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Abstract

The end of Dennard scaling over the last two decades has meant that computing systems
could no longer achieve exponential performance improvement through higher clock fre-
quency and transistor density due to the power wall problem. Heterogeneous computing
systems address this issue by incorporating specialized hardware to achieve better energy
efficiency and performance. In this context, Field Programmable Gate Arrays (FPGA)
have steadily grown in popularity as hardware accelerators, although the greatest obstacle
to their mainstream adoption remains the high engineering cost associated with develop-
ing FPGA-based applications. Despite the remarkable improvements in the effectiveness
of third-generation High Level Synthesis tools, they still require some domain-specific
knowledge and expertise to be used effectively. This thesis proposes a methodology
and a tool that further increase the accessibility of HLS technology by providing a high
level language frontend for the design of dataflow applications on FPGA. This frame-
work allows software developers to write C code without focusing on FPGA-specific
optimizations or concepts related to the dataflow model. The tool leverages the LLVM
compiler framework to apply dataflow-specific code transformations and FPGA-related
optimizations and outputs optimized code ready to be synthesized by state-of-the-art
FPGA synthesis tools. A performance model tailored for dataflow computations allows
obtaining accurate performance estimates before synthesis for different combinations of
available optimizations. An ILP formulation of the optimization problem is then used to
obtain the set of optimizations that maximizes throughput while respecting the FPGA’s
resources constraints. To validate this approach, we have tested the tool on different
unoptimized algorithms written in C and we have targeted MaxCompiler as a backend

dataflow synthesis tool. We have compared the performance obtained by these automat-

XI



ically optimized designs to their hand-optimized counterparts and obtained performance
which ranges from 0.5x speed down to 1.34x speedup, depending on the benchmark. From
the point of view of productivity, our automated optimization methodology obtains these
results in about a day of work by software developers, as opposed to the several weeks
of optimization by expert FPGA developers required to produce the hand-optimized
designs. These results show that our methodology allows to optimize the original code
and transform it into dataflow code optimized for FPGA synthesis with significantly

reduced development effort.
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Sommario

La fine del ridimensionamento Dennard nel corso degli ultimi vent’anni ha fatto si che
i moderni microprocessori non potessano ottenere un aumento esponenziale di perfor-
mance attraverso una frequenza di clock piu alta e una maggiore densita di transistor. I
sistemi di computazione eterogenei affrontano questo problema incorporando hardware
specializzato per ottenere un miglioramento in performance ed efficienza energetica. In
questo contesto, le Field Programmable Gate Arrays (FPGA) sono sempre piu utilizzate
come acceleratori hardware, sebbene ’ostacolo principale contro un’adozione piu diffusa
di questa tecnologia rimanga il proibitivo costo di sviluppo. Nonostante i notevoli miglio-
ramenti dei tool di High Level Synthesis di terza generazione, questi richiedono comunque
esperienza e una conoscienza specifica di dominio per poter essere utilizzati in maniera
efficace. L’obbiettivo di questa tesi é proporre una metodologia ed un tool che migliorino
Paccessibilita della tecnologia di HLS mettendo a disposizione un frontend per linguaggi
di alto livello per il design di applicazioni dataflow su FPGA. Questo framework permette
a sviluppatori software di scrivere codice in C senza doversi occupare di ottimizzazioni
specifiche alle FPGA o concetti relativi al modello dataflow. Il tool sfrutta il compiler
framework LLVM per applicare trasformazioni specifiche per computazioni dataflow e
ottimizzazioni relative all’architettura target e produce come output codice ottimizzato,
pronto per essere sintetizzato su FPGA da appositi tool commerciali. Un modello di
performance specifico per computazioni dataflow permette di ottenere stime di risorse
accurate prima della sintesi per diverse combinazioni di ottimizzazioni. Una formulzione
ILP ¢ utilizzata per risolvere il relativo problema di ottimizzazione per massimizzare il
throughput rispettando le limitazioni in termini di risorse hardware del’FPGA. Per va-

lidare il nostro approccio, abbiamo testato il tool su diversi codici non ottimizzati scritti

