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Abstract

The end of Dennard scaling over the last two decades has meant that computing systems

could no longer achieve exponential performance improvement through higher clock fre-

quency and transistor density due to the power wall problem. Heterogeneous computing

systems address this issue by incorporating specialized hardware to achieve better energy

efficiency and performance. In this context, Field Programmable Gate Arrays (FPGA)

have steadily grown in popularity as hardware accelerators, although the greatest obstacle

to their mainstream adoption remains the high engineering cost associated with develop-

ing FPGA-based applications. Despite the remarkable improvements in the effectiveness

of third-generation High Level Synthesis tools, they still require some domain-specific

knowledge and expertise to be used effectively. This thesis proposes a methodology

and a tool that further increase the accessibility of HLS technology by providing a high

level language frontend for the design of dataflow applications on FPGA. This frame-

work allows software developers to write C code without focusing on FPGA-specific

optimizations or concepts related to the dataflow model. The tool leverages the LLVM

compiler framework to apply dataflow-specific code transformations and FPGA-related

optimizations and outputs optimized code ready to be synthesized by state-of-the-art

FPGA synthesis tools. A performance model tailored for dataflow computations allows

obtaining accurate performance estimates before synthesis for different combinations of

available optimizations. An ILP formulation of the optimization problem is then used to

obtain the set of optimizations that maximizes throughput while respecting the FPGA’s

resources constraints. To validate this approach, we have tested the tool on different

unoptimized algorithms written in C and we have targeted MaxCompiler as a backend

dataflow synthesis tool. We have compared the performance obtained by these automat-
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ically optimized designs to their hand-optimized counterparts and obtained performance

which ranges from 0.5x speed down to 1.34x speedup, depending on the benchmark. From

the point of view of productivity, our automated optimization methodology obtains these

results in about a day of work by software developers, as opposed to the several weeks

of optimization by expert FPGA developers required to produce the hand-optimized

designs. These results show that our methodology allows to optimize the original code

and transform it into dataflow code optimized for FPGA synthesis with significantly

reduced development effort.
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Sommario

La fine del ridimensionamento Dennard nel corso degli ultimi vent’anni ha fatto si che

i moderni microprocessori non potessano ottenere un aumento esponenziale di perfor-

mance attraverso una frequenza di clock più alta e una maggiore densità di transistor. I

sistemi di computazione eterogenei affrontano questo problema incorporando hardware

specializzato per ottenere un miglioramento in performance ed efficienza energetica. In

questo contesto, le Field Programmable Gate Arrays (FPGA) sono sempre più utilizzate

come acceleratori hardware, sebbene l’ostacolo principale contro un’adozione più diffusa

di questa tecnologia rimanga il proibitivo costo di sviluppo. Nonostante i notevoli miglio-

ramenti dei tool di High Level Synthesis di terza generazione, questi richiedono comunque

esperienza e una conoscienza specifica di dominio per poter essere utilizzati in maniera

efficace. L’obbiettivo di questa tesi è proporre una metodologia ed un tool che migliorino

l’accessibilità della tecnologia di HLS mettendo a disposizione un frontend per linguaggi

di alto livello per il design di applicazioni dataflow su FPGA. Questo framework permette

a sviluppatori software di scrivere codice in C senza doversi occupare di ottimizzazioni

specifiche alle FPGA o concetti relativi al modello dataflow. Il tool sfrutta il compiler

framework LLVM per applicare trasformazioni specifiche per computazioni dataflow e

ottimizzazioni relative all’architettura target e produce come output codice ottimizzato,

pronto per essere sintetizzato su FPGA da appositi tool commerciali. Un modello di

performance specifico per computazioni dataflow permette di ottenere stime di risorse

accurate prima della sintesi per diverse combinazioni di ottimizzazioni. Una formulzione

ILP è utilizzata per risolvere il relativo problema di ottimizzazione per massimizzare il

throughput rispettando le limitazioni in termini di risorse hardware dell’FPGA. Per va-

lidare il nostro approccio, abbiamo testato il tool su diversi codici non ottimizzati scritti

XIII



in C e abbiamo scelto MaxCompiler come tool di backend per la sintesi del design da-

taflow. Abbiamo comparato le performance ottenute dai design generati attraverso il

nostro tool con design ottimizzati manualmente presenti nello stato dell’arte, ottenendo

performance variabili da 0.5x a 1.34x in speedup a seconda dei benchmark considerati.

In termini di produttività, la metodologia di ottimizzazione automatica proposta richiede

circa un giorno di lavoro da parte di uno sviluppatore software per produrre i risulta-

ti riportati, rispetto alle settimane di lavoro di ottimizazzione da parte di sviluppatori

per FPGA esperti richieste per produrre i design ottimizzati manualmente. Questi ri-

sultati mostrano che la metodologia proposta permette di ottimizzare e trasformare il

codice in ingresso in un codice dataflow ottimizzato per la sintesi su FPGA, riducendo

notevolmente lo sforzo di sviluppo.

XIV







Chapter 1

Introduction

In this chapter, we introduce the context in which this work is developed as well as the

definition of the problem we intend to tackle. In section 1.1 we introduce FPGAs and

their main components. In section 1.2, we briefly discuss the role of FPGAs in modern

computing. In section 1.3, we introduce HLS technology, in section 1.4 we introduce the

dataflow computational paradigm and in section 1.5 we define what are the problems

and limitations of modern HLS technology that we want to address via the proposed

methodology.

1.1 FPGA overveiw

Field Programmable Gate Array (FPGA)s are reconfigurable integrated circuits inten-

ded for custom hardware implementation. An FPGA is generally composed of three

main building blocks: Configurable Logic Block (CLB)s, also known as Adaptive Logic

Module (ALM)s on Intel FPGAs, input-output blocks and communication resources. In

the interest of brevity, from this point onward we will use only the terminology relat-

ive to Xilinx FPGAs, even though some architectural differences exist between different

vendors. CLBs are the main components of the FPGA, used to implement either combin-

ational or sequential logic. In Xilinx FPGAs, a single CLB is composed of a set of slices,

the number of which can vary according to the device. Each slice is, in turn, composed

of a set of Look-Up Table (LUT)s which store a combination of values that represent
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Figure 1.1: Schematic example of heterogeneous FPGA structure.

the outputs of the desired hardware function. A multiplexer reads the correct output of

the function stored in a memory cell according to the given combination of input bits.

Input-output blocks connect the internal logic to the I/O pins of the chip. Through their

own configuration memory, IO blocks allow to configure monodirectional and bidirec-

tional links as well as to set the voltage standards to which the pin must comply. The

interconnection resources interconnect CLBs and IO blocks, creating a communication

infrastructure that allows the realization of complex hardware circuits. In addition to

these basic components, modern FPGAs contain other hardware components such as

Block RAM cells (BRAM), processors, Digital Signal Processing (DSP) units and mul-

tipliers. Figure 1.1 shows a schematic example of a heterogeneous FPGA and its main

components.
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1.2. The role of FPGA

1.2 The role of FPGA

While FPGA initially flourished in networking and telecommunications, their domain of

application has expanded to include embedded system applications, due to their remark-

able energy efficiency, and more recently high-performance computing [1], data centers

and cloud computing [2][3][4]. Traditionally, High Performance Computing was domin-

ated by General Purpose Processors, since they were inexpensive and their performance

scaled with frequency in accordance with Moore’s Law. Since the mid-2000s, multicore

architectures became the new way to meet the increasing demand for performance as fre-

quency scaling was no longer a viable option, due to the escalation of power dissipation.

Multicore architectures forced developers to adopt parallel programming models to fully

exploit the computation capabilities of these systems. Given that multicore architectures

already introduced notable complexity in traditional GPP programming, heterogeneous

systems that couple GPPs with hardware accelerators such as GPUs and FPGAs became

a viable alternative since they could provide great performance benefits, especially for

very data-driven and compute-intensive applications [5]. In these scenarios, their spe-

cialized hardware allows to dedicate many more transistors to meaningful calculations

that in GPPs are devoted to caching and memory management hardware. Over the past

decade, architectural enhancements, increased logic cell count and clock frequency have

made it feasible to perform massive computations on a single FPGA chip at increased

compute efficiency for a lower cost. FPGA as a service has been pioneered by Amazon

with its F1 instances and is a growing trend. Microsoft introduced an interconnected

and configurable compute layer composed of an FPGA chip in its cloud computing en-

vironment through Project Catapult [6]. All of these factors make FPGA today one

of the major players in the HPC space, as well as for embedded applications. For this

reason, research surrounding FPGA development is instrumental in ensuring that this

technology is used to its full potential by all types of end-users. In the next section we

report a brief introduction to High Level Synthesis tools, that play a major role in the

democratization of FPGAs.

3
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1.3 High Level Synthesis technology

FPGAs were traditionally programmed through Hardware Description Languages, such

as Verilog and VHDL. While these languages can be effective to program small to

medium-sized, very efficient designs, the growing system complexity and the need for a

shorter time-to-market for FPGA applications has created a very active field of research

around CAD tools for FPGA development [7][8]. In particular, High Level Synthesis

tools aim to raise the level of abstraction, allowing FPGA developers to specify their

hardware design as high-level language programs. This idea of using high-level languages

for hardware specification is not limited to FPGA development, as it can be used for

example to design complex Application Specific Integrated Circuit (ASIC)s, but it is in

FPGA development that it is most useful, since FPGA designs can be easily deployed

and iteratively improved at a much lower cost compared to non-reconfigurable ASIC.

HLS technology can broadly be divided into three generations, according to [7]: the first

generation of tools, from the 1980s to the early 1990s, was mainly a research generation,

were many foundational concepts were introduced. However, for a number of reasons

these tools were a commercial failure and did not find a consistent user base. Among

the reasons, [7] cites the fact that at the time RTL synthesis was just beginning to take

a foothold in the community, and thus it was unlikely for behavioral synthesis to fill a

design productivity gap. Moreover, these tools used little known input languages such

as Silage, which represented a considerable hurdle for potential new users. Finally, the

inadequate quality of results and the domain specialization of some of these tools on

DSP design contributed to their limited success. The second generation, spanning from

the mid-1990s to the early 2000s, saw many Electronic Design Automation (EDA) com-

panies such as Synopsys, Cadence, and Mentor Graphics offering commercial HLS tools.

Once again, the second generation was, overall, a commercial and user failure. At this

point, designers who were used to RTL synthesis and were obtaining good and improving

results, were not willing to change their design methodology unless HLS offered equally

good or improved results with substantially lower effort and a gentle learning curve.

4
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Second-generation HLS tools did not offer that, and instead competed in the same space

by accepting behavioral HDLs as input languages, thus keeping the user base confined to

RTL-level designers. In addition, these tools generally produced low-quality results for

control dominated branching logic, and overall hard to validate results with high varying

time intervals. The third generation of HLS tools, developed from the early 2000s until

the present day, mostly use C, C++ or SystemC as input. Unlike the first two, this

generation of tools is enjoying a good amount of success. Among the reasons for this

success, are the fact that many of these tools focus on specific design domains, such as

dataflow or DSP, and thus are able to obtain better results, and that by accepting C-like

high-level languages as opposed to behavioral HDL, they effectively broaden the user base

to not only expert HDL designers. Moreover, since these tools use variations of software

languages, they can take full advantage of compiler optimization techniques which con-

tribute greatly to the achievement of improved design outputs. All these advancements,

coupled with the rise in popularity of FPGAs, make HLS technology a central theme

in computer architectures today. In particular, the proposed methodology will focus its

attention on the dataflow computational paradigm, that we introduce more in detail in

the next section.

1.4 The dataflow model

Dataflow Programming is a programming paradigm whose execution model can be rep-

resented by computation nodes containing an executable block or elementary operation,

having data streams as inputs and transformed data streams as output. These nodes are

connected to each other forming a directed graph, which represents the entire computa-

tion. An example of a dataflow graph is shown in figure 1.2. The theoretical foundation

for the dataflow programming model was first introduced by Kahn [9]. In Kahn Process

Networks, the nodes are sequential processes that communicate to one another via un-

bounded FIFO queues. Whenever the entry FIFO queues for a node are not empty, the

first values are processed and the output is sent to the FIFO belonging to the next node

5
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Figure 1.2: Graphic dataflow representation of a small program.

in the chain. Dataflow programming has since evolved into a methodology to exploit the

capabilities for parallel processing of modern computer architectures and accelerators,

as well as being the basis for several visual and text-based programming languages [10].

One of the earliest examples of dataflow programming used to exploit parallel architec-

tures is Streams and Iteration in a Single Assignment Language (SISAL), a text-based

functional and dataflow language derived from Val. It was created in the late 80s to in-

troduce parallel computation in the first multi-core machines [11]. Many other academic

dataflow programming languages have been presented since [12][13][14]. An example of

commercially successful dataflow visual programming language is LabView [15].

1.4.1 The dataflow atchitecture

The reason why the dataflow execution model offered an interesting alternative to the

classic von Neumann execution model comes from its inherent possibility for parallelism.

In the dataflow execution model, a program begins when input data is placed on special

activation nodes. When input data arrives at a set of input arcs of a node called fringe,

the node becomes fireable. A node is executed at an undefined time after it has become

fireable. This means that, in general, instructions are scheduled for execution as soon

6
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as the input operands become available. This model is fundamentally different from the

von Neumann scheme, where a global program counter dictates which instruction will be

scheduled for execution in the next cycle. In the dataflow model, multiple instructions

can execute simultaneously, provided that their respective inputs are ready. Moreover,

since the dataflow graph of the computation already describes the data dependencies

in the program, if multiple sets of data have to be computed with the same dataflow

graph, the execution of the following sets of data can begin before the first has finished

executing. This technique is known as dataflow pipelining.

Despite these promising features, producing hardware implementations of the pure data-

flow model has been challenging [16]. One of the sources of problems is the fact that the

model makes assumptions that cannot be replicated in practice, both in terms of memory

and computational resources. One of these assumptions is that the arcs connecting the

nodes are FIFO queues unbounded by capacity. Since having a memory unbounded by

capacity is practically unfeasible, a dataflow architecture has to rely on efficient storage

techniques for storing data in the FIFOs. From the point of view of computational re-

sources, the dataflow model assumes that any number of instructions can be executed

in parallel, as long as the respective data is available. Of course, this is not practically

possible, as each instruction has to be physically executed on a set of hardware resources

that are finite. In order to tackle these issues, different variations of the dataflow model

have been presented in the literature. In the following sections, we report some relevant

examples.

1.4.2 Static dataflow

The static dataflow architecture [17] was created to address the problem of unbounded

FIFO capacity. In this version of the dataflow model, each arc can hold at most one data

token. A node can fire if a token is present on each input arc and no token is present in

the output arcs. This check is implemented through acknowledgment signals that travel

in opposite directions to each data arc and carry an acknowledgment token. In this

model, the memory for each arc of the dataflow graph can be allocated at compile time
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and no complex hardware is needed to manage the FIFOs. However, the acknowledgment

tokens increase the data traffic of the system by up to two times [18] and increase the

time between successive firings of a node, which negatively impacts performance. This

model also severely limits the possibility to exploit parallelism among loop iterations,

often limiting the parallelism to simple pipelining [10].

