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Abstract

The work developed in this thesis is in the field of mobile robotics and

focuses on autonomous navigation in human crowded environments, with

specific reference to autonomous personal mobility vehicles. The goal is

to develop an innovative solution to the problem of autonomous naviga-

tion in human crowded environments, resting on the integration of two

layers: a Global Planner and a Local Planner. The Global Planner is the

layer specialized in planning, which computes a feasible trajectory, in a

given environment, by choosing a feasible geometric path and endowing it

with the time information. The geometric path is determined exploiting a

Probabilistic RoadMap algorithm. The Local Planner solves a trajectory

tracking problem while detecting obstacles from sensor data and ensur-

ing collision avoidance, pedestrian safety and comfort. A novel approach

is adopted to enable socially compliant human-robot interactions, based

on a socially aware navigation model. This is achieved through a Model

Predictive Control scheme, where the distance from the reference trajec-

tory provided by the Global Planner is minimized, subject to operational,

collision avoidance, safety and human comfort constraints. The two lay-

ers are intertwined, in order to allow the Local Planner to correct the

trajectory designed by the Global Planner according to the detected ob-

stacles, and the Global Planner to intervene and replan a new trajectory

whenever the Local Planner is not able to find a feasible solution to the

trajectory tracking problem. Simulation results show the effectiveness of

the proposed solution.
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Sommario

Il lavoro sviluppato in questa tesi appartiene al campo della robotica

mobile e si concentra sulla navigazione autonoma in ambienti affollati,

con specifico riferimento ai veicoli autonomi per la mobilità personale.

L’obiettivo è sviluppare una soluzione innovativa al problema della nav-

igazione autonoma in ambienti affollati, basata sull’integrazione di due

livelli: un Pianificatore Globale e un Pianificatore Locale. Il Pianifica-

tore Globale è il livello specializzato in pianificazione, che calcola una

traiettoria fattibile, in un dato ambiente, scegliendo un percorso geo-

metrico fattibile e dotandolo delle informazioni temporali. Il percorso

geometrico viene determinato sfruttando un algoritmo del tipo Proba-

bilistic RoadMap. Il Pianificatore Locale si occupa dell’inseguimento

della traiettoria, rilevando al contempo gli ostacoli dai dati dei sensori al

fine di prevenire le collisioni e garantire la sicurezza e il comfort dei pe-

doni. È stato adottato un nuovo approccio per consentire la coesistenza

nello stesso ambiente di umani e robot, basato su un modello di nav-

igazione consapevole dei vincoli sociali. Ciò è ottenuto attraverso uno

schema di tipo Model Predictive Control, soggetto a vincoli operativi, di

prevenzione delle collisioni, di sicurezza e comfort, nel quale la distanza

dalla traiettoria di riferimento fornita dal Pianificatore globale viene min-

imizzata. I due livelli sono interconnessi, per consentire al Pianificatore

Locale di correggere la traiettoria progettata dal Pianificatore Globale in

base agli ostacoli rilevati e al Pianificatore Globale di intervenire e ripi-

anificare una nuova traiettoria ogni volta che il Pianificatore Locale non è

in grado di trovare una soluzione al problema di inseguimento della trai-

ettoria. I risultati delle simulazioni mostrano l’efficacia della soluzione

proposta.
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Chapter 1

Introduction

The latest two decades have witnessed an explosion in the research

activities in the field of mobile robotics. In fact, mobile robotics related

applications are emerging in the market, including aerial, ground and

underwater variants, and their presence in households, offices and public

places is increasing each day. Methods for safe and efficient autonomous

navigation in human crowded environments are needed, which should

take into account the constraints of human comfort as well as social

rules. Indeed, a great deal of attention has been directed towards mobile

robot autonomy, efficiency, reliability, and safety. In particular, planning,

control, and perception play an important role in terms of safety and

performance of an autonomous vehicle performing challenging tasks in

complex environments.

1.1 Context and Motivations

The work developed in this thesis belongs to the field of mobile robotics

and focuses on autonomous navigation in human crowded environments,

with specific reference to Autonomous personal mobility vehicles (APMV).

APMV are a promising technology that will facilitate social participation,

enabling active and healthy aging and providing services for super-aging

societies.

According to [7], in 2010 the number of people in the U.S.A. who used

a wheelchair to assist with mobility was of 3.6 million. Among those

aged 65 and older, roughly 2.0 million people used a wheelchair and 7.0

million used a cane, crutches, or a walker. As the population ages, the

percentage of people with disabilities increases. The use of autonomous



wheelchairs for elderly people with deteriorated physical and cognitive

functions could expand their range of activity and socialization.

1.2 Problem formulation

The main goal of this thesis is to develop a solution that allows an au-

tonomous vehicle to move safely in scenarios with unknown and dynamic

obstacles, in particular people. Indeed, the analysis takes into account

a crowded environment, in which the robot will navigate with the pur-

pose of reaching a desired location on a map while, at the same time,

performing collision avoidance in order to guarantee human safety and

comfort.

In the literature, many works like [5],[8],[12] and [22] introduce two

different levels of control to solve the autonomous navigation problem.

In this thesis this concept is further developed, integrating the two lev-

els. The level specialized in planning, also known as Global Planner,

computes a feasible trajectory within the environment by choosing a

geometric path and endowing it with the time information. Plenty of al-

gorithms in the robotic literature solve the path planning problem. Some

widely used methods of remarkable efficiency are Probabilistic Roadmaps

[26], Rapidly-exploring Random Tree [27], A* [31], Potential Field [22].

Furthermore, there are examples about many new approaches based on

Neural Networks [40] and Genetic Algorithms [39].

