
politecnico di milano

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea Magistrale in

Computer Science and Engineering

From Energy to Throughput
in Intermittent Computing

Supervisor:

prof . luca mottola

Master Graduation Thesis by:

francesco bertani

Student Id n. 875585

Academic Year 2018-2019

To my parents.

To those who are trying to figure it out.

No matter the result.

A C K N O W L E D G M E N T S

Thanks to everybody who helped me to understand how to do scien-
tific research, to ask me the right questions, and to thoughtfully and
responsibly looking for answers in data.

Thanks to my advisor, Professor Luca Mottola, who made me aware
of such a challenging research field, guided me in this process, and
taught me the elements of style1.

Thanks to Professor Antonio Miele who, even if on a different topic,
introduced me for the first time to scientific writing and publication.

Thanks to my lab colleagues and friends Andrea, Francesco, Fulvio
and Pietro. You have been an invaluable resource in times of trouble
and wonderful fellows in times of happiness.

Thanks to Federica, you always know the right words to give me
balance.

Thanks to my family, your unconditional support is my biggest
strength.

1 The Elements of Style by William Strunk and E. B. White

v

A B S T R A C T

The ability to power small embedded devices with just the energy
harvested from the environment, extends their scenarios of adoption.
Though, the instability of these power sources, often times results in
drops of power supply. To mitigate this issue, we can use capacitors
as energy buffers.

Once the capacitor voltage reaches a given activation threshold, the
microcontroller powers on and the computation starts. If the energy in-
take is lower than the outtake, the capacitor voltage drops, potentially
to a point where it is below the minimum device’s operating voltage.
If that happens a power failure occurs: the computation stops and the
device powers off, charging until the activation threshold is reached
again. This causes loosing processor’s state, hence the progress in
computation is lost and it must be restarted from scratch at the next
activation. We call this behavior intermittent computing.

Unlike mainstream platforms where software can benefit from OS
support, on our constrained devices we execute code on bare hard-
ware and power failures are not managed. It is evident that we need a
mechanism to save the state on non-volatile supports, when we are
close to a power failure, so that the computation can resume from
where it was when the device switched off, ensuring code completion.
Different approaches are described in the literature when it comes
to saving state. Each of them proposes a different take on how to
structure, instrument and execute code. Though, all of them consider
the maximization of energy efficiency as the ultimate goal that guides
their decisions. This allows to operate in situations of scarce energy
intake. We proved with experiments that being too conservative pro-
duces rigid solutions that do not adapt well to the opposite situation
of sudden bursts of high energy provisioning.

In this document we propose an important shift in perspective. We
suggest a different paradigm: to focus back on throughput require-
ments instead of energy efficiency. We propose to consider energy
efficiency not as a goal, but as a mean to satisfy throughput require-
ments, that we argue should be the ultimate goal. In light of this
conceptual leap, we propose a framework to support intermittent com-
puting, composed by a new programming abstraction and a dynamic
scheduler. Our scheduler, for the first time, manages at runtime both
workload and activation voltage threshold, to pursue our new goal:
the satisfaction of throughput.

vii

S O M M A R I O

La possibilità di alimentare dispositivi di piccole dimensioni solamente
con l’energia raccolta dall’ambiente, ne estende il campo d’azione.
L’instabilità di queste sorgenti rende frequenti i cali di alimentazione
e può essere mitigata utilizzando condensatori come buffer energetici.

Il microcontrollore si attiva quando il voltaggio del condensatore rag-
giunge una determinata soglia. Se durante la computazione il bilancio
energetico è negativo, il voltaggio del condensatore cala, potenzial-
mente raggiungendo un valore incompatibile con l’operatività del
dispositivo alimentato. Se ciò accade si verifica una power failure: la
computazione si interrompe e il dispositivo si spegne, caricandosi
fino al nuovo raggiungimento della soglia di attivazione. Lo spegni-
mento improvviso causa la perdita dello stato del processore che al
riavvio dovrà eseguire da capo tutte le istruzioni. Chiamiamo questo
comportamento computazione intermittente.

In questi dispositivi il codice viene eseguito accedendo direttamente
all’hardware e le power failure non sono gestite, a differenza delle
piattaforme di calcolo comuni in cui il software beneficia del supporto
del sistema operativo. Emerge la necessità di implementare meccan-
ismi di salvataggio dello stato su supporti non volatili, in prossimità
di una power failure, per poter riprendere la computazione inter-
rotta, garantendo il completamento del lavoro. In letteratura sono
descritti svariati approcci al problema del salvataggio dello stato che
offrono molteplici strade per strutturare ed eseguire il codice des-
tinato a queste piattaforme. Esiste però un comune denominatore
a tutte queste proposte: il fatto di considerare la massimizzazione
dell’efficienza energetica l’obiettivo primario che guida le scelte prese.
Questo approccio permette di operare in condizioni di scarsità ener-
getica, ma abbiamo sperimentato che produce soluzioni rigide che non
si adattano a scenari opposti di improvvisi picchi di alimentazione.

In questo documento proponiamo un importante cambio di prospet-
tiva. Suggeriamo un diverso paradigma in cui si riporta al centro
dell’attenzione il soddisfacimento dei requisiti non funzionali, e in
particolare del throughput minimo di esecuzione. Proponiamo di ren-
dere l’efficienza energetica, non più un obiettivo, ma uno strumento
per raggiungere la performance desiderata. Alla luce di questo cambi-
amento, proponiamo un framework per dispositivi a computazione
intermittente, composto da una nuova astrazione di programmazione
e, per la prima volta, da uno scheduler dinamico che gestisce a run-
time il carico di computazione e le soglie operative di voltaggio, per
perseguire quello che consideriamo il nuovo obiettivo principale: il
soddisfacimento dei throughput richiesti.

viii

C O N T E N T S

1 introduction 1

1.1 Protect Against Power Failures 2

1.2 Time Related Requirements 4

1.3 Energy Awareness . 4

1.4 From Energy to Throughput 5

1.5 Our Contribution . 7

1.6 Structure . 9

1.6.1 Introduction to Intermittent Computing 9

1.6.2 State of the Art Analysis 10

1.6.3 Contribution . 10

1.6.4 Evaluation . 11

2 introduction to transiently powered computing 13

2.1 Intermittent Computation 14

2.2 Forward Execution Problem 15

2.2.1 Checkpoint Inconsistencies 17

2.3 Time Without a Clock 20

2.4 From Problems to Solutions 21

3 hiding power failures 23

3.1 Checkpoint Based Solutions 23

3.1.1 Static Checkpoint Solutions 24

3.1.2 Dynamic Checkpoint Solutions 29

3.2 Task-Based Solutions . 32

3.2.1 Constraints and Goals for Task-Based Systems . 33

3.2.2 Task-Based Solutions Overview 35

3.3 Why Two Solutions to the Same Problem? 44

4 setting the threshold 47

4.1 The Conundrum of Threshold Selection 49

4.2 EPIC results . 51

4.3 Overview of Threshold Management Solutions 53

4.4 Shifting Perspective in Threshold Management 59

5 enabling multitenancy 63

5.1 Fundamental Concepts 64

5.2 Tasks and Applications 64

5.2.1 Tasks . 65

5.2.2 Applications . 67

5.3 Data Dependencies . 67

5.3.1 Greenhouse Example 69

5.3.2 Data Dependency Semantics 71

5.3.3 Task Operating on Machine 76

5.3.4 Task Operating on Shared Phenomena Controlled
by the World . 77

ix

5.3.5 Task Operating on Shared Phenomena Controlled
by the Machine 78

5.4 Memory Model . 81

5.4.1 Write Output Data 82

5.4.2 Read Input Data 84

6 scheduling tasks 87

6.1 Chapter Overview . 89

6.2 Minimum Throughput and Applications Priority . . . 90

6.3 Dynamic workload management 91

6.4 Scheduler Initialization 94

6.5 Task Selection and Deadlines Management 97

6.6 React to Throughput’s Drifts 101

6.6.1 Managing Over-Performing Applications 103

6.6.2 Managing Under-Performing Applications . . . 104

6.7 The Γ parameter . 106

6.8 Scheduler Fairness . 107

6.9 Complete Overview . 109

7 implementation 113

7.1 Define Tasks . 114

7.2 Define Applications . 117

7.3 Creating a Task . 119

7.4 Scheduler Implementation 119

8 evaluation 123

8.1 Evaluation Environment 123

8.2 Extending SIREN Simulator 124

8.2.1 Capacitor Simulator 126

8.2.2 Extended SIREN Commands 128

8.3 Evaluation Scenario . 130

8.4 Evaluation Baseline . 132

8.5 Outputs and Metrics . 132

8.6 Evaluation Results . 134

8.6.1 Stable Energy Source 134

8.6.2 Underpowered Execution 136

8.6.3 Fairly Stable Source With Energy Failures . . . 139

8.6.4 Gamma and Fairness Interaction 144

8.6.5 Scheduler Stability 146

9 conclusion and future works 149

9.0.1 Future Works . 150

bibliography 153

x

L I S T O F F I G U R E S

Figure 1.1 A typical intermittent execution pattern. 2

Figure 1.2 Code execution with or without a save state
mechanism in presence of power failures. . . . 3

Figure 1.3 Example of an application that manages a HVAC
system . 8

Figure 2.1 Simulation of an intermittent execution pattern. 15

Figure 2.2 Example of an inconsistency caused by inter-
mittent execution. 18

Figure 3.1 HarvOS Control Flow Graph (CFG) slicing. . . 27

Figure 3.2 Different programming abstractions induce dif-
ferent code structures. 44

Figure 4.1 Flicker power management circuit. 47

Figure 4.2 Capacitor voltage over time. 48

Figure 4.3 Simulation of Hibernus to understand how dif-
ferent selections of the activation threshold af-
fect system’s performance. 50

Figure 4.4 The selection of the activation threshold affects
the performance of task based systems. 52

Figure 4.5 Effects of threshold change. 53

Figure 4.6 Voltage supply has an impact on both power
consumption and clock speed. Taken from [1] 54

Figure 4.7 Dependencies among quantities involved in the
computation of execution time of a piece of
code in Transiently Powered Computation (TPC). 55

Figure 4.8 Flowcharts of the routines to calibrate hiberna-
tion and activation thresholds in Hibernus++ [2]. 56

Figure 4.9 A conceptual view of Flicker federated energy
storate, taken from [14]. 58

Figure 5.1 Example of a partitioned DAG that shows tasks,
applications and dependencies. 65

Figure 5.2 Task access to Non Volatile Memory (NVM) is
mediated by the framework. 66

Figure 5.3 A TPC device is deployed in a greenhouse to
control the irrigation system. 69

Figure 5.4 Dependency graph for the greenhouse example
presented in Section 5.3.1 71

Figure 5.5 Example of a application with tasks operating
on shared phenomena controlled by the world. 77

Figure 5.6 Possible scheduling trace the scenario described
in Section 5.3.4 78

xi

Figure 5.7 Dependency graph for scenario described in
Section 5.3.5. 79

Figure 5.8 Flowchart representing the steps followed by
the runtime environment to persist task’s out-
put on NVM. 84

Figure 5.9 Example of the update of the NVM data record. 85

Figure 6.1 Two applications with inter dependency among
them. 93

Figure 6.2 Example of deadline update after the execution
of a task. 98

Figure 6.3 Deadline management example 100

Figure 6.4 Example of an application with data depen-
dencies that cause the shrinking of the enabled
tasks set after a task execution. 101

Figure 6.5 Slack time computation 103

Figure 6.6 Applications DAG for scheduler final overview 109

Figure 7.1 Overview of the structure of the proposed so-
lution . 114

Figure 7.2 Application layout for YAML example in List-
ing 7.1 . 116

Figure 7.3 Applications layout for YAML example in List-
ing 7.2 . 118

Figure 7.4 Example of macro expansion in task’s code . . 119

Figure 8.1 Example of a Ekho solar IV surface. Taken
from Furlong et al. [11] 125

Figure 8.2 Overview of SIREN 126

Figure 8.3 SIREN UML class diagram 127

Figure 8.4 Sequence diagram for SIREN main execution
loop . 128

Figure 8.5 Dependency graph for the evaluation scenario 131

Figure 8.6 Comparison between static and dynamic sched-
uler with a stable solar energy source. 135

Figure 8.7 Comparison between static and dynamic sched-
uler with a highly unstable RF energy source. 137

Figure 8.8 Different selections of Γ parameter can lead to
different performance with the same energy
source. 138

Figure 8.9 Comparison between static and dynamic sched-
uler with a fairly stable source with sudden
drops in provided energy. 140

Figure 8.10 Detail of the initial 5000 milliseconds of the
simulation results shown in Figure 8.9b 141

Figure 8.11 Static scheduling with a single application leads
to wasted energy 143

Figure 8.12 Interaction between Γ selection, throughputs
and fairness. 145

xii

Figure 8.13 Dependency graph of the modified scenario,
implemented to measure scheduler stability . 146

Figure 8.14 Comparison between different secondary ap-
plications with the same main application and
energy trace. 147

Figure 8.15 Detailed comparison between the throughput
of Application 1 with different secondary ap-
plications. The original scenario is described in
Section 8.3, while the modified one is in Sec-
tion 8.6.5 . 148

xiii

L I S T O F TA B L E S

Table 2.1 Measured Ferroelectric RAM (FRAM) and Flash
charachteristics. Taken from [4] 17

Table 3.1 Overview on different checkpoint solutions to
guarantee forward execution. 24

Table 3.2 Overview on different task-based solutions to
guarantee forward execution. 35

Table 5.1 Data dependency semantics and corresponding
graphical conventions. 72

Table 5.2 Possible trace for the scenario presented in Sec-
tion 5.3.5 . 80

Table 8.1 Mean throughput, variance, correctness and
fairness obtained when powered by a stable
source with no power failures. The table shows
the metrics for the main application Applica-
tion 1. 136

Table 8.2 Mean throughput and fairness with design-
time, runtime with Γ that maximizes App 1

throughtput, and with lowest Γ parameter. . . 139

Table 8.3 Average throughput, correctness and fairness
with design-time and dynamic runtime schedul-
ing, against an energy source with sudden drops.143

Table 8.4 Comparison between static scheduling with a
single application, and runtime scheduler with
multi-tenancy. 143

xiv

A C R O N Y M S

CFG Control Flow Graph

CRFID Computational RFID

DAG Direct Acyclic Graph

DRAM Dynamic Random Access Memory

FRAM Ferroelectric RAM

GPR General Purpose Registers

ISR Interrupt Service Routine

LPM Low Power Mode

MCU Micro Controller Unit

MISD Minimum Inter Sample Delay

NVM Non Volatile Memory

PC Program Counter

SRAM Static Random Access Memory

SR Status Register

SP Stack Pointer

TPC Transiently Powered Computation

WAR Write After Read

WSN Wireless Sensors Network

xv

1
I N T R O D U C T I O N

Let us imagine a system of tiny invisible networked computers to
support humanity. Batteries are the single greatest threat to this vi-
sion [15]. They are expensive, bulky and hazardous, and replacing
them when they wear out poses a serious environmental issue. By
leaving batteries behind, relying exclusively on energy harvested from
the environment, we can enable this vision of a multitude of devices
deployed and forgotten, maintenance free for decades [16, 22, 32].

We can use different energy harvesters to collect energy from a wide
variety of sources. Some of them, such as those extracting energy from
wind, can provide large amounts of power in short bursts; some oth-
ers, like small photovoltaic cells operating from indoor light, steadily
provide small amounts of power; energy harvested from RFID readers
is subject to voltage fluctuations that are highly dependent on the
operating environment and device’s physical orientation [4, 29]. If we
want to switch to batteryless computation, we need to face the incon-
sistency of energy harvesting that is typically characterized by extreme
variations in supply voltage [1]. To mitigate this erratic supply pattern
we can buffer energy in capacitors as a replacement for batteries. Still,
they can store a small amount of energy, they charge faster than bat-
teries, but their discharge phase is even faster leading to continuous
power failures. Unlike mainstream computation platforms in which
software can benefit from OS support, on this class of computationally
constrained devices we execute code on bare hardware and power
failures are not managed. Each failure causes loosing processor’s state,
hence the progress in computation is lost.

In conclusion, this new class of devices, powered with harvested
energy, buffered in small capacitors, operate intermittently as energy
is available, alternating small burst of unknown length of computation,
to period of inactivity of unknown length. We call this behavior Inter-
mittent Computing. Figure 1.1 shows a typical intermittent execution
pattern. The capacitor charges up to a voltage that triggers Micro
Controller Unit (MCU) activation; the execution rapidly discharges
the capacitor to a point where the stored energy is below the thresh-
old needed to sustain the micro controller activity, hence the device
switches off until the end of the next charging phase.

1

2 introduction

Voff

Von

Time
Vo

lta
ge

OnCharging OnCharging OnCharging

Figure 1.1: A typical intermittent execution pattern. The capacitor charges
up to a voltage that triggers Micro Controller Unit (MCU) activa-
tion; the execution rapidly discharges the capacitor to a point
where the stored energy is below the threshold needed to sustain
the micro controller activity, hence the device switches off until
the end of the next charging phase.

This new paradigm poses many challenges. Given the unpredictabil-
ity of energy sources, the developer has to address unpredictable
executions flows, since a power failure can occur at any time. At re-
boot, in the absence of a state saving mechanism, the program counter
is reset to the initial value, internal state and peripheral configuration
are lost. To support the adoption of this family of devices, we need
to build a software stack that helps developers overcome the issues
posed by intermittent computing.

1.1 protect against power failures

In our scenario of tiny batteryless devices, deployed and forgotten in
the environment, we have tight constraints in terms of computational
power, available memory, and available energy. Most importantly, due
to the unpredictability of the energy source, the stability of power
supply is not guaranteed and power failures are far from being a rare
event. When they occur, the content of registers and main memory is
completely lost.

Let us imagine a program that requires the execution of X instruc-
tions to complete, as shown in the example in Figure 1.2. Suppose that
the energy buffered in the capacitor is enough to execute approxima-
tively up to X/2 instructions. As we can see in Figure 1.2a, every time
the program starts, a power failure causes a reset right in the middle
of the computation. Every time a reset happens the execution starts
from the beginning, without any chance to complete.

As depicted in Figure 1.2b, if we want to guarantee forward execu-
tion, we need a way to save the state on Non Volatile Memory (NVM),
so that it persists across power failures, allowing the device to con-
tinue the computation from the last successfully saved state. We call
the saved state a checkpoint. Saving a checkpoint is a costly operation:

1.1 protect against power failures 3

In
st

ru
ct

io
ns

 c
ou

nt

Time

Final instruction

(a) Without a save state mechanism the
execution never completes because
every time a power failure occurs
the computation starts from scratch.

In
st

ru
ct

io
ns

 c
ou

nt

Time

Final instruction

(b) The execution completes thanks to
the ability to restore the state after a
power failure and resume computa-
tion.

Figure 1.2: When a power failure occurs 8, the program counter is reset
to the initial value, internal state and peripheral configuration
are lost, hence the progress in computation. In the absence of a
state save mechanism the computation must restart from scratch,
potentially never reaching the final instruction 1.2a. With a state
save mechanism, when a power failure occurs, the computation
can be resumed from the last successfully saved state 4, ensuring
code completion 1.2b.

it introduces an overhead both in terms of energy and time. This
overhead depends both on the size of the checkpoint and on the tech-
nology used to implement NVM, the most common on these platforms
is Ferroelectric RAM (FRAM). For instance, saving a state on this class
of memories can require up to 5.7µJ, where a single clock cycle on
average consumes 1nJ [3].

There are different solutions to save checkpoints and guarantee
forward execution in presence of intermittent computation [29, 34, 3,
2, 20]. Each solution in this class proposes a different take on the two
main questions of checkpoint saving: what to include in a checkpoint
and when to execute it, trying to guarantee forward execution, while
minimizing the overhead.

There exists a second class of solutions to address power failures
that, instead of saving checkpoints to adapt regular code to this class
of devices, proposes to decompose code in a set of smaller portions of
atomic computation called tasks [24, 25, 16, 35]. By atomic computation
we mean that either the code of a task is completely executed without
being interrupted by a power failure, or it must be entirely re-executed.
Moreover, each task should exhibit transactional semantics: it should
not produce persistent effects unless its execution successfully com-
pletes. With task-based solutions, the runtime executes one task at a
time. The execution proceeds as in a pipeline where data go through
different stages represented by these atomic tasks. The system saves
partial results between tasks on NVM to guarantee forward execution.

4 introduction

Different solutions implement different ways to communicate between
tasks through data passing.

With checkpoint or a task-based solutions we can guarantee code
completion. Still, this is not the only challenge posed by the new
paradigm of intermittent computing. During the inactivity time the
board is completely off, obviously without a clock, so keeping time on
these batteryless devices is a complex task.

1.2 time related requirements

Sensing activities usually require some kind of guarantee on the fresh-
ness of data. Let us imagine for instance a device that is controlling
the air conditioning based on temperature. If the device senses data
and then powers off, we need to know at resume if these data are
still relevant to the specific application. Implementing some sort of
time keeping mechanism, in the absence of a persistent clock is a
complex task. Some existent solutions rely on the natural decay of
Static Random Access Memory (SRAM) cells to estimate the length of
the off period [28]; some other rely on the discharge of a small capaci-
tor [17]. Both of these solutions need an effort from the developer, who
has to add explicit checks to consider data expiration, sensing rates,
temporal signal properties, resulting in programs difficult to debug,
maintain, and understand [16]. Once again we see the importance of a
framework that hides some of this complexity to developers.

In conclusion, power failures pose a threat to the execution of code
on this class of devices. Moreover, sensing activities usually require
some kind of insurance on the freshness of data. To truly enable the
usage of batteryless devices, we need a software stack that guarantees
forward code execution and supports the definition of time related
requirements.

1.3 energy awareness

Energy efficiency is important because through energy efficiency we
can maximize the amount of code that can be executed with a given
energy budget. Checkpoints are a way to protect the execution against
power failures: we add a checkpoint to save the state across failures,
so that we can resume the work at reboot. Given a workload, the
more of it we can fit in a single execution, without power failures, the
fewer checkpoints we need. The same goes for tasks: a higher energy
efficiency allows us to fit more code within a single atomic task, that
must execute without power failures in between. For this reason,
all the existent systems developed to enable intermittent computing,
naturally consider energy efficiency as the main optimization target.

Our device harvests energy from a wide variety of sources, each
with different characteristics, buffering energy in a capacitor. The MCU

1.4 from energy to throughput 5

activates at a given threshold Von, and the computation continues
until the turn off threshold Voff is reached. This second threshold is
usually set to the minimum voltage required to operate the device. For
instance TI MSP430, one of the most common platform for intermittent
computing, requires 1.88V to sustain computation [27].

The activation threshold is a powerful knob that impacts the system
behavior and, in particular, its energy efficiency. The higher is the
voltage, the more energy is buffered on wakeup, hence the device can
work for a longer time interval. Obviously, reaching a higher voltage
requires a longer charging time, and, due to the capacitor characteristic,
this time increases more than linearly. The correct selection of the
activation threshold is not an easy task. In fact, increasing it ensures
more energy and a longer execution time, but increases the charging
time; decreasing it allows the device to turn on earlier, but increases
the chances of a power failure because the buffer stores less energy.

The capacitor, due to the unpredictable nature of the energy source,
may discharge and recharge several time. Therefore, the MCU’s operat-
ing voltage varies several time during the execution of an application.
Ahmed et al. proved that power consumption and clock speed signifi-
cantly change as the operating voltage spans different values during
the execution. Their experiments showed a reduction of power con-
sumption per clock speed by a factor up to 363.36% when the voltage
is at its minimum value of 1.88V , compared to a capacitor voltage of
3.6V [1]. These results prove the importance of the correct selection of
voltage thresholds as a mean to obtain energy efficiency. This selection
is a quest to find the correct balance. A higher voltage threshold results
in a longer execution span, fewer power failures, and therefore a lower
overhead caused by a lower number of checkpoint restores; a lower
threshold results in shorter charging time intervals and lower power
consumption. The unpredictability of the energy source makes this
selection even more complex.

Some solutions propose a refinement process that tries to calibrate
voltage thresholds at runtime [2, 6]. None of them takes in considera-
tion the changes in power consumption and clock speed at different
voltages. All of them are designed around checkpoint based systems,
and we still lack an efficient solution to deal with activation threshold
on task-based systems.

1.4 from energy to throughput

As we mentioned earlier, systems to enable intermittent computing, try
to structure code and support its execution in a way that guarantees
its completion, either through checkpoints or task decomposition.

Existent solutions are static: they do not adapt their behavior at
runtime based on the energy intake, but propose an approach defined
at compile time that must adapt to all energy scenarios. In particular,

6 introduction

they do not manage workload at runtime. With checkpoints code is
structured in a single stream of instructions, while in existent task-
based systems, tasks are executed one after the other in a sequence
decided at compile time. Some solutions adapt the activation thresh-
old at runtime [2, 6] to maximize energy efficiency, but even if the
threshold refinement is performed at runtime, they exhibit a static
behavior for what concerns workload management.

The development of a static system: one that is not able to dynami-
cally adapt to current energy intake, forces unconditionally to look for
energy efficiency maximization. In fact, if such a system wants to be
robust, then it must deal with the worst case scenario of scarce energy.
Still, being too conservative produces rigid solutions that do not adapt
to the opposite scenario of sudden bursts in energy provisioning that
we proved with experiments are not isolated cases.

Another possible solution, would be to adapt the workload at run-
time, so that the system can make the best use of the available energy.
When the harvester provides a high amount of energy the system
could increase the workload, decreasing it when the energy intake
drops. As we said, checkpoint solutions are based on a single stream
of instructions interleaved with checkpoints to protect against power
failures. With such a code structure, it is difficult to reason in terms of
workload management: either we continue the execution of the code,
or we perform a checkpoint.

Task-based solutions are more suited to this new approach in which
the system decides at runtime what to execute based on the current
energy budget. As we saw, in these systems code is structured as
a collection of atomic pieces of computation. These fragments offer
a unit of computation that can be run independently, therefore a
collection of tasks can be the right tool if we want to implement a new
solution that manages workload at runtime. We can envision a system
in which we select at runtime what to execute from a set of available
tasks, based on the current energy intake.

Developers build their applications around data, especially on this
class of devices particularly suited for Wireless Sensors Network (WSN).
These applications sense data from the environment, filter, classify,
store them; they take decisions based on data and they may operate
actuators based on these decisions. Data is all it matters and is often
time sensitive. Data capture events that change at a given frequency,
or that last a given amount of time, such as the concentration of a
given pollutant, heart rate, humidity level, temperature, movement.
The rate at which these data are produced is a relevant requirement
and impacts the whole application, that again is often time data cen-
tric. Since data drive application’s execution, the number of relevant
data produced over time is directly associated to the application’s
throughput.

1.5 our contribution 7

We argue that the scenario of intermittent computing can benefit
from a shift in perspective: from energy efficiency, to the satisfaction
of throughput requirements. The ultimate goal, when developing
software stack for intermittent computing, should not be energy ef-
ficiency per se, but energy efficiency should be considered as a way
to minimize the overhead and increase code execution to maximize
the throughput. Current systems are designed around energy effi-
ciency maximization, and, only as an emergent feature they try to
maximize code execution. We propose a shift: manage energy budget
in a way that guarantees throughput requirements, considering these
requirements as a goal, and energy and workload management as a
way to satisfy that goal. The satisfaction of throughput requirements
should be the main goal, and energy management should be guided
by that goal, and not necessarily by the quest for maximum efficiency.
If we design a new system that is able to accept minimum throughput
requirements, we can direct our focus on their satisfaction, instead of
indirectly reaching them through maximum energy efficiency.

To define throughput we need a unit of computation, tasks are
a better fit for this view. Their atomicity makes it easier to define
throughput as number complete iterations over time. Moreover, as we
said before, we can select tasks at runtime, based on the throughput
requirement and on the current energy budget.

1.5 our contribution

As we discussed in the previous Section, we want to focus on through-
put as our main goal, developing a framework for intermittent com-
puting that has this requirement at its core. For this reason, we select
for our proposal a task-based approach.

Let us discuss briefly how a throughput requirement maps to an
example scenario. Let us consider a device used to perform activity
recognition, based on data sensed from an accelerometer. We can
easily imagine a task-based structure where a task senses data, and
a task produces the classification. In this scenario, the throughput is
more meaningful if applied to the entire process: for instance, the
developer can ask to produce a classification once every second. So,
the developer should be able to define the throughput for a higher
level function: activity recognition, without being forced to consider
the throughput for each single task.

For this reason we introduce the concept of applications, new to
this class of devices. An application is a collection of tasks, necessary
to provide a higher level service. For instance, a task that senses

8 introduction

Temperature sensing task Humidity sensing task

Decision task

Log task

Figure 1.3: Example of an application that manages a HVAC system. Appli-
cations are collections of tasks, grouped to offer a higher level
function. Tasks comunicate among them through data exchanges.
Applications can be represented as graphs in which tasks are
nodes, and edges represent data dependencies among them.

temperature can be part of an application that manages an HVAC
system. This application can collect four tasks:

• a task that senses temperature;

• one that senses humidity;

• one that decides if activate the ventilation and operates on an
actuator;

• one that logs the decision, sending it to a data collection point.

An application is defined by its tasks, and these tasks communicate
among them through data passing. We can imagine an application as
a graph in which tasks are nodes, and edges represent data exchanges
among them. Figure 1.3 represents the graph of data dependencies
for the application for HVAC management. The code deployed on
our system may be composed by several tasks, grouped in several
applications, each one with minimum throughput requirement.

We said that we want to focus on throughput, also by managing
workload at runtime. This structure of applications and tasks provides
us the ideal setting to pursue our goal. In fact, in this scenario we can
implement a runtime scheduler that selects at every wake up a set of
tasks to be executed with the current energy budget. Each task in the
execution plan is selected as part of an application, and in particular,
as an iteration of a given application.

Existent task-based solutions, such as Alpaca [25], or Mayfly [16],
statically schedule tasks at compile time. There is no runtime task
selection and the execution plan is simply composed by a sequence of
task executions, statically determined at compile time once and for all,
no matter the runtime energy intake.

1.6 structure 9

For the first time on these devices, we propose a dynamic scheduler
that selects which task to execute taking into account, not only the
current energy budget, but also the desired throughput of applications.

As we said, voltage thresholds management impacts deeply on
system performance. For this reason, our system implements runtime
management of activation threshold, once again as a way to reach
the desired throughput. Thresholds are increased or decreased as a
response to deviation to the desired value of this requirement.

In this document we present our contribution that is threefold:

1. we propose a new programming abstraction, where tasks are grouped
in applications, with explicit non functional requirements in
terms of minimum desired throughput;

2. thanks to this new way to describe software for this class of
devices, we build a dynamic scheduler that is energy aware and
reacts to changes in the amount of the harvested energy, with the
goal to satisfy the throughput requirements of the applications;

3. we build an adaptive threshold management system, first in the
task-based scenario, that adapts the activation threshold, based
on the scheduler decisions.

1.6 structure

The rest of this document is structured in four main parts. The de-
scription of intermittent computing scenario, the analysis of state
of the art solutions, the description of our contribution and of its
implementation, and finally its evaluation.

1.6.1 Introduction to Intermittent Computing

In the first part, we provide an extensive description of the intermit-
tent computing scenario. In particular, in Chapter 2 we describe its
peculiarities and challenges. To guarantee forward execution, we must
save the state across power failures, and restore it on reboot. As men-
tioned earlier, we call this saved state a checkpoint. Code execution
results should be indistinguishable between standard and intermittent
computation. We say that we have an inconsistency every time the
results differ due to power failures. In this chapter we analyze the
cause and nature of these inconsistencies. Moreover, we provide an
insight on the consequences of not having a persistent clock, and what
this entails from the developer’s point of view.

We conclude the Chapter with a description of the constraints and
goal that should guide the design of a system to support intermittent
computing.

10 introduction

1.6.2 State of the Art Analysis

The second part of this document presents state of the art solutions.

• In Chapter 3 we describe how different checkpoint and task-
based solutions address the challenges previously presented. For
each one of them, we analyze how they map to the constraints
and goals that we listed in Chapter 2. We conclude the Chapter
with a discussion on the fundamental differences between the
two classes of solutions: checkpoint and task-based ones.

• In Chapter 4, we discuss activation threshold management, start-
ing from an analysis of its importance, showing the results of
simulations that prove its impact on system performance. We
describe the reasons that make threshold management a particu-
larly difficult task, and we present how the most relevant state
of the art solutions tackle this problem.

1.6.3 Contribution

In this part we present our contribution and its implementation.

• In Chapter 5 we present our programming abstraction. We de-
scribe how we structure code in tasks and applications, in a
way that allows the developer to ask for minimum throughput
requirements at application level. As we mentioned earlier, tasks
comunicate among them through data exchanges. These commu-
nications describe data dependencies between tasks. Two tasks
that are connected by a dependency have a producer consumer
relationship. Through an example, we show the necessity of
an extended semantics for these data dependencies, to capture
the functional requirements that can arise when describing an
application for our class of devices. Therefore, we introduce our
extended set of semantics, we describe the most common depen-
dencies patterns, and finally we propose an overview on how
they can be used to address different scenarios. Our proposed
abstraction is orthogonal to scheduler implementation.

• In Chapter 6 we introduce the main component of our contribu-
tion: a dynamic scheduler that manages workload and activation
threshold at runtime, to satisfy throughput requirements. We
start with a discussion on what it means to offer a guarantee on
minimum throughput in intermittent computing, and why it is
necessary to implement the ability to change the workload at
runtime to adapt to the current energy intake. Then we analyze
the internals of the scheduler, from its initialization to the discus-
sion on how it selects tasks, always looking for the satisfaction
of throughput requirements. Finally, we describe the reactive

1.6 structure 11

nature of our scheduler. The inconsistency of power sources,
and consequent power failures can affect throughputs. We show
how our proposed system manages applications that, at runtime,
exhibit a throughput that does not satisfy the requirements, and
we analyze how the concept of fairness can be adapted to our
setting. Finally, we present the knobs offered by our system to
the developer to fine tune the behavior of the scheduler.

• In Chapter 7, we succinctly present an overview on the imple-
mentation of our system, and on the workflow that allows one to
obtain a firmware from the description of tasks and applications.

1.6.4 Evaluation

In Chapter 8 we present an evaluation of our system.
To properly evaluate our contribution, we need a way to conduct

repeatable experiments. With our class of devices, this means that we
also need a way to reproduce a given energy source. We call energy
trace the series of energy values provided by a given source over time.
We describe an evaluation environment that is able to execute code
on a simulated device as if it was powered by a given trace. We also
present our contribution to an existent evaluation platform, which we
extended to better support our evaluation.

We present the scenario, the metrics and the baseline. Finally, we
describe the results of experiments conducted by powering the device
with different energy traces, to show the performance of our solu-
tion in different energy harvesting conditions. These results include
both an evaluation on how well our system can satisfy throughput
requirement, compared to the baseline, and on how the knobs offered
to the developer to tune the scheduling policy, actually affect system’s
performance.

Our dynamic approach leads to an increase in application’s through-
put of more than 32% compared to a static solution, when the board
is powered by a source that exhibits sudden drops in power supply, as
well as unpredictable peaks in energy provisioning. In case of scarce
energy provisioning, our solution reaches an application’s throughput
over 43% higher than a static one, by dynamically managing both the
activation threshold and workload at runtime.

We call correctness the sum of time intervals during which the re-
quested throughput of an application is satisfied, over the complete
execution time. Our proposed solution reaches a correctness over 80%
higher than the static approach.

2
I N T R O D U C T I O N T O T R A N S I E N T LY P O W E R E D
C O M P U T I N G

“Smart dust”: a system of many tiny invisible networked computers
to support humanity. Envisioned decades ago, not yet a reality. As
pointed out by Hester et al. [15] batteries are the single greatest threat
to this vision. Expensive, bulky and hazardous, replacing them when
they wear out poses a serious environmental issue. A real huge scale
deploy-and-forget scenario is impossible as long as batteries are the
only viable option.