1.4.3 Synchronous dataflow

Another relevant variation of the pure dataflow model is synchronous dataflow [19]. In

this model, the number of tokens consumed and produced by each arc of a node is known

at compile time. Due to these restrictions, only programs that can be expressed through

dataflow nodes with no data-dependent control-flow can be represented. On the other

hand, a program following this model can always be statically scheduled. Moreover, if a

dataflow graph does not follow the synchronous dataflow restrictions, but contains sub-

graphs which do, it may allow partial static scheduling. Especially in domains where

time is an important element of the computation, such as digital signal processing, these

properties are particularly relevant.

1.5 Problem definition

Despite all the advancements that third generations HLS tools have brought to the FPGA

community, FPGA development is still perceived as a big hurdle, even when compared

to other heterogeneous accelerators such as GPUs. Indeed, creating an optimized FPGA

design from scratch, even using modern HLS technology, requires very specific domain

expertise. To achieve good performance, the developer has to either guide the HLS tool

through FPGA-specific and architecture-dependent optimizations or learn to program

following a completely different computing paradigm through a Domain Specific Lan-

guage. An example of the former is the commercial tool Vivado HLS by Xilinx [20],

where the programmer needs to insert a number of pragmas to enforce specific hardware

implementations of a given portion of the program logic or handle the way in which the

8
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data is stored and partitioned in the different types of memories available on the FPGA.

This and many other design decisions factor into the quality of the end result. To obtain a

good quality design, the developer needs not only a detailed knowledge of the underlying

architecture, but also of the specific HLS tool and its idiosyncratic behavior. An example

where the synthesis tool requires the adoption of a completely different programming

paradigm is MaxCompiler by Maxeler Technologies [21]. In this case, the programming

language is a dataflow-specific DSL embedded in Java, which mixes traditional Java-style

programming with custom variable classes and operator overloading to create a dataflow

description of a given computational kernel, as well as an associated manager program.

Once again the developer requires an advanced understanding of the tool-specific syn-

tax, the dataflow computational paradigm, and the underlying architecture to produce

a good design. The problem that this thesis proposes to tackle is the reduction of the

gap between FPGA and software design time, by aiding the programmer with the semi-

automatic optimization of C-like software functions into dataflow designs for FPGA. We

have chosen the dataflow architecture as the target architectural model since it is general

enough to not be limited to a single application domain while being especially proficient

for data-driven and high-performance computations. Moreover, FPGAs are particularly

suited for the dataflow model due to their ability to spatially distribute memory elements

and functional units with customizable interconnections. Instead of trying to substitute

modern FPGA synthesis tools, our framework builds on top of them, by introducing an

additional frontend layer which automatically applies transformations and optimizations

based on the underlying toolchain of choice, as well as the specific FPGA architecture on

which the design will be synthesized. Thanks to the choice of the dataflow architectural

model, we are able to evaluate the effect of the applied optimizations more precisely and

therefore guide the behavior of our automated design space exploration process to deliver

automatically optimized designs. A first version of this work has been published as a full

paper at the 2018 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW) [22], and an extension of the work has been published at the 2019

IEEE International Symposium On Field-Programmable Custom Computing Machines

9
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(FCCM) [23] as a poster. In this thesis, we extend the work with respect to both of those

publications by adding an improved design space exploration model, new optimization

options and a new case study.

10



Chapter 2

State of the art

In the state of the art, many works have been presented with the aim of providing a more

accessible way to develop FPGA-based applications. This chapter is not a comprehensive

review, but presents the most relevant approaches regarding FPGA development tools.

In section 2.1 we review some examples of modern general-purpose HLS tools. These

tools generally take as input high-level language code and output a RTL description of

the circuit to synthesize on the FPGA. In section 2.2 we report examples of DSL for

FPGA development in different application domains. Differently from HLS tools, these

approaches use a domain-specific input language and leverage the characteristics of a

particular application domain to generate an optimized RTL design. In section 2.3 we

review the subset of DSL-based approaches that generate dataflow designs. In section 2.4

we review approaches based on source-to-source code transformation and optimization

that rely on existing HLS or DSL-based synthesis tools as backend. Finally, in section

2.5 we discuss how the works presented relate to the proposed methodology and highlight

possible shortcomings.

2.1 Modern HLS approaches

As we described in the introduction, third-generation High Level Synthesis technology

has become accepted by the FPGA community as an effective method to develop FPGA-

accelerated applications with less development effort and comparable results to tradi-
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tional HDL design. In the next paragraph, we report some examples of relevant HLS

tools in the state of the art.

2.1.1 Vivado HLS

Vivado HLS by Xilinx [20] is a commercial High Level Synthesis tool for FPGA de-

velopment which supports C, C++ and SystemC as input languages. Formerly known

as AutoPilot [24], it was acquired by Xilinx and has been continually supported and

improved, and is today one of the most popular FPGA HLS tools on the market. It

includes a complete design environment and enables users to write, test and optimize

their code by iteratively applying different optimizations through the use of FPGA-

specific libraries and data types. The reports available before and after synthesis allow

developers to identify bottlenecks and other optimization issues in their code and select-

ively optimize portions of the resulting hardware design. The tool leverages LLVM as

an underlying compiler framework to extract a flexible intermediate representation and

apply HLS-specific optimizations. Despite the extensive documentation, the tool is very

complex and requires considerable expertise to be used effectively. Through a series of

C++ libraries and optimization directives, it enables the designer to implement different

computational paradigms, from master-slave to dataflow designs, with a great amount

of flexibility. In addition, the designer needs to apply loop-specific optimizations, such

as loop unrolling and pipelining, to extract the maximum level of parallelism from the

computation, as well as choose between the different FPGA memory resources to store

data. This results in a very powerful tool, which nonetheless demands a considerable

development effort in order to navigate the design space and obtain a well-optimized

code.

2.1.2 Bambu

Bambu [25] is an academic HLS framework that supports most C constructs. It leverages

GCC to perform code optimizations such as constant propagation and loop unrolling, as

well as other HLS-specific transformations. It aims at maintaining the semantics of the
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original application with respect to memory access and offers a highly customizable flow

through an XML configuration file which enables to control, down to which algorithms

should be used, the behavior of the tool. The tool outputs a HDL description of the code

which can then be synthesized through specific vendors’ synthesis tools.

2.1.3 LegUp

LegUp [26], an open-source HLS tool that aims to enable the use of software techniques

in hardware design. To achieve this, the tool accepts standard C programs as input

and automatically compiles them to a hybrid architecture containing an FPGA-based

MIPS soft processor, as well as other custom hardware accelerators. LegUp is written

in C++ and leverages the LLVM compiler framework for standard software compiler

optimizations, and implements within the framework a custom backend for hardware

synthesis. The HLS flow of the tool starts by running the program to be synthesized on

the MIPS soft processor. This enables to profile the application and suggest an optimal

hardware/software division for different portions of the program. At this point, the

portion of the program to be accelerated by custom hardware goes through the actual

HLS passes and is transformed in RTL, where standard commercial tools are used to

synthesize the design.

2.2 DSL for FPGA-based design

Another trend that has been developing parallel to HLS technology for FPGA, is that

of Domain Specific Languages. These languages are developed specifically for a given

application domain, such as image processing, digital signal processing, and others. By

leveraging the specificity of the target domain, they are able to produce very optimized

hardware accelerators. The main downside of these approaches is that they force FPGA

designers to learn new languages and specific syntax that is only applicable to a restricted

domain. Moreover, DSLs make it harder to identify common problems among different

domains, thus reducing the possibility of IP reuse. In the following section, we present

13



Chapter 2. State of the art

some relevant FPGA DSLs in the state of the art.

2.2.1 Darkroom

Darkroom is a domain-specific language and compiler for image processing applications.

The architectures targeted are ASICs and FPGAs. Based on the in-line buffering tech-

nique, Darkroom realizes very efficient hardware implementations of the specified pro-

gram as an image processing pipeline. Darkroom specifies image processing algorithms as

functional Directed Acyclic Graphs of local image operations. In order to efficiently target

FPGAs and ASICs, the tool restricts image operations to static, fixed-size stencils. The

programming model is similar to other image processing DSLs like Halide [27]. Images

are specified as pure functions from 2-D coordinates to the values at those coordinates.

Image functions are declared as lambda-like expressions on the image coordinates, the

application of different image functions in succession creates the specification for the

image processing pipeline to implement.

2.2.2 GraphStep

GraphStep [28] is a domain-specific compute model to implement algorithms that act on

static irregular sparse graphs. The work presented in [29] defines a concrete programming

language for GraphStep with a syntax based on Java. The language defines specific

classes and functions to operate in the graph domain, such as node and edge classes

and supports some atomic data types. Each of these classes supports different types of

methods, such as "forward", "reduce tree" and "update" methods, which are expected

to behave according to specific rules dictated by the GraphStep compute model. The

framework has been tested on graph relaxation algorithms, CAD algorithms, semantic

networks, and databases.

2.2.3 FROST

FROST is a unified backend that enables to target FPGA architectures. The input

languages supported are Halide [27], Tensorflow [30], Julia [31] and Theano [32]. The
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main idea behind the framework is to provide a common intermediate representation, the

FROST IR, that different DSLs can be compiled to, through an appropriate frontend.

The FROST IR leverages a scheduling co-language to specify FPGA specific versions

of common optimizations such as loop pipelining, loop unrolling and vectorization as

well as the type of communication with the off-chip memory. In this way, FROST is

able to generate C/C++ code to target FPGA HLS tools such as Vivado HLS and

SDAccel. Although this approach is in part related to our methodology, it presents

some key differences. Firstly, the frontend languages supported are mainly DSLs or

domain-specific libraries. While a common backend to target FPGAs does increase the

probability that domain experts already invested in those particular languages would

consider FPGA as a possible architecture, it does not address the problem of offering

an easy point of access to software developers outside of those domains. Moreover, our

approach shifts the emphasis from the application domain to the computational model,

thus allowing a naturally broader range of applications and uses.

2.3 Dataflow-based design methodologies targeting FPGA

In this section, we report some examples in the state of the art of languages and tools

which leverage the dataflow computational model to design FPGA applications. We also

give a brief description of MaxJ, a dataflow DSL for FPGA which is targeted as a backend

language by the methodology proposed in this thesis.

2.3.1 RIPL

Rathlin Image Processing Language (RIPL) is a high-level image processing domain-

specific language for FPGA. The RIPL language employs a dataflow intermediate repres-

entation based on a framework for describing rule-based dataflow actors [33]. The target

backend for the RIPL IR is the CAL dataflow language [34], which is then compiled

into Verilog. The RIPL IR supports different types of dataflow scheduling properties

for its higher-level algorithmic skeletons. Some fall into the category of synchronous
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dataflow since all the actors produce and consume the same number of image pixels at

every firing, others are categorized as cyclo-static dataflow [35]. The cyclo-static data-

flow paradigm still allows for static scheduling, but also allows for actors to consume

and produce amounts of tokens which vary in a cyclical pattern. RIPL showcases how

the dataflow paradigm is a good fit for FPGA computation since it allows independent

computational resources to operate in parallel and allows to generate hardware pipelines

to hide latency.

2.3.2 GraphOps

GraphOps [36] is a modular hardware library created for the fast and efficient design of

graph analytics algorithms on FPGA. Despite the fact that these algorithms are tradi-

tionally seen as fit for general-purpose architectures rather than hardware accelerators,

GraphOps proposes an alternative model where a set of composable graph-specific build-

ing blocks are linked together. Graph data are streamed to and from memory in a data-

flow fashion, while computation metadata are streamed through the various GraphOps

blocks as inputs and outputs. In order to enhance spatial locality when accessing ele-

ments of the graph, a new graph representation optimized for coalesced memory access

is also proposed. Most of the logic in the algorithms presented works well with a data-

flow paradigm since feedback control is very limited. The cases where this property is

violated, for example in the case of updating a global graph property for all nodes, are

handled by ad-hoc control blocks.

2.3.3 Optimus

Optimus [37] is a framework designed for the implementation of streaming applications on

FPGA. The input language accepted by the framework is StreamIt [38], an architecture-

independent language for streaming applications. Through this language, the program-

mer is able to specify a series of filters interconnected to one another to form a stream

graph. Stream graphs defined in StreamIt are effectively dataflow graphs that follow the

synchronous dataflow paradigm. Optimus uses a specialized filter template to implement
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the filters specified in the input stream graph. A filter is generally composed of input

FIFOs, output FIFOs, memories accessed by the filter, the filter itself and a controller.

The filters are interconnected to one another by sharing the same FIFO queues. The

framework allows for two different types of hardware orchestrations or modes of execu-

tion. The first is a static scheduling mode, where the compiler dictates the number of

executions of each filter. In this type of scheduling, double buffering is used between

pairs of filters to provide communication-computation concurrency. The other option

is a greedy scheduling, where filters execute whenever data is available and are blocked

upon attempting to read an empty queue. This mode of execution allows for a trade-off

between the size of the queues and overall throughput. Optimus employs a variety of

FPGA-specific optimizations to optimize the overall application throughput, including

queue access fusion, which makes efficient use of the FPGA SRAM characteristics, and

flip-flop elimination.

2.3.4 CAPH

CAPH [39] is a dataflow DSL for describing, simulating and implementing streaming

applications. It is based upon two layers or levels of abstraction. The first is an Actor

Description Language (ADL), used to describe the behavior of dataflow actors as a set

of transition rules involving pattern matching on input values and local variables. The

second is a Network Description Language (NDL), describing the structure of the data-

flow networks by applying actors, interpreted as functions, to values representing wires.

Contrary to similar projects, CAPH chooses a purely functional formalism to represent

dataflow actors. The CAPH compiler can be used to generate a software implementation

in SystemC or produce a VHDL implementation, ready to be synthesized on an FPGA.

In a recent publication [40], the authors of CAPH reflect on the reception that the lan-

guage has received since its release, and speculate that one of the reasons why it couldn’t

achieve widespread success was that it demanded from developers to abandon the tra-

ditional imperative language paradigm and adopt a completely different programming

model. Moreover, the authors mention that the possibility of implementing soft-actors
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written in C/C++ would have been an attractive feature. In this respect, the meth-

odology we propose aims at offering a way to implement dataflow kernels optimized for

FPGA without abandoning the more common high-level programming languages and the

imperative programming model.

2.3.5 MaxJ

MaxJ is a domain-specific language to design dataflow kernels for FPGA. The MaxCom-

piler toolchain from Maxeler Technologies [21] allows to program several dataflow ker-

nels on a DataFlow Engine (DFE), which correspond to an FPGA, following Maxeler’s

Multiscale Dataflow Computing paradigm based on the synchronous dataflow model.