The level specialized in Control, also known as Local Planner, solves a

trajectory tracking problem while reactively acting in order to detect

obstacles from sensor data and ensure collision avoidance. Many ap-

proaches for trajectory tracking and collision avoidance in the literature

are based on the Dynamic Window Approach [16] and on the Timed Elas-

tic Band [38], [37], [36] algorithms. Model Predictive Control (MPC) [34]

has gained interest, in the past decade, in the field of autonomous vehi-

cle control. This advanced control method is particularly suitable for a

large number of applications, thanks to its flexible constraint handling

capabilities and the possibility of formulating the control problem as an

optimization program, as highlighted in [28] and [17]. In particular, the

MPC control method allows to specify constraints for obstacle avoidance,

actuator limitations, pedestrian safety and comfort in the optimization

problem, using a model of the system to predict its state at future time

instants. In order to allow autonomous vehicles to navigate in human-

2



crowded environments safely and to take into account human comfort, it

is necessary to model the human behaviour, as in [9], [3] and [19].

Figure 1.1: Autonomous navigation in human crowded environment

1.3 Thesis Outline

This thesis is composed of five main chapters, an introduction and a

conclusion.

The first chapter, entitled Introduction and problem formulation, il-

lustrates the context, the motivations and provides the problem formu-

lation.

In the second chapter, the proposed solution strategy, elaborated in-

tegrating model predictive control within global planning, is presented.

In the third chapter, a global planner is developed to generate the

reference trajectory based on the prior knowledge of the environment

in two steps: choosing a geometric path and endowing it with the time

information.

In Chapter 4, a collision free region surrounding the wheelchair is

defined, which takes into account pedestrians and obstacles, as well as

human comfort, with the introduction of the concept of proxemics. To

3



allow the use of convex optimization tools in the control problem, the

region needs to be represented as a convex obstacle free region.

Chapter 5 deals with the MPC problem formulation for trajectory

tracking and obstacle avoidance, in order to achieve a safe and socially-

aware navigation.

Chapter 6 presents the results obtained through simulations within a

crowded environment, motivating the implementation choices related to

the control parameters.

In Chapter 7, some conclusions are drawn and future developments

are proposed.
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Chapter 2

Proposed strategy for

autonomous navigation in

human crowded environments

Moving towards the target destination while simultaneously avoiding ob-

stacles and reacting to environmental changes is a natural task for hu-

mans, but may not be so for an autonomous vehicle. Indeed, autonomous

navigation can be a challenging task in human crowded environments

such as schools, shopping malls, or sidewalks. It requires efficient mo-

tion planning, safe and human-comfortable navigation in dynamic envi-

ronments, obstacle detection and tracking, world state estimation and

motion prediction.

In general, the vehicle autonomy can be achieved in three main steps:

perception and localization, trajectory planning and vehicle control.

The perception of the surrounding environment is accomplished by ex-

ploiting exteroceptive sensors such as cameras, sonars, ToF laser sensors,

3D depth sensors etc., in order to detect pedestrians and other unknown

objects, whereas the vehicle is localized within an unknown environment

with proprioceptive sensors, such as IMU and GPS.

Trajectory planning governs the actual vehicle transition from one fea-

sible configuration to the following one, influencing both the kinematic

and dynamic properties of the motion. It makes use of the known en-

vironmental data such as satellite imagery, street and indoor maps to

plan a safe and smooth trajectory, complying with the vehicle dynamic

limitations. However, the vehicle may encounter previously unknown ob-

stacles and pedestrians on its way to the final destination. As a rule, it



is not possible to assume a collaborative external behaviour, since there

are contexts in which humans are not used to coexist and cooperate with

autonomous vehicles. Therefore, once a suitable trajectory is generated,

the next step is to make use of the data acquired with perception to

control the vehicle in a safe and human-friendly way, while tracking the

reference trajectory with the desired speed profile defined by the planning

module. Indeed, an optimal control manoeuvres the vehicle actuators in

order to obtain a safe, human-friendly and collision-free vehicle motion.

2.1 A two-layer approach

This thesis proposes a complete solution for the problem of autonomous

navigation in human crowded environments, based on an innovative method

that integrates two different layers, in order to guarantee both planning

and control, exploiting the sensory data from perception. As already

mentioned, the motion strategy must rely on exteroceptive sensor in-

formation to move safely in environments with unknown and dynamic

obstacles. The layer specialized in planning, also known as Global Plan-

ner, computes a feasible trajectory, considering the given environment.

On the other hand, the controller, also known as Local Planner, solves

a tracking problem while reactively acting in order to detect obstacles

from sensor data and ensure collision avoidance, pedestrian safety and

comfort. The two levels are intertwined, in order to allow both the Local

Planner to correct the trajectory designed by the Global Planner accord-

ing to the obstacles detected, and the Global Planner to intervene and

replan a new trajectory whenever the Local Planner is not able to solve

the trajectory tracking problem. In the following, the two layers will be

analysed more in detail.