XIII



in C e abbiamo scelto MaxCompiler come tool di backend per la sintesi del design da-
taflow. Abbiamo comparato le performance ottenute dai design generati attraverso il
nostro tool con design ottimizzati manualmente presenti nello stato dell’arte, ottenendo
performance variabili da 0.5x a 1.34x in speedup a seconda dei benchmark considerati.
In termini di produttivita, la metodologia di ottimizzazione automatica proposta richiede
circa un giorno di lavoro da parte di uno sviluppatore software per produrre i risulta-
ti riportati, rispetto alle settimane di lavoro di ottimizazzione da parte di sviluppatori
per FPGA esperti richieste per produrre i design ottimizzati manualmente. Questi ri-
sultati mostrano che la metodologia proposta permette di ottimizzare e trasformare il
codice in ingresso in un codice dataflow ottimizzato per la sintesi su FPGA, riducendo

notevolmente lo sforzo di sviluppo.

XIV









Chapter 1

Introduction

In this chapter, we introduce the context in which this work is developed as well as the
definition of the problem we intend to tackle. In section 1.1 we introduce FPGAs and
their main components. In section 1.2, we briefly discuss the role of FPGAs in modern
computing. In section 1.3, we introduce HLS technology, in section 1.4 we introduce the
dataflow computational paradigm and in section 1.5 we define what are the problems
and limitations of modern HLS technology that we want to address via the proposed

methodology.

1.1 FPGA overveiw

Field Programmable Gate Array (FPGA)s are reconfigurable integrated circuits inten-
ded for custom hardware implementation. An FPGA is generally composed of three
main building blocks: Configurable Logic Block (CLB)s, also known as Adaptive Logic
Module (ALM)s on Intel FPGAs, input-output blocks and communication resources. In
the interest of brevity, from this point onward we will use only the terminology relat-
ive to Xilinx FPGAs, even though some architectural differences exist between different
vendors. CLBs are the main components of the FPGA, used to implement either combin-
ational or sequential logic. In Xilinx FPGAsS, a single CLB is composed of a set of slices,
the number of which can vary according to the device. Each slice is, in turn, composed

of a set of Look-Up Table (LUT)s which store a combination of values that represent
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Figure 1.1: Schematic example of heterogeneous FPGA structure.

the outputs of the desired hardware function. A multiplexer reads the correct output of
the function stored in a memory cell according to the given combination of input bits.
Input-output blocks connect the internal logic to the I/O pins of the chip. Through their
own configuration memory, 1O blocks allow to configure monodirectional and bidirec-
tional links as well as to set the voltage standards to which the pin must comply. The
interconnection resources interconnect CLBs and IO blocks, creating a communication
infrastructure that allows the realization of complex hardware circuits. In addition to
these basic components, modern FPGAs contain other hardware components such as
Block RAM cells (BRAM), processors, Digital Signal Processing (DSP) units and mul-

tipliers. Figure 1.1 shows a schematic example of a heterogeneous FPGA and its main

components.



1.2. The role of FPGA

1.2 The role of FPGA

While FPGA initially flourished in networking and telecommunications, their domain of
application has expanded to include embedded system applications, due to their remark-
able energy efficiency, and more recently high-performance computing [1], data centers
and cloud computing [2][3|[4]. Traditionally, High Performance Computing was domin-
ated by General Purpose Processors, since they were inexpensive and their performance
scaled with frequency in accordance with Moore’s Law. Since the mid-2000s, multicore
architectures became the new way to meet the increasing demand for performance as fre-
quency scaling was no longer a viable option, due to the escalation of power dissipation.
Multicore architectures forced developers to adopt parallel programming models to fully
exploit the computation capabilities of these systems. Given that multicore architectures
already introduced notable complexity in traditional GPP programming, heterogeneous
systems that couple GPPs with hardware accelerators such as GPUs and FPGAs became
a viable alternative since they could provide great performance benefits, especially for
very data-driven and compute-intensive applications [5]. In these scenarios, their spe-
cialized hardware allows to dedicate many more transistors to meaningful calculations
that in GPPs are devoted to caching and memory management hardware. Over the past
decade, architectural enhancements, increased logic cell count and clock frequency have
made it feasible to perform massive computations on a single FPGA chip at increased
compute efficiency for a lower cost. FPGA as a service has been pioneered by Amazon
with its F1 instances and is a growing trend. Microsoft introduced an interconnected
and configurable compute layer composed of an FPGA chip in its cloud computing en-
vironment through Project Catapult [6]. All of these factors make FPGA today one
of the major players in the HPC space, as well as for embedded applications. For this
reason, research surrounding FPGA development is instrumental in ensuring that this
technology is used to its full potential by all types of end-users. In the next section we
report a brief introduction to High Level Synthesis tools, that play a major role in the

