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Abstract

In the last decades, the performances of computing systems have remarkably

grown, driven by the scaling of electronic devices predicted by Moore’s law.

However, as the scaling process has been brought forward, some physical

limitations of transistors operation, such as the increase of leakage current,

have emerged. This has led to the flattening of the operating frequency

increase, in order to limit the power dissipation and the consequent excessive

temperature increase of the chip. Therefore, as speed cannot be further increased

at the device level, other solutions have to be found in order to improve the

performances.

In addition, current computing systems are based on the von Neumann

architecture, where processing (CPU) and memory units are physically sepa-

rated. This separation causes a remarkable inefficiency, since the data have

to be continuously transferred between memory, where they are stored, and

CPU, where they are processed, and vice versa. This operation consumes large

amount of energy and make memory access time much slower than processor’s

speed, issue commonly referred to as memory wall.

These limitations are becoming more and more evident, since emerging data-

intensive tasks, such as the internet of things and artificial intelligence, need

for storage and processing huge amount of data, typically unstructured. For

this reason, new computing paradigms such as neuromorphic computing, which

aims at replicating the dense neural networks of the human brain, composed of
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neurons and synapses, have been deeply investigated in recent years. Indeed,

thanks to synapse plasticity, biological neural networks are able to both store

and process information with high speed and extremely low power consumption,

thus achieving a huge parallelism, making them suitable for typical machine

learning tasks, such as image and speech recognition.

Emerging memory technologies are very promising candidates to achieve

efficient computing approaches like neuromorphic computing, since they can

complement the memory hierarchy of current computing systems, enabling an

improvement in scaling and speed. Moreover, thanks to their unique physical

properties and structure, they can be assembled in crosspoint architecture,

which allows the hardware implementation of neuromorphic systems. Among

all types of emerging memories, resistive switching memory (RRAM) stands

out thanks to its excellent scalability, high switching speed, good endurance,

low fabrication cost and the possibility to program the cell at different resistive

values, i.e. achieving multilevel operation. In particular, the latter feature is

crucial for neural networks implementation in hardware, as it allows to obtain

analog programming behavior.

However, RRAM devices show serious reliability issues, such as resistance

fluctuations over time and programming variability, which strongly limit their

adoption for emerging data-centric applications. For this reason, advanced

programming techniques, such as program/verify algorithm, have been proposed

in order to limit the RRAM programming variability.

This thesis focuses on the study of multilevel programming variability of

a 4-kbit aluminum-doped hafnium oxide (HfAlO) RRAM array under pro-

gram/verify algorithm and proposes a statistical model able to explain and

predict the cycle-to-cycle (C2C) and device-to-device (D2D) variability of

experimental data.
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After an extensive introduction on the challenges that the semiconductor

industry is nowadays facing, chapter 1 presents an overview of the most im-

portant emerging memory technologies, namely RRAM, phase change memory

(PCM), spin transfer torque magneto-resistive memory (STT-MRAM) and fer-

roelectric memory (FeRAM). Then, the main solutions adopted for the physical

implementation of neural networks in resistive switching devices crosspoint

arrays are addressed.

Chapter 2 reports a detailed description of the physical properties of RRAMs,

focusing, in particular, on the phenomena accounting for the switching mecha-

nism and programming variability.

In chapter 3, after the description of the 4 kbit HfAlO RRAM array used

in this work, the program/verify algorithm used to program it and obtain

multilevel operation is presented. In the second part of the chapter, the

variability data of an endurance experiment performed on the array are shown,

analyzed, and a physical explanation of results is given.

Chapter 4 presents the statistical model developed to predict the program-

ming variability of the HfAlO RRAM array. The model is able to simulate

the programming characteristic under external program/verify conditions. The

variability is then reproduced in simulation thanks to the introduction of a

statistics in the model’s parameters, by the Monte Carlo method. The second

part of the chapter illustrates the steps followed to tune the model on the

experimental data.

Chapter 5 presents the software implementation of a 5-level multilayer

neural network using HfAlO RRAM devices as synaptic devices. First, different

program/verify techniques are proposed and simulated via the statistical model

in order to investigate their impact on the multilevel programming variability.

Finally, after the description of the phases used to design and train the net-
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work, the network ability to classify handwritten digit images under different

programming techniques is tested and discussed.
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Sommario

Negli ultimi decenni le prestazioni dei sistemi di computazione sono notevol-

mente aumentate, grazie alla riduzione della dimensione dei dispositivi elettron-

ici pronosticata dalla legge di Moore. Questa riduzione ha però fatto emergere

delle limitazioni fisiche sul funzionamento dei transistor, come per esempio

l’aumento della corrente parassita nello stato di off. Per questo motivo la

frequenza alla quale i processori operano non è stata aumentata negli ultimi

anni. Ciò ha consentito di limitare la dissipazione di potenza, che altrimenti

avrebbe fatto crescere eccessivamente la temperatura dei chip, mettendone a

rischio l’affidabilità e il funzionamento. Di conseguenza, non essendo possibile

aumentare la velocità di calcolo a livello del dispositivo, è necessario trovare

delle nuove soluzioni per aumentare le prestazioni.

Inoltre i sistemi di computazione attuali sono basati sull’architettura di

von Neumann, caratterizzata dalla separazione fisica tra unità di computazione

(CPU) e di memoria. Questa separazione è motivo di una notevole inefficienza,

in quanto i dati devono essere continuamente trasferiti dalla memoria, dove sono

immagazzinati, alla CPU, dove sono processati, e viceversa. Questa operazione

consuma grandi quantità di energia e mette in risalto la differenza fra il più

lento tempo di accesso alla memoria e la velocità del processore, problema che

prende il nome di memory wall.

Negli ultimi anni l’emergere di nuove applicazioni che richiedono la ges-

tione e la memorizzazione di grandi quantità di dati non strutturati, come
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l’intelligenza artificiale o l’internet delle cose, ha ulteriormente enfatizzato

le suddette limitazioni dei sistemi di calcolo. Per questo motivo sono stati

studiati con attenzione nuovi paradigmi di computazione come il neuromorphic

computing, il quale mira a replicare le dense reti neurali, composte da neuroni

e sinapsi, che caratterizzano il cervello umano. Infatti le reti neurali biologiche,

grazie alla plasticità delle sinapsi, sono in grado sia di memorizzare che di

processare le informazioni velocemente e con il consumo di modeste quantità di

potenza. Ciò rende possibile ottenere un alto livello di parallelismo, requisito

fondamentale per la realizzazione delle tipiche attività di machine learning,

quali riconoscimento di immagini o suoni.

Le memorie emergenti sono degli ottimi candidati per realizzare questi

approcci computazionali più efficienti, perché completano la gerarchia di memo-

ria che caratterizza i sistemi di calcolo attuali, migliorandone la velocità e la

possibilità di ridurne le dimensioni. Inoltre, grazie alla loro struttura e alle loro

particolari proprietà fisiche, possono essere assemblate in architetture chiamate

crosspoint, le quali permettono l’implementazione di sistemi neuromorfici. Tra

i vari tipi di memorie emergenti quelle a switching resistivo (RRAM) si distin-

guono per eccellente scalabilità, alta velocità di switching, ottima endurance,

scarso costo di fabbricazione e possibilità di programmare le celle in più di

due stati resistivi, ottenendo così un funzionamento multilivello. In particolare,

quest’ultima caratteristica è fondamentale per l’implementazione in hardware

delle reti neurali, perché permette di realizzare una programmazione analogica

delle celle.

Sfortunatamente, però, i dispositivi RRAM presentano dei seri problemi di

affidabilità, come la fluttuazione della resistenza nel tempo e la variabilità di

programmazione, che limitano fortemente l’utilizzo di tali memorie in appli-

cazioni in cui devono essere gestite grandi quantità di dati. Per questo motivo
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al fine di limitare la variabilità di programmazione, sono state proposte delle

avanzate tecniche di programmazione, come l’algoritmo di program/verify.

In questa tesi viene trattata la variabilità di programmazione multilivello di

un array da 4 kbit composto da RRAM di ossido di afnio drogato con alluminio

(HfAlO), sotto le condizioni di un particolare algoritmo di program/verify.

Inoltre viene proposto un modello statistico in grado di spiegare e predire la

variabilità ciclo a ciclo (C2C) e device a device (D2D) dei dati sperimentali.

Dopo un’introduzione sulle attuali sfide del mondo dell’elettronica, il capitolo

1 presenta un riepilogo delle memorie emergenti più importanti, ossia RRAM,

memorie a cambiamento di fase (PCM), memorie magnetiche a spin transfer

torque (STT-MRAM) e memorie ferroelettriche (FeRAM). In seguito sono

affrontate le principali soluzioni adottate per implementare le reti neurali in

array crosspoint di memorie resistive.

Il capitolo 2 riporta una descrizione dettagliata delle proprietà fisiche delle

RRAM, concentrandosi in particolare sui fenomeni che determinano il meccan-

ismo di switching e la variabilità di programmazione.

Nel capitolo 3, dopo la descrizione dell’array da 4 kbit di RRAM in HfAlO

studiato in questa tesi, viene presentato l’algoritmo di program/verify utilizzato

per programmare i dispositivi e ottenere un funzionamento multilivello. In

seguito vengono mostrati i dati di variabilità ricavati da un esperimento di

endurance e ne viene data una spiegazione fisica.

Il capitolo 4 presenta il modello statistico sviluppato per predire la variabil-

ità di programmazione dell’array di RRAM. Il modello è in grado di simulare

la caratteristica di programmazione sotto le condizioni di program/verify ap-

plicate esternamente. La variabilità è poi riprodotta in simulazione grazie

all’introduzione di una statistica nei parametri del modello, secondo il metodo

Monte Carlo. Nella seconda parte del capitolo, inoltre, vengono illustrati i

passaggi seguiti per tarare il modello sui dati sperimentali.
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Il capitolo 5 presenta l’implementazione in software di una rete neurale

multistrato a 5 livelli, che utilizza le RRAM come dispositivi sinaptici. In un

primo tempo sono proposte e simulate attraverso il modello statistico diverse

tecniche di program/verify, al fine di analizzare come queste impattino sulla

variabilità di programmazione multilivello. Infine, dopo la descrizione delle

fasi di progettazione e training della rete, viene proposto un confronto fra

le accuratezze in classificazione della rete, ottenute applicando le tecniche di

programmazione selezionate.
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Chapter 1

Emerging memory devices

and architectures for

neuromorphic computing

This chapter presents the challenges and developments that the semicon-

ductor industry is facing nowadays. As the data to be managed by computers

continue to increase to sustain emerging applications such as artificial intel-

ligence or the internet of things, current computing systems and devices are

showing their limits in terms of time and energy efficiency and scalability.

Thanks to their unique physical properties, emerging memory devices represent

a promising solution to overcome such limitations, as they can replace classical

memories in the memory hierarchy and can be used to develop new computing

paradigms, called neuromorphic computing systems, which aim at replicating

the more energy-efficient structure of the human brain. After a more exhaustive

introduction of the context, an overview of the most important emerging memory

technologies is given, along with the description of new architectures where they

can be assembled. Finally, the solutions adopted to implement in hardware a

neuromorphic system are addressed.
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1. Emerging memory devices and architectures for neuromorphic computing

1.1 Introduction

The technological development of the last decades has radically changed

peoples’ habits about communication, interaction, learning and many other

aspects of everyday life. The internet has strongly modified how information

is retrieved and shared, by making it available to everyone who has a connec-

tion. The advent of social media has even reinforced this trend, exponentially

increasing the number of pictures, videos, texts that are daily shared between

users. Moreover, smartphones, laptops and tablets have been manufactured

following a frenetic rhythm, and the era of internet of things (IoT), where not

only people, but also objects are fully connected, has already begun. Ultimately,

emerging applications like artificial intelligence (AI) are exploding, as machines

are able to recognize objects or sounds, learn patterns and take autonomous

decisions.

In this scenario, it is evident that the amount af data which has to be

managed by computers has become huge. In particular, such data are mostly

unstructured, meaning that they are not ordered and cataloged, but appear in

very different formats, from text files to audio, video and images. An efficient

management and analysis of such data is therefore needed in order not to limit

the remarkable technological development of the last decade. However, current

computing systems, even the most advanced ones, are highly inefficient in such

management and, since the amount of data will inevitably increase, novel and

innovative systems have to be developed.

The reasons for such inefficiency can be cataloged into two different aspects,

namely the limitation on device scaling, often referred to as end of Moore’s law

and the architecture of current computing systems, known as von Neumann

architecture, which is characterized by the physical separation between the

processing unit (CPU) and the memory unit. In particular, this separation

emphasizes two issues: the growing performance gap between computational

2



1. Emerging memory devices and architectures for neuromorphic computing

speed and memory access time, also known as memory wall and the energy

dissipation due to the continue transfer of data between CPU and memory,

also known as von Neumann bottleneck. In the following these problems are

quickly addressed.

Since its early years of development, electronics has been matched with

Moore’s law, which states that transistor count per integrated circuit would

double every two years [1]. The semiconductor industry evolved alongside

this law, first thanks to Dennard’s scaling rules [2] (a period that was called

geometric era [3]), then thanks to advances in both process integration and

parallel design which helped to overcome some physical limits that industry

was facing (effective scaling era [3]). However, in order to match the increasing

requirements on static power consumption and limit the stand-by leakage

current, the operating voltage was not scaled under the limit of 1V [4, 5]. As a

consequence, also the clock frequency increase was stopped, in order to limit

the rise of areal power density, which would have reached unsustainable levels,

thus compromising circuit operation and other critical features such as battery

life [4, 6]. This is why clock frequencies have reached a plateau and cannot

be further increased, meaning that the performance improvement must be

achieved by following other paths.

On the other hand, the aforementioned physical separation between CPU

and memory, typical of the von Neumann architecture, is the other issue limiting

the current computing systems performance. In the last decades, the rate of

improvement in CPU speed largely exceeded the improvements in memory

access speed [7]. This led to the creation of a performance gap known as

memory wall. It means that accessing memory to read or write data takes so

long, that the whole computing system speed is determined by the memory. In

addition, the separation does not affect performances only in terms of time,

but also in terms of energy consumption, since data must be continuously
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moved from CPU, where they are processed, to off-chip memory, where they are

stored, and vice versa. This problem, commonly referred to as von Neumann

bottleneck, is expected to be exacerbated as applications become more data

centric, where computing tasks consists of machine-learning operations such as

object, image, and speech recognition [3].

Historically, in order to mitigate the bottleneck, the most promising ap-

proach was to bring the memory closer to the processing unit, even on the same

chip, exploiting a hierarchy of volatile and non-volatile data storage devices [8].

Cache memories, implemented by static RAM (SRAM) technology, are directly

integrated on the processor chip, while the main memory, implemented by

dynamic RAM (DRAM) technology is located on a separate chip. Unlike the

latter ones, which are volatile, non-volatile memories like hard disks (HDD) or

Flash are used for data storage. However, despite the efforts in the introduction

of such hierarchy, it is clear that the separation between the main memory and

the CPU still represents the main limit in time and energy performance.

Unlike digital computers, the human brain processes and stores information

encoded by brief spikes within neurons and synapses of dense neural networks,

which enables very high processing speed and extremely low power consumption

of only 20 Watts [9,10]. For these reasons, the research focused on neuromorphic

computing in the last years. It is a paradigm which aims at emulating the

neural architecture of the human brain in terms of structure and operation to

realize compact, real-time, and energy-efficient computing systems. The idea

to realize such systems is to carry out calculations in situ, inside the memory

itself, offering a clear advantage by totally removing the latency and energy

burdens of the von Neumann bottleneck [11].

Many applications which are now widely used such as face or voice recogni-

tion, are achieved by running neural networks with many layers of neurons and

synapses, also known as deep neural networks, which are capable of extracting
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information from very large datasets using deep learning techniques [12, 13].

However, they are still implemented on current computing systems, i.e. on

typical von Neumann architectures, which strongly limits their performances

in terms of time and power consumption. The important step that has to be

made through neuromorphic computing is implementing such networks in a

more efficient way, avoiding the limitations introduced by the bottleneck.