The idea of Multiscale Dataflow Computing is to employ the dataflow model at differ-

ent levels of abstraction: at a system level, multiple DFEs can be connected to form a

supercomputer, at the architectural level the memory accesses are decoupled as much as

possible from arithmetic operations, which are carried out with massive amounts of par-

allelism using deeply pipelined structures. From an architectural standpoint, a DataFlow

Engine is composed of a large number of dataflow cores, simple hardware structures that

carry out only one type of arithmetic computation. The data is streamed directly from

memory to these dataflow cores, where the intermediate computation results flow directly

from one dataflow core to another and the results are eventually streamed back to the

memory. In order to achieve high throughput, DFEs make use of what in MaxJ is called

Fast Memory (FMem), which refers to the BRAM blocks present on the FPGA chip,

to maintain data locality and ensure that the dataflow cores have high-speed parallel

access to data. Conversely, the input and output data can be streamed directly through

the PCIe or from DRAM, referred to in MaxJ as Large Memory (LMem). The Maxeler

Multiscale Dataflow systems can use multiple DFEs to carry out dataflow computations

through a high-speed interconnect called MaxRing. From a programming standpoint,

the developer needs to provide a host code, which can be written in multiple languages

like C, Python, and R, that runs on CPU and performs function calls to one or more

dataflow engines. The dataflow kernel specification and its attached manager program
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are specified in .max files, written in the MaxJ DSL. The .max files containing the data-

flow kernel is a description of the computation that needs to be performed in therms of

arithmetical and logical operations, whereas the manager describes the way in which the

kernel is expected to interact with the host, how much data needs to be transferred and

how the kernel interface relates to the host-side kernel call. MaxJ is a language embed-

ded in Java, which makes use of custom classes, overloaded operators and proprietary

libraries to effectively create a way to specify the structure of the underlying dataflow

graph of a dataflow kernel. To be able to effectively program a Maxeler DFE the pro-

grammer needs to adopt a different programming paradigm, where the statements of the

program actually represent interconnections between wires and hardware resources, and

constructs like for loops represent a macro for hardware replication. Despite it being

embedded in a high-level language, MaxJ is more akin to a high-level hardware descrip-

tion language. For this reason, MaxCompiler offers an effective way to program dataflow

applications for FPGA experts, but the difficulties posed by the programming model and

tools prevent it from becoming widespread in its adoption.

2.4 Source-to-source optimizers targeting FPGA

In this section, we list the main state-of-the-art works that use source-to-source code

transformation and optimization strategies to target existing FPGA-based synthesis tools

as a backend. These tools share similar objectives and strategies with the methodology

proposed in this thesis, but differ from it in some respects and fail to meet some of the

objectives outlined in the problem definition section of the introductory chapter, as will

be discussed in section 2.5.

2.4.1 Hipacc

Hipacc [41] is a framework composed of a DSL and a source-to-source compiler for image

processing. Originally created to target Nvidia and AMD GPUs, it has been extended

to target FPGA [42]. The DSL is implemented through a C++ template and language-
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specific classes. Operator kernels are defined in a Single Program Multiple Data (SPMD)

context, similar to CUDA kernels. Custom operators are defined by inheriting the Kernel

class defined by the framework and overriding the appropriate methods. DSL-specific

pragmas are introduced to enable customized bit-widths, The source code is compiled

into an Abstract Syntax Tree through the LLVM compiler framework, using Clang as a

C++ frontend. After applying optimizations appropriate for image filters and vendor-

specific transformations, the tool generates code that is later synthesized by HLS tools

such as Vivado HLS.

2.4.2 FAST/LARA

A framework that aims to solve a similar problem to the ones laid out in the problem

definition section of the introduction is FAST/LARA [43]. Specifically, the problems

identified by the authors are the need for an intuitive, concise and well-understood lan-

guage to specify dataflow designs and parametrizable optimization strategies that allow

design space exploration and code reuse. The frontend language proposed is FAST,

which is based on C99 syntax with the addition of some unique APIs to express dataflow

computations. In order to specify the possible optimizations applicable to the code, the

FAST language is coupled with LARA [44], an aspect-oriented language for embedded

systems which enables to select compiler optimization strategies for specific portions of

the code. The compilation backend of the framework is MaxCompiler. After the first

compilation, the feedback from the backend compilation process is used to drive the suc-

cessive design space exploration, until certain user-specified requirements are met. The

aspect-driven optimization strategy relies on different types of aspects: system aspects,

which capture system-level optimizations such as software/hardware partitioning, imple-

mentation aspects, which focus on low-level optimizations such as operators optimization,

and development aspects, which capture transformations that have an impact on the de-

velopment process such as debugging. Using LARA the user can implement and combine

these aspects to enable systematic design space exploration of all the optimization options

exposed by FAST.
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2.5 Unsolved issues and proposed solution

The main issue that prevents modern HLS technology from finding mainstream adoption

among developers outside of FPGA experts, stems from the fact that these tools provide

a variety of design and optimization options which are necessary for these tools to deal

effectively with the complexities of hardware synthesis but force the users to develop a

strong expertise and in-depth knowledge of the tool and architecture. On the other hand,

DSL-based approaches reduce the complexity of the process by focusing on a particular

application domain and by introducing a language that is designed to restrict the FPGA

design space so that more specific optimizations become possible. The main drawbacks of

these approaches are that the users need to learn how to program in very niche languages

which are often limited in their use to a particular tool or application domain, and in

the case of dataflow-based DSL learn to program in a completely different programming

paradigm from the more common imperative languages. Our solution aims to solve these

limitations by accepting standard C code as a frontend language and deals with the

complexity of the design space by restricting the types of target designs to dataflow-

based accelerators, which allows for an effective automatic optimization process. The

tools presented in section 2.4 have some similarities to the approach proposed in this

thesis but differ in some key aspects. Despite implementing source-to-source compilation

to automatically optimize the code, Hipacc restricts the domain of application to image

processing kernels and automatically applies optimizations specific to this domain. Our

approach is more general since it applies different optimizations in order to optimize the

specific dataflow function specified in terms of throughput and hardware resources used,

regardless of its domain of application. Moreover, Hipacc is compiled through a DSL,

which inherently restricts the usability of the tool by non-expert designers. Despite the

usefulness of presenting a more familiar language as a frontend to incentivize developers to

explore the possibilities offered by FPGA dataflow designs, the FAST/LARA framework

introduces several complications that simply move the problem elsewhere: the LARA

aspect-oriented language is possibly just as unfamiliar to the vast majority of software
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developers and the need to program FPGA-specific optimizations through the use of

compilation pragmas, although similar to already existing HLS approaches such as the

one offered by Vivado HLS, does not diminish the amount of FPGA-specific expertise

necessary to develop an optimized application. In the following chapter, we outline more

in detail how the proposed methodology deals with these limitations to increase the

productivity of FPGA-based design.
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Proposed methodology

In the following chapter, we outline the proposed methodology and describe in detail how

the tool we have implemented allows a non-expert user to obtain an optimized dataflow

kernel synthesizable on an FPGA starting from high-level C code. In section 3.1 we

describe the overall development flow and all the major components of the framework,

in section 3.2 we describe how the input code is analyzed and which transformations are

applied in order to obtain a dataflow representation of the computation and section 3.3

describes the dataflow intermediate representation that is used to apply all the available

optimizations. Section 3.4 describes those optimizations in detail, section 3.5 outlines the

semi-automated design space exploration process and section 3.6 describes the backend

code generation phase.

3.1 Proposed design flow

This section describes the overall design flow of the methodology proposed in this thesis

and the main components of our framework. A summary of this design flow is depicted in

figure 3.1. The framework we present takes as input a C source file, containing a function

we want to transform into a dataflow kernel. We start from the assumption that the user

has identified that part of the code as a bottleneck in a particular program, and wants

to build a dataflow accelerator for that function. This assumption is reasonable, in the

sense that the use of profilers such as perf [45] or valgrind [46] to identify computational
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bottlenecks is not uncommon among software developers. We imagine the typical user of

our framework as an expert developer who is concerned with performance improvement

on a specific application and is aware of the possibility of hardware acceleration but does

not possess the expertise or the resources, in terms of development time, to optimize by

hand an accelerator himself.

Once the portion of the program to accelerate has been extracted into a function, the

user can insert it into a simple template we provide to start the code transformation

process. Internally, we obtain the LLVM IR of the function from our template by call-

ing Clang [47], the C language frontend for LLVM. Alternatively, the user can directly

invoke the code transformation tool from the command line on a .ll file, which is an

LLVM IR module obtained through an LLVM frontend compiler, and specify the name

of the function he/she wants to accelerate. Optionally, the user can decide to specify

extra arguments representing a combination of available optimizations. If this is the

case, the tool will produce the specified version of the kernel as a starting point for the

design space exploration process. If no arguments are specified, the kernel is first trans-

formed into a non-optimized version, and the later design space exploration will inform

the tool on the optimal combination of optimizations to apply. The second step of the

proposed methodology involves a series of code normalization steps and analysis steps,

some of which are existing LLVM passes and some are custom passes implemented for our

specific needs. A complete list and detailed explanation of these analyses and transform-

ations is available in section 3.2. The purpose of this normalization phase is two-fold:

onto one hand, we want to apply all possible transformations to the code that, while

preserving semantical equivalency, make it easier for the following transformations steps

to get from an imperative language like C to a dataflow representation of our function.

On the other end, with some simple analysis steps, we check if any characteristics of

the input code prevent it from being successfully translated into our backend language.

In fact, while our tool accepts most constructs of the C language, at present it requires

the code to have some characteristics, for example, no recursive function calls, to ensure

a correct translation. Some of these requirements are not necessary from a theoretical
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standpoint, but lifting them would require a good amount of development effort for a

comparatively small gain in the expressiveness allowed in the code. From a methodolo-

gical standpoint, most of these do not represent a real limitation of our approach and

could be integrated into the tool at a later stage of development. After the normaliza-

tion passes have been applied and the function as been deemed fit to be translated into

a dataflow kernel, the imperative code is transformed into a dataflow graph intermediate

representation. This representation introduces an important element of flexibility in our

methodology. At this stage of the translation process, the code has already been trans-

formed from a sequence of imperative statements into a dataflow representation of the

computation, where each node represents an independent computational resource, and

the data flows from one node to the other to compute the expected output. Nonetheless,

this representation is still agnostic to all the implementation-related and architectural

constraints, therefore it can be used to target different dataflow backend languages. Once

we have a first dataflow graph representation of the function, the design space explora-

tion module analyzes the graph to identify the optimal combination from the available

optimizations that maximizes the overall throughput without exceeding the hardware re-

sources available on the FPGA. All the optimizations are applied to the dataflow graph

and its metadata, to obtain the final dataflow representation that will be translated into

the target backend language. In this phase, we start to introduce architectural elements

and hardware constraints into the optimization process which are essential to obtain a

working and optimized design. To maintain as much decoupling as possible between

architecture-agnostic transformations and implementation details, the domain space ex-

ploration module uses a target-dependent resource estimator, that traverses the dataflow

graph and estimates the amount of hardware resources required for its implementation,

to infer the impact on hardware resources of code transformation that ultimately result in

hardware replication, insertion of memory elements for parallel data access and increase

or decrease of latency for the design. Together with target-independent transformations,

the design space exploration process includes some target-dependent optimizations that

leverage different possible implementations of hardware modules, the amount of pipelin-
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Figure 3.1: Steps of the translation and optimization process. After a first compilation step with

Clang, our framework takes as input the LLVM IR source file and an initial optimization configuration

and produces a dataflow intermediate representation of the design. A technological library that

contains empirical data on the available hardware resources and the dataflow IR are taken as input

by an optimizer that generates the optimal configuration of parameters which is used to generate the

final synthesis-ready code.

ing for functional units and some degree of control over synthesis frequency. After all

the optimizations have been applied, the final version of the dataflow graph is given to

the backend translation module, which produces as output the optimized version of the

code. To verify the results of the proposed approach, we have selected MaxCompiler [21]

as a backend synthesis tool. Our framework produces two MaxJ source files containing

the implementation of the dataflow kernel and its related manager. The framework also

produces a test host code that is used to simulate the design and perform a basic check

for semantical equivalency between the software and hardware implementations over a

randomly generated set of input values within specified ranges. Once the user has veri-

fied if the generated design satisfies their needs, he/she can use the backend toolchain to

synthesize the design and deploy it to an FPGA device.
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3.2 Code analysis and transformation

In this section we discuss in detail the analysis and transformation applied to the input

code to get from an imperative description of the computation to a dataflow representa-

tion. In the first paragraph, we discuss the assumptions that we make on the set of input

functions that our framework is able to translate, some of which are necessary for the

subsequent set of transformations. In the second paragraph, we discuss the analysis and

normalization steps applied, how they affect the code and their utility in transitioning

to the dataflow IR.

3.2.1 Underlying assumptions

In terms of overall code structure, we assume that the computation we want to accelerate

can be structured as a loop over a given, generally large, amount of iterations, that can

contain other arbitrarily nested loop structures, function calls, arithmetical and logical

operations. While this assumption is not a trivial restriction on the type of functions that

are suited for translation through the proposed methodology, it reflects the role that the

proposed framework is intended to fulfill: this methodology is not intended as a general

way to translate any type of computation to a dataflow architecture. There are several

reasons for this choice, firstly, the problem of transforming any type of program that

can be expressed in C as a dataflow kernel is too general, and the results obtained by

such an effort risk being too hard to optimize, resulting in a failure similar to the one of

first and second-generation HLS technology. Moreover, structuring the input code as an

iteration over a large amount of data is precisely where a dataflow accelerator can obtain

good results, since it is, in essence, a complex pipelined structure for processing data in

a streaming fashion, and if the code can not be conceptualized in a similar way, perhaps

the developer should explore different means of acceleration. All the subsequent analyses

rely on this assumption since the iterations of this outer loop are interpreted as ticks

for our synchronous dataflow accelerator. This does not mean that the ticks coincide

with physical clock cycles on the hardware device, or that the kernel ticks and outer loop
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iterations are in a 1:1 correspondence in the final translation since several factors can

intervene in changing the pace at which input data is read and the latency of the different

portions of the hardware pipeline. The second restriction we put on the input code is

that the outer loop should not have any loop-carried dependencies, outside from reading

or writing variables accessed through pointers passed as arguments to the accelerated

function. This is not a restriction that has to do with the proposed methodology but

is one of the current limitations of the tool. A third assumption regards the absence of

recursive function calls since these are generally not well-suited for hardware acceleration.

If possible, the user should modify the algorithm to perform the same computation

iteratively. The fourth assumption on the input code is that all the loops present in the

function with a nesting level greater than 1 have a bounded number of iterations. Lastly,

we assume that the input parameters of the functions passed as pointers do not alias,

both in terms of the initial memory address passed to the function, and all subsequent

accesses performed through pointer arithmetic form that base address. This assumption

is not unreasonable, since the use of different pointers to access the same memory location

is not generally advised, and can be remedied by writing the code to abide by this rule.

The reason behind this assumption is that memory accesses performed on the pointer

arguments of the function through the iteration variable of the outermost loop will be

interpreted as reading elements from a stream of data or writing to it, and streams

are assumed to be non-overlapping and identified uniquely through the corresponding

pointers in the original code.

3.2.2 Code normalization and analysis

The proposed tool operates within the LLVM compiler framework, and makes use of

many analysis and transformation passes already implemented within it, as well as some

custom passes. The LLVM framework provides an array of tools that allow building

upon existing compiler technology and theoretical knowledge and is particularly suited

for extensions and implementation of new tools due to its very modular nature. In the

next paragraph, we give a brief introduction to LLVM and the LLVM IR and define some
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concepts that will be mentioned later in the text.

Introduction to LLVM

Traditional static compilers present a modular structure composed of three main com-

ponents: a frontend, an optimizer, and a backend. The frontend deals with language-

specific lexical analysis and parsing, as well as statements and data structures lowering.

It transforms the code in an Abstract Syntax Tree (AST), which can be converted to

another intermediate representation for optimization. The optimizer is usually mostly

independent from the source language and target and performs a broad variety of ana-

lyses and transformations to improve the code running time and eliminate redundancy.