Energy can be harvested from the environment: solar, radio fre-
quency, kinetic are just some examples of easily accessible energy
sources, still we need a new place to store the buffered energy.

Capacitors may be the answer to our concerns as they overcome
battery issues, yet they are far from being a silver bullet. They can
buffer a small amount of energy, charge faster than a battery, but their
discharge phase is even faster leading to continuous power failures.
Moreover their package and form factor may pose a constrain to the
design of our tiny devices. Still they are the most promising solution
to finally enable a real “smart dust” [15].

Due to the capacitors nature and the unpredictability of energy
sources, these devices violate one of the most basic assumption of
computing: a stable power supply, alternating small burst of unknown
length of computation, to periods of inactivity of unknown length.

Different hardware platforms are already available to implement
batteryless solutions: Flicker [14] and WISP [31] are two examples.
The average Micro Controller Unit (MCU) has a very limited amount
of memory and storage, an example of these constrained MCU is Texas
Instruments MSP430.

To support the adoption of this family of devices we need to build
a software stack that helps the developer overcome the issues posed
by this new paradigm of computation.

In this chapter we present the challenges posed by Transiently
Powered Computation (TPC), starting from the cause of them all: the
intermittent computation.

13

14 introduction to transiently powered computing

2.1 intermittent computation

Thanks to the significantly higher lifespan and resistance of capacitors,
batteryless devices can be deployed in a huge variety of scenarios
and therefore be equipped with many different harvesters, scavenging
energy from different sources. Each energy source has a different
volume and different availability profiles.

Bhatti et al. [4] propose a systematic analysis of energy harvesting
techniques, distinguishing between the relevant energy sources and
the corresponding extraction techniques. The energy source is the
environmental phenomena from which one may extract energy, thanks
to harvesting mechanisms.

With bio-chemical sources, biological or chemical energy is extracted
through chemical reactions. Energy can be extracted from thermal
sources by altering the thermodynamic equilibrium of an object to
produce an energy flow, usable to harvest electric energy. Vibrations,
mechanical stress and sound wave are popular sources of kinetic en-
ergy [4], that can be harvested thanks to piezoelectric, electromagnetic
or electrostatic effects. Kinetic energy can also be harvested from the
flow of common fluids like air and water through micro turbines.
Visible light, is probably the most commonly known radiant energy
source, extracted thanks to photovoltaic cells. Another relevant exam-
ple of radiant source is the energy extracted from RF transmissions,
commonly used to power RFID devices.

Biochemical and thermal sources are those with the lowest reported
performance in terms of harvested power, typically in the µV range.
Energy harvesting from kinetic sources is vastly employed in Wireless
Sensors Network (WSN), and its performance varies greatly in terms
of power, spanning from few µV to tens of mW [4]. The extraction
of radiant energy is strongly influenced by the size of the harvesting
device, and by the distance from the source.

While some of these aforementioned phenomena are fairly stable,
for instance outdoor solar radiation, we can not safely assume the
absence of fluctuations. This instability may cause power failures, and
therefore it may result in intermittent computation.

Figure 2.1 shows a typical intermittent execution pattern. For sim-
plicity, in this example obtained with a simulation, the device is
powered by a source with a square wave profile. The energy buffer is
a 16µF capacitor. The MCU activates at a given voltage threshold Von
and starts the computation, draining energy from the capacitor. The
capacitor charges as long as the balance between energy intake and
outtake is positive. As soon as the power source stops providing en-
ergy, the MCU computation rapidly discharges the capacitor to a point
where the voltage is below the minimum operating value Voff, hence
the device switches off. During the off interval, when not powered by
the source, the capacitor slowly discharges due to current leakage.

2.2 forward execution problem 15

0 1000 2000 3000 4000 5000 6000 7000
Time [ms]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Vo
lts

 [V
]

Power supply
Capacitor voltage

V off
V on

Figure 2.1: A typical intermittent execution pattern obtained with a simu-
lation. For simplicity, the device is powered by a source with a
square wave profile. The energy buffer is a 16µF capacitor. The
MCU activates at a given voltage threshold Von and starts the
computation, draining energy from the capacitor. The capacitor
charges as long as the balance between energy intake and outtake
is positive. As soon as the power source stops providing energy,
the MCU computation rapidly discharges the capacitor to a point
where the voltage is below the minimum operating value Voff,
hence the device switches off. During the off interval, when not
powered by the source, the capacitor slowly discharges due to
current leakage.

Capacitors with higher capacities increase the amount of energy
that can be stored, but also the time needed to reach the activation
threshold.

Given the unpredictability of energy sources, the developer has
to address unpredictable executions flows, since a power failure can
occur at any time. At reboot, in the absence of state saving mechanisms,
the program counter is reset to the initial value, internal state and
peripheral configuration are lost. Overcoming this problem is far from
being trivial, posing a severe threat to a batteryless vision, we call this
the forward execution problem.

2.2 forward execution problem

Imagine that we need to implement a back-end server to support an
online sales platform. We probably want to satisfy a given availability
requirement, and to reach that goal we usually deploy a redundant
system. In fact a failure in the infrastructure may make unreachable
our server, so instead of relying on a single instance, we orchestrate
multiple copies of our server, potentially deployed in different regions,

16 introduction to transiently powered computing

to minimize the probability that they all incur in the same failure at the
same time. In that way the system as a whole reaches an availability
higher than the single component.

Relevant informations on internal state are kept on Non Volatile
Memory (NVM), potentially distributed across the system. The redun-
dancy should be transparent to the user, hence these multiple data
repositories must be consistent, so that the result of an interaction with
our system is independent from the replica that we contact. Given
that a complete power failure is a rare event, thanks to our redun-
dant infrastructure, we accept different degrees of consistency [33],
potentially looser than the strict one [21], and we accept to potentially
deal with state reconciliation to restore a consistent global state after a
failure.

Now let us scale down our scenario from servers distributed across
the internet, to distributed tiny batteryless devices, deployed and
forgotten somewhere in the environment, with high constraints in
terms of computational power, available memory and available energy.

On batteryless platforms, the stability of power supply is the main
problem, power failures are far from being a rare event and when they
occur the content of main memory is completely lost. Coordinating
a redundant infrastructure of connected devices, coping with local
failures is currently an unfeasible solution. Given the scarse power
budget each access to NVM has a big impact on execution. For the same
reason accesses to radio equipment to exchange messages between
nodes, or to a gateway, must be reduced as much as possible. These
constraints, in addition to the scarse computational resources, make
not applicable any of the consistency models, or state reconciliation
algorithm, since they require the collection of a global state through
several accesses to NVM and the exchange of numerous messages
among nodes [33]. In other words we can not see the system as a
whole and therefore count on features emerging from the coordinated
effort of redundant replicas. Instead we must look for ways to deal
with the problem of failures at single node level.

Let us consider the pattern of execution shown in Figure 2.1. Imag-
ine that the deployed program requires 300.000 clock cycles, from the
initial instruction to the final return, with just a single possible execu-
tion flow. Suppose that the capacitor, when fully charged, can provide
energy to execute up to 100.000 clock cycles. Every time the program
starts a power failure causes a state reset at one third of the complete
execution and we never reach the final instruction. Capacitors can be
replaced with bigger capacitors, but obviously we are not eradicating
the problem once and for all. We need a software solution to collect
the current state and guarantee forward execution, a convenient place
to store that state locally and a way to restore that state when the
board reboots after a power failure.

2.2 forward execution problem 17

platform operation time current

1B 256B 512B

FRAM Read 0.15ms 6.47ms 12.8ms 360µA

Write 0.18ms 7.52ms 14.9ms 360µA

Flash Read n.a. 0.02ms n.a. 12.4mA

Write n.a. 212ms n.a. 12.4mA

Table 2.1: Measured FRAM and Flash charachteristics. Flash is page-
programmable with page size of 256 bytes. The write operation
also includes energy required to erase a page, as necessary before
rewriting. Taken from [4]

In Chapter 3 we will present different solutions to guarantee forward
execution in presence of intermittent computation. All of them need
some sort of NVM to store that state persistently across power failures.
TI MSP430 family boards rely on Ferroelectric RAM (FRAM), similar to
Dynamic Random Access Memory (DRAM), realized with ferroelectric
material to implement non volatility. All the accesses to NVM are costly
operations, and that overhead depends on the specific technology.
For instance on TI MSP430FR boards, with FRAM as NVM, saving
the complete state requires 5.7µJ [2], where a single clock cycle on
average consumes 1nJ. On this class of devices the access to FRAM is
synchronous as long as the clock is lower or equal to 4Mhz [27]. If the
NVM is implemented with Flash technology we would have a time and
energy overhead orders of magnitude higher. Table 2.1 summarizes
the performance of these two class of technologies.

We call the saved state a checkpoint in the computation, and we say
that we save a checkpoint when we execute the operations to collect and
save that state.

Not only we must reduce the frequency of these checkpoint save,
in order to reduce energy consumption, but we must also ensure that
each checkpoint represents a consistent state.

2.2.1 Checkpoint Inconsistencies

The goal of a checkpoint is to hide power failures and guarantee
forward progress. Code execution results should be indistinguishable
between the standard computation and TPC. We say that we have an
inconsistency every time the results produced by a TPC device differs
from those obtained without interruptions caused by power failures.

Following the framework proposed by Fuggetta et al. [10] we call
execution segment the part of a process containing the current execu-
tion state and it usually includes .bss, .data, .stack, .heap, Program
Counter (PC), Stack Pointer (SP), Status Register (SR) and General Pur-

18 introduction to transiently powered computing

a
b

0 a
b

2

NVM NVM

Checkpoint

Power failure

a=1

a++

b=a

Initial state After reboot

Restore
a++
b=a

a
b

3

3

NVM

Final State

Figure 2.2: Intermittence causes an inconsistency. The variable a is stored on
NVM. A checkpoint is placed before the increment instruction, the
program counter, pointing to the increment instruction, is saved.
A power failure causes a reboot after the increment. On wakeup
the checkpoint is restored and with it the program counter. The
next instruction is the increment of variable a. Since the variable
is stored on NVM, its value persisted across restore, resulting in a
double increment of its value.

pose Registers (GPR). To support TPC we must guarantee its integrity
across power failures.

A possible solution would be to use NVM as main memory and
checkpoint only registers. Thanks to its persistence across failures,
memory content would be preserved, though, as discussed before, due
to its implementation, the access to this class of memories consumes
more energy compared to standard SRAM, the cost per bit is higher
and its size is limited.

Instead of working directly on NVM, we can save the complete
execution segment before a failure and restore it on volatile main
memory on reboot. This could be done efficiently interleaving code
instructions with saving routines, and implementing a restore process
on wake up after a power failure.

The cost of NVM read and write suggests a third solution: divide
the execution segment between NVM and volatile memory and save
and restore only the non volatile portion.

Moreover the energy cost of a checkpoint is not constant as it
depends on its size. The size can change during the execution as the
stack grows and shrinks, so it would be convenient to perform the
checkpoint save when the size is at a local minimum, to consume less
space and energy.

Let us consider the example shown in Figure 2.2. In this example we
use an hybrid solution in which a portion of the execution segment is
stored on NVM and therefore does not need to be saved across power
failures.

Variable a is on NVM and its value is initialized to 0. A checkpoint
save routine is called after the initialization of a. The content of the ex-
ecution segment is persisted on NVM and with it the program counter,
pointing to the next instruction: the increment of variable a. The incre-

2.2 forward execution problem 19

ment is performed and the new value for a is 2, this value is stored
on NVM and therefore it will persist across reboots. A power failure
occurs and the board switches off. Once the capacitor reaches a volt-
age high enough to support computation the board powers on again
and the checkpoint is restored. The program counter, restored from
the checkpoint, points to the increment instruction. The instruction
is executed and the new value of variable a is now 3. This value is
assigned to variable b.

This behavior is inconsistent, since it differs from the one we would
have without power failures. The fact that the checkpoint saved the
program counter before the execution of the increment instruction,
together with the fact that the variable value persisted across reboots,
caused a double increment. With power failures the final value of
variable b is 3, without power failures the final value would be 2, hence
the inconsistency.

In this example variable a is an integer, that can be stored in a
16-bit long word. Depending on the platform the write access to
NVM is an atomic operation at different degrees of granularity. Let
us suppose that the selected platform can write atomically up to 16

bits on NVM. This means that, as long as the variable’s size is less or
equal than 16 bits, in presence of a power failure, either the variable
gets successfully written on memory, or it does not get written at
all. TI MSP430 implements a technique called charge pump where an
additional small capacitor serves as energy buffer to guarantee the
completion of a word write, even in presence of a power failure caused
by the complete discharge of the main capacitor. Nevertheless, if a
variable stores a structured data, or its size is bigger than a word,
it may happen that in presence of a power failure, its value is only
partially written on memory, causing the corruption of its content.
Moreover the complete checkpoint requires to write several words,
depending on the portion that must be persisted, and for sure the
charge pump can not guarantee its completion in case of power failure.
Therefore the checkpoint save must be performed with a mechanism
that resembles Two Phase Commit to ensure its atomicity.

To summarize saving a checkpoint is a delicate operation:

• it involves accesses to NVM, these memories are slower than
regular ones, and the access require more energy, therefore its
frequency must be reduced as much as possible;

• the size of a checkpoint depends on the portion of data that
must be persisted, and it varies during the execution as the stack
grows and shrinks, therefore we must try to save it when its size
is at a local minimum;

• mixing persistent and volatile state may cause data inconsisten-
cies, and result in wrongful computation when compared with
continuous execution;

20 introduction to transiently powered computing

• finally we must ensure the atomicity of the save operation, so
that we do not end up with partial, and therefore corrupted,
checkpoints.

These issues clearly highlight the need for a carefully written check-
point routine, and an even more careful placement of calls to this
routine. Such a complex task can not be demanded to the developer,
but must be part of a framework built to support the batteryless
scenario.

After a power failure, during the charging phase of the capacitor, the
board is powered off, until the voltage reaches the activation threshold.
During this interval we have no clock, therefore no timers. The absence
of precise time measurement adds a new brick in the wall between us
and the envisioned batteryless scenario: the problem of dealing with
timely execution requirements.

2.3 time without a clock

During inactivity time the board is completely off, and keeping time
on these batteryless devices can be challenging. Harvested energy
is often variable and difficult to predict, making not applicable any
possible model that links time and energy. Moreover many devices
can store only enough energy in a tiny capacitor for a few seconds
of operation, leading to short bursts of computation, breaking any
possible Real-Time-Clock implementation [17]. Still having some kind
of knowledge on the length of inactivity intervals is important, not
just for security reasons [28], but also to support sensing activities that
usually require some kind of guarantee on the staleness of data. If a
sensor gathers data and then powers off, we need to know at resume
if those data are still relevant, to prevent energy costly operations of
data processing on useless informations.

Two alternative batteryless techniques for keeping time on inter-
mittently powered batteryless devices using remanence decay are
presented in [17]: TARDIS, a software-only technique that checks the
percentage of decayed Static Random Access Memory (SRAM) cells in
an array to estimate the duration of a power failure, and CusTARD, a
solution that relies on an ad hoc small capacitor charge decay, provid-
ing a finer grained timing at the cost of an hardware modification.

Even with these solutions time keeping is non trivial since, as
pointed out by Hester et al. [16]

As developers add explicit checks that consider data ex-
pirations, sensing rates, and temporal signal properties,
their programs become difficult to debug, maintain and
understand.

Imagine a solution where a sensor reads temperature and, based on
the value, operates some kind of actuator. If the board switches off

2.4 from problems to solutions 21

right after the sensing stage, on activation the data may be irrelevant
and we may end up with a wrong effect on the world. Even with
this simple example the effort to trace the staleness of the data is not
trivial.

2.4 from problems to solutions

Batteryless devices may be the enabling technology for our “Smart
dust” vision. To power them we rely on many different energy sources
and harvesting techniques, each one with different performance. The
instability of power supply may cause power failures. Hence, to sup-
port this technology we must build a software stack that supports TPC

and adapts to different energy profiles.
Many challenges arise from TPC. Power failures pose a severe threat

on forward code execution and data consistency. Moreover, the absence
of a persistent clock makes difficult to track time passing and to
address time related requirements, often times connected to sensing
activities.

We must react implementing countermeasures to solve these chal-
lenges on behalf of the developer, to support the batteryless vision,
making it an attractive platform. As suggested by Maeng et al. [25],
we propose a schematic overview of correctness requirements (C1–2)
that we must meet to address the challenges introduced by TPC, and
goals (G1–4) that should guide the development of the software stack.

C1 A program must preserve progress.
The system must be able to successfully complete the checkpoint
operation, once started, and restore the computation without
losing the progress, in presence of power failures causing the lost
of volatile state. If the system autonomously places checkpoints,
then it must guarantee that the next checkpoint is reachable. In
fact, if the distance between two checkpoints is such that the
energy required to execute the instructions between them is
higher than the energy that can be buffered in the capacitor, the
program would end up re executing the same set of instructions,
without being able to progress. If the placement of checkpoint
save operations is performed by the developer, then the system
must signal any execution path whose worst case energy con-
sumption exceeds the energy budget that can be stored on the
capacitor.

C2 A program must have a consistent view of its state across
volatile and non-volatile memory [25].
The system must save the state in a way that prevents the incon-
sistencies presented in Section 2.2.1.

G1 The system should minimize the amount of wasted energy.
Solutions should minimize the amount of energy spent to exe-

22 introduction to transiently powered computing

cute work whose results are lost due to power failures. Ideally
the checkpoint should be done when the energy is just enough
to save the state. Performing a checkpoint too early, would waste
energy because the board could have executed more instructions
before saving the state; delaying a checkpoint too much, would
result in a power failure during the state save. Moreover the
system should reduce the number of accesses to NVM, since it is
a costly operation in terms of energy.

G2 The system should require minimum user intervention.
Ideally the solution should require minimum input from the
user, and should work transparently.

G3 The system should minimize the size of persisted data.
Since the energy overhead of a checkpoint depends on the size
of the persisted data, then its size should be minimized.

G4 Applications should be able to respect time related con-
straints.
Often time sensing activities require that data sampling is per-
formed in a timely manner, and the application may require
information on the staleness of data. As discussed in Section 2.3
time keeping is not trivial on this kind of devices, hence the
system should assist the developer.

In Chapter 3 we propose an overview on different existent solutions,
implemented to meet these constraints.

3
H I D I N G P O W E R FA I L U R E S

On batteryless platforms the stability of power supply is not guaran-
teed. The fact that capacitors can store only enough energy for small
bursts of computation, together with the unpredictability of power
sources, leads to multiple power failures during code execution.

As in regular platforms the content of main memory is lost on
shutdown: stack, heap and global variables; together with registers,
stack pointer and program counter. Not only the result of computation
is lost, but also the progress in code execution. To preserve data and
progress we must save relevant informations on Non Volatile Memory
(NVM). Moreover we must save them in such a way that guarantees
their consistency, as on different platforms, NVM access mode is atomic
at different word sizes. For instance on TI MSP430FR [27], NVM writes
are atomic at 16-bit word level and power failures may happen while
writing a data longer than 16-bit, causing data corruption.

Different solutions have been proposed to address the aforemen-
tioned problems. We can classify the systems developed to assist TPC

in two broad categories: checkpoint based solutions and task based so-
lutions. Section 3.1 presents those belonging the former class, while
Section 3.2 those belonging to the latter. In Section 3.3 we discuss on
the differences between the two categories.

3.1 checkpoint based solutions

In Section 2.2 we introduced the concept of checkpoint: a consistent
snapshot of the execution segment. These checkpoints must be col-
lected, saved on NVM and restored on reboot, to support TPC and
guarantee forward progress in presence of power failures.

When dealing with checkpoints solutions we have to answer two
main questions: what to checkpoint and when to execute checkpoints.
While the answer to the first question is simply the complement of the
portion of the execution segment that is stored on NVM, to answer the
question on when to place checkpoints we need to consider far more
aspects. Data inconsistencies may arise and we need to ensure that the
buffered energy at the time of checkpoint is enough to support the
save operation. This energy depends on the size of the portion of the

23

24 hiding power failures

solution c1 c2 g1 g2 g3 g4 reference

Mementos 8 4 8 8 � 8 Section 3.1.1 page 24

HarvOS 4 4 4 4 4 8 Section 3.1.1 page 26

Ratchet 8 4 8 4 partially 8 Section 3.1.1 page 28

Hibernus � 4 � 8 8 8 Section 3.1.2 page 30

QuickRecall � 4 � 8 4 8 Section 3.1.2 page 31

Table 3.1: Overview on how different checkpoint solutions match constraints
and goals presented in Section 2.4. “�” means that the constraint
or goal is satisfied requiring some sort of user’s intervention.

segment that must be saved, that varies during execution as the stack
grows or shrinks.

There exists in literature different ways to answer to the placement
question, these approaches can be broadly divided in two categories.
In Section 3.1.1 we describe Static Checkpoint Solutions, in which check-
point are statically placed at compile time. In Section 3.1.2 we present
techniques where the decision on whether perform a checkpoint is
taken at runtime, we call these Dynamic Checkpoint Solutions.

For each of them we discuss in what way they meet the requirements
introduced in Section 2.4.

4 Means that the Constraint C, or the Goal G is satisfied by the
examined solution.

8 Means that the Constraint C, or the Goal G is not satisfied by the
examined solution.

� Means that user’s intervention is required to satisfy the Con-
straint C, or the Goal G.

Table 3.1 summarizes the mapping between solutions, goals and
constraints.

3.1.1 Static Checkpoint Solutions

This class of checkpoint solutions statically place at fixed points in the
code calls to functions that save the execution segment. Checkpoint
functions are implemented differently, depending on the solution.
Some of them execute a checkpoint every time the function is called,
some other check a condition to decide whether to save the state or not.
Still, in all of them the maximum number and location of checkpoints
is determined at compile time.

Mementos

Mementos is a static checkpoint mechanism proposed by Ransford
et al. [29]. The system is implemented on MSP430 family and does not

3.1 checkpoint based solutions 25

require any hardware modification. It is composed of a checkpoint
routine exposed as a function call, and a suite of compile-time LLVM
passes that automatically insert these calls and wrap the program
main() function with code to restore the execution from an available
checkpoint.

At each call the function measures the energy buffered in the capac-
itor by checking its voltage. If the voltage is below a given threshold
Vtresh, it saves the checkpoint and returns. This threshold is deter-
mined through emulation experiments, conducted simulating the
execution against different energy traces supplied by the user [11]. It
corresponds to the voltage at which the capacitor buffers the average
amount of energy that is needed to save the checkpoint. Once selected,
the threshold does not vary at runtime. In Chapter 4 we propose a
discussion on the importance of the selection of voltage thresholds
in systems that support TPC, and the issues connected with these
decisions.

Even if the number of checkpoints ultimately depends on the results
of the energy checks, their placement and number is predetermined
at compile time, thus we can consider Mementos a static checkpoint
solution.

To support a wide range of applications, Mementos offers the follow-
ing three different strategies to place calls to the checkpoint routine.

loop-latch mode Mementos places a call at the end of each loop
body, before the instruction to jump back to the condition evalu-
ation, resulting in an energy check after each iteration.

function return mode The calls are placed after every function
call, resulting in a check after every return.

timer-aided mode This mode is designed to reduce the frequency
of checkpoints, given their high energy cost. It works in combina-
tion with either of the previous modes and requires a hardware
timer interrupt that raises a flag at predetermined intervals. Each
call executes the checkpoint if the voltage is below the threshold
and the flag is up. The flag is lowered after each checkpoint for
the next trigger point.

Beside these strategies for automatic checkpoint placement, the
programmer can opt out to any automatic compilation pass and place
calls manually.

The proper selection of the threshold does not guarantee by itself
that the system has enough energy to complete the checkpoint, and
therefore save progress [8 C1].

Let us suppose that the developer opts for loop-latch mode. Suppose
that, at the end the first iteration of a loop, the voltage is checked and
it is above the threshold, so the execution continues without saving
the checkpoint. Suppose that, after this first iteration, the harvester

26 hiding power failures

does not receive any energy from the source. The voltage drops below
the threshold during the next iteration, due to the energy consumed
by the instructions in the loop body. At the end of this second iteration
the voltage is checked, the checkpoint routine starts, but it does not
complete successfully due to the energy shortage. The board switches
off, because of the power failure. Now the harvester receives some
more energy, and the board reboots. At reboot the system restores the
last valid checkpoint, discarding the partial one, hence the progress
is lost. Nothing prevents that this repeatedly happens, causing a
starvation of the program. Moreover this would cause the re-execution
of instructions, and the waste of energy to perform computation
whose results are lost. Mementos does not address energy overhead
minimization [8 G1].

In theory the developer could autonomously place checkpoints,
where the size of the stack is minimal, therefore minimizing the
amount of data that must be persisted [� G3]. Still this would require
a great effort, resulting in a solution far from being transparent to the
user [8 G2].

Mementos does not consider hybrid solutions in which the execu-
tion segment is partially stored on NVM, therefore each checkpoint
must save registers, stack and globals. To overcome the problem of cor-
rupted checkpoints due to power failures during the write instructions,
as highlighted in Section 2.2.1, Mementos checkpoint routine never
overwrites the last valid checkpoint, instead it uses deallocated space
on NVM. Moreover the last word that it writes during checkpoint save
is a known magic number, used to validate upon restore. If the devel-
oper does not autonomously store variables on NVM, re-execution does
not produce data inconsistencies, since the whole execution segment
is restored. This, together with the aforementioned saving techniques,
guarantees that the content of a checkpoint represents a consistent
state [4 C2].

Mementos does not provide any support for timely execution
[8 G4].

HarvOS

HarvOS is a static checkpoint solution proposed by Bhatti et al. [5].
Checkpoints are obviously an overhead compared to the normal com-
putation. Energy measurements are costly operations whose number
should be reduced as much as possible. Finally not all checkpoints are
equal: the more data must be saved, the higher is the cost in terms
of energy and time. Starting from these observations, the authors
of HarvOS propose to analyze the Control Flow Graph (CFG) with
static code analysis techniques, to find the placement of triggers to
checkpoint routines. This results in a placement tailored to the specific
application.

3.1 checkpoint based solutions 27

/ 2

Local minima

/ 2 / 2 / 2

Figure 3.1: In HarvOS the CFG is sliced into sub-graphs containing instruc-
tion for up to Cuse/2 clock cycles. The picture, taken from [5],
considers a linear CFG for simplicity.

Thanks to the CFG analysis HarvOS obtains an estimation of the
highest checkpoint energy cost ECKPmax at any point in the program’s
execution, that depends on the size of the execution segment. With this
input HarvOS computes the maximum number of clock cycles that
can be used for program’s computation Cuse. This value is computed
analyzing the worst case scenario in which the board wakes up with a
freshly charged energy buffer and it does not receive energy during
computation. Therefore Cuse is the number of cycles that can be
executed with an amount of energy equal to Ewake−up − ECKPmax.

The CFG is then sliced into sub-graphs containing instruction for
up to Cuse/2 clock cycles. At least one trigger point must be placed
within each sub-graph. In fact the distance in terms of clock cycles
between two calls should be lower than Cuse, in order to have enough
energy to reach the next call and perform the checkpoint. Suppose
that the trigger call is placed at the beginning of a sub-graph, and
the next one is at the end of the next sub-graph, for example T3 and
T4 in Figure 3.1 [5]. Then to obtain a distance lower than Cuse, the
sub-graph size must be up to Cuse/2.

The fact that the static code analysis performed by HarvOS considers
the worst case energy scenario, together with the aforementioned
checkpoint placement, guarantees that the save routine has enough
energy to complete and guarantee forward progress [4 C1].

Moreover the distance between two consecutive checkpoints guar-
antees that the next checkpoint is always reachable, and that it can
complete, even with the only energy stored in the capacitor and no
intake from the harvester. This prevents the starvation scenario de-
scribed in Mementos, and guarantees that all the results of operations
between two trigger calls are always included in a checkpoint [4 G1].
Finally HarvOS checkpoints include the whole execution segment,
therefore none of the data inconsistencies mentioned in Section 2.2.1
can arise [4 C2].

To minimize the size of the checkpoint, and therefore its energy cost,
HarvOS identifies in each sub-graph the block that corresponds to the
minimum size of allocated memory and places a trigger call at the
end of it [4 G3].

As in Mementos the function call actually executes the checkpoint
depending on a condition on the current buffered energy amount. This
threshold depends on the specific trigger point, since it is computed

28 hiding power failures

Listing 3.1: A fragment of C code presenting a WAR hazard between line 5

and 6.

1 int a = 1;

2 int b;

3

4 int function(){

5 b = a + 2;

6 a = 3;

7 return b;

8 }

as the energy needed to reach the next call, plus the energy needed to
execute the checkpoint at that call.

Thanks to the aforementioned techniques, HarvOS proposes a cus-
tom solution based on the specific application, since the placement of
the trigger calls and the threshold is decided at compile time using
the CFG as an input. This placement is automatic and does not require
user’s intervention [4 G2].

HarvOS does not provide any support for timely execution [8 G4].

Ratchet

Ratchet is a static checkpoint solution proposed by Van Der Woude
et al. [34]. A checkpoint is executed at every call without an energy
check mechanism.

As described in Section 2.2.1 data inconsistencies may arise due to
the unpredictability of the execution flow when in presence of power
failures. In particular let us consider the Write After Read (WAR) hazard
between two instructions. Listing 3.1 presents a fragment of code with
this hazard between line 5 and line 6. A WAR consists in a couple
of memory accesses in which the first one reads a value that is an
operand of an instruction, and the second perform a write of the same
value. If a power failures happens after the second instruction and the
code is re-executed, the first instruction reads the result of the second,
as the main memory is non volatile, causing a data inconsistency.

In particular instruction at line 4 reads the memory location cor-
responding to variable a, while instruction at line 5 writes the same
memory location. Without power failures the function returns 3. The
correct placement of checkpoints in presence of WAR is crucial to pre-
serve a correct execution. In the aforementioned fragment of code,
the only checkpoint placement that is guaranteed to preserve data
consistency is between line 5 and 6. In fact a checkpoint placed before
line 5 or after line 6, combined with a power failure after line 6, would
cause the re execution of line 5 with a wrong value of variable a: 3

instead of 1, and a return value of 5 instead of 3. On the contrary let us
consider a checkpoint between line 4 and 5. Any power failure would

3.1 checkpoint based solutions 29

not cause the re-execution of instruction at line 4, breaking the WAR

data dependency.
For this reason Ratchet statically analyzes the code to find all pairs

of instructions involved in WAR and statically places a checkpoint
between the read and the write to break the dependency and pre-
vent threats to data consistency [4 C2]. The analysis is performed
automatically and does not require any intervention of the developer
[4 G2].

With Ratchet main memory can be stored with any configuration:
completely on volatile memory, partially or completely on NVM. Given
the high frequency of WAR hazards Ratchet’s approach results in the
introduction of many checkpoints. Hence to reduce the overhead,
Ratchet is best suited with NVM used as main memory. Moreover, to
further mitigate the overhead, Ratchet reduces the portion of regis-
ters to persist on NVM, including only those actually involved in the
computation that produced the WAR. This addresses the checkpoint
size reduction goal only partially, because, unlike HarvOS, it does not
consider any analysis of memory size when main memory is volatile,
and therefore must be included in the checkpoint [4 G3 - partially].

Since Ratchet needs to compare at compile time memory locations
between reads and writes to identify WAR, it needs to statically know
these addresses, therefore the usage of the heap is not considered as a
viable option during the computation.

Ratchet statically places checkpoints without any energy related
analysis. This does not guarantee, that the checkpoint can complete
with the energy budget, and that the progress is successfully pre-
served [8 C1].

It may happen that the distance between two WAR hazards, and
therefore between two checkpoints, is too long and power may fail
repeatedly before the next checkpoint is reached, causing the starva-
tion of the program. To mitigate this, Ratchet introduces a timer that
triggers an interrupt. At each interrupt, it checks if at least one check-
point completed within the timer interval, and forces a checkpoint
otherwise.

All the instructions executed between the last valid checkpoint and
the power failure are not included in any checkpoint and therefore
must be re-executed, wasting energy. Ratchet does not consider energy
related conditions for checkpoint placement [8 G1].

Ratchet does not support timely execution [8 G4].

3.1.2 Dynamic Checkpoint Solutions

With dynamic checkpoint solutions, checkpoint routine calls are not
statically decided at compile time, instead these solutions implement
the checkpoint save routine as an Interrupt Service Routine (ISR) that
is triggered by events at runtime.

30 hiding power failures

Hibernus

Hibernus [3] is a checkpoint based mechanism implemented by Bal-
samo et al. over a MSP430 architecture.

In Hibernus, checkpoints are performed as soon as the capacitor
voltage reaches a given low threshold called VH. Once the checkpoint
is completed, the board is put in Low Power Mode (LPM) or hiberna-
tion state. In this state it consumes a considerably lower amount of
energy, since any computation is stopped. The computation is then
resumed as soon as the capacitor reaches a second threshold VR > VH,
implementing an hysteresis mechanism. Thanks to LPM lower en-
ergy requirement, the balance between the energy intake and outtake
should let the capacitor charge, preventing power failures between
the checkpoint and the computation resume. In any case the check-
point ensures the ability to successfully restore the computation if the
harvested energy does not balance the LPM consumption, causing a
failure.

To implement Hibernus the board must be equipped with an on-
chip voltage comparator. This comparator triggers an interrupt as soon
as the capacitor reaches a given voltage threshold.

Hibernus checkpoints the whole execution segment. This prevents
data inconsistencies [4 C2], but does not implement any mechanism
to minimize the size of persisted data [8 G3].

Two routines are offered as a library to the developer: Hibernate that
performs the checkpoint and put the board in LPM and Restore that
reactivates the computation and restores the checkpoint, if needed. In
particular:

hibernate

• saves the complete execution segment on NVM;

• activates LPM;

• sets the voltage comparator reference to VR > VH;

• sets Restore as the interrupt service routine to the interrupt
generated by the comparator;

restore

• deactivates LPM;

• restores the checkpoint from NVM if needed;

• sets the voltage comparator reference to VH;

• sets Hibernate as the interrupt service routine to the inter-
rupt generated by the comparator;

• resumes computation.

On initialization the voltage threshold that triggers the interrupt is
set to VH, and Hibernate is the corresponding interrupt handler. The

3.1 checkpoint based solutions 31

checkpoint is restored from NVM by the Restore routine if a power
failure occurred while the board was in LPM, otherwise there is no
need to restore the execution segment, since in Low Power Mode the
main memory does not lose its content.

Setting the threshold VH is critical to the stability of the system. This
threshold must be set to a value that corresponds to a buffered energy
higher than the amount needed to support a complete checkpoint
Eσ [� C1]. Setting it to a voltage at which the energy is lower than Eσ
does not allow the Hibernate routine to complete the checkpoint. More-
over, the buffered energy should be large enough to sustain the LPM

energy requirements throughout the hibernation, otherwise a power
failure would occur. In fact, even if the checkpoint ensures forward
execution, restoring a checkpoint consumes energy that could be used
to perform actual computation. A proper setting of these thresholds
minimizes the amount of wasted energy, in fact the checkpoint would
be executed when the energy is strictly sufficient to execute the save
routine and to sustain hibernation [� G1].

In Hibernus the thresholds must be set and calibrated by the devel-
oper [8 G2]. To overcome the problem of finding the correct values,
Balsamo et al., propose Hibernus++ [2]. An overview on energy man-
agement solutions, including Hibernus++, is presented in Chapter 4.

Hibernus does not address timely execution requirements [8 G4].

QuickRecall

Jayakumar et al. [20] propose QuickRecall, a dynamic checkpoint solu-
tion. As already described in 2.2, to successfully perform computations
across power cycles, the execution segment must be persisted on NVM.
Conventionally, the linker maps .bss, .data, .stack and .heap on
volatile SRAM.