democratization of FPGAs.
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1.3 High Level Synthesis technology

FPGAs were traditionally programmed through Hardware Description Languages, such
as Verilog and VHDL. While these languages can be effective to program small to
medium-sized, very efficient designs, the growing system complexity and the need for a
shorter time-to-market for FPGA applications has created a very active field of research
around CAD tools for FPGA development [7][8]. In particular, High Level Synthesis
tools aim to raise the level of abstraction, allowing FPGA developers to specify their
hardware design as high-level language programs. This idea of using high-level languages
for hardware specification is not limited to FPGA development, as it can be used for
example to design complex Application Specific Integrated Circuit (ASIC)s, but it is in
FPGA development that it is most useful, since FPGA designs can be easily deployed
and iteratively improved at a much lower cost compared to non-reconfigurable ASIC.
HLS technology can broadly be divided into three generations, according to |7]: the first
generation of tools, from the 1980s to the early 1990s, was mainly a research generation,
were many foundational concepts were introduced. However, for a number of reasons
these tools were a commercial failure and did not find a consistent user base. Among
the reasons, [7] cites the fact that at the time RTL synthesis was just beginning to take
a foothold in the community, and thus it was unlikely for behavioral synthesis to fill a
design productivity gap. Moreover, these tools used little known input languages such
as Silage, which represented a considerable hurdle for potential new users. Finally, the
inadequate quality of results and the domain specialization of some of these tools on
DSP design contributed to their limited success. The second generation, spanning from
the mid-1990s to the early 2000s, saw many Electronic Design Automation (EDA) com-
panies such as Synopsys, Cadence, and Mentor Graphics offering commercial HLS tools.
Once again, the second generation was, overall, a commercial and user failure. At this
point, designers who were used to RTL synthesis and were obtaining good and improving
results, were not willing to change their design methodology unless HLS offered equally

good or improved results with substantially lower effort and a gentle learning curve.
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Second-generation HLS tools did not offer that, and instead competed in the same space
by accepting behavioral HDLs as input languages, thus keeping the user base confined to
RTL-level designers. In addition, these tools generally produced low-quality results for
control dominated branching logic, and overall hard to validate results with high varying
time intervals. The third generation of HLS tools, developed from the early 2000s until
the present day, mostly use C, C++ or SystemC as input. Unlike the first two, this
generation of tools is enjoying a good amount of success. Among the reasons for this
success, are the fact that many of these tools focus on specific design domains, such as
dataflow or DSP, and thus are able to obtain better results, and that by accepting C-like
high-level languages as opposed to behavioral HDL, they effectively broaden the user base
to not only expert HDL designers. Moreover, since these tools use variations of software
languages, they can take full advantage of compiler optimization techniques which con-
tribute greatly to the achievement of improved design outputs. All these advancements,
coupled with the rise in popularity of FPGAs, make HLS technology a central theme
in computer architectures today. In particular, the proposed methodology will focus its
attention on the dataflow computational paradigm, that we introduce more in detail in

the next section.

