure of function J. Thanks to the inequality between the Q coefficients, 

the more a part proceeds along the node the more it makes the function acquire value.  

The subtraction at the end of the equation it’s necessary because, after some tests, setups 

have been individuated as the most important waste of time during production. 

In the next subsection will be presented a test that permits to verify the correct operation of 

the MPC_V1 algorithm. 
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3.4.1 Test: MPC_V1 

• Prediction horizon: 4 

• Number of nodes: 5 

• Number of parts: 50 

• Buffer dimensions: 5 parts 

• Time machining raw parts: [1, 1, 5, 1, 10] 

• Time machining fault parts: [1, 1, 5, 1, 10] 

• Time testing: [1, 1, 5, 1, 30] 

• Probability test passed: [70%, 80%, 75%, 70%, 75%] 

• Moving time from T to br: [3, 3, 3, 3, 3] 

• Setup time: [100, 100, 100, 100, 100] 

This test has the goal to verify the correct operation of MPC_V1 algorithm. 

The prediction horizon has been chosen equal to four because this value was the right balance 

between useful prediction and sustainable computing time. 

For this test was built a plant with five nodes, furthermore the timings for machining and 

testing can cause bottlenecks. 

 

 

Figure 20: Test MPC_V1, Trend of θ 
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Figure 21: Test MPC_V1, Node #1 

 

 

Figure 22: Test MPC_V1, Node #3 
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Figure 23: Test MPC_V1, Setup Node #3 

 

Figure 20 represents the trend of θ controlled by MPC_V1, the possible range of values, as 

written in the description of the algorithm is [0; 4].  

From this test is important to highlight the capacity of the algorithm to carry out a process 

like the one in analysis but is also possible to find some defects, that arise from the specific 

features of MPC_V1.  

For example, Node #1 is responsible of the decrease of θ soon after time 500 because, as 

shows Figure 21, buffer br is full; this decrease, since θ is equal for every node, leads to the 

setup procedure of Node #3 reported in Figure 23.  

Since the setup for Node #3 is not necessary (br contains only one part, Figure 22), when 

the procedure finishes, machine M3 repeats the setup (setup=1) to return to work raw parts. 

Executing setups at the same time between various nodes is highlighted in this test as a 

defect, in other situations, as will be shown in the conclusive chapter, this procedure could 

be useful. In some conditions, interrupting production to execute setup in all the nodes at the 

same time could be a solution to save time. 
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3.5 MPC_V2 

The second version of the MPC algorithm also considers the system in its entirety, it will 

return for this reason a unique value θ, same for all the nodes. 

The difference with MPC_V1 is that in this case the sequence of θ along the horizon is 

variable; as before, the receding horizon approach permits to apply only the first value of θ 

from the best sequence returned by the algorithm. 

 

 

Figure 24: Searching best θ, MPC_V2 

 

Figure 24 presents an example of how MPC_V2 generates possible sequences of θ, 

specifically here the prediction horizon (PH) is equal to 3, from the technical point of view 

the search procedure of optimal θ works as follows: 

1. Simulation of the plant of one time instant with θ=2. 

2. Being the prediction horizon higher than one (PH=3), recall MPC_V2 with the new 

state generated from simulation and prediction horizon equal to two (subtracted one 

from the previous value). 

3. Simulation of the plant of one time instant with θ=1. 

4. Being the prediction horizon higher than one (PH=2), recall MPC_V2 with the new 

state generated from simulation and prediction horizon equal to one (subtracted one 

from the previous value). 

5. Simulation of the plant of one time instant with θ=0, θ=1 and θ=2. 
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6. Being PH=1, calculate three J functions (one for every θ simulated) and return the 

higher value to MPC_V2 at point 4.  

 

This list represents the path highlighted in green in Figure 24, in this example will be 

evaluated 27 difference sequences and MPC_V2 will return the value of θ that permits to 

maximize J after three k-steps. 