The proposal of QuickRecall is to modify the linker so that these
sections are mapped on NVM. With this different allocation, registers
are the only content that must be saved and persisted on NVM. This
significantly reduces the overhead of checkpoints, at the cost of a
higher impact on NVM, that acts as conventional RAM [4 G3]. Using
NVM as main memory guarantees the absence of data inconsistencies
[4 C2].

As in Hibernus, QuickRecall needs an on-chip voltage comparator
that triggers an interrupt when the voltage of the capacitor reaches a
given threshold. In QuickRecall this threshold, called Vtrig, is set by
the developer. It must be carefully calibrated such that it guarantees
that the checkpoint operation is successfully completed, even in case
the board receives energy to just switch on and switch off immediately
[� C1]. Setting the threshold to the minimum requested energy value,
allows to continue computation up until the very last moment, still
guaranteeing the completion of checkpoint operation, but requires
user intervention for voltage trigger calibration [� G1]. The corre-

32 hiding power failures

Algorithm 3.1. QuickRecall ISR
1 procedure QuickRecall_ISR
2 store(GPR)
3 store(SR)
4 store(SP)
5 checkpoint_flag = True
6 store(PC)
7 if checkpoint_flag == True then
8 wait for Vdd > Vtrig

return

sponding Interrupt Service Routine (ISR) is implemented following
Algorithm 3.1.

The execution of the ISR either completes with a return, once the
voltage is back to a value higher than Vtrig, or a power failure hap-
pens while waiting for the capacitor recharge (instruction at line 8 in
Algortim 3.1). If no power failure happens then the return instruction
executes a context switch and the computation resumes.

On reboot, after a power failure, if the checkpoint flag is set to
True, the board restores SR, GPR, SP, sets the checkpoint flag to False

and restores the PC, to resume computation. Otherwise memory and
registers are initialized and the computation is restarted from scratch.
This flag check is needed to support the initial boot, where there is no
need to restore registers.

It is important to notice that when the routine stores the Program
Counter (PC), this points to the next instruction within the code of the
ISR, which is the condition at line number 7 of Algorithm 3.1. This
means that on reboot the computation is restored within the context
of the service routine. When that happens the condition on checkpoint
flag is not satisfied, thanks to the flag reset performed on reboot, so
the return from ISR is executed and the computation resumes from the
next instruction in the context of the developer’s program.

As in Hibernus, the setting of the voltage threshold Vtrig is critical
since the corresponding energy, buffered in the capacitor, must be
high enough to support the store/restore operations. The developer
has to deal autonomously with threshold calibration [8 G2].

QuickRecall does not address time related requirements [8 G4].

3.2 task-based solutions

Often times in computer science we implement solutions to hide
underlying limitations, and present a higher level of abstraction to the
end user.

For instance with speculative execution we speed up the throughput
of a processor, completely hiding the mechanism to developers; we
implemented the cache to pretend to have a bigger and faster main
memory, once again with a solution that is completely transparent

3.2 task-based solutions 33

to the user; registers renaming is just another example of pretending
to have more resources than we actually have; we use schedulers to
pretend that multiple processes are actually running together.

Developers produce their code, working at a higher level of ab-
straction, leveraging on properties obtained through techniques im-
plemented on lower levels.

This encapsulation and abstraction process plays a key role in push-
ing the development of computer science, as “The purpose of abstrac-
tion is not to be vague, but to create a new semantic level in which
one can be absolutely precise” Dijkstra [8].

Checkpoints based solutions follow this approach: we implement
checkpoint systems to hide power failures from the developer. By do-
ing so we create a new layer in which the developer can abstract from
the issues of intermittent computation. Still we may argue that this
time this is no longer the correct approach. In fact power failures are
far from being an isolated event. Moreover, due to data inconsistencies
and deviations from the intended control flow, their impact on execu-
tion is not totally concealed to the developer, even with checkpoints.

There exists a second class of solutions to address power failures
that do not try to completely hide them to developers, instead ask-
ing for their contribution to guarantee forward code execution and
data consistency. These solution proposes an approach in which the
application is decomposed in smaller portions of atomic computation,
called tasks. Either the code of a task is completely executed within a
computation burst, or it must be entirely re-executed. A task should
not produce persistent effects unless its execution successfully com-
pletes. In other words the system does not checkpoint intermediate
results within a task. This results in a transactional semantics:

• a task must be executed atomically;

• task’s effect must be visible only after its successful completion;

• the system must be in a consistent state even when the task fails
due to power failure;

• task’s effects must persist after its completion.

Tasks can be viewed as atomic functions that ingest data, and pro-
duce outputs that change the internal state, or produce effects on
the surrounding world through actuators. Each task can rely on data
produced by other tasks, so we can connect them through data depen-
dencies. This task decomposition is performed by the developer.

3.2.1 Constraints and Goals for Task-Based Systems

For each checkpoint solutions, presented in Section 3.1, we referred to
constraints and goals introduced in Section 2.4.

34 hiding power failures

In Constraint [C1], we stated that the distance between two consec-
utive checkpoints must be such that the second is reachable from the
first one, with the energy that can be buffered in a capacitor charge,
otherwise the system may be unable to save progress, and the program
may be unable to complete. We can redefine this constrain to adapt to
task-based systems.

In a task-based solution we expect that tasks run atomically. If
the energy requirement of a given task is higher than the maximum
amount that can be buffered by the capacitor, it may happen that the
task can never complete, depending on the energy source. This blocks
the ability to save progress, in fact the system would keep failing the
execution of the same task, without saving any result, and without
being able to complete the program. Hence, in a task-based solution,
the system must deal with tasks whose energy requirement is higher
than the maximum amount of energy that can be buffered in the
capacitor, either proposing a different task decomposition, or emitting
a warning.

Goal [G1] states that the system should minimize the amount of
wasted energy by executing a checkpoint when the energy is just
enough to save the state. With task-based solutions we waste energy
every time the system can not complete a task because the current en-
ergy budget is not sufficient. In fact, given the atomicity requirement,
the task should be re-executed, and the results of the partial execution
would be useless. We redefine this goal for task-based solutions by
saying that the system should minimize the wasted energy, by tem-
porarily preventing the execution of a task, when the current energy
budget does not match the energy required to run the task.

Goal [G2] states that the system should require minimum user
intervention. Task-based systems require a shift in code structure,
that requires user intervention, who has to work with a different
abstraction: transactional semantic. Therefore we argue that this goal
does not fit this class of solutions.

In Goal [G3], we stated that the system should minimize the size
of persisted data, in order to reduce the overhead of checkpoints. In
task-based solution the size of these data depends on task’s outputs.
The system must persist task’s results, and their size depends on
developer’s choices. Hence, we argue that the minimization of the
size of persisted data does not compete to the underlying task-based
solution.

In conclusion, the analysis of the task-based solutions should con-
sider this modified list of constraints and goals.

C1T A program must preserve progress.
The system must persist results of successfully completed tasks.
The system must deal with the fact that the energy requirement
of a task may be higher than the maximum amount of energy that

3.2 task-based solutions 35

solution c1t c2t g1t g2t reference

DINO 8 4 8 8 Section 3.2.2 page 35

Alpaca 8 4 8 8 Section 3.2.2 page 37

MayFly 8 4 8 4 Section 3.2.2 page 40

InK 8 4 � 4 Section 3.2.2 page 42

Table 3.2: Overview on how different task-based solutions match constraints
and goals presented in Section 3.2.2. “�” means that the con-
straint or goal is satisfied requiring some sort of user’s interven-
tion.

can be buffered in the capacitor. The solution must either propose
a different task decomposition, or it must emit a warning.

C2T A program must have a consistent view of its state across
volatile and non-volatile memory [25].
The system must persist task’s results in a way that prevent the
inconsistencies presented in Section 2.2.1.

G1T The system should minimize the amount of wasted energy.
Solutions should minimize the amount of energy spent to ex-
ecute work whose results are lost due to power failures. The
system should minimize the wasted energy, by temporarily pre-
venting the execution of a task, when the current energy budget
does not match the energy required to run the task.

G2T Applications should be able to respect time related con-
straints.
Often time sensing activities require that data sampling is per-
formed in a timely manner, and the application may require
information on the staleness of data. As discussed in Section 2.3
time keeping is not trivial on this kind of devices, hence the
system should assist the developer.

3.2.2 Task-Based Solutions Overview

Different solutions exist in literature to support task-based TPC. We
present the most relevant ones in this Section. Table 3.2 summarizes
the mapping between solutions and the redefined set of goals and
constraints presented in Section 3.2.1.

DINO

DINO is a solution proposed by Lucia et al. [24]. In DINO the pro-
grammer explicitly slices the code into tasks by means of boundaries
implemented as calls to a function DINO_task(). Thanks to DINO
implementation, the code within two boundaries is effectively a task,

36 hiding power failures

Listing 3.2: An example of task decomposition with DINO programming
model.

1 void main(){

2 s = rd_sensor();

3 DINO_task();

4 c = classify(s);

5 upd_stats(c);

6 DINO_task();

7 }

8

9 upd_stats(class c){

10 if(c==CLASS1){

11 DINO_task();

12 c1++;

13 } else {

14 DINO_task();

15 c2++;

16 }

17 total++;

18 assert(total==c1+c2);

19 }

its execution is atomic and its side effects are seen by other tasks only
if the task effectively completes. Listing 3.2 shows an example of task
decomposition with DINO_task() taken from [24].

Task definition in DINO is not explicit: the developer slices a mono-
lithic code into tasks by means of fences (i. e. the DINO_task() func-
tion), instead of structuring the application as a set of functions con-
nected by data dependencies. This makes DINO a solution in between
checkpoint and tasks: it exhibits task based semantic, with an im-
plementation that resembles checkpoints. Tasks are paths between
boundaries. Traversing the control flow graph, each DINO_task() is
the beginning or the end of a task. For instance in Listing 3.2 there
are 3 tasks. The first one is composed by instructions at lines 3, 4,
5, 10, 11; the second one by those at lines 11, 12, 17, 18, 6; the third
one contains instructions at lines 14, 15, 17, 18, 6. DINO saves the
execution segment at every boundary that represents the beginning of
a task. Though this is not enough to guarantee the atomicity of tasks.

For instance let us consider once again the Listing 3.2. Instruction at
line 12 is part of the task composed by instructions at line 11, 12, 17, 18

and 6. Suppose that variable c1 is stored on NVM. The increment of its
value is a complex instruction presenting a WAR hazard. Its execution
actually consists in three basic instructions: reading the current value
of the variable from memory, incrementing it and writing the updated
value in memory. Suppose that a power failure occurs after the execu-
tion of instruction at line 12 and before the next task instruction, that
is instruction at line 17. Since the task completion failed, at wake up
the execution is resumed from its beginning, in accordance with task

3.2 task-based solutions 37

semantic. Now the second iteration of the increment at line 12, reads
the value already incremented by the previous partial execution of the
task, since c1 is on NVM, resulting in a double increment. This violates
the atomicity of tasks since the effects of a task (the increment of c1)
are visible even if the task does not complete its execution.

To overcome the potential inconsistencies caused by WAR hazards,
DINO implements the so called versioning of variables: an important
concept to maintain data consistency across power failures with task
based solutions, implemented also in our proposed framework.

In particular, at compile time, DINO analyzes the CFG to look for
write instruction on variables stored on NVM. For each one of these
instructions, it looks for all the tasks that include the write, traversing
backward the graph to find a DINO_task() instruction that represents
the beginning of a task. For each one of these tasks, it looks for a read
instruction of the same variable, that precedes the write instruction.
This process identifies all the WAR hazards within a task, involving
variables stored on NVM.

To break the hazard and prevent inconsistencies caused by power
failures [4 C2T], DINO saves the variable value at the beginning of
the task and restores it, together with the execution segment, in case of
a resume after a power failure. This operation is performed by function
DINO_version() automatically added at compile time as part of the
DINO_task() instruction, only for those variables that are involved in
WAR hazards, reducing the size of data that must be written on NVM.

In the previous example with variable c1 from Listing 3.2, DINO
saves a version of that variable before instruction at line 12, so that at
every re execution of the task after a power failure, the read part of
the increment instruction always reads the correct value and not the
result of increments from previous failed executions.

DINO is implemented as a runtime library that includes instructions
to perform checkpointing and versioning, and a set of LLVM passes
that analyze the source code to obtain the CFG, look for potential
inconsistencies and to translate DINO_task() instructions into calls to
the runtime library. Moreover DINO analysis exposes the cost of each
task, so that the developer can check if a task can fit the energy budget.
Though this check must be executed autonomously by the developer
and the system does not emit warnings [8 C1T]. Moreover DINO
simply executes tasks following code structure, without taking into
account the current energy budget that may be insufficient to reach
the next boundary [8 G1T].

DINO does not address time related requirements [8 G2T].

Alpaca

Alpaca is a task based solution proposed by Maeng et al. [25]. With Al-
paca, the developer structures the code as set of atomic tasks and
statically connects them by means of a library instruction called

38 hiding power failures

Listing 3.3: Alpaca privatization and commit of scalar variables.

1 TS int a, b, c;

2 NV int c_priv; //added by ALPACA

3 task example_1() {

4 c_priv = c; //added by ALPACA

5 a = 3;

6 int d = b;

7 c++; //removed by ALPACA

8 c_priv++; //added by ALPACA

9 pre_commit(&c_priv, &c, sizeof(c)); //added by ALPACA

10 transition_to(example_2);

11 }

transition_to(task), that switches the execution from the currently
running function to the destination task. The execution flow starts
from a specific task, decorated with the entry keyword, and proceeds
task by task following the flow induced by the transition_to(task)

instructions. Alpaca keeps a non-volatile pointer to the currently se-
lected task, and after a power failure the execution resumes from that
task. Tasks are void functions that share data among them by means
of non-volatile global variables stored on NVM.

An Alpaca task is “a user-defined region of code that executes on
a consistent snapshot of memory, and produces consistent set of out-
puts”. To satisfy this definition Alpaca implements data privatization.
In fact, as already discussed, writes to global variables stored on NVM,
in presence of power failures and WAR hazards may lead to wrong
computation. With data privatization each access to the variables that
potentially cause such inconsistencies is performed on a local version,
that is copied into the global one only on task successful commit.
To inform the compiler analysis on which variables are shared and
therefore must be protected against WAR, the developer must decorate
the declaration of such globals with the TS keyword. Alpaca performs
a compiler analysis to identify if these shared variables are involved
in WAR. In that case it modifies the developer’s task code to add the
declaration of a non volatile (NV) private copy of such variable and
to replace each access to the original variable with an access to the
private copy. Finally it adds a pre_commit instruction that copies back
the updated private copy into the original shared variable, so that
other tasks can effectively access the updated value.

Listing 3.3 shows an example of how the Alpaca code instrumen-
tation replaces each access to the variable c with an access to the
privatized copy of that variable c_priv. In particular, Alpaca adds
a private version only of shared variable c, since it is the only one
involved in a WAR hazard, due to the increment instruction at line 7.
This increment is replaced with the increment of the local copy c_priv

3.2 task-based solutions 39

and the pre_commit instruction at line 9 reconciles the values of the
copy private and the shared one.

The values of the private copies are written at the original shared
variable locations with a two-phase commit. In fact a power failure
may interrupt this process. With two-phase, first the system lists all
the outputs that must be persisted, then saves them and exits from
the commit only when they are all successfully written, so that all the
variables are saved together, preserving the transactional semantic of
tasks, even if this process is interrupted at any stage. In particular a
pre_commit instruction is added for each private variable, and each
invocation adds the variable to a non-volatile list of variables that
must be committed, called commit_list. This list is statically sized for
each task at compile time, so that it can accomodate the maximum
number of privatized variables. After the last pre_commit instruction
and before the transition to the next task, Alpaca adds an instruction
to set a non volatile commit_ready bit. This specifies that the second
phase of the commit can take place.

The second phase of the commit is implemented in the Alpaca
runtime library by a void function commit. This function iterates on
the commit_list and for each entry it copies the value of the privatized
copy at the address of the shared variable. Once all the variables in the
list are successfully committed it clears the commit_ready bit. After a
successful commit the transition_to instruction updates the pointer
to the current task to point to the next one.

On reboot the commit_ready value is checked. If it is set it means that
the power failed during the commit, but after the pre_commit. In that
case the commit operation can proceeds following the commit_list.
If it is not set than either the commit completed, and the execution
can proceed to the next task, or the task was not completed due to
a power failure during its execution and it must be re executed. The
initialization of the private copy to the shared value, as shown at line 4

of Listing 3.3, ensures that each re-execution does not produce wrong
results due to WAR hazards. This effectively ensures the consistency of
the saved state [4 C2T].

With these aforementioned techniques Alpaca offers a task-based
solution that requires a minimal effort to the developer, who only has
to decorate tasks with informations on shared variables and transition
instructions. Still Alpaca does not address energy related optimiza-
tions, resulting in a static succession of tasks that can not be altered
at runtime to address various energy profiles [8 G1T]. Instead our
proposed solution dynamically schedule tasks to best fit the real en-
ergy profile at runtime. Moreover in Alpaca the programmer must
ensure that tasks size is such that they do not require more energy
than the amount that the target device can buffer, and the system does
not support this activity [8 C1T]. Finally, with Alpaca the developer
has to autonomously address any requirements that deals with timely

40 hiding power failures

Listing 3.4: Alpaca privatization and commit of arrays.

1 int vbm_test(v){ v == cur_version; }

2 int vbm_set(v){ v = cur_version; }

3

4 TS int A[30], B[30], C[30];

5 NV int C_priv[30]; //added by ALPACA

6 NV int C_vbm[30]; //added by ALPACA

7 task example_1(){

8 int r=0;

9 for(int k=0; k<15; k++) {

10 r = rand()%30;

11 A[r] = 3;

12 int d = B[r];

13 if(!vbm_test(C_vbm[r])) //added by ALPACA until l. 24

14 C_priv[r] = C[r];

15 C[r]++; //removed by ALPACA

16 C_priv[r]++;

17 if(!vbm_test(C_vbm[r])){

18 vbm_set(C_vbm[r]);

19 pre_commit(&C_priv[r], &C[r], sizeof(C[r]));

20 }

21 }

22 transition_to(example_2);

23 }

execution or time constraints on sensed data, as Alpaca only offers
versioning and task transition instruments [8 G2T].

MayFly

Mayfly is a task-based solution proposed by Hester et al. [16]. Similarly
to our solution, it encompasses a language and a runtime.

Mayfly not only addresses the issue of forward code execution, but
also deals with the problems of timely execution in presence of power
failures discussed in 2.3, given that often times data must be generated
in a timely manner, as their freshness affects their utility [4 G2T].
Mayfly makes the passing of time explicit, by timestamping data and
keeping track of time throughout power failures thanks to decay based
solutions [17].

Data staleness is not the only time related constrain: real applica-
tions usually process windows of data, producing meaningful and
accurate results as long as the window is of a given size and the inter
sample delay between two consecutive reads falls within some specific
boundaries. For instance, let us consider this example [16].

A pedometer’s step-counting algorithm may call for 30

accelerometer samples collected at 10Hz. Depending on
how it detects steps, that same algorithm may give accurate
results as long as the 30 readings fall within a 4s window

3.2 task-based solutions 41

Listing 3.5: Mayfly syntax example.

1 // Task definition

2 task_name (TYPE input, ...) -> (TYPE output, ...)

3

4 // Flow for activity recognition

5 sample -> compute -> send

6

7 // Predicate

8 // compute -> (int error, int activity)

9 sample -> compute[_,RUN] -> send

10 compute[_,WALK] -> log

and as as long as no two readings are taken within 80ms
of each other.

Mayfly proposes a data flow programming abstraction in which
tasks are connected by simple data dependencies, decorated with
explicit time requirements, so that the developer can focus on the high
level application sensing goals, leaving the burden of satisfying these
requirements in presence of intermittence to the underneath runtime.

The developer provides to the Java Mayfly compiler two compo-
nents: a set of tasks written in Embedded-C, and a set of dependencies
that describe the data relationship between tasks, called flows. Tasks
are atomic units of computation, and flows connect them in a graph
of data dependencies. Flow dependencies may be decorated with
conditions and timely constraints.

Conditions activate or deactivate the flow dependency based on
the evaluation of a predicate, allowing conditional execution between
tasks. For instance let us consider three tasks A, B, C and a boolean
predicate p. Task A may be connected with a flow to both task B
and C. These flows may be decorated with the predicate so that if
the result of the evaluation of p is true, then the flow to B is active
and the one to C is not, otherwise if the evaluation of p is false, task
C is enabled and B is disabled. In the example shown at line 9 and
10 in Listing 3.5 the compute task classifies the data coming from an
accelerometer to recognize the activity and has two outputs: the error
of the classification and the actual classification. In this example the
classification can either be RUN or WALK. The predicate of the example,
enables the flow to task send if the result is RUN, or to task log if the
result is WALK.

Timely data constraints add three possible time related constraints
to flows: expires, Minimum Inter Sample Delay (MISD) and collect. Expires
disables a dependency if the flowing data is older than a given value;
MISD allows the developer to specify the minimum length of the
time interval between two consecutive data flowing through the same
dependency; collect allows the specification of the size of the window
of data that must be processed in batch by the downstream task.

42 hiding power failures

Since tasks cannot alter system or non-volatile memory, Mayfly
avoids consistency issues associated with mixed memory volatility
systems [4 C2T].

Thanks to task’s code and flow metadata the Java Mayfly compiler
builds a firmware that:

• persists on NVM task data output with timestamps;

• takes care of timestamps update after power failures;

• builds a task graph and statically schedules tasks in accordance
with flows and conditions.

As in our solution, in Mayfly timestamped data are persisted on
NVM with a double buffer technique, so that old data are never over-
written to prevent data corruption in presence of power failures during
write operations. Moreover, tasks have no access to NVM and their
result is persisted only on return.

The Mayfly runtime loop selects the next task accordingly to the
static schedule, checks if all the incoming flows are enabled in ac-
cordance to the conditions and time constraints, and executes the
task.

During the compilation, Mayfly does not emit any energy related
warning to help the developer to understand which tasks exceeds
the maximum amount of energy that can be buffered by the device
[8 C1T].

Given that the task schedule is built at compile time, unlike our
solution, Mayfly firmware can not address variation of energy pro-
visioning. The next task selection does not take in consideration the
amount of current buffered energy and a persistent drop in the amount
of harvested energy can lead to continuous reboot and re-execution
of the same, statically selected next task, leading to the starvation
of the rest of the application [8 G1T]. On the contrary, our solution
builds a dynamic schedule that leverages real time energy state as an
input of the next task selection, reacting to energy shortage so that
the device can guarantee a minimum set of functionality. Moreover, in
our proposed solution, we enrich the semantics of data dependencies
taking into consideration different producer and consumer patterns.

InK

InK is a task based solution proposed by Yıldırım et al. [35]. It is the
first attempt to introduce dynamic scheduling in TPC as it offers a
solution that reacts to runtime events. In InK tasks are collected in
sequences called task threads. Each thread is then linked to specifics
runtime events that trigger their execution. Each thread can be deco-
rated with a priority.

The execution of threads is atomic at task level, and partial results
are committed at the end of each task within the thread. As Alpaca,

3.2 task-based solutions 43

also InK privatizes task variables before task execution, guaranteeing
the consistency of the internal state [4 C2T].

InK supports three kinds of runtime events: events related to energy
threshold, events related to timers [4 G2T], implemented thanks
to the hardware solutions described in [17], and general hardware
interrupts.

The InK firmware includes a scheduler that operates as follows. At
each scheduling loop iteration, the scheduler

1. selects the enabled thread with the highest priority;

2. selects the next task within that thread;

3. initializes the local private version of the task variables as in
Alpaca;

4. executes the task;

5. commits the task modifications;

6. suspends the thread and re-enters the loop.

Each thread has a non volatile event queue, implemented as a
circular buffer. ISR corresponding to the aforementioned events, add
the event data in the event queue of the corresponding thread, the
thread execution is enabled and the interrupted task continues its
execution. At the next scheduling loop a new thread will be available
for scheduling and the execution, depending on the priorities, may
be diverted to the newly enabled thread. The ISR only performs the
aforementioned operations, as the actual event processing is executed
by a corresponding thread.

While this implements a solution that responds to real-time events,
it is not a dynamic scheduling solution, since the conditions that
trigger these events are statically set at design time. Moreover, we
argue that the way in which interrupts are served could be misleading.
In fact the solution proposed in InK introduces a potential delay of
unbound length, between the actual event occurrence and the instant
at which the code related to the event is executed. Let us immagine
that an energy event happens right after the first instruction of the
currently running task. The event is added to the corresponding event
queue and the execution of the task is resumed. The actual response to
the event only happens after the complete execution of the currently
running task, as threads can be preempted only at task granularity.
This potentially invalidates the precondition to the execution of the
thread linked to the energy event. In fact, the rest of the task execution
consumes energy and the energy value that triggered the energy
event may be invalid. This forces the developer to check if the event
condition still holds at the beginning of the thread, ultimately resulting
in a polling mechanism, instead of a real interrupts and events model.

44 hiding power failures

Checkpoint

Task

Monolithic
code structure

Checkpoint

Checkpoint

Checkpoint

Ap
pl
ic
at
io
n

Explicit data
dependencies

Application

Task Task

Task

Figure 3.2: Checkpoints and task decomposition are two different abstrac-
tions and they promote two different code structures. While
checkpointing slices a standard monolithic code, task decompo-
sition pushes the developers to reason about their application in
terms of data dependencies between functions.

The developer can prevent the execution of a task when the energy
budget is below its requirement, by properly setting the voltage thresh-
old that triggers the interrupt activating the task. Still this operation
requires user intervention [� G1T].

InK does not support correct task decomposition, by signaling tasks
exceeding the maximum amount of energy that can be buffered by
the device [8 C1T].

The concept of tasks grouping in thread is similar to what we
propose with the concept of applications.

3.3 why two solutions to the same problem?

Numerous solutions have been proposed in literature on how to ensure
forward execution and data consistency on systems that experience
frequent power outages. They either rely on checkpointing, or on
explicit decomposition in atomic tasks, potentially providing a way to
specify data dependencies between tasks like in Mayfly.

One may argue that at its core checkpointing and task-based solu-
tions are in fact the same thing, or even that tasks are just syntactic
sugar on top of standard checkpoints. To be fair this is partially true,
but only if we stand at a low level of abstraction. No matter of the
specific implementation, ultimately task based solutions rely on mech-
anism to save values and restore them when needed, resembling
checkpointing. DINO and its boundaries are an example on how thin
is the border between the two worlds.

Transiently powered devices are usually embedded systems that
often times deal with sensing activities. Applications read data coming
from different sensors and these data are usually processed to extract

3.3 why two solutions to the same problem? 45

informations. Let us suppose to deploy a health care application, on a
wearable device. The device is equipped with a heart rate monitor, a
sensor to measure electrodermal activity and a motion sensor. Each
one of these sensors may require a different amount of energy to sam-
ple data, moreover these data usually need to be filtered and processed
to extract some features. The final outcome of the application depends
on data coming from different sources, each one with different re-
quirements and processing techniques. We may add sophistication
to this scenario by including actuators that perform activities on the
outer world based on application results, again with different energy
requirements and different semantic based on the actuator.

The aforementioned description suggests a model in which data
are produced by a sensor, traverse a series of transformations, and
are ultimately reduced to produce one or more outputs. This data
pipe can be intuitively obtained dividing the application logic into
simpler, possibly stateless, functions, connected together by means
of data dependencies. In this abstraction each functional component
ingests some data, and produces a result that can be consumed by
others.

Usually in this scenario data are relevant within a given interval.
Processing stale data produce wrong or not relevant outputs, and
therefore a waste of energy. Managing time sensitive data on bat-
teryless devices is a difficult task by itself, as already discussed in
Section 2.3, managing conditional execution of portion of code, based
on time conditions with standard checkpoint adds additional complex-
ity to the code. Structuring code as a set of tasks forces the developer
to think in terms of data dependencies.

Ultimately we may want to sample different data at different rates,
maybe giving different priorities to outputs. Once again tasks and
data pipes are better suited to easily describe and support this feature.

Since tasks are supposed to run atomically, their worst-case energy
consumption must be compatible with the amount of energy that can
be stored in the capacitor. This requires an effort by the developer that
must be aware of energy related issues. We think that this is necessary
in such a constrained scenario.

Our solution proposes a programming abstraction guided by these
aforementioned principles, centered around data dependencies. Our
goal is to provide to the developer a model in which she can easily
describe the non functional requirements presented so far, together
with an execution environment that hides the complexity of energy
management and problems related to transiently powered devices,
while keeping her aware of energy constraints.

Tasks may be seen indeed as syntactic sugar on checkpoints, but we
think that they promote an abstraction that is better suited to meet the
specific needs of developers dealing with this family of devices.

4
S E T T I N G T H E T H R E S H O L D

Transiently powered devices harvest energy from a wide variety of
sources, each with different characteristics. Some of these energy
sources, such as wind energy harvester, can provide large amounts of
power in short burst; some other, like small photovoltaic cells operating
from indoor light, steadily provide small amounts of power; energy
harvested from RFID readers is subject to voltage fluctuations that are
highly dependent on the operating environment and device’s physical
orientation [29].

This energy is buffered in decoupling capacitors, placed in parallel
with the harvester. The MCU activates at a given threshold Von and
the computation continues until the turn off threshold Voff is reached.
This deactivation threshold Voff is usually set to the minimum voltage
required by the considered platform, for instance TI MSP430 requires
1.88V to sustain computation [27]. Von must be strictly higher than
Voff: if Von = Voff the board would not be able to perform any com-
putation when the power intake is lower than the outtake, neutralizing
the effect of an energy buffer.

Figure 4.1, taken from Flicker [14] schematics, shows a typical har-
vester and power management configuration, where the decoupling
capacitance C1 buffers harvested energy, and the voltage regulator U1
sets the thresholds.

Figure 4.1: This figure presents the portion of Flicker [14] board in charge of
power management. In particular we see a decoupling capacitor
C1 of 22µF that serves as energy buffer, and a voltage regulator
U1 that, depending on the value of resistances R1, R2 and R3 sets
the on and off threshold.

47

48 setting the threshold

0 200 400 600 800 1000
0

1

2

3

4

5

6

Time (ms)
Vo

lta
ge

Figure 4.2: Capacitor voltage over time. A 10µF capacitor in an Intel WISP
node [31] charges with energy harvested by an RF antenna when
the source is at a 2m distance.

Figure 2.1 in Chapter 2 shows a typical intermittent execution pat-
tern. The time interval between a deactivation and the next activation
depends on different parameters: the profile of the energy source, the
capacitor charging characteristics and, of course, the value of Von.

The high variability of energy sources makes any prediction on the
expected energy intake unreliable. Still, the turn on threshold Von is
a powerful knob that can significantly impact the system’s behavior.
In fact, given a certain energy source, rising the activation threshold
results in a higher amount of stored energy, and therefore in longer
execution time, but requires a longer charging time and therefore a
longer period of inactivity. Unfortunately, buffering a large amount of
energy to deal with potential shortage, increase more than linearly the
length of the period of inactivity, due to capacitors characteristic [6].

Figure 4.2 shows a typical charging curve for a capacitor. Capacitor
charging profiles are not linear: as the capacitor voltage approaches
the voltage supplied by the harvester, the charging current decreases
to zero, resulting in a faster charging phase when the capacitor voltage
is lower.

As we discussed in Chapter 3, in a task-based model we need
to ensure the transactional nature of tasks. Therefore, the result of
completed task must be durable, hence we must save tasks outputs on
NVM to retain them across power failures. This means that we can not
avoid an NVM write after each task. On the other hand, we can reduce
the overhead by allowing tasks to read their inputs from volatile main
memory. Still, after each power failure, we need to restore these data
from NVM to main memory.

Decreasing Von decreases the time needed to charge the capacitor,
but increases the rate of on-off cycles. As we said, the transactional
nature of tasks does not allow us to reduce NVM writes, but an increase
in on-off rate cycles results in a higher number of NVM read accesses
for state restore, as we need to read persisted data to properly reboot

4.1 the conundrum of threshold selection 49

the board after each power failure. These NVM accesses are costly
operations in terms of energy, and solutions like HarvOS [5], presented
in Section 3.1.1, actively try to reduce the size of persisted data, to
reduce the NVM access overhead. We can positively affect the execution
performance, by reducing the frequency of these NVM read, thanks to
a proper selection of the activation threshold.

Increasing Von increases the off time, decreasing it, increases the
energy wasted to restore the state after a power failure, and this makes
the quest to reach a correct balance a particularly challenging task. The
road to the perfect Von selection is further endangered by an elusive
feature of this class of devices, as presented by Ahmed et al. in [1] and
in the next Section of this document.

In Section 4.1 and 4.2 we discuss the challenges connected to the
selection of the activation threshold; in Section 4.3 we present an
overview on how existing solutions tackle the problem of threshold se-
lection; in Section 4.4, given the results presented in previous Sections,
we propose a new take on this problem.

4.1 the conundrum of threshold selection

As we discussed in previous Sections, TPC relies on a great variety of
energy harvesting mechanisms, often characterized by significantly
different performance and unpredictable dynamics across space and
time [1, 4]. Given that our ultimate goal is to leverage TPC as an
enabling technology for a battery-less Internet of Things, and finally
realize our “Smart Dust” vision, we must support this high variance
in terms of energy sources.

As presented in Chapter 3, programmers may alternatively rely
on checkpoint based mechanisms or on task-based programming
abstractions. The selection of Von affects the performance of both
these approaches.

For instance let us consider Hibernus [3], a checkpoint based system
presented in Section 3.1.2. In Hibernus, an interrupt is generated every
time the capacitor voltage drops below a certain threshold VH, this
interrupt triggers a checkpoint. After every checkpoint, the board
enters in low power mode and sleeps until the voltage reaches a
second threshold VR, higher than the checkpoint one, implementing
an hysteresis mechanism. Once the capacitor voltage rises up to this
second threshold, the board exits from sleep mode. On wakeup the
checkpoint is restored, if needed, and the computation continues. The
checkpoint is restored if the voltage of the capacitor dropped below
the minimum value needed to operate, during the sleeping interval.

To better understand the effect of Von selection on the system perfor-
mance, we simulate Hibernus running on a board with a decoupling
capacitor of 16µF. In each simulation we run 10 iterations of an activity
recognition kernel, powering the board with a square wave voltage

50 setting the threshold

0 0.5 1 1.5 2 2.5 3 3.5
Time [ms] 104

0

1

2

3

4

5

6

7

8

V
ol

ts
 [V

]

V capacitor
V supply
V checkpoint

V max capacitor
V on
V min

Board enabled

(a) Setting Von = 2.27V results in an exe-
cution time of 22.787ms

0 0.5 1 1.5 2 2.5 3 3.5
Time [ms] 104

0

1

2

3

4

5

6

7

8

V
ol

ts
 [V

]

V capacitor
V supply
V checkpoint

V max capacitor
V on
V min

Board enabled

(b) Setting Von = 4.54V results in an exe-
cution time of 31.672ms

Figure 4.3: Simulation of Hibernus to understand how different selections
of the activation threshold affect system’s performance. The
simulation consists in the execution of 10 iterations of an activity
recognition kernel, on a board with a decoupling capacitor of
16µF, minimum voltage to support computation Vmin = 2V ,
VH = 2.17V , maximum capacitor voltage Vmax = 5V , board
frequency 8Mhz, with a constant energy consumption of 1nJ per
clock cycle.

trace, with a period of 10s and duty cycle of 30%, and by varying
the activation threshold Von. A lower threshold results in a lower
execution time to execute the same number of iterations of the kernel.
By halving Von from 4.54V to 2.27V we obtain an execution time that
is 1.39 times faster: from 31.672ms to 22.787ms. Still the activation
threshold Von can not be simply lowered as much as possible, in fact
this would result in an increased number of checkpoints and therefore
in a higher computation and energy overhead. Figure 4.3 presents the
results of the simulation.