The backend is responsible for mapping the code onto the target instruction set. In

doing this, the objective is to generate not only correct code, but good code that takes

advantage of the features offered by the target architecture. The main advantage of the

three-phase compiler design is its flexibility: the compiler is able to support different

frontends, so long as they all produce the same intermediate representation, as well as

multiple backends for different architectures while maintaining the same core optimizer.

Although this three-phase approach is well accepted in theory, it is very hard to fully

realize. The LLVM compiler framework represents a good example of how this type of

design can facilitate further developments in compiler technology, having given birth to

numerous sub-projects as well as a number of independent projects that use LLVM as

a starting point. In the case of this work, we relied on the LLVM C frontend compiler,

Clang, to provide a reliable frontend for the C language. In terms of the optimizer, our

methodology takes advantage of the features presented by the LLVM IR and some op-

timization options, aiming towards compatibility with multiple frontends which support

the LLVM IR as output, and presents a custom dataflow intermediate representation

which builds upon the features of the LLVM IR to provide a similar starting point for

dataflow-specific optimizations. This intermediate representation provides an opportun-

ity to target different backend synthesis tools by simply substituting the code generation

portion of our tool. The LLVM IR is a low level RISC-like virtual instruction set in three
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address form. It allows linear sequences of simple instructions, like add, sub, compare

and branch, as well as some high-level instructions like call and ret, which abstract away

calling conventions and getelementptr, used to handle pointer arithmetic. The LLVM

IR is strongly typed, with primitive types like i32 and float, and pointer types like i32∗.

Functions and statements are also typed. The LLVM IR is Single Static Assignment

(SSA)-based, allowing for more efficient optimizations. This means that in each func-

tion, for each variable %foo, only one statement exists in the form %foo = ..., which is

the static definition of %foo. In the code snippet below we show two simple functions

which add two numbers, one in a straightforward way and the other recursively, and their

corresponding translation into LLVM IR.

unsigned foo(unsigned a, unsigned b) {

return a+b;

}

unsigned bar(unsigned a, unsigned b) {

if (a == 0) return b;

return bar(a-1, b+1);

}

define i32 @foo(i32 %a, i32 %b) {

entry:

%tmp1 = add i32 %a, %b

ret i32 %tmp1

}

define i32 @bar(i32 %a, i32 %b) {

entry:

%tmp1 = icmp eq i32 %a, 0

br i1 %tmp1, label %done, label %recurse

recurse:

%tmp2 = sub i32 %a, 1

%tmp3 = add i32 %b, 1
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%tmp4 = call i32 @bar(i32 %tmp2, i32 %tmp3)

ret i32 %tmp4

done:

ret i32 %b

}

Other than being implemented as a language, the LLVM IR is also defined in three

isomorphic forms: the textual format corresponding to the .ll file extension which is the

one shown above, an in-memory data structure and a bytecode format, an efficient on-

disk binary format corresponding to the .bc file extension. The LLVM optimizer operates

on the in-memory IR representation through a series of steps called passes. A pass is a

pipeline stage that operates a particular code analysis, usually producing useful metadata

for subsequent passes, or some code transformation. An LLVM pass can inherit different

pass interfaces depending on the granularity and type of the transformation or analysis it

performs, that can operate at the module level, function level or basic block level. It also

allows to specify the dependencies of the pass, in terms of transformations and analysis

it requires, and its effect on the IR in terms of analysis and code properties it preserves

or invalidates. These features allow writing passes in a completely modular fashion while

ensuring that a given pass can clearly specify the preconditions necessary for it to perform

its intended functionality. In the following paragraph, we report firstly the main analysis

passes on which our tool relies, then the full list of LLVM transformation passes applied

during the normalization process, describing their function and their purpose in this

context. Figure 3.2 reports the sequence of passes in order of application. The version of

LLVM employed is LLVM 4.0. The input for the normalization process is the LLVM IR

for the function that we want to accelerate, compiled without any initial optimization.

Dominator Tree analysis

This analysis implements in LLVM the concepts of dominators and dominator tree in the

CFG. These concepts are very commonly used in compilation theory, here we report the
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Figure 3.2: Normalization passes applied to the input LLVM IR in order of application.

definitions of these terms. In control flow graphs, a node d dominates a node n if every

path from the entry node to n must go through d. A node d strictly dominates a node

n if d dominates n and d 6= n. The immediate dominator of a node n is the unique node

that strictly dominates n but does not strictly dominate any other node that strictly

dominates n. Every node, except the entry node, has an immediate dominator. A

dominator tree is a tree where the children of each node are those nodes it immediately

dominates. Because the immediate dominator is unique, it is a tree. The dominator tree

analysis of LLVM exposes an interface to inquire about whether a particular basic block

in the CFG dominates, or strictly dominates another and other related questions.

Scalar Evolution analysis

The LLVM Scalar Evolution (SCEV) analysis carries important information on the evol-

ution of scalar values, which in this case refers to single variables or constants, across

different loop iterations. The SCEV analysis pass exposes an interface that maps values
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Figure 3.3: Examples of do-while and while loops as natural loops.

in the LLVM IR to SCEV expressions. These expressions form a three-like symbolic rep-

resentation of the evolution of each value across loop iterations, in terms of the operators

that are applied to it and the other variables involved in its evolution. Moreover, the

SCEV analysis allows to infer the trip count of loops and whether this value is a constant

determined at compile-time.

Loop Info analysis

This analysis pass provides an interface to inquire about the nesting structure of an

LLVM IR function. The analysis identifies loops in the function and their hierarchical

organization, and associates each basic block contained in a loop structure to the corres-

ponding loop metadata. LLVM recognizes as loops only natural loops, which are defined

as having only one entry node, called header, and a backedge that enters the loop header.

Figure 3.3 shows examples of natural loops. This analysis does not identify as loops com-

plex loops nor all the strongly connected components in the CFG. Moreover, this pass

calculates on the fly information on whether a loop has a pre-header, the number of

backedges to the header, the successor blocks of the loop and many others.
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Function inlining

We implemented a custom function inlining policy based on our assumption of non-

recursion and the target-dependent technology library. Whenever possible, we try to

inline each function call to allow further constant propagation and optimization. In this

case, we are not concerned with code size or modularity at the function level, since our

primary objective is ultimately to construct a complete dataflow graph of the compu-

tation, to later apply cost-saving optimizations if the FPGA resources are scarce. The

main exception to this policy are mathematical functions like exp() from ”math.h”, for

which the target synthesis tool offers a specific hardware implementation. The functions

to be inlined as marked by our pass with the ’alwaysinline’ attribute, then we run the

LLVM AlwaysInlinerLegacyPass to perform the actual inlining procedure.

Memory to register pass

This is a standard LLVM pass that promotes memory references to be register references.

In the LLVM IR, the alloca instruction is used to allocate memory on the stack frame of

the currently executing function and is automatically released when the function returns.

To express reading a value from memory the IR uses a load instruction, and to write a

value to memory it uses a store instruction. If an alloca instruction only has load and

store as uses, the instruction is eliminated and promoted to a register. We define the uses

of a given IR instruction I as the set of instructions S such that the variable defined by

I appears as one of the operands for each s in S. The alloca instruction is transformed

by using dominator frontiers to place φ nodes, then traversing the function in depth-first

order to rewrite loads and stores as appropriate. A φ node is an instruction used to

specify which version of a variable should be chosen at a confluence point, depending

on the preceding basic block. This transformation pass is essential to enable further

optimizations.
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Constant Propagation

We use the LLVM ConstantProp pass to perform simple constant propagation. It re-

places instructions that contain constant values as operands with the result. For example,

it substitutes all the uses of instructions like %foo = add i32 1, 5 with the corresponding

result, the constant i32 6 in this example, and eliminates the instruction.

Switch lowering

The LLVM IR has a switch instruction as a generalization of the br, or branch, instruc-

tion, allowing a branch to occur to one of many possible destinations. Since at present

our tool does not support this construct, we use the LLVM SwitchLoweringPass to

transform switches into simple branches.

Loop rotate

We implemented a custom loop rotation pass to allow safe loop-invariant code motion.

Loop rotation is a generalized version of the loop inversion transformation, which es-

sentially transforms while loops into do-while loops. To maintain semantical equivalence

after the transformation, the resulting do-while loop is wrapped with a conditional to en-

sure that the loop does not execute one iteration when the entry condition of the original

while loop would have been false. The custom rotation pass we implemented performs

loop rotation on all those loops for which the resulting conditional can be removed, since

we do not want to deal with loops nested into conditionals. In particular, loop rotation

will always be applied to all the loops at nesting depth greater than one, since we assume

they perform a known number of iterations. The trivial conditional wrapping the loop

is guaranteed to be eliminated through sparse conditional constant propagation.

Loop simplify

The loop simplify pass normalizes natural loops, making them more optimization friendly.

This normalization process involves the insertion of a loop pre-header, which ensures that
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Figure 3.4: An example of natural loop normalization. In 2) we insert the pre-header, in 3) the latch

and in 4) the loop exit block.

the header basic block has only one predecessor, a loop latch, which becomes the source

basic block of the only backedge, and an exit block which ensures that the exit from the

loop is always dominated by the loop header. In figure 3.4 we illustrate an example of

this loop normalization procedure.

Loop unroll

In this pass we use the loop unroll function provided by LLVM to completely unroll all

the loops with nesting depth greater than three since our current tool does not handle

well more than two nesting levels. This is possible due to our assumption of knowing

the number of iterations performed on these loops at compile time. This optimization

strategy has worked well for our methodology so far, although it is possible that on

particular code examples this may not be optimal. In the future, implementing a custom

cost-evaluation for loop unrolling may be a good improvement to the current strategy.
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Sparse conditional constant propagation

SCCP is a standard LLVM pass that implements sparse conditional constant propagation

and merging. This pass assumes values to be constant unless proven otherwise, and

basic blocks to be dead unless proven otherwise. Then, it replaces the values proven

constant with the appropriate constant values, and it proves conditional branches to be

unconditional.

Loop invariant code motion

This standard LLVM pass performs loop-invariant code motion. This is done by either

hoisting code into the pre-header block or sinking code to the exit block. This pass also

eliminates loads and stores which must alias in the loop, by promoting the corresponding

variables to live in registers. If there is a store instruction inside of the loop, the pass

tries to move the store after the loop. This can only happen if the following conditions

are met: the pointer stored is loop invariant, and there are no stores or loads in the loop

which may alias the pointer. Moreover, there are no calls in the loop which modify or

reference the pointer. If these conditions are true, the pass promotes the loads and stores

in the loop of the pointer to use a temporary variable whose space is allocated through

a temporary alloca instruction. Later, the pass constructs the appropriate SSA form for

the value.

Dead store elimination

This standard LLVM pass implements a simple elimination of dead store instructions

that only considers basic-block-local redundant stores that may have been created by

previous optimization passes.

Loop deletion

This standard LLVM performs dead code elimination for those non-infinite loops that

can be proven dead. We use this pass to eliminate loops that may have been left dangling
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after hoisting instructions

Loop-closed SSA form

This standard LLVM pass is a loop transformation pass that inserts φ nodes at the end

of loops for each value that is live across the loop boundary. The main usefulness of this

pass is that it makes further loop optimizations simpler. In our case, it also simplifies

the translation process for nested loops.

Loop loads elimination

This standard LLVM pass implements a loop-aware load elimination procedure. It uses

the LLVM LoopAccessAnalysis to identify loop-carried dependencies with a distance of

one between stores and loads. The source value of the store is then propagated to the user

of the corresponding load, making the load dead. In our case, this pass is particularly

useful to eliminate trivial store-load pairs which may have been created after the unrolling

procedure.

Instruction combine

This LLVM pass is used to perform algebraic simplification and combine instructions

into fewer simpler instructions. In our case, is particularly useful to eliminate trivial φ

nodes that may have been created by the application of the LCSSA pass.

Aggressive dead code elimination

This LLVM pass assumes that all instructions are dead until proven otherwise, and this

allows to eliminate some dead code, particularly involving loop computation. We use

this pass after another application of the sparse conditional constant propagation pass,

normal constant propagation pass, and instruction combine pass since this gives us the

possibility to eliminate some additional branching in the code.
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3.3 Dataflow graph IR

In this section, we present the dataflow graph intermediate representation that is used

to express and optimize the dataflow computations in our tool. First, we introduce the

main elements of this IR and then we discuss how we can transform the code from an

imperative representation like the LLVM IR into a dataflow graph.

3.3.1 DFG IR components

The dataflow intermediate representation we propose comes in the form of one or more

in-memory directed graphs representing the computation. In this representation, we have

converted the function to accelerate into a streaming computation, thus we assume that

input data will be streamed to the FPGA device, where the input data streams will be

processed by a series of dataflow functional units and will produce one or more output

streams that will be streamed back to the host. The elements of our dataflow graph IR

are organized in different classes of dataflow functional units, which correspond to nodes

of the graph.

Input stream nodes

The nodes of the graph with no predecessors can be either input stream nodes, constant

values or read-only memory elements. Input stream nodes represent entry points for

streams input of data. They are created when the computation is transformed into a

dataflow computation by inferring that a particular load operation associated with the

iteration variable of the outermost loop reads at each cycle from the base address of

a pointer passed as an argument to the function to accelerate. This process will be

explained in detail in section 3.3.2. Offset nodes can be placed after an input stream

node to modify the way in which elements are read from a particular stream according

to the Scalar Evolution (SCEV) expression associated with the iteration variable of the

loop.
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ROM nodes

Read-Only Memory (ROM) nodes allow us to include in the design memory elements

that can be used to read constant data know at compile-time, without the need to create

an artificial input stream. These elements are useful to translate read-only global data

structures or function-local temporary variables, allowing us to exploit the fast parallel

data access of the FPGA’s RAM blocks.

Operational nodes

The intermediate nodes in the graph are nodes which generally express elementary arith-

metic or logical operations. These nodes have as operands their predecessors in the graph,

and the result of the operation is used by the successor nodes.

Output stream nodes

The nodes of the graph with no successors are output stream nodes. It’s important to

note that in order to correctly translate the computation, all the side effects that the

execution of the function may cause must be considered as output streams, regardless

of whether they are effectively a stream of values generated at each tick of the kernel or

a single store operation. In general, the computation will have several store operations

that modify either the value of a memory location whose base address pointer has been

passed as a function argument or a global variable. These operations with side effects

will be interpreted as output stream nodes.

Loop nodes

The graph allows for hierarchically nested loop structures so that we can identify and

optimize nested computations independently from the rest of the graph, and also identify

ways to synchronize how these nested structures consume and produce data. For this

purpose, our representation uses the concept of loop nodes, which generally come from

a nested computation in the original imperative code, and represent a portion of the
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graph that can contain feedback arcs. Loop nodes contain a dataflow sub-graph, which

describes the nested computation. These nodes generally have multiple predecessors and

successors, which include all the values used by the dataflow sub-graph of the node and

all the external nodes which use some value generated within the loop node boundary.

The loop node internally stores all the specific data dependencies from and to external

nodes, thus maintaining both a coherent high-level view of the graph for a given nesting

level as well as a complete description of the data dependencies in the computation.

Function nodes

The function calls that were not inlined during the normalization process, are treated

as single nodes that have the nodes corresponding to their argument list as predecessors

and as successors all the nodes which use the return value of the function call. In the

backend, these functions will be implemented according to the implementation available

to the backend synthesis tool.

3.3.2 Transformation to DFG IR

The most crucial step in the translation process of our tool is the transition from the

LLVM imperative intermediate representation to our custom dataflow IR. An example

of this transition is shown in figure 3.6. The figure shows the input C code for a function

to accelerate and its corresponding DFG intermediate representation in graphical form.