Function J is structured equal to the one used in MPC_V1, the equation is reported for 

completeness: 

 

𝐽 = 𝑏𝑛 + ∑ (𝑄1 ∗ 𝑀𝑖 + 𝑄2 ∗ 𝑏𝑚𝑖 + 𝑄3 ∗ 𝑏𝑟𝑖

𝑛_𝑛𝑜𝑑𝑒𝑠

𝑖=1

+ 𝑄4 ∗ 𝑇𝑖 + 𝑄5 ∗ 𝑏𝑓𝑖) ∗ 𝑖 − 𝑄6 ∗ 𝑠𝑒𝑡𝑢𝑝𝑖 

With 

 

𝑄6 > 𝑄5 > 𝑄4 ≥ 𝑄1 > 𝑄3 > 𝑄2 

 

3.5.1 Test: MPC_V2 

• Prediction horizon: 4 

• Number of nodes: 5 

• Number of parts: 50 

• Buffer dimensions: 5 parts 

• Time machining raw parts: [1, 1, 5, 1, 10] 

• Time machining fault parts: [1, 1, 5, 1, 10] 

• Time testing: [1, 1, 15, 1, 30] 

• Probability test passed: [70%, 80%, 75%, 70%, 75%] 

• Moving time from T to br: [3, 3, 3, 3, 3] 

• Setup time: [100, 100, 100, 100, 100] 

 

As we will see more specifically in the conclusive chapter, unless this approach should be 

more accurate than MPC_V1, MPC_V2 returns worst results in terms of production time. 

In the results from the test executed here, there are several situations in which it is evident 

that is not efficient control the whole plant with the same θ. 
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Figure 25: Test MPC_V2, Node #3 

 

 

Figure 26: Test MPC_V, Node #5 
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Figure 27: Test MPC_V2, Trend of θ 

 

This test shows that the algorithm works but is evident that use the same θ for all the nodes 

it’s not the right solution. Figure 25 for example shows the behaviour of node #3, at k equal 

to about 800, buffer br, containing only two parts, is emptied because at that time, θ reaches 

value 0, as shown in Figure 27.  

Same situation happens in node #5 (Figure 26) at k equal to about 650, 800 and 1050 when 

buffer br contained two parts the first time and one part the other two times. As in the 

previous case, in this moments θ is equal to 0.  

 

3.6 MPC_V3 

The third version of the algorithm is the more complex and complete, the most important 

difference between this one and the previous one is that here every node is optimized on its 

own.  

With this version of the algorithm every node calls its own MPC_V3 that has the goal to 

return the best sequence of θ, obviously the sequence is long as the prediction horizon. 

When the algorithm is called for node i, it receives as input the following variables: 

• x: contains the actual state of node i. 

• sim_data: contains all data simulation for node i. 
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• x_prev: contains the actual state of node i-1. 

• sim_data_prev: contains all data simulation for node i-1. 

• prediction: is the best sequence of θ for node i-1 that the algorithm had chosen shortly 

before. 

Is important that the MPC algorithm called for node i can simulate also node i-1 because has 

to know the behaviour, along the prediction horizon, of bf(i-1). 

When the algorithm is called before testing the three possible θ it will simulate the behaviour 

of the previous node, then the optimizing procedure is the same as MPC_V2, the scheme 

that explains the generation of possible sequences of θ is reported in Figure 28. 

 

 

Figure 28: Searching best θ, MPC_V3 

  

Another peculiarity of MPC_V3 is that has the possibility to return θ = -1, this negative value 

should permit to machine M, if br is empty, to wait an incoming part in state L2 without 

working or doing setup.  
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This feature is responsible for the structure of J: 

  

𝐽 = 𝑏𝑛 + 𝑄1 ∗ 𝑀 + 𝑄2 ∗ 𝑏𝑚 + 𝑄3 ∗ 𝑏𝑟 + 𝑄4 ∗ 𝑇 + 𝑄5 ∗ 𝑏𝑓) ∗ 𝑖 − 𝑄6 ∗ 𝑠𝑒𝑡𝑢𝑝 ∗ 𝑤𝑜𝑟𝑘𝑒𝑑

+ 50 ∗ 𝑤𝑜𝑟𝑘𝑒𝑑 

With 

 

𝑄6 > 𝑄5 > 𝑄4 ≥ 𝑄1 > 𝑄3 > 𝑄2 

 

Observing the form of function J is possible to find two important differences from the 

previous version: the absence of the summation and the presence of variable worked.  

The summation is not present because, as written before, the algorithm is optimizing only 

one node.  