We would face the same issue when dealing with task based systems.
As we discussed in Section 3.2, tasks are atomic pieces of computation.
This means that they must be fully executed within an execution burst,
without being interrupted by a power failure, otherwise they must be
re executed completely. Moreover, their output must be durable, so
we need to perform an NVM write after each completion to retain the
output. Existent task-based solutions does not allow to dynamically
change the activation threshold. For this reason, they must ensure
to buffer enough energy to sustain the computation of the task with
the highest energy consumption, hence the threshold must be set to
a value that corresponds to a buffered energy that is higher or equal
to that maximum energy request. A proper selection of the activation
threshold can reduce the number of NVM read accesses. In fact, the
system must restore significant data every time a power failure occurs
between two tasks with a data dependency, resulting in an increased
overhead given the numerous NVM reading accesses.

4.2 epic results 51

Let us suppose that two tasks, T1 and T2, are connected by a data
dependency: T1 produces some data, and T2 consumes these data
to perform its computation. Let us suppose that T2 is the task with
the highest energy consumption. If a power failure occurs after the
execution of the first task, we would need to access NVM to restore
its output, for the execution of T2. If we set the activation threshold
to a voltage that exactly fits T2, but not the execution of both tasks,
we would need to restore T1 data to properly execute T2, as they
are connected by a data dependency and the second task needs data
coming from the first one. On the other hand if we set the threshold to
accomodate both the tasks, we would not need to restore data between
the execution of the producer T1 and the consumer T2, but buffering
this higher amount of energy would require a longer charging interval.
Figure 4.4 presents a description of this aforementioned scenario.

Once again, increasing the threshold results in a lower overhead due
to NVM accesses, but as we previously discussed, reducing it results
in a lower execution time.

We argued that reducing the threshold produces a shorter execution
time, while increasing it results in a longer time needed to reach that
voltage. But how much shorter and how much longer? To properly
discuss threshold selection we would want to quantify this gain in
execution time, or the length of the time spent in buffering energy.
Unfortunately, these quantities can not be computed once and for all.

A temporary increase in the amount of harvested energy causes an
increase of the charging curve slope, while a temporary slowdown on
energy intake results in an increased charging time, and therefore in
an increased inactivity interval. These changes can not be predicted,
as aim to support instantaneous variation on energy sources. But this
is not the only reason why we can not easily quantify these numbers.

The decoupling capacitors, due to the unpredictable nature of the
energy source, may discharge and recharge several times during a
single application run. We call power cycle the time interval needed
to discharge the capacitor from a full charge, down to the minimum
operating voltage. A capacitor may end up performing 17 power cycles
during a single CRC code run, when powered by a RF harvester [29,
1]. Therefore the MCU’s operating voltage may rapidly vary several
times during a single execution of straightforward algorithms. This
causes important side effects on MCU’s performance, as we discuss in
the next Section.

4.2 epic results

Ahmed et al. [1] present in their work the results of experiments
conducted on a TI MSP430G2553 board. They noticed that, when
running at 1Mhz, the power consumption reduces in a single power
cycle by a factor up to 363.36%, while the clock speed increases by a

52 setting the threshold

T1 T2

(a) Task T1 and task T2 are con-
nected by a data dependency.
T2 needs data produced by T1

to perform its computation.

power failure

restore input for T1

exec T1

persist T1 output

power failure

restore input for T2

exec T2

persist T2 output

Treshold 1

power failure

(b) The activation threshold Von
is set to a value that corre-
sponds to a buffered energy
equal to the energy consump-
tion of task T2.

power failure

restore input for T1

exec T1

persist T1 output

exec T2

persist T2 output

power failure

Treshold 2

(c) The activation threshold Von
is set to a value that corre-
sponds to a buffered energy
equal to sum of the energy
consumption of task T1 and
T2.

Figure 4.4: The selection of the activation threshold affects the performance
of task based systems. Increasing the threshold minimizes the
number of NVM accesses needed to restore persisted data after a
power failure, hence minimizing the system overhead.

factor of up to 3.42%. This means that, without changing the nominal
frequency, the same instruction takes different times depending on the
supply voltage at the time it is executed. Moreover, these experiments
showed that a single clock cycle consumes 1.59nJ when the capacitor
voltage is 3.6V , and 0.33nJ when the voltage is 1.8V . This happens
regardless of the system load and the software has no control on it [1].
Figure 4.6, taken from [1], presents the aforementioned results.

We can not easily predict the length of the charging phase due to
energy source fluctuations, and we can not easily predict either the
execution time, or the exact energy consumption of a fragment of
code.

Ultimately the total time needed to run an application on a TPC

board Ttot, is the sum of Tcharge: the time needed to charge the capacitor
up to Von, and the time to actually execute the code Texec.

4.3 overview of threshold management solutions 53

Voff

Time

Vo
lta

ge Von

Fewer NVM reads to restore status
after power failure.

Higher computation/charge ratio.

Higher instruction speed on
TI MSP430

Figure 4.5: Threshold selection must be the result of a refinement process,
as both increasing and lowering it have pros and cons.

Tcharge depends on the current energy profile Eprofile and on the
current capacitor voltage, as the charging phase is not linear. Without
loss of generality, we can say that Texec depends on instructions count
and on clock speed that is affected by the contingent voltage [1]. The
voltage drops because of the energy drain Etot from the capacitor to
execute instructions, this energy obviously depends on the energy
needed to execute a single clock cycle ECC, that, again, depends on the
contingent voltage [1]. This results in the cycle of dependencies showed
in Figure 4.7 and in the difficulty to produce a simple model that
predicts execution time or exact energy consumption, and therefore to
exactly quantify the benefit of a specific threshold selection.

In conclusion, we saw that the activation threshold affects system
performance, yet its selection is complex, and reasoning at compile
time on the correct value is exceedingly difficult as many of the vari-
able involved in the process can not be predicted. Therefore, we better
address the threshold selection conundrum at runtime, implementing
a refinement process that hopefully converges to a proper value. In
Section 4.3 we present an overview on how existent solutions refine
the activation threshold at runtime.

4.3 overview of threshold management solutions

As we discussed so far, the difficulties of threshold selection suggest a
runtime refinement process. In this Section we present an overview
on how different existent solutions tackle this issue.

Hibernus++

As previously discussed in Section 3.1.2, Hibernus [3] performance
depend on the correct setting of two voltage thresholds: VH that is
the voltage level that triggers the hibernation stage, and Von that is
the threshold at which the computation resumes after the hibernation.
Ideally the system should hibernate at the last possible moment before

54 setting the threshold

1 MHz

8 MHz

16 MHz

1 2 3 4002- 001--300-400

1.41%

3.42%

2.48%

Percentage change in single power cycle (%)

(3.6V – 1.8V)

(3.6V – 2.2V)

(3.6V – 2.9V)

-363.36%

-213.96%

-64.35%

Clock Speed
Power Consumption

(a) Voltage supply variation impact both power consumption and
clock speed on TI MSP430G2553, in a single power cycle. The
effects are different depending on the selected frequency.

En
er
gy
 p
er

M
CU

 c
yc
le
=
1.
59

 n
J

En
er
gy
 p
er

M
CU

 c
yc
le
=
0.
33

 n
J

Power Consumption
Clock Speed

(b) Impact of supply voltage variation on TI MSP430G2553 power
consumption and clock speed. Energy consumption is a product
of power and execution time, which is a function of clock speed.
This graph shows that the energy cost of a single MCU cycle
varies by up to ≈ 5× depending on the instantaneous supply
voltage [1]

Figure 4.6: Voltage supply has an impact on both power consumption and
clock speed. Both graphs are taken from [1].

supply failure and resume at the earliest optimal point, but, once
again, the correct balance of these thresholds is a complex process that
requires a runtime refinement process. A non optimal selection of VH
would result in either an increased overhead due to too many restores
after power failures, or in wasted energy, in case the hibernation
happens too early. The same goes for Von, in fact a wrongful selection
would result in too many hibernations, or in wasted time to buffer too
much energy. To support the selection of these parameter, Balsamo
et al. introduced Hibernus++ [2].

Hibernus++ adds two components to standard Hibernus: a self-
calibration procedure that selects and refine VH, and a supply test
that results in the selection of Von. The self-calibration routine is an
iterative process that is executed at the first boot. It waits for the
supply voltage to reach a calibration threshold Vcal, initially set to a
default value. Once this voltage is reached, the energy harvester is
disconnected so that the board is powered only by the decoupling
capacitor. At that point the routine saves a test checkpoint to NVM,
then reads the capacitor voltage Vmeas and reconnects the harvester.

4.3 overview of threshold management solutions 55

Ttot

Texec

Tcharge Eprofile

∆V Etot ECC

Figure 4.7: Dependencies among quantities involved in the computation of
execution time of a piece of code in TPC. In particular the cyclic
dependencies render exceedingly difficult the description of a
simple closed model to link together these parameters.

The value Vcal − Vmeas gives the voltage drop due to hibernation. At
the end of a successful calibration the hibernation threshold VH is set
to Vmin + (Vcal −Vmeas), where Vmin is the minimum operating voltage.
The initial value of Vcal is set as low as possible, equal to the nominal
voltage level that corresponds to MCU on. In case a power failure
occurs during this process, Vcal is increased and the routine restarts.

The supply test routine sets the activation threshold Von. This
routine is executed at the end of the calibration procedure and after
every power failure. As we previously discussed, the energy source’s
profile is deeply connected to the selection of the activation threshold.
For this reason, with the supply test process, Hibernus++ tries to
classify the sources in two categories and performs different operations
depending on the class.

The test starts at a known voltage level Vtest. It determines whether
the energy source is able to supply enough energy to sustain the
operation of the MCU or not, by executing a short segment of code. In
particular the voltage Vcheck is read at the end of the code execution, if
Vcheck > Vtest the source sustained the computation and it is classified
as high-power, otherwise the harvester is unable to supply enough
power and the source is classified as low-power. In presence of a high-
power, source the system restores immediately the computation to
take advantage of the abundant power. If the source is classified as
low-power the system tries to buffer as much energy as possible
to prevent repeated cycling between hibernation and restore. To do
this, the system relies on two interrupts: one that detects increasing
capacitor voltage, and a timer that acts as time-out. As long as the
voltage is increasing the system continues to reset the timer; if the
voltage stops increasing and keeps its level throughout the timer, the
test stops and the system restores the computation, since there is no
benefit in further waiting.

Figure 4.8 shows the flowcharts of the calibration and test routines.

Dewdrop

Dewdrop is a task based solution proposed by Buettner et al. [6]. It
is specifically tailored to Computational RFID (CRFID) and, unlike
other task based solutions presented in Section 3.2, multiple tasks

56 setting the threshold

Begin self-calibration

Did a previous
attempt fail?

Increase calibration
start Vcal

Sleep until supply =
calibration start Vcal

Short-circuit source

Save snapshot
to NVM

Check supply
V (Vmeas) and

remove short-circuit

End self-calibration

Yes

No

Interrupt

(a) Self-calibration of the hibernation
voltage threshold VH. This proce-
dure is executed at the inital boot.

Begin supply test

Did a previous
attempt fail?

Increase test
start Vtest

Sleep until
supply V ≥ Vtest

Check supply
voltage Vcheck

Execute test program

Vsupply ≥ Vcheck?

Stable voltage
detection

End supply test

Yes

No

Interrupt

No

Yes

(b) Hibernus++ supply classification
to determine the correct activation
threshold. This procedure is exe-
cuted after VH calibration and af-
ter every power failure.

Figure 4.8: Flowcharts of the routines to calibrate hibernation 4.8a and acti-
vation thresholds 4.8b in Hibernus++ [2].

are isolated as they do not share any data. The solution has been
developed on Intel WISP platform [31].

In Dewdrop task selection depends on messages coming from the
RF antenna. The selected task starts as soon as the capacitor voltage
reaches a given threshold. This threshold is refined iteratively by
applying a heuristic.

In particular, as discussed so far, delaying task’s start, at a higher en-
ergy level, and therefore at a higher voltage, decreases the time wasted
due to task failing, but increases the time wasted in overcharging
the capacitor. In fact, given the atomic semantic of a task, it must be
executed from scratch every time it is interrupted by a power failure,
and all the energy spent for the partial execution is wasted. Moreover
the exact power consumption of a task is not constant, as different
tasks have different requirements that may vary depending on inputs.

To reach the correct balance, Dewdrop relies on a probabilistic
model. Let:

4.3 overview of threshold management solutions 57

P(fail |Von) be the probability that the selected task will fail, given
the activation threshold Von;

tunder be the time to charge back to Von after a failure;

tover be the time spent charging beyond the energy level that would
have been sufficient to execute the task.

Then the wasted time twasted is represented by the following equation:

twasted(Von) = P(fail | Von)tunder + (1− P(fail | Von))tover (4.1)

An exhaustive exploration to find the value of Von that minimizes
the wasted time defined in Equation 4.1 would be impractical. In fact
the device would need a large series of execution attempts, moreover
the analysis would need to be repeated periodically as the energy
source may vary through time.

To avoid this extensive search Dewdrop implements a refinement
procedure to find an approximate solution. Let Pf be the failure rate
at a given default Von; Tunder be Pf · tunder, and Tover be Pf · tover. If
Tover � Tunder, then the selection is too conservative and the task’s
execution has been delayed too much, as the capacitor spent time to
buffer more energy than what needed to execute the task. Otherwise
if Tover � Tunder, then tasks are failing too often and the activation
threshold should be increased.

Dewdrop uses this heuristic to find the balance point by slowly up-
dating Von. In particular the system maintains two estimates of Tunder

and Tover, updating them with an exponentially weighted moving
average, after each task complete or partial execution. The activation
threshold is then updated depending on these estimates, adjusted by
β in the appropriate direction.

Let:

Ve be the voltage at the end of a running task;

V0 be the minimum MCU operating voltage;

ε be a small voltage.

A task successfully completes if and only if Ve > V0 + ε. Equa-
tions 4.2 detail the process to update the activation thresholds.

Tover =

(1−α)Tover +αtover, if Ve > V0 + ε

(1−α)Tover, if Ve < V0 + ε

Tunder =

(1−α)Tunder, if Ve > V0 + ε

(1−α)Tunder +αtunder, if Ve < V0 + ε

Von =

Von −β, if Tover > Tunder

Von +β, if Tunder > Tover

(4.2)

58 setting the threshold

Charge Controller

CoreEnergy
Harvesting

Sensor Radio

+

-

Compute Sample Send
Receive

Figure 4.9: A conceptual view of Flicker federated energy storate, taken
from [14]. Energy storage is separated per peripheral, and each
peripheral maps to a set of sensing tasks.

Dewdrop solution is specifically tailored on WISP CRFID, that cur-
rently does not feature a voltage supervisors that can trigger an inter-
rupt and start the execution at the selected Von [6]. This means that the
voltage level must be checked using a software polling approach. With
Dewdrop the board sleeps while energy is being harvested and sam-
ples the voltage occasionally. To reduce the energy impact of polling,
the sampling rate is exponentially adapted, applying the Equation 4.3,
where V is the measured voltage and Vr is the voltage gained since the
last woke up. The polling rate is lowered when the capacitor voltage
is increasing rapidly, so that the device does not miss the opportunity
to execute tasks. Equation 4.3 shows the update process of the polling
rate.

tnext =

2t, if Von − V > 2Vr

t/2, if Von − V < Vr/2

t, otherwise

(4.3)

Flicker

Flicker [14], proposes a hardware solution to threshold management
through reconfigurable federated energy management.

This approach assigns a dedicated capacitor for every hardware
peripheral. Each capacitor is sized so that it can buffer enough energy
for a single task using the corresponding hardware peripheral.

Thanks to this hardware support it is possible to set a different
threshold for each task, in order to prevent the starvation of low
energy tasks when a task with high energy request keeps failing.
Moreover it is possible to use smaller capacitors, which charge faster.
In fact each component only needs to harvest the energy it needs,
not the energy to support all components. Figure 4.9, taken from [14]
presents a conceptual view of federated energy management.

4.4 shifting perspective in threshold management 59

The programmer can assign the activation threshold and the priority
of charging for each capacitor, and therefore for all the tasks that are
linked to that capacitor.

As shown in Figure 4.9, the energy from the harvester is stored at
first stage in a core capacitor. Then a charge controller pours energy
from the core capacitor, to peripheral capacitors at different thresholds,
hence introducing a priority. Finally an interrupt is generated when a
capacitor reaches a given voltage, and that interrupt informs the MCU

that a task can be executed.

4.4 shifting perspective in threshold management

Threshold management is mostly an unexplored territory, in particular
in presence of task based solutions. If Hibernus++ proposes an efficient
routine to calibrate thresholds with checkpoint systems, Dewdrop is
specifically tailored to the CRFID scenario and the knowledge on the
nature of the energy source allows to make strong assumptions that are
not valid for an arbitrary source, hence it can not be seen as a general
solution for tasks systems. Flicker federated energy management offers
a promising platform, but does not define any software stack to select,
manage and refine the thresholds, as it is outside of its scope.

We still lack an efficient solution to manage activation threshold on
task-based systems, that is independent from both the platform and
the profile of the energy source.

The main focus when dealing with batteryless devices is to structure
code and support its execution in a way that ensures its completion.
Current solutions address this issue by trying to maximize energy
efficiency and, as we discussed so far, the correct selection of voltage
thresholds is a fundamental step toward this efficiency.

The development of a static system, or, in other words, a system that
is not able to dynamically adapt to the current energy intake, forces
to push unconditionally toward that energy efficiency maximization.
In fact such system must be robust and behave well in the worst case
scenario of scarse energy.

We argue that the ultimate goal when developing software stack for
TPC, though, is not energy efficiency per se, instead efficiency is a way
to minimize the overhead and increase code execution to maximize
the throughput.

If we develop a system that is able to accept minimum through-
put requirements, we can direct our attention to the satisfaction of
that parameter, which we argue that is the ultimate goal, instead of
indirectly reaching it by looking for the maximum energy efficiency.
Tasks are a better fit for this view, as their atomicity makes it easier to
define a unit of computation and therefore a throughput as a number
of iteration over time.

60 setting the threshold

To support this vision we need:

1. an efficient way to describe tasks, their connections and to for-
mulate throughput requirements;

2. a way to select tasks that is aware of the current energy scenario;

3. a way to manage thresholds accordingly.

If we do so we can implement a dynamic solution: one that is able
to address a sudden peak in harvested energy, while being able to
support execution with scarse energy intake, always addressing the
throughputs requests.

Moreover, as it emerges from the overview on existing task-based
solutions presented in Section 3.2.2, and summarized in Table 3.2,
none of the existent solutions autonomously responds to runtime
variation of the energy budget when selecting which task to run, in
order to make the best possible use of such a scarse resources.

Let us consider a device that senses data from an accelerometer and
recognizes the activity based on these data. We can easily imagine a
structure with multiple tasks: at least one to sense data and one to
produce the classification. In this scenario the developer should be able
to ask for a minimum throughput for the entire process, without being
forced to consider the throughput for each single task. Therefore, a
system that accepts throughput requirements, should let the developer
ask for a given throughput for higher level functions that encompass
the execution of several tasks. Let us call application this structure that
groups tasks to execute a higher level function.

Of course, different applications can have different energy require-
ments that derives from the requirements of their tasks. Let us suppose
that a single application is running on a device, and that the energy
harvested from the source is high enough to allow a computation
without power failures. In this scenario the device would keep exe-
cuting several times the single application, potentially exceeding the
throughput request. We argued that the ultimate goal of a developer is
to reach a given throughput. Executing an application with a through-
put higher than its request, can be seen as a waste of energy. In fact,
the system could make a better use of the energy that is consuming to
run this excess of iterations, to execute additional workload. Still, with
just one application there is no additional workload. For this reason
we can envision a multi tenant system, where multiple applications
provide additional workload to make a better use of the energy in
case of high energy provisioning.

In the rest of this document we present a new task-based framework
whose goal is threefold:

1. propose a new programming abstraction, based on tasks, that are
grouped in applications, with explicit data dependencies among

4.4 shifting perspective in threshold management 61

them, and explicit non functional requirements in terms of mini-
mum desired throughput per application;

2. thanks to this new way to describe software for TPC, build a
dynamic scheduler that enables multi tenancy, is energy aware and
reacts to changes in the amount of harvested energy;

3. build an adaptive threshold management system that adapts thresh-
olds based on the scheduler decisions.

We introduce our proposal starting from Chapter 5, where we de-
scribe this new programming abstraction, in which tasks are connected
among them by means of explicit data dependencies, and are grouped
in applications.

5
E N A B L I N G M U LT I T E N A N C Y

As discussed in Section 4.4, our first goal is to propose a new program-
ming abstraction, based on tasks, with explicit data dependencies.

Tasks, are the basic blocks of our new model. As discussed in Sec-
tion 3.2, they are atomic unit of computation and their execution
follows a transactional semantic. As we said in Section 4.4, we group
them in applications, a concept similar to InK [35] task threads, pre-
sented in Section 3.2.2.

Applications are a collection of tasks, necessary to provide a higher
level service. For instance, a task that senses temperature may be
included in an application that monitors cold chain equipment. Appli-
cations support the definition of non functional requirements in terms
of minimum desired throughput.

This infrastructure let multiple applications to coexist on the same
device, enabling multitenancy. The scheduler can dynamically change
the workload, enabling and disabling applications, to react to changes
in provided energy. In presence of a peak in energy supply, the num-
ber of active applications is increased to capitalize a higher amount of
energy. With a single application, the only effect would be an increased
throughput, that potentially exceeds the requests. On the other hand,
thanks to multitenancy, we can use the increased energy to run addi-
tional applications and expand the capability of our device. Moreover,
given an application, our system can select from a pool of available
tasks the one that fits best the current energy budget, discarding those
that can not complete due to energy limitations. We will discuss how
the system manages applications and schedules tasks in Chapter 6.

In this Chapter, we begin the description of our new proposal, start-
ing from the programming abstraction. In particular in Section 5.1 we
present a formal introduction to the new programming abstraction, in
Section 5.2 we provide a detailed description of tasks and applications,
in Section 5.3 we investigate data dependencies nature and issues,
finally in Section 5.4 we present the memory model associated to the
proposed abstraction.

63

64 enabling multitenancy

5.1 fundamental concepts

Formally the scheduler works in an environment where code is orga-
nized according to the following list of elements.

A set of tasks T
Each element τ ∈ T is a piece of atomic computation, whose
execution follows a transactional semantics.

A set IN(τ)

It represents the set of input data for a given task τ.

A set OUT(τ)
It represents the set of output data of a given task τ.

A set of applications A
Each application a ∈ A is a set of tasks and A ⊂ P(T).

A dependency function
Dep(τ) : T → P(T), such that τ ′ ∈ Dep(τ) ⇐⇒ IN(τ ′) ⊆
OUT(τ). In other words, a task τ ′ is in the dependency set of a
task τ if τ produces some output that is relevant to the execution
of τ ′. The transitive closure of this function must be non reflexive.

We present a detailed description of data dependencies in Sec-
tion 5.3.

These previous elements can be used to organize the codebase in
a partitioned Direct Acyclic Graph (DAG), or a forest of partitioned
DAG, in case one or more applications do not have inter applications
dependencies. In this graph tasks are nodes, while the edges are
couples in τ×Dep(τ). Figure 5.1 shows an example of this structure.
In the following Section we introduce the basic blocks of our new
programming abstraction: tasks and applications.

5.2 tasks and applications

Tasks are pieces of atomic computation: either their code is completely
executed within a computation burst, or they are entirely rescheduled
for execution in a further power cycle, in other words the system does
not checkpoint intermediate results within a task.

Applications are a collections of tasks, grouped to provide a higher
level service, for instance an application may include tasks needed to
provide proper irrigation in a greenhouse, thanks to the analysis of
humidity and solar radiation sensors, another application deployed
on the same device may include tasks to actuate the ventilation based
on the greenhouse temperature.

Within an application, each single task is responsible for a subset
of functions, varying from reading sensor data, to data processing or

5.2 tasks and applications 65

Task a Task b

Task c Task d Task e

Task f Task g Task h

Application 3

Application 2

Application 1

Figure 5.1: Example of a partitioned DAG induced by the definition of the
framework elements.

actuators management. These tasks may be connected by means of
data dependencies as shown in Section 5.3.

A task may be part of multiple applications since its specific function
may be necessary to provide more than one higher level service.
For instance, a task that analyzes the humidity may be useful both
to provide a sensible irrigation service, and to deploy a parasites
prevention service.

5.2.1 Tasks

A task is characterized by the following elements:

• a unique identifier;

• a set of required input data IN;

• a code segment;

• a data output OUT ;

• one or more exit points within the code segment;

• a prediction on worst case task’s energy consumption Ewc;

To preserve memory consistency in presence of power failures,
all input and output accesses are mediated by the framework that
provides the requested input data, and writes task’s output in a way
that ensures the consistency of the internal state. In particular a task
can not directly output data to NVM during its execution, but it can only
do that through the runtime support, providing the output variable
as a parameter to its exit point. This operation is performed by an
instruction with the same semantic of C return statement. Section 5.4
presents how the framework manages NVM on behalf of tasks.

66 enabling multitenancy

Task g

NVM

{...
exit_point}

Data from
Task d
Data from
Task f

Data from
Task g

· ID
· Ewc
· Code

Figure 5.2: Task access to NVM is mediated by the framework.

Energy consumption Ewc must take into account the execution
of a potential NVM write of the output value, even if in practice
this activity is executed by the scheduler framework and not by the
task itself. Thanks to this parameter the framework can temporarily
prevent the execution of a task whose energy request is higher than the
current energy budget and address the goal [G1T] on energy efficiency,
presented in Section 3.2.1. To quantify this energy consumption it is
possible to rely on the work of Ahmed et al. [1] that takes into account
the variation in clock speed and energy drain mentioned in Section 4.2.

A task is considered successfully executed when one of its exit point
is reached and, if provided, the data output is successfully written
to memory. If the energy budget is insufficient and, either no exit
point is reached, or the data output is not properly executed, then the
task must be entirely rescheduled. Since the only way to write a data
output to the shared memory is through an exit point, multiple writes
are not allowed within a single execution.

The previous limitations ensure that in case of a power failure the
system is rebooted to a consistent state, as long as the task code
does not produce non idempotent effects through actuators, further
examined in Section 5.3. In fact:

• if the execution fails before an exit point then for sure no data
has been persistently changed on NVM;

• if the execution fails after an exit point and the data has been
persistently written NVM, then the task code does not contain
any other instruction able to affect the NVM, since multiple writes
are not allowed.

5.3 data dependencies 67

5.2.2 Applications

An application is a collection of tasks linked by data dependencies that
are necessary to provide a higher level service. They are characterized
by the following elements:

• a unique identifier;

• a set of tasks;

• an initial task;

• a desired minimum throughput Xmin in terms of complete itera-
tions over time, a complete iteration corresponds to one execu-
tion of all its task.

Since applications represent higher level services, their execution is
supposed to be continuous.

The code deployed in the system may be composed by several tasks
grouped in several applications. The scheduler selects at every wakeup
a set of tasks to be executed with the current energy budget. Each
task in the execution plan is selected as part of an application and,
in particular, as a step in the execution of an iteration of a given
application. In Chapter 6 we presents a detailed description of the
execution model that guides tasks selection.

One iteration of an application consists in the execution of one
iteration of all its tasks, starting from the initial one, and in an order
compatible with the dependencies.

5.3 data dependencies

Tasks communicate with each other by sharing data. The framework
mediates this communication, collecting output data from completed
tasks and providing these data to tasks that need them as an input to
their computation, in accordance to data dependencies. This prevents
task’s direct access to NVM and keeps the internal state consistent. In
fact, tasks work on volatile memory and their results are persisted
only when they complete, the framework collects results and writes
them on NVM.

In our proposed framework, data dependencies specify producer-
consumer relationship among tasks, and they can be decorated with a
set of Boolean conditions. A dependency is active, or in other words
the consumer can access to producer’s data, if and only if either the set
of conditions is empty, or all the conditions in the set are evaluated as
true. These conditions can capture temporal requirements, as requested
by goal [G2T]. For instance they can be used to specify data expiration,
or Minimum Inter Sample Delay (MISD) as in Mayfly [16].

We argue that simply allowing to specify these conditions, can not
prevent semantics inconsistencies with a solution, like the one that we

68 enabling multitenancy

aim to implement, that dynamically selects tasks at runtime, as we
will discuss in Chapter 6. Let us consider the following example.

An application to control and log accesses to a facility is deployed
on a transiently powered device. For the sake of simplicity we assume
that the device has only one NVM memory location, that is managed
as follows:

• a STORE <data> instruction saves <data> in the memory location;

• a LOAD instruction reads the data stored on NVM, providing it to
the task and removes it from the memory location.

The application is composed of two simple tasks:

• a SENSE task that monitors the status of the entrance door;

• a LOG task that takes care of the transmission of the opening
event to a collection point.

Requirement Each time a sensing event is produced by the first task, a
log must be generated by the second one.

SENSE task produces data, while LOG task consumes them, hence they
are connected by a data dependency. A simple data dependency poses
no constraints on how the consumer task can access the producer’s
data. The output of the sensing task enables the log task: until no
data is produced by the sensing task there is no need to schedule
the log task. A dependency with no constraints on how and when
the consumer can access these data, does not prevent the following
execution trace where two consecutive iterations of the sensing task,
not interleaved by a log task, violate the aforementioned requirement.

Iteration Enabled tasks Selected task LOAD/STORE instruction Memory on exit

1 SENSE SENSE STORE data1 data1

2 SENSE, LOG SENSE STORE data2 data1, data2

3 SENSE, LOG LOG LOAD (reads data2) data1, data2

On initial boot, the only enabled task is SENSE: there is no data to log,
therefore the device selects and executes this task. This execution of
SENSE enables the LOG task that can now access to the sensed data, still
nothing prevents a re execution of SENSE. For instance, let us suppose
that the current energy budget does not allow the execution of the log
task. Instead of waiting until the capacitor buffers enough energy to
execute LOG, the runtime decides to use the currently available energy
to execute another iteration of SENSE. This would overwrite the output
of the previous iteration of the sensing task, violating the requirement.

To prevent the violation of the requirement, we need to allow the
developer to specify a different access pattern for the consumer task,

5.3 data dependencies 69

Figure 5.3: A TPC device is deployed in a greenhouse to control the irrigation
system. The device operates a sprinkler based on data gathered
from a humidity sensor. Each activity is sent to a collection point
for logging purposes.

hence we need to enrich the semantic of data dependencies. This
example does not cover all the potential data access patterns that
produce the need for a new data dependency semantics. To prove that,
we now introduce an more complex example that will motivate and
guide us throughout the definition of this enriched set of semantics.

5.3.1 Greenhouse Example

In the example depicted in Figure 5.3, a greenhouse is equipped with
an autonomous irrigation system that provides the correct amount of
water to plants, based on sensed humidity. The system is controlled by
a TPC device, powered with solar energy. The device is connected to a
humidity sensor and sends commands to a timer that switches on a
sprinkler for the desired amount of time. The sprinkler timer accepts
one radio command add_time <10m|20m|30m>. If the sprinkler is off,
then the command starts the irrigation and keeps it open for 10, 20 or
30 minutes. If the sprinkler is on, then command increases the duration
of the irrigation for 10, 20 or 30 minutes. The application decides the
amount of time that the sprinkler should be on, based on humidity.
In particular, it needs a series of three consecutive humidity reads,
to confirm the value and take the proper decision. Each decision is
transmitted to a collection point for logging purposes.

The application is composed by four tasks:

Humidity senses humidity;

Decide decides the correct amount of irrigation time, based on humid-
ity data;

Sprinkler sends the add_time command to the sprinkler, based on the
decision;

Log transmits the log to a collection point.

70 enabling multitenancy

Figure 5.4 presents the dependency graph for this scenario.
Let us examine each dependency one by one, starting from depen-

dency 1 that connects the task that senses humidity to the decision
task. As we said, Decision task computes the time for the sprinkler,
based on the last three humidity data. Let us imagine that the Humid-
ity task completes its first execution. With a simple data dependency,
without any enriched semantics, nothing prevents the execution of
the Decision task, right after this single run of Humidity. To preserve
the requirement, the developer should implement an internal check
to verify that there are at least three humidity reads, and skip the
execution otherwise. This situation happens every time a task has to
access a set of data to extract a feature. Imagine an activity recognition
task that decides based on a set of reads coming from an accelerator,
or a task that implements a filter. A new kind of data dependency that
allows to specify that the consumer task must receive a window of
data, instead of a single item, would simplify the description of these
situations and provide a useful tool to the developer.

Dependency 2 connects the Decision task and Sprinkler task.
Imagine that Decision task computes that the sprinkler should be
active for 10 minutes. After that, Sprinkler task reads this decision
and sends the command to the sprinkler that activates for 10 minutes.
With a simple data dependency, nothing prevents the re execution of
the Sprinkler task on the same decision. For instance it may happen
that after a while, within these 10 minutes of sprinkler activity, there is
only enough energy for Sprinkler task, and all the other tasks require
a higher energy buffer. The runtime that controls task’s execution
could decide to execute it once again, since it is the only one that
matches the energy budget. Sprinkler task would read once again the
same decision and wrongfully increase the sprinkler activity for other
10 minutes. An enriched semantics on this data dependency could
prevent the re execution of a consumer task based on an already read
data.

With the dependency 3 that connects Decision and Log task, it
happens the same issue that we described in the introduction to Sec-
tion 5.3. The simple data dependency does not prevent that a new
execution of Decision overwrites the result of the previous one, before
that Log task sends it to the collection point. This would result in a
missing item in the log. For this reason, we need a new dependency
semantics that prevents a new execution of the producer task, until the
consumer successfully reads the data. We can relax this requirement,
if the system is able to store more than one version of the produced
data, and provide the correct one to the consumer. Imagine that three
consecutive executions of Decision can store three consecutive deci-
sions on a buffer. In that case, the system could execute three times
Log and provide it respectively the first, the second and the third

5.3 data dependencies 71

Humidity

Decision

Sprinkler

Log

1

2

3

Figure 5.4: Dependency graph for the greenhouse example presented in
Section 5.3.1. The application is composed by four tasks.

decision. To allow that we need a new dependency semantics that
allows versioning of the producer data.

An enriched set of dependency semantics enables a simpler descrip-
tion of functional requirements, and allows the developer to program
each task independently, under the guarantee that the runtime in-
terleaves tasks executions in an order that is compliant with these
requirements.

In the rest of this Section we present the details of each new depen-
dency semantics that emerged from the aforementioned example.

5.3.2 Data Dependency Semantics

Our proposed framework enriches the semantic of the data pipes
connecting producer and consumer tasks. In particular, let us consider
two tasks τ and τ ′, where τ ′ ∈ Dep(τ), or, in other words, τ ′ needs
some data coming from τ. The developer can specify one of the
following expected behavior for the data dependency that connects τ
and τ ′.

• Simple dependency

• At most one read dependency

• At most one write dependency

• Add version dependency

• Window dependency

As we discussed in Section 5.3.1, the proper selection of the de-
pendency type is fundamental to guarantee the intended application
semantics. In the rest of this Section we present the semantic of these

72 enabling multitenancy

dependency type arrow execution example

Simple dependency A B A(w1), A(w2), B(r2), B(r2)

At most one read A B A(w1), A(w2), B(r2), A(w3), B(r3)

At most one write A B A(w1), B(r1), A(w2), B(w2)

Add version A B A(w1), A(w2), B(r1), B(r2)

Window
A B

A(w1), A(w2), A(w3), B(r1,r2,r3)

Table 5.1: Data dependency semantics and corresponding graphical conven-
tions. T(wx) means that task T writes data x, while T(rx) means
that task T receives x as an input

new dependencies by means of regular expressions, and we introduce
the graphical conventions used in this document to represent each
of them. The overview is summarized in Table 5.1. For the sake of
simplicity, we consider an application composed by two tasks A and
B, connected by a data dependency from producer A to consumer B.