1.4 The dataflow model

Dataflow Programming is a programming paradigm whose execution model can be rep-
resented by computation nodes containing an executable block or elementary operation,
having data streams as inputs and transformed data streams as output. These nodes are
connected to each other forming a directed graph, which represents the entire computa-
tion. An example of a dataflow graph is shown in figure 1.2. The theoretical foundation
for the dataflow programming model was first introduced by Kahn [9]. In Kahn Process
Networks, the nodes are sequential processes that communicate to one another via un-
bounded FIFO queues. Whenever the entry FIFO queues for a node are not empty, the

first values are processed and the output is sent to the FIFO belonging to the next node
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Figure 1.2: Graphic dataflow representation of a small program.

in the chain. Dataflow programming has since evolved into a methodology to exploit the
capabilities for parallel processing of modern computer architectures and accelerators,
as well as being the basis for several visual and text-based programming languages [10].
One of the earliest examples of dataflow programming used to exploit parallel architec-
tures is Streams and Iteration in a Single Assignment Language (SISAL), a text-based
functional and dataflow language derived from Val. It was created in the late 80s to in-
troduce parallel computation in the first multi-core machines [11]. Many other academic
dataflow programming languages have been presented since [12][13][14]. An example of

commercially successful dataflow visual programming language is LabView [15].

1.4.1 The dataflow atchitecture

The reason why the dataflow execution model offered an interesting alternative to the
classic von Neumann execution model comes from its inherent possibility for parallelism.
In the dataflow execution model, a program begins when input data is placed on special
activation nodes. When input data arrives at a set of input arcs of a node called fringe,
the node becomes fireable. A node is executed at an undefined time after it has become

fireable. This means that, in general, instructions are scheduled for execution as soon
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as the input operands become available. This model is fundamentally different from the
von Neumann scheme, where a global program counter dictates which instruction will be
scheduled for execution in the next cycle. In the dataflow model, multiple instructions
can execute simultaneously, provided that their respective inputs are ready. Moreover,
since the dataflow graph of the computation already describes the data dependencies
in the program, if multiple sets of data have to be computed with the same dataflow
graph, the execution of the following sets of data can begin before the first has finished
executing. This technique is known as dataflow pipelining.

Despite these promising features, producing hardware implementations of the pure data-
flow model has been challenging [16]. One of the sources of problems is the fact that the
model makes assumptions that cannot be replicated in practice, both in terms of memory
and computational resources. One of these assumptions is that the arcs connecting the
nodes are FIFO queues unbounded by capacity. Since having a memory unbounded by
capacity is practically unfeasible, a dataflow architecture has to rely on efficient storage
techniques for storing data in the FIFOs. From the point of view of computational re-
sources, the dataflow model assumes that any number of instructions can be executed
in parallel, as long as the respective data is available. Of course, this is not practically
possible, as each instruction has to be physically executed on a set of hardware resources
that are finite. In order to tackle these issues, different variations of the dataflow model
have been presented in the literature. In the following sections, we report some relevant

examples.

1.4.2 Static dataflow

The static dataflow architecture [17] was created to address the problem of unbounded
FIFO capacity. In this version of the dataflow model, each arc can hold at most one data
token. A node can fire if a token is present on each input arc and no token is present in
the output arcs. This check is implemented through acknowledgment signals that travel
in opposite directions to each data arc and carry an acknowledgment token. In this

model, the memory for each arc of the dataflow graph can be allocated at compile time
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and no complex hardware is needed to manage the FIFOs. However, the acknowledgment
tokens increase the data traffic of the system by up to two times [18] and increase the
time between successive firings of a node, which negatively impacts performance. This
model also severely limits the possibility to exploit parallelism among loop iterations,

often limiting the parallelism to simple pipelining [10].

1.4.3 Synchronous dataflow

Another relevant variation of the pure dataflow model is synchronous dataflow [19]. In
this model, the number of tokens consumed and produced by each arc of a node is known
at compile time. Due to these restrictions, only programs that can be expressed through
dataflow nodes with no data-dependent control-flow can be represented. On the other
hand, a program following this model can always be statically scheduled. Moreover, if a
dataflow graph does not follow the synchronous dataflow restrictions, but contains sub-
graphs which do, it may allow partial static scheduling. Especially in domains where
time is an important element of the computation, such as digital signal processing, these

properties are particularly relevant.