In order to reach the desired goal, autonomous vehicles need to plan

a collision-free trajectory. In fact, the Global Planner determines the

vehicle reference trajectory within the considered environment in two

steps: choosing a geometric path and endowing it with the time in-

formation. Path planning is the task of computing a continuous path

that drives the vehicle from the start to the goal configuration, while

satisfying motion constraints and guaranteeing feasibility. In this work

and for testing purposes, the Probabilistic Roadmaps (PRM) [26] algo-

rithm was selected to solve the path planning problem, because of its

effectiveness and ease of implementation. PRM consists in a network

6



graph of possible collision-free paths in a given map. As already spec-

ified, only known fixed obstacles are considered in this first analysis,

e.g. walls of the selected environment. The reference trajectory between

the waypoints is then calculated by determining a timing law through

a Trapezoidal Velocity Profile based on the approach in [35], imposing

constraints on maximum velocity, maximum acceleration, desired travel-

ling distance, Jerk time and Snap time. The desired trajectory tracking

and collision avoidance are then performed by the Local sensor-based

Planner, a Model Predictive Control (MPC) scheme based on a quadrat-

ically constrained quadratic programming model. This advanced control

method is particularly suitable for a large number of applications, thanks

to its flexible constraint handling capabilities and the possibility to for-

mulate the control problem as an optimization one, where operational

constraints can be enforced and predictions can be included. In the con-

text of MPC-based autonomous vehicle control, with specific reference to

our case (control of the unicycle-type model, as will be further explained

in Chapter 5), we rely on linear models thanks to a standard feedback

linearization procedure, similar to the one adopted in [29] and [13]. This

approach allows to simplify the MPC optimization problem, allowing for

a real-time efficient implementation, and to formulate operational, safety,

human-comfort, and collision avoidance requirements as constraints. To

take into account actuator limitations and comfort requirements, both

quadratic and linear maximum velocity constraints are enforced on the

vehicle longitudinal speed, as well as linear constraints on the velocity

variation. To perform collision avoidance, linear state constraints are

enforced, based on a novel approach developed in this thesis that makes

use of the concept of Velocity Obstacle ([15], [14]), and of the introduc-

tion of a sensor-based circular Virtual Box. Finally, to further fulfill

pedestrian comfort requirements, the concept of Proxemics (introduced

in [21]) is presented and applied with the introduction of Slack variables.

In fact, in order to allow autonomous vehicles to navigate in human-

crowded environments safely and taking into account human comfort, it

is necessary to model human navigation behaviours. The method pre-

sented in this thesis relies on the introduction of soft position constraints

([23]) that consider the navigation behavior of interacting pedestrians,

modeling their personal space (as in [25]), and exploiting the concept of

Proxemics in order to avoid it.

Whenever the Local Planner optimization fails, i.e. the MPC does not

7



find any feasible solution, it means that the robot encountered previ-

ously unknown obstacles that obstruct the planned reference trajectory.

If the optimization fails for more than a specified number of subsequent

iterations, the trajectory tracking stops and the Global Planner is called

again to plan a different reference trajectory, as shown in Figure 2.1.

Figure 2.1: Proposed solution strategy

8



Chapter 3

Global planning for trajectory

generation

Trajectory planning is a crucial part in the field of autonomous navi-

gation. It governs the actual vehicle transition from one feasible configu-

ration to the following one, influencing both the kinematic and dynamic

properties of the motion. A trajectory is preferable rather than a simple

reference path or a constant speed reference, since it allows to prevent

undesired strong acceleration and jerk, and provides a more precise time

varying reference value to be fed to the trajectory tracking controller.

The trajectory generation problem can be formulated as in [4]. Given

a starting configuration q(ti) = qs and a goal configuration q(tf ) =

qg within a specified environment, the collision-free trajectory planning

problem is the one of finding q(t) for t ∈ [ti, tf ] subject to the initial and

final configuration constraints, and can be broken down into

1. finding a collision-free geometric path q(s), with dq(s)/ds 6= 0

2. determining a timing law s = s(t), with s ∈ [s(ti), s(tf )].

Indeed, in this work, the global planner determines the reference trajec-

tory with a priori knowledge of the environment, e.g. given the map of

the environment, in two steps: choosing a feasible geometric path and

endowing it with the time information.



3.1 PRM

Path planning is the task of computing a feasible path that will drive the

vehicle from the start to the goal configuration, while satisfying motion

constraints and guaranteeing feasibility. A path can be described as a

sequence of waypoints defining the trajectory coarsely.

Before analyzing the state of the art motion planning algorithms,

the notion of Configuration Space, as well as the feasible path planning

problem, are introduced. To this aim, by defining a single vehicle config-

uration q(t) ∈ Rn as the vector of generalized coordinates describing the

robot pose inside a n-dimensional space, the Configuration Space Q ⊂ Rn

is the set representing all the possible system configurations. Moreover,

it is possible to define the obstacle region Qobs ⊂ Q as the set including

the configurations that lead to collisions in the given environment, while

the free space Qfree := Q\Qobs is the set of collision free configurations.

Considering a feasible path planning problem (Qfree, qinit, Qgoal) as in

Figure 3.1, where the initial condition qinit ∈ Qfree is the initial robot

configuration and the goal region Qgoal ⊂ Qfree is the set of desired

configurations to be reached, the aim is to find a feasible (continuous

and collision-free) path σ : [0, 1] → Qfree, such that σ(0) = qinit and

σ(1) ∈ Qgoal, if one exists. If no such path exists, the planning algorithm

must report failure.

Figure 3.1: Path Planning Problem example, qs = qinit and qg ∈ Qgoal. In blue

the obstacle region Qobs, in white the free space Qfree.
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By exploiting a path planning algorithm, a feasible geometric path is

generated from the initial configuration qi to the final goal qf , passing

through appropriate waypoints.

Plenty of algorithms in the robotic literature solve the path planning

problem. Considerable attention has been directed towards the creation

of efficient heuristic planners, since complete path planning methods,

applied to robots performing challenging tasks autonomously in complex

environments, may have overwhelming complexity. Indeed, exact motion

planning for high-dimensional systems is too computationally intensive,

thus hardly applicable in practice. On the other hand, there are other

widely used heuristic methods of remarkable efficiency like Probabilistic

Roadmaps (PRM) [26], Rapidly-exploring Random Tree (RRT) [27], A*

[31], Potential Field [22]. Furthermore, there are examples about many

new approaches based on Neural Networks [40] and Genetic Algorithms

(GAs) [39].

In this work and for testing purposes, the selected path planning al-

gorithm is the Probabilistic Roadmaps method, because of its ease of im-

plementation. As already mentioned, this thesis focuses on autonomous

navigation in human crowded environments, with a great attention to ob-

tain a safe, human-friendly and collision-free vehicle motion. However,

the chosen path planning algorithm does not include in the computation

the presence of pedestrians and other moving obstacles, even though

asymptotically optimal sampling-based motion planning algorithm for

real-time navigation in dynamic environments exist, such as RRTX [30].