Boolean variable worked assumes value 1 if, during the prediction, machine M has worked 

one or more parts, otherwise if machine M didn’t work anything worked will be equal to 0. 

In other words, the setup procedure will penalize the function only if is possible working 

parts during the prediction phase.  

Variable worked is fundamental for the proper operation of MPC_V3 because, without its 

presence if function J, the algorithm should maintain θ = -1 and never return to work raw 

parts. Thanks to variable worked, if the algorithm does not predict incoming parts in br, setup 

will not penalize J. 

  

3.6.1 Test: MPC_V3 

• Prediction horizon: 4 

• Number of nodes: 5 

• Number of parts: 50 

• Buffer dimensions: 5 parts 

• Time machining raw parts: [1, 1, 5, 1, 10] 

• Time machining fault parts: [1, 1, 5, 1, 10] 

• Time testing: [1, 1, 15, 1, 30] 

• Probability test passed: [70%, 80%, 75%, 70%, 75%] 

• Moving time from T to br: [3, 3, 3, 3, 3] 

• Setup time: [100, 100, 100, 100, 100] 
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This test highlights the capability of MPC_V3 to manage variable θ, different for each node. 

Figure 29 for example, representing behaviour of node #1, shows that when buffer br reaches 

the maximum value, at that time MPC algorithm decreases θ (Figure 30) and brings its value 

equal to -1. 

 

 

Figure 29: Test MPC_V3, Node 1 

 

 

Figure 30: Test MPC_V3, Trend of θ, Node #1 



41 

 

 

 

Figure 31: Test MPC_V3, Node #5 

 

 

Figure 32: Test MPC_V3, Trend of θ, Node #5 

 

Node #5 (Figure 31) it’s interesting because, there, the algorithm seems not working 

correctly; specially in the first part of the process, for three times, buffer br is emptied 

before reaching its maximum value.  
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Actually MPC is not responsible of those reworking processes but is the heuristic 

algorithm that, being in that moments buffer bf(4) empty, executes the setup to rework 

parts from br.   
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Chapter 4 

Results and conclusion 

 

 

 

 

 

 

This chapter presents the results of the tests carried out to verify the contribution of MPC 

algorithms making a comparison with the heuristic algorithm alone.  

In the first part every MPC approach will be compared with benchmark showing the 

capability of MPC to save time and to provide same or better performances with smaller 

buffers which therefore leads to economic savings. 

During the evaluation of performance between the MPC approaches was individuated the 

problem of the influence of testing results, to make a corrects comparison was important to 

have the same conditions.  

For this reason, the solution found was to execute different simulations using for every 

simulation one sequence of testing results, from machines T, and with that sequence compare 

the performances of the various approaches. 

In the last part of this chapter will be presented some possible future works to improve the 

MPC algorithm and allow it to deliver even better results. 
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4.1 Optimization of heuristic algorithm 

The first part of the evaluation of the MPC algorithms started from benchmark, was 

fundamental to evaluate the maximum performance that the heuristic algorithm could 

provide to the plant. 

To this aim was considered the following simulation: 

• θ = various 

• Number of nodes: 3 

• Number of parts: 50 

• Buffer dimensions: various 

• Time machining raw parts: [1, 1, 3] 

• Time machining fault parts: [1, 1, 3] 

• Time testing: [1, 3, 30] 

• Probability test passed: [70%, 80%, 70%] 

• Moving time from T to br: [10, 10, 10, 10] 

• Setup time: [100, 100, 100] 

 

The goal was to find the best combination between dimension of the buffers and θ that 

permits to provide the minimum production time. 

Obviously, it was taken for granted that, starting from a buffer dimension, the maximum θ 

that permits to end the simulation correctly without deadlock is the one that provides better 

production time. 

The combination of buffer dimension and θ was chosen to guarantee a sequence of 50 tests 

without deadlocks, for this reason some values are not considered, the production time 

reported in Table 4 corresponds to average times on the 50 tests executed. 