1.5 Problem definition

Despite all the advancements that third generations HLS tools have brought to the FPGA
community, FPGA development is still perceived as a big hurdle, even when compared
to other heterogeneous accelerators such as GPUs. Indeed, creating an optimized FPGA
design from scratch, even using modern HLS technology, requires very specific domain
expertise. To achieve good performance, the developer has to either guide the HLS tool
through FPGA-specific and architecture-dependent optimizations or learn to program
following a completely different computing paradigm through a Domain Specific Lan-
guage. An example of the former is the commercial tool Vivado HLS by Xilinx [20],
where the programmer needs to insert a number of pragmas to enforce specific hardware

implementations of a given portion of the program logic or handle the way in which the
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data is stored and partitioned in the different types of memories available on the FPGA.
This and many other design decisions factor into the quality of the end result. To obtain a
good quality design, the developer needs not only a detailed knowledge of the underlying
architecture, but also of the specific HLS tool and its idiosyncratic behavior. An example
where the synthesis tool requires the adoption of a completely different programming
paradigm is MaxCompiler by Maxeler Technologies [21]. In this case, the programming
language is a dataflow-specific DSL embedded in Java, which mixes traditional Java-style
programming with custom variable classes and operator overloading to create a dataflow
description of a given computational kernel, as well as an associated manager program.
Once again the developer requires an advanced understanding of the tool-specific syn-
tax, the dataflow computational paradigm, and the underlying architecture to produce
a good design. The problem that this thesis proposes to tackle is the reduction of the
gap between FPGA and software design time, by aiding the programmer with the semi-
automatic optimization of C-like software functions into dataflow designs for FPGA. We
have chosen the dataflow architecture as the target architectural model since it is general
enough to not be limited to a single application domain while being especially proficient
for data-driven and high-performance computations. Moreover, FPGAs are particularly
suited for the dataflow model due to their ability to spatially distribute memory elements
and functional units with customizable interconnections. Instead of trying to substitute
modern FPGA synthesis tools, our framework builds on top of them, by introducing an
additional frontend layer which automatically applies transformations and optimizations
based on the underlying toolchain of choice, as well as the specific FPGA architecture on
which the design will be synthesized. Thanks to the choice of the dataflow architectural
model, we are able to evaluate the effect of the applied optimizations more precisely and
therefore guide the behavior of our automated design space exploration process to deliver
automatically optimized designs. A first version of this work has been published as a full
paper at the 2018 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW) [22], and an extension of the work has been published at the 2019

IEEE International Symposium On Field-Programmable Custom Computing Machines
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(FCCM) [23] as a poster. In this thesis, we extend the work with respect to both of those
publications by adding an improved design space exploration model, new optimization

options and a new case study.

10



Chapter 2

State of the art

In the state of the art, many works have been presented with the aim of providing a more
accessible way to develop FPGA-based applications. This chapter is not a comprehensive
review, but presents the most relevant approaches regarding FPGA development tools.
In section 2.1 we review some examples of modern general-purpose HLS tools. These
tools generally take as input high-level language code and output a RTL description of
the circuit to synthesize on the FPGA. In section 2.2 we report examples of DSL for
FPGA development in different application domains. Differently from HLS tools, these
approaches use a domain-specific input language and leverage the characteristics of a
particular application domain to generate an optimized RTL design. In section 2.3 we
review the subset of DSL-based approaches that generate dataflow designs. In section 2.4
we review approaches based on source-to-source code transformation and optimization
that rely on existing HLS or DSL-based synthesis tools as backend. Finally, in section
2.5 we discuss how the works presented relate to the proposed methodology and highlight

possible shortcomings.

2.1 Modern HLS approaches

As we described in the introduction, third-generation High Level Synthesis technology
has become accepted by the FPGA community as an effective method to develop FPGA-

accelerated applications with less development effort and comparable results to tradi-
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tional HDL design. In the next paragraph, we report some examples of relevant HLS

tools in the state of the art.