The reason for the choice of the PRM path planner is that this the-

sis is mainly focused on the development of an efficient, reactive and

human-aware Local Planner, and on its integration within the Global

Planner, which was implemented only to obtain a feasible trajectory to

be followed.

Given a path planning problem, the Probabilistic Roadmaps method

proceeds in two phases: a learning phase and a query phase, generating

a feasible path as in Figure 3.2. During the learning phase a roadmap

is constructed in a probabilistic way for the considered environment, as

summarized in Algorithm 1. As described in [26], the roadmap is an

undirected graph R(N,E) whose nodes N are a set of randomly sampled

robot configurations suitably chosen over the free space. The edges in

E correspond to feasible paths connecting the respective nodes. In the

query phase, the roadmap is searched for a path joining the start and

11



goal configurations by solving individual path planning problems in the

input scene. It consists in a search of the shortest path in the graph,

such as Dijkstra’s algorithm [11].

Algorithm 1 PRM: Roadmap Construction

1: V ← 0;E ← 0;

2: for i = 0, ..., N do

3: qrand ← Samplefreei;

4: U ← Near(G, qrand, r);

5: V ← V ∪ {qrand};
6: for each u ∈ U in order of increasing ||u− qrand|| do

7: if qrand and u are not in the same connected component of G

then

8: if CollisionFree(qrand, u) then

9: E ← E ∪ {(qrand, u)};
10: end if

11: end if

12: end for

13: end for

14: return G = (V,E);

In Algorithm 1, the function Samplefreei returns a random free con-

figuration sampled from the free space, the function Near(G, qrand, r)

returns the vertices of the graph G that are contained in a ball or radius

r centered at qrand, while the boolean function CollisionFree(qrand, u)

returns true if the segment connecting qrand and u is collision free, false

otherwise.

As already mentioned, whenever the Local Planner does not find a

solution to the trajectory tracking problem, i.e. the Model Predictive

Control optimization fails repeatedly, the path needs to be replanned.

The number of nodes constituting the Probabilistic Roadmap is then

increased, in order to determine more feasible paths and boost the ef-

ficiency of the final path. Finally, the PRM algorithm recalculates the

node placement and generates a new network of nodes and a new feasible

path.

12



(a) A priori knowledge of the environment (b) Probabilistic RoadMap planning

Figure 3.2: Example of the Probabilistic Roadmap alghorithm results, given the

map of the environment.

3.2 Time law

Path planning involves the computation of a feasible path from start to

goal configuration, whereas trajectory generation requires the considera-

tion of robot dynamics and actuator constraints as well.

Once a feasible path, represented by waypoints (a sequence of collision-

free points along the path), has been provided by the path planning al-

gorithm, the trajectory is determined by introducing a suitable timing

law. Different timing laws can be found in literature, such as Polynomial,

Spline, Harmonic, Cycloidal, Trapezoidal in the velocity, etc. [2].

In this work and for testing purposes, a Trapezoidal Velocity Profile

(TVP) was chosen. A Trapezoidal move profile is characterized by three

different sectors, as can be seen from Figure 3.3: a constant accelera-

tion (up to the desired maximum velocity) region, a constant velocity

region, and a constant deceleration region (up to zero velocity). This

approach generates the reference trajectory as a dense sequence of inter-

mediate points in the free space scheduled at a fixed rate (depending on

the controller sampling time), taking into account constraints related to

maximum velocity, maximum acceleration, desired travelling distance,

Jerk time and Snap time. The resulting trajectory thus consists in a

linear position profile adjusted with parabolic bends. However, since

Trajectory generation aims at creating a trajectory interpolating two or

13



more waypoints, in order to avoid a motion that stops in each waypoint,

it may be useful to start the planning of a trajectory before the end of

the preceding one.

For testing purposes, a Trapezioidal Velocity Profile implementation

based on the approach in [35] was used to return the position, velocity

and acceleration profiles for a snap controlled law from the specified con-

straints on maximum velocity, maximum acceleration, desired traveling

distance, Jerk time and Snap time.

Figure 3.3: Timing law determination
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Chapter 4

Avoiding static and moving

obstacles

Autonomous navigation can be a challenging task in dynamic and hu-

man crowded environments, such as schools, shopping malls, or sidewalks,

since it involves being able to react quickly and safely when the relation-

ship with the surrounding objects changes. It is necessary to guarantee

safety for all the agents (people, vehicles and the wheelchair itself) mov-

ing in the space. The obstacles in the environment can be divided into

two general classes: a priori known obstacles (already considered in the

trajectory generation by the Global Planner) and unexpected obstacles

encountered during the navigation. The on-line motion planning in a

real context must then depend on the detection of unexpected obstacles,

the tracking of the moving ones, e.g. pedestrians, and the prediction of

the future states of the world. Indeed, pedestrians and other unforeseen

obstacles, detected in real-time, need to be considered in the trajectory

tracking problem.

To allow the use of convex optimization tools in the control problem, the

obstacle-free space surrounding the wheelchair needs to be represented

as a convex obstacle-free region.

An algorithm generating a convex obstacle-free region, which can be in-

tegrated within the Local Planner computation, is here proposed. This

approach allows to compute a polytopic region of obstacle-free space

within sensor range, by generating a set of hyperplanes which separate

the convex region of space containing the wheelchair from the detected

obstacles. The algorithm presented assumes that the obstacles them-

selves are convex. This assumption is fulfilled with the introduction of a



circular sensor-based virtual box, as it will be seen in the following sec-

tions. The iteration through the obstacles generates, for each obstacle in

potential collision, a hyperplane which is tangent to the obstacle virtual

box, and separates it from the convex region surrounding the vehicle.

It is necessary to implement a similar approach, since it is not always

possible to guarantee the convexity of the detected trust region (the free

space of the environment in which the vehicle is able to move freely), due

to the morphology of the environment and potential errors in the data

acquisition.