The result is that the best combination is buffer dimension equal to 10 and θ equal to 9. 
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Table 4: Benchmark optimization 

Buffers dimension θ Production time 

5 2 2139 

6 4 2120 

10 9 2041 

20 19 2047 

 

 

4.2 MPC VS Benchmark 

To compare the MPC algorithms with benchmark, the procedure has been the following: 

1. Simulate the plant controlled by the heuristic algorithm in its best conditions (buffer 

dimensions equal to 10 and θ equal to 9). 

2. Extract from the previous simulation the sequence of the testing results. 

3. Simulate the plant controlled by MPC algorithm using the testing results previously 

mentioned.  

 

4.2.1 MPC_V1 VS Benchmark 

The three figures reported (Figure 33, Figure 34, Figure 35) show the behaviour of every 

node in the two different simulations.  

It’s interesting to see that buffer br(1) in MPC reworks one part more than in benchmark, 

but, despite this fact, Node #1 in both the approaches end to process parts at the same time. 

About node #2 is important to highlight that, during the second emptying phase of br, that 

happens in both the approaches because bf(1) is empty, MPC has the possibility to rework 

one part less than heuristic because MPC is in advance against benchmark; this fact entails, 

for MPC, to waste more time later and finish processing in node #2 a little bit time after 

benchmark. 

In Node #3 MPC works faster than the benchmark and can finish the whole process with an 

advance of about 70 time steps. 
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Figure 33: MPC_V1 VS Benchmark, Node #1 

 

 

Figure 34: MPC_V1 VS Benchmark, Node #2 
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Figure 35: MPC_V1 VS Benchmark, Node #3 

 

4.2.2 MPC_V2 VS Benchmark 

The result from the comparison between MPC_V2 and benchmark is not so satisfactory and 

in the last part of the chapter will confirmed that MPC_V2 is not the best approach. 

In Node #1 (Figure 36) the behaviour between the two different algorithms is quite the same 

and the node in analysis finish its process at the same time. 

In the processing on Node #2 (Figure 37) MPC gains some delay against benchmark mostly 

because bf (2) is emptied slower and so also bm, this behaviour that seems to be a slowdown 

by MPC will provoke instead a gain of time in Node #3 (Figure 38).  

Buffer br(3) is controlled by MPC_V2 in a good way such that can save one setup against 

benchmark; the simulation ends with an advance of MPC_V2 of about 70 k (as MPC_V1).  
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Figure 36: MPC_V2 VS Benchmark, Node#1 

 

 

Figure 37: MPC_V2 VS Benchmark, Node#2 
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Figure 38:  MPC_V2 VS Benchmark, Node#3 

 

4.2.3 MPC_V3 VS Benchmark 

Results of the test are plotted in Figure 39, Figure 40 and Figure 41.  

The behaviour of MPC_V3 is quite similar to the one of MPC_V2, also in this case the MPC 

algorithm can optimize production and save the same time as the other approaches. 

It’s understandable the reason why this approach and the previous have the same behaviour, 

this happens because there are not situations in which θ has to control different nodes. 

Even if seems that the three approaches have the same or similar behaviour will be 

demonstrated that in other situations the control actions of the three algorithms are different 

between each other.  
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Figure 39: MPC_V3 VS Benchmark, Node #1 

 

 

Figure 40: MPC_V3 VS Benchmark, Node #2 
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Figure 41: MPC_V3 VS Benchmark, Node #3 

 

4.3 Evaluation MPC performance 

In this section will be presented the last comparison, the target was to evaluate the influence 

of MPC algorithms with many tests. 

To do this analysis have been evaluated the following simulation: 

• Prediction horizon: 4 

• θ = 3 

• Number of nodes: 4 

• Number of parts: 50 

• Buffer dimensions: 5 parts 

• Time machining raw parts: [1, 1, 1, 3] 

• Time machining fault parts: [1, 1, 1, 3] 

• Time testing: [1, 1, 5, 30] 

• Probability test passed: [70%, 80%, 75%, 70%] 

• Moving time from T to br: [10, 10, 10, 10] 

• Setup time: [100, 100, 100, 100] 
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This test was repeated 100 times, every time the heuristic algorithm generated a random 

sequence of testing results and after having simulated its process the three approaches was 

tested using the same sequence previously generated.  