To perform this transition our tool relies on the assumptions that have been described in

section 3.2.1. These assumptions are checked as the first step of the translation process.

If any of the assumptions are not verified, the tool terminates with an error message.

The dataflow translation portion of our tool can be divided into three main components:

identification of input and output streams, dataflow graph construction and loop nodes

construction. After these target-independent transformations, we perform two target-

dependent analyses that enable us to carry out the automatic design space exploration,

namely a resource estimation analysis and a graph latency analysis. A schematic view

of these components is shown in figure 3.5.

41



Chapter 3. Proposed methodology

Figure 3.5: Detailed view of the dataflow translator component’s analysis and transformations.

Identification of IO streams

The first step consists in the identification of the input and output streams for the

function. Since the computation is guaranteed to be contained in a loop, this allows

us to eliminate the loop and semantically render each iteration as one or multiple ticks

of our dataflow design. We use the SCEV analysis provided by LLVM to analyze how

the loop iteration variable is used to read or write memory within the function. For

each memory address which is accessed through an LLVM getelementptr instruction, we

check if it uses, directly or through a chain of uses, the induction variable of the loop. If

this is the case, we check if these accesses are then used by a store instruction. If the

store creates side effects outside the function, for example, if the base address has been

passed as a function argument, we identify that memory location as an output stream.

To identify input streams, we iterate over the remaining function arguments and identify

through SCEV analysis those pointers which are used to access memory via the outer

loop’s induction variable, similarly to the ones we identified as output streams, but whose

users are never store instructions.
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Graph construction

Starting from the store instructions, we construct dataflow sub-graphs for which we can

prove a direct dataflow relation between nodes. This is the case for example for a chain

of arithmetical or logical operations which ends with a store instruction. Typically,

these dataflow sub-graphs stop either at a loop boundary in the control flow graph or

with operations that have constants or values loaded from memory as operands. The

dataflow relations between instructions across loop boundaries are handled in the loop

analysis phase, therefore, for this first construction phase, we are dealing with graphs

without considering relations across different nesting depths. After constructing these

sub-graphs by assigning the corresponding node types to each instruction, we need to

verify if we can prove more dataflow relations among sub-graphs. This relies on the fol-

lowing consideration: given a loop containing a store instruction s and a load instruction

l, there is a Read After Write (RAW) dependency if, at loop iteration i, the memory

location read by l has already been written by s at an iteration j <= i. Through SCEV

analysis, we can verify this condition and connect the corresponding nodes of the graph.

If the RAW dependency does not involve the same iteration, we insert an offset node

to model this fact. In our dataflow IR, we allow the possibility for a node to read the

output of a given stream generated by a previous node at a different tick, either past

or future. This flexibility in the expressiveness of our dataflow IR needs to be matched

by the target language, or be handled in the backend translation phase. If instead, the

load/store pair creates a Write After Read (WAR), the corresponding load will be paired

with the latest store which modified the value read or will be an input stream nodes with

no predecessors. To check this relation across loop iterations we have to consider in the

worst-case O(S ∗L) pairs, where S and L are the sets of all store and load instructions in

the current set of sub-graphs, respectively. In the practical cases tested, this procedure

has had minimal impact on the overall running time of the tool. At the end of this

linking procedure, all the dataflow graphs of the computation should have as nodes with

no predecessors only constant values, input streams or memory elements, and the nodes
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with no successors should be store instructions. This is the most critical phase of the

translation as if the tool fails to correctly identify dataflow relations for all subgraphs

the translation fails. At the end of this process, only sub-graphs comprised of completely

independent computations should remain.

Loop nodes construction

Through the LoopAnalysisInfo provided by LLVM, we are able to identify the loops

in the original control flow graph. By traversing the loop info tree we extract relevant

information such as the loop trip count and the loop induction variable and identify

instructions corresponding to the loop body. This allows us to construct the loop nodes

of our dataflow IR, and extract the dataflow sub-graphs belonging to the loop. All the

data dependencies across loop boundaries are kept track of through a dedicated interface,

while the predecessors of any node in the loop sub-graph are linked to the loop node

instead, to obtain a coherent hierarchical graph. Other information such as whether the

loop sub-graph contains loop-carried dependencies and all the data dependencies that

exist across the loop boundary are collected at this sage. An auxiliary data structure

called loop dependency graph is initialized to keep track of the optimizations that will

be later applied to each individual loop in the computation. After this procedure is

completed, we have successfully transitioned to dataflow IR.

3.4 DFG optimizations

To properly contextualize the target-dependent analysis performed after the dataflow

graph construction, the following sections describe the optimization options of our tool.

After that, we detail how the target-dependent analysis performed during the translation

process can inform the tool on the impact of these optimizations.
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#define N 1000

float coeff[] = { ... };

void foo(float a, float* b, float* c) {

float tmp[N];

for(int i = 0; i < N; i++){

tmp[i] = exp(a) + b[i];

float k = 0;

for(int j = 0; j < M; j++){

k += coeff[j] * 0.5;

}

c[i] = tmp[i] * k;

}

return;

}

Figure 3.6: Example of a simple function and its DFG IR.
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Vectorization

Vectorization changes the data type of the input and output streams of the target func-

tion into vector types. If this optimization option is selected, the tool performs an

additional transformation pass on the LLVM IR to obtain the vectorized version of the

input function. In this transformation pass, given an initial outer loop performing N

iterations and vectorization factor v, the iterations of the outer loop are split into two

different loops, one inner loop which iterates over the vectorized dimension, and an outer

loop that performs N/v iterations. The signature of the function is modified accordingly

to the new vectorized types. In this way, we obtain a dataflow IR with one additional

nesting level and input and output streams that operate on vector types. This optimiza-

tion improves the parallelism of the computation by allowing the replication in hardware

of the elements of the original dataflow graph and fully utilizing the input and output

bandwidth of the target architecture for data transfer. In order for this optimization

to be possible, the target architecture must support vector types for input and output

stream, as well as a mean to parallelize the new vectorized loop’s iterations to achieve

higher throughput, as is the case for MaxCompiler. This optimization is particularly

useful if the input design is relatively small but iterates over a lot of data. If this is the

case, by fully utilizing the FPGA resources we can replicate the hardware and process

more data in parallel. The performance gain for this optimization is expected to be

a linear increase proportional to the vectorization factor applied and is limited by two

main constraints: the amount of hardware resources available on the FPGA and the data

transfer bandwidth. A schematic example of the vectorization optimization applied to a

simple DFG IR and the resulting hardware replication is shown in figure 3.7.

Loop rerolling

By default, our tool tries to maximize throughput by parallelizing nested loop iterations

in the target language as much as possible. This results for example in the replication of

hardware functional units and the unrolling of reduction computations. Although this
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Figure 3.7: Example of a simple DFG IR subject to the vectorization optimization.

strategy can generate effective dataflow designs, in some cases the resources available on

the target FPGA do not allow for the maximum amount of hardware replication. Our

dataflow IR, through the abstraction of loop nodes, is able to regulate the amount of

parallelism applied to nested computations. If a rerolling factor r is given as an optimiz-

ation option to the tool, the amount of hardware replication involved in parallelizing the

computation of loops at the second nesting level in the original function will be divided

by r. If for example the original computation contained three loops in total, one loop L0

at the first nesting level, and two loops L1 and L2 at the second nesting level, performing

n, m and k iterations respectively, a rerolling factor of r would mean that
⌈
m
r

⌉
iterations

of L1 and
⌈
k
r

⌉
iterations of L2 will be executed at each tick of the dataflow kernel. This

optimization directly impacts the throughput of our dataflow design, since a valid output

value can only be produced after all the nested computations have performed all itera-

tions, which now take r ticks to complete. Therefore, applying this optimization results

in a direct loss of throughput proportional to the rerolling factor applied. On the other

hand, this optimization reduces the amount of hardware resources used by the design,

thus enabling to synthesize functions that would otherwise not fit on the target FPGA.

The precise impact of this optimization on hardware resource consumption is detailed in

section 3.4.
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Cyclic dataflow

There are two fundamental approaches that our tool provides for dealing with nested

computations that create a cyclic dataflow graph. By default, nested computations

that present loop-carried dependencies are fully unrolled in the target dataflow backend

language so that we can produce one useful result at each tick of our dataflow kernel. This

approach is very costly in terms of hardware resources, therefore it may not be optimal

for some designs. In particular, if we apply this method while applying a rerolling factor

r in the case where, for example, a nested loop L2 with loop-carried dependencies uses

some result computed by a previous nested loop L1, the hardware resources dedicated

to computing L2 would be active once every r ticks since in the remaining r− 1 ticks L1

would be producing intermediate results needed for the completely unrolled computation.

An example of how the hardware for L2 would behave for a simple sum reduction of 3

elements is shown in figure 3.8. To avoid this waste of resources, we implemented an

optimization that allows implementing nested loops with loop carried dependencies as

cyclic dataflow computations with feedback arcs. An example of this is shown in figure

3.10. In order to implement this optimization in the target language, we need to be

aware of the maximum latency that the nested computation can require to complete one

cycle to ensure that the data required by the next cycle has been computed. To achieve

this, we implemented an estimation of the latency of our design, detailed in section 3.4.

This optimization offers a trade-off between resource consumption and throughput, with

a throughput loss directly proportional to the latency of the critical cyclic computation

in the dataflow kernel. An example of a simple sum reduction assuming a functional unit

with a latency of two cycles is shown in figure 3.10. Since modern dataflow architectures

use functional units which are deeply pipelined, the proposed translation approach for

this type of cyclic dependencies results in inefficient use of the hardware resources, despite

being more efficient than the default strategy. The optimization presented in the next

section addresses this issue.
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Figure 3.8: Example of fully unrolled sum over 3 elements with a functional unit with latency of 2

cycles. The input stream generates one operand for the sum every cycle, which is directed to the

appropriate functional unit. Once every three cycles all the operands are ready and the parallel sum

can be completed, resulting in a throughput of one result every three cycles using three functional

units.

Figure 3.9: Example sum over 3 elements implemented as a cyclic dataflow, with a functional unit

with latency of 2 cycles. This results in a throughput of 1 sum every 6 cycles with one functional

unit.
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Data interleaving

Having observed that in the previous example, given a critical cyclic path with a latency

of n ticks we are not using our pipelined functional units in n − 1 ticks out of n while

we could be computing useful data instead, we introduced a further optimization on

the computation of cyclic dataflow graphs. During the n − 1 idle cycles, we can start

computing the results for the subsequent n − 1 input values without waiting for the

other iterations of the accumulation to terminate. We have called this optimization

cyclic dataflow graph with data interleaving. In order to maintain the correctness of

the computation we must ensure that, at each tick, the kernel reads data from the

correct input and intermediate results. In practice, this is achieved by using the local

on-chip memory. For the first n ticks we store on the local on-chip memory the first

n input values and then stop reading new input while we are processing useful data.

All the intermediate results relative to the n inputs being processed are also stored in

local memory. For every tick, we alternate reading among the n values of input and all

intermediate results from the local memories until we complete the computation of the

current data and we output the final result. For the next n ticks we store the new input

data and initialize the local memories that store intermediate results and we repeat this

until all input data has been processed. This optimization allows to mask the latency

introduced by cyclic dataflow graphs and obtain a more efficient implementation in terms

of resource utilization. An example of a simple sum reduction assuming a functional unit

with a latency of 2 cycles with the data interleaving optimization is shown in figure 3.10.

It is worth noting that this optimization is only applicable in the absence of loop-carried

dependencies on the outer loop of the original function, which ensures that each input

data can be considered independently. This means that all the reductions in the design

depend only upon inputs read in the same tick. This optimization introduces a possible

trade-off between throughput and the use of local on-chip memory. Depending on the

latency of the critical cyclic path and the size of the intermediate results that need to be

stored at each cycle, we can fully utilize our pipelined functional units at the cost of an

50



3.4. DFG optimizations

Figure 3.10: Example sum over 3 elements implemented as a cyclic dataflow with the data interleaving

optimization and a functional unit with latency of 2 cycles. This results in a throughput of 1 sum

every 3 cycles with one functional unit.

increment in the memory required to implement our design.

Pipelining factor

This optimization option that our tool introduces relates to the calculation of the critical

cyclic path. This parameter indicates to the tool which degree of pipelining should be

applied for a given functional unit amongst the ones available to the backend synthesis

tool. A factor of 1 indicates that the tool will always use the implementation with the

most latency available, while a factor of 0 indicates that the tool will always prefer the

implementation with the least amount of latency. The trade-off is that choosing an

implementation with less latency can reduce the achievable synthesis frequency for the

design. Theoretically, it is applicable to any backend synthesis tool which offers different

technological implementations of the functional units with different latency to use in the

design. In our case, this aligns with MaxCompiler’s pipelining factor, which determines

the latency of different operations. This has a direct impact on both the throughput in

the case of cyclic dataflow graph without the interleaving optimization and on the use
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of local memory if it is paired with the interleaving optimization since it reduces the

interleaving window.

DSP and LUT/FF balance

This optimization option allows to balance the usage of Digital Signal Processors (DSPs),

Look-Up Tables (LUTs) and Flip Flops (FFs) by using a different technology mapping

for the functional units in the design. Theoretically, it is applicable to any backend that

supports equivalent implementations of its functional units with different technology

mappings that use a different mix of hardware resources. In our case, this optimization

option maps well to the DSP-push target-dependent parameter provided by MaxCom-

piler.

Memory reshaping and partitioning

To support the use of the FPGA’s on-chip memory our dataflow IR uses dedicated

memory nodes to model memory elements of different shapes and sizes. In order to

ensure that the memory elements modeled in our dataflow IR are optimized for parallel

data access and always compatible with the other optimization options of the tool, we

have introduced automatic memory reshaping and partitioning. We divided the types of

local memory depending on their use within the design based on two main characteristics.

First, it is important to differentiate if a memory is accessed through the iteration variable

of the outermost loop of the original function. In this case, we reshape the memory so

that the corresponding dimension of the memory is the innermost dimension. This is

done as a normalization step to isolate this access dimension which will depend on the

ticks of the kernel and makes it easier to perform reshaping permutations of the data

on the other dimensions. This dimension of the memory is then accessed through a

counter that corresponds to the iterations of the outermost loop in the original function.

The second relevant characteristic is whether the memory is accessed through an index

contained in a nested loop that will be parallelized in the dataflow kernel. In this case,

the memory needs to be replicated proportionally to the level of parallelism within the
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loop, to enable parallel data access. If the loop has been subjected to rerolling, the

memory is reshaped by splitting the dimension accessed with the iteration variable of the

original nested loop in two, where the innermost of the two contains the elements that are

accessed sequentially, while the other contains the elements that are accessed in parallel.

The dimension accessed sequentially is always moved to the innermost dimension. If

the rerolling factor does not divide the number of iterations of the original nested loop

exactly, opportune padding is applied. The implementation of this type of memory is

achieved by instantiating several local memories, with depth proportional to the selected

rerolling factor, that are accessed in parallel. A different memory element is accessed

depending on which iteration of the re-rolled loop is being computed at any given tick.

If the nested loop used to access the original data structure is completely unrolled and

no access is made through the iteration variable of the outermost loop in the original

function, the element is implemented with registers, since it would need to be completely

partitioned along all dimensions.