Simple Data Dependency

A B

Default data dependency in which each execution of A produces an
output that overwrites the previous one, and each execution of B is
always allowed to read the most recent data. A simple data dependency
poses no constraints, either on the ability of B to read A output, or on
the ability of A to produce a new output that overwrites the previous
ones. This dependency produces a interleaving between A and B

executions that follows the pattern (AnBm)∗ where n > 0 and m 6 n.

At Most One Read Data Dependency

A B

The data produced by A can not be read multiple times by consecutive
executions of B. Each execution of the consumer task must receive
a fresh data. Multiple consecutive executions of the producer are
allowed, each one overwrites previous data.

An at most one read dependency forces the execution of at least
one iteration of task A between two consecutive executions of the

5.3 data dependencies 73

consumer task B, producing an interleaving between them that follows
the pattern (A+B?)∗ where:

• each application iteration starts with the producer task A;

• application iterations interleaving is allowed, resulting in con-
secutive executions of task A, each one overwriting the previous
data;

• consecutive executions of A can be interleaved with one execu-
tion of the consumer B;

• consecutive executions of B are not allowed, since they must be
interleaved with at least one execution of A that produces a fresh
data.

This dependency produces a stricter constrain on task selection com-
pared to the simple one, since its pattern is a special case of (AnBm)∗

with n > 0 and m 6 1.

At Most One Write Data Dependency

A B

Each data produced by A must be consumed by one execution of B.
In other words the data produced A can not be overwritten by a new
execution, until the consumer B successfully reads it. An at most one
write data dependency between A and B produces an interleaving of
the two tasks that follows the pattern (AB)∗, since each iteration starts
with an A and two consecutive iterations of task A must be interleaved
with one execution of B that consumes the data. This dependency type
produces the strictest constrain on task selection, in fact the language
produced by (AB)∗ is a subset of the language produced by (A+B?)∗.

Add Version Data Dependency

A B

Each execution of the producer task creates a new version of the
data. The scheduler provides the correct version to the consumer task
depending on the iteration. This dependency allows the interleaving
of multiple iterations, while keeping an at most one write semantic. The
gain in task selection freedom, comes at the cost of a higher memory
consumption and a more complex memory management. In fact the
framework must store more data, one per version, and must execute
logic to provide the correct version to the consumer.

74 enabling multitenancy

Window Data Dependency

A B

This dependency type forces the execution of at least a given number
of iteration of the producer task, in order to provide to the consumer
task access to a sliding window of data, each one with an “at most one
read” semantic. This could be useful in applications where a task must
extract a feature from a collection of data.

Example 5.3.1 presents another scenario where the appropriate
selection of the dependency’s semantic is fundamental to capture the
functional requirements.

Example 5.3.1
The code deployed on the system is composed by two applica-
tions sharing one of their task as shown in the following graph.

Task 2 Task 3

Task a Task b Task c

Application 2

Application 1

Task A is the initial task for Application 1, while Task B is the
initial task for Application 2; Task C and Task 3 are the final task
for their respective applications.
For the sake of simplicity let us suppose that:

• Application 1 is simpler than Application 2 and its execution
is less energy demanding, given that its tasks are shorter
and require a small amount of energy;

• task’s execution never fails, since energy predictions are
always correct;

• there are no conditions on data dependencies.

Let us assume that, at every wake up, a dynamic scheduler
selects some tasks to execute, let us suppose that the following
trace represents the selection operated over five consecutive
wakeup:

1. Task A — Task B — Task C

5.3 data dependencies 75

2. Task A — Task B — Task 2 — Task 3
3. Task 2 — Task C — Task 3
4. Task A — Task B — Task C — Task 2
5. Task 3

Given the dependencies depicted in the graph, each execution
of Task B enables a new iteration of Application 2, in particular:

• Application 1 performs three iterations over five wakeups;
• Application 2 performs three iterations over five wakeups,

interleaving the first one that starts at step 1 and ends at
step 2, with the second one that starts at step 2 and ends
at step 3.

Depending on application semantic, it may happen that the
interleaving of different instances of the second application,
results in an unwanted behavior. In fact, if we suppose that the
intended semantic for Application 2 is:

Each data produced by Task B must be processed by
Task 2.

the proposed trace breaks the constraint, since the data produced
by Task B in step 1 is overwritten by the one produced by Task B
in step 2, therefore in both the first (step 2) and second iteration
(step 3), the same data is processed by Task 2 (i.e. the one
produced in step 2).
To prevent this issue the programmer must specify the intended
semantic using the appropriate dependency type.

As we discussed so far, different dependencies induce different
semantics. Often times, these semantics are strictly connected to task’s
nature. For instance a task could be a consumer responsible for data
transformation, or it could operate an actuator. Here we propose a
systematic classification of tasks, to help understand how different
tasks and scenarios correspond to different potential violation to
semantic constraints, and therefore to different dependency types
selection. To classify tasks, we refer to the framework presented by
Michael Jackson in “The World and the Machine” [18] and we divide
them in three classes:

• those that operate exclusively on the machine;

• those that operate on shared phenomena controlled by the world;

• those operating on shared phenomena controlled by the ma-
chine.

76 enabling multitenancy

Given this categorization, we consider possible consistency threats
and semantic constraints violations, and, through an example sce-
nario, we propose techniques to address them, setting proper data
dependency patterns. In these examples we refer to an hypothetical
scheduler that selects tasks satisfying the constraints induced by the
dependencies. This scheduler works under some simplified assump-
tions, depending on the context. The real scheduler logic, implemented
in the proposed solution, is presented in Chapter 6.

5.3.3 Task Operating on Machine

This first category of tasks is composed by all the tasks that perform
some kind of data analysis or transformation on data stored on NVM.
Possible examples of this category are tasks performing a convolution
on an already captured image, tasks filtering acquired data, or tasks
computing a Fast Fourier transform.

These kind of tasks do not pose a consistency threat to internal
state, in case of a power failure, since write access to the shared
memory is mediated by the scheduler that will reschedule the task
if the write is not successfully performed. Still the usual violation of
the semantic constraints, already presented in previous examples, are
possible. To give a further example, let us consider the following graph
representing two tasks with a simple producer-consumer relationship.

Task 1 Task 2

The execution trace Task 1 — Task 1 — Task 2 — Task 2 is allowed,
still both the executions of Task 2 will process the same data produced
by the second instance of Task 1. To prevent that the simple data
dependency must be replaced with an at most one write dependency,
producing the following graph:

Task 1 Task 2

The same result could be obtained using an add version dependency,
in that case multiple iterations of the application could be interleaved.
For instance, let us suppose that the system can store up to three
consecutive versions, then three iterations can be interleaved and the
following schedule could be selected. The subscript is the iteration
counter, wx means that the task writes x, rx means that the task re-
ceives x as an input:

Task 11(w1) — Task 12(w2) — Task 13(w3) — Task 21(r1) —
Task 22(r2) — Task 23(r3)

5.3 data dependencies 77

(a) The board measures the CO2
concentration of the room and
the outside temperature. It also
has an antenna to send data to a
data sink and it can emit a signal
that switches on a motor able to
open a window.

CO2 sensing task Temp sensing task

Decision task

Window open task Log task

< 30 min < 60 min

< 30 min

(b) Graph that represents data depen-
dencies for application described in
Section 5.3.4. Data dependencies are
decorated with the correspondent
conditions, if any.

Figure 5.5: Example of a application with tasks operating on shared phenom-
ena controlled by the world. An intermittently powered board,
equipped with temperature and CO2 concentration sensors is
deployed in a room.

5.3.4 Task Operating on Shared Phenomena Controlled by the World

This second category is composed by all the tasks responsible of
sensor reads. Usually these task are followed by a task of the previous
category: a sensing task produces a data stored on NVM, consumed by
a task performing some kind of computation on it.

When dealing with tasks in this category, data timeliness issues may
arise since a data collected by a sensor may be of no use after a certain
amount of time. Let us consider the following scenario.

As depicted in Figure 5.5a, an intermittently powered board, equipped
with temperature and CO2 concentration sensors is deployed in a
room. The board measures the CO2 concentration of the room and
the outside temperature. It also has an antenna to send data to a data
sink and it can emit a signal that switches on a motor able to open a
window.

If the level of CO2 is over a certain threshold and the outside
temperature is higher than a certain value, then the board must send
the signal to open the window. If the exterior temperature is too
low, then the window must not be opened. Every decision must be
logged by sending it to the data sink. The CO2 concentration and the
temperature level are supposed to change at two different frequencies,
therefore a CO2 must be considered stale after 30 minutes, while a
temperature data is meaningful if taken within the last hour. The
window should be opened only if the decision was taken no longer
than 30 minutes ago.

78 enabling multitenancy

C

T

D

L

WWindow
open task

Decision
task

Temp
sensing task

CO2
sensing task

Log task

TASK WORST CASE ENERGY
CONSUMPTION

ENERGY BUDGET

 7

C

 23

T

 0

D

MEMORY CONTENT
ON EXIT

SCHEDULING EPOCH

 0 C T D

10 min

 7

C

 23

T

 0

D

 1 L

 10

C

 21

T

 0

D

 2

5 min

W C

 12

C

 21

T

 1

D

 3

30 min

 12

C

 21

T

 1

D

 4

30 min

T

C D W

L

Figure 5.6: Possible scheduling trace the scenario described in Section 5.3.4

The graph in Figure 5.5b represents the application. Data dependen-
cies are decorated with the correspondent conditions. The dependency
spanning from the decision task to the log task, forces to send the
decision, whatever it is, to the data sink before taking a new one, pro-
ducing execution traces where two decision tasks cannot be executed
without a log task in the middle. The staleness conditions on data
dependency edges, force the scheduler to re-execute the upstream task
if the condition is no longer satisfied (i.e. the data is older than the
time limit). In particular the condition on the data dependency edge
between decision and actuation tasks, works under the assumption
that if the actuation task is not executed within 30 minutes, then the
CO2 concentration may have changed and a new decision must be
performed with fresher data.

Figure 5.6 shows a feasible trace for the first five scheduling epochs.
The window open task W in the scheduling epoch 2 is the last task
of the first iteration of the application, while tasks C and D belong to
the second iteration. Scheduling epoch 3 starts with task C because
the sampled value for CO2 concentration has expired, since it is 30

minutes old.

5.3.5 Task Operating on Shared Phenomena Controlled by the Machine

This category is mainly composed by tasks dealing with actuators,
including the ones that manage radio output devices from the example
in Section 5.3.4.

5.3 data dependencies 79

humidity sensing task Decision task

Sprinkler task

< 120min and > 30min

Figure 5.7: Graph that represents data dependencies and timeliness condi-
tions, for application described in Section 5.3.5.

So far we introduced a dependency pattern to prevent data loss due
to re-execution of the upstream task. Another peculiar issue arises
with this class of tasks. In fact, we may experience an inconsistent
behavior, when we execute multiple times a task that performs non-
idempotent actions on the world. To prevent this, it is necessary to
bind the task producing the data that informs the decision on the
actuator, to the one that actually performs the action, with an at most
one read dependency. To clarify this potential problem, let us consider
a slightly modified version of the example presented in Section 5.3.1.

An intermittently powered device is deployed in a greenhouse to
manage the irrigation system. The board is connected to a humidity
sensor and it can send commands to a timer that switches on a sprin-
kler for the desired amount of time. The sprinkler timer accepts one
radio command add_time <10m|20m|30m>. If the sprinkler is off, then
the command starts the irrigation and keeps it open for 10, 20 or 30
minutes. If the sprinkler is on, then command increases the duration of
the irrigation for 10, 20 or 30 minutes. The application senses humid-
ity, decides the amount of time that the sprinkler should be on, and
consequently sends the appropriate command to the sprinkler timer.
The data from the humidity sensor are stale after 120 minutes, while
two consecutive samples are useless if they have an inter sample rate
shorter than 30 minutes.

The application is composed by three tasks: the initial one senses the
humidity, the second one performs the decision and the third sends
the command to the sprinkler timer.

Let us assume the following worst case energy requirements Ewc.

• Esense
wc = 10 units;

• Edecide
wc = 5 units;

• E
sprinkler
wc = 50 units.

The graph in Figure 5.7 summarizes tasks and dependencies.
The at most one read dependency between decision and sprinkler

activation, prevents the execution of two consecutive sprinkler activa-
tions based on the same decision, causing an unwanted increase of
the active time for the sprinkler. Likewise, the dependency between
sensing and decision tasks prevents two consecutive decisions on the
same data.

80 enabling multitenancy

Let us consider the execution trace shown in Table 5.2, where B is the
energy budget of the current activation, H,D and S respectively stand
for an iteration of the humidity sensing task, the decision task and
the sprinkler command task. The subscripts represent the worst-case
energy requirement of the task. The initial task is H and we suppose
that the device activates when a threshold of 30 energy units is reached.
For simplicity, let us suppose that task selection is performed once,
at the beginning of the scheduling epoch, then all selected tasks are
executed.

epoch energy budget b selected tasks

0 30 H10 D5

40 minutes inactive

1 30 H10 D5

10 minutes inactive

2 30 ⊗ set wakeup to B = 50

10 minutes inactive

3 50 S50

5 minutes inactive

4 30 ⊗ wait

5 minutes inactive

5 45 H10 D5

10 minutes inactive

6 30 ⊗ set wakeup to B = 50

10 minutes inactive

7 50 S50

Table 5.2: Possible trace for scenario presented in Section 5.3.5

Let us examine the trace summarized in Table 5.2.

Epoch 0 Initially the board activates with 30 energy units, accordingly
to the activation threshold parameter. Task H is selected since
it is the only one with no pending dependencies to be satisfied.
The execution of H would unlock D, so the scheduler selects
that task too. After H and D the budget would be 15 energy
units. No other task from the current application iteration fits
the budget, and a new iteration can not start since the condition
on H → D data dependency sets the inter sample delay to
30 minutes. Selected tasks are executed, then the board stays
inactive and harvests more energy till the threshold is reached.

Epoch 1 The budget is not enough to execute S and complete the first
iteration, but 40 minutes passed from the first epoch, so the

5.4 memory model 81

condition on the inter sample delay is satisfied and the scheduler
can start a new iteration of the application.

Epoch 2 A new iteration can not start due to the inter sample delay, the
only possibility is to sleep until B = 50 to execute S and complete
the first iteration.

Epoch 3 The budget is enough to execute S and the first iteration of the
application, started in the first epoch, is now complete. This
execution of S from the first application iteration is based on
the data written by the last execution of D that belongs to the
second application iteration, still this is ok with the application
semantic.

Epoch 4 The scheduler can not complete the second iteration, not even
by setting a new wakeup threshold to 50. In fact the dependency
forces the execution of a new D before an S, a D would require
an H for the same reason, but H can not be executed due to
the inter sample delay condition and the last data sampling
happened 25 minutes ago. A new iteration can not be started
due to the same problem with inter sample delay condition.
The only feasible option is to wait until the inter sample delay
condition is satisfied.

Epoch 5 The data dependency condition on inter sample delay is now sat-
isfied, so in order to complete the second iteration the scheduler
re schedule a new iteration of D preceded by H.

Epoch 6 Same as epoch three.

Epoch 7 S can be executed and the current last application iteration is
now complete.

As already discussed so far, a task’s code does not have direct
access to NVM, neither to read, nor to write data. All these accesses are
mediated by the runtime framework that manages memory to ensure
its consistency, as requested by constraint [C2T]. In the next Section
we present this memory access model.

5.4 memory model

NVM is managed exclusively by the framework that enforces its consis-
tency. Each task may require access to a certain data, in accordance to
dependencies specified by the developer. Tasks may produce output
data that must be persisted on NVM, as discussed in Section 5.2.1.
These data are provided as parameters to their exit point. The runtime
framework collects and persists them.

82 enabling multitenancy

5.4.1 Write Output Data

Let us revise the requirements that our solution should follow, in light
of our current goals: to provide a managed write access to NVM.

In Section 3.2.1, constraint [C1T], we stated that the system must
persist result of successfully completed tasks. In other words, the
persist process is deeply connected to task successful execution. To
ensure the transactional semantics, tasks do not have access to NVM

during their execution, since their effects must be visible and persistent
only when the execution successfully completes.

Let us imagine that a task completes its execution, asks to persist
data and that this process is interrupted by a power failure. On reboot
all task’s results are lost, hence the task must be re-executed. So a task
successfully completes when it reaches one of its exit points and the
framework successfully writes output data on NVM.

In constraint [C2T], we stated that the solution must ensure memory
consistency. On task-based solutions, this implies that the internal state
must not be affected by partial executions of a task. Let us suppose that
a task must be executed two times. The first execution successfully
completes, while the second one fails. On reboot, after the second
unsuccessful execution, the results of the first one must be available
and uncorrupted.

To summarize:

• the process to write the output data is performed by the runtime
framework, but it must be considered as a mandatory step of a
successful task’s execution;

• to preserve consistency, write operations must be part of the
transactional semantics too: either they complete successfully, or
the internal state must be as if they never occurred at all.

We stated in Section 5.2.1 that tasks carry a worst case scenario
energy consumption prediction Ewc. To address the first requirement
we ask that this prediction includes the energy required to complete
the persist process. In Chapter 6 we will examine how the scheduler
selects tasks. In general, a task is selected only if if its energy require-
ment fits the current budget. By including the energy needed to write
NVM, we inform the scheduler to avoid the selection of tasks that
potentially can not complete the persist phase.

To guarantee consistency in case of power failures during NVM

write, the framework persists data with an old master — new master
technique, where the old copy is used as backup. The new value is
never overwritten on the current value, instead the write is performed
on a second memory location, and the pointer to the current value is
updated only after a successful write.

In particular, each task is associated to a NVM record, and to a global
volatile variable. The global variable is useful to reduce the impact of

5.4 memory model 83

the read phase, presented in the next Section, while the non-volatile
record is composed by the following elements:

Task ID Unique identifier of the task.

Versions array Circular array of n+ 1 cells, where n is the number of
versions for the output variable. The number of versions can be
greater than 1 if the variable is involved in an add version data
dependency, as specified in Section 5.3.

Timestamp array Circular array of n+ 1 cells, where each cell stores
a logical timestamp of the last successful write performed on
the correspondent version array cell. This timestamp is useful to
track time related constraints [G2T], as discussed in Chapter 6.

Write index Index of the cell that must be used to store the next version.
Its value starts from the first cell of the version array, and the
pointer is moved to the next cell after each write.

Given the circular structure of the versions array, the index to the old-
est version of the stored data moves as we insert new data. Therefore,
in addition to these values that are written on NVM, the framework
computes the window begin index. This value represents the index
of the oldest valid element stored in the version array. Its value is
obtained from the value of the write index. It points to the first cell
of the version array until the array is full, then it points to the next
cell with respect to the one pointed by the write index. For instance
let us suppose that the version array stores 3 values, hence its size is
4. Window begin index points to cell 0 until the fourth write. From
the fourth write on, it points to the next cell with respect to the write
index. If the write index is 2, then its value is 3, if the write index is 3,
then its value is 0, because the version array is circular.

Figure 5.8 summarizes the steps followed by the framework to per-
sist output data on behalf of tasks. In particular the persist process
never overwrites the old value, to maintain consistency in case of
power failure during the write. The update of the write index corre-
sponds with the successful execution of the whole process.

To clarify this process let us consider the following example. The
application represented in the following graph is deployed on a tran-
siently powered device.

Task 1 Task 2

Let us assume that:

• the framework is set to keep 3 versions of Task 1 output.

• for sake of simplicity we omit the update of the timestamp field.

84 enabling multitenancy

Begin

Copy task’s output value
in the corresponding

global variable

Write tasks’s output
value on NVM at

version array[write index]

Update timestamp

Move write index to next cell

End

Figure 5.8: Flowchart representing the steps followed by the runtime envi-
ronment to persist task’s output on NVM.

Figure 5.9 presents the status of Task 1 NVM data record during 8

consecutive iterations, starting from an empty version array.
This process implements a two-phase-commit like mechanism, simi-

lar to the one used in Alpaca [25]. This mechanism guarantees that the
internal state is consistent even in presence of power failures during
the write phase. In fact:

• if a power failure happens before that the output is written on
the location indexed by the write index, then NVM is unaltered;

• if a power failure happens after the write, but before the update
of the write index, then on reboot the status is as if no write
happened, and the three versions are unaltered.

5.4.2 Read Input Data

As stated before, in our solution tasks do not have direct access to NVM.
In the previous Section we discussed how the framework manages
write access to persistent memory, in this Section we present how our
proposed solution manages read access.

Let us suppose that a task τ is selected for execution. If IN(τ) is
not empty, then the system must collect all data in the set from NVM,
and provide them to τ as an input to its computation. If the incoming
dependency between τ and the producer task is not an add version
dependency, then the framework simply provides access to the current
value. Otherwise the framework must select the appropriate version

5.4 memory model 85

0

12

3 0

12

3 a 0

12

3 a b

0

12

3 a b c

0

12

3 a b c

 d

0

12

3 a e b c

 d

0

12

3 a e b f c

 d

0

12

3 a e b f c g

 d

Iteration 0 Iteration 1 Iteration 2

Iteration 4 Iteration 5 Iteration 6 Iteration 7

Iteration 3

W B B BB

B B

B B

W W

W

W

W

W

W

Figure 5.9: Example of the update of the NVM data record. This picture repre-
sents the first consecutive iterations of a Task involved in an add
version data dependency, on a system set to keep 3 consecutive
versions. W represents the write index, B is the window begin
index, while letters from a to g represent consecutive outputs of
the task.

that corresponds to the correct iteration of the producer, as presented
in Section 5.3.

As we discussed in Section 2.2, read and write accesses to NVM

are costly operations and any solution, implemented to support TPC

and guarantee forward execution, must reduce the number of these
operations to preserve energy.

Without power failures causing the lost of the volatile state, we
could simply store the output of a task in a global variable associated
to the producer task, and access this value from the consumer task.
This would prevent any access to volatile memory, reducing energy
overhead. Unfortunately this is not always the case, since power fail-
ures may occur between the execution of producer and consumer
tasks.

As discussed in Section 5.4.1, each task is associated to a global
variable stored on volatile memory. As presented in the flowchart in
Figure 5.8, the first step when persisting a task output is to copy the
value in this global variable.

Let us call power cycle the time interval between two consecutive
power failures. If the producer and the consumer tasks run within
the same power cycle, and the dependency between them does not
involve versioning, the consumer can simply access to the volatile
global variable, without any read access to NVM. Otherwise, if they
run in two different power cycles, or the consumer requires a version
different from the last one, then:

1. the requested version of the data is copied from the versions
array on NVM, to the correspondent global variable;

2. the consumer task is executed and it can access to the correct
value, reading the volatile global variable.

86 enabling multitenancy

This implies, as stated in Section 5.3 that an add version data depen-
dency adds an energy overhead, since it requires more NVM accesses,
one per version, to fetch the correct version.

This process effectively minimizes energy consumption. In fact:

• if no power failure happens between producer and consumer we
avoid any read access to NVM;

• if more than one task need the same data as an input to their
computation within a power cycle, then the value is read from
NVM only once, then it can be accessed from volatile global
variable.

As we discussed in Chapter 4, the selection of a correct activation
threshold has a relevant impact on system performance. Here we see
yet another proof of that: by selecting a threshold that corresponds
to an energy budget that fits both producer and consumer in a single
power cycle we reduce the overhead of the framework.

So far we discussed how code is structured in tasks and applications,
how developers can connect tasks by means of data dependencies and
how these dependencies can inform the framework on application con-
straints through the selection of different semantics. Dependencies can
be decorated with conditions to capture time related constraints [16].
We also presented how the framework provides managed access to
NVM.

Our programming abstraction is orthogonal to the implementation of
the dynamic scheduler. In fact, it can serve as a base to any task-based
solution in which task’s execution plan is either statically selected at
compile time, or dynamically at runtime.

In the next Chapter we introduce another core component of our
solution: the dynamic scheduler.

6
S C H E D U L I N G TA S K S

In this Chapter we present the main component of our solution: the
dynamic scheduler, but first let us revise what we introduced so far
and what is still missing. In Section 4.4 we stated that our goal is
threefold:

1. 4 propose a new programming abstraction;

2. build a dynamic scheduler, energy aware, that is able to react to
changes in the amount of available energy;

3. manage activation threshold at runtime.

In Chapter 5, we presented the three components of the program-
ming abstraction: tasks, applications and dependencies, together with
the description on how our solution manages memory to ensure
its consistency and preserve progress. We still miss scheduling and
threshold management.

In Chapter 4, we discussed the importance and the challenges of
the selection of the activation voltage threshold, understanding that
changes to this threshold affect system’s performance. In particular,
we saw that finding the right balance is not trivial, as both an increase
and a decrease of this threshold may produce positive and negative
impacts on energy efficiency and system’s performance.

As shown in Figure 4.5 in Chapter 4, a higher threshold corresponds
to a higher energy budget, since energy is directly proportional to
voltage, following this equation.

E =
1

2
CV2 (6.1)

A higher energy budget let the system run multiple tasks within
a power cycle. Let us suppose that task A and B are connected by
a simple data dependency from A to B. If the threshold is set so
that the corresponding energy allows the system to run both tasks
within the same power cycle, then, in accordance to the memory
model presented in Section 5.4, there would be no need to restore
the output of A from Non Volatile Memory (NVM), since B can read
it from volatile memory as no power failure happened after A. As
shown in Figure 4.4 in Chapter 4, this would reduce the overhead,
increasing energy efficiency.

87

88 scheduling tasks

On the other hand, as already discussed in Chapter 4, the capac-
itor charges faster when its voltage is lower, due to its non linear
charging characteristic, hence a lower threshold reduces the length
of the time intervals during which the board is inactive while accu-
mulating enough energy to reach the activation threshold. Moreover,
as already discussed, on the considered platform the MCU exhibits a
higher energy efficiency when powered with a lower voltage [1]. This
complexity, together with the unpredictability of the energy source,
makes the selection of thresholds a particularly difficult task, and
suggests that threshold management should be a refinement process
to be performed at runtime.

In Section 4.4, we argued that programmer’s ultimate goal is not
generic energy efficiency, but the satisfaction of throughput-related
requirements, which depend on specific scenarios. In other words, the
programmer’s goal is not to minimize energy consumption, but to
produce outputs, or effects on the world, with a throughput that falls
within given boundaries. Reading a sensor at a given pace, extract-
ing a feature from sensed data with a throughput compatible with
sensing rate, guaranteeing that the device can capture a change in the
world that happens at a given frequency. Once again, our ultimate
goal is not energy efficiency per se, instead efficiency is a way to mini-
mize the overhead and increase code execution to obtain the desired
throughput.

For this reason, we structured our programming abstraction so
that the developer can divide the code base in multiple applications,
allowing to assign a desired minimum throughput to capture specific
non-functional requirements. Given this structure, our scheduler tries
to satisfy these requirements at runtime, selecting the appropriate task
to run.

As we saw, performance is deeply connected with threshold manage-
ment. Hence, a scheduler interested in reaching certain performance
to satisfy throughput requirements, must be involved in threshold
selection. For this reason, in our proposed solution, threshold selection
is part of the scheduling activity.

The runtime scheduler is the main component of our solution and
its description requires an articulate discussion of several aspects,
from workload management, to task selection policies and threshold
management. Hence, to simplify the navigation of this Chapter, we
propose in the next Section an outline, while in Section 6.9 we conclude
with a final overview of all the features of the scheduler. Moreover,
the most relevant features of the scheduler, presented in the following
Sections, are highlighted with a Property box.

6.1 chapter overview 89

Property X

Example of property box, used to highlight important scheduler
properties.

6.1 chapter overview

Section 6.2: We said that our goal is to satisfy throughput require-
ments. For this reason, in Section 6.2, we start with a precise
discussion of what this means, as this goal guides the whole
scheduler definition.

Section 6.3: To simplify fulfilling throughput requirements and reduce
the scheduling overhead, in presence of unstable energy sources,
the scheduler focuses on one application at a time. Moreover,
different amounts of energy allow different workloads: a high
amount of energy buffer intuitively allows us to run more appli-
cations. For these reasons, the scheduler is able to dynamically
change the workload to adapt to different energy scenarios, as
described in Section 6.3.

Section 6.4: Given these considerations on fulfilling throughput re-
quirement, and on the ability of the scheduler to dynamically
adapt the workload, in Section 6.4 we describe the scheduler
initialization phase. We examine how the scheduler manages the
sets containing references to tasks and applications. We discuss
on the initial selection of the activation threshold.

Section 6.5: Once initialized, the scheduler starts selecting tasks for
execution. In this Section we describe how they are selected at
runtime.

Section 6.6: It may happen that applications exhibit a throughput that
is not compliant with their requests. In this Section we describe
how the scheduler reacts at runtime to these events.

Section 6.7: Long inactivity periods, caused by charging phase after
power failures, may produce a relevant decrease of application’s
throughput. The frequency of these periods is related to the
stability of the power source. Some can be characterized as fairly
stable, like those provided by solar harvester, others are more
subject to continuous drops and unpredictable stability, like
kinetic or RF sources. Since the scheduler reacts at runtime to
throughput changes, these power failure may cause a sequence
of actions that affect the overall performance of the system, as
described in Section 6.6. Knowing the supposed stability of the

90 scheduling tasks

energy source that powers the device, the developer can inform
the scheduler on this parameter to adapt its policy to the real
scenario of deployment. In this Section we describe how this can
be done.

Section 6.8: Fairness is an important concept related to scheduling
policies. In this Section we propose a discussion on fairness
indexes and how they relate to our proposed solution.

Section 6.9: Finally, we propose a complete overview on the concept
described in previous Sections.

So let us now start with our first step: a precise discussion on
applications throughput, that is the main parameter that guides the
scheduler decisions.

6.2 minimum throughput and applications priority

The minimum throughput for an application A Xmin(A)[
iterations

second] is the
minimum expected number of complete iterations over a time interval.
A complete iteration corresponds to one execution of all application’s
tasks, starting from the initial one, and in an order that is compatible
with data dependencies. As we saw in Section 5.2.2, the programmer
specifies the minimum desired throughput for each application. This
requirement must be intended as best effort, due to the nature of the
techniques to implement timing on batteryless devices [17], and the
unpredictability of energy sources.

In a scenario where multiple applications are deployed on a single
board, this parameter induces a priority of execution. In fact, if an
application has a higher requested throughput compared to the other
ones, then its tasks must be executed more often to achieve a higher
number of complete executions, hence they should be selected with a
higher priority. Moreover, by selecting minimum desired throughputs,
the developer can inform the scheduler on the relevance of the appli-
cations deployed. Let us suppose that a transiently powered device
is deployed on a road sign. This device implements three functions,
therefore three applications A,B and C:

A: takes a picture of the road, it analyzes the picture to understand
the traffic level, and it sends this data to a data sink;

B: measures PM2.5 concentration and sends the data to a data sink to
monitor pollution;

C: compresses the last road picture and sends it to the data sink.

We assume that traffic congestion changes at a higher frequency
than particulate concentration. Moreover, we suppose that sending
a picture to the data sink, even if properly compressed, consumes

6.3 dynamic workload management 91

more energy than sending a single data item. By selecting minimum
requested throughput such that Xmin(A) > Xmin(B) > Xmin(C), we
inform the scheduler that:

• application A is our main goal and should be the one with the
highest priority;

• application C implements functions that are least relevant, com-
pared to those implemented by applications A and B.

From these assumptions we derive an important property of our
runtime scheduler.

Property 1

The minimum requested throughput Xmin induces a total order
among applications, that are ordered by decreasing Xmin.
The scheduler tries to satisfy throughput’s requirements by
decreasing Xmin order: an application’s Xmin requirement is
considered only when the Xmin requirements of the applications
with a higher value are satisfied.

As we discuss in the next Sections, from Property 1 we derive
important features of our scheduling algorithm.

We will see that, to enforce Property 1, the scheduler activates
and deactivates applications execution, dynamically changing the
workload. So, let us discuss the details of this scheduler feature.

6.3 dynamic workload management

In Section 6.2 we introduced Property 1, that states that our proposed
runtime scheduler tries to satisfy throughput’s requests one applica-
tion at a time, starting from the application with the highest Xmin and
then by decreasing Xmin order.

This assumption reduces the complexity of the scheduling algorithm,
in presence of continuously changing surrounding conditions due to
the instability of power sources. Reducing the complexity, we reduce
the scheduling overhead.

To enforce Property 1, the runtime activates one application at a
time, starting from the one with the highest priority and adding a new
application only if the Xmin requirement is satisfied for all currently
active applications. In fact, each application is composed by a set of
tasks and one iteration of the application corresponds to one iteration
of all its tasks. The more applications we activate, the more tasks we
must run in order to complete the respective iterations.

Since the energy source is unpredictable, the energy intake may
change over time, resulting in a higher number of power failures and,

92 scheduling tasks

consequently, in a higher number of inactivity intervals due to the
charging phase. Moreover, the duration of these interval may change
and increase, when the harvester provides fewer energy. This may
result in the violation of Xmin request for an already active application.

Let us suppose that we have two applications A and B and that
Xmin(A) > Xmin(B), hence A has a higher priority than B. The system
is able to satisfy A’s throughput requests, therefore it activates B
and, after an initial transitory phase, both throughputs are satisfied.
Suddenly, a drop in the provided energy causes a sequence of power
failures, followed by long charging phases. This obviously impacts
both applications throughput, which we remember is the number
of iterations per second. In this case the system disables application
B, so that the global workload is reduced and the throughput of
the first application A may increase. These activation or deactivation
operations are performed iteratively one application at a time.

From these observations we derive a second property of our runtime
scheduler.

Property 2

Given a set of applications {A1, A2, . . . , An}, where Xmin(Ai) >
Xmin(Ai+1) ∀i ∈ [1;n]:

• initially only A1 is active;

• Ai+1 is activated only if the Xmin throughput request is
satisfied for each Aj with 1 6 j 6 i;

• given an active application Ai, if during system’s activity
the measured throughput of Ai is below the requested
Xmin(Ai), then the system iteratively deactivates, one at a
time, as many application Aj with i < j 6 n as needed,
until the measured throughput of Ai matches Xmin(Ai).

In Section 5.2, we said that applications are composed by tasks.
These tasks are the basic block that the developer groups in applica-
tions, in order to achieve higher-order services. Activating an applica-
tion means scheduling for execution all its tasks.

We also said that a task is characterized by its input set, which is
the set of the incoming dependencies, or, in other words, the set of
data that are needed for its execution. As shown in Figure 6.1, these
data may be produced by a task included in a different application.
Task 2, included in Application 1 needs a data produced by Task b from
Application 2 to complete its execution. This example may be generated
by a scenario where, for instance, the device is deployed in a room,
Application 1 implements a service to operate the air conditioning
system, while Application 2 measures and logs presence. Task 2 could

6.3 dynamic workload management 93

Task 1 Task 2 Task 3

Task a Task b Task c

Application 2

Application 1

Figure 6.1: In this example if we want to activate Application 1, then we
must schedule for execution all of its tasks plus Task b, even
if it comes from a different application. Task b itself has an
incoming dependency from Task a, so this second task must also
be scheduled for execution, otherwise Task b would not have all
the inputs it needs to complete and, consequently, neither Task 2.

be the decision task, that selects the command for the air conditioner,
based on the temperature coming from Task 1 and the number of
persons currently in the room, coming from Task b.