To achieve such result, researchers focused on a new class of emerging

nonvolatile memory devices in the last years. These are generally grouped

under the name resistive switching devices, and have unique storage principles

which are not based on charge, as in conventional Flash memory, SRAM and

DRAM. The storage concept relies instead on the physics of the active materials

and the device where they are integrated. These memories, which are all two-

terminal devices, include resistive switching RAM (RRAM), phase change

memory (PCM), spin transfer torque magneto-resistive RAM (STT-MRAM),

and ferroelectric RAM (FeRAM) [11]. Moreover, not only new devices are

required for implementing novel computing concepts such as neuromorphic

computing, but also new architectures that fully exploit the aforementioned

features of emerging memories. Crosspoint array is the main solution to arrange

in a smart and compact way such memories [11].

Emerging memories, thanks to their two-terminal structure and storage

concept, have unique advantages in density and access time with respect to

classical memories (DRAM, Flash, HDD). For these reasons they are good

candidates to overcome the incoming end of Moore’s law and replace the clas-

sical memories in storage applications. However, one of the most promising

field related to emerging memories and new architectures is certainly neuro-

morphic computing, as it can radically change the way computing systems are

structured and operated, getting rid of the von Neumann bottleneck. In any

case, the development of such structures is still at a first stage, due to some
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1. Emerging memory devices and architectures for neuromorphic computing

Figure 1.1: Comparison of different memory technologies. Emerging memories

(RRAM, PCM, FeRAM, STT-MRAM) fill the memory gap between DRAM

and Flash and are easier to be vertically stacked reducing the cell size in a

vertical or crossbar array configuration. Reprinted with permission from [3].

Copyright 2018 Nature Springer, license number 4795990052879.

emerging memories drawbacks, firstly programming variability. This work will

be therefore strongly focused on this aspect.

In this chapter, after an overview of the most important resistive mem-

ory devices and architectures, the realization of neural networks capable of

neuromorphic computing into crosspoint arrays is addressed.

1.2 Emerging non-volatile memory devices

Figure 1.1 compares the most important memory technologies, including

both classical and emerging device concepts. The latter ones, namely resistive

switching random access memory (RRAM), phase change memory (PCM),

ferroelectic memory (FeRAM) and spin-transfer torque magnetic memory (STT-

MRAM), have comparable values in speed, write voltage and size. Moreover,

they have particular features that make them suitable for filling the performance
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gap between DRAM and Flash or HDD. Indeed, they are nonvolatile, but

have much higher write speed (∼ 5 − 10ns) and smaller write voltage (<

3V) than Flash, which brings them closer to the DRAM specifications [3].

Moreover they are more scalable and, since they use a different set of materials

and require different device fabrication processes from Flash, they can be

easily monolithically integrated on-chip with the microprocessor cores, enabling

high-bandwidth data traffic between them [8]. Last two columns on the

right illustrate the great advantage in scalability that could be achieved using

RRAMs or PCMs assembled in 3D architectures. Indeed, by exploiting the

third dimension and vertically stacking several devices, it is possible to reduce

the effective cell size down to the minimum value 4F 2

N
, where F is the minimum

lithographic feature size and N is the number of levels stacked.

Most importantly, figure 1.1 summarizes the generic specifications of emerg-

ing memories and their advantages with respect to classical memories. Now a

brief description of the physical principles that account for their operation is

given.

1.2.1 Phase Change Memory (PCM)

Phase change memories are based on the so-called phase change materials,

namely substances which release or absorb sufficient energy to encounter phase

transition. In particular, regarding PCMs, such transition is from amorphous to

crystalline phase. Many materials exist in an amorphous phase and a crystalline

phase, however, a very small subset of these materials have simultaneously

all the properties that make them useful for data storage technologies [14].

These are the chalcogenides, such as Ge2Sb2Te5 (GST), whose most important

feature is the strong difference in terms of electrical conductivity between the

amorphous phase (high resistance) and the crystalline phase (low resistance),

which can be of to five orders of magnitude [14].
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Figure 1.2: (a) Cross section of the typical mushroom structure, composed by a

pillar-like bottom electrode which acts as a heater and by a hemispherical shape

in which the amorphous material develops. (b) Time evolution of temperature

when electrical pulses are applied to set, reset and read the cell. To obtain the

amorphous reset state, a very short pulse with high amplitude is applied at the

top electrode leading to overcome the melting temperature, which results in

amorphization of the active material. To achieve the set state, instead, a longer

pulse with low amplitude allows to reach the crystallization temperature, thus

leading to active material crystallization. Reprinted with permission from [14].

Copyright 2010 IEEE.

Figure1.2 shows a cross section of a conventional PCM structure (a) and

the temperature as a function of time for the different electrical pulses that

are applied to set, reset and read the cell (b). The structure shown in (a) is

usually named mushroom type, since the bottom electrode has a pillar-like

shape that act as a heater and the amorphous region usually develops itself in

a hemispherical shape at the bottom electrode level.

The pristine device is always in the crystalline phase, since the processing

temperature of the back end of the line (BEOL), where it is fabricated, is

sufficient to crystallize the phase change material. To reset the PCM cell

into the amorphous phase, the programming region is first melted and then

8
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quenched rapidly by applying a large electrical current pulse for a short time

period. This leads to a region of amorphous, highly resistive active material

in the PCM cell. To set the PCM cell into the crystalline phase, an electrical

current pulse of medium amplitude is applied to anneal the programming region

at a temperature between the crystallization temperature and the melting

temperature for a time period long enough to crystallize.

PCMs present set and reset distributions with high resistance window, i.e.

the ratio between high-resistance state (HRS) and low-resistance state (LRS),

which allows the storage (and retaining over time) of more than 1 bit of data

per cell, i.e. multilevel operation, the ability to read/sense the resistance states

without perturbing them, high endurance (> 1012 as shown in figure 1.1), and

long data retention (usually specified as 10 year data lifetime at some elevated

temperature) [15]. On the other hand, a disadvantage in PCM operation is the

limitation in operating speed given by the set programming time. Indeed, the

set transition is not immediate, since it takes finite time to fully crystallize the

amorphous region [14], unlike what happens during reset transition where a

very short time is sufficient to achieve the phase change, as shown in figure

1.2 (b). Moreover, PCMs are affected by the drift phenomenon, which consists

in the increase in the electrical resistance of the amorphous state with time

at room temperature. Such issue, which is caused by the amorphous material

structural relaxation, i.e. the thermally-activated, atomistic rearrangement of

the amorphous structure [16], is unwanted because it is not controllable and

might undermine the multilevel operation of the memory making the different

levels indistinguishable [14].

1.2.2 Resistive-switching RAM (RRAM)

Figure 1.3 shows the schematic structure and operation of an RRAM device.

The device consists of an insulating layer, usually a metal oxide (MeOx),
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Figure 1.3: RRAM device structure and operation. (a) Pristine device: the

simple metal-insulator-metal (MIM) typical structure is underlined. (b) LRS:

after the electroforming operation, a conductive filament (CF) connecting BE

and TE is created, largely increasing the device conductance. (c) HRS: after

the reset operation, the CF is dissolved leaving however some clusters close to

the two electrodes. Reprinted with permission from [17]. Copyright 2016 IOP

publishing.

interposed between a top electrode (TE) and a bottom electrode (BE), both

generally realized by metallic layers or stacks (figure 1.3 (a)). The device

is initially subjected to the operation of electroforming, where a conductive

filament (CF) is formed by dielectric breakdown (figure 1.3 (b)). After forming,

the device exhibits a significant increase in electrical conductivity, as the CF

connects the TE and BE, thus resulting in the LRS of the RRAM. The reset

operation can then be carried out to disconnect the CF, resulting in the HRS,

as shown in figure 1.3 (c). Alternating the set and reset operation, the CF can

be repeatedly connected/disconnected, thus allowing multiple transition cycles

between HRS and LRS [17]. It is important to underline that during forming

and set operation the current is typically limited by a compliance system or a

series resistor/transistor, in order to control the size of the CF and avoid the

destructive (hard) breakdown of the switching layer [17].

There are two main methods of resistive switching: unipolar, in which

both set and reset are obtained through the application of voltage pulses

10
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Figure 1.4: (a) Unipolar typical IV characteristic. Both set and reset operations

happen at voltages of same polarity (positive in the figure). (b) Bipolar

IV characteristic, showing that set transition is achieved at positive voltage,

while reset at negative. Both cases show the importance of a limitation in

current (compliance current IC) during the set, crucial to avoid the oxide

hard breakdown. Reprinted with permission from [17]. Copyright 2016 IOP

publishing.

with the same polarity and bipolar, where the set transition generally occurs

at positive voltage and reset at negative voltage. Figure 1.4 illustrates the

typical I-V characteristic for both operations. While unipolar switching is

based on the purely thermal acceleration of red-ox transitions [18], bipolar

switching relies on ionic migration assisted by the temperature and the electric

field [19]. During the reset, ionized defects, within the CF migrate toward the

TE, which is negatively biased, thus depleting the CF in correspondence to

the highest temperature region. The displaced defects are re-injected into the

depletion region in the subsequent set operation, conserving the total number of

defects [17, 19]. For this reason, bipolar devices usually show better endurance

properties and uniformity than unipolar ones [20]. In chapter 2, a deeper

explanation of the switching mechanism in bipolar RRAMs will be addressed,

focusing in particular on the difference between the graduality of set and reset

transitions, shown in figure 1.4 (b).
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Note that the type of defects which constitutes the CF can be different,

but generally they are divided into two families, which represent two different

types of devices:

• OxRAM where the metal oxide and top electrode are made of transition

metals. In this case oxygen vacancies are introduced by the TE in the

dielectric and move towards the BE, thus creating the CF.

• CBRAM (conductive bridge RAM) where TE is made of active metals

(like Cu or Ag), whose high-mobility cations migrate under the electric

field leading to the generation of CF.

The main difference between these two types of RRAMs is the resistive

window, as CBRAMs display a factor of about 104, while OxRAMs show

102 [17]. Despite this, both devices show very similar electrical properties

[21,22], suggesting a common classification in advantages and drawbacks of such

memories. The promising features are excellent scalability [23], high switching

speed (∼ 10ns), low current operation, excellent endurance (> 107), and good

CMOS compatibility [8]. However, RRAM suffers from severe reliability issues,

such as resistance fluctuations and switching variability, which will be addressed

in chapter 2.

1.2.3 Spin transfer torque magnetoresisistive RAM

(STT-MRAM)

STT-MRAM is based on the magnetic tunnel junction (MTJ), which is a

device consisting of two ferromagnetic thin films separated by a tunnel oxide

barrier as shown in figure 1.5 (a), (b). The magnetization direction of one

ferromagnetic layer, called pinned layer (PL), is fixed, while the magnetization

direction of the other ferromagnetic layer, called free layer (FL), can freely

rotate.
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Figure 1.5: (a) Set transition in STT-MRAM. Only electrons with spin parallel

to the PL magnetization tunnel through the barrier and reach the FL triggering

the magnetization inversion by STT. (b) Reset transition. The electrons whose

spin is anti-parallel to the FL magnetization, are reflected at the PL-barrier

interface and are injected back to the FL, inducing the transition to HRS.

Reprinted with permission from [24]. Copyright 2012 Elsevier. (c) Typical R-V

characteristic of a STT-MRAM. Noteworthy features are the abrupt transition

of both set and reset and the limited resitive window. Reprinted with permission

from [25]. Copyright 2019 IEEE.

The resistance depends on the relative orientation of magnetization in the

two ferromagnetic layers. In case of parallel orientation (P), the resistance is

low (LRS), while it is high (HRS) in the case of anti-parallel (AP) configuration.

In set transition (AP to P, figure 1.5 (a)), electrons flow from the pinned layer

to the free layer. As electrons pass through the pinned layer, only the ones

with the same spin direction corresponding to the pinned layer magnetization

are able to tunnel, whereas the others are reflected back towards the electrode.

This spin-polarized current exerts STT on the magnetization of the free layer,

and when the amount of spin-polarized current exceeds the threshold value,

the magnetization of the free layer is switched. On the contrary, in the reset

transition (P to AP, figure 1.5 (b)) polarity is reversed and current flows from

the FL to the PL. In this case, the electrons reflected at the PL barrier interface,
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i.e. the electrons whose spin is opposite to the pinned layer magnetization, are

re-injected into the FL, triggering the FL magnetization switching [24].

The great advantages of STT-MRAM are the fast read/write access time [26],

and the extremely high cycling endurance (> 1015), due to the fact that no

atom moves during the set and reset operations, and only a breakdown in the

tunnel oxide barrier can limit it. However, unlike PCM and RRAM, the use of

STT-MRAM in neuromorphic applications is less immediate, since they are

less suitable to analogue programming and multilevel operation. Indeed, the

set and reset transitions are typically binary and the ratio between HRS and

LRS is small in STT-MRAM, as shown in figure 1.5 (c) [25].

1.2.4 Ferroelectric RAM (FeRAM)

Ferroelectric random access memory (FeRAM) is a nonvolatile memory,

which relies on the polarization switching in a ferroelectric (FE) material,

such as a perovskite material (PZT, PbZrT iO3, or SBT, SrBi2Ta2O9) [27] or

doped-HfO2 [28]. The typical structure consists of a MIM stack, where the

insulator layer is made with a ferroelectric material, as shown in figure 1.6 (a).

The application of an external bias determines the orientation of the electric

dipoles within the FE material, as shown in the polarization-voltage (P-V)

characteristic of figure 1.6 (b), where the polarization is the electric dipole

moment per unit volume. In particular, when the external bias is brought back

to 0, the FE material exhibits a residual polarization (Pr), whose polarity is the

same as the one of the external bias applied. On the other hand, the minimum

voltage needed to achieve a polarization switching is the coercive voltage (Vc),

as shown in figure 1.6 (b).

Note that FE switching does not impact on the MIM resistance, as the

latter is not sensitive to the FE polarization itself, meaning that FeRAMs

cannot be used as resistive memories. On the other hand, the displacement
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Figure 1.6: (a) Illustrative sketch of a FeRAM MIM structure (b) Polarization-

voltage characteristic, typical of FE materials, where are highlighted the residual

polarization Pr, i.e. P when external bias is brought back to 0, and the coercive

voltage Vc, i.e. the minimum voltage needed to invert polarization polarity. (c)

Ferroelectric field-effect transistor (FeFET), where the FE polarization of the

FE dielectric layer dictates the threshold voltage, thus serving as a nonvolatile

memory and synaptic weight element. Adapted with permission from [29].

Copyright 2019 IOP Publishing.

current induced by the polarization switching can be sensed externally to

probe the FE state, thus providing for the read operation [27]. However, this

operation is destructive of the pre-existing state, since it is necessary to switch

the polarization in order to read the information stored. For this reason, the

readout operation is expensive in terms of time and energy.

The advantage of FeRAM is that they can achieve high-speed read/write

operations (∼ 10ns) comparable to that of DRAM, without losing data when

the power is turned off [30]. On the other hand, the aforementioned issue

related to the readout operation, along with the fact that the resistance is not

changed by the polarization switching, make FeRAM unsuitable for application

in the field of neuromorphic computing [11]. However, it is possible to gain a

resistance change by FE switching, thus enabling the use of a FE-based device

as a synaptic element, by adopting a different structure, namely a ferroelectric

field-effect transistor (FeFET) structure [31]. This is a MOS transistor where
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the gate dielectric is a FE layer, as shown in figure 1.6 (c). By controlling

the polarization state through the gate voltage, it is possible to affect the

threshold voltage, thus determining the channel resistance and providing a

non-destructive read methodology [32].

1.3 Crosspoint array and selectors

Excluding FeFETs, all emerging memories described in section 1.2 are

two-terminal devices. Such important feature, along with the possibility to

fabricate those devices in the back end of the line, allows to organize them in a

more compact architecture known as crosspoint array. It consists of a matrix of

vertical and horizontal metal lines on two different planes, whose intersection

points are the location for the memory devices. These are fabricated vertically

and link the two metal lines, obtaining a random access array, as shown in figure

1.7 (a) . The benefit from the integration density point of view is evident, since

the space required for each device is 4F 2 (where F is the minimum litographic

feature size) and in principle, no additional space is needed for the structure

itself. The same density could not be achieved with any other architecture

involving a MOSFET. Moreover, an extension to the third dimension is easy

to obtain by simply vertically stacking more crosspoint arrays. In this case,

the density would further increase, as the effective cell dimension would be 4F 2

N

where N is the number of levels introduced [3].