Resource estimation

In order to support an automatic design space exploration, we have implemented a re-

source estimation analysis which, given a dataflow IR constructed by the translation

module, the optimization options selected for the design and a technology library spe-

cific to the selected backend, provides an estimation on the amount of resources that the

design requires to be synthesized. By traversing the graph of the computation, the re-

source estimation module counts the number of operations that are present in the design,

with a separate counter for each valid opcode or operation type. This counting operation

can be performed exactly as a static analysis since our tool requires all the nested loops

of the computation to have a constant trip count. The operations that appear outside of

any nested computation are counted as one operation each since they won’t be subject

to any hardware replication in the final design. The operations contained inside nested

loops are counted with a multiplier which depends on the original parallelism of the loop,

as well as the optimizations that have been applied to it. For example, any operation
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inside a nested loop performing n iterations subject to a rerolling factor of r, will be

counted as
⌈
n
r

⌉
operations. This methodology allows us to retrieve a precise count of

the number of dataflow functional units that will be instantiated in the design. A sim-

ilar counting operation is done to estimate the use of on-chip memory. Each individual

memory node’s depth, data width and the number of times the memory will be replicated

are counted. To account for the memory used by the data interleaving optimization, we

consider the latency of cyclic dataflow graphs estimated through latency analysis as il-

lustrated in section 3.4 as a multiplier for the intermediate values that need to be stored

at each cycle. Since this analysis only needs to scan the nodes of the dataflow graph

and count them once, it runs in O(N) time, where N is the overall number of nodes in

the graph. The analysis produces a report containing all this information that is used

together with the target-dependent technology library to estimate the LUT, FF, BRAM

and DSP use of the design. The main element that is lacking in the estimation is the

resources in the final design dedicated to managing the FIFO queues between the data-

flow functional units. Since MaxJ as a target language manages these design elements

without requiring the user’s intervention and we are still able to formulate very precise

estimates before synthesis, we decided to not include it in our analysis. Nonetheless,

it is a possible extensions to our current approach that would allow us to improve the

precision of the estimates even further.

Latency analysis

To implement cyclic dataflow, we need an upper bound for the critical latency of the

cyclic paths in the dataflow graph. Since we know that a cyclic path is only possible in

nested computations according to the assumptions imposed on the original input code,

we can restrict this analysis only on the sub-graph generated by nested loops. Moreover,

during the graph construction phase, each feedback arc is marked so that we can easily

verify which nodes of the graph contain a feedback arc, without the need for a cycle

detection algorithm. Among all the sub-graphs with feedback arcs at the same nesting

level, we need to identify the path with the highest latency and construct a read-enabling
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structure for all cyclic computations in the design to ensure that the next datum read

by the feedback arcs is the correct one at each cycle. To perform this analysis, we have

empirically collected the latency observed for all possible functional units in the backend

language considering different pipelining factors. Since the overall latency for a complex

path was observed to be the sum of the latency of single operations, we can take as a

latency estimate the sum of the latency of all the individual operations in the critical

cyclic path. It is important for this analysis to be as precise as possible since a higher

latency for the cyclic paths in the design directly results in a worse throughput, or a

higher memory consumption if the design uses the data interleaving optimization. The

latency analysis considers each cyclic sub-graph and identifies the start and end nodes

of the possible critical path, corresponding to the pairs of nodes connected through each

feedback arc of the sub-graph. Despite the fact that the longest path problem for a

general graph is NP-hard [48], we can restrict the case we are considering to that of a

directed acyclic graph since we can ignore the feedback arc in the latency computation.

Thus we are able to compute the critical latency in O(N + E) time where N is the

number of nodes and E is the number of vertices in the sub-graph. First, the nodes of

the sub-graph are topologically sorted, then the topologically sorted nodes are scanned

once and for each node we update the maximum distance of its successors from the source

node based on the distance of the current node and the weight on each arc. Once all the

sub-graphs have been processed, we identify the one containing the path with maximum

latency, therefore identifying the critical cyclic path in the design, which informs the

backend on how to translate the graph into the target language.

3.5 Design space exploration

In order to guide the optimization of the function, our tool generates a performance and

resource model specifically tailored for each of the supported optimizations, that considers

the target frequency of the design, the latency of the operators, as well as the estimates on

memory utilization for implementing Read-Only Memories (ROM) and Random Access
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Memories (RAM) required for cyclic dataflow interleaving. Each model uses two sets

of variables that can be tuned in order to modify the expected final performance and

resource consumption of the implementation. The first is a set of variables vi for i ∈ I

(or simply v̄) related to the optimization to perform, while the second set consists of

the variables θn ∈ N, that specify the technology mapping for a given operator n ∈

N . Each model provides a function p(v̄, θn) that models the throughput of the system

(bits / second) and the functions qn(v̄, θn) that specify the number of instantiations

of a dataflow node n ∈ N in the final system (e.g. number of 32-bits floating-point

multipliers, 8-bits adders, ...). The amount of resources rt of resource type t ∈ T (e.g.:

T = DSP,BRAM,FF,LUT ) required by the dataflow nodes within the system are

estimated as follows:

rt =
∑
n∈N

cn,t,θn · q(v̄, θn) (3.1)

where cn,t,θn is the number of resources of type t used by node n under the config-

uration θn. Each type of dataflow node in the design can use a different configuration

θn. The characterization of the compute nodes given by cn,t,θn is performed only once

by implementing each node separately as a single kernel function and retrieving the final

resource utilization and latency reported by the back-end tool after place-and-route at

a given target frequency on the target FPGA, across the possible configurations θn. It

is worth noting that even if this is a time-consuming task, once the characterization is

performed, the achieved results are independent of the application and can be reused.

The resource model only takes into account the resources occupied by the kernel and does

not consider the resources needed by the communication subsystem. Nevertheless, the

resource consumption of the most constrained resource not related to the kernel function

is well below 10%. During the design space exploration, the tool takes into account a

15% slack of the total available resources in order to avoid over-constraining the design

and leaves enough space for the communication subsystem. In addition to pure dataflow

nodes, we also estimate the Block RAM (BRAM) resource requirements needed for im-
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Figure 3.11: Latency and maximum achievable frequency for a single-precision floating-point adder

(FADD) and exponential (EXP) operator for different hardware implementations on a MAX4 Ga-

lava Card. The maximum frequency values are experimentally derived using micro benchmarks at

frequencies in the range [20, 350] MHz in steps of 5 MHz.

plementing local ROM and RAM within the design. for a given memory m ∈ N , the

function qm(v̄; θm) specifies the number of partitions in which the memory needs to be

divided. The number of BRAM resources required by each memory partition is then

estimated as follows:

cm,BRAM,θn =

⌈
#BRAMm

k

⌉
· k (3.2)

where BRAMm =
⌈

sizem
sizeBRAM

⌉
is the minimum number of BRAMs needed to store

the data of the memory, while the factor k =
⌈

widthm
widthBRAM

⌉
takes into account the fact

that multiple arrays of BRAMs must be instantiated in parallel to support large memory

bitwidths. In the following sections, we provide the expressions of the functions p and

qn of the performance and resource estimation model for the optimizations supported by

our approach.

3.5.1 Rerolling model

Our rerolling model requires three different variables:

• v0 ∈ N+: specifies the global rerolling factor to use
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• v1 ∈ {0, 1}: equal to 1 if and only if cyclic dataflow is used

• v2 ∈ {0, 1}: equal to 1 if and only if v1 = 1 and if data interleaving is used

When rerolling is applied, the overall throughput of the system is reduced proportionally

to the rerolling factor v0. This is true also for cyclic dataflow with interleaving, but spe-

cial care must be taken when considering cyclic dataflow without interleaving. Indeed, in

this context, the throughput of the implementation also decreases proportionally to the

latency of the critical cyclic path. Nevertheless, tools such as MaxCompiler allow explor-

ing different technological implementations for the same operator providing a tradeoff

between latency and the maximum achievable frequency. In particular, MaxCompiler

exposes the pipeline push optimization that takes a value in the range [0, 1] and can

be applied to a specific operator in the code. Figure 3.11 shows the latency and the

maximum achievable frequency of different operators implementations synthesized on a

MAX4 Galava card. In our model, ln,θn and φn,θn represent respectively the latency and

the maximum frequency of a dataflow node n ∈ N when implemented using configuration

θn. Thanks to this characterization, we can easily introduce a bound on the frequency

f that the design can achieve depending on the actual dataflow nodes being used within

the design and their technology mapping:

f ≤ min
n∈N
{φn,θn} (3.3)

This upper bound is useful when performing the actual design-space exploration but,

with designs using a large portion of the FPGA, it is often unfeasible to meet the upper

bound due to routing congestion. In addition, we can also compute the latency of the

critical cyclic path A as follows:

A = max
C∈Γ

{∑
n∈C

ln,θn

}
(3.4)

where Γ is the set of all cycles C ∈ Γ each containing dataflow nodes n ∈ C. Note

that, if cyclic dataflow is not applied (i.e.: v1 = 0), Γ = ∅ and A = 1 by definition. With
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these information, we are finally able to express the performance model for the rerolling

optimization:

p(v̄, θn) = min

{
f · bout
v0 ·A

,Bout,
bout
bin
·Bin

}
(3.5)

where bout and bin are the bitwidth of the input and output streams of the dataflow

kernel, while Bout and Bin are the maximum output and input bandwidth respectively.

The number of the dataflow nodes within the rerolled implementation can be computed

as:

qn(v̄, θn) = k0 +
∑
l∈LR

kl,n ·
⌈
il
v0

⌉
+
∑
l∈LU

kl,n · il (3.6)

LR is the set of nested loops for which rerolling is applied, while LU is the set of

nested loops that are fully unrolled. il represents the original number of iterations of

nested loop l, k0 is the number of occurrences of node n outside nested loops LU and

LR, while kl,n is the number of occurrences of node n within nested loop l. If we apply

rerolling without cyclic dataflow (v1 = 0), LR consists of the loops without carried

dependencies, while the nested loops with carried dependencies are completely unrolled

and belong to LU . However, when we apply rerolling with cyclic dataflow (v1 = 1), then

LU = ∅ and LR consists of all the nested loops that can be rerolled regardless of carried

dependencies. Additionally, we also need to estimate the number of partitions for ROM

memories within our design. As discussed in section 3.4, we support multi-dimensional

ROM in which each dimension d ∈ Dm can be accessed by constant values (d ∈ Dm,const),

via a nested loop iteration variable (d ∈ Dm,nest), or via the outer loop iteration variable

(d ∈ Dm,out). We compute the number of partitions required by a ROM m as:

qm(v̄, θm) =
∏

d∈Dm,const

sd ·
∏

d∈Dm,nest

⌈
sd
v0

⌉
(3.7)

where sd is the number of elements within dimension d. In this way, we ensure that

each constant access can be performed in parallel as well as all the accesses from the

iterations of the rerolled nested loops. Finally, to conclude our resource model, we also
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need to take into account the extra RAMs that are instantiated to perform intermediate

storage in case interleaving is applied (v2 = 1). In this case, we consider a memory for

each input stream of the dataflow kernel and for each reduction variable resulting from

a loop with carried dependencies. These extra memories have a depth of A elements and

a bitwidth that depends on the data type of the input stream or reduction variable.

3.5.2 Vectorization model

The vectorization optimization requires a single variable v0 that represents the vectoriza-

tion factor. Since vectorization replicates the logic of the kernel in order to perform more

iterations in parallel on different input data, the overall performance can be estimated

as:

p(v̄, θn) = min

{
v0 · f · bout, Bout,

bout
bin
·Bin

}
(3.8)

where bout and bin are again the bitwidth of the input and output streams of the

dataflow kernel, while Bout and Bin are the maximum output and input bandwidth

respectively. We can see how the vectorization factor acts as a multiplier for the resulting

throughput until the maximum bandwidth utilization is reached. Regarding resource

consumption, the number of dataflow nodes within the resulting design is computed as

qn(v̄, θn) = v0 · k0 (3.9)

where we simply multiply the original number of nodes in the unoptimized design k0

by the vectorization factor, since all the hardware of the unoptimized design is completely

replicated. Finally, the number of partitions for each ROM within the design is computed

as:

qm(v̄, θm) =
∏

d∈Dm,const

sd ·
∏

d∈Dm,nest

sd ·min{v0, sout} (3.10)

where sd is the number of elements within dimension d of the ROM that are accessed

by constant values (d ∈ Dm,const), or via a nested loop iteration variable (d ∈ Dm,nest).
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sout is the number of elements of the dimension accessed via the outer loop variable. If

there are no such dimensions, then sout = 1 by definition. This model accounts for the

fact that if v0 is greater than s0, s0 remains the upper limit on the number of elements

that will be accessed in that dimension.

3.5.3 Optimization problem

In order to evaluate the most effective dataflow implementation for a given C function, we

employ an automated Design Space Exploration (DSE) to identify the optimal solution.

The objective of the DSE is to maximize the overall kernel performance:

argmax
v̄,θn

{p(v̄, θn)} (3.11)

subject to the FPGA resource constraints:

rt ≤Mt, ∀t ∈ T (3.12)

whereMt is the maximum amount of resource of type T available on the target FPGA,

and subject to the frequency upper bound from equation 3.3. The DSE is performed

independently on each candidate optimization (vectorization, rerolling, cyclic rerolling,

cyclic rerolling with interleaving) and the implementation with the highest expected

performance is chosen. The DSE considers increasing values of the vectorization factors

until the solution does not fit any more within the device, whereas, for the rerolling

optimizations, the process tests increasing rerolling factors until either no more iterations

can be rerolled or the design fits within the FPGA. The search for the factors to use

for rerolling and vectorization is performed using a binary search approach in order

to reduce the number of attempts. Finally, once the optimization variables are set,

the selection of the best technology mapping θn for n ∈ N and target frequency f , is

performed by solving a Mixed-Integer Linear Programming (MILP) derived by fixing

the values of the optimization variables and substituting the vectorization or rerolling

model within equation 3.11 and equation 3.12. This approach is effective since most of
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the non-linearities are removed after fixing the optimization variables and the resulting

MILP model is easier to solve. Overall, on our benchmarks, the DSE required less than

10 seconds to complete.

3.6 Backend

In this section, we illustrate how the target-specific backend of our tool is able to generate

a synthesis-ready code for MaxCompiler. A Maxeler Dataflow Engine is composed of

a dataflow kernel, containing the implementation of the dataflow computation, and a

manager, which is responsible for handling the interface between the kernel and the host

device. The input of our backend is the dataflow IR composed of one or more independent

dataflow graphs and the graph metadata relative to the optimization applied and the

latency analysis results. The outputs of our backend are two MaxJ source files, one

containing the kernel function and the other containing the code for the manager.

3.6.1 Kernel generation

Since the MaxJ language is a DSL embedded in Java, it relies on proprietary classes and

operator overloading to express the dataflow computation. For this reason, a dataflow

kernel file needs to import specific libraries and classes, as well as inherit MaxCompiler’s

Kernel class. Therefore, the kernel code is embedded in a parametric template, an

example of which is shown below:

package [mypackage];

import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;

import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;

import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;

[kernel-specific imports]

class [kernelName]Kernel extends Kernel {

[kernelName]Kernel(KernelParameters parameters) {
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super(parameters);

[...kernel code...]