Let us suppose that we want to activate Application 1, then we must
schedule for execution all of its tasks plus Task b, even if it comes
from a different application. Task b itself has an incoming dependency
from Task a, so this second task must also be scheduled for execution,
otherwise Task b would not have all the inputs it needs to complete
and, consequently, neither Task 2. In other words, every time we
schedule for execution a task, we must travel backwards its incoming
dependencies, to ensure that all the tasks we visit are also scheduled
for execution. In the example from Figure 6.1, if we want to activate
Application 1, then, without taking in consideration the order, the set
of tasks scheduled for execution must be {Task 1, Task 2, Task a, Task
b, Task 3}.

The same goes when we deactivate an application. Its tasks must
be removed from the workload, except for those that are relevant
for other applications that are still active. Let us consider once again
Figure 6.1, and let us suppose that Application 2 was active and now
must be deactivated, while Application 1 remains active. Then we must
remove from the workload only Task c, because Task a and Task b are
still necessary to execute Application 1.

We saw that scheduler enables the execution of an application only
when the requirements of the applications with a higher priority are
satisfied. Once enabled, an application can be disabled if the requests
of the applications with higher Xmin are no longer satisfied. These
changes in workload let the runtime scheduler focus on a require-
ment at a time, simplifying its computational effort and enforcing the
aforementioned Property 1.

94 scheduling tasks

This behavior may intuitively lead to application’s starvation. In
fact, let us suppose that two applications A and B are deployed and
that Xmin(A) > Xmin(B). Following Property 1, this means that the
priority of application A is the highest, hence the scheduler will first
try to satisfy its throughput requirement, and only after B’s one. It may
happen that, due to energy source characteristic, A’s requirement can
not be satisfied, hence B is never activated, leading to its starvation.

Depending on the specific scenario this can be considered an ac-
ceptable behavior, or not. In fact, if the application with the highest
priority is by far the most relevant one, and its throughput request
must be considered stringent, than this behavior is meaningful. On the
contrary, if the scenario demands for a more fair distribution of execu-
tion time among applications, this may not be an acceptable solution.
Since this depends on the specific scenario, we implement techniques,
described in Section 6.7, to tune the willingness of the scheduler to
activate a new application, allowing premature activations of new
applications to obtain a fairer behavior.

With Property 1 we stated that the scheduler tackles one throughput
request at a time, with Property 2 we said that initially the only active
application is the one with the highest Xmin. With these considerations
in mind, let us go through the scheduler initialization stage.

6.4 scheduler initialization

The runtime scheduler maintains the following sets:

ActiveApps is a set that contains all the applications that are currently
running, sorted by decreasing Xmin order;

ActiveTasks is a set that contains all the tasks belonging to active
applications, or needed to satisfy the dependency of a task of an
active application.

EnabledTasks is a set that contains all the task from ActiveTasks whose
dependencies are satisfied and, therefore, can be executed.

As already discussed in Section 5.3, a dependency spanning between
two tasks from τ1 to τ2, is satisfied when τ1 successfully completes,
and τ2 can use its output according to the semantics of the specific
dependency. The difference between active and enabled tasks is that the
first may have unsatisfied incoming dependencies, while the second
can be actually executed because all their incoming dependencies are
satisfied.

As presented by Algorithm 6.1, the initialization of the scheduler
begins with the activation of the application with the highest Xmin. All
its tasks are activated, together with those that are in their input set,
but belong to other applications.

6.4 scheduler initialization 95

Algorithm 6.1. Activation of the first application

Global Variables:
• A: {a1;a2; . . . ;an} Set of deployed applications sorted in decreasing requested

throughput order (a1.Xmin > a2.Xmin > · · · > an.Xmin).
• ActiveApps: Set of running applications.
• ActiveTasks: Set of tasks to be scheduled.
• EnabledTasks: Set of active tasks with satisfied incoming dependencies.

Body:

1 ActiveTasks = {}
2 ActiveApps = {}
3 ActiveApps = ActiveApps ∪ {a1}

4 ActiveTasks = ActiveTasks ∪ a1.tasks
5 do
6 NewTasks = {}
7 for all τ ∈ ActiveTasks do
8 NewTasks = NewTasks ∪ (τ.InSet \ ActiveTasks)

9 ActiveTasks = ActiveTasks ∪ NewTasks
10 while NewTasks 6= ∅
11 for all τ ∈ ActiveTasks do
12 if τ.Inset = ∅ then
13 EnabledTasks = EnabledTasks ∪ {τ}

As we stated in the introduction to this Chapter, the scheduler is
also responsible for the selection and refinement of the activation
threshold. Therefore, after this setup, the scheduler must set the initial
voltage threshold.

Let us revise all the observations made so far on threshold manage-
ment, to understand how to select its initial value.

• TI MSP430 MCU exhibits a higher energy efficiency at lower
voltages [1];

• capacitors charging speed decreases as they accumulate energy,
due to their characteristic therefore a lower threshold results in
a shorter inactivity interval needed to reach that threshold;

• a higher voltage threshold corresponds to a higher energy buffer,
allowing us to fit more tasks within a power cycle, and therefore
to reduce NVM read accesses according to Section 5.4;

• the complexity of voltage threshold selection demands for an
iterative process that refines the value at runtime, as discussed
in Section 4.2.

Given these observations, we apply a conservative approach to
select the initial threshold. We select the lowest possible value to
maximize the instruction speed, reduce the interval needed to reach
the threshold, and start the first execution as soon as possible. Another
component of the scheduler, described in the following Sections, is in
charge of successive refinements.

96 scheduling tasks

Algorithm 6.2. Voltage threshold initialization

Global Variables:
• ActiveTasks: Set of tasks to be scheduled. requested throughput order.

Global Constants:
• Es: Average energy consumption of a one scheduler iteration execution;
• Er: Energy needed to copy a word from NVM to stack.

Body:

1 for all τ ∈ ActiveTasks do
2 prediction = τ.Ewc + Er × τ.WC
3 EnergyPredictions = EnergyPredictions ∪ prediction

4 setTreshold(max(EnergyPredictions) + Es)

This threshold is selected in order to fit the active task with the
highest energy consumption Ewc, that, as stated in Section 5.2.1, is a
parameter provided as an input to the framework, specified for every
task.

Let us consider two generic tasks connected by a data dependency
spanning from the producer τp to the consumer τc. In accordance
with the memory model, presented in Section 5.4, without any power
failure between the two tasks, τc can read the data produced by τp
from the volatile memory. Otherwise, if a power failure happens, the
runtime must access NVM to read τp data and offer them to τc. When
selecting the threshold we must account for this second worst-case
scenario. Therefore, when we compute the energy consumption for a
generic task, we must add to Ewc the overhead needed to potentially
restore input data from NVM to main memory.

In conclusion, the predicted energy consumption Ep(τ) for each
task τ is computed as follows:

Ep(τ) = Ewc(τ) + Er ×WC(τ) (6.2)

Where Er is the energy consumed to read one word from NVM, and
WC(τ) is the words count of the input set for task τ.

Finally, the threshold value must also take into account the overhead
Es introduced on average by the scheduler at each task execution. This
value can be affected by the number of tasks and applications that are
deployed, therefore it should be obtained through empirical experi-
ments. Algorithm 6.2 summarizes the selection of the initialization
threshold.

Now the scheduler initial setup is complete and the execution can
start. As stated before, the scheduler starts by executing the first
application, trying to satisfy its minimum requested throughput.

We still miss some features, though. We still do not know how the
scheduler selects at runtime which task to execute from the set of
enabled tasks. Moreover, in Section 6.3, we said that the scheduler dy-
namically changes the workload. It activates a new applications when

6.5 task selection and deadlines management 97

all the active applications throughputs are satisfied, and it deactivates
the last added application, if any of the currently running application
is under performing. But let us suppose that we have two applications
A and B currently active, with A on pace with its throughput requests,
while B is under-performing. We do not have any application that can
be deactivated to reduce the workload, and we still miss a way to deal
with this event. The same goes for a system where there is just one
currently active application that is under performing.

In Section 6.5, we describe how the scheduler selects which task
to run among the enabled ones, while in Section 6.6 we present how
the runtime scheduler reacts to under-performing or over-performing
applications.

6.5 task selection and deadlines management

After the initial setup, we have:

• one active application: the one with the highest Xmin;

• all its tasks in the active tasks set, plus all those in their input
sets;

• all the active tasks without incoming dependencies in the en-
abled set.

Since our main goal is the satisfaction of throughput requirements,
we need to know the execution time of an application iteration, so that
we can check if this requirement is satisfied or not. In particular, based
on the minimum throughput requirement Xmin iterations per seconds,
we can say that if the application executes an iteration within 1/Xmin

seconds, then on average the throughput requirement is satisfied. So
we can say that the deadline for an application with Xmin minimum
throughput requirement is 1/Xmin.

We also need a way to prioritize the selection of tasks belonging to
applications that are closer to their deadline. If we have this informa-
tion, our scheduler can select tasks based on how close to the deadline
is the application that contains them.

Let us imagine an application composed by two tasks: τ1 and τ2
connected by a simple data dependencies from τ1 to τ2. Let us imagine
that they are grouped in an application with Xmin = 1/6 iteration
per seconds. This means that the deadline for one iteration of the
application is 6 seconds.

We need a way to propagate this information along the sequence
of tasks executions. To do that, we can start by associating the first
task of the application with this value, so we associate τ1 with the
application deadline value of 6 seconds. This means that, currently,
the task is part of an application iteration that must be completed
within 6 seconds. This value does not represent the deadline for the

98 scheduling tasks

time0 2 4 6 8 10 12 14 161 3 5 7 9 11 13 15

Enabled tasks
Deadline

for the first iteration of
the application

Deadline
for the second iteration of

the applicationTask τ1

Task τ1

time0 2 4 6 8 10 12 14 161 3 5 7 9 11 13 15

Deadline
for the first iteration of

the application

Time units to the deadline
for the second iteration, after

the first execution of τ1

Deadline
for the second iteration of

the application

Task τ1 {
Figure 6.2: Example of deadline update after the execution of a task.

execution of the specific task, but for the current iteration of the entire
application that contains the task.

Let us suppose that τ1 completes after 3 seconds. Given the depen-
dency, its execution enables τ2. Now we have two enabled tasks: we
can execute τ2 as a second step of the first iteration of the application,
or we can start a new iteration by executing τ1 again. In fact, we
remind that, unless a particular data dependency pattern prevents it,
the runtime can decide to start a new iteration before that the current
one completes. For instance, this can happen in case the next task of
the current iteration does not fit the energy budget, but the first task
of the next iteration does.

So, we need a mechanism to:

• reset the application’s deadline value associated to τ1, after it
completes.

• associate a value to τ2 at the end of τ1 execution.

As shown in Figure 6.2, since τ1 took 3 seconds to complete, then
the first iteration of the application now has 3 seconds left before its
deadline. Moreover, since the throughput requirement imposes one
iteration every 6 seconds, we now have 9 seconds to complete the
second iteration of the application. Therefore, we can reset the value
associated to τ1 to 9 seconds, and associate 3 seconds to τ2. In fact:

• a new execution of τ1, now would be part of the second iteration
of the application, that must complete within 9 seconds;

• an execution of τ2 is part of the first iteration of the application
that must complete within 3 seconds.

6.5 task selection and deadlines management 99

The scheduler can select earliest deadline first, taking into considera-
tion these values. In our example, this would result in the selection
of τ2.

Let us suppose that τ2 completes in 2 seconds. By subtracting this
execution time to its associated value of 3 seconds, we know, at the
end of the first iteration of the application, that the iteration completed
1 second ahead of its deadline, therefore the requirement is satisfied,
and the application is currently running ahead of its deadline.

In practice, we can obtain the aforementioned behavior with the
steps described in the following property.

Property 3

The initial tasks are associated to the application deadline, which
is 1/Xmin. Then, after each execution, deadlines are updated as
follows:

1. on task completion, the application deadline is propagated
to the newly enabled tasks;

2. the deadline for the initial task is reset to twice the initial
value;

3. every time a task completes, its execution time is sub-
tracted to all the deadlines.

Moreover, on restore after a power failure, the TARDIS [17] time
is subtracted to all the deadlines.

Figure 6.3 summarizes these steps using the previous example with
tasks τ1 and τ2.

As we mentioned in Chapter 5, a task can be part of more than one
application, because its function may be relevant to more than one
service. In that case, the initial application deadline for enabled tasks
is set to the minimum value among the deadlines of the applications
that include them.

Task selection is summarized by the following property.

Property 4

Each task is associated to an application deadline. The scheduler
selects and executes one task at a time by earliest deadline first.
The selected task is the one with the lowest deadline, whose en-
ergy consumption prediction Ep fits the current energy budget.
If none of the enabled tasks fits the current energy budget, then
the device enters low power mode until the current activation
threshold is reached.

100 scheduling tasks

Task τ1 Task τ2

Application
Xmin = 1/6

Initialization

τ1 executed
in 3 time units

Power failure
OFF for 1 time unit

τ2 executed
in 2 time units

…

Enabled tasks

τ1 - Deadline = 6

Enabled tasks

τ1 - Deadline = 9
τ2- Deadline = 3

Enabled tasks

τ1 - Deadline = 8
τ2 - Deadline = 2

Enabled tasks

τ1 - Deadline = 6
τ2 - Deadline = 7

Events Content of
Enabled Tasks set

Operations to
manage deadlines

The deadline for τ1 isrestored to twice
its initial value (12)

The application deadline is propagated
from τ1 to τ2 (6)

τ1 execution time (3) is
subtracted to all deadlines

2

Initialize τ1 deadline to
1/Xmin (6)1

TARDIS time (1) is subtracted
to all deadlines1

The deadline for τ2 is
restored to τ1 second-last value (9)1

1

τ2 execution time (2)
is subtracted to all deadlines2

3

Figure 6.3: Example showing how deadlines are updated in accordance
with Property 3

After each execution some tasks may become enabled, as the exe-
cuted task produced some data that satisfies their dependency. For
instance, in the previous example τ1 enables τ2. It is important to
notice that set of enabled tasks does not necessarily increase its length,
but may also shrink after the execution of a task.

Let us consider the configuration shown in Figure 6.4. Task a and
Task b are connected by an at-most-one-write dependency, while Task b
and Task c are connected by an at-most-one-read dependency.

Initially the set of enabled tasks is {Task a}. After Task a execution
the set becomes {Task b}, since Task a can not be executed until Task b
completes due to the semantic of the dependency. After the execution
of Task b the set becomes {Task a; Task c}.

6.6 react to throughput’s drifts 101

Task a Task b Task c

Application 1

Figure 6.4: Example of an application with data dependencies that cause
the shrinking of the enabled tasks set after a task execution. For
instance the at-most-one-write dependency between Task a and
Task b, forces the removal of Task a from the enabled set after its
execution. Task a is enabled again after the completion of Task b,
in accordance with the dependency semantic.

In fact:

• Task a can be executed because Task b consumed its previous
output;

• Task b can not be executed because its previous execution con-
sumed Task a output;

• Task c can be executed because Task b completed.

If Task c is executed next, the set becomes {Task a}, because the depen-
dency between Task b and Task c does not allow multiple reads of the
same data.

In the next Section we examine how the runtime scheduler deals
with under-performing and over-performing applications.

6.6 react to throughput’s drifts

As we saw in Section 6.5, the runtime scheduler manages tasks dead-
lines with an algorithm that allows to know if an application is run-
ning on pace, or if its execution rate is below or over the requested
minimum throughput Xmin.

In this Section we present the techniques to deal with drifts in
application’s throughput.

In Property 1 and Property 2, we said that applications are sorted
by increasing Xmin, and that this value induces a priority: the higher
is the requested throughput, the higher is the priority. Moreover, after
the initialization, only the application with the highest priority is
active. Finally, the scheduler considers one application requirement at
a time, activating a new application only if all those that are currently
active are on pace.

To deal with mismatches between desired and measured through-
puts, we introduce a variable called slack for each active application.
This variable persists across power failures and stores the advance or
delay in application’s execution. To compute the slack of an applica-

102 scheduling tasks

tion we take the deadline of the final task before its execution and we
subtract its execution time.

In the example in Figure 6.3 the slack is 0, since the deadline of the
final task Task b, before its execution is 2 and its execution time is 2.
The value of the slack accounts also for the inactivity time, since, as
described in Section 6.5, their duration is subtracted to tasks deadlines
and it propagates through the deadline’s update process.

Imagine that an application has a requested throughput of 2 itera-
tions per second. Assuming that all the iterations take the same time,
this means that each iteration must complete within half a second,
hence the deadline for the application is 0.5s. If the iteration took 0.2s,
then, in absence of other applications or power failures, two complete
iterations would require 0.4s, corresponding to a throughput of 2.5 it-
erations per second, which is higher than the request. This means that
we can use the slack time of 0.3s for other workload for each iteration,
potentially without affecting the throughput of the first application.

If the same application runs in 0.8s, then two iterations would
require 1.6s resulting in 0.625 iterations per second, which is below
the request. In this case we would have a negative slack of −0.3s for
each iteration.

A positive slack means that the application is running ahead of its
deadline, hence it would complete more iterations per second, than
those requested by Xmin. A negative slack corresponds to a delay in
application’s execution.

The value is cumulative, as the slack value computed at the end
of the iteration number i of application A is summed to the value
computed at the end of the iteration number (i − 1) of the same
application. This means that, if in our previous example the application
has a slack value of 0.3s after the first iteration, and during the second
iteration it finishes 0.2s earlier, then the slack after this second iteration
is 0.5s. On the other hand if the application accumulates a delay of
−0.3s after the second iteration, then the slack after this iteration
would be −0.1s.

Let us call Di the deadline of the final task before its execution
during iteration i, and Ti the execution time of this final task during
iteration i. Then, given what we said so far, the slack after iteration i
is computed as follows.

slacki = slacki−1 + (Di − Ti) (6.3)

As we said, a positive slack value accounts for the time that we
can spend to run other applications, without violating the requested
throughput of the ones with higher Xmin. Let us consider Figure 6.5
and let us suppose that the set of active applications, sorted by decreas-
ing Xmin is {A1;A2;A3}. Then, slack(A1) is the time we can spend to
run A2 and A3 without violating Xmin(A1), while slack(A2) is the

6.6 react to throughput’s drifts 103

time
Application A1

Application A2

Application A3

Next A1

Next A2

Next A3

slack(A1)

slack(A2)

slack(A3)

Figure 6.5: Example of slack time computation.

time we can spend to run A3 without violating both Xmin(A2) and
Xmin(A1).

Let us suppose that the slack value of A2 is greater than the one of
A1. In this case, if we use all A2 slack to execute A3, and then we go
back to execute A1, we would miss A1’s deadline. In fact, the slack
of A1 is the maximum amount of time that we can spend to execute
other applications without violating its throughput request. If A2 slack
time is greater, and we use it all to execute other applications, then we
would go back to A1 in a time greater than the slack of A1, violating
the constraint.

Hence, the slack for an application Ai, except for the initial one A1,
cannot exceed the slack value of all the applications Aj with j < i.
Therefore the slack is computed following this equation.

slack(Ai) = min{slack(Ai); slack(Ai−1)} ∀ i > 1 (6.4)

Let us now examine how the scheduler deals with over-performing
applications, or, in other words, with positive slack values.

6.6.1 Managing Over-Performing Applications

Let us consider, once again the example in Figure 6.5 where three ap-
plications A1, A2 and A3 are deployed on the device, with Xmin(A1) >

Xmin(A2) > Xmin(A3). The scheduler knows that A1 must be executed
every 1/Xmin(A1) time units, hence, at the end of the execution of
A1 it knows how much time can be used to run other applications:
the slack time. Within this slack time it starts executing the second
application A2. The same happens for the execution of A3.

In the same example, let us consider the case in which only A1 is
currently active. At the end of its execution the scheduler checks the
application’s throughput and computes its slack. If it is positive the
scheduler can start A2 execution as before, but before that it must

104 scheduling tasks

activate the application. The activation of an application follows the
same procedure to activate the initial one, described in Algorithm 6.1.
Once the new application is active, the scheduler must also update the
activation threshold, as described in Algorithm 6.2, since it may hap-
pen that a task included in the newly activated application demands
for a higher energy budget.

Within the slack time, the scheduler starts selecting enabled tasks
from the next application. Once the slack time is finished, the execution
goes back to the previous application.

Property 5

A positive slack allows us to run the next application in decreas-
ing Xmin order.
Each application, except the first one, recursively run entirely
within the slack of the previous one.

It may happen that during the execution a sudden drop in har-
vested energy causes several power failures, negatively affecting the
throughput of the applications. In the next Section we describe how
the runtime scheduler deals with under-performing applications.

6.6.2 Managing Under-Performing Applications

Once again, let us consider the usual scenario with three applications
A1, A2 and A3, where Xmin(A1) > Xmin(A2) > Xmin(A3), all active.

Let us suppose that, at the end of A1 execution, its performance is
checked and it results that the application is under-performing: its
measured throughput is below the requests, hence its slack time is
negative.

In accordance with Property 2, the first technique to address this
issue is to decrease the number of running applications, since appar-
ently the system, under the current energy conditions, can not deal
with the current number of applications. The system deactivates one
application at a time, starting from the last one. So, in our example
it deactivates application A3, removing all its tasks from the active
tasks set. After the deactivation, the voltage threshold is updated to
fit the current set of active tasks. In fact, the threshold is set to fit the
task with the highest energy demand and, by removing some of them,
this value may decrease. Now the system can proceed with just two
active applications: A1 and A2. If A1 can not satisfy the requirements,
even after the deactivation of A3, A2 is deactivated too. The system
deactivates just one application at a time, and proceeds with the next
deactivation only if the performance requirements are still violated.

6.6 react to throughput’s drifts 105

This behavior is justified by the intent not to perturbate too abruptly,
especially given the unpredictable nature of the power source.

Let us now suppose that, after the deactivation of A3, the perfor-
mance of A1 is still below the request, and that even the deactivation
of another application (A2) does not solve the issue. A1 is the only
active application, so we must implement a different technique to deal
with its under-performance.

We remember, from Figure 4.4 in Chapter 4, that by increasing the
activation threshold, we increase the number of tasks that can run
within a power cycle. As described in Section 5.4, when two tasks with
a producer-consumer dependency among them run within the same
power cycle, the consumer can access producer’s output by avoiding
costly read access to NVM.

From these observation we derive the second way to deal with under-
performing applications. We can try to increase A1 performance by
increasing the activation threshold, in order to minimize NVM read
accesses. Of course, this increase must be iterative, since we must
find the correct balance between the pros and cons of increasing the
activation threshold, as described in Chapter 4.

Let us now review how and when the system changes the activation
threshold.

• The voltage threshold is set during the initialization phase, to
match the request of the tasks in A1, as described in Section 6.4;

• the threshold is potentially increased any time a new application
is activated, in order to match the demands of the newly added
tasks;

• the threshold is potentially decreased any time an application is
deactivated, in order to exactly fit the reduced set of tasks;

• the threshold is iteratively increased when an application is
under-performing and there are no other applications that can
be deactivated.

There are no guarantees that the throughput requirement can be
satisfied just by increasing the threshold, since the voltage is bounded
by the maximum value supported by the capacitor. If this upper
bound is reached and the application is still under-performing, our
system does not have any other resource to improve the situation. The
developer can either replace the capacitor with one that supports a
higher energy buffer, or recalibrate the throughput requirements.

We can summarize the technique implemented to manage under-
performing applications with the following property.

106 scheduling tasks

Property 6

Given a set of applications {A1, A2, . . . , An}, where Xmin(Ai) >
Xmin(Ai+1) ∀i ∈ [1;n], when an application Aj measured
throughput is lower than Xmin(Aj):

• if j < n the system deactivates An, applications are deacti-
vated one at a time to avoid abrupt perturbations of the
system;

• if j = n the system increases iteratively the activation
threshold until, either the performance are satisfied, or the
maximum value for the considered capacitor is reached.

Running an application with a pace equal to the application pe-
riod, does not necessarily guarantee the fulfillment of the throughput
requirement. In fact our energy consumption prediction may be inac-
curate, or the harvester may be unable to provide enough energy, and
power failures may severely affect the throughput. For these reasons
we introduced the slack variable, that accounts for a cumulative mea-
surement of the advance or delay in application’s execution, including
those caused by power failures.

Long off time intervals though, may decrease a negative slack up
to a point where the budget earned by running an application faster
than its period, can no longer cope with the accumulated delay.

Due to this delay caused by the inactivity, it may happen that an
application is locally running with the requested throughput, while
globally it is under-performing. Therefore secondary applications are
never scheduled, leading to their starvation.

To deal with this issue, we introduce a parameter called Γ , described
in the next Section.

6.7 the Γ parameter

As already discussed, different energy sources have different profiles:
some can be characterized as fairly stable, like those provided by
solar radiation, some others are more subject to continuous drops and
unpredictable stability, like kinetic or RF sources.

Different sources demand different importance to the old slack
value, when computing the new one: an inactivity interval, when
powered by a solar source, can be viewed as an isolated event and
a second drop is not likely to happen in the near future; we can not
make the same assumption with an RF source, where power failures
are more likely and unpredictable.

6.8 scheduler fairness 107

Suppose that we are running powered by a solar harvester and that
we experience an unexpected drop in provided energy that causes a
long inactivity interval. The length of this inactivity interval consis-
tently increases our delay; after the power failure the board switches
on again and keeps running stably, given the nature of the solar source.
The main application is executing ahead of its deadline, increasing the
slack iteration after iteration, but, due to the length of the off time, the
slack stays negative. Speculating on the stability of the energy source,
we can safely assume that the slack will be back to a positive value in
the future, still, depending on the duration of the off period, it may
take a long time. We can speed up the process of increasing the slack
back to a positive value, by modifying slack computation showed in
Equation 6.3. We introduce a parameter Γ ∈ [0; 1]. This parameter is
an intuitive measure of the source instability: a higher Γ factor means
that the source provided energy oscillates at a high frequency, a lower
Γ factor corresponds to a source that is less prone to sudden drops.

Given this factor, in Equation 6.5, we propose an updated version
of Equation 6.3 to compute the slack. The slack after iteration i is
computed as follows.

slacki = Γ × slacki−1 + (Di − Ti) (6.5)

A low Γ promotes multi tenancy, since it is easier for an application
to accumulate slack time, a high Γ maximizes the throughput of the
main application, but can lead to starvation of secondary applications.

We said that a lower Γ promotes the activation of new applications
and reduces the chances of starvation. In Chapter 8, we propose an
evaluation of how the selection of Γ impacts the so called fairness of
our scheduler.

So, let us now introduce formally this concept of fairness in the next
Section.

6.8 scheduler fairness

The essence of a scheduler is to allocate, with a given logic, a scarse
resource. On intermittently powered devices such scarse resource
are the clock cycles available for computation before the next power
failure.

Thanks to the Γ factor described in Section 6.7 we can modify the
scheduling policy:

• by increasing Γ we increase the time needed to overcome a possi-
ble delay in application execution, this would limit the activation
of other applications, hence maximizing the throughput of the
active ones;

108 scheduling tasks

• by decreasing Γ we reduce the time needed to overcome a possi-
ble delay in application execution, this promotes application’s
activations, obtaining more balanced throughput among them.

The two aforementioned diverging directions, affect the so called
scheduler fairness: a measure of the compliance of the obtained alloca-
tion to a given optimal resources sharing.

In our scenario, we have the highest fairness when each application
receives a share of the total available clock cycles that is proportional
to its minimum requested throughput: if the first application should
reach a minimum throughput two times higher than the second, then
it should receive two times the clock cycles of the other one.

Different fairness indexes have been proposed in literature, for
instance: mean and variance; coefficient of variation; Min-Max ra-
tio; normalized distance from optimal; Jain Index. Among those, we
selected Jain Index proposed by Jain et al. [19], due its intuitive relation-
ship with user perception, and the fact that the output is a continuous
number between 0 and 1, that can easily be seen as a percentage: if
y% of the applications are treated fairly and (100− y)% are treated
unfairly, then the fairness index is y%.

Let us consider the following variables:

• Tpi is the measured average throughput for application i;

• Oi is the optimal average throughput that can be obtained by
the fairest allocation described before;

• xi is TpiOi

• n is the number of applications.

Then the index is computed with the following equation:

Fairness Index =
(
∑
xi)
2

n
∑
xi2

(6.6)

On batteryless devices we may not want to maximize the fairness,
instead we may try to maximize the throughput of one specific ap-
plication, that in our system we assume is the one with the highest
Xmin, potentially starving the others. The Γ factor offers a knob to the
developer to decide whether to lean toward fairness, or the maximiza-
tion of the throughput for the application with the highest minimum
throughput request. In Chapter 8 we show an empirical evaluation on
the interaction between Γ and fairness.

We have now completed the description of the runtime scheduler.
In the next Section we propose an overview of the concepts described
so far.

6.9 complete overview 109

Task 1 Task 2 Task 3

Task a Task b Task c

Application A2

Application A1

Figure 6.6: Applications DAG for scheduler final overview. Xmin(A1) = 5,
Xmin(A2) = 2

6.9 complete overview

In light of all the concept and property described so far we propose a
final overview on the runtime scheduler.

In this overview let us consider two applications A1 and A2. With
Xmin(A1) = 5 and Xmin(A2) = 2 iterations per second. The applications
are composed as shown in Figure 6.6.

Applications are sorted by decreasing minimum requested through-
put Xmin, so the sorted set of applications is {A1;A2}. The scheduler
tries to satisfy the throughput requests one application at a time,
starting from the one with the highest demand: A1.

Applications can be active or deactivated. Initially this first ap-
plication in Xmin order is the only one active, while the others are
deactivated. Therefore, the initial set of active applications is {A1}. The
scheduler activates one application at a time, when all the requests
of the previous ones are satisfied. In our example A2 is activated
only once A1 request is satisfied. Activating an application means to
schedule for execution all its tasks.

Tasks can be non-active, active or active and enabled. Tasks be-
longing to deactivated applications are non-active. Tasks belonging to
active applications are active. An active task is also enabled when all
its incoming dependencies are satisfied. Every time a task becomes
active all the tasks in its IN set must be activated too, even if they are
included in different applications, since they produce data relevant
for its execution. In our example, at startup the set of active tasks is
composed by all tasks from application A1, plus Task a, that produces
data relevant also for Task 2. When A2 is active too, the data produced
by Task a can be used by both Task 2 and Task b.

The set of enabled tasks is initially composed by all the active
tasks with no incoming dependencies, in our example this set is
{Task 1; Task a}. The execution of an enabled task may enable other
tasks as it may satisfy their dependencies, for instance the execution
of Task 1 enables Task 2.

110 scheduling tasks

Each active task has a deadline. At startup the deadline for en-
abled tasks is set to set to 1/Xmin, therefore in our example the initial
deadline for Task 1 is 0.2s. The same deadline is set also for Task a,
since it initially contributes to A1 execution. Deadlines are updated as
described in Section 6.5. In particular inactivity times are subtracted
to all deadlines on wakeup.

The runtime scheduler starts executing enabled tasks one at a time,
selecting earliest deadline first. Once again we remember that the set
of enabled tasks changes during the execution, for instance initially
this set is {Task 1; Task a}, after the execution of Task 1 and Task a, the
set is {Task 1; Task a; Task 2}, after the execution of Task 2 the set is
{Task 1; Task a; Task 2; Task 3}.

The deadline update process propagates the partial execution time
and inactivity times along the application task graph, so that it is
possible to compute the complete execution time of the application,
once its final task is executed.

Let us suppose that A1 completes in 0.1s, hence 0.1s earlier than its
deadline. If the application completed earlier, it means that is running
ahead of its pace and that it would exhibit a throughput higher than
the requested one. The difference between this execution time and the
application deadline, that is 1/Xmin, accounts for the advance or delay
in application execution, and is called slack.

If an application keeps completing earlier than its deadline its slack
increases, while any delay decreases this value. If the slack is positive,
it means that the application is over-performing and new applications
can be activated and executed. To maintain the performance of the
already running ones, each new application must run within the slack
value of the previous ones.

Every time a task is selected, the runtime scheduler checks if the
energy requested for its execution is lower or equal to the current
energy budget. If the energy requirement exceeds the budget, the task
is skipped and the next one is selected. If no task matches the budget,
then the scheduler puts the board to sleep mode until the activation
threshold is reached.

As described in Section 6.6.2 the scheduler reacts to drops of ap-
plication throughputs by reducing the set of active applications, or
by increasing the activation threshold. If the throughput of A1 drops
below the request while both applications are active, then A2 is de-
activated. If the throughput of A1 drops below the request and A1
is the only active application, then the activation threshold is itera-
tively increased until either the throughput is correct, or the threshold
reaches its maximum value. The activation threshold is increased also
if the activation of an application adds to the active task set a task
whose energy budget is higher than the one of the currently active
tasks. The threshold is decreased if the task with the highest energy

6.9 complete overview 111

demand is removed from the active task set, due to the deactivation
of an application.

The slack of an application accounts for the delays or advances
in its execution time. A long inactivity caused by a power failure
may produce a long delay and a negative slack with a high absolute
value. The slack can increase back to a positive value, by iteratively
accumulating advances in execution. If the delay is high, then it may
stay negative for a long time, starving secondary applications. To
mitigate this effect, the developer can reduce the importance of old
delay by setting a discount parameter between 0 and 1, called Γ .

This concludes our description of the proposed dynamic scheduler.
In the next Chapter we present some details on the implementation of
our solution.

7
I M P L E M E N TAT I O N

In this Chapter we present the implementation of our proposed so-
lution. As shown in Figure 7.1 the system relies on a preprocessor
that takes as input the description of the application’s layout and
tasks parameters described in Section 5.2.1. Given these inputs, the
preprocessor produces two outputs: a custom include file and the
main C firmware code. The .h include file contains a set of macros for
task’s code, while the main firmware code implements the scheduler.

The overall philosophy that justifies this structure is to reduce as
much as possible the complexity of the runtime code, to reduce the
scheduler overhead.

The main firmware code that implements the scheduler, is gener-
ated automatically based on the specific scenario. For this reason, we
can avoid the execution of computationally intensive instruction at
runtime, like those that involve graph traversal.

For instance, as stated in Section 6.3, when an application is acti-
vated, we must traverse the task’s graph to activate all the tasks from
other applications that are relevant for its execution. This set of tasks
does not change at runtime, as the graph is fixed at compile time.
Hence, the computation of this set is performed by the preprocessor,
that generates specific C code to perform the activation.

The preprocessor is implemented as a Python code that parses the
input files, rebuilds the DAG associated to the deployed scenario, and
based on a set of C templates builds the aforementioned outputs.

Task’s functions can be implemented as standard C functions, by
simply including the macros produced by the preprocessor. The only
restrictions are those connected with NVM access, as stated in Sec-
tion 5.4.

The set of .h include file and .c tasks code and main firmware
can be compiled with the standard TIMSP430 compiler without any
additional requirement.

The preprocessor can produce a test and debug version of the
aforementioned files. This version contains a set of debug instructions
that interface with the SIREN cycle accurate simulator, developed
by Furlong et al. [11], that we extended to increase its features and
improve the support to our solution. The extensions to this simulator
are described in Chapter 8.

113

114 implementation

In Section 7.1 we specify how to describe tasks; in Section 7.2
we present how to map applications DAG to the definition file; in
Section 7.3 we describe how to structure task’s code; in Section 7.4 we
describe the implementation of the scheduler.

YAML

CC.c

Preprocessor

MSP430
Compiler.h

Application
definitions

YAML

Tasks
parameters

Tasks
code

Custom
include file

.c

Main
firmware code

Figure 7.1: Overview of the structure of the proposed solution. The prepro-
cessor builds a custom set of macros and a main firmware code,
based on the description of the applications.

7.1 define tasks

The developer provides tasks parameters by means of a configura-
tion YAML file. These parameters derive from the description of tasks
presented in Section 5.2.1.

In particular the developer must specify for each task:

• a unique task identifier id;

• a set of input dependencies in_set;

• a reference to its output variable output;

• its predicted worst case energy consumption e_wc.

Here we present the description of each parameter. Listing 7.1
presents a complete example of a YAML configuration file for the
tasks shown in Figure 7.2.