In particular, such matrix structure is very promising for the implementation

of neuromorphic applications, since the synaptic weights of a neural networks

can be easily organized by a matrix configuration that can be then directly

implemented in a crosspoint array [33]. A further discussion on the subject is

addressed in the following section.
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Figure 1.7: (a) Crosspoint structure. The possibility of 3D stacking in order to

increase the integration density is highlighted, since two layers are represented.

The 1S1R structure is underlined by the two different colors used, representing

respectively the selector and the memory. (b) Schematic representation of a

crosspoint array, highlighting the sneak current paths which are unavoidable if a

selector is not inserted. Adapted with permission from [35] and [36]. Copyright

2017 IEEE.

However, the crosspoint structure presents some drawbacks. Any read/write

operation is achieved through the application of a set of voltages at the edge

of the array, in order to select a specific cell. Unfortunately, in a NxN array,

for a single selected cell, there are 2(N − 1) half-selected cells (belonging to

the same row or column as the selected one), and (N − 1)x(N − 1) un-selected

cells (all the others, not belonging to the selected row or column). Instead, one

would like to access the selected device at will, leaving all other cells completely

unperturbed, avoiding any additional power dissipation [34].

Such operation is impossible to achieve, because current sneak paths will

form (figure 1.7 (b)), causing misreading on the selected cell and miswriting

on the un-selected cells [36]. A possible solution to avoid such perturbations

is using different biasing schemes [37,38] which limit the voltage drop on the
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un-selected cells by applying a certain voltage to the corresponding lines instead

of leaving them floating.

However, the application of such biasing schemes is not very efficient when

the resistance of the metal lines is not negligible compared with the resistance

of the memory device, which is the case for advanced technology nodes, where

wires get thinner, increasing line resistance [34]. Moreover, biasing the un-

selected lines significantly increases power consumption. These are the key

reasons why the introduction of a selector, i.e. a two-terminal device with a

strong non-linear characteristic, comparable to the one of a diode, is necessary

in any crosspoint array.

A good selector must have an off-state resistance which is higher than

the memory HRS, in order to limit the leakage current flowing in the serial

structure when the cell is un-selected, while the on-state resistance must be

smaller than the memory LRS, so that most of the voltage applied to the serial

structure drops on the memory when the cell is selected. This is equivalent to

say that the on-state current density must be very high not to limit the current

required to the memory for set or reset operations. Moreover, an important

feature for selectors is endurance. It must be much higher than the one of

the memory cell, since selectors need to switch from off-state to on-state at

every read operation, unlike memories which switch only when they are written.

They also need to show bipolar characteristic and be compatible to integration

in the back end of the line [34].

Many different kinds of selectors have been studied and proposed in the

last years. They include silicon-based devices like vertical transistors [39] or

NPN diodes [40], oxide diodes based on semiconducting oxide heterojunctions

[41] or metal-oxide Schottky barrier [42], threshold switching devices like

Ovonic theshold switching (OTS) [43], metal-insulator transition (MIT) [44]
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Figure 1.8: Summary table of selector device types. 4 different categories are

compared, namely on-state current density (JON ), selectivity, i.e. ratio between

on-state and off-state resistance, bidirectionality, i.e. the capability of operate

in both polarities, and possibility of vertical stacking. For JON , green indicates

values ∼ 10MA/cm2, yellow ∼ 1MA/cm2 and red < 1MA/cm2. For selectivity,

instead, green means ON-OFF ratio > 106, yellow > 104 and red < 104. For

3-D integration, green indicates full 400 °C BEOL compatibility, while yellow

is related to higher temperature processes. Adapted with permission from [34].

Copyright 2014 American Vacuum Society.

and threshold vacuum switching (TVS) [45] and Copper containing mixed-

ionic-electronic-conduction (MIEC) devices [46].

Figure 1.8 summarizes the different families of selectors, highlighting the

performances for each type. Excluding TVS and MIEC selectors, whose

knowledge is still too preliminary, OTS devices are surely the most promising

for integration in crosspoint arrays due to the larger familiarity about the

materials involved, mostly chalcogenides as in PCMs, the large on-state current

density, the bidirectionality and most of all the great compatibility with back

end of the line processes, which allows 3D stacking [47].
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1.4 Resistive switching devices for

neuromorphic computing

1.4.1 Neural networks

As introduced in section 1.1, neuromorphic computing aims at developing

circuits that replicate the operation of the human brain. An essential feature of

any neuromorphic circuit is the neural network architecture, where data are sent

by neuronal terminals through a highly parallel net of synaptic paths [29]. Neu-

ral networks can be divided into two fundamental classes referred to as artificial

neural networks (ANNs) and spiking neural networks (SNNs) [48], respectively.

The main difference between the two types is the training methodology. ANNs,

which are also called deep neural networks (DNNs) due to many hidden layers

used to process information, typically adopt supervised learning tecniques such

as the backpropagation, where the error between effective output and the desired

response called label is iteratively minimized during training process [12,49].

On the other hand, SNNs aim at replicating brain functionalities implementing

brain-inspired Hebbian-type learning schemes widely investigated in biological

experiments such as the spike-timing dependent plasticity (STDP) [50, 51] and

spike-rate dependent plasticity (SRDP) [52].

Most of the success that has been recently achieved by neural networks in

fundamental machine learning tasks such as face recognition, speech recognition

and image classification has been mainly due to the implementation of ANNs.

For these reasons, the investigation will focus only on this subject in the

following.

A schematic representation of a deep neural network is illustrated in figure

1.9. The structure is composed by an input layer of neurons, providing the raw

data which have to be processed by the network, one or more hidden layers,

where the intermediate solutions are computed, and an output layer, which
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Figure 1.9: Fundamental neural network structure, composed by an input layer,

one or more hidden layers and the output layer. Neurons receive signals from

previous layers (or raw data for input layer) and compute a summation or

integration. The result is transmitted towards the following layer via synaptic

connections which multiply the signal by a proper synaptic weight. Adapted

with permission from [29]. Copyright 2019 IOP Publishing.

provides the final solution to the problem [29]. The neurons are responsible

for implementing a summation or integration of all the incoming signals and

applying a non-linear operator to it, providing the result as an output to be

transmitted to the following layer. On the other hand, synapses represent the

weight by which any signal is multiplied in the connection between two neurons.

Such structure, likewise the human brain, is composed of much more

synapses than neurons. Therefore, the synaptic element should be extremely

small and energy efficient. Such features are well fitted by the emerging

memories described in section 1.2, which are therefore considered the most

promising devices for artificial synapses implementation. Moreover, in order to

present good performances, the number of weights used in such networks must

be so large that the transferring of such values from memory to processors in

classical CPUs or GPUs would be highly inefficient in terms of energy and
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time [53]. Instead, implementing such networks in large crosspoint arrays would

allow to avoid such limitation.

In the next paragraph, the explanation of backpropagation scheme used to

train ANNs will be addressed.

1.4.2 Backpropagation algorithm for neural network

training

Backpropagation is the main type of supervised learning algorithm used to

train ANNs to perform machine learning tasks [12,54]. This algorithm consists

of computing the gradient of an objective (or cost) function with respect to

the synaptic weights, by applying the chain rule for derivatives [12,54]. The

objective function in this case is the error function, i.e. the difference between

the network’s output and the expected result known as data label. The key

concept behind the method is that the output of each neuron can be written as

a function of its inputs. Therefore, as the derivative of the objective function is

computed with respect to the output of a neuron, it is possible to refer it to its

inputs, using the chain rule for derivatives. Since such inputs are at the same

time the ouptuts of the previous layer, this procedure can be repeated for each

layer starting from the output all the way to the input layer. This approach

clarifies the origin of the algorithm name.

Figure 1.10, illustrates the implementation of backpropagation rule in an

ANN. The network is a multilayer perceptron (MLP) with the input layer, 2

hidden layers and the output layer, which is trained on handwritten digit images

from the Modified National Institute of Standards and Technology (MNIST)

dataset [54] for an image classification task. The images from training dataset

are forward propagated through the network, providing an xi value for each

neuron and a classification guess yj for the images. Such guess is represented by

the output of the last layer neurons and is compared to the correct answer gj,
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Figure 1.10: Backpropagation algorithm execution within a multilayer fully-

connected neural network. Input patterns are forward propagated, then the

output results yj are compared with the correct answers gj. The errors δj =

yj − gj are backpropagated to previous layer and used to calculate the synaptic

weight update in the network based on equation 1.1. Reprinted with permission

from [29]. Copyright 2019 IOP Publishing.

which is the data label. By subtracting the two quantities, an error δj = yj − gj
is obtained and the error function is calculated as C = 1

2
∑N
j δ

2
j , where N is

the number of output neurons. δj is then backpropagated through the entire

network, allowing for the calculation of the error for the neurons of any layer.

Finally, the synaptic weights wij are updated according to the formula:

∆wij = η · xi · δj (1.1)

where η is the learning rate. This procedure is then repeated for every

training image, and the entire training set is iteratively presented for many

training cycles, called epochs. After this procedure is completed, all the synaptic

weights of the ANN are optimized on training dataset and the classification

ability of the network is evaluated using unseen images from the test dataset.
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Figure 1.11: (a) Schematic representation of pre-synaptic (PRE) and post-

synaptic (POST) neurons. At the POST level, all the signals coming from the

PRE are multiplied by the corresponding synaptic weight and summed. (b)

Physical implementation of a neural network in a 3x3 crosspoint array. The

current flowing in each row represents the POST signal related to a specific

neuron. It is indeed given by the weighted sum of the voltages applied to each

column. Adapted with permission from [55].

This additional phase following the training process is known as inference or

classification phase.

1.4.3 ANNs implementation in crosspoint arrays

As mentioned in section 1.4.1, in neural networks, neurons compute the

sum or integral of all the incoming signals, while synapses represent the weight

of each connection between neurons. For each synapse, it is therefore possible

to define a pre-synaptic (PRE) and a post-synaptic (POST) neuron, as shown

in figure 1.11 (a). The signal at the input of the POST neuron (yi) can be

written as a function of all the output signals emitted by PRE neurons (xj), as

shown in equation 1.2.

yi =
∑
j

wij · xj (1.2)

where wij is the synaptic weight connecting the j-th PRE with the i-th POST.
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Given the crosspoint structure introduced in section 1.3, the hardware

implementation of the multiply-and-accumulate (MAC) operation via synaptic

weights expressed by equation 1.2 is straightforward. Indeed, the summation

can be implemented by Kirchhoff’s law by summing all the currents for a single

raw, while the multiplication by the synaptic weight is performed through

Ohm’s law, by considering the weights as the device conductance [11]. In this

way, equation 1.2, can be rewritten as:

Ii =
∑
j

Gij · Vj (1.3)

The PRE signals are therefore described by column voltages Vj, the con-

ductances Gij are those related to the devices connecting the i-th row to j-th

column, and the POST signal is the current flowing along the i-th row. The

physical implementation of this fundamental concept for neural network appli-

cations is illustrated in figure 1.11 (b) via a 3x3 crosspoint array, where the

physical implementation of the summation is highlighted.

Note that equations 1.3 and 1.2 can also be seen as a matrix vector multi-

plications (MVM), where Vj (xj) represents the element of the constant term

vector, Gij (wij) the matrix element and Ii (yi) the element of the resulting

vector. Unlike what happens in digital computers, which are based on the

von Neumann architecture, solving such operation in crosspoint arrays allows

to achieve a very high parallelism and reduce time and energy consumption.

Indeed, once the input voltages Vj are applied, the currents Ii, i.e. the results

of the computational process, are obtained in just one clock cycle.

However, weights calculated in software during training can be either positive

or negative values, while G is only positive. The solutions adopted to solve this

problem are illustrated in figure 1.12. In the more compact one, shown in (a),

the total value is obtained as the difference between a tunable conductance Gij

and a fixed reference conductance Gr, and the overall synaptic weight is thus

given by wij = Gij −Gr. The other solution, (b), implies instead two tunable
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Figure 1.12: Schematic representation of a crosspoint array implementing a

neuromorphic circuit. (a) Synaptic weight is represented by a differential

pair consisting of an array memory Gij, which is programmed at need, and

a reference memory Gr, which is instead constant. (b) Synaptic weight is

represented by a differential pair consisting of two memory devices G+
ij and

G−
ij , both programmable. Reprinted with permission from [29]. Copyright 2019

IOP Publishing.

conductance G+
ij and G−

ij to implement each synaptic weight as wij = G+
ij −G−

ij .

The first method is used when the device conductance can be both increased

and decreased by analog programming, while the second one is preferred when

the analog tuning can be performed only in one direction [29].

As stated in section 1.4.2 an efficient and accurate backpropagation-based

training process can be obtained by adjusting the weight correction ∆wij to

be linearly dependent on the product of x and δ, as expressed in equation

1.1. For this purpose, a high degree of linearity between voltage applied and

conductance response is crucial in the weight updates of the memory devices.

Unfortunately, the conductance response of any of the aforementioned non-

volatile memory do not naturally exhibit the required linearity. Moreover, other

typical resistive switching device non-idealities, such as programming variabil-
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ity, stochasticity and asymmetry between increasing/decreasing responses may

strongly impact the network performances [56]. For these reasons, it is very

difficult to obtain a fully analog behavior, where ideally, infinite conductance

states are possible. However, thanks to some advanced techniques, it is possible

to program the device conductance in more than two states (HRS and LRS),

thus obtaining multilevel operation. Indeed, increasing the number of possible

states strongly improves the network performance.

The problem related to multilevel programming is intrinsic in its definition.

Since the resistive window, i.e. the ratio between HRS and LRS, for a particular

device is given, adding intermediate states decreases the relative distance in

conductance among them. Therefore, issues such as programming variability

(especially for RRAMs) and drift (in PCMs) have much more impact, as they

blur the distinction in conductance levels, thus limiting the bit precision [33].

A method which is used to limit variability and consequently increase linearity

is the program/verify algorithm [57]. It is a scheme which alternates the

application of programming and reading pulses; during the latter ones, which

have much smaller amplitude in order to keep the device in its state, the current

conductance level is measured and compared to a target value. The algorithm

stops delivering programming pulses as soon as the measured conductance is

larger than the target. Such closed loop system ensures a very high programming

accuracy [58], at the cost of the degradation of speed performance. It is therefore

very useful in applications with offline training, where it is fundamental to

precisely write the weights calculated in software into the synaptic devices.

In conclusion, ANNs hardware implementation in crosspoint architectures

is a very promising solution to improve energy efficiency, by avoiding the von

Neumann bottleneck. Indeed, the crucial computational step for ANNs is the

MVM (eq. 1.2), which can be performed very efficiently in terms of energy and

time in crosspoint arrays, exploiting the physical properties of the emerging
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memory element. However, such devices show some drawbacks in stability,

variability and linearity, which can degrade the network performances. In the

case of RRAM arrays, programming variability is the main issue, but it can be

limited through program/verify algorithms. Chapters 2, 3, 4 will be focused on

such topics.
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Chapter 2

Resistive Random Access

Memory (RRAM)

This chapter presents a detailed description of resistive random access

memories. After a brief introduction, the switching mechanism is addressed,

introducing an analytical model able to describe the formation and disruption

of the conductive filament during set and reset transitions. In the second part

of the chapter, the physical mechanisms causing cycle-to-cycle variability are

investigated, focusing in particular on the dependence of the standard deviation

on the device resistance.
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2. Resistive Random Access Memory (RRAM)

2.1 Introduction

Resistive switching memory (RRAM) devices are among the most promising

candidates for next generation memory, thanks to the low power and high speed

operation, high cycling endurance, and low fabrication costs [17]. Furthermore,

the scaling perspectives are very encouraging, since the two-terminal structure

and the compatibility with back end of the line (BEOL) process allows an

efficient 3D integration in crosspoint arrays [41, 59], enabling the possibility

to implement neuromorphic computing systems that can overcome the von

Neumann bottleneck [8].

On the other hand, RRAMs present some drawbacks, namely programming

variability [60], noise and states fluctuations [61–63], which can affect device

reliability. Among these, variability is surely the most problematic, because

it may prevent the multi-level operation of such devices, which is instead a

promising solution for neural network implementation in emerging memory

arrays.

In this chapter, first the switching mechanism in RRAMs is described and,

then, the variability issue is addressed, focusing on the microscopic mechanism

that may explain it.