Another approach was considered to determine a convex obstacle free

region in human crowded environments. This method is based on the

definition of an ellipsoidal region of obstacle-free space surrounding the

wheelchair. This method guarantees the convexity of the trust region,

and thus the admissibility of the optimization problem. However, only

the first presented algorithm was effectively implemented (and it is here

reported), while the approach (reported in Appendix A) resulted to be

too computationally intensive for the considered hardware.

Figure 4.1: The Trust Region, in green, is defined as the intersection of half planes.

The obstacle-free space surrounding the wheelchair needs to be rep-

resented as a convex obstacle-free region that takes into account a priori

known obstacles, pedestrians, and other unforeseen obstacles detected in

real-time. Considering the vehicle Configuration space, the hyperplanes,

and thus the constraints, delimiting the trust region (as it can be seen

from Figure 4.1), take the form of:

16



hx x+ hy y ≤ l (4.1)

where hx and hy are the coefficients related to the variables x and y

identifying the slope of the 1-dimensional line, while l is the constant

term defining the distance from the origin. Each equation of the form

(4.1) divides the state space into two half planes, one representing the

admissible free space, while the other the forbidden space.

In this work, the trust region is reduced only if there is an obstacle in

potential collision with the wheelchair. In fact, if there is no danger of

potential collision, it is not necessary to limit the obstacle-free convex

region surrounding the vehicle. In order to determine if an obstacle is in

potential collision, the Velocity Obstacle method is introduced. Then the

concept of virtual box is defined, allowing to delineate the linear limits

dividing the trust region from the pedestrian space. Finally, the concept

of proxemics is presented, in order to model a human-aware obstacle-free

region definition that takes into account human comfort.

4.1 Velocity Obstacles

Differently from the approach presented in [12], in this work the con-

straints delimiting the trust region are selected based on the concept of

Velocity Obstacles [14], which maps the dynamic environment into the

robot velocity space. This method, similarly to the one presented in [15],

allows to determine potential collisions, using velocity and position infor-

mation about the robot moving in a time-varying environment. In fact,

by mapping the dynamic environment into the robot velocity space, it is

possible to determine the vehicle Collision Cone (Figure 4.2). This allows

to retrieve and avoid those input velocities which would cause a collision

with an obstacle at some future time, within a given time horizon.

The concept of Velocity Obstacle (VO) is here presented for a single ob-

stacle, as it can be easily extended to multiple obstacles. In the analysis,

both the vehicle and the obstacle are inscribed in a circular virtual box

(as it will be explained in the next subsection), thus considering a planar

problem with no rotations. The obstacles are assumed to move along

arbitrary trajectories, while their instantaneous state is either known or

measurable.

The analysis considers the two circular objects, A representing the vehi-

17



Figure 4.2: Vehicle Collision Cones. Of the two approaching pedestrians, only one

is in potential collision with the vehicle.

cle and B representing the obstacle, with velocities vA and vB at time t,

as shown in Figure 4.3.

To compute the Collision Cone it is necessary to map the obstacle B into

the Configuration Space of the vehicle A. This is done by reducing A

to the point Â and by enlarging B of the radius of circle A, becoming

B̂. The state of each object can then be represented by its position and

velocity vector attached to its center. The Collision Cone CCA,B is then

defined as the set of colliding relative velocities between Â and B̂:

CCA,B = {vA,B | λA,B ∩ B̂ 6= 0} (4.2)

where λA,B is the direction of vA,B, and vA,B is the relative velocity

vA,B = vA − vB (4.3)

The Collision Cone is the planar sector with apex in Â, bounded by the

two tangents λf and λr from Â to B̂, as shown in Figure 4.4.

The Collision Cone is defined as the the set of colliding relative velocities

lying between the two tangents to the obstacle B̂ and connecting the

vehicle center Â. If the intersection between the relative velocity and the

Collision Cone is different from zero, then a collision will happen. In-
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Figure 4.3: Vehicle and pedestrian representation

stead, any relative velocity outside the Collision Cone is then guaranteed

to be collision-free, since the analysis is restricted to the case of fixed

obstacles or moving at constant velocity (within the controller sampling

time interval), that do not change in shape. Clearly, the collision cone is

specific to a particular robot/obstacle pair.

4.2 Virtual Box

Having introduced the notion of Velocity Obstacle, it is then possible

to delineate the concept of Virtual Box. In fact, the obstacles detected

by the sensors are inscribed in circular Virtual Boxes (which can be de-

scribed as obstacle containers), in order to ensure the admissibility of

the optimization problem, which is related to the convexity of the state

space. As already mentioned, the perception of the surrounding environ-

ment, and thus of the obstacles, is accomplished by two ToF laser sensors

mounted on the wheelchair. Time of Flight (ToF) is a highly accurate

distance mapping technology. It measures the distance between the sen-

sor and an eventual object, by detecting the time difference between the

emission of a signal and its return to the sensor, after being reflected
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Figure 4.4: The Collision Cone, in yellow, is the set of relative velocities that may

lead to collision, and is defined as the planar sector with apex in Â, bounded by

the two tangents λf and λr from Â to B̂.

by the object. The result is a dense set of measurements, consisting in

angular positions associated to the respective detected distances.

First of all, it is necessary to transform the raw measurement retrieved

from the sensors into data suitable for the control purposes. An example

is the case of [8], transforming scans into PointCloud data in the global

reference system. These data represent the view from the wheelchair per-

spective, detecting the nearest obstacles according to a radial geometry,

as shown in Figure 4.5.

The amount of data collected may need to be refined, for a precise

trust region definition. It can be reasonably stated that, if two con-

secutive points of the data sequence are farther (in terms of euclidean

distance) than a selected threshold, the two points can be considered as

belonging to two distinct obstacles.

For each subset of points representing a detected obstacle, the approxi-

20



Figure 4.5: Sensors field of view.

mate center is calculated, as well as the radius necessary to inscribe all

the subset points into a circumference (the obstacle virtual box). The

position data detected at preceding time instants are used to compute

the pedestrian velocity as the average velocity between each specific posi-

tion at two following time instants. In literature, many algorithms allow

people detection from laser range data, such as the ones reported in [24].