7.1 define tasks 115

Listing 7.1: Example of tasks YAML file for DAG in Figure 7.2

1 TASKS:

2 - id: task_a

3 in_set:

4 - task_id: task_b

5 dependency_type: 1r

6 output:

7 name: a_output

8 type: int

9 e_wc: 81

10 - id: task_b

11 in_set: []

12 output:

13 name: b_output

14 type: float

15 e_wc: 33

16 - id: task_c

17 in_set:

18 - task_id: task_a

19 dependency_type: simple

20 - task_id: task_b

21 dependency_type: 1w

22 output:

23 name: c_output

24 type: int*
25 e_wc: 51

26 - id: task_d

27 in_set:

28 - task_id: task_c

29 dependency_type: simple

30 output:

31 name: d_output

32 type: int

33 e_wc: 16

116 implementation

Task a

Task b Task c Task d

Application 1

Figure 7.2: Application layout for YAML example in Listing 7.1

id

Unique id for the task, it must correspond to the name of the
function that implements the task.

in_set

Sequence of incoming dependencies. The sequence can be empty
in case the task has no incoming dependency. Each element of
this sequence is structured as follows.

task_id Unique id of the task that produces the input data. It
must correspond to the id field of a task included in the
same YAML.

dependency_type Name of the dependency type selected among
those described in Section 5.3, represented by the follow-
ing strings:

simple simple data dependency;

1r at most one read data dependency;

1w at most one write data dependency;

qN add version data dependency, where N is the number
of versions that must be stored;

wN window data dependency, where N is the number of
elements in the sliding window.

7.2 define applications 117

output

Identifier and type of task’s output. As described in Section 5.4.1
this value is persisted on NVM by the framework, and will
be offered as an input to all the tasks connected by a data
dependency. This field has two key-value pairs:

name identifier of the output variable, it must match the identi-
fier of a variable declared in task code;

type output variable type, it must match the type of the variable
whose identifier is specified in the name field.

e_wc

Worst case energy consumption prediction in µJ.

The developer provides a second YAML file containing the definition
of applications, described in the following Section.

7.2 define applications

The developer provides a representation of the applications DAG, by
means of a YAML file. Each application is also decorated with the
corresponding parameters, as presented in Section 5.2.2.

In the rest of this Section we provide the description of each YAML
field, while Listing 7.2 presents a complete example of the YAML file
representing the applications shown in Figure 7.3.

id

Unique id of the application.

tasks

Set of the unique identifiers of the tasks included in the ap-
plication. They must match one of the identifiers for the tasks
described in tasks YAML.

118 implementation

Task 2 Task 3

Task a Task b Task c

Application 2

Application 1

Figure 7.3: Applications layout for YAML example in Listing 7.2

Listing 7.2: Example of applications YAML file for DAG in Figure 7.3

1 APPLICATIONS:

2 - id: app_1

3 tasks: [task_b, task_2, task_3]

4 initial_task: task_b

5 final_task: task_3

6 x_min: 5

7 - id: app_2

8 tasks: [task_a, task_b, task_c]

9 initial_task: task_a

10 final_task: task_c

11 x_min: 2

initial_task

Unique identifier of the application’s initial task. It must match
one of the identifiers in tasks set.

final_task

Unique identifier of the application’s final task. It must match
one of the identifiers in tasks set.

x_min

Desired minimum throughput Xmin for the application, in terms
of iterations per second.

This configuration file concludes the set of inputs for the prepro-
cessor, thanks to these informations the preprocessor builds a set of
macros and the scheduler firmware. In the next Section we present
the set of macros that allows the definition of tasks code.

7.3 creating a task 119

BEGIN_task_a
 int a_output;
 a_output = task_b + 2;
 RETURN_task_a
END_TASK

void task_a(){
 int task_b = global_task_b
 int a_output;
 a_output = task_b + 2;
 global_task_a = a_output;
 /* code to write a_output on NVM */
}

Figure 7.4: Example of macro expansion in task’s code. The instructions are
placed directly in the task, instead of relying on library functions,
to prevent the overhead of function calls. The identifier of the
output variable is specified in the task YAML file.

7.3 creating a task

Tasks are implemented as C functions. In accordance with the specifi-
cations on memory access from Section 5.4, they do not have direct
access to NVM. So, as shown in Figure 7.4, their input parameters,
specified as incoming dependencies in the YAML file described in
Section 7.1, are injected through the expansion of a custom macro
generated by the preprocessor.

It is important to notice that the developer can use data from its
incoming dependencies, through a local variable named after the
producer’s id. For instance, in the example from Figure 7.4, Task a can
use Task b output, accessing a variable called task_b. The local scope
of this variable preserves its consistency, unless the value is a pointer.
In that case the consistency must be guaranteed by the developer. The
preprocessor emits a warning if any of the input variables type is
declared as an address.

In Section 5.4, we state that tasks can not directly persist their output
data. For this reason, their signature identifies them as void functions,
and instead of the standard C return instruction, the developer uses
another custom macro that expands into the set of instructions to
complete the operations described in Section 5.4.1.

The macro expansion mechanism allows to simplify developer’s
code. Moreover, instead of calling library functions that implement
the aforementioned operations, the instructions are expanded right
into the task’s code, preventing the overhead of a function call.

7.4 scheduler implementation

The scheduler is implemented as an infinite loop composed by three
steps:

1. task selection;

2. task execution;

3. tasks enabling;

120 implementation

4. performance parameters update.

We remind that the scheduler code is generated automatically by
the preprocessor, based on the description provided with the YAML
files.

Task selection is performed in accordance with the steps described
in Section 6.5. In particular each task is associated to a struct, stored
on NVM, that holds all task’s parameters, plus the function pointer to
their implementation. ActiveTasks and EnabledTasks sets, described
in Section 6.4, are implemented as an array of pointers to the corre-
sponding task struct.

As described in Chapter 6, tasks are selected by earliest deadline
first. Hence, the task array is sorted by deadline and the scheduler
scans the array from the beginning, until it finds a task that matches
the current energy budget.

Once selected, to execute a task, the scheduler simply calls the
corresponding function. As stated in Section 7.3, input dependencies
are injected into tasks code by the expansion of a macro. This macro
adds a variable and initializes it to the value of the global variable
storing the input data. In fact, as specified in Section 5.4.2, tasks read
input variables from stack. This means that the scheduler implements
instructions to copy the value from NVM to the global variable, in case
a power failure happens between the producer and the consumer.

After the task function completes, the scheduler enables tasks whose
dependency are satisfied by task execution. To reduce the overhead,
leveraging on the fact that the scheduler code is generated automat-
ically from tasks and applications definition, this operation is per-
formed through a switch statement, where each case corresponds to
the execution of a task, and contains the instructions to enable the
specific tasks that rely on its output.

Since dependencies may be decorated with boolean conditions that
control their activations, as specified in Section 5.3, task’s execution
may be prevented when they are evaluated as false. For instance let
us suppose that task A produces a value, task B consumes it, and the
dependency among them is decorated by a timeliness condition that
prevents the execution of B if A’s output is stale. If task B is selected
as next task, but the condition is not satisfied, then the scheduler must
remove it from the enabled set, and select another task. Once again, to
reduce the overhead, this is implemented with a switch statement. If
a task is involved in a dependency with a boolean condition, than a
corresponding case catches this selection and implements instructions
to disable the execution, if needed.

Finally, deadlines and slack time are updated.
It is important to notice that, since a power failure may happen

during scheduler’s execution, all the instructions to update any of the
support structures, such as enabled and active task sets, tasks struct

7.4 scheduler implementation 121

Listing 7.3: Algorithm to capture power failures

1

2 /* NON VOLATILE VARIABLES */

3 int resets = -1;

4 int seen_resets = 0;

5

6 void scheduler(){

7 if(seen_resets != resets){

8 /* a reset occurred */

9 seen_resets = resets;

10 /* subtract off time to deadlines */

11 }

12 /* scheduler code */

13 }

14

15 int main(){

16 resets++;

17 if(resets == 0){

18 /* initial boot */

19 }

20 scheduler();

21 }

and slack values are implemented with two-phase commit, as described
in Section 5.4.1.

As described in Section 6.3, the scheduler dynamically activates and
deactivates applications. Once again, thanks to the automatic genera-
tion of a custom scheduler code, these operations are performed by
specific instructions tailored to the application. For this reason, instead
of an inspection of the task graph, to understand at runtime which
tasks to deactivate or activate, as a consequence of an application
deactivation or activation, the generated code contains the specific
instructions based on the specific application.

As described in Section 6.5, on reboot after a power failure, the
inactivity time, obtained by implementing SRAM decay mechanism [28],
is subtracted to all the deadlines. Moreover, in case of a power failure
between a producer and a consumer, the scheduler must restore data
from NVM main memory. This means that the scheduler must be aware
that a power failure happened. To obtain this information, we use a
technique suggested by Maioli et al. [26]. In particular, the scheduler
implements the algorithm described in Listing 7.3.

In particular this technique allows to capture both the initial boot,
and any power failure, by using a data inconsistency as a source of
knowledge. In fact, the increment of the resets variable is the first
instruction performed on reboot, and the inconsistency between its
value and the variable seen_resets, highlights a unexpected failure
during the execution of the scheduler function.

8
E VA L UAT I O N

In this Chapter we present the evaluation of our proposed solution.
To properly evaluate our contribution, we need a way to conduct

repeatable experiments, and compare the results of our system with
those obtained by existing state of the art solutions. In other words,
we need a way to reproduce all the surrounding conditions so that we
can repeat the same experiment with the same inputs, with both our
solution and the baseline.

In Transiently Powered Computation (TPC), the concept of surround-
ing conditions is fundamental: we can compare the performance of
two TPC solutions only if the devices that execute them are powered by
exactly the same energy source, with the same provided energy and
the same evolution over time. Relying on real energy sources would be
an impractical solution, given that we need to replay them whenever
we run a test. Therefore, we need:

• a way to describe an energy trace: the energy provided by a
source over time;

• an environment that can execute our firmware, exhibiting the
same behavior of a TPC device;

• a way to replay a given energy trace to power this environment.

In Section 8.1 and Section 8.2 we present the evaluation environment,
and our contribution to an existent simulation tool to make it more
suitable to our needs; in Section 8.3 we describe the evaluation scenario;
in Section 8.4 we present the baseline against which we compare the
performance of our solution; in Section 8.5 we detail the metrics for
the evaluation and, finally, in Section 8.6 we present the results of this
process.

8.1 evaluation environment

The target platform for our evaluation is a Texas Instruments board
powered by a MSP430 family MCU. In particular, our reference MCU

is MSP430FR6989 [27], mounted on an MSP-EXP430FR6989 develop-
ment board.

The platform has the following specifications:

123

124 evaluation

• 16-bit RISC architecture;

• up to 16MHz clock, 1MHz in our simulation;

• minimum supply voltage of 1.88V ;

• 2KB of volatile SRAM;

• 128KB of Non Volatile Memory, implemented with Ferroelectric
RAM (FRAM) technology.

The device is powered by the energy buffered in a 47µF capacitor
that supports a maximum voltage of 5V . We selected this platform be-
cause its MCU is widely used in literature as a reference for evaluation.

As we discussed so far, the behavior of transiently powered devices
is highly dependent on harvested energy. To understand the perfor-
mance of our proposed solution we need an efficient way to conduct
repeatable experiments. Hence, we need a way to record and replay
energy supply.

Ekho, a tool proposed by Hester et al. [13], allows to record and
emulate energy harvesting conditions, using the abstractions of I-V
surfaces. Figure 8.1 shows an example of these surfaces. They are made
up of I-V curves, each of them represents how an energy harvester
will behave for a given load.

I-V surfaces provide a digital representation of harvesting
conditions, and they provide a general energy harvester
abstraction that can be used by a simulator — Hester et
al. [13]

There are various simulator for this class of devices, such as MSPSim [9],
TOSSim [23] and SIREN [11]. Among these we selected SIREN as it
is the only one that allows to simulate the actual energy harvesting
environment from recorded traces.

SIREN is based on MSPSim and it simulates at instruction level,
running an unmodified target platform firmware against different
energy traces. To better support the experiments conducted to evaluate
our proposal, and to support all the features needed by our scheduler,
we extended SIREN, as presented in the next Section.

8.2 extending siren simulator

SIREN is based on the MSPSim [9] instruction level simulator and
both of them are written in Java. Figure 8.2 shows an overview of the
simulation environment, and how it integrates in the workflow for
our proposed solution, described in Chapter 7.

The simulator takes as input the firmware binary file and the rep-
resentation of the energy trace. Once the simulation is complete, the
developer can understand the performance of the system from two

8.2 extending siren simulator 125

Figure 8.1: Figure taken from Furlong et al. [11]. A solar IV surface gen-
erated from an IXYS solar cell exposed to a lightbox. An IV
survaces captures all possible harvesting scenarios. Each possible
harvesting current (I) for the supply voltage (V) over time are
shown.

outputs: a log of the simulation, and the trace of the capacitor voltage
throughout the simulation.

In this Section we provide an overview on SIREN main components,
and on our improvements to the simulator. In particular, we focus on
the classes shown in Figure 8.3. CPU class abstracts the core simulator
that implements an MSPSim instruction level simulator within SIREN.
Its features are enriched by the rest of the classes shown in Figure 8.3
that allow an energy aware simulation.

The simulator decompiles the binary file and starts the execution
machine code instructions. A simplified version of this execution loop
is presented by the sequence diagram in Figure 8.4.

In SIREN, the execution of each machine code instruction is spec-
ulative. First the CPU executes it, then it checks if the number of
clock cycles spent for its execution fits within a power cycle. If so,
the execution proceeds with the next instruction, otherwise the board
resets due to a power failure. This execution model keeps memory
and registers consistent with what would happen in a real execution.
In fact, in case of a power failure the results of an instruction are
lost, since both volatile memory and registers are zeroed by the reset,
unless the instruction writes these results to NVM. In that case, each
machine code instruction that alters the NVM writes one byte at a time,
and this behavior is consistent with the charging pump mechanism,
described in Chapter 2, that guarantees the completion of an NVM

word write in presence of a power failure.
Our first extension to the original SIREN is the implementation of a

simulation of TARDIS mechanism [28]. To simplify the device reset

126 evaluation

YAML

CC.c

Preprocessor

MSP430
Compiler.h

Application
definitions

YAML

Tasks
parameters

Tasks
code

Custom
include file

.c

Main
firmware code

Firmware
binary code

0110
1011

Proposed Framework

SIREN

CSV

Energy
trace

CSV

Capacitor
trace

CSV

Simulation
log

MSP430FRXXXX
Instruction Level
Simulator

Energy Trace
Emulator

Capacitor

Energy Trace

Voltage (V)

Figure 8.2: Overview of SIREN. SIREN receives as input the binary code
produced at the end of the process described in Chapter 7, to-
gether with the energy trace. It produces a trace of the capacitor
voltage throughout the simulation, and the log of the simulation
to understand applications performance.

procedure during the simulation, we refactored SIREN code to extract
from the CPU class the methods related to this activity, creating
a ResetManager. When a power failure happens, the ResetManager

persists the duration of the off time interval on a specific register that
does not lose its state on reset. The persisted value has a resolution
that mimics the one offered by a TARDIS. The scheduler can access
this value, similarly to what would happen with the aforementioned
technique.

We said that the capacitor simulator checks if the execution of
the current instruction is compatible with the current energy budget.
Let us discuss the details of this process that simulates a buffering
capacitor of arbitrary capacity, that stores the energy coming from an
energy trace.

8.2.1 Capacitor Simulator

As we discussed so far, SIREN capacitor simulator checks, after each
machine code instruction, if the execution of such instruction is com-
patible with the buffered energy. This can not be done by simply
checking if the energy spent to execute a given number of clock cycles

8.2 extending siren simulator 127

CapSimulator

- capacitance
- currentVoltage
- maxVoltage
- onThreshold
- o�Threshold
- lifecyclesCount
- vComparatorResolution

+ getVoltage(): double
+ getMillisToVOn(): double
+ setPowerMode(pMode)
+ checkPowerFailure(cycles)

ResetManager

+ resetDevice()
+ haltDevice()

CommandHandler

+ handleCommand(command)

EventLogger

+ logEvent(event)

CPU

EkhoTrace

- trace

+ getNextVoltage(current): double
+ hasNextVoltage(): boolean
+ getMaxTime(): int

1

1

Figure 8.3: SIREN UML class diagram. CPU class abstracts the core simula-
tor that implements a MSPSim instruction level simulator within
SIREN. Its features are enriched by the rest of the classes to allow
an energy aware simulation.

is lower than the energy that is currently buffered, as during these
cycles the capacitor receives energy from the harvester. In fact, the
capacitor is placed as a decoupling capacitance in parallel with the
harvester, as shown for instance in Figure 4.1 from Chapter 4.

Depending on the harvester voltage, the capacitor either discharges
or not. If the harvester’s voltage is higher than the current value for
the capacitor, then the capacitor charges as in an RC circuit where the
device has an equivalent resistance that depends both on the power
state of the device, and on its load. Otherwise, if the harvester has a
voltage that is lower than the capacitor’s one, the buffer discharges
through the RC circuit, with a minimum value that is limited by the
harvester’s voltage.

In our simulation the energy trace has a resolution of 1ms, meaning
that the harvester’s voltage does not change within a millisecond.
Algorithm 8.1 describes how the simulator updates the capacitor at
each machine code instruction. When the capacitor discharges, the
spent energy is subtracted from the buffered value and the voltage
is updated following Equations 8.1 and 8.2, where Es is the energy
spent to execute the clock cycles, and Vh is the harvester’s voltage.

E = (
1

2
CV2) − Es; (8.1)

V = max{

√
2
E

C
;Vh} (8.2)

On the other hand, when the capacitor charges, its new voltage is
computed following Equation 8.3, where, again Vh is the harvester’s
voltage.

128 evaluation

CPU CapSimulator ResetManager

Fetch instruction

Decode instruction

Execute instruction

Persist O� time duration

Power failure?

No

Loop

Reset CPU

Get time to V On?

Alt [No]

[Yes]

Time to V On

Reboot device

Figure 8.4: Sequence diagram for SIREN main execution loop

V = Vh + (V − Vh)
−t
RC (8.3)

During this process, the simulator updates a log that allows to trace
the capacitor voltage throughout the simulation.

SIREN provides a debug interface between firmware and simulator
through a C instruction called siren_command. This instruction allows
the firmware to send a formatted string to the simulator. As we
describe in the next Section, we extended this interface to support
commands specific for our proposed solution.

8.2.2 Extended SIREN Commands

The original SIREN, supports siren_command, a custom C function
that writes a formatted string to a section of memory outside the
bounds of the MSP430’s memory. The formatted string corresponds
to a command and its arguments. In particular it follows the syntax
"<COMMAND>:<ARGS>", where <COMMAND> is the command name, while
<ARGS> is a substring that holds command’s arguments and its format
depends on the specific command. The CommandHandler class, shown

8.2 extending siren simulator 129

Algorithm 8.1. Capacitor update

Input Variables:
• clockCycles: number of clock cycles to execute the last machine code instruction;
• energyPerCC: energy spent to execute 1 clock cycle;
• cpuFrequency: current CPU frequency.
• current: load current.

Global Variables:
• voltage: current capacitor voltage;
• millisecondFraction: microseconds left for the current ekho voltage step of 1

millisecond;
• vOff: off threshold.

Body:

1 microseconds = dclockCycles/cpuFrequencye ∗ 1000000
2 timeLeft = microseconds
3 while timeLeft > 0 do
4 if millisecondFraction == 0 then
5 millisecondFraction = 1000

6 if ekhoTrace.hasNext() then
7 vSupply = ekhoTrace.getNextVoltage(current)
8 else
9 closeSimulation() . The trace is over, finish simulation

10 resistance = getResistance(current)
11 time = min(millisecondFraction, timeLeft)
12 execCC = b time * 1e-6 * frequency c
13 if vSupply < voltage then . The capacitor discharges
14 spentEnergy = energyPerCC * execCC
15 consumeEnergyAndUpdateVoltage(spentEnergy) . Equations 8.1 and 8.2
16 if voltage 6 vOff then
17 resetManager.resetDevice()

18 else
19 chargeCapacitor(time) . Equation 8.3

20 millisecondFraction -= time
21 timeLeft -= time

in the UML diagram in Figure 8.3, is responsible for the execution of
the correspondent command.

It is important to notice that this function does not impact the energy
buffer, as the simulator intercepts its context and does not account for
the time and energy spent for its execution.

The current implementation of SIREN only includes the PRINTF

command, that prints to simulator’s standard output the <ARGS>

string. To better support our proposed solution, and include the func-
tions that we need for our scheduler implementation, we extend the
siren_command infrastructure, with the following commands.

SET_VON:<on threshold> it allows to set the activation threshold, in
accordance with the scheduler logic presented in Chapter 6. This
command can be also seen as an implementation of the hardware
technique proposed by Gomez et al. [12]. They describe an
hardware-based approach in which an energy management unit

130 evaluation

builds up charge to a predefined energy level, generating energy
bursts predictably, even under variable harvesting conditions.

LOG_EVENT:<event description> it adds an event to the simulation log,
each event is composed by a description, a timestamp, and the
current voltages of both the capacitor and the harvester.

RESET:<string> it allows to ask for a device reset from the firmware.
It produces a log event whose description is the argument string.
This command can be used for debug reasons, for instance to
test memory consistency across injected reset points.

In general, prior to our extension and refactoring activity, the com-
munication between firmware code and simulator was one way, as
the siren_command function only allowed to pass log messages. Thank
to our work, the CommanHandler is able to alter the simulation and
interact with memory and CPU, based on the received command,
resulting in a more powerful simulation environment.

8.3 evaluation scenario

In this Section we describe the scenario that we consider for the evalua-
tion of our proposed solution. Following this scenario, we deploy a set
of applications to address real problems that batteryless, energy har-
vesting systems can solve. The scenario has two applications deployed
on the same board. The first one implements a sense-compute-operate
loop, the second is in charge of compressing and sending data to a
data sink; both of them encompass multiple tasks. This scenario is a
variant of the one used for the evaluation of Mayfly [16].

Exercise Recognition

A wrist-worn wearable device equipped with an accelerometer can
be used to track exercises. By discarding the batteries, the wearable is
easier to wear, and does not have to be taken off to charge, therefore
we increase the device effectiveness.

The activity recognition application samples a sliding window, filters
it, extracts features, classifies and eventually operates some actuator
depending on the classification output.

Accordingly to Hester et al. [16] activity recognition with intermit-
tent devices has been undertaken successfully [7, 30], and provides an
interesting application space for energy harvesting.

To implement this scenario, we deploy on the board the following
applications.

Application 1 it is the main application and performs sensing, filtering,
classification and actuation thanks to the following tasks:

8.3 evaluation scenario 131

Sense Median filter

Lowpass filter 1

Lowpass filter 2

Magnitude

Classify

Operate

Compress

Send

sampling freq. ≤ 50Hz

window size 30 samples

Application 1

Application 2

Figure 8.5: Dependency graph for the evaluation scenario. This graph
presents the dependencies between tasks, following the graphical
conventions described in Section 5.3.

Sense reads data from the accelerator with a minimum inter
sampling delay of 1/50s;

Filters a median and two low pass filters, they work on a 30

samples size window and filter out noise;

Magnitude extracts a feature from the window;

Classify performs the classification based on the filtered window
and the extracted feature;

Operate switches on a led depending on the result of the classi-
fication task.

Application 2 an accessory application with a minimum requested
throughput lower than Application 1, it is deployed for logging
purposes and it is composed by the following tasks:

Compress re-samples the filtered data to compress them;

Send sends the compressed data to a data sink.

The execution flow of each task does not depend on the input data.
Figure 8.5 presents the dependency graph for the described scenario.

Following the steps described in Chapter 7, we build a firmware that
includes the code for the aforementioned applications and the dynamic

132 evaluation

scheduler. The board is powered by replaying different energy traces
recorded from a real harvester. The execution is simulated with the
extended version of SIREN described in Section 8.2.

8.4 evaluation baseline

Among the task-based solutions, described in Chapter 3, we select
Mayfly [16] as a baseline. Its system is based on a dependency graph
similar to ours. Moreover, like our solution, it supports time related
requirements.

To produce a correct comparison, we added to Mayfly the ability to
support multiple applications and the dependencies types described in
Section 5.3. In particular, the extended Mayfly static scheduler receives
the dependency graph at compile time and selects a static schedule
compliant with the dependencies. Moreover, the baseline static sched-
uler is able to address throughput requirements, selecting at compile
time a schedule that interleaves applications in order to meet the
deadlines derived from the requested minimum throughputs. Though,
given its nature, a static solution can not react to the unpredictability
of the real life energy sources.

For instance, let us suppose that two applications are deployed
on our system: application A1 with Xmin(A1) = 2 iterations/s, and
application A2 with Xmin(A2) = 1 iteration/s. To satisfy these requests,
the baseline solution must produce a static schedule in which A1 is
executed twice the time than A2. Still, since it can not adjust the
schedule, the workload, or the activation threshold at runtime, it can
not prioritize the execution of A1 in case the energy is not enough to
run both applications with the required throughputs. For this reason,
we expect that the baseline exhibits worst performance in terms of
throughput for A1 compared to our solution, especially when powered
with energy that are not able to provide enough energy.

We execute this statically scheduled firmware on the same extended
version of SIREN, described in Section 8.2 against the same energy
traces.

8.5 outputs and metrics

As shown in Figure 8.2, the extended version of SIREN produces the
following outputs:

• a trace of the capacitor voltage during the simulation;

• a timestamped log of the simulation.

Thanks to the simulation log, we are able to reconstruct all the decision
that the scheduler takes during the simulation, in terms of tasks
selection and application activation or deactivation.

8.5 outputs and metrics 133

With the aforementioned outputs we can extract the following met-
rics.

• Average values and variances of applications throughput.

• A measure of scheduler correctness, defined as the sum of time
intervals during which the minimum throughput of an appli-
cation is satisfied, over the complete simulation timespan. As
mentioned earlier, the main application is the one with the high-
est Xmin that, as stated in Section 6.2, we assume is the one
implementing the most relevant functions of the deployed solu-
tion. Other applications are activated only once the throughput
requirements of the main one are satisfied. Given that, in our
evaluation we measure the correctness value only for the main
application, because it is the only application that is always
active.

• Given a generic application application A, the difference between
its measured average throughput Xavg(A) and its minimum
desired throughput Xmin(A)

∆t(A) = Xavg(A) −Xmin(A)

• Wasted energy per application Ew(A), defined as follows:

Ew(A) =

0, if ∆t(A) 6 0
Etot(A)
I(A) ∆t(A), otherwise

(8.4)

where:

– Etot(A) is the total energy spent by application A;

– I(A) is the number of complete iterations of application A
during the simulation.

This metric intuitively represents the amount of energy that
the system consumes to execute unrequested iterations of an
application, obtaining a throughput that exceeds developer’s
request, instead of running additional workload.

• The fairness, computed with Equation 6.6 from Section 6.8.

With these metrics, we want to demonstrate that the proposed
dynamic scheduling solution produces a scheduler correctness value
comparable to the static one, minimizing wasted energy and reacting
to power failures to reach the requested minimum throughputs.

134 evaluation

8.6 evaluation results

In the following Sections, we present the results of the evaluation ex-
periments on the scenario described in Section 8.3, whose dependency
graph is depicted in Figure 8.5.

The simulator runs with the following input parameters:

Capacitance 47µF;

Maximum capacitor voltage 5V ;

Xmin(Application 1) 3 iterations/s;

Xmin(Application 2) 1 iterations/s.

Capacitor parameters are obtained from the simulation of Hiber-
nus [2].

In particular, in Section 8.6.1 we run a simulation powering the
board with a stable solar energy trace; in Section 8.6.2 the trace is
derived from a radio frequency harvester; in Section 8.6.3 we prove the
reactive nature of the proposed scheduler, running a simulation with
a solar power trace that exhibits sudden drops in provided energy.
The traces are derived from the evaluation of EPIC [1].

Section 8.6.4 presents a discussion on the results of different selec-
tions of the parameter Γ , described in Section 6.7, and its interaction
with the fairness index.

In Section 8.6.5, we introduce the concept of scheduler stability and
we show the results of an experiment conducted to prove this feature.

8.6.1 Stable Energy Source

With a stable source that keeps the board running with no power
failures, we prove that the scheduler satisfies the requested throughput
for both Application 1 and Application 2. To prove our claim we run
a simulation against a trace collected from a solar harvester. Figure 8.6
shows the results of the experiment.

With this trace the capacitor voltage is always higher than 1.88V :
the minimum value required to sustain computation. In particular, the
voltage is in the interval [5V ; 2.68V], where 5V is the maximum value
supported by the capacitor, and 2.68V is the minimum value reached
during the simulation, after 32897ms from the start.

In this steady computation scenario, both the static scheduler and
the dynamic one are able to satisfy the requests in terms of minimum
throughput: 3 iterations/s for Application 1 and 1 iteration/s for
Application 2.

The proposed dynamic solution after 268ms presents a drop of
Application 1 average throughput, from 3.73 iterations/s to 2.02 it-
erations/s. This fluctuation is caused by the initial activation phase

8.6 evaluation results 135

ite
ra

tio
ns

Xmin(app_1)
Xmin(app_2)

(a) Static scheduler

ite
ra

tio
ns

Xmin(app_1)
Xmin(app_2)

(b) Proposed dynamic scheduler

Figure 8.6: Comparison between static and dynamic scheduler with a stable
solar energy source.

of Application 2, given Application 1 over performance. In fact, 3.73
iterations/s is higher than the requested value of 3 iterations/s. This
sudden throughput fluctuation lasts only one application iteration
(≈ 400ms) and the value is back to an average of 4.03 iterations/s
at 496ms. This second value, higher than the requested one, is pro-
gressively lowered by the interleaving with the now active second
application, decreasing to a stable value of 3.52 iterations/s. With this
particular trace, the second application is never removed after the
initial activation. In the following tests we show different experiments
with different traces, where secondary applications are deactivated to
address under performing main applications.

Due to the model described in Section 6.6.1, Application 2 reaches
a higher throughput compared to the one reached with the static

136 evaluation

Table 8.1: Mean throughput, variance, correctness and fairness obtained
when powered by a stable source with no power failures. The
table shows the metrics for the main application Application 1.

approach Xavg(App. 1) variance correctness fairness

Static scheduling 3.80 0.01 100% 0.99

Dynamic scheduling 3.14 0.02 99.5% 0.96

approach. In fact, the scheduler keeps selecting tasks from the second
application within the slack time accumulated by the first application.

As we said before, we define scheduler correctness the time interval
during which the minimum throughput is satisfied, divided by the
total simulation time. Due to the aforementioned short fluctuation
of the main application throughput, the correctness of the dynamic
scheduler for the main application is slightly affected and it is equal
to 99.5%, while the static one is 100%.

Table 8.1 summarizes the results. In that Table, and in the following
ones as well, we focus on the metrics for the application with the
highest minimum requested throughput: Application 1. As described
in Chapter 6, we assume that the higher is the throughput request, the
higher is the importance of the application, and the scheduler prior-
itize its execution. Nevertheless, all the charts show the throughput
obtained during the simulation for all the application deployed on the
device.

For what concerns threshold management, in this experiment the
dynamic scheduler changes Von only once. In particular, it happens
at millisecond 268 when the second application is activated and, in
accordance to what stated in Chapter 4, it is done to match the higher
energy requirement of its tasks.

8.6.2 Underpowered Execution

In case of continuous power failures, thanks to its dynamic nature,
the scheduler can maximize the throughput of the main application
(i.e. Application 1), preventing the execution of the second one. To
prove this claim we run a simulation powering the board with a highly
unstable source recorded from a radio frequency harvester.

Figure 8.7 presents the results of the simulation.
With such an unstable energy source, neither the static approach,

nor the proposed one successfully reach the requested throughput
for Application 1 (3 iterations/s), because of the continuous power
failures and inactivity intervals during capacitor charge.

Still, by selecting a Γ value that leads to the starvation of the second
application, the dynamic version can obtain an average throughput
over 43% higher than the one obtained with the static solution. The

8.6 evaluation results 137

ite
ra

tio
ns

Xmin(app_1)
Xmin(app_2)

(a) Static scheduler

ite
ra

tio
ns

Xmin(app_1)
Xmin(app_2)

(b) Proposed dynamic scheduler

Figure 8.7: Comparison between static and dynamic scheduler with a highly
unstable RF energy source.

static approach can not respond to energy shortage by dynamically
changing the workload at runtime.

In particular, with a selection of Γ > 0.6 the second application is
never activated due to the delay accumulated by the main one. Any
selection of the parameter higher than this value simply increases this
delay, but does not produce an increase in terms of throughput, whose
growth is bounded by the occurrence of continuous power failures.
On the contrary, a selection of Γ < 0.6, reduces enough the weight
of previous delays to allow the activation of the second application.
Starting from Γ = 0 up to Γ = 0.5, the second application is enabled at
different times and its activation is delayed the more we increase Γ . In
particular, with Γ = 0 the second application executes its first iteration
after 7307ms, while with Γ = 0.5 after 16016ms.

138 evaluation

ite
ra

tio
ns

Xmin(app_1)
Xmin(app_2)

(a) Dynamic scheduler with lowest Γ

ite
ra

tio
ns

Xmin(app_1)
Xmin(app_2)

(b) Dynamic scheduler with Γ selection that maximizes first appli-
cation throughput

Figure 8.8: Different selections of Γ parameter can lead to different perfor-
mance with the same energy source.

As we stated in Section 6.7, Γ can be seen as an intuitive measure of
the source instability: a higher Γ means that the source provided energy
oscillates at a high frequency. By lowering Γ to its minimum value, that
corresponds to a source that is less prone to sudden drops, we activate
the second application as early as possible, therefore granting it a
longer execution timespan. This maximizes its average throughput and
increases fairness, at the expense of the main application throughput
performance. Still, even with a Γ selection equal to 0, the average
throughput reached by the main application (1.05 iterations/s) is
slightly higher than the one reached with the static scheduler (0.99

iterations/s).
Figure 8.8 highlights the differences in terms of throughput between

a selection of Γ > 0.6 and 0. A more in depth analysis of the role of

8.6 evaluation results 139

Table 8.2: Mean throughput and fairness with design-time, runtime with Γ
that maximizes App 1 throughtput, and with lowest Γ parameter.

approach Xavg(App. 1) variance fairness

Static scheduling 0.99 0.03 0.99

Dynamic with Γ > 0.6 1.42 0.08 0.50

Dynamic with Γ = 0 1.05 0.04 0.92

the Γ parameter, and in particular its relationship with the scheduler
fairness, is presented in Section 8.6.4.

With this energy source, the correctness is 0% for both the static
and dynamic scheduler, given that neither is able to guarantee the
minimum throughput for Application 1.

Table 8.2 summarizes the results.
By looking at chart from Figure 8.7b, and in particular by consider-

ing the voltage value at the intersection between the end of a yellow
area and the capacitor voltage green dashed line, we can see that the
activity interval, progressively starts at higher capacitor voltages. This
happens because, in accordance with the logic presented in Chapter 4,
the scheduler progressively increases the Von because:

• the throughput of Application 1 does not match the requested
one;

• Application 1 is the only one running and there are no other
applications to deactivate.

8.6.3 Fairly Stable Source With Energy Failures

Even with a stable source we can not guarantee the absence of power
failures. In presence of source instability, we highlight the importance
of a dynamic approach, showing the resilient behavior of our proposed
scheduler that successfully reacts to sudden drops.

To sustain this claim, we run a simulation with a trace recorded from
solar harvester that exhibits the aforementioned pattern. Figure 8.9
presents the results of this simulation.

In presence of power failures the throughput of the applications is
severely affected. For instance, the first power failure causes a drop
in the performance of the main application, from 3.27 iterations/s to
1.66 iterations/s in the static environment, from 4.11 iterations/s to
2.07 iterations/s with the dynamic scheduler.