2.2 Switching mechanism

RRAMs operation relies on the creation and disruption of a conductive

filament (CF) inside a dielectric material, usually a metal oxide, which is

interposed between two metallic electrodes forming a metal-insulator-metal

(MIM) structure. As introduced in section 1.2.2, two operations are possible in

RRAMs: unipolar and bipolar. The latter, where set and reset transitions occur

under different polarity, is the preferred one due to the higher endurance and

uniformity [20]. For these reasons, such mechanism, based on the migration of
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defects inside the dielectric, will be addressed in the following. Bipolar RRAMs

can be further classified into oxide-based RRAM (OxRAM) and conductive

bridge RAM (CBRAM), depending on the type of migrating defects: oxygen

vacancies for the former ones and cations supplied by Ag or Cu-based metallic

cap at the top electrode for the latter ones. Since the study presented in

following chapters is on devices based on HfO, which is a typical material used

to realize OxRAMs, the investigation in this chapter is limited on such family.

In OxRAMs the dielectric switching layer consists of a transition metal oxide

such as HfOx, TiOx and TaOx. The top electrode is often made of a reactive

metal, so that some defects are introduced during deposition [17]. This leads

to the facilitation of electroforming operation, i.e. the first time the filament

is formed starting from the pristine state, and the determination of switching

polarity, e.g. set at positive voltage, reset at negative voltage. The distinctive

feature of bipolar OxRAMs is that the total number of oxygen vacancies is

conserved during set and reset transitions, as they only migrate back and forth

from one electrode to the depleted gap to form and disrupt the filament [17].

The electroforming operation is therefore very important, since it creates a

locally degraded region, through a soft electrical breakdown of the oxide, and

determines the total concentration of defects [64].

Even though defect migration is the common mechanism in the CF formation

and disruption, the way it is triggered presents substantial discrepancies between

set and reset transitions. For this reason, the reduction in resistance during

set is associated to the increase of the cross-sectional area in a continuous CF,

whereas the resistance increase during reset corresponds to the increase of a gap

length in an interrupted CF [65]. Figure 2.1 (a) schematically illustrates such

difference, as φ denotes the CF diameter and ∆ the gap length. The difference

between set and reset dynamics is observed also in the typical IV characteristic

shown in figure 2.1 (b), obtained by successive set and reset operations on the
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Figure 2.1: (a) Schematic representation of reset and set mechanism. The

former relies on the increase of gap length ∆ which is formed in the switching

layer. The latter is related to the increase of φ, filament diameter. (b) Typical

IV curve in bipolar OxRAM memory. Set transition is very abrupt, while reset

is more gradual. Adapted with permission from [55] and [17]. Copyright 2016

IOP Publishing.

device. Indeed, set transition is very abrupt, whereas reset transition is more

gradual.

A qualitative explanation for such different dynamics is linked to the trigger-

ing of positive or negative feedback of field, temperature and defect distribution

along the CF [19,66]. In fact, defects migrate in response to the large electric

field across the depleted gap and large temperatures at the defect reservoir

during set transition. As defect migration starts to take place, the depleted gap

length decreases, thus the local electric field and temperature increase, which

further accelerates defect migration. Such positive feedback effect would result

in a destructive failure of the device; however, current limitation (compliance)

systems introduce an external negative feedback which allows to reduce the

voltage across the device during set transition, thus preventing destructive

breakdown and enabling a detailed control of the final CF diameter φ and

resistance [67].
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On the other hand, defect migration during reset transition is triggered by

a relatively low electric field across the CF, since it is continuous in the initial

state. As the depleted gap ∆ starts to form, the electric field decreases in the

CF regions where defects are located, thus decreasing the temperature and

slowing down the migration kinetics. As a result of such negative feedback

effect, the voltage must be increased to further sustain the reset transition,

resulting in the gradual increase of resistance [64].

Different models [19,66], both analytical and numerical, have been proposed

to describe the switching mechanism previously mentioned. The approach

generally adopted is to describe separately the evolution of φ during set and ∆

during reset.

2.2.1 Set modeling

Figure 2.2 (a) shows the CF schematic evolution when an increasing positive

voltage ramp VA is applied to the device. Moving from left to right in the figure,

the starting point is the reset state characterized by the depletion gap ∆. The

vacancies migrate from the top stub (edge z2) towards the gap, thus forming

the filament. As VA keeps increasing, the CF diameter increases following the

rate equation 2.1.

dφ

dt
= Ae

− EA
kT (z2) (2.1)

where EA is the energy barrier for ion migration, k is the Boltzmann constant

and the temperature is calculated at the injecting edge z2. The voltage applied

to the device has an impact on the barrier, as it is reduced according to equation

2.2

EA = EA0 − αqV (2.2)

33



2. Resistive Random Access Memory (RRAM)

Figure 2.2: (a) Schematic representation of the CF evolution during set opera-

tion. Starting from the reset state, where the filament is interrupted by gap

∆, as VA is increased, first the filament is created and then it rapidly grows in

size, providing an highly conductive path represented by RCF . The equivalent

circuit is shown on the right. (b) Simulated trends of voltage V across the

device, filament diameter φ, current I and temperature T as a function of time.

The positive feedback responsible for the abrupt transition is evident, as well as

the negative feedback externally forced from the compliance current. Reprinted

with permission from [66]. Copyright 2014 IEEE.

where α is the barrier lowering factor and EA0 is the barrier at zero field.

Moreover, temperature is obtained by solving the one-dimensional Fourier

steady state equation 2.3

kth
d2T

dz2 + J2ρCF = 0 (2.3)

where kth is the thermal conductivity, J is the current density and ρCF is the

filament resistivity. The circuit at the right end of figure 2.2 (a) shows the

electrical model associated to the device during set, where RCF is related to φ

by RCF = 4ρCFL
πφ2 , indicating the CF resistance in the set state.
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Figure 2.2 (b) shows the simulated trends of the voltage V across the device,

filament diameter φ, current I and temperature at the injecting edge T (z2) as a

function of time, calculated by integrating equation 2.1. Initially φ is equal to

zero. As VA rises, it triggers the conduction in the gap, which results in a strong

increase in temperature, and in field across the gap. As soon as T (z2) overcomes

the critical temperature for defect migration Tcrit, φ is formed and rapidly

increases as the positive feedback is activated. In fact, the larger the filament,

the smaller RCF and the larger J and T (z2) with it, which further enhances

the defect migration. As soon as I = Ic, φ stops increasing and therefore V

(voltage across the device) must stabilize at the value Vc = RIc, as shown in

the top plot in figure 2.2 (b). This explains the inverse proportionality between

LRS and compliance current, which is a property exploited to obtain multilevel

operation in RRAMs [68]. Note that the external negative feedback introduced

by Ic is visible also in the temperature trend, which rapidly decreases under

Tcrit, as shown in the plot at the bottom of figure 2.2 (b).

2.2.2 Reset modeling

Figure 2.3 (a) schematically illustrates the filament evolution during reset,

when VA is a decreasing voltage staircase. The initial state is the set state,

characterized by the continuous filament shown at the left end. As VA becomes

more negative, positively charged vacancies, driven by electric field and temper-

ature, starts to migrate towards the top electrode, thus creating two stubs, one

at the top where vacancies are accumulated and one at the bottom, from where

vacancies are released. Such process starts in the filament middle point, where

temperature is maximum in the initial state, according to equation 2.3. The

continuous decrease of VA, reinforces the process and results in the increase of

the gap length ∆. The rate of such increase is given by equation 2.4:

d∆
dt

= Ae
− EA

kT (z1) (2.4)
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Figure 2.3: (a) Schematic representation of the gap evolution during reset

operation. Starting from the set state, where the filament is continuous, as

VA is decreased, first the filament is disrupted and then a gap of length ∆ is

created, resulting in a high resistive path represented by Rgap. The equivalent

circuit is shown on the right. (b) Simulated trends of voltage |V| across the

device, gap length ∆, current |I| and temperature T as a function of time.

As soon as T overcomes the critical temperature for vacancy migration Tcrit,

the negative feedback is triggered. In fact, ∆ increases, leading to current

and temperature decrease, which limits the migration, resulting in the gradual

decrease of |I|. Reprinted with permission from [66]. Copyright 2014 IEEE.

where EA is given by equation 2.2 and T is calculated through eq. 2.3 and

evaluated in z1, i.e. at the vacancy-injecting stub edge.

Figure 2.3 (b) shows the simulated trends of voltage across the device

|V |, gap length ∆, current |I| and temperature in z1 as a function of time

during the reset transition. As |V | is increased, a current flows in the filament,

leading to the rise of temperature T (z1). As T (z1) overcomes the critical

temperature for vacancy migration Tcrit, defects start to migrate, thus creating

the gap. However, when the high resistive gap is created, the device resistance
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is increased and therefore the current decreases. This results in the temperature

reduction under Tcrit, which stops vacancy migration. Such process highlights

the natural negative feedback typical of reset transition, which is therefore a

self-limiting mechanism. Only the further increase in |V | is able to reactivate

the process, enlarging ∆. The final result is therefore the gradual decrease of

|I| shown in figure 2.3 (b).

2.3 Switching variability

Unlike well-established Flash NAND technology, where variability mainly

shows up as device-to-device (D2D), RRAM devices additionally display a

cycle to cycle (C2C) statistical variability, due to their different operating

mechanism [69]. This phenomenon strongly limits the possibility to operate

these devices at low current, which is mandatory for operating large crosspoint

arrays to avoid excessive voltage drop across the high-resistance wordlines and

bitlines [70]. Moreover, given the relatively small resistance window of oxide-

based RRAM, multi-level operation is strongly affected by variability, thus

limiting the possibility of achieving analog programming of synaptic weights.

The main reason causing C2C variability is the fact that the number of

defects involved in the formation and rupture of the CF is discrete. In fact,

during each set/reset process, the CF assumes different conformations, since

defects change in number and geometrical arrangement in a stochastic way,

each time affecting the resistive state of the device.

Several studies have been carried out on this aspect, showing common

results regarding the C2C variability dependence on typical parameters, like

the compliance current Ic, the stop voltage Vstop and pulse duration tpulse

[60, 69, 71]. In particular, figure 2.4 shows the experimental results of two

different works [69, 71] about the Ic dependence. Figure 2.4 (a) displays the
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Figure 2.4: (a) C2C cumulative distributions of LRS (top) and HRS (bottom)

for different compliance currents Ic. The distributions bending increases as Ic
is reduced, suggesting that variability is larger when the number of injected

defects is smaller, since the natural variation in defect number has more impact.

Adapted with permission from [69]. Copyright 2013 IEEE. (b) Standard devia-

tion σR as a function of median R. The two quantities are directly proportional

in log scale, but display different slopes between set and reset states. The solid

line shows a slope consistent only with reset states, since it is calculated via a

statistical model which accounts for the variable number of injected defects,

neglecting the geometrical shape variations of the CF. Adapted with permission

from [71]. Copyright 2014 IEEE.

resistance C2C cumulative distributions for different values of Ic, both for set

state (LRS, top) and reset state (HRS, bottom). As previously mentioned, the

curves are centered at larger resistance values for decreasing Ic, meaning that

small compliance currents correspond to small diameter of the CF, leading

to larger resistances and vice versa. However, the distinctive feature of the

distributions is the increasing bending as Ic decreases, suggesting that the

standard deviation σR, whose graphical meaning is highlighted in the figure,

increases as the compliance current is reduced. The distributions therefore

show the increase of standard deviation σR with median resistance µR. Such
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behavior is observable both for the LRS and the HRS, but in the latter case

the distribution tilting is less marked, possibly indicating a difference between

set and reset process dynamics under low current operation [69].

These outcomes are confirmed by another study [71], whose results are

shown in figure 2.4 (b). It illustrates the trend of C2C standard deviation (σR)

as a function of median resistance R for set and reset states. As expected, σR
increases with R, highlighting a direct proportionality in the logarithmic scale.

However, it is noticeable that the slope of such dependence shows different

values for set states with respect to reset states, namely about 2 for the former

ones and 1.5 for the latter ones. This observation is in accordance to what

highlighted in figure 2.4 (a), suggesting that this result can be considered a

common feature regarding OxRAMs.

A general understanding of the aforementioned log-scale direct proportion-

ality between σR and R lies in the impact of the stochastic variation of the

number of discrete defects on the total number of defects injected. The smaller

the total number of defects, the larger the impact, leading to more variability. A

model accounting for such statistical fluctuations has been proposed to explain

variability [71]. It is based on equations 2.1 and 2.4, previously introduced to

explain the discrete migration of ionized defects during set and reset transitions.

The approach used to address variability is introducing a statistics in EA, so

that it is possible to associate a different value of energy barrier to each defect,

via the typical Monte Carlo method. The CF or gap growths, therefore, follow

a sequence of discrete defect events, each characterized by a random value of

EA and a corresponding migration rate. This operation allows to describe the

structural change of the HfOx material in the gap region, due to change of the

composition profile resulting from the growth of the CF during set transition

and the growth of a depleted gap during reset transition.
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The main result of the simulations, which were performed for different Ic
values, is displayed in the solid line of figure 2.4 (b). The simulation captures

the increase of σR with median R and is consistent with the Poisson statistics,

predicting the variability on the number of localized defects in the gap after

reset transition. In fact, the simulated slope equal to about 1.5 can be simply

derived considering the Poisson statistics as follows. The conduction in the

reset state is expected to follow the Poole-Frenkel (PF) mechanism, where the

current is proportional to the density of localized states, which act as centers

for thermally activated emission of carriers [72]. Assuming that injected defects

all contribute to PF current, the reset-state resistance R can thus be written

as:

R = B
e

EC
kT

ACFnD
= Be

EC
kT

∆
ND

(2.5)

where B is a preexponential constant, ACF is the CF cross section area, EC is

the PF energy barrier controlling the activation energy for conduction in the

reset state, nD is the defect density, and ND is the defect number in the gap

region of length ∆, which controls R in the reset state. Since ND is affected by

Poisson fluctuations with spread σND
= N0.5

D , the spread of the resistance can

be obtained as:

σR = R
σND

ND

= RN−0.5
D ∝ R1.5 (2.6)

However, figure 2.4 (b) shows that the simulation does not explain the

larger slope shown by the experimental data in the set states. This is because

the statistical model only accounts for variable number of injected defects as

a result of the random EA, while such larger slope is due to the additional

contribution of random position of defects within the gap region, which is not

considered in the model. In fact, in the case of low resistive states, the CF can

be considered to be composed by a large number of defects, as it displays a

large diameter φ after the set transition. In this case, the resistance variability

is not dominated by a variation in the number of defects, but rather by a slight
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Figure 2.5: Schematic representation of the geometrical variation model for LRS

resistance statistics. The variation of LRS resistance values can be estimated by

assuming a variable truncated-cone geometry of the CF with a variable angle θ

(a). Considering a minimum CF resistance for a cylindrical geometry (θ = 0,

(b)), calculations indicate that σR ∝ R2, in agreement with experimental results.

Adapted with permission from [17]. Copyright 2016 IOP Publishing.

variation in the position of the defects affecting the shape of the CF, hence its

resistance.

A simplified model which accounts for the geometrical shape variation is

illustrated in figure 2.5 [17]. The CF shape can be modeled as a truncated cone

as shown in figure 2.5 (a). The related resistance is given by:

R = 4ρL
πφ1φ2

= 4ρL
π(φ+ Lθ)(φ− Lθ) (2.7)

where L is the effective length of the CF, φ1 is the minimum diameter of

the truncated cone, φ2 is the maximum diameter and θ is the angle defining

the inclination of the lateral cone surface. The case in which equation 2.7 is

minimum is shown in figure 2.5 (b) where the truncated cone is reduced to

a cylinder, as θ = 0. The resistance variation can thus be estimated as the

difference between the resistance of the cone-shaped CF and the minimum
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resistance of the cylinder-shaped CF, which results in:

σR = 4ρL
πφ2

 1
1−

(
Lθ
φ

)2 − 1

 ≈ R

(
Lθ

φ

)2

(2.8)

where the approximation holds for θ << 2φ/L, i.e. small cone angles. Substi-

tuting φ2 = 4ρL/(πR) in equation 2.8, it becomes:

σR ≈
πLθ2

4ρ R2 (2.9)

which provides evidence for the larger slope (∼ 2) observed in the set states in

figure 2.4 (b), as the standard deviation σR depends on the square of resistance

R.