}

}

where the elements enclosed in [ ] are parametric, while the other statements are

fixed. These statements import the Kernel class and the DFEVar class, which is the

basic data type for dataflow operations in MaxJ. Other import statements are added

to the template depending on the backend functions that the kernel code uses. During

the instruction generation phase, the template is updated by adding the corresponding

imports whenever a node of the dataflow graph is translated using a function or design

element which requires a particular import statement. A simple hash table keeps track

of the currently imported classes during the translation process.

Instructions generation

To generate the instructions of the kernel, the nodes of the graph are sorted in topological

order. After this topological sorting, the nodes are processed one by one, each generating

a set of instructions of the final kernel implementation. This is effectively equivalent to

traversing the dataflow graph in depth-first order and then generating the instructions

by iterating in reverse on the node list. It’s important to note that in the case of

our backend, differently from a traditional compiler backend, instruction selection and

considerations related to the cost of groups of instructions are not a primary concern.

This is due to the fact that the source-to-source translation that our tool performs will

then be compiled by MaxCompiler, and at this stage MaxCompiler will perform the more

fine-grained instruction-level optimizations. Therefore our backend’s primary objective is

to produce a correct dataflow design that guarantees that the final design implements the

optimizations selected by our design space exploration. Since the transition to the LLVM

IR dispenses with the original code’s variable names, the instruction selection process

assigns progressive variable names of the type _<varName>, for example, _a, _b, ...
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This has a negative impact on the human readability of the code, but this mainly impacts

debugging rather than the end-user of the tool. In fact, the automatically generated code

is not meant to be edited by hand but directly synthesized on the target FPGA. For an

operation node n which performs the ⊕ binary operation on its predecessors p1, p2 ∈ N ,

the statement will be translated as:

[V arType] [name(n)] [assignOp] [name(p1)]⊕ [name(p2)]; (3.13)

where [V arType] corresponds to the type of the result of the operation performed by

n, for example DFEV ar or DFEV ector, name(n) is a string returned by the variable

name generation function for the node n, assignOp ∈ {=, <==} which correspond to

the assignment and connector operators in MaxJ. It is important to note that MaxJ

infers the data type of a DFEV ar from the type of the DFEV ar operators used in its

declaration. The type-safety of our translation is inherited by the strongly typed LLVM

IR, that our DFG IR is based upon. Therefore, each operation node is characterized by

an internal type and all cast operations are performed explicitly. In the case of a simple

addition of two DFEV ar a and b, the node would be translated as:

DFEVar c = a + b;

More generally, an operation node can contain different types of operands, as in

the case of a selection statement, or have a more complex structure. Moreover, the

translation of a node is influenced by the set of active optimizations and technology

mapping selection performed in the design space exploration phase. Therefore, a more

complete expression of the translation of a node is as follows:

S = T⊕(v̄, θn, name(p1) . . . name(pk), name(n), assignOp⊕,V arType) (3.14)

Where S is a set of statements which represent the translation of the node n ∈ N , T⊕()

is the translation function for the generic operation ⊕, that depends on the optimizations

selected v̄, the technology mapping θn, name(n) and name(pi), where pi ∈ P, i ∈ [1, k]
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are the predecessors of n, and the type of assignment required assignOp⊕,V arType given

the variable type and operation performed.

Loop nodes

The instruction selection process is performed recursively for each sub-graph which rep-

resents a nested computation. When a loop node L is encountered during the instruction

selection process, the translation SL generated contains both a prefix and a suffix which

enclose the nested computation and the translations S1 . . . Ss of all the statements of

the loop sub-graph. Depending on whether the autoloop optimization has been selected

for the kernel implementation, the loop prefix and suffix can consist of a Java-like for

loop, or a series of statements which define the cyclic dataflow control logic and cyclic

dependencies. A Java-like for loop is interpreted by MaxCompiler as a macro to replic-

ate the hardware corresponding to the loop statements and fully parallelizes the loop.

If the rerolling optimization has been selected, the loop prefix and suffix are modified

accordingly, to enforce the desired level of parallelism and ensure that the correct data

is read at each cycle.

ROM nodes

To implement ROMs, MaxCompiler needs to be able to initialize the memories with

the data before the streaming computation begins. Therefore, in the kernel code, we

need to provide the data for each ROM node as a static declaration. In most cases, we

can simply create a static declaration in the kernel function. In the case of a mono-

dimensional memory myMem containing N 32-bit floating-point data, this would look

like:

float myMemData[] = { {...}, ... };

...

Memory<DFEVar> myMem = mem.alloc(dfeFloat(8,24), N);

myMem.setContents(myMemData);

However, for ROMs containing a lot of data, the declaration statements can become
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very large, and after a certain threshold, this is not supported by the compiler. If this

is the case, we add to the kernel file the getArrayFromFile(fileName) static function,

which reads the values for a given memory node from a file. This file is generated

automatically with the appropriate format during the code generation. This method

of initialization has no effect on the kernel performance since the initialization code is

only executed my MaxCompiler when it synthesizes the kernel. For multi-dimensional

memories, the initialization code can become more complex, and some optimizations

require the initialization of ArrayList of memories. All this complexity is handled at

compile time by automatically generated helper functions which are added to the kernel

code.

IO stream nodes

The translation of the input and output stream nodes serves two important purposes:

firstly, it declares the data types of the inputs and outputs of the kernel function, in

addition, it informs the compiler on how the kernel interfaces with the host code. Max-

Compiler allows fixed and floating-point data types, and it supports types of different

bitwidth. At present, our tool does not optimize the bitwidth of the data types of the ori-

ginal C function, and it simply translates the standard primitive C types with the corres-

ponding MaxJ types. Namely, signed integers of different bitwidth (e.g. short, int, long)

are translated with their MaxJ counterparts, dfeInt(b), with b ∈ B = {8, 16, 32, 64, 128},

unsigned integers are translated as dfeUInt(B), and floating-point numbers are trans-

lated as dfeF loat(e,m) with e ∈ E = {8, 11} representing the number of bits available

for the exponent and m ∈ M = {24, 53} representing the number of bits available for

the mantissa. According to the selected optimization options, the data types can be

DFEV ector types of appropriate length. MaxJ transparently supports interfaces based

on vector types, therefore this modification has a minimal impact on the translation pro-

cess. The IO streams declarations also take a string as an argument, corresponding to the

name that the manager will use to refer to that stream when interfacing the kernel and

the host-code. In the translation, we name the interfaces with the same variable names
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generated by the name(n) function when translating the corresponding node n. Since

name(n) never returns a given variable name more than once, our translation is in SSA

form, and the interface name is guaranteed to be unique. After the kernel translation

process is completed, we generate a file listing the kernel interfaces with the relative data

types that will be used by the manager generator.

3.6.2 Manager generation

The manager generation is relatively simple compared to the kernel code generation

since it has a very regular structure that uses various MaxCompiler interfaces to regulate

the behavior of the dataflow kernel. Similarly to the kernel generation, the manager

generation is based on a parametric template:

import com.maxeler.maxcompiler.v2.build.EngineParameters;

import com.maxeler.maxcompiler.v2.managers.custom.CustomManager;

import com.maxeler.maxcompiler.v2.managers.custom.DFELink;

import com.maxeler.maxcompiler.v2.managers.custom.blocks.KernelBlock;

import com.maxeler.maxcompiler.v2.managers.engine_interfaces.CPUTypes;

import com.maxeler.maxcompiler.v2. \

managers.engine_interfaces.EngineInterface;

import com.maxeler.maxcompiler.v2. \

managers.engine_interfaces.InterfaceParam;

class [kernelName]Manager extends CustomManager {

[manager global variables]

[kernelName]Manager(EngineParameters engineParameters){

super(engineParameters);

[manager configuration settings]

KernelBlock [kernelName]Kernel =

addKernel(new [kernelName]Kernel(

makeKernelParameters("[kernelName]")

));

[DFE Links]

}
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static EngineInterface interfaceDefault(){

EngineInterface eint = new EngineInterface();

[interface parameters settings]

[ticks settings]

[streams settings]

return eint;

}

public static void main(String[] args) {

EngineParameters params = new EngineParameters(args);

[kernelName]Manager manager =

new [kernelName]Manager(params);

manager.createSlicInterface(interfaceDefault());

manager.build();

}

}

within this template, we add all the code that manages the kernel: how it commu-

nicates with the host-code, its configuration and target clock frequency and how much

data it expects when executing. In the following paragraphs, we detail how each section

of the template is filled.

Manager global variables

These are global variable declarations that are generated so that the manager code can

refer to important constant values such as the degree of rerolling used when applicable,

the latency of the critical cyclic path, as well as the size of the data streams when it

happens to be known at compile time.

Manager configuration settings

Specifies some configuration settings used by MaxCompiler during the synthesis process.

One of these settings is the target synthesis frequency specified in MHz.
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DFE Links

In this section of the code we specify the correspondence between input and output

streams declared in the kernel code and elements of the host-side function signature. Here

we use the information on IO streams provided by the kernel generation to construct the

appropriate interfaces. An example of input DFELink would be:

DFELink [streamName] = addStreamFromCPU("[streamName]");

[kernelName]Kernel.getInput("[streamName]") <== [streamName];

The declaration of output DFELink uses analogous proprietary functions.

Interface parameters settings

This portion of the code is used to add those parameters of the host-side function that

are not used only by the dataflow kernel, but also in the manager code. In our tool,

this is primarily used to allow the host-side call to the kernel to pass as a parameter

the length of the input streams. This allows using the same kernel design on datasets of

different sizes.

Ticks settings

This section of the code specifies how many ticks the kernel needs to perform for a given

input dataset. By using information related to the size of the input data, the critical

cyclic latency and the rerolling factor, we are able to statically determine how many ticks

are required to process all the input.

Streams settings

In this section, we set the size of input and output streams. The size in bytes of each

stream is computed statically using the information on the host-side data type of each

parameter and the size of the input dataset.
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Once we have generated the kernel code and the manager code, we use a bash script

to generate a test host code in C which calls the original C function and runs a software

simulation for the kernel on the same set of randomly generated data with ranges that

can be specified in the input C template. This is intended as a preliminary correctness

test, we expect the user to customize the host-side code according to his/her needs and

run the hardware synthesis for the kernel.

�
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Chapter 4

Experimental evaluation

4.1 Experimental settings

To evaluate the effectiveness of the proposed approach, we have tested our dataflow op-

timization framework on several applications. The first is an application that consists of

a series of filters used in the context of image processing to sharpen images, increasing

the contrast between bright and dark regions to bring out features [49]. The second is an

Asian Option Pricing algorithm from the domain of finance and the third is a Variational

Monte Carlo algorithm used in electronic structure theory. The following sections de-

scribe the algorithms and the results obtained by our solution in terms of speedup with

respect to a pure software implementation for different parameter configurations and

the hardware resources required to implement the designs. Whenever possible, we also

compare the results of our implementation with state-of-the-art hand-optimized FPGA

implementations of the same algorithm. The results were obtained on a testing system

consisting of a host machine with an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz connec-

ted via PCI-e gen1 x8 to a MAX4 Galava board. This board contains a Stratix V Intel

FPGA. The software baselines are single-thread implementations compiled with gcc 4.4.7

with -O3 level optimizations and executed on the same machine. Finally, Gurobi Optim-

izer 7.5 [50] has been used as a solver for the MILP models to identify the optimization

parameters during the design space exploration phase.
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Figure 4.1: The sequence of filters applied by the sharpen filter on the input image. The figure shows

the filters and their data dependencies

4.2 Case studies

In this section, we present in detail the experimental results obtained from the case

studies selected to evaluate the methodology proposed in this thesis.

4.2.1 Sharpen filter

A schematic representation of the filters applied within the sharpening algorithm and

the corresponding kernels is shown in figure 4.1. Our framework is able to generate a

synthesizable version of the code from the input C code in a fully automatic way. How-

ever, the unoptimized implementation of the algorithm does not harness the potential for

parallel computation of the FPGA and can be vectorized until the maximum bandwidth

for the target board is reached. In this case, implementing the application without any
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optimization leads to overall resource consumption of 10% of the most constrained re-

source and bandwidth utilization of about 26%. In this case, our tool identified a solution

using a vectorization factor of 8 which achieves a bandwidth utilization close to the max-

imum PCI-e gen1 x8 peak bandwidth. Table 4.1 shows different implementations of the

sharpening algorithm using different values of the vectorization factor. As can be noted,

using a vectorization factor higher than 8 does not bring any benefit due to the data

transfer bottleneck and unnecessarily increases resource utilization, while a smaller vec-

torization factor produces sub-optimal implementations. Overall, we achieved a speedup

of 15.85x compared to the CPU-based single thread implementation simply by running

our tool on the original code of the application and synthesizing the final system with

MaxCompiler. Although the speedup obtained is substantial, it may not appear enough

to justify the use of a hardware accelerator, even though the design was obtained auto-

matically from an unoptimized code. On the other hand, this result clearly shows that

our methodology is able to find the optimal implementation for the target system: for a

vectorization factor of 8 we are able to use all the available communication bandwidth

while using only 46% of DSPs, which are the next most used resource in the design. This

highlights the fact that the algorithm performs a relatively simple computation while

transferring a large amount of data. Since our tool allows to target different FPGAs

by specifying the characteristics of the hardware, the user could experiment to test the

performance of the optimized designs proposed by our tool on different target architec-

tures. For example, a newer generation of PCI-e could improve performance results. A

next optimization step for the user could be the implementation of an image compression

strategy to reduce the amount of data transferred and possibly use the resources on the

FPGA more efficiently. An optimization of this kind falls outside of the current purpose

and capabilities of our tool. We can see from table 4.2 that our resource estimation

module is able to predict before synthesis the resources used by the final implementation

with a maximum error of 5.76% in the case of BRAMs. As mentioned in chapter 3 in

the resource estimation section, this is partially due to the fact that we do not take into

account the BRAM employed in the design to handle the FIFO between functional units
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Table 4.1: Summary of multiple implementations of the sharpen filter algorithm.

Vector. Rerol. Cyclic
Interl. Freq.

DSP Pipel. Speedup Bandwidth [MByte/s]
Factor Factor DFG Push Push vs CPU Input Output

no no no no 200 MHz 1.0 1.0 4.58 550 550
2 no no no 200 MHz 1.0 1.0 8.86 1,064 1,064
4 no no no 200 MHz 1.0 1.0 15.37 1,846 1,846
8 no no no 200 MHz 1.0 1.0 15.85 1,905 1,905
16 no no no 200 MHz 1.0 1.0 15.62 1,877 1,877

Table 4.2: Summary of resource utilization for the multiple implementations of the sharpen filter
algorithm shown in table 4.1.

Vector. Rerol. Cyclic
Interl.

DSP Pipel. Kernel Resources (estimation error) [%]
Factor Factor DFG Push Push LUT FF BRAM DSP

no no no no 1.0 1.0 3.63 (-0.18) 2.37 (-0.13) 4.05 (-0.59) 5.86 (0)
2 no no no 1.0 1.0 7.03 (-0.14) 4.60 (-0.11) 8.20 (-1.27) 11.72 (0)
4 no no no 1.0 1.0 13.9 (-0.12) 9.05 (-0.07) 15.77 (-1.90) 23.44 (0)
8 no no no 1.0 1.0 27.52 (+0.04) 17.97 (-0.02) 31.05 (-3.32) 46.88 (0)
16 no no no 1.0 1.0 54.96 (+0.16) 35.78 (+0.13) 61.23 (-5.76) 93.75 (0)

in our estimation.