With a static scheduler, the second application is active since the
beginning of the experiment, completing its first iteration at millisec-
ond 1000. With the proposed approach Application 2 is activated after
1179ms from the beginning and it completes its first iteration at mil-
lisecond 2433. This causes the difference between the aforementioned

140 evaluation

ite
ra

tio
ns

Xmin(app_1)
Xmin(app_2)

(a) Static scheduler

ite
ra

tio
ns

Xmin(app_1)
Xmin(app_2)

(b) Proposed dynamic scheduler with Γ = 0.4 and fairness = 0.89

Figure 8.9: Comparison between static and dynamic scheduler with a fairly
stable source with sudden drops in provided energy.

throughputs of the first application: the absence of a second appli-
cation stealing execution time during the initial milliseconds, before
the first power failure, allows the main application to reach a higher
average throughput.

Figure 8.10 shows a detail of the initial 5000 milliseconds of the
simulation results presented in Figure 8.9b. In particular, with the
proposed scheduler:

• at millisecond 951 the first application registers an average
throughput of 4.21 iterations/s, that triggers, in accordance with
the evaluation of the cumulative slack, the activation of the
second application;

8.6 evaluation results 141

0 1000 2000 3000 4000 5000
Time [ms]

0

1

2

3

4

Th
ro

ug
hp

ut
 [t

im
es

/s
]

Throughput app_1
Throughput app_2
Off time

Figure 8.10: Detail of the initial 5000 milliseconds of the simulation results
shown in Figure 8.9b

• the activation phase of Application 2 causes a drop of the first
application throughput to 3.39 iterations/s;

• the selected Γ (Γ = 0.4) produces a slack value high enough to
support the execution of the second task of the second applica-
tion at millisecond 2433, right before the first power failure that
happens at millisecond 2504.

Once again, the activation of the second application causes an in-
crease of Von because the scheduler must match the higher energy
demands of its tasks.

Going back to the chart shown in Figure 8.9b that presents the result
of the complete simulation, we see that the board resumes compu-
tation, after the power failure, at millisecond 4825. The new average
throughput for Application 1 is 2.07 iterations/s, this causes a stop in
Application 2 execution and a reset of the activation threshold to its
initial value, in accordance with the logic of the proposed scheduler.
The throughput steadily increases reaching the value of 2.7 iterations/s
at 6655ms. The static scheduler can not change the rate of execution of
the second application, therefore at the same time in the experiment
(4825ms) the throughput of the first application reaches a lower value
of 2.02 iterations/s.

In the dynamic scheduler simulation, the execution of the second
application is resumed at millisecond 6768, with the throughput of the
other application being 2.7 iterations/s, slightly below the requested
value. This behavior is caused by the slack mechanism. In fact, even if
the average throughput is below the request, locally the application is
running ahead of its time. In particular its last iteration completed in
229 milliseconds, lower than the period of 333 milliseconds obtained
from the minimum requested throughput of 3 iterations/s. These
104 milliseconds contribute to the increase of the slack that is com-

142 evaluation

puted taking into account the Γ factor as shown in Equation 6.5 from
Chapter 6.

After the initial power failure, as soon as the slack is back to a
positive value, big enough to accomodate its iteration, the second
application is restored, speculating that the throughput, even if locally
below the request, will soon reach the intended value. This slack
mechanism is detailed in Section 6.3.

The more the slack increases, the more iterations of the second
application are executed, for instance:

• in the interval of 2000ms between millisecond 5055 and 7055,
there is one execution of the second application after 11 iterations
of the first one;

• in the next interval of 2000ms between millisecond 7055 and
9055, there is one execution of the second application after 5
iterations of the first one.

After the second power failure, the same pattern repeats, as the
second application is delayed until the first application accumulates
enough slack. In particular, the first iteration of the second application,
after the second power failure, is performed at time 27674ms.

This activation deactivation mechanism contributes to the reactive-
ness of the proposed scheduler. The throughput of the first application
is restored up to the requested value even in presence of power fail-
ures. In particular Application 1 is back to a value equal or higher
than 3 iterations/s:

• after 3811ms from the first power failure;

• after 2744ms from the second power failure.

The length of the inactivity interval after the third power failure, does
not cause a decrease below the request.

On the contrary, as we can see from the chart in Figure 8.9a, the
static approach can not cope with the first failure and the throughput
of the main application stays below the requested value throughout
the rest of the experiment.

On average, the dynamic approach leads to a throughput for the
main application more than 32% higher than the static one. The cor-
rectness of the proposed scheduler is more than 80% higher than the
one obtained with the design time scheduling.

Table 8.3 shows a summary of average throughput, variance, cor-
rectness and fairness of the two approaches.

To improve the correctness of the static approach, it is possible to re-
move the second application, obtaining the result shown in Figure 8.11.
This leads to a suboptimal energy utilization with an average wasted
energy Ew value for Application 1 of 115µJ per iteration, while the av-
erage wasted energy with the dynamic scheduler is 51µJ per iteration.

8.6 evaluation results 143

Table 8.3: Average throughput, correctness and fairness with design-time
and dynamic runtime scheduling, against an energy source with
sudden drops.

approach Xavg(App. 1) variance correctness fairness

Static scheduling 2.41 0.18 5.3% 0.98

Dynamic scheduling 3.19 0.12 89.7% 0.89

Xmin(app_1)

Figure 8.11: Static scheduling with a single application leads to wasted
energy

In fact, in the absence of a second application, the static scheduler can
only run new iterations of the first one, even if its throughput is higher
than the requests, resulting in a waste of computation: we spend en-
ergy to produce outputs at an unnecessarily high rate, instead of using
that energy budget to run useful secondary computation. Moreover,
the correctness improvement is only of 5.7%. Table 8.4 summarizes
the comparison between the static approach with one application, and
the dynamic one.

Tuning the Γ factor it is possible to increase the correctness of the
dynamic scheduler, delaying the activation of the second application,
at the expenses of an increase in wasted energy. In fact, a higher pa-
rameter causes an increase of the correctness and of the wasted energy,
a lower parameter lowers the wasted energy and the correctness.

Table 8.4: Comparison between static scheduling with a single application,
and runtime scheduler with multi-tenancy.

approach Xavg(App. 1) correctness Ew

Static with single app 3.46 95.4% 115µJ/iteration

Dynamic with two app 3.19 89.7% 51µJ/iteration

144 evaluation

8.6.4 Gamma and Fairness Interaction

As presented in Section 6.3, each application except the first one, in
decreasing requested throughput order, recursively runs within the
slack time of the previous one. As pointed out in Equation 6.5 from
Section 6.3, Γ being a parameter between 0 and 1, affects the value of
the updated slack, changing the weight of older values. With Γ = 1

the slack value accumulated so far, and the current advance or delay
in application’s execution, equally contributes to the computation
the new slack. Decreasing Γ ∈ [0; 1] we decrease the number of iter-
ations needed to fill the delay caused by an off time interval, as we
progressively reduce the importance of old slack values.

As shown in previous results, different selections of Γ can lead to
different performance and fairness.

The fairness of the scheduler is obviously affected by this param-
eter, intuitively a high Γ easily leads toward secondary application
starvation, decreasing fairness. Given the unpredictability of energy
sources it is unpractical to capture the link between Γ and fairness
index with a closed equation. In fact, the highest fairness is reached
when the parameter selection leads to an interleave compliant with
the ratio between requested throughputs.

To substantiate this claim we run different experiments varying Γ
with different sources and scenarios.

In particular:

• Figure 8.12a presents the result obtained varying Γ from 0 to 1,
with the energy trace and the scenario from Section 8.6.3;

• Figure 8.12b presents the result obtained varying Γ from 0 to 1,
with the energy trace from Section 8.6.3, changing the requested
throughput for Application 2 from 1 iteration/s to 2 iterations/s,
by comparing the results of this experiment with the ones of the
previous scenario, we can see how Γ and fairness interact with
throughput requests;

• Figure 8.12c presents the result obtained varying Γ from 0 to 1,
with the energy trace and the scenario from Section 8.6.2;

From these experiments we see that the fairness is higher for lower Γ
values, though its maximum value corresponds to different parameter
selections, depending on the energy source and the scenario.

In fact, in accordance with Equation 6.6 on fairness and Equation 6.5
on slack update, we see that:

• in all the experiments by increasing Γ , we increase the through-
put of the main application, decreasing the throughput of the
second one, in fact the activation of this last application is de-
layed the more we increase the parameter;

8.6 evaluation results 145

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Gamma

0.0

0.2

0.4

0.6

0.8

1.0

Fa
irn

es
s i

nd
ex

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 [t

im
es

/s
]

App 1 mean throughput
App 2 mean throughput

(a) Energy source and scenario from Sec-
tion 8.6.3.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Gamma

0.0

0.2

0.4

0.6

0.8

1.0

Fa
irn

es
s i

nd
ex

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 [t

im
es

/s
]

App 1 mean throughput
App 2 mean throughput

(b) Energy source from Section 8.6.3
with different minimum requested
throughputs: 3 iterations/s for the
first application and 2 iterations/s
for the second one.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Gamma

0.0

0.2

0.4

0.6

0.8

1.0

Fa
irn

es
s i

nd
ex

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 [t

im
es

/s
]

App 1 mean throughput
App 2 mean throughput

(c) Energy source and scenario from Sec-
tion 8.6.2.

Figure 8.12: Interaction between Γ selection, throughputs and fairness.

• in both the experiments shown in Figure 8.12a and Figure 8.12c
the highest fairness is reached when the throughput of Appli-
cation 1 is approximatively 3 times the throughput of Applica-
tion 2, but given the different energy sources, this corresponds
to different Γ values;

• in the experiment shown in Figure 8.12b, the highest fairness is
reached when the ratio between the throughput of Application 1
and Application 2 is closer to 3/2, that is the ratio between the
requested values.

The experiment conducted varying the Γ on radio frequency source,
whose results are presented in Figure 8.12c, shows that with Γ values
higher than 0.6 the fairness does not change. In fact, from that value
on, the second application is never activated and only Application 1
is running at full speed. Still, given the continuous power failures, its
throughput does not increase, therefore the fairness does not change.

The combined interaction between Γ and slack, gives the developer
the opportunity to change the scheduler behavior. Different selections
alter the policy, leading to different results, tailoring the framework to
the specific deployment scenario.

146 evaluation

Sense Median filter

Lowpass filter 1

Lowpass filter 2

Magnitude

Classify

Operate

Compress

Store

Sense Temp

Store Avg

sampling freq. ≤ 50Hz

sampling freq. ≤ 10Hz

window size 30 samples

Application 1

Application 3

Application 2

Figure 8.13: Dependency graph of the modified scenario, implemented to
measure scheduler stability

8.6.5 Scheduler Stability

As we said in Chapter 6, the main goal of the dynamic scheduler is to
satisfy the minimum throughput of the applications, considering the
requests of one application at a time in decreasing Xmin order.

The performance of an application with a given throughput request,
should not be affected by the nature and number of the applications
with a lower throughput request, but only by the nature of the energy
source and the selection of the tuning parameter Γ . We summarize
this behavior with the term stability. We say that a scheduler is stable
when background applications do not affect the behavior of the main
application.

The concept of slack presented in Section 6.3 is a consequence to
this principle: secondary applications must completely run within the
slack time of the main one.

To prove that our implementation is stable, we change the number
and nature of secondary applications, while we keep the one with the
highest Xmin as described in the scenario presented in Section 8.3.

The dependency graph for this modified scenario is depicted in
Figure 8.13

In particular, we change a task from Send to Store, to reduce its
impact, given the high cost of operations related to radio equipment,
so that we can accomodate a third application that performs sensing
activities related to a temperature sensor.

8.6 evaluation results 147

ite
ra

tio
ns

Xmin(app_1)
Xmin(app_2)

(a) Dynamic scheduler with scenario from Figure 8.5

X (app_1)
X (app_2)
X (app_3)

min

min

min

(b) Dynamic scheduler with scenario from Figure 8.13

Figure 8.14: Comparison between different secondary applications with the
same main application and energy trace.

The applications are deployed with the following requested through-
puts:

• Application 1 request is set to 3 iterations/s, same as in the
original scenario;

• Application 2 request is set to 2 iterations/s;

• Application 3 request is set to 1 iteration/s.

We run the simulation of both the original scenario and the new
one, against the same energy source. The results shown in Figure 8.14

prove the stability of the proposed solution.
In particular, Figure 8.15 shows a detailed comparison between the

main application throughput curves for the original and the modified
scenario.

While the scheduler stability guarantees a similar behavior for the
main application, we see different throughput for the other applica-

148 evaluation

0 10000 20000 30000 40000
Time [ms]

2.0

2.5

3.0

3.5

4.0

4.5

Th
ro

ug
hp

ut
 [t

im
es

/s
]

Throughput app_1 original scenario
Throughput app_1 modified scenario

Figure 8.15: Detailed comparison between the throughput of Application 1
with different secondary applications. The original scenario
is described in Section 8.3, while the modified one is in Sec-
tion 8.6.5

tions. In fact, in Figure 8.14b we see that the second application of this
new scenario is enabled earlier. This happens because, independently
from inputs, its tasks individually require less clock cycles than the
one from the original second application. In particular, the storage of
a single average temperature value requires far fewer clock cycles than
the access to the antenna to perform send operations. For this reason
a complete iteration of the new second application fits earlier in the
slack of the main one.

9
C O N C L U S I O N A N D F U T U R E W O R K S

Our proposed solution performs as intended when the board is pow-
ered with a constantly high energy source, showing a correctness
of 99.5%. In the worst case scenario, with a highly unstable energy
source and an underpowered board, the dynamic scheduler guaran-
tees an average throughput that is between 1.05 and 1.42 iterations/s,
depending on the Γ selection, while the static one is 0.99 iterations/s.

With a stable energy source, in presence of power failures, the
dynamic scheduler is able to guarantee an increase of over 32% on
average throughput of the main application, and a correctness over
80% higher than the static one.

The Γ parameter provides to the developer an extra knob to tune
the scheduler performance, trading correctness with wasted energy
and changing scheduler fairness.

Thanks to the proved scheduler stability, the developer can change
the firmware modifying the background applications, without worry-
ing about the performance of the core logic represented by the main
application.

In the introduction to this document, we said that batteryless de-
vices are the most promising solution to finally enable the “smart
dust” vision. But, paraphrasing a famous quote, with great powers
come great challenges: those presented in Chapter 2. Batteryless sys-
tems bring to Transiently Powered Computation (TPC), and the issues
coming from power failures pose a severe threat to their large-scale
adoption.

In Chapter 3, we described the most promising state of the art
solutions to address the TPC challenges. All of them tackle in different
ways the issue of data consistency. Yet, they lack the ability to truly
react at runtime to the unpredictability of energy sources, or to capture
the peculiar features of this class of devices that we presented in
Chapter 4, being unable to alter at runtime the voltage parameters
that rule the activation and deactivation of computation.

To fill this gap, we proposed our task-based solution: a dynamic
scheduler that, for the first time, focuses on throughput requirements,
instead of trying to obtain the maximum energy efficiency. Our so-
lution, leveraging on a new programming abstraction and on multi-
tenancy, is able to dynamically adapt both the workload. Moreover, it

149

150 conclusion and future works

adapts at runtime the voltage threshold to the specific energy scenario
at runtime.

In Chapter 5, we introduced this new programming abstraction to
match the requirements of our new system, starting from tasks and
their transactional semantic, moving on to the new concept of applica-
tions and minimum requested throughput, and finally presenting a
rich set of data dependency semantics among tasks, to match different
common scenarios.

In Chapter 6, we described the logic of our scheduler and its inter-
nals, presenting the set of properties that guide its functioning. We
described the concept of applications priority and how it is connected
to the minimum throughtput requirement; we showed how our dy-
namic scheduler is able to change the workload at runtime to adapt
to variations in energy provisioning; we detailed the algorithms that
guide the reactiveness of our solution that is able to take countermea-
sures, in case of under performing or over performing applications.
Finally, we presented the parameter Γ and its tuning: an important
feature of our solution, that provides an extra knob to the developer to
tailor the performance of the system to the specific scenario, deciding
whether to lean toward a fairer scheduler, or toward the maximization
of the main application’s performance.

In Chapter 7 we presented the workflow that allows the developer
to obtain a firmware from the description of tasks and applications,
describing the implementation of our system.

Finally, in Chapter 8, we presented an evaluation of our system,
comparing its performance to a static solution, similar to the one
implemented in Mayfly [16]. To conduct this evaluation we gave our
contribution to an existing instruction level simulator: SIREN [11],
enriching its features and partially restructuring its codebase.

9.0.1 Future Works

Task-based systems require an effort to the developer, who has to re-
structure the code to embrace this abstraction. For this reason we tried
to propose a solution that increases as little as possible developer’s
effort. Still, the performance of the system depend on Γ : a parameter
that with our current implementation, must be selected at compile
time and can not be refined at runtime. Moreover, its impact on the
system performance is not intuitive and varies with different energy
sources.

As an improvement to our solution, we would like to hide the
complexity of Γ selection and offer a parameter that relates more
intuitively to the expected performance and informs an automatic
selection of Γ . In addition, we would like to introduce a refinement
process that fixes its value at runtime.

conclusion and future works 151

In Section 4.2, we described some peculiar features of our target
devices, in particular how the time and energy needed to execute
a clock cycle varies at different voltage levels. We developed the
management of the activation threshold in light of these results. Still,
our solution does not explicitly select an activation threshold to match
a given speed or energy consumption, yet it applies a refinement
process that should converge to the optimal selection. Moreover, we
do not consider clock frequency as a tunable parameter, as these
devices currently do not implement DVFS. Further investigations on
the relationship between voltage and frequency could increase the
performance of our system. In fact, this would offer to the scheduler
the ability to change at runtime the device’s frequency, as an additional
knob to satisfy the requirements.

In Section 6.5, we said that, if the task selected by the scheduler
requires more energy than the one that is currently stored in the energy
buffer, then the task is skipped to avoid power failures. Approximate
computing is a set of techniques that allow to produce code that tunes
the result accuracy, based on specific requirements. In particular, some
of these techniques, like loop perforation, can decrease this accuracy
in ways that reduce the number of executed instructions, hence the
energy consumption for a given task. Allowing to propose different
approximation levels, therefore different energy consumption for a
given task, could allow us to execute a task even when the buffer
does not hold enough energy for its original version. In general, our
system could be improved by offering the possibility to provide more
than one version of a task, each one characterized by different energy
consumption.

In conclusion, batteryless execution is highly dependent on the
runtime energy conditions. Different classes of energy sources have
different features, so a possible solution would be to specifically adapt
the firmware and its logic to the specific scenario. Though, this would
produce a rigid solution that potentially reacts badly to deviations
from the expected behavior of the source. To improve this, one could
relax the specifications and produce a more general solution, yet with-
out the ability to dynamically adapt at runtime, it can not truly react to
unexpected changes in the energy intake. These observations guided
the development of our proposal: a dynamic task-based scheduling
framework that is able to react at runtime to the unpredictability of
energy sources. Thanks to this framework we proposed a shift in
perspective: from energy, to throughput in the intermittent computing
scenario.

B I B L I O G R A P H Y

[1] S. Ahmed, A. Bakar, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui,
and L. Mottola. “The Betrayal of Constant Power × Time: Find-
ing the Missing Joules of Transiently-Powered Computers.”
In: Proceedings of the 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Sys-
tems. LCTES 2019. Phoenix, AZ, USA: Association for Com-
puting Machinery, 2019, pp. 97–109. isbn: 9781450367240. doi:
10.1145/3316482.3326348 (cit. on pp. 1, 5, 49, 51–54, 66, 88, 95,
134).

[2] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli,
B. M. Al-Hashimi, G. V. Merrett, and L. Benini. “Hibernus++: A
Self-Calibrating and Adaptive System for Transiently-Powered
Embedded Devices.” In: Trans. Comp.-Aided Des. Integ. Cir. Sys.
35.12 (Nov. 2016), pp. 1968–1980. issn: 0278-0070. doi: 10.1109/
TCAD.2016.2547919 (cit. on pp. 3, 5, 6, 17, 31, 54, 56, 134).

[3] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini. “Hibernus: Sustaining Computation
During Intermittent Supply for Energy-Harvesting Systems.”
In: IEEE Embedded Systems Letters 7.1 (2015), pp. 15–18. issn:
1943-0663. doi: 10.1109/LES.2014.2371494 (cit. on pp. 3, 30, 49,
53).

[4] N. A. Bhatti, M. H. Alizai, A. A. Syed, and L. Mottola. “Energy
Harvesting and Wireless Transfer in Sensor Network Applica-
tions: Concepts and Experiences.” In: ACM Trans. Sen. Netw. 12.3
(Aug. 2016). issn: 1550-4859. doi: 10.1145/2915918 (cit. on pp. 1,
14, 17, 49).

[5] N. A. Bhatti and L. Mottola. “HarvOS: Efficient Code Instrumen-
tation for Transiently-powered Embedded Sensing.” In: Proceed-
ings of the 16th ACM/IEEE International Conference on Information
Processing in Sensor Networks. IPSN ’17. Pittsburgh, Pennsyl-
vania: ACM, 2017, pp. 209–219. isbn: 978-1-4503-4890-4. doi:
10.1145/3055031.3055082 (cit. on pp. 26, 27, 49).

[6] M. Buettner, B. Greenstein, and D. Wetherall. “Dewdrop: An
Energy-Aware Runtime for Computational RFID.” In: Proceed-
ings of the 8th USENIX Conference on Networked Systems Design
and Implementation. NSDI’11. Boston, MA: USENIX Association,
2011, pp. 197–210 (cit. on pp. 5, 6, 48, 55, 58).

153

https://doi.org/10.1145/3316482.3326348
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.1145/2915918
https://doi.org/10.1145/3055031.3055082

154 bibliography

[7] Michael Buettner, Richa Prasad, Matthai Philipose, and David
Wetherall. “Recognizing daily activities with RFID-based sen-
sors.” In: Proceedings of the 11th international conference on Ubiq-
uitous computing - Ubicomp ’09 (2009). doi: 10.1145/1620545.
1620553 (cit. on p. 130).

[8] E. W. Dijkstra. “The Humble Programmer.” In: Commun. ACM
15.10 (Oct. 1972), pp. 859–866. issn: 0001-0782. doi: 10.1145/
355604.361591 (cit. on p. 33).

[9] J. Eriksson, A. Dunkels, N. Finne, F. Osterlind, and T. Voigt.
“Mspsim–an extensible simulator for msp430-equipped sensor
boards.” In: Proceedings of the European Conference on Wireless
Sensor Networks. EWSN (cit. on p. 124).

[10] A. Fuggetta, G. P. Picco, and G. Vigna. “Understanding code mo-
bility.” In: IEEE Transactions on Software Engineering 24.5 (1998),
pp. 342–361. issn: 2326-3881. doi: 10.1109/32.685258 (cit. on
p. 17).

[11] Matthew Furlong, Josiah Hester, Kevin Storer, and Jacob Sorber.
“Realistic Simulation for Tiny Batteryless Sensors.” In: Proceed-
ings of the 4th International Workshop on Energy Harvesting and
Energy-Neutral Sensing Systems - ENSsys’16 (2016). doi: 10.1145/
2996884.2996889 (cit. on pp. 25, 113, 124, 125, 150).

[12] A. Gomez, L. Sigrist, M. Magno, L. Benini, and L. Thiele. “Dy-
namic energy burst scaling for transiently powered systems.”
In: 2016 Design, Automation Test in Europe Conference Exhibition
(DATE). 2016, pp. 349–354 (cit. on p. 129).

[13] J. Hester, T. Scott, and J. Sorber. “Ekho: Realistic and Repeatable
Experimentation for Tiny Energy-Harvesting Sensors.” In: Pro-
ceedings of the 12th ACM Conference on Embedded Network Sensor
Systems. SenSys ’14. Memphis, Tennessee: Association for Com-
puting Machinery, 2014, pp. 330–331. isbn: 9781450331432. doi:
10.1145/2668332.2668382 (cit. on p. 124).

[14] J. Hester and J. Sorber. “Flicker.” In: Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems - SenSys ’17 (2017).
doi: 10.1145/3131672.3131674 (cit. on pp. 13, 47, 58).

[15] J. Hester and J. Sorber. “The Future of Sensing is Batteryless,
Intermittent, and Awesome.” In: Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems. SenSys ’17. Delft,
Netherlands: ACM, 2017, 21:1–21:6. isbn: 978-1-4503-5459-2. doi:
10.1145/3131672.3131699 (cit. on pp. 1, 13).

[16] J. Hester, K. Storer, and J. Sorber. “Timely Execution on Intermit-
tently Powered Batteryless Sensors.” In: Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems - SenSys ’17
(2017). doi: 10.1145/3131672.3131673 (cit. on pp. 1, 3, 4, 8, 20,
40, 67, 86, 130, 132, 150).

https://doi.org/10.1145/1620545.1620553
https://doi.org/10.1145/1620545.1620553
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/355604.361591
https://doi.org/10.1109/32.685258
https://doi.org/10.1145/2996884.2996889
https://doi.org/10.1145/2996884.2996889
https://doi.org/10.1145/2668332.2668382
https://doi.org/10.1145/3131672.3131674
https://doi.org/10.1145/3131672.3131699
https://doi.org/10.1145/3131672.3131673

bibliography 155

[17] J. Hester, N. Tobias, A. Rahmati, L. Sitanayah, D. Holcomb,
K. Fu, W. P. Burleson, and J. Sorber. “Persistent Clocks for
Batteryless Sensing Devices.” In: ACM Transactions on Embedded
Computing Systems 15.4 (2016), pp. 1–28. issn: 1539-9087. doi:
10.1145/2903140 (cit. on pp. 4, 20, 40, 43, 90, 99).

[18] Michael Jackson. “The world and the machine.” In: Proceedings
of the 17th international conference on Software engineering - ICSE
’95 (1995). doi: 10.1145/225014.225041 (cit. on p. 75).

[19] Raj Jain, Dah Ming Chiu, and Hawe WR. “A Quantitative Mea-
sure Of Fairness And Discrimination For Resource Allocation In
Shared Computer Systems.” In: CoRR cs.NI/9809099 (Jan. 1998)
(cit. on p. 108).

[20] H. Jayakumar, A. Raha, W. S. Lee, and V. Raghunathan. “Quick-
Recall: A HW/SW Approach for Computing across Power Cy-
cles in Transiently Powered Computers.” In: J. Emerg. Technol.
Comput. Syst. 12.1 (Aug. 2015). issn: 1550-4832. doi: 10.1145/
2700249 (cit. on pp. 3, 31).

[21] L. Lamport. “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs.” In: IEEE Transac-
tions on Computers C-28.9 (1979), pp. 690–691. issn: 2326-3814.
doi: 10.1109/TC.1979.1675439 (cit. on p. 16).

[22] Y. Lee, G. Kim, S. Bang, Y. Kim, I. Lee, P. Dutta, D. Sylvester,
and D. Blaauw. “A modular 1mm3 die-stacked sensing platform
with optical communication and multi-modal energy harvest-
ing.” In: 2012 IEEE International Solid-State Circuits Conference.
2012, pp. 402–404. doi: 10.1109/ISSCC.2012.6177065 (cit. on
p. 1).

[23] P. Levis, N. Lee, M. Welsh, and D. Culler. “TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications.” In: Pro-
ceedings of the 1st International Conference on Embedded Networked
Sensor Systems. SenSys ’03. Los Angeles, California, USA: As-
sociation for Computing Machinery, 2003, pp. 126–137. isbn:
1581137079. doi: 10.1145/958491.958506 (cit. on p. 124).

[24] B. Lucia and B. Ransford. “A Simpler, Safer Programming and
Execution Model for Intermittent Systems.” In: SIGPLAN Not.
50.6 (June 2015), pp. 575–585. issn: 0362-1340. doi: 10.1145/
2813885.2737978 (cit. on pp. 3, 35, 36).

[25] Kiwan Maeng, Alexei Colin, and Brandon Lucia. “Alpaca: Inter-
mittent Execution Without Checkpoints.” In: Proc. ACM Program.
Lang. 1.OOPSLA (Oct. 2017), 96:1–96:30. issn: 2475-1421. doi:
10.1145/3133920 (cit. on pp. 3, 8, 21, 35, 37, 84).

https://doi.org/10.1145/2903140
https://doi.org/10.1145/225014.225041
https://doi.org/10.1145/2700249
https://doi.org/10.1145/2700249
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/ISSCC.2012.6177065
https://doi.org/10.1145/958491.958506
https://doi.org/10.1145/2813885.2737978
https://doi.org/10.1145/2813885.2737978
https://doi.org/10.1145/3133920

156 bibliography

[26] A. Maioli, L. Mottola, M. H. Alizai, and J. H. Siddiqui. “On
Intermittence Bugs in the Battery-Less Internet of Things (WIP
Paper).” In: Proceedings of the 20th ACM SIGPLAN/SIGBED Inter-
national Conference on Languages, Compilers, and Tools for Embedded
Systems. LCTES 2019. Phoenix, AZ, USA: Association for Com-
puting Machinery, 2019, pp. 203–207. isbn: 9781450367240. doi:
10.1145/3316482.3326346 (cit. on p. 121).

[27] MSP430FR6989 Datasheet. https : / / www . ti . com / lit / ds /

symlink/msp430fr69891.pdf. Texas Instruments (cit. on pp. 5,
17, 23, 47, 123).

[28] A. Rahmati, M. Salajegheh, D. Holcomb, J. Sorber, W. P. Burleson,
and K. Fu. “TARDIS: Time and Remanence Decay in SRAM
to Implement Secure Protocols on Embedded Devices with-
out Clocks.” In: Presented as part of the 21st USENIX Security
Symposium (USENIX Security 12). Bellevue, WA: USENIX, 2012,
pp. 221–236. isbn: 978-931971-95-9 (cit. on pp. 4, 20, 121, 125).

[29] B. Ransford, J. Sorber, and K. Fu. “Mementos: System Support
for Long-running Computation on RFID-scale Devices.” In: Pro-
ceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASP-
LOS XVI. Newport Beach, California, USA: ACM, 2011, pp. 159–
170. isbn: 978-1-4503-0266-1. doi: 10.1145/1950365.1950386
(cit. on pp. 1, 3, 24, 47, 51).

[30] A. Rodriguez, D. Balsamo, Z. Luo, S. P. Beeby, G. V. Merrett,
and A. S. Weddell. “Intermittently-powered energy harvesting
step counter for fitness tracking.” In: 2017 IEEE Sensors Applica-
tions Symposium (SAS). 2017, pp. 1–6. doi: 10.1109/SAS.2017.
7894114 (cit. on p. 130).

[31] A. P. Sample and J. R. Smith. “The Wireless Identification and
Sensing Platform.” In: Wirelessly Powered Sensor Networks and
Computational RFID. Ed. by Joshua R. Smith. New York, NY:
Springer New York, 2013, pp. 33–56. isbn: 978-1-4419-6166-2.
doi: 10.1007/978-1-4419-6166-2_3 (cit. on pp. 13, 48, 56).

[32] E. Sazonov, H. Li, D. Curry, and P. Pillay. “Self-Powered Sensors
for Monitoring of Highway Bridges.” In: IEEE Sensors Journal
9.11 (2009), pp. 1422–1429. issn: 2379-9153. doi: 10.1109/JSEN.
2009.2019333 (cit. on p. 1).

[33] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles
and Paradigms, 2nd Edition. Pearson, 2007 (cit. on p. 16).

[34] J. Van Der Woude and M. Hicks. “Intermittent Computation
Without Hardware Support or Programmer Intervention.” In:
Proceedings of the 12th USENIX Conference on Operating Systems De-
sign and Implementation. OSDI’16. Savannah, GA, USA: USENIX

https://doi.org/10.1145/3316482.3326346
https://www.ti.com/lit/ds/symlink/msp430fr69891.pdf
https://www.ti.com/lit/ds/symlink/msp430fr69891.pdf
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1109/SAS.2017.7894114
https://doi.org/10.1109/SAS.2017.7894114
https://doi.org/10.1007/978-1-4419-6166-2_3
https://doi.org/10.1109/JSEN.2009.2019333
https://doi.org/10.1109/JSEN.2009.2019333

bibliography 157

Association, 2016, pp. 17–32. isbn: 978-1-931971-33-1 (cit. on
pp. 3, 28).

[35] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak,
and J. Hester. “InK: Reactive Kernel for Tiny Batteryless Sen-
sors.” In: Proceedings of the 16th ACM Conference on Embedded Net-
worked Sensor Systems. SenSys ’18. Shenzhen, China: Association
for Computing Machinery, 2018, pp. 41–53. isbn: 9781450359528.
doi: 10.1145/3274783.3274837 (cit. on pp. 3, 42, 63).

https://doi.org/10.1145/3274783.3274837

	Dedication
	Acknowledgments
	Abstract
	Sommario
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Protect Against Power Failures
	1.2 Time Related Requirements
	1.3 Energy Awareness
	1.4 From Energy to Throughput
	1.5 Our Contribution
	1.6 Structure
	1.6.1 Introduction to Intermittent Computing
	1.6.2 State of the Art Analysis
	1.6.3 Contribution
	1.6.4 Evaluation

	2 Introduction to Transiently Powered Computing
	2.1 Intermittent Computation
	2.2 Forward Execution Problem
	2.2.1 Checkpoint Inconsistencies

	2.3 Time Without a Clock
	2.4 From Problems to Solutions

	3 Hiding Power Failures
	3.1 Checkpoint Based Solutions
	3.1.1 Static Checkpoint Solutions
	3.1.2 Dynamic Checkpoint Solutions

	3.2 Task-Based Solutions
	3.2.1 Constraints and Goals for Task-Based Systems
	3.2.2 Task-Based Solutions Overview

	3.3 Why Two Solutions to the Same Problem?

	4 Setting the Threshold
	4.1 The Conundrum of Threshold Selection
	4.2 EPIC results
	4.3 Overview of Threshold Management Solutions
	4.4 Shifting Perspective in Threshold Management

	5 Enabling Multitenancy
	5.1 Fundamental Concepts
	5.2 Tasks and Applications
	5.2.1 Tasks
	5.2.2 Applications

	5.3 Data Dependencies
	5.3.1 Greenhouse Example
	5.3.2 Data Dependency Semantics
	5.3.3 Task Operating on Machine
	5.3.4 Task Operating on Shared Phenomena Controlled by the World
	5.3.5 Task Operating on Shared Phenomena Controlled by the Machine

	5.4 Memory Model
	5.4.1 Write Output Data
	5.4.2 Read Input Data

	6 Scheduling Tasks
	6.1 Chapter Overview
	6.2 Minimum Throughput and Applications Priority
	6.3 Dynamic workload management
	6.4 Scheduler Initialization
	6.5 Task Selection and Deadlines Management
	6.6 React to Throughput's Drifts
	6.6.1 Managing Over-Performing Applications
	6.6.2 Managing Under-Performing Applications

	6.7 The parameter
	6.8 Scheduler Fairness
	6.9 Complete Overview

	7 Implementation
	7.1 Define Tasks
	7.2 Define Applications
	7.3 Creating a Task
	7.4 Scheduler Implementation

	8 Evaluation
	8.1 Evaluation Environment
	8.2 Extending SIREN Simulator
	8.2.1 Capacitor Simulator
	8.2.2 Extended SIREN Commands

	8.3 Evaluation Scenario
	8.4 Evaluation Baseline
	8.5 Outputs and Metrics
	8.6 Evaluation Results
	8.6.1 Stable Energy Source
	8.6.2 Underpowered Execution
	8.6.3 Fairly Stable Source With Energy Failures
	8.6.4 Gamma and Fairness Interaction
	8.6.5 Scheduler Stability

	9 Conclusion and Future Works
	9.0.1 Future Works

	 Bibliography