The different slopes of figure 2.4 (b) are therefore explained by the different

nature of the CF at different resistance values. For reset states, the CF

is depleted and variability is dominated by the defect number fluctuation

controlled by Poisson statistics which determines the slope equal to 1.5. On

the other hand, for set states the CF is continuous and variability is driven by

geometrical shape variations, accounting for the larger slope [17].
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Chapter 3

Study of RRAM variability

from array-level experiments

This chapter presents the experimental variability data and the related anal-

ysis. Firstly, the experimental setup is described, specifying both the chip struc-

ture, consisting of 4 kbit arrays of HfO-based RRAMs, and the program/verify

technique used to program it. Secondly, the results of an endurance experiment

are shown, highlighting the particular inverse proportionality between the re-

sulting median resistance and standard deviation, which stands out from the

cycle to cycle distribution shape. Finally, a physical explanation of such results

is given thanks to an analysis of set graduality. This quantity is found to be a

distinctive feature of each device, being the primary source of variability.
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3.1 Structure of HfO-based RRAM

The experimental data discussed in this chapter are collected from two 4 kbit

arrays of HfO-based RRAM devices with one-transistor/one-resistor (1T1R)

structure capable of multilevel operation. Figure 3.1 shows the microphotograph

(a) and the simplified block diagram (b) of the 4 kbit array test structure [73].

This consists of four architectural blocks, namely the array of 4096 1T1R RRAM

cells, a wordline (WL) address decoder (XDC MUX), a bitline (BL) address

decoder (YDC MUX) and an operation control circuitry (Mode) [73]. Figure

3.1 (c) shows in detail the 1T1R structure, consisting of a NMOS transistor,

manufactured in 0.25 µm BiCMOS technology (W = 1.14 µm, L = 0.24 µm),

connected in series to the RRAM, which is integrated on top of metal line 2 of

the CMOS process. The memory device has a metal-insulator-metal (MIM)

structure consisting of a stack of area 600 x 600 nm2 with a 150 nm TiN top

and bottom electrode layers deposited by magnetron sputtering, a 7nm Ti

intermediate layer and a 6 nm HfO -based layer. [57,74].

HfO is a typical material used in RRAM devices thanks to the well consoli-

dated know-how on deposition and control of structural properties for high-k

gate dielectric applications. However, the requirements for analogue applica-

tions are different from those needed in binary memory devices, therefore it is

important to deeply investigate the structural and electrical properties of such

materials. This is the reason why two different processes of HfO deposition

are used in such arrays, leading to different compositions, namely HfO and

HfAlO. Both of them are obtained through Atomic Layer Deposition (ALD),

the former at 150 °C, the latter at 300 °C by doping with ∼ 10 % Al content.
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Figure 3.1: (a) Microphotograph of the 4 kbit array test structure with indica-

tion of the constituting blocks. (b) Simplified block diagram of the memory

array. Reprinted with permission from [73]. Copyright 2014 IEEE. (c) STEM-

EDX image of the 1T1R integrated structure. The transistor is fabricated in

the front end, while the RRAM device is fabricated in the back end, on top of

metal M2. The top and bottom electrodes are madee of TiN, with a Ti cap to

induce oxygen scavenging between the TiN top electrode and the HfO-based

layer. Adapted with permission from [74]. Copyright 2019 AIP Publishing

LLC.

3.2 ISPVA Algorithm

The Incremental Step Pulse with Verify Algorithm (ISPVA) is the pro-

gram/verify technique used to program the array introduced in section 3.1.

It works in similar ways for both reset and set operations. In the former

case, the typical waveform of program/verify algorithms, characterized by the

alternation of programming (P) and read-out (V) pulses, is applied to the

source side of the transistor while the drain terminal connected to the MIM

resistor (top electrode) is grounded. The programming pulses have increasing

amplitude from 0.5V to 2V with steps of 0.1V and fixed duration of 10 µs while

the read-out (V) ones have constant amplitude 0.2V and same duration, as

illustrated in figure 3.2 (a).
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Figure 3.2: Schematic representation of (a) reset operation, used to bring back

the device to the HRS, and (b) set operation, used to program the device in

the 4 LRSs. Such levels, characterized by decreasing resistance, are achieved

through the application of increasing compliance current Ic or gate voltage VG.

Reprinted with permission from [74]. Copyright 2019 AIP Publishing LLC.

On the other hand, for set operation the same waveform is applied at the

top electrode, while the source terminal is grounded, as shown in figure 3.2

(b). The voltage applied to the gate during set operation is chosen in order

to obtain the desired compliance current and LRS in correspondence to the

programming pulse (P), while it is 2.7 V during the reset operation because it

is necessary not to limit the current flowing in the device since the reset is a

self compliant mechanism. During the read-out phase (V) instead, 1.7 V are

applied to the gate in both set and reset operations in order to minimize the

channel resistance in the series.

The key of a good multi-level approach in RRAM devices is in the accurate

control of the multiple conductive states. The approach used in this work is

to define 1 HRS and 4 LRS states. As already mentioned, one simple way

to achieve multi-level operation is changing the compliance current through

the gate voltage. Therefore it is necessary to associate a proper VG value to
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Rtrg [kΩ] VG [V]

L0 40 2.7

L1 20 1

L2 10 1.2

L3 6.6 1.4

L4 5 1.6

Table 3.1: Recap of Rtrg and VG pairs used in the ISPVA. Target is a lower

limit for L0, while it is an upper limit for L1 − L4.

each LRS. Moreover, a crucial step in every program/verify algorithm is the

definition of the targets, i.e. the desired resistance values. In this work 4

< Rtrg, VG > pairs were adopted, namely < 20, 1 >, < 10, 1.2 >, < 6.6, 1.4 >,

< 5, 1.6 > < kΩ, V >, corresponding to levels L1 − L4.

On the other hand, the Rtrg chosen for the HRS level L0 in the reset

operation is 40kΩ. Table 3.1 summarizes the pairs adopted for both set and

reset operations.

In the ISPVA, the programming pulses (P) are applied to the device until

the resistance value measured during the verify pulses (V) is smaller than the

targets for L1 − L4 case, or larger for L0 case. As a consequence, the targets

represent an upper limit to the resistance values for set and a lower limit for

reset. Indeed, during set process the device resistance is decreased (from HRS

to LRS) by the application of the pulses until the target is overcome, while

during reset it is increased (from LRS to HRS).

The crucial resistance value among the ones measured in every verify pulse

(V) is the first one read after the target crossing. This is due to the fact

that programming pulses (P) are not anymore applied to the device after that

happens. Such values will be called after switching in the following.
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3.3 Cycle to cycle distributions

In order to assess the variability issue, an endurance experiment is carried

out, performing 1000 switching cycles, i.e. consecutive set and reset operation

according to ISPVA, for a set of 1000 devices per level. The after switching

values are extracted for every cycle and device.

Since the aim of this study is the investigation and modeling of RRAM

multilevel operation, the data analyzed in the following are extracted only from

the set operation part of the whole endurance experiment. The results of such

experiment, carried out on the HfAlO array, are shown in figure 3.3. In (a),

the cycle to cycle (C2C) cumulative distributions of after switching resistance

are displayed: from this plot it is possible to observe how the programmed

state is distributed along the cycles for every device. This means that every

curve, which is related to a single device, is composed by 1000 points, each

representing the resistance measured in every cycle.

First of all, it is straightforward to identify four different groups of distribu-

tions, which are associated to levels L1 − L4. The targets are highlighted by

the dashed vertical lines and help to delimit the maximum acceptable range to

distinguish the different levels. From the figure, it is easy to better understand

that the targets are upper limits to the resistance values of every state. In

fact the distributions tend to bend as they get closer to the desired value and

they never cross it. This is a typical result when a program/verify algorithm

is adopted: as long as the resistance measured in the verify pulses is larger

than the target, a programming pulse is applied, consequently decreasing the

resistance until it is lower than desired value.

The ideal case would show overlapping and vertical distributions for every

level, suggesting the absence of variability among devices and cycles. The

results of figure 3.3, (a) display instead the variability of measured RRAM

devices. In fact, the distribution spreading is evident for all levels. This means
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Figure 3.3: (a) Cycle to cycle (C2C) cumulative distributions of after switch-

ing resistance in HfAlO 1T1R devices. Each curve denotes one of the 1000

cells tested in the experiment; every curve is composed by 1000 points, each

representing the resistance measured in every cycle. The distributions shape

shows an inverse proportionality between C2C standard deviation σR and

median µR, which is highlighted in (b), where the correlation between the two

quantities is plotted. The comma-like shape underlines the behavior of such

C2C distributions, which is found to be typical of the ISPVA.

.
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that different devices are programmed on average within a different range of

resistances, ranging from values very close to the targets to quite smaller ones.

Moreover, it is noticeable that there are tails overlapping the lower target, both

for L1 and L2, for example. This is unwanted since it represents the possibility

that a device is programmed in a different state from the desired one. The

presence, although limited, of such variability suggests that some improvements

in the ISPVA might be necessary to improve the programming precision, thus

allowing to increase the number of LRS levels in HfAlO RRAM cells.

The distinctive feature of all the four groups of distributions lies in the shape

they acquire as a whole. It is easy to note that the more the curves have smaller

values than the target, the more they are horizontally bent. This sentence

can be translated in more technical terms by claiming that it is possible to

find an inverse proportionality between the resistance median value (µR) and

its standard deviation (σR), both calculated along cycles. σR represents the

bending: the larger σR, the more horizontal the distribution. On the other

hand, µR gives information about the average distance between measured after

switching R and the target: the smaller µR, the larger such average distance.

Note that µR can be extracted from a CDF plot like the one in figure 3.3 (a)

by taking the R value in correspondence to the 50% probability level.

Such inverse proportionality is evidenced in 3.3 (b) where σR is plotted

against µR. It is observable that the smaller µR, the larger σR and vice versa,

which results in the comma-like shape visible in the figure. It is important to

highlight that such trend is common to all the four levels. However, when data

of different levels are compared, the expected trend of direct proportionality

(in log-scale) between σR and µR described in chapter 2, is observed. Both

considerations suggest that the comma-like shape is due to the programming

algorithm rather than a specific device feature.
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3. Study of RRAM variability from array-level experiments

Figure 3.4: Standard deviation σR as a function of the median resistance µR
for HfAlO (a) and HfO (b) RRAM cells. Since the trends are very similar, it

can be stated that they depend entirely on the ISPVA.

A comparison between HfAlO and HfO RRAM cells is illustrated in figure

3.4. The comma-like shape is found also for HfO data, suggesting that such

result is totally related to the program/verify algorithm. Based on this kind of

analysis, it is difficult to determine which material is the best from the point

of view of variability, since the data are almost overlapping. However, other

works [68,75,76] show how Al doping in HfO2 is able to strongly improve the

device performance in terms of resistance window, switching variability and

intrinsic retention. The general understanding of such improvement lies in the

Al atoms ability to generate and localize the oxygen vacancies (VO) chains,

decreasing their diffusivity and consequently forming a more stable conductive

filament in the switching process [76]. Accordingly to these arguments, this

work will focus only on HfAlO data in the following.

3.4 Analysis of Vset and set graduality

In the previous section, the variability data on which this work is based

were presented. Now the goal is to better investigate those data in order to
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understand what are the physical explanations of the results shown in figure

3.3.

Such further investigations were possible because important additional data

were available. Those are the programming characteristics, i.e. the sequence

of conductance G values measured for every verify pulse (V) of the ISPVA,

for every cycle and device of the endurance experiment. Thanks to that, it

was possible to reconstruct the conductance trend as a function of the voltage

applied to the top electrode.

Two parameters were extracted from data:

• Vset

• Set graduality

Both quantities were then correlated with σR in order to investigate a possible

link between them and the C2C variability of after switching resistance.

3.4.1 Vset extraction

In this analysis, Vset is defined as the top electrode voltage for which the

conductance increase with respect to the previous value is higher than 30 µS,

as can be noted in figure 3.5 (a). This method was used in order to be highly

robust to noise, since it was found that especially for L1, i.e. the level with

smaller target in conductance (Gtrg = 50µS), a simple approach based on

the crossing of a single threshold was strongly affected by the conductance

fluctuations in the HRS.

A typical C2C cumulative distribution of Vset is illustrated in figure 3.5 (b).

This plot shows how the Vset values are distributed for a single device along

the 1000 switching cycles performed during the endurance experiment. Due

to the programming characteristic discrete nature, such CDF is discrete as

well, meaning that possible values for Vset are all separated by the step increase
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Figure 3.5: (a) Typical programming characteristics, i.e. conductance G

measured during verify pulses (V) as a function of the amplitude of the last

programming pulse (P) applied. The noise-robust method used to extract

Vset distributions marks Vset as the top electrode voltage able to induce a

conductance increase ∆G larger than 30 µS. (b) Typical Vset C2C cumulative

distribution. Due to the programming characteristic discrete nature, such CDF

is discrete as well. However, according to the CDF definition, a continue curve

is extracted by connecting the upper points of each different group.

of the top electrode voltage (0.1 V). However, only the upper point for each

group of cycles with same Vset is the relevant one, since, according to the CDF

definition, it represents the probability to have cycles whose Vset is smaller or

equal to that particular value. Therefore, in order to simplify the visualization

in the following, a continue curve is extracted by linking all the upper points.

The cumulative distributions of Vset for all LRS levels are shown in figure

3.6 (a). Most of the curves exhibit a certain degree of overlap, thus suggesting a

limited variability among devices. L1 and L2 show a slight distribution bending

for probability larger than 99 %; this means that there is ∼ 1 % of the cycles in

which the device experiences the resistance switch at very large voltages. Those

values can be interpreted as cycles where the device either does not set properly

or the Vset extraction method does not reject the HRS noise in the best way.
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3. Study of RRAM variability from array-level experiments

Figure 3.6: (a) C2C cumulative distributions of Vset for all LRS levels. The

light blue curves represent the median device. The variability among devices is

limited, since the distributions are mostly overlapping. (b) After switching σR
as a function of median Vset. No correlation is found between those quantities,

therefore the investigation on the nature of C2C resistance CDF introduced in

section 3.3 must be extended to the set graduality.

However, due to the very limited number of such cycles in the experiment, they

can be neglected in the evaluation of C2C median and standard deviation. The

median device behavior is highlighted in light blue for all levels. Its parameters

were found to be: µVset = 0.75V and σVset = 0.1V .

On the other hand, figure 3.6 (b) shows after switching σR (discussed in

section 3.3) as a function of the median Vset for all LRS levels. No particular

correlation is visible in such plots. This might be explained by what is observed

in the Vset CDFs, where the variability among devices is limited. It is therefore

impossible to describe the different behavior of devices discussed in section 3.3

by means of only Vset. Therefore, it is necessary to investigate not only the
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3. Study of RRAM variability from array-level experiments

voltage at which the transition from HRS to LRS takes place, but also the

graduality of such transition.

3.4.2 Set graduality

In order to define the set graduality a new parameter is introduced; it is

called Vtrg and represents the first value of top electrode voltage for which the

conductance is larger than the target. Therefore, the two quantities Vset and

Vtrg describe properly the set graduality in the form of the difference between

them. The higher such difference, the larger the number of programming

pulses necessary to cross the target after the set event, the lower such voltage

difference, the smaller such number, down to the limit of 0 difference, meaning

that the set event corresponds with the target crossing.

Figure 3.7 displays the C2C median R µR (a) and σR (b) as a function of

the difference of C2C median Vtrg (µVtrg) and median Vset (µVset) for all levels

L1 − L4. Unlike the Vset case of figure 3.6, (b), figure 3.7 shows a relevant

correlation between the quantities. In particular, an increasing trend of µR
and a decreasing one of σR are evident for all levels. This observation suggests

that the less gradual the set on average(small µVtrg - µVset), the smaller µR and

the larger σR, while the more gradual the set (large µVtrg - µVset), the larger

µR and the smaller σR. The decrease of one quantity, related to the increase

of the other, is an important clue which confirms the inverse proportionality

between µR and σR already found in section 3.3.