Therefore, it is possible to track subsequent pedestrian positions. Finally,

to determine the inaccessible space surrounding the obstacles, each ob-

stacle is inscribed in a circumference of suitable dimensions, in order to

take into account the obstacle, i.e. the approaching person, as well as the

vehicle dimensions. The wheelchair dimensions are taken into account by

enlarging the obstacle virtual box of the circumference radius in which

the vehicle can be inscribed, as shown in Figure 4.6, in order to map the

obstacle into the Configuration Space of the vehicle.

To ensure the convexity of the state space, an appropriate linear position

constraint is considered if the obstacle is dangerously approaching the

vehicle. These constraints will be in the form of a linear inequality divid-

ing the state space into two half-planes, only one of which defining the

eligible region. The contemporary imposition of all constraints results in

the definition of a convex admissible region.

Each constraint will be determined as the tangent to the circumference

in the intersection point with the relative velocity vector and the circum-

ference itself.
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(a) (b)

Figure 4.6: Obstacle virtual box enlarged by the circumference radius in which the

wheelchair can be inscribed

4.2.1 Walls and Fixed Obstacles

The Virtual Box model introduced in the previous sections can also be

applied to the case of fixed obstacles characterizing the environment.

However, the analysis may not be convenient for the large elements in the

environment, e.g. walls. In that case, it is generally more advantageous

to keep the geometry of the obstacle unchanged, by simply reconstructing

its shape through the processing of sensor data, as in [8]. In this work,

fixed obstacles detected by the sensors are included in the optimization

problem after the delineation and simplification of their profile. More-

over, in order to allow the solvability of the optimization problem, each

detected obstacle is segmented, if needed, into a set of convex-shaped

obstacles. A further and more detailed analysis of this approach can be

found in [8] and [5].
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4.3 Trust region definition

The Velocity Obstacle concept was applied considering the obstacle Vir-

tual Box, in order to determine the set of lines delimiting the convex

obstacle-free region surrounding the wheelchair. As already introduced,

any relative velocity lying between the two lines tangent to the enlarged

obstacle B̂ and connecting the vehicle center Â will potentially cause a

collision; to avoid that, the state space must be limited. The tangent

lines are calculated as in Figure 4.7. To consider multiple obstacles, the

same analysis is repeated for each obstacle.

Figure 4.7: The points of tangency to the virtual box circumference starting from

the vehicle’s center Â, Q1 and Q2, can be retrieved exploiting similar triangles.

To discriminate whether the relative velocity ~vA,B between the vehicle

and the pedestrian lies within the Collision Cone, the following variables

are introduced:

ν1 =

[
Q1x− Prx

Q1y − Pry

]
(4.4)

ν2 =

[
Q2x− Prx

Q2y − Pry

]
(4.5)
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νR = νr − νobs =

[
νrx− νobsx
νry − νobsy

]
(4.6)

Where νr and νobs are the vectors defining respectively the direction of the

velocities of the robot and the obstacle, Pr is the robot current position,

while Q1 and Q2 are the tangent points to the virtual box, as shown in

Figure 4.7. The vector νR can be written as a linear combination of the

two vectors defining the Collision Cone:

νR = α1ν1 + α2ν2 (4.7)

where α1 and α2 are two constants.

With this notation, it is then possible to analyse the direction of the

vector νR with respect to the Collision Cone by simply looking at the

values of α1 and α2, in particular by looking at their signs. By rewriting

with respect to the global reference axes:

[
νRx

νRy

]
=

[
ν1x ν2x

ν1y ν2y

] [
α1

α2

]
(4.8)

α12 =

[
α1

α2

]
=
[
V12

]−1
νR (4.9)

it is possible to retrieve the values of α1 and α2. If both α1 and α2 are

positive numbers, then the relative velocity lies within ν1 and ν2 and

a collision may happen; it is thus necessary to introduce a hyperplane

constraining the state variable.

The constraint will be determined as the tangent to the intersection point

of the relative velocity and the circular virtual box enclosing the pedes-

trian, as shown in Figure 4.8. If two intersection points exist, the one

closest to the vehicle will be considered, in order to impose the most

meaningful and conservative constraint, that is the one in which the ve-

hicle current position and the pedestrian one belong to different half

planes. Considering the relative velocity line, in the form of y = mx+ c,

and the circular virtual box, in the form of (x − p)2 + (y − q)2 = r2,

with simple geometrical considerations, the intersection points can be

retrieved. First, substituting y = mx + c (or x = k for the vertical lines

case) into (x− p)2 + (y − q)2 = r2 to obtain:
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Figure 4.8: Collision Cone implementation. The red circle represents the robot

current position, while the blue circle represents the obstacle’s current one. The

bigger black circle represents the obstacle virtual box, i.e. the inaccessible space.

The black lines are the tangents to the virtual box, highlighting the Collision Cone,

while the red line represents the relative velocity ( ~νR) between the robot and the

obstacle. Since ~νR lies in the Collision Cone, the tangent to the intersection point

(represented by the orange circle) of the relative velocity and the circular virtual

box is selected as constraint (blue line).

(x− p)2 + (mx+ c− q)2 = r2 (4.10)

Next, expanding out both brackets, and suitably collecting terms:

(m2 + 1)x2 + 2(mc−mq − p)x+ (q2 − r2 + p2 − 2cq + c2) = 0 (4.11)

Eq. 4.11 is quadratic in x and can thus be solved using the quadratic

formula, relabeling the coefficients to obtain the form Ax2 +Bx+C = 0.