2.1.1 Vivado HLS

Vivado HLS by Xilinx [20] is a commercial High Level Synthesis tool for FPGA de-
velopment which supports C, C++ and SystemC as input languages. Formerly known
as AutoPilot [24], it was acquired by Xilinx and has been continually supported and
improved, and is today one of the most popular FPGA HLS tools on the market. It
includes a complete design environment and enables users to write, test and optimize
their code by iteratively applying different optimizations through the use of FPGA-
specific libraries and data types. The reports available before and after synthesis allow
developers to identify bottlenecks and other optimization issues in their code and select-
ively optimize portions of the resulting hardware design. The tool leverages LLVM as
an underlying compiler framework to extract a flexible intermediate representation and
apply HLS-specific optimizations. Despite the extensive documentation, the tool is very
complex and requires considerable expertise to be used effectively. Through a series of
C-++ libraries and optimization directives, it enables the designer to implement different
computational paradigms, from master-slave to dataflow designs, with a great amount
of flexibility. In addition, the designer needs to apply loop-specific optimizations, such
as loop unrolling and pipelining, to extract the maximum level of parallelism from the
computation, as well as choose between the different FPGA memory resources to store
data. This results in a very powerful tool, which nonetheless demands a considerable
development effort in order to navigate the design space and obtain a well-optimized

code.

2.1.2 Bambu

Bambu [25] is an academic HLS framework that supports most C constructs. It leverages
GCC to perform code optimizations such as constant propagation and loop unrolling, as

well as other HLS-specific transformations. It aims at maintaining the semantics of the
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original application with respect to memory access and offers a highly customizable flow
through an XML configuration file which enables to control, down to which algorithms
should be used, the behavior of the tool. The tool outputs a HDL description of the code

which can then be synthesized through specific vendors’ synthesis tools.

2.1.3 LegUp

LegUp [26], an open-source HLS tool that aims to enable the use of software techniques
in hardware design. To achieve this, the tool accepts standard C programs as input
and automatically compiles them to a hybrid architecture containing an FPGA-based
MIPS soft processor, as well as other custom hardware accelerators. LegUp is written
in C++ and leverages the LLVM compiler framework for standard software compiler
optimizations, and implements within the framework a custom backend for hardware
synthesis. The HLS flow of the tool starts by running the program to be synthesized on
the MIPS soft processor. This enables to profile the application and suggest an optimal
hardware/software division for different portions of the program. At this point, the
portion of the program to be accelerated by custom hardware goes through the actual
HLS passes and is transformed in RTL, where standard commercial tools are used to

synthesize the design.

2.2 DSL for FPGA-based design

Another trend that has been developing parallel to HLS technology for FPGA, is that
of Domain Specific Languages. These languages are developed specifically for a given
application domain, such as image processing, digital signal processing, and others. By
leveraging the specificity of the target domain, they are able to produce very optimized
hardware accelerators. The main downside of these approaches is that they force FPGA
designers to learn new languages and specific syntax that is only applicable to a restricted
domain. Moreover, DSLs make it harder to identify common problems among different

domains, thus reducing the possibility of IP reuse. In the following section, we present
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some relevant FPGA DSLs in the state of the art.

2.2.1 Darkroom

Darkroom is a domain-specific language and compiler for image processing applications.
The architectures targeted are ASICs and FPGAs. Based on the in-line buffering tech-
nique, Darkroom realizes very efficient hardware implementations of the specified pro-
gram as an image processing pipeline. Darkroom specifies image processing algorithms as
functional Directed Acyclic Graphs of local image operations. In order to efficiently target
FPGAs and ASICs, the tool restricts image operations to static, fixed-size stencils. The
programming model is similar to other image processing DSLs like Halide [27]. Images
are specified as pure functions from 2-D coordinates to the values at those coordinates.
Image functions are declared as lambda-like expressions on the image coordinates, the
application of different image functions in succession creates the specification for the

image processing pipeline to implement.

2.2.2 GraphStep

GraphStep [28] is a domain-specific compute model to implement algorithms that act on
static irregular sparse graphs. The work presented in [29] defines a concrete programming
language for GraphStep with a syntax based on Java. The language defines specific
classes and functions to operate in the graph domain, such as node and edge classes
and supports some atomic data types. Each of these classes supports different types of
methods, such as "forward", "reduce tree" and "update" methods, which are expected
to behave according to specific rules dictated by the GraphStep compute model. The
framework has been tested on graph relaxation algorithms, CAD algorithms, semantic

networks, and databases.