A qualitative explanation to the results is the following: the devices exhibit-

ing a more abrupt programming characteristic, are less controllable since they

get closer to the target with higher derivative in the characteristic. Therefore,

they are more likely to experience larger conductance jumps in the first pulses

after the set, which brings them to overcome the target with larger gaps and

stabilize at largest median conductance, or, equally, at lowest µR in every
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Figure 3.7: (a) C2C median R µR as a function of the difference of median Vtrg
and median Vset. µR increases with µVtrg - µVset , suggesting that devices with

more abrupt programming characteristic reach on average smaller resistances

and vice versa. (b) C2C standard deviation as a function of the difference of

median Vtrg and median Vset. In this case instead, σR decreases with µVtrg -

µVset . The more abrupt devices show larger variability along cycles because of

the larger derivative with which the programming characteristic crosses the

target and vice versa.

level. Consequently, those devices will show a larger range of after switching

resistance and their σR will be the largest.

On the other hand, more gradual devices are more controllable because they

cross the target with a smaller derivative. In other words, the conductance

jumps in correspondence to the crossing are smaller in this case and therefore

the devices will stabilize at smallest conductance, very close to the target level.

Consequently, their µR is the largest and σR is the smallest.

Figure 3.8 (a) shows an important confirm to the proposed physical expla-

nation. Among all the C2C cumulative distributions for all levels, different

devices with decreasing graduality are highlighted, going from red to green to

blue, representing devices having µVtrg - µVset respectively equal to 0, 0.1, 0.2

for L2 − L4 and 0.1, 0.2, 0.3 for L1. As expected, the most abrupt devices (red
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Figure 3.8: (a) C2C cumulative distributions for all levels, highlighting the

devices having different µVtrg - µVset representing the set graduality. The most

abrupt ones, in red, occupy the top portion, meaning that they have largest σR
and smallest µR. The most gradual, in blue, instead are concentrated in the

bottom part, having smallest σR and largest µR. In green, the intermediate

cases are shown. (b) median G as a function of top electrode voltage for the set

of devices previously extracted through µVtrg - µVset . The order in graduality,

illustrated by colors going from blue to green to red, is respected, since the

blue curves have smallest µG (largest µR), while the red ones have the largest

µG (smallest µR)

curves) occupy always the top part of the whole shape, meaning that they have

the largest σR and the smallest µR. The most gradual devices (blue curves)

instead, are always in the bottom part of the distributions, having the smallest

σR and the largest µR. Finally, the green ones stay in the middle in accordance

to the intermediate value of µVtrg - µVset which characterizes them.

On the other hand, figure 3.8, (b) displays the median programming char-

acteristic trend, i.e. the median conductance G as a function of the voltage of

pulses applied to top electrode. The same approach is used, highlighting the

programming characteristic of the same devices whose C2C distributions are
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shown in figure 3.8, (a). Again, the dependence on the graduality is evident, as

the blue curves representing the most gradual devices stabilize at smallest G

(largest µR), the red ones reach the largest G values (smallest µR), while the

green ones stay in the middle.
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Chapter 4

Modeling of statistical

variability of 4 kbit HfAlO

RRAM array

This chapter presents the statistical model developed in order to predict the

programming variability of the HfAlO RRAM array introduced in the previous

chapter. The model takes as inputs the programming conditions imposed by the

program/verify algorithm and gives as outputs the simulated programming char-

acteristic. The programming variability is reproduced through the introduction

of a statistic in some parameters, via the Monte Carlo method. The model is

then tuned on the experimental data in order to identify the parameter values

that represent the array variability. After the description of the differential

equation and the parameters on which the model is based, the strategy adopted to

tune them on experimental data is presented, first focusing on the reproduction

of cycle-to-cycle variability and then extending to the device-to-device one.
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4.1 Introduction

In this section, a compact model capable of describing the variability in

multi-level programming of 1T1R RRAM devices via program/verify algorithm

is proposed. The core of this model will not be the attempt to achieve a precise

modeling of the creation and disruption of the conductive filament within the

oxide under the ISPVA particular conditions. On the contrary, a simpler and

more compact approach in describing the switching mechanism is adopted,

paying particular attention in facilitating the model integration with Monte

Carlo methods used to simulate the programming variability.

The logic steps used in this chapter are the following. Firstly, the simple

model which explains the switching mechanism is studied, with the goal of

reproducing the nominal programming characteristic, i.e. the conductance

G evolution as a function of the top electrode voltage, introduced in section

3.4. Secondly, a variability is incorporated in some model parameters in order

to investigate their impact on the characteristic graduality and on the final

resistance value (R after switching). Finally, the parameters are tuned with

the aim of reproducing all experimental results, via Monte Carlo simulation.

4.2 Model description

4.2.1 Differential Equation

Unlike the case addressed in chapter 2, the equation 4.1 used in this model

in order to describe the switching mechanism takes into consideration only the

electrical effect on the device, neglecting any temperature dependence.

dG

dt
= AeαVR (4.1)

Figure 4.1 (a) shows the 1T1R structure where VR indicates the voltage across

the device. Equation 4.1, when integrated, allows to describe the time evolution
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Figure 4.1: (a) 1T1R structure; VR, voltage across the resistive device, is the

value inserted in the differential equation 4.1 which describes the time evolution

of conductance G. (b) Waveform applied to top electrode (VTE(t)) which sets

a condition for the integration of equation 4.1. Only the programming pulse

(P) sequence of the real waveform used in the ISPVA is represented, because

the model offers directly the conductance G as an output, with no need to

measure it in the readout pulses (V), unlike what happens in the ISPVA. (c) VR
computation method: it is obtained thanks to the identification of the circuit

working point, i.e. the intersection point between the MOSFET characteristic

(in black) and the device load curve (in blue).

of the conductance G as a function of A and α. A is a parameter indicating the

evolution velocity as in any Arrhenius-type equation. The activation energy

is somehow included in such parameter, since the temperature dependence is

neglected in this case. On the other hand, α is the barrier lowering factor as

introduced in chapter 2.

The conditions in which the equation is solved, are those typical of the

ISPVA, introduced in section 3.2. The main constrictions are the application

of a particular waveform to the top electrode (VTE) and a constant voltage

applied to the gate (VG) and consequently a fixed MOSFET voltage-current

characteristic. Regarding the top electrode voltage, it is important to underline
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that the VTE waveform used in this section is different from the one described in

3.2. It has the shape of a pulsed ramp, as shown in figure 4.1, (b) and represents

only the programming part of the whole waveform used in the experiment. In

fact, it is not crucial to perfectly replicate it, since the model was developed

in order to have the conductance G programming characteristic as an output.

The verify part of the experiment can easily be performed by software on the

model output.

Due to the VTE dependence on time, equation 4.1 integration is not straight

forward and cannot be solved analytically, because VR will have a dependence

on time, too. Moreover, it is not simple to extract the VR value to be put in

equation 4.1, since the conductance G itself is varying during the programming.

Therefore an iterative method is adopted, executing the following operations

at every time step:

• Computing the device load curve I(k)
R (VDS) = G(k−1)VR = G(k−1)(VTE −

VDS) with the G value at the previous step. Such curve represents the

current which flows in the device as a function of VDS, namely the voltage

across the MOSFET channel.

• Computing V (k)
R using IR(VDS) and the MOSFET characteristic IM (VDS)

as shown in figure 4.1, (c). Due to the series configuration, the intersection

point between the two curves will represent the circuit working point in

terms of current IM and VM . Given VM , it is straightforward to compute

VR = VTE − VM .

• Computing the conductance update ∆G(k) = AeαV
(k)

R ·∆t

• Computing the conductance value G(k) = G(k−1) + ∆G(k)

The initial G value G0 is chosen to be 10 µS. Such procedure is repeated

as long as G is smaller than the target. Moreover, it is crucial to assure the
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solution convergence through the right time step of integration (∆t) selection.

A deeper analysis of such issue will be carried out in the following. As a first

guess, it is possible to define an upper limit for ∆t: since the VTE steps have

duration 10µs as shown in figure 4.1, (b), it will be smaller than such value.

4.2.2 A and α tuning: Vset addition

At this point it is crucial to perform a first coarse tuning of A and α in

order to well fit the conductance characteristic extracted from the experimental

data. The most important features to fit are the top electrode voltage for which

the conductance starts to evolve towards larger values, defined as Vset, and the

transition derivative, i.e. the conductance evolution graduality after Vset. Both

features depend on the combination of A and α.

From this considerations, two conditions on dG
dt

can be introduced. Firstly,

it must be very small (for example 1S
s
) up to VTE ' Vset in order to well fit

Vset. Secondly, dG
dt

must be higher than the derivative of the set transition

extracted from data, for VTE > Vset. However, regarding this last point, only

an approximation for the dG
dt

value can be extracted, because data have a large

dt = 10µs, while a smaller dt needs to be used in the model for convergence

issues. A reasonable value in this case is dG
dt

= 50S
s
.

The equation system 4.2 summarizes the two conditions:
dG
dt
< 1S

s
VTE < Vset

dG
dt
> 50S

s
VTE ≥ Vset

(4.2)

The first condition can be rewritten as A < e−αVR with VR corresponding

to the voltage across the device when VTE = Vset (0.7V in the example of figure

4.2), while the second one results in A > 50e−αVR with VR corresponding to the

voltage across the device when VTE > Vset (0.8V in the example).

Figure 4.2 (a) illustrates the A trends as a function of α in a semilogarithmic

plot. The blue curve represents the first condition upper limit, while in red the
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Figure 4.2: (a) Graphical representation of the two conditions put on dG
dt

in

order to determine the order of magnitude of possible < A,α > pairs able to

well fit the experimental data. The green area identifies the region of A - α

plane where both conditions are satisfied. (b) Simulated VR and G trends as a

function of time for two different < A,α > pairs selected inside the green area.

Vset is well fitted in both cases, but the resulting G is not enough abrupt. (c)

Simulated VR and G trends as a function of time for a < A,α > pair outside

the green area. With respect to case (b), α is the same, while A is smaller by

orders of magnitude. In this case the G transition graduality is comparable

with data, but Vset is now very different. These considerations bring to the

introduction of a third parameter called Vset, which allows to decouple the

requirements on A

second requirement lower limit is shown. This study leads to the definition

of a portion in the A - α plane, highlighted in green in the figure, where

each pair of the two parameters satisfies the requirements of system 4.2. The

intersection point between the two curves is at < A = 2 · 10−27 S
s
, α = 87V −1 >

and represents the upper boundary for A and lower for α.

Figure 4.2 (b) illustrates the simulated VR and conductance G trends as a

function of time, comparing the latter with experimental data for two < A,α >

pairs extracted from the green region of figure 4.2 (a), namely < 2 ·10−28, 100 >

and < 10−42, 150 >. Such simulations are overlapping and show that Vset is well
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fitted, but that the difference in graduality is striking. Many other < A,α >

pairs extracted from the same region were tested, leading to the same results

of figure 4.2 (b).

A possible explanation may be derived from the VR trend. It is noticeable

that VR starts to decrease when G increases, since an external negative feedback

is triggered by the current limitation introduced by the transistor as discussed

in chapter 2. However, as VR approaches values slightly smaller than Vset

(∼ 0.65V in figure), it tends to saturate to that level and does not further

decrease. This is due to the fact that for that lower VR value, dG
dt

is forced to

be very small by the first condition on A shown in system 4.2. Therefore, as

soon as VR approaches ∼ 0.65V , dG
dt

is much smaller than what needed to well

fit the data transition graduality and the simulated G trend is more gradual.

This inconsistency might be due to the coarse approximation in setting

the upper limit of the second inequality of system 4.2 (50S
s
). However, as

it is shown in the following, other values for such limit were tested, with no

particular improvement.

It is evident that a change must be made to the model. It is necessary

to somehow decouple the two different conditions that G must satisfy, which

cannot be achieved with the same A value. In fact, A must be very small for

VTE < Vset in order to select the right Vset, as previously explained. On the

other hand it was shown that this small A value does not satisfy the requirement

on set graduality.

Figure 4.2, (c) illustrates an additional confirm to this argument. It shows

the same trends for a < A,α > pair outside the green region, namely <

10−12, 150 >. In particular, the same value for α as in figure 4.2 (b) (150V −1)

is used, but a much larger A (10−12 S
s
) is chosen. In this case, G transition is

more abrupt and comparable to the data, but Vset is much smaller and does

not fit the experimental curve.
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To summarize, it was found to be impossible to well fit the experimental

data only with two parameters A and α, since the transition abruptness and

the Vset value cannot be achieved at the same time.

The solution to this issue consists of the introduction of a third parameter

called Vset. It is defined as the top electrode voltage (VTE) until which no

update of conductance G is performed. It means that dG
dt

is externally forced to

0 if VTE < Vset. On the contrary, if VTE > Vset, the aforementioned iterations

are carried out.

This change allows to choose the < A,α > pair, taking into account only

the requirement on graduality and not caring about the condition on Vset, which

is determined externally through the new parameter.

The introduction of a new parameter might appear to make the model

tuning more complex since a third degree of freedom is added. However, it is

a basic parameter to be defined and identified from data and therefore it is

possible to extract a range of values for such quantity. In fact some analysis on

the subject were already mentioned in section 3.4.

Thanks to this addition, it is much more straightforward to fit the experi-

mental data. Therefore, this more complete model is a starting point for the

additional investigations which are shown in the following, starting from a

study of convergence.

4.2.3 Convergence study

As previously mentioned, it is important to define a proper time interval

which allows the iterative method to converge to the solution of equation

4.1. The finer ∆t, the closer to the true solution the result, despite a larger

computational effort, i.e a higher number of iterations. Based on this trade-off,

it is necessary to choose a value which ensures the convergence with a limited

number of iterations.
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Figure 4.3: (a) Simulated conductance G as a function of the top electrode

voltage for different ∆t. When ∆t is too large, the jump at VTE = Vset diverges

to very large values. (b) Simulated VR trend as a function of time for different

time steps. For large ∆t, it decreases to small values and shows a numerical

overshoot for the 1µs case. From both plots it is noticeable that ∆t = 100ns

and ∆t = 10ns cases are overlapping, meaning that the method is converging

to the solution. This study allows to choose ∆t = 100ns as a good trade-off

between convergence and number of iterations.

Figure 4.3 illustrates the simulated conductance evolution as a function of

VTE, (a), and the simulated VR trend as a function of time, (b), for different

values of ∆t. The triplet of parameters chosen for this simulation is not

well tuned on the experimental data yet, but it provides a good and sufficient

understanding for the current purpose of the convergence study. Such parameter

values are: < A = 10−3, α = 15V −1, Vset = 0.7V >. Moreover, the conditions

used in this example are: Gtrg = 150µS and VG = 1.4V , therefore related to

the programming of L3. Note that the conductance curve is not left evolving

for the whole VTE waveform duration, but as soon as the target is crossed, the

first value higher than the target is reused for larger VTE values.
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From figure 4.3, it is observable that for the largest ∆t = 10µs, the solution

diverges to values larger than 1mS and consequently VR goes very close to 0

and remains constant at such very small value. Regarding ∆t = 1µs instead,

the jump corresponding to VTE = Vset is lower, but still too big. In fact, the VR
trend shows the typical numerical overshoot: it instantly goes to the minimum

value (∼ 0.2V ) and then increases getting closer to the right solution. This

mechanism obviously has not physical meaning and therefore this ∆t value

cannot be used.

The curves calculated for ∆t = 100ns and ∆t = 10ns are completely

overlapping, meaning that the iteration method is now converging to the

solution. VR trend is in fact monotonous and G takes some steps to reach the

target. Since a good result is already achieved with ∆t = 100ns, such value is

chosen as time step in the following, in order not to excessively increase the

computational steps.

4.3 Parameters tuning and data fitting

Up to now, the description focused on the parameters and the integration of

the differential equation which explains the device conductance evolution with

time under particular external conditions. As mentioned, the model takes some

constraints, in particular VTE waveform and VG value, as inputs and returns

the simulated G programming characteristic as an output, from which it is

possible to determine the after switching conductance or resistance values.

In this phase instead, the goal is to tune the three parameters of the model,

A α and Vset, so that the simulated conductance programming characteristic

and after switching R C2C distributions well fit the experimental data.

As addressed in chapter 3, the device set transition graduality is the crucial

feature in determining the after switching resistance C2C distribution in terms
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of median R (µR) and standard deviation (σR). Therefore, in the following

simulations, the programming characteristic graduality will be varied by tuning

the model parameters. However, it is important to define which of them have

more impact to this objective.

The strategy adopted is to associate a single < A,α > pair to each device in

order to describe the set transition graduality with these two parameters only.