Then the tangent is retrieved as the line passing through the intersection

point with slope perpendicular to the line connecting the interception

and the centre of the circumference B̂.
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4.4 Socially compliant navigation

In the context of human crowded environments, where autonomous ve-

hicles co-exist and cooperate with people, the ability to perceive and

understand the human behavior is of crucial importance, in order to ad-

just the wheelchair trajectory accordingly. Socially compliant navigation

in human environments emphasizes the need to respect human comfort

while executing the selected task, i.e. reaching the final destination. It

is not enough to guarantee a safe trajectory. In fact, a human observer

may perceive a motion as not safe even if perfectly planned in order to

avoid obstacles, since perceived proximity (influenced by human com-

fort) can be in contrast to actual proximity. Pedestrian comfort involves

the safety, smoothness and naturalness of the trajectory, as well as the

compliance with cultural conventions. In order to allow autonomous

vehicles to navigate in human-crowded environments safely and taking

into account human comfort, it is therefore necessary to model subtle

human behaviours and navigation rules. Generally speaking, human so-

cial conventions are tendencies. While these result instinctive to humans,

despite several dissimilitudes appear between different cultures, socially

compliant navigation is still difficult to quantify and implement in an

autonomous navigation algorithm, due to the stochasticity in people’s

behaviors. Many attempts in this field were made as in [9], [3] and [19],

to cite some. In this work, a novel approach was implemented to en-

able socially compliant human-robot interaction that does not disturb

nearby humans. This method analyzes the navigation behavior of inter-

acting pedestrians, modeling their personal space (exploiting the concept

of Proxemics as in [25] and [21]) in order to avoid it, unless the wheelchair

is in over-crowded or critical conditions.

4.4.1 Proxemics

“Proxemics is the study of personal space and the degree of separation

that individuals maintain between each other in social situations” [20]

The concept of Proxemics was first introduced by Edward T. Hall in

[21]. He described each person personal space as the psychological area

surrounding them and the physical distances they try to keep from other

people, according to subtle cultural rules [25]. These rules differ from
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country to country, and depend also on personal experiences. Most peo-

ple value their personal space and may find physical proximity to be

uncomfortable. However, in the crowded urban environments that char-

acterize our modern society, it can be difficult to preserve each person

personal space. That is why the personal space (and the corresponding

physical comfort zone) can be variable and difficult to measure.

Anyway, Hall in his study divided the interpersonal distances of man, as

shown in Figure 4.9, in four distinct circular zones, each one related to a

different kind of interaction:

1. Intimate space

2. Personal space

3. Social space

4. Public space

Figure 4.9: Proxemics, The bubble of Personal Space [21]

However, this result proved to be true only in static situations. More

recent works extended Hall’s personal space definition to include the

effects of motion. The study [18] determined a correlation between the
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subject’s walking speed and the personal space dimensions. Moreover,

this work, with the experiments [32] and [41] analyzing cases of non-

interacting walking people, showed that the shape of personal space is

not symmetrical from all sides. In fact, these three studies found that

in motion, the distance from others maintained in front of a person is

bigger than the distance kept on the lateral side.

To define the personal space shape of a moving person, in mathematical

terms, Kirby in [25] modeled this area as two halves of 2D Gaussian

functions. An interesting aspect about this study is that the size of the

Gaussian functions is related to the walking speed.

Figure 4.10: Personal space cost function for a person moving along the positive

Y-axis, with a relative velocity of 1 m/s ([25])

More specifically, considering an autonomous vehicle and an approaching

person, the size of the human personal space depends on the relative

velocity between the person and the robot.

As it can be seen in Figure 4.10, the Personal Space function is composed

by two Gaussian functions: below the X-axis, the function is a symmetric

Gaussian with

σx = σy = 3v (4.12)

where v is the relative velocity between the person and robot; above the
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X-axis, it is an elliptical function with

σy = 1.5σx (4.13)

4.4.2 Trust region modification

The interacting pedestrians’ personal space is thus modeled in mathe-

matical terms as presented in the previous section. In this Chapter the

obstacle-free space surrounding the wheelchair was represented as a con-

vex obstacle-free region that takes into account a priori known obstacles,

pedestrians, and other unforeseen obstacles detected in real-time. The

hyperplanes, and thus the constraints, delimiting the trust region, take

the form of:

hx x+ hy y ≤ l (4.14)

where hx and hy are the coefficients related to the variables x and y iden-

tifying the slope of the 1-dimensional line, while l is the constant term

defining the distance from the origin.

The approach developed in this thesis exploits the Personal Space model

in order to modify the constraints (in the form of 4.14) delimiting the

trust region, with the aim to fulfill the human-comfort navigation re-

quirements. In fact, a constraint will be imposed not only if an obstacle

is dangerously approaching the vehicle, but also, in the case of a pedes-

trian, if his/her personal space may not be respected. The constraint can

be rewritten as:

hx x+ hy y ≤ l −∆l (4.15)

where the coefficient where ∆l = ∆lsl
√

(hx)2 + (hy). The coefficient

∆lsl represents the safety distance to be imposed in order to correctly

include the interacting pedestrian personal space, measured according

to the mathematical model presented in the previous section. The co-

efficient ∆lsl is determined as shown in Figure 4.11 and summarized in

Algorithm ??, recalling that the Personal Space function is composed by

two Gaussian functions.
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Figure 4.11: The coefficient ∆lsl is determined as the euclidean distance between

the points highlighted by the two green circles, representing the intersections

between the pedestrian sensor virtual box (blue circle) and the Pedestrian personal

space function (in yellow), respectively, with the black line defined joining the

pedestrian centre and the intersection between the relative velocity vA,B and the

pedestrian virtual box enlarged to take into account the vehicle’s dimensions.

In Algorithm 2, vr is the relative velocity between the wheelchair and

the pedestrian, V B is the obstacle virtual box enlarged considering the

vehicle dimensions, while reducedV B is the sensor-detected virtual box;

Pp is the pedetrian current position, while PSf is the pedestrian personal

space function.