2.2.3 FROST

FROST is a unified backend that enables to target FPGA architectures. The input
languages supported are Halide [27], Tensorflow [30], Julia [31] and Theano [32|. The
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main idea behind the framework is to provide a common intermediate representation, the
FROST IR, that different DSLs can be compiled to, through an appropriate frontend.
The FROST IR leverages a scheduling co-language to specify FPGA specific versions
of common optimizations such as loop pipelining, loop unrolling and vectorization as
well as the type of communication with the off-chip memory. In this way, FROST is
able to generate C/C++ code to target FPGA HLS tools such as Vivado HLS and
SDAccel. Although this approach is in part related to our methodology, it presents
some key differences. Firstly, the frontend languages supported are mainly DSLs or
domain-specific libraries. While a common backend to target FPGAs does increase the
probability that domain experts already invested in those particular languages would
consider FPGA as a possible architecture, it does not address the problem of offering
an easy point of access to software developers outside of those domains. Moreover, our
approach shifts the emphasis from the application domain to the computational model,

thus allowing a naturally broader range of applications and uses.

2.3 Dataflow-based design methodologies targeting FPGA

In this section, we report some examples in the state of the art of languages and tools
which leverage the dataflow computational model to design FPGA applications. We also
give a brief description of MaxJ, a dataflow DSL for FPGA which is targeted as a backend

language by the methodology proposed in this thesis.

2.3.1 RIPL

Rathlin Tmage Processing Language (RIPL) is a high-level image processing domain-
specific language for FPGA. The RIPL language employs a dataflow intermediate repres-
entation based on a framework for describing rule-based dataflow actors [33]. The target
backend for the RIPL IR is the CAL dataflow language [34|, which is then compiled
into Verilog. The RIPL IR supports different types of dataflow scheduling properties

for its higher-level algorithmic skeletons. Some fall into the category of synchronous
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dataflow since all the actors produce and consume the same number of image pixels at
every firing, others are categorized as cyclo-static dataflow [35]. The cyclo-static data-
flow paradigm still allows for static scheduling, but also allows for actors to consume
and produce amounts of tokens which vary in a cyclical pattern. RIPL showcases how
the dataflow paradigm is a good fit for FPGA computation since it allows independent
computational resources to operate in parallel and allows to generate hardware pipelines

to hide latency.

2.3.2 GraphOps

GraphOps [36] is a modular hardware library created for the fast and efficient design of
graph analytics algorithms on FPGA. Despite the fact that these algorithms are tradi-
tionally seen as fit for general-purpose architectures rather than hardware accelerators,
GraphOps proposes an alternative model where a set of composable graph-specific build-
ing blocks are linked together. Graph data are streamed to and from memory in a data-
flow fashion, while computation metadata are streamed through the various GraphOps
blocks as inputs and outputs. In order to enhance spatial locality when accessing ele-
ments of the graph, a new graph representation optimized for coalesced memory access
is also proposed. Most of the logic in the algorithms presented works well with a data-
flow paradigm since feedback control is very limited. The cases where this property is
violated, for example in the case of updating a global graph property for all nodes, are

handled by ad-hoc control blocks.

2.3.3 Optimus

Optimus [37] is a framework designed for the implementation of streaming applications on
FPGA. The input language accepted by the framework is Streamlt [38], an architecture-
independent language for streaming applications. Through this language, the program-
mer is able to specify a series of filters interconnected to one another to form a stream
graph. Stream graphs defined in Streamlt are effectively dataflow graphs that follow the

synchronous dataflow paradigm. Optimus uses a specialized filter template to implement