Regarding the third parameter Vset, figure 3.6 (a) shows C2C distributions

that are almost overlapping and quite bent, suggesting that Vset variability is

mainly on cycles rather than on devices. Moreover, figure 3.6 (b) shows the

absence of correlation between µVset and µR, meaning that it is not necessary

to characterize a single device with a particular µVset . Based on this result,

every device will be associated to the same µVset in the following simulations.

Given this strategy, it is important to underline that it is desirable to fit the

programming characteristic and the C2C distributions related to a single device

with the same < A,α > pair for all the four LRSs. In fact, it is reasonable to

affirm that the set graduality is an intrinsic device characteristic which does

not depend on the level to be programmed, i.e. on the < VG, Gtrg > pair.

It is therefore necessary to classify the different device behaviors regarding

graduality in the same way for all levels L1 − L4. Figure 4.4 shows how this

is achieved. In (a) the same C2C distributions introduced in figure 3.3 are

re-proposed. From these, the median value for each curve is extracted, i.e. the

after switching resistance value at 50%. Figure 4.4 (b) then illustrates how

such median values are distributed for each level.

Thanks to this analysis, it is possible to extract the median resistance value

corresponding to different percentiles for each level. Moreover, given those

values, the median programming characteristic of the selected device can be

derived. Figure4.4 (b) illustrates the 5 percentile values used, namely 99, 90,

50, 10 , 1.
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Figure 4.4: (a) C2C distributions of after switching R for all LRSs. (b) median

R on cycles distributions for all LRSs. From those, the values corresponding

to the highlighted percentiles are sampled for each level in order to identify 5

representative device, from the one presenting larger µR and graduality (99%)

to the one characterized by smaller µR and graduality (1%).

To summarize, the operation previously described consists firstly of identify-

ing 5 representative devices which differ in median R and then of deriving the

specific median programming characteristic on cycles and C2C R distribution

for each of them. Such specific quantities are the ones to be fitted through A

and α tuning.

Figure 4.5 shows such results. First of all, more than one curve is plotted

for every percentile, because a small group of 10-15 devices showing the same

µR is always considered in order to have a larger sample. It is noticeable that

the device at 99% is the one with larger µR and therefore the corresponding

C2C distribution (figure 4.5 (a)) and median G characteristic on cycles (figure

4.5 (b)) lie in the bottom part of the whole. On the contrary, the devices at

1% show the smallest µR and occupy the top parts, showing the most abrupt

trends of median G. The devices at intermediate percentiles systematically

distribute themselves following the same order.
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Figure 4.5: C2C R distributions (a) and median G on cycles as a function

of VTE, i.e. median programming characteristics on cycles (b), displaying the

ensemble of devices selected for each percentile.

The data presented in figure 4.5 are the basis on which the simulation results

will be shaped. As already mentioned, the strategy applied is to associate a

< A,α > pair to each device, starting at first from the 5 previously defined.

Such operation aims at obtaining 5 < A,α > combinations from which a set

of 1000 pairs, which describe the whole device set, will be built. These 5

combinations are therefore found by simulating the endurance experiment, i.e.

1000 programming cycles, until the best fit of experimental data of figure 4.5 is

achieved.

The 1000 programming cycles are simulated by introducing a certain vari-

ability in Vset and by adding an intrinsic read noise expressed as σG to the

conductance G. This is the typical Monte Carlo method approach which consists

in solving equation 4.1 1000 times, each time with a different Vset value and

with the introduction of a random noise which is extracted from a gaussian

distribution with 0 median value and σG as standard deviation. Such noise

represents both the unavoidable instrument noise which affects the measure-

ment and the intrinsic device noise due to the conductive filament stochastic

nature [71]. During the A and α tuning process, the simulations are carried out
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Figure 4.6: Simulated C2C R distributions for the 5 representative devices. One

< A,α > pair is associated to each device, whose programming is simulated for

all 4 LRSs by simply varying VG and Gtrg. The statistic variability is introduced

through the Vset parameter (µVset = 0.75V , σVset = 0.05V ) and the addition of

a read noise characterized by σG = 1µS.

by setting µVset , σVset and σG respectively to 0.75V, 0.05V, 1µS, and by tuning

A and α until the best fit of the experimental data is found.

Figures 4.6 and 4.7 show the simulation results. Note that the same< A,α >

pair is used in the simulation to fit all levels for a single representative device.

The result is remarkable since with a simple equation as eq. 4.1, by introducing

a statistic in one parameter (Vset) and a read noise, it is possible to well fit the

data, both in the median programming characteristic and in the distribution

of the after switching resistance. Moreover, such results evidence the model
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Figure 4.7: Simulated median G as a function of top electrode voltage VTE for

the 5 representative devices. All medians are computed from the 1000 simulated

programming characteristics. The figure underlines the model compactness,

since the different levels are fitted with the same parameters < A,α > for each

device.

compactness, because the outputs related to a single device are obtained for all

4 levels immediately, by simply varying the < VG, Gtrg > pair.

Table 4.1, collects the 5 < A,α > pairs linked to the 5 fitted representative

devices. A and α show an inverse proportionality. A ranges more than one

order of magnitude, while α’s variation is much more limited, since it is an

exponential factor. Therefore, a variation in both parameters strongly affects

the simulated programming characteristic. This might be the reason for the

aforementioned inverse proportionality: the variation in the representative

devices programming characteristic is quite limited (figure 4.5 (b)). Therefore,

to well fit such curves, the change of just one parameter must be somehow

compensated by the other one. In this way, such little variations are achieved.

Knowing the percentile to which they are related is a further advantage for

the following steps. In fact, from these 5 values it is straightforward to derive

µA, µα, σA and σα which will be used to generate a distribution of 1000 pairs

representative of the whole array. Such discussion will be investigated in the

following sections.
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A[S
s
] α[V −1]

1% 8 · 10−2 11.3

10% 3.8 · 10−2 12.2

50% 1.2 · 10−2 13.5

90% 4 · 10−3 14.75

99% 1.4 · 10−3 16

Table 4.1: A and α corresponding to the 5 representative devices. An inverse

proportionality is found between the two quantities. However, A varies more

than one order of magnitude, whereas α’s range is more limited since it is an

exponential factor.

4.4 Simulation of an endurance experiment

with RRAM statistical model

In the previous section, 5 < A,α > pairs were found in association to 5

representative devices. Now, in order to completely replicate the experimental

data, it is necessary to simulate the endurance experiment for the complete set

of 1000 devices per each level. Supposing that the two parameter distributions

will be gaussian, the next step consists therefore of building a bivariate normal

distribution in the A−α plane and of extracting from that 1000 < A,α > pairs.

Note that a bivariate normal distribution is the bi-dimensional generalization

of a one-dimensional normal distribution.

Equation 4.3 describes the probability density function of a multi-variate

normal distribution (the most general case) [77]

fX(x1, ..., xk) =
exp(−1

2(x− µ)TΣ−1(x− µ))√
(2π)k det Σ

(4.3)

where x is a real k-dimensional vector and Σ is the covariance matrix, i.e. a

square matrix giving the covariance between each pair of elements of a given
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Figure 4.8: Resulting α (a) and |A∗| (b) cumulative distribution functions

extracted from the values associated to the 5 representative devices fitted

in the previous section. The parameters featuring these distributions are

µα = 13.5V −1, σα = 1V −1, µA∗ = −1.92 and σA∗ = 0.38.

random vector. In the matrix diagonal there are variances, i.e., the covariance

of each element with itself.

As shown in table 4.1, A ranges of more than one order of magnitude.

It is therefore simpler to create the bivariate distribution as a function of

A∗ = log10(A).

In the bivariate case, equation 4.3, already referred to the variables A∗ and

α, becomes:

f(α,A∗) = 1
2πσασA∗

√
1− ρ2 · (4.4)

· exp
(
− 1

2(1− ρ2)

[
(α− µα)2

σ2
α

+ (A∗ − µA∗)2

σ2
A∗

− 2ρ(α− µα)(A∗ − µA∗)
σασA∗

])

where ρ is the correlation between α and A.

In this case µ =

 µα

µA∗

,Σ =

 σ2
α ρσασA∗

ρσασA∗ σ2
A∗

.
In order to create such bivariate distribution, it is therefore necessary

to know ρ, σα and σA∗ . The two standard deviations are easy to extract

from the values obtained in the previous section and are equal to 1V −1 and
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Figure 4.9: Correlation plot for 1000 < A∗, α > pairs extracted from the

bivariate normal distribution in equation 4.4. The effect of different correlation

coefficients ρ is compared. As expected, when the perfect correlation is forced,

all values distribute on a straight line, instead when A and α are completely

uncorrelated the values are much more spread. For simplicity ρ = −1 is chosen

in the following.

0.38S/s respectively. Figure 4.8 shows the related cumulative density functions,

highlighting the 5 values used as a basic structure. Regarding ρ instead, for

sake of simplicity, it is at first set equal to -1, suggesting a perfect correlation

between the two parameters. Such statement is not entirely precise, since a

perfect correlation between two separate quantities is not usually physically

expected. However, since A and α does not directly refer to specific physical

quantities, ρ cannot be measured or extracted from data and is used as external

parameter that can be modified to verify the impact on the simulations.

Figure 4.9 shows the correlation plot of 1000 < A∗, α > values extracted from

the bivariate distribution described by equation 4.4 with different correlation

coefficients ρ. As expected, in the ρ = −1 case all values distribute themselves
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Figure 4.10: Comparison between experimental data (a) and simulation (b)

for C2C after switching R distributions and relative σR as a function of µR.

Calculations well reproduce the experimental data, thus supporting the validity

of the statistical model.

on a straight line representing the aforementioned proportionality between A

and α. When |ρ| < 1 instead, it can be noted that the values spread on a larger

region of the A− α plane. In any case, the important achievement of this step

is that the set of 1000 pairs is extracted from a normal distribution, meaning

that the values have different probability to be extracted, which is largest next

to the median values and decreases approaching the extremes. According to

these considerations, ρ = −1 is chosen in the following.

Given the 1000 < A,α > pairs of figure 4.9 representing the whole array

in terms of D2D variability, it is possible to simulate the whole endurance
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Figure 4.11: Comparison between data (a) and simulation (b) regarding the

median R distributions, which display the D2D variability.

experiment in order to replicate the results of figure 4.4. For each pair, the

1000 programming cycles are simulated in the same way used in section 4.3, i.e.

by introducing a variability in Vset and adding a read noise σG.

Figures 4.10 and 4.11 show the results related to the complete experiment

simulation. The similarity between data and simulation is remarkable in every

plot, in terms of C2C cumulative distributions, µR and σR. These results support

the model efficacy. Starting from a simple differential equation describing the

programming characteristic, the set of model parameters related to the median

device behavior is found. Then, introducing a statistic in such parameters, it is

possible to predict both the C2C and the D2D variability.
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Chapter 5

Neural network simulation with

RRAM statistical model

This chapter presents the implementation of a multilayer neural network with

the HfAlO RRAM array, focusing in particular on the impact of programming

variability on the network classification accuracy. For this reason, in the first

part of the chapter the statistical model introduced in the previous chapter is used

to simulate the array programming variability under different program/verify

techniques, showing that the device conductance tuning is finer with respect to

the classical ISPVA approach. In the second part of the chapter instead, the

steps used to design and train the network in the array are described, highlighting

the advantages introduced by an incremental quantization technique. Finally,

the network is tested by taking into account the variability and the expected

accuracy achieved under the different programming techniques is compared.
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5.1 Introduction

In the previous chapter, the statistical model developed to assess the

programming variability of the 4 kbit HfAlO RRAM array was introduced and

tuned on the experimental data. At this point, the average device behavior

and its variability range are well defined by the parameters and therefore the

model well represents the array in terms of variability. For these reasons, some

applications can now be introduced.

Recent works [78–80] have investigated the possibility to implement a

neural network into HfO-based RRAM arrays. In this chapter, such application

is addressed. As introduced in chapter 1, multi-level operation is crucial to

achieve synaptic weights with analog behavior, enabling neural network training

with high precision. Indeed, the higher the number of levels, the larger the

accuracy. Therefore, the common goal is to refine multi-level operation to

increase the number of levels. However, programming variability represents the

main obstacle to this purpose, as it blurs the distinction among different levels.

In this scenario, the statistical model can be used as a very powerful tool in

order to predict the variability under different programming condition, in order

to find the one which is expected to minimize variability.

In the first part of the chapter, two new programming techniques, which are

different from the ISPVA, are presented. Then, their application to the array

is simulated via the statistical model, in order to investigate if the expected

variability is decreased with respect to the experimental data found using

ISPVA approach.

In the second part of the chapter, the implementation of a multilayer

neural network with HfAlO RRAM devices is presented. First, the multi-layer

perceptron (MLP) network is designed and trained in software for inference

demonstration tasks. Then, its implementation in the array is simulated.
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Finally, the network inference accuracy is tested, allowing to evaluate how the

variability can affect the network performances.

5.2 Simulations under different

program/verify techniques

As previously introduced, in this section the statistical model is used in

order to investigate the impact of different program/verify techniques on HfAlO

RRAM variability. Their configuration is derived through the application of

some modification to the ISPVA, which is used as a starting point. The two

different programming conditions adopted are the following:

• Finer VTE: the same technique as the ISPVA is used, but with a finer

top electrode voltage VTE step (∆VTE = 0.01V instead of 0.1V )

• Hybrid: firstly the ISPVA approach up to a value (called Gph1) smaller

than the target is used. Then, a pulsed ramp VG is applied to the gate at

fixed VTE until the nominal target is reached.

Both techniques are supposed to improve the programming variability. By

applying the first technique, the device receives more gradual steps and the

filament shape might be more controllable. The Hybrid approach, instead, is

introduced in order to understand if it is possible to obtain a better control on

the device programming by operating through the compliance current variation

rather than on the top electrode voltage. It is designed in a simple way, since

the main goal is to simulate a programming technique which can be truly

used in an experimental setup. Figure 5.1 shows a simulated programming

characteristic in the two phases of the Hybrid technique. In phase 1, the ISPVA

approach is maintained, but an intermediate < VG1 , Gph1 > pair is associated to

each nominal Gtrg. The idea is to provide a coarse programming via the typical
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Figure 5.1: Simulated programming characteristic adopting the Hybrid tech-

nique. The ISPVA approach, where VG is constant and VTE is increased by

steps, is used in phase 1 (a) up to a target Gph1 which is lower than the nominal

one. Then, during phase 2 (b), VTE is kept constant to the last value used in

phase 1, and VG is increased with steps of 0.01V until Gtrg is reached.

ISPVA approach up to a conductance value which is still lower than the desired

one. In phase 2, instead, the top electrode voltage is kept constant to the last

value used in phase 1, and the VG is increased from VG1 to gradually change the

compliance current and perform a finer programming, controlling the filament

creation in a better way. It is therefore expected that the variability in this

case will be lower.

Table 5.1 shows the parameters used in simulating the Hybrid technique.

The VG step used in phase 2 is ∆VG = 0.01V .

In a first moment, the simulation is carried out only on the 5 representative

devices introduced in section 4.3, since the goal is to understand how the

median device (50 %) and the tail devices (1% and 99%) are expected to behave

in the new programming conditions.

Figure 5.2 shows the simulation results against the experimental data.

Firstly, it is observable that in both approaches the most gradual device (99%)

has C2C distributions which well replicate the experimental data, meaning
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Gtrg [µS] Gph1 [µS] VG1 [V]

L1 50 25 0.8

L2 100 50 1

L3 150 100 1.2

L4 200 150 1.4

Table 5.1: Recap of Gtrg, Gph1 and VG1 used in the Hybrid approach. As soon

as Gph1 is reached, VTE is kept constant to the last value of phase 1 and VG is

increased by steps of 0.01V until Gtrg is overcome.

that no improvement is introduced. In fact the gradual devices, as addressed

in chapter 3, are the most controllable ones in terms of programming even with

the classical ISPVA approach.

The Finer VTE approach illustrated in figure 5.2 (a) brings benefits for the

programming of more abrupt devices in levels L1, L2, L3 where it is visible that

the simulated curves are less bent and are closer to each other, suggesting a

reduced device-to-device (D2D) variability. For level L4, instead, it is noticeable

that the simulations do not strongly differ from the experimental data.

On the other hand, the Hybrid approach illustrated in figure 5.2 (b) shows

the best results since even the cycle-to-cycle (C2C) distribution related to

the most abrupt representative device (1%) lies very close to the others in

every levels, suggesting that the D2D variability is strongly limited using this

approach.