 

Table 5: Comparison between approaches, time to complete simulations 

 
BENCHMARK MPC_V1 MPC_V2 MPC_V3 

Total time (Average) 2300 2270 2298 2200 

Improvement (%)  100% -2% 0% -4% 

Variance  28000 28000 30000 22000 

 

 

Table 5 reports general results of this test, in detail the first raw indicates the average time 

that every approach needed to complete a simulation. The second raw indicates in percentage 

the difference between benchmark and every MPC.  

The last raw correspond to the variance between the one hundred tests executed on every 

approach. 

Is evident that MPC_V1 and MPC_V3 provide an improvement, even if in limited 

percentages, on the other hand MPC_V2 do not returns an interesting result. 

Other statistical analyses are now presented to understand better the results, starting from 

Table 6 than analyses more specifically the timings to conclude the simulations.  

The three rows of the table indicate, on the 100 tests, how many simulations provided a 

better, a worse or the same time against benchmark. The first column of every approach 

divides the 100 tests in the three categories just explained while the second one contains the 

average of the increase or decrease from benchmark timings. 
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Table 6: Differences of time between benchmark and every approach 

 
MPC_V1 MPC_V2 MPC_V3 

 

% Average difference % Average difference % Average difference 

# of tests better time/100 45 203 47 155 55 170 

# of tests worse time/100 50 120 53 130 36 80 

# of tests same time/100 5 
 

0 
 

9 
 

 

 

Table 7: Quartiles of the differences of time between benchmark and every approach 

 
 

Quartiles 

Approaches 0% 25% 50% 75% 100% 

MPC_V1 -464 -99 -1 167 582 

MPC_V2 -401 -132 -28 130 542 

MPC_V3 -272 -49 15 143 458 

 

 

 

Figure 42: Distribution of the difference of time between benchmark and MPC_V1 
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Figure 43: Distribution of the difference of time between benchmark and MPC_V2 

 

 

Figure 44: Distribution of the difference of time between benchmark and MPC_V3 

 

Table 7 divides in quartiles the differences between the time returned by heuristic and the 

time of every approach, so a negative result means that heuristic was faster than MPC, 

instead positive result means the opposite. 
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The three histograms (Figure 42, Figure 43, Figure 44) contain, for every approach, the 

distribution of the difference between production time of benchmark and production time of 

MPC. 

Table 6 highlights that 50% of MPC_V1 tests spends less or the same time than heuristic, 

MPC_V3 instead has this percentage equal to 64%.  

Looking to Table 7 MPC_V1 presents positive and negative peaks wider than MPC_V3, but 

Figure 42 and Figure 44 show that on average MPC_V3 returns better times respect to 

MPC_V1.  

Table 8 presents statistics on setups executed on average by every approach; obviously the 

type of control that characterize MPC_V1 and MPC_V2 brings to provoke more setups than 

heuristic. On the other hand, MPC_V3 demonstrate to be able to do not waste time in setups 

as expected.  

 

Table 8: Statistics on setups 

 
HEURISTIC MPC_V1 MPC_V2 MPC_V3 

Average # of setups 35 38 36 31 

Improvement (%)  100% +9% +3% -11% 

Variance  34 56 40 35 

Max-Min value 49-20 51-18 50-19 46-14 

 

 

Despite MPC_V2 should return better results than MPC_V1, is evident from all the results 

that the procedure of generating a variable predicted sequence of possible θ it’s not a good 

solution. 

In conclusion, the approach of controlling individually every node is a more robust solution 

than control the nodes all together, but is important to highlight that in some situations, 

manage the production in a synchronous way could return a better result.  

Controlling the nodes with the same θ means emptying buffers br at the same time and most 

important means executing the setup in a coordinated way, sometimes this control technique 

permits to avoid bottlenecks. 
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4.4 Possible future works 

Starting from the results just explained, in future could be interesting to proceed with the 

following improvements: 

• Design a new version of the algorithm that units the approaches of MPC_V1 and 

MPC_V3; this new technique could be useful to control the nodes in an autonomous 

or in a coordinated way depending on whether one or the other approach is better 

every instant for the plant. 

• A second improvement could be designing an algorithm that has the task to control 

all the plant and not only variable θ, obviously the level of complexity could increase 

but the results can be even more evident. 

• Another interesting step could be considering a multi-product production with 

deadlines to respect and eventually also considering decay of raw material. 
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