4.2.2 Asian option pricing

The Asian Option Pricing algorithm based on Curran’s approximation model [52] is a

compute-intensive algorithm used in finance to compute the pricing of Asian options.

Due to the nature of these options, the calculation of the final price depends on the

prior price of the option across a fixed interval of time. A fixed-point implementation

of the algorithm has been proposed in [51]. To calculate the pricing of Asian Options,

Table 4.3: Summary of multiple implementations of the asian option pricing algorithm with 30
averaging points.

Vector. Rerol. Cyclic
Interl. Freq.

DSP Pipel. Speedup Bandwidth [MByte/s]
Factor Factor DFG Push Push vs CPU Input Output

no 5 no no 220 MHz 0.1 1.0 99.5 1,485.43 165.05
no 4 yes no 220 MHz 0.1 0.3 13.2 196.42 21.82
no 4 yes yes 210 MHz 0.1 0.3 118.4 1,767.64 196.40
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Figure 4.2: The overall structure of the Asian Option Pricing application, as implemented in [51]

Table 4.4: Summary of multiple implementations of the Asian option pricing algorithm with 780
averaging points.

Vector. Rerol. Cyclic
Interl. Freq.

DSP Pipel. Speedup Bandwidth [MByte/s]
Factor Factor DFG Push Push vs CPU Input Output

no no no - - - - - -
no 98 yes no 215 MHz 0.1 0.3 10.6 7.90 0.88
no 98 yes yes 215 MHz 0.1 0.3 101.0 75.11 8.35

Table 4.5: Summary of resource utilization for the multiple implementations of the Asian option
pricing algorithm with 30 averaging points.

Vector. Rerol. Cyclic
Interl.

DSP Pipel. Kernel Resources (estimation error) [%]
Factor Factor DFG Push Push LUT FF BRAM DSP

no 5 no no 0.1 1.0 59.76 (-0.70) 36.88 (+1.36) 51.66 (-6.40) 48.05 (+0.39)
no 4 yes no 0.1 0.3 63.70 (-0.68) 40.17 (+1.26) 52.25 (-5.03) 59.77 (+0.39)
no 4 yes yes 0.1 0.3 64.12 (-1.10) 40.46 (+0.97) 53.61 (-5.81) 59.77 (+0.39)
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Table 4.6: Summary of resource utilization for the multiple implementations of the Asian option
pricing algorithm with 780 averaging points.

Vector. Rerol. Cyclic
Interl.

DSP Pipel. Kernel Resources (estimation error) [%]
Factor Factor DFG Push Push LUT FF BRAM DSP

no no no - - - - - -
no 98 yes no 0.1 0.3 64.20 (-1.18) 40.46 (+0.97) 53.03 (-5.81) 59.77 (+0.39)
no 98 yes yes 0.1 0.3 64.67 (-1.65) 40.93 (+0.51) 54.39 (-6.59) 59.77 (+0.39)

the algorithm approximates the pricing by considering the market price of the asset at

different averaging points across time. This is the reason why most of the computation

can be parallelized. Figure 4.2 shows the overall structure of the Asian Option Pricing

algorithm. The application is composed of five asynchronous kernels, reported in Figure

3 as K1, K2, K3, K4, and K5. Each kernel performs part of the Curran’s algorithm,

communicates with the other kernels by means of FIFOs, and leverages fixed-point data

types to reduce resource usage while satisfying the accuracy constraint typical of finan-

cial applications. Finally, kernel K4 exploits the normal cumulative distribution function

(NCDF) to easily compute the Asian put and call options. Maxeler’s library provides

functionHART to efficiently compute an accurate approximation of the NCDF. function-

HART is implemented with a fixed-point piece-wise polynomial approximation generated

at hardware compile time using the Remez algorithm [53]. The NCDF function is also

the bottleneck in terms of maximum synthesis frequency in case of this design. In fact,

the empirical evaluations ran on this NCDF implementation show that it cannot be syn-

thesized at a frequency higher than 220 MHz. This information was integrated with the

technological library of the tool. Our methodology is able to produce an automatically

optimized implementation of the algorithm with both 30 and 780 averaging points as

presented in [51] thanks to the rerolling optimization as well as the optimized translation

for loops with loop-carried dependencies. The comparisons with the software baseline for

different configurations are shown in tables 4.3 and 4.4. For the version with 30 averaging

points, the best configuration uses a rerolling factor of 4, as a lower rerolling factor would

require more hardware resources than the ones present on the target FPGA, and uses
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cyclic dataflow graphs with the interleaving optimization and was synthesized with a

frequency of 210 MHz. This version has a speedup of 118.4x with respect to the baseline

software implementation. We also compared the DFE execution times reported in [51] of

the design optimized by hand. With respect to the version with 30 averaging points, we

obtained a speedup of 1.23x. Since the hand-optimized design achieves a lower rerolling

factor than our implementation due in part to the fact that it is a fixed-point imple-

mentation, we believe that the speedup obtained is caused by the different bandwidth

limitations of the two systems. It is worth noting that the implementations that used the

cyclic dataflow graph optimization allowed a lower rerolling factor of 4, thanks to their

more efficient use of resources. On the other hand, the version with 780 averaging points

could not fit on the target board without applying the cyclic dataflow graph optimiza-

tion. In this case, the best configuration used a rerolling factor of 98 and the interleaving

optimization, resulting in an 87x speedup with respect to the software baseline. With

respect to [51] our implementation shows a speed down of about 0.5x, in line with the

fact that our design has an unrolling factor of 8, while the hand-optimized design com-

putes 15 averaging points in parallel. Nevertheless, we have shown how our framework

shortens the gap between the hand-optimized and the automatically-optimized design.

The resource utilization estimated for the designs by our resource estimation model are

shown in tables 4.5 and 4.6. The maximum error is of 6.59% relative to the BRAM

utilization, for similar reasons to the ones mentioned in section 4.2.1.

4.2.3 Quantum Monte Carlo Simulation

Quantum Monte Carlo (QMC) is a blanket term used to denote a set of related meth-

odologies that are used in approximating expectation values to quantum mechanical

observables through the (time-independent) Schrödinger equation (TISE). By casting

the TISE into integral form, one is able to stochastically sample the many-electron wave-

function in an accurate and scalable way. In particular, two varieties of QMC are favored:

Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC).

Rather than proceed by giving a high-level overview of the entire application, we instead
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direct the reader to several excellent reviews [54, 55, 56] of QMC techniques in general,

and instead focus upon the parts of the application which are amenable to acceleration

through dataflow computing. Furthermore, we direct the reader to a state-of-the-art

implementation [57], where the porting to a dataflow platform has been manually under-

taken.

The overwhelming computational hotspot for both VMC and DMC applications is the

calculation of the so-called trial wavefunction. For systems exceeding a handful of elec-

trons, the computational overhead associated with computing the trial wavefunction

exceeds 80% of the total runtime [58]. As such, the trial wavefunction evaluation kernel

is a prime candidate to offloading to a hardware accelerator.

The trial wavefunction evaluation kernel can effectively be distilled into the computa-

tion of a Slater matrix, D, whose elements are formed from a number of scalar-vector-

accumulations,

Di(~r) =

NAO∑
j=1

φj(~r) · Ci . (4.1)

whereDi and Ci correspond to the ith rows of Slater and coefficient matrices, respectively.

The NAO atomic orbitals, {φ(~r)}, have simple functional form

φj(~r) =

Np∑
k=1

djk exp(−ζjk|~r − ~Rj |2)

≡
Np∑
k=1

djkN(~Rj , (2ζjk)
−1) , (4.2)

where N(~Rj , (2ζjk)
−1) is the gaussian distribution centred on ~Rj with variance (2ζjk)

−1.

This linear combination of Np primitives has contraction coefficients djk. The free vari-

able at which we sample the gaussian, ~r, is used to undertake the Monte Carlo. For a

standard VMC, the number of independent samples per Monte Carlo step is the product

of the number of electrons in the system being studied, n, and the number of concurrent

Monte Carlo samplers, Nw, the latter having a magnitude of 103 and above.

For the molecular system studied in this work, a box of 64 molecules of the hydrogen

dimer in a crystalline geometry, there exist 128 atomic orbitals (each comprising six
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primitives), 128 electrons and 8192 Monte Carlo samplers. While the system is mod-

erately sized, the complexity of the trial wavefunction has been simplified considerably.

The actual computational kernels are, however, representative of ubiquitous functional

forms in QMC, and the implementation described in this work is easily extensible to

more complex systems. The results of the accelerations of the VMC algorithm with

different optimization options are shown in table 4.7. In this case, the bottleneck for

the maximum theoretical synthesis frequency is given by the exponential function’s im-

plementation that caps the frequency at 280 MHz. However, due to the size of the

design and the complexity of the routing, the maximum frequency obtained in practice

is 230 MHz. Without the cyclic dataflow graph optimization, the design could not fit

on the target board even with the loops completely rerolled. For this design, the best

configuration has a rerolling factor of 128 and the interleaving optimization. With this

configuration, the design shows a 26x speedup with respect to the software baseline. To

compare our solution with the one presented in [57] we compared the ideal bandwidth of

the system described in the paper with the real bandwidth achieved by our solution and

found a discrepancy of 7% in favor of the ideal bandwidth. It is important to note that

the introduction of the interleaving optimization has a noticeable impact on the use of

hardware resources, and the DSE takes this into account when it computes the optimal

configuration. The resource estimation model was able to estimate resource utilization

with a maximum error of 5.76% relative to BRAM utilization. The reason for this result

is analogous to the one mentioned in section 4.2.1. A summary of the estimates is shown

in table 4.8.

4.3 Results evaluation

The experiments illustrated in this chapter showcase the viability of the proposed meth-

odology as a way to implement FPGA-accelerated dataflow applications. The results

show that our automatically optimized designs consistently outperform their software

counterparts. More importantly, we were able to show that our designs in some cases
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Table 4.7: Summary of multiple implementations of the VMC algorithm.

Vector. Rerol. Cyclic
Interl. Freq.

DSP Pipel. Speedup Bandwidth [MByte/s]
Factor Factor DFG Push Push vs CPU Input Output

no 128 no no - - - -
no 128 yes no 225 MHz 1.0 0.3 2.7 91.38 89.29
no 128 yes yes 230 MHz 1.0 1.0 26.2 879.36 859.22

Table 4.8: Summary of resource utilization for the multiple implementations of the VMC algorithm.

Vector. Rerol. Cyclic
Interl.

DSP Pipel. Kernel Resources (estimation error) [%]
Factor Factor DFG Push Push LUT FF BRAM DSP

no 128 no no - - - - - -
no 128 yes no 1.0 0.3 29.78 (+1.13) 19.65 (+0.59) 29.20 (+0.49) 72.66 (+0.00)
no 128 yes yes 1.0 1.0 30.50 (+0.85) 21.80 (+1.10) 59.42 (-5.76) 72.66 (+0.00)

have comparable or better performance than their respective hand-optimized versions.

This is ultimately the goal of our methodology since we want to be able to offer the

benefits of optimized hardware acceleration at a much lower development cost. In some

cases, like for the Asian option pricing algorithm, we are able to see that although for the

design with 780 averaging points our methodology yields a 0.5x speed-down, this result

is not a methodological limitation: by implementing a variable range estimation proced-

ure, we may be able to introduce an optimization option which uses fixed-point types of

different length to further reduce resource consumption within the current framework.

With regards to the resource estimation results, we can observe that our models provide

very precise estimations in most cases, with the possible exception of the BRAM use

estimations, for which the errors remain in a reasonable range below 7%. This confirms

that the use of the synchronous dataflow paradigm to express the computation provides

a good model for automatic design space exploration before synthesis.



Chapter 5

Conclusions and Future work

In this chapter, we present the final considerations on the proposed methodology for the

design of dataflow-based kernels on FPGA. In section 5.1 we outline the contributions

of the work presented as well as its limitations. In section 5.2 we describe how the work

presented could be expanded and improved.

5.1 Contributions and limits

The work presents a methodology to design optimized dataflow designs for FPGAs that

aims at reducing the design time as well as the amount of expertise required to produce

an optimized implementation. In this context, we can summarize the main contributions

of this work as follows:

• we provide a complete design flow, from an unoptimized C implementation of a

software function to a synthesizable optimized dataflow kernel on an FPGA;

• our tool uses Clang, a common C frontend compiler, and does not require the user

to modify the input code with FPGA-specific directives or pragmas;

• we propose a code transformation methodology that leverages the LLVM compiler

framework to transform an imperative code into a dataflow description of the same

computation;

• we propose a custom dataflow intermediate representation on which we are able to
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apply various target-agnostic optimizations;

• we implement different target-specific and architecture-aware optimizations target-

ing MaxCompiler as a backend for the synthesis of our dataflow designs;

• we provide resource estimation and latency estimation analysis to measure the

impact of our code optimizations on throughout and resource consumption;

• we implement an automatic design space exploration that selects the optimal set

of optimizations to apply for a given input function;

• we provide a backend translation of our dataflow IR into optimized MaxJ code,

providing all the elements necessary to initiate the synthesis process on the target

FPGA;

Although the proposed methodology shows promising results, it also has some limit-

ations. The ability to translate a software function written in C into a dataflow kernel

depends upon several restrictions to the characteristics of the input code. This is partly

due to the fact that hardware acceleration generally has less flexibility in its design com-

pared to a general-purpose software implementation, and partly due to some limitations

in the code analysis and transformation capabilities of our tool. The transition from

software to HDL is a very complex problem that poses numerous challenges even in the

restricted case of dataflow computations, and a more sophisticated version of our current

frontend optimization process could most likely expand the set of accepted input func-

tions of our tool. Another limitation of our approach is that, although the final result of

our transformation and optimization process may vary substantially depending on how

the user has expressed the original C function, at present we do not actively provide

guidelines for the user to modify his/her code in order to ensure that our tool is able to

deliver the best performance.
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5.2 Future work

To further develop the presented methodology, we could focus on different aspects of our

approach. Firstly, improving the normalization process may result in more flexibility

with regards to the restrictions on the input code, so that more applications could be

easily accelerated. For example, we could apply loop interchange and loop skewing as

well as other loop transformations when appropriate to improve the parallelism extracted

from the loops in the input function and manipulate the iteration space to produce the

most optimal implementation. In addition, a more accurate estimation of the impact of

the FIFOs introduced in the designs on the overall BRAM use may further improve the

results of our automatic design space exploration. To achieve this, we could implement an

estimation of the FIFO depth required by each interconnection between functional units

in the design, depending on the data production and consumption rates of each element

and the offsets used in the code to read and write data from streams. For what concerns

the optimization options presented by our tool, the addition of a value range analysis

and the use of data types with reduced bitwidth and fixed-point numbers could improve

substantially the performance of some applications. For example, the state-of-the-art

Asian option pricing algorithm used as a case study in the previous section achieved

better resource utilization through the use of fixed-point data types. Lastly, to confirm

the generality of our methodology we could expand the supported backend synthesis

tools, including for example Vivado HLS and SDAccel. This perspective is particularly

attractive since it would enable us to test our methodology on high-end FPGA in a cloud

environment. For example, by supporting SDAccel as a backend we would be able to

deploy our designs on the Amazon F1 instances. Furthermore, given that the proposed

methodology aims at providing an accessible way for non-experienced users to program

FPGAs, providing our framework as a service in a cloud environment is a very direct

and effective way to achieve this goal.
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