A deeper analysis and comparison between the two simulated programming

techniques and the experimental data is illustrated in figure 5.2 (c), which shows

the standard deviation σR as a function of the median R µR. One common

positive result is that µR is generally closer to the target in both simulations

with respect to the experimental data. As anticipated, the σR calculated in the

Finer VTE approach (blue circles) shows comparable values with respect to the
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Figure 5.2: Comparison of the 5 representative devices C2C R distributions

in the Finer VTE (a) and Hybrid (b) approaches. In the former case some

improvements are achieved for levels L1, L2, L3, but the simulated variability

for level L4 is comparable with the experimental data. The latter case is

instead much better in limiting the D2D programming variability. (c) Standard

deviation σR as a function of median R µR for the two simulated programming

techniques and the experimental data. This figure confirms the fact that both

techniques reduce variability and in particular the Hybrid approach is the most

efficient for all levels.

experimental data (in gray) for L4, suggesting that this approach is not able to

sufficiently reduce the variability for all levels. On the other hand, the Hybrid

approach shows the best results, since the red circles are more concentrated

than the blue and gray ones for each level, meaning that the programming

variability is strongly reduced.

5.3 Design and simulation of a neural network

for image classification

Figure 5.3 (a) shows a schematic representation of the neural network

designed for inference demonstration. It is an MLP network composed by the
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Figure 5.3: (a) Schematic representation of the MLP network designed for

inference demonstration, composed by 197 input neurons, 76 hidden neurons and

10 output neurons. A downscaled version of the original MNIST images is used

for size limitations. (b) Representation of the matrix of weights connecting input

and hidden layers written in the RRAM array. Each weight is implemented as

the difference of a programmable conductance Gij and a reference conductance

Gr. Each hidden neuron collects the currents of each column and transforms

them through a sigmoid function into a voltage output VHj
which becomes the

input signal for the output neurons. Note that the voltage V used in inference

phase is 0.2V, i.e. the readout voltage used in the ISPVA, as introduced in

section 3.2. Adapted with permission from [74].

input layer, consisting of 197 neurons, one hidden layer with 76 neurons and

the output layer with 10 neurons. Note that such size is not compatible with

the implementation in the 4 kbit array, since the number of weights is too

large. However, this choice is made since this part of the work is an extension

of a previous work [74] which presented a smaller size network which fitted in

the array at disposal. In this case, a larger size array (16 kbit) with the same

variability features as the real one is considered. Thanks to this size extension,

a better classification accuracy can be achieved.

The process used to train and simulate this network is the following:
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• The network is trained in software on the Modified National Institute of

Standards and Technology (MNIST) database of handwritten digits via

the backpropagation algorithm [54].

• The weights obtained are quantized with the Incremental Network Quan-

tization (INQ) from 64-bit floating point to 5 evenly spaced discrete

levels centered around 0, representing the 5 resistive levels which can be

programmed in the array.

• The 5 discrete levels centered around 0 are mapped into the 5 conductance

values representing the HRS and the 4 LRSs targets.

• The programming variability affecting each level is introduced, by se-

lecting the conductance value representing the synaptic weight, from

a distribution centered around the 5 descrete levels and with standard

deviation extracted from data or simulated via the model.

As mentioned, the first step is the network supervised training on the MNIST

training dataset with 60000 handwritten digit images by backpropagation. The

signal emitted by input neurons in response to image submission is forward

propagated toward the output layer leading to generation of an error signal

which is calculated as a difference of effective output signal and expected

network response. Such error is backpropagated toward the input layer and

exploited to update synaptic weights according to equation 1.1. After this

operation is iteratively performed on the entire training dataset for 20 epochs,

by halving the learning rate η every 5 epochs using 1 as initial value, the final

weight matrix is obtained. Note that a downscaled version (14x14 pixels) of the

original MNIST dataset (28x28) images is used, because, despite the increase

in size, a 16 kbit array is still too small to contain a network that is able to

deal with the original size images. After the training procedure, the network

is tested on 10000 unseen images from MNIST test dataset resulting in an
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Figure 5.4: Schematic explanation of INQ algorithm on a 5x5 matrix. The

top row shows the three basic operations: weight partition (left), group-wise

quantization (center) and re-training (right). The bottom row show the results

after the second (right), third (center) and final (left) iteration, resulting in the

incremental quantization of the original matrix.

inference accuracy of 96.2%. Note that the network size extension with respect

to the previous work [74], allows to achieve a remarkably higher classification

accuracy (96.2 % vs 92 %).

At this point, the real-valued weight matrix of the optimized MLP has to be

written in the array, by mapping each weight to the conductance value of the

devices. Since the array that has to be programmed is larger than the real one,

the implementation steps are simulated in software, in order to have a first idea

of the network performances. First of all, RRAMs can be programmed using

only 5 levels, therefore the synaptic weights must be converted from 64-bit

floating point precision to 5 discrete values, namely -2, -1, 0, 1, 2.

This operation is performed through a particular technique called Incre-

mental Network Quantization (INQ) [81]. Figure 5.4 schematically shows

the algorithm operation on a 5x5 weight matrix, for sake of simplicity. It is
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divided into three steps, namely weight partition, group-wise quantization and

re-training. First, the whole matrix is equally divided into two groups of values

(top left matrix in figure). Then, the first ones are quantized with a rounding

strategy (top center matrix). Finally, the second group is re-trained keeping

the first group values constant to the quantized value (top right matrix). This

procedure is then repeated on the re-trained values, so that the quantization is

achieved in an incremental way, as shown in the bottom row of figure 5.4.

This quantization approach is very efficient, since the accuracy changes

from 96.2 % (real-valued weights) to 93.5 % (5-level weights). Moreover, the

original algorithm can be further improved by applying a little modification to

the weight partition step. Instead of separating the two groups by choosing the

matrix elements in a random way, a pre-processing is performed by calculating

the quantization error for the whole matrix and then selecting the elements

causing the largest error. These values are those to be quantized, while the

other ones are re-trained. Such modification allows to strongly improve the

network accuracy, as it rises to 95.1 %, regaining about 1.5 % with respect to

the random INQ approach, which means that additional 150 digit images are

correctly classified using this enhanced quantization algorithm.

At this point, the 5 discrete levels have to be mapped into the 5 conductance

targets representing the HRS and the 4 LRSs. However, since levels have both

positive and negative sign and the device conductance can only be positive,

it is necessary to implement each synaptic weight as the difference of two

conductances wij = Gij −Gr, where Gr is a reference value programmed at the

intermediate level, as shown in figure 5.3 (b) [29]. After these steps, the weight

matrix based on the 5 conductance values is obtained.

Given the structure shown in figure 5.3 (b), the total number of weights to

write in the array is given by 197 · 75 + 75 · 10 = 15535, corresponding to the

tunable conductances Gij, which is added to 197 + 76 = 273, corresponding to
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Case study Inference accuracy

Real-valued weights 96.2%

5-level-valued discrete weights (INQ random) 93.53%

5-level-valued discrete weights (INQ max error) 95.1%

Table 5.2: Classification accuracy achieved on MNIST test dataset with real-

valued weights, 5-level weights with random quantization, and 5-level weights

with maximum-error-based quantization, respectively.

the reference conductances Gr, thus resulting in 15808 total weights, which is

compatible with the implementation in a 16 kb array, as previously mentioned.

Table 5.2 summarizes the network performance in classification accuracy

on MNIST test dataset. The adoption of the INQ algorithm, modified in the

weight partition step by selecting the matrix elements exhibiting the largest

quantization error, is very convenient as the accuracy with respect to the

real-valued case is reduced by about 1%.

The last step consists of introducing the programming variability, by as-

sociating a distribution to each discrete level. Specifically, the conductance

value for each RRAM device is extracted with a certain probability from a

distribution centered around the 5 discrete levels with a standard deviation

determined by the experimental data or by the simulations performed via the

statistical model. The larger the standard deviation, the higher the variability

and the lower the expected network accuracy.

5.4 Comparison of neural network performance

for different programming algorithms

At this point, it is necessary to extract the standard deviation which has

to be associated to each level in order to replicate the array programming
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Figure 5.5: PDF of after switching G for simulated single programming event

of 1000 devices for each level. The bars are the results of the simulations, while

the solid lines are the gaussian PDFs calculated with the extracted µG and

σG, shown in table 5.3. Three different programming techniques are compared,

namely classic ISPVA (a), Finer VTE (b) and Hybrid approach (c). The three

cases are ordered by decreasing σG, meaning that the Hybrid approach, which

involves the conductance control through the compliance current variation, is

the best in limiting the programming D2D variability.

variability and investigate its impact on the network classification accuracy.

The idea is therefore to replicate a single programming event for 1000 devices

per each LRS level (L1 − L4) and provide the D2D distribution of the final

conductance value. Such operation is carried out for experimental data, i.e.

programming with ISPVA, and for the Finer VTE and Hybrid approaches. Note

that the HRS used in all the simulations is extracted by experimental data and

exhibits µG = 10µS and σG = 10µS.

Regarding the experimental data, given the C2C distributions for a set of

1000 devices per level, the standard deviation σG is extracted by selecting the

after switching conductance of a random cycle among the 1000 cycles performed

in the endurance experiments. This operation is repeated several times and

the average behavior is extracted. On the other hand, regarding the Finer VTE
and Hybrid approaches, the standard deviation σG is obtained by simulating
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Programming technique L1[µS] L2[µS] L3[µS] L4[µS]

µG σG µG σG µG σG µG σG

ISPVA (exp. data) 57.5 6.96 112.5 10.39 166.5 11.24 212.5 8.5

Finer VT E 57.04 6.59 107.4 6.53 159 8.4 210 9.57

Hybrid 55.15 5.63 105.4 5.81 156.75 6.35 208.3 7.44

Table 5.3: Median G µG and standard deviation σG extracted or simulated

for the three different programming techniques considered. Moving from the

ISPVA to the Hybrid, σG decreases, suggesting a better control on variability

as shown in figure 5.5

the programming event of 1000 devices per level, by selecting only one value of

the parameter Vset (responsible for the C2C variability in the statistical model,

as addressed in section 4.3) from the corresponding distribution, with no need

to replicate the 1000 endurance cycles.

Figure 5.5 illustrates the probability density functions obtained in the

aforementioned way for data (classic ISPVA approach (a)), Finer VTE (b), and

Hybrid (c). Moving from left to right, it is noticeable that distributions get

thinner, meaning that σG becomes smaller and, therefore, that the different

programming approaches improve the control on the final conductance value

with respect to the classic ISPVA expressed by the experimental data. The

Hybrid scheme is thus expected to be the best approach in limiting the D2D

variability.

Table 5.3 summarizes the median G µG and standard deviation σG related

to the distributions of figure 5.5. As expected, σG decreases for the Finer VTE
and Hybrid approaches.

Given the results shown in figure 5.5 and table 5.3, the network is tested

on 10000 unseen MNIST images for 1000 times, each time by drawing a

different value from conductance distributions shown in figure 5.5. The average

inference accuracy calculated is 93.7%, 94.14% and 94.2%, respectively for
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Figure 5.6: Average inference accuracy achieved as a result of the network test

on 10000 unseen MNIST images including the expected programming variability

as a function of the number of cells used to implement the reference values.

Since Finer VTE and Hybrid approaches show lower variability with respect to

ISPVA, the corresponding accuracy is larger for all numbers of reference cells.

Moreover, accuracy improves as such number increases, because the variability

on the final Gref is reduced.

ISPVA (experimental data), Finer VTE and Hybrid. Such accuracy can be

further improved by implementing the reference weight as the parallel of two

or more conductances, i.e. by using one or more extra columns on the right

of figure 5.3 (b). Indeed, the reference conductance Gref is programmed into

one of the 5 levels and show the related variability. Averaging two or more

conductance values allows to achieve a more accurate final Gref , thus obtaining

a better control on the implementation of every weight. Figure 5.6 shows

the simulated average inference accuracy as a function of the number of cells

used to implement Gref , for the ISPVA, Finer VTE and Hybrid approaches.
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As expected, the accuracy improves as the number of cells implementing the

reference value increases for all the three techniques, since the variability on

the final Gref value is reduced. However, the curve for Hybrid case reaches

a plateau around 94.4 %, which can be due to the less controllable HRS (L0)

variability.

Moreover, accuracy improves moving from ISPVA to Finer VTE and to

Hybrid, since the variability is lower in those cases, as shown in table 5.3. Note

that the value for Hybrid in the best case of 10 cells used to implement the

reference value (94.4 %) is very close to the classification rate achieved with

5 ideal discrete-valued weights with no variability (95.1 %) indicated in table

5.2. This means that variability is so limited in this case that it has an almost

negligible impact on the network performances. For this reason, an Hybrid-like

approach, where the device programming is tuned by the compliance current

at a fixed top electrode voltage, is very promising to significantly mitigate the

HfAlO RRAM variability issues during programming, thus making this RRAM

device suitable for harwdare implementation of synaptic weights for neural

network accelerators. Moreover, such technique can enable device programming

with extra levels, which could additionally improve the network inference,

getting closer to the ideal case of real-valued weights.
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In this thesis, a new statistical model to mitigate multilevel programming

variability of a 4kbit HfAlO RRAM array under program/verify algorithm was

developed.

First, the physical reasons causing variability in RRAMs were addressed.

Since the number of vacancies involved in the filament formation and disruption

is discrete, the stochastic fluctuations on such number have a strong impact

on the filament conductive properties. This results in the resistance variability

and, in particular, in the increase of standard deviation (σR) with the resistive

state (µR), in accordance with the Poisson statistics.

The work focused on the study of variability data measured during an

endurance experiment carried out by applying a program/verify algorithm on

the 4 kbit array of HfAlO RRAM devices with 1T1R structure. As expected,

the increase of cycle-to-cycle (C2C) σR with µR, i.e. the 4 LRSs levels, was

observed, but the distinctive feature of such data was found to be an inverse

proportionality between σR and µR related to the same resistance state or level.

To explain this result, set graduality, defined as the slope of the programming

characteristic, was introduced. A correlation was found between the graduality

of set transition and σR and µR, which allowed to understand that resistive

cells with large set graduality showed a smaller variability and vice versa, thus

suggesting that device-to-device (D2D) variability was caused by this distinctive

parameter.
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After understanding this physical dependence, a statistical model able to

finely predict RRAM variability into the array was developed. The conditions

imposed externally by the program/verify algorithm were replicated and used

as inputs, while the simulated programming characteristic was chosen to be

the model output. The model parameters were defined in a simple way, so

that their impact on the simulated programming characteristic graduality was

easy to determine. Then, the model was tuned on the experimental data. The

variability was modeled by introducing a statistics in the model parameters,

using a Monte Carlo approach. The model was tested by demonstrating

to faithfully replicate, under the conditions imposed by the program/verify

algorithm, both the C2C and the D2D programming variability of experimental

data. In particular, a remarkable result was the model capability to well fit the

data related to the different programming levels with no need to change some

internal parameter, but only changing the external programming conditions, as

it happens with the real array.

Finally, the statistical model of HfAlO RRAM was used to simulate the

RRAM devices serving as synaptic connections into a multilayer neural network

designed for classification of MNIST handwritten digit images. The network was

first trained in software via the backpropagation algorithm, so that real-valued

weights were computed. Then, such full-precision weights were quantized using

5 levels via an incremental quantization algorithm, thus achieving 5-level-valued

weights. The adoption of such algorithm was very advantageous, since the

network inference accuracy decreased by only ∼ 1% with respect to the real-

valued case. As a last step, 5-level weights were mapped into 5 resistance states

with variability distributions predicted by the statistical model, to simulate

the real performance of the neural network, which is expected to decrease as

the variability increases. For this reason, different program/verify strategies

were tested via the statistical model, in order to reduce device variability with
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respect to the experimental data. Finally, the image classification accuracy

calculated under different programming techniques was compared. In particular,

the programming approach which tunes the compliance current rather than the

top electrode voltage was proved to be more efficient in reducing the variability

and therefore in increasing the classification accuracy, bringing it very close to

the ideal 5-level-valued case.

To conclude, the statistical model developed in this thesis is a useful tool to

predict the variability of the 4 kbit HfAlO RRAM array. For this reason, it will

be helpful to improve the programming accuracy of such array or larger size

ones, which is a crucial step to enable the hardware demonstration of neural

network accelerators with very high performances.
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