16



2.3. Dataflow-based design methodologies targeting FPGA

the filters specified in the input stream graph. A filter is generally composed of input
FIFOs, output FIFOs, memories accessed by the filter, the filter itself and a controller.
The filters are interconnected to one another by sharing the same FIFO queues. The
framework allows for two different types of hardware orchestrations or modes of execu-
tion. The first is a static scheduling mode, where the compiler dictates the number of
executions of each filter. In this type of scheduling, double buffering is used between
pairs of filters to provide communication-computation concurrency. The other option
is a greedy scheduling, where filters execute whenever data is available and are blocked
upon attempting to read an empty queue. This mode of execution allows for a trade-off
between the size of the queues and overall throughput. Optimus employs a variety of
FPGA-specific optimizations to optimize the overall application throughput, including
queue access fusion, which makes efficient use of the FPGA SRAM characteristics, and

flip-flop elimination.

2.3.4 CAPH

CAPH [39] is a dataflow DSL for describing, simulating and implementing streaming
applications. It is based upon two layers or levels of abstraction. The first is an Actor
Description Language (ADL), used to describe the behavior of dataflow actors as a set
of transition rules involving pattern matching on input values and local variables. The
second is a Network Description Language (NDL), describing the structure of the data-
flow networks by applying actors, interpreted as functions, to values representing wires.
Contrary to similar projects, CAPH chooses a purely functional formalism to represent
dataflow actors. The CAPH compiler can be used to generate a software implementation
in SystemC or produce a VHDL implementation, ready to be synthesized on an FPGA.
In a recent publication [40], the authors of CAPH reflect on the reception that the lan-
guage has received since its release, and speculate that one of the reasons why it couldn’t
achieve widespread success was that it demanded from developers to abandon the tra-
ditional imperative language paradigm and adopt a completely different programming

model. Moreover, the authors mention that the possibility of implementing soft-actors
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written in C/C++ would have been an attractive feature. In this respect, the meth-
odology we propose aims at offering a way to implement dataflow kernels optimized for
FPGA without abandoning the more common high-level programming languages and the

imperative programming model.

2.3.5 MaxJ

MaxJ is a domain-specific language to design dataflow kernels for FPGA. The MaxCom-
piler toolchain from Maxeler Technologies [21]| allows to program several dataflow ker-
nels on a DataFlow Engine (DFE), which correspond to an FPGA, following Maxeler’s
Multiscale Dataflow Computing paradigm based on the synchronous dataflow model.
The idea of Multiscale Dataflow Computing is to employ the dataflow model at differ-
ent levels of abstraction: at a system level, multiple DFEs can be connected to form a
supercomputer, at the architectural level the memory accesses are decoupled as much as
possible from arithmetic operations, which are carried out with massive amounts of par-
allelism using deeply pipelined structures. From an architectural standpoint, a DataFlow
Engine is composed of a large number of dataflow cores, simple hardware structures that
carry out only one type of arithmetic computation. The data is streamed directly from
memory to these dataflow cores, where the intermediate computation results flow directly
from one dataflow core to another and the results are eventually streamed back to the
memory. In order to achieve high throughput, DFEs make use of what in MaxJ is called
Fast Memory (FMem), which refers to the BRAM blocks present on the FPGA chip,
to maintain data locality and ensure that the dataflow cores have high-speed parallel
access to data. Conversely, the input and output data can be streamed directly through
the PCle or from DRAM, referred to in MaxJ as Large Memory (LMem). The Maxeler
Multiscale Dataflow systems can use multiple DFEs to carry out dataflow computations
through a high-speed interconnect called MaxRing. From a programming standpoint,
the developer needs to provide a host code, which can be written in multiple languages
like C, Python, and R, that runs on CPU and performs function calls to one or more

dataflow engines. The dataflow kernel specification and its attached manager program
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are specified in .max files, written in the MaxJ DSL. The .max files containing the data-
flow kernel is a description of the computation that needs to be performed in therms of
arithmetical and logical operations, whereas the manager describes the way in which the
kernel is expected to interact with the host, how much data needs to be transferred and
how the kernel interface relates to the host-side kernel call. MaxJ is a language embed-
ded in Java, which makes use of custom classes, overloaded operators and proprietary
libraries to effectively create a way to specify the structure of the underlying dataflow
graph of a da