However, it is important to remark that humans make exceptions to

and modify their space requirements. In fact, under circumstances where

standard space requirements cannot be met, such as in crowded trains, el-

evators or streets, personal space requirements are modified accordingly.

The constraints can then be modified to take this behavior into account,

as:
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Algorithm 2 ∆lsl determination

1: P1 ← GetIntersectionPoint(vr, V B);

2: l← GetLineFrom2Points(P1, Pp);

3: P2 ← GetIntersectionPoint(l, reducedV B);

4: P3 ← GetIntersectionPoint(l, PSf);

5: ∆lsl ← EuclideanDistance(P2, P3);

6: return ∆lsl;

hx x+ hy y ≤ l −∆l(1− u) (4.16)

where u is an optimization variable that weighs the compliance with

human social conventions and the smoothness and executability of the

wheelchair trajectory.

31



32



Chapter 5

Local Planning using Model

Predictive Control

Model Predictive Control (MPC) is a family of algorithms that has had

an enormous industrial impact in the last forty years. This advanced

control method is particularly suitable for a large number of applications,

thanks to its flexible constraint handling capabilities and the possibility

to formulate the control problem as an optimization one, as highlighted

in [28] and [17]. In fact, this method exploits an explicit dynamic model

of the system in order to predict the effect of the manipulated variables

on the output (thus the name “Model Predictive Control”).

An MPC algorithm is based on: the process model, input, output,

and state constraints, a cost function defined over a finite time horizon

[k, k + N ], an optimization algorithm to compute the optimal control

sequence and the Receding Horizon principle. The Receding Horizon

(RH) principle was introduced in order to obtain a more robust, closed-

loop like behaviour. At any time instant k the optimization problem is

solved with respect to the future control sequence [u(k), ..., u(k+N−1)],

by taking into account the actual system information in the time win-

dow [k, k + N ] and making sure that the predicted response has certain

desirable characteristics. Then, only the first element u(k) of the se-

quence is considered, as shown in Figure 5.1. At the following time

instant k+ 1, a new optimization problem is solved, considering the time

window [k + 1, k + N + 1], by taking into account the updated system

measurements. Thanks to the recursive nature of this algorithm, a time

invariant feedback control strategy is implemented.

Regarding the control problem developed in this thesis, the MPC control



Figure 5.1: At any time instant k the optimization problem is solved with respect

to the future control sequence [u(k), ..., u(k+N − 1)] and the predicted outputs

y(k+ i|k) ∀i ∈ {0, ..., N} within the Prediction Horizon [k, k+N ]. Only the first

element u(k) of the sequence is actuated.

method is particularly interesting, since it allows to specify constraints for

obstacle avoidance and actuator limitations in the optimization problem,

explicitly using a model of the system to predict its state at future time

instants.

In the following section, general concepts about the MPC algorithms

are introduced. The next sections will focus on its formalization with

regard to the case of study of this thesis, the wheelchair.

5.1 MPC formulation

Considering a generic linear discrete-time system in the form:

{
x(k + 1) = A x(k) +B u(k)

y(k) = C x(k)
(5.1)

where x(k) ∈ Rn and u(k) ∈ Rm are the state and the control variables,

respectively. The state is assumed to be measurable. The optimization

problem aims at computing, at each time instant k the control variable

sequence U(k) = [u(k), ..., u(k+N−1)]T that minimizes the cost function

J defined over the selected prediction horizon N :
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J =
N−1∑
i=0

l(x(k + i), u(k + i)) + V f (x(k +N)) (5.2)

where l(x, u) is a suitable positive definite function that takes the name

of stage cost, while V f (x(k +N)) is defined as terminal cost.

The main goals of the Model Predictive Control include the fulfillment

of the requirements on the system variables, the optimal convergence of

the state variables of interest to the desired reference value, and the

avoidance of excessive fluctuations in the control variables.

For the case studied in this work, these requirements can be formalized

by expressing J as a finite horizon quadratic cost function:

J(x(k), u(k)) =
N−1∑
i=0

(||x(k + i)||2Q + ||u(k + i)||2R) + ||x(k +N)||2S (5.3)

where Q = Q′ ≥ 0, R = R′ > 0 and S = S ′ ≥ 0 are weight matrices of

suitable dimension, and the expression

||x||2Z = xTZ x (5.4)

As already mentioned, in the Model Predictive Control method it is

possible to directly include constraints on the state and control variables,

in the form:

x(k) ∈ X ⊂ Rn (5.5)

u(k) ∈ U ⊂ Rm (5.6)

The constraints must be expressed in a way which is compatible with the

optimization algorithm, as it will be seen in the following sections.

As described in [28], in the context of the MPC, the idea of stability

is related to the Recursive Feasibility principle. First, it is important to

introduce the concept of terminal set. Given a state variable x(k) such

that:

x(k) ∈ X ⊂ Rn (5.7)

where X is defined as trust region of the state, the terminal set can be

defined as:
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Xf ⊂ X (5.8)

In order to ensure the solvability of the optimization problem, it is re-

quired that the final state, at the end of the prediction horizon, belongs

to this particular subset of the trust region of the state:

x(k +N) ∈ Xf (5.9)

The terminal set is designed with reference to the auxiliary time-varying

optimal control law:

uo(k + i) = −K(i)x(k + i) (5.10)

∀i ∈ {0, ..., N − 1}

Considering the generic linear discrete-time system (5.1), the values of K

of the time-varying optimal control law (5.10) must be chosen in order to

ensure that the eigenvalues of the matrix A−BK guarantee the stability

of the closed-loop system

x(k + 1) = (A−BK) x(k) (5.11)

Then, by taking into account the Discrete Riccati Equation:

(A−BK)TS(A−BK)− S = −(Q+KTRK) (5.12)

where penalty matrices Q and R are the ones introduced for the MPC

problem, the positive definite matrix S can be determined.

The terminal set Xf is said to be positive invariant with respect to

the closed loop system (5.11) if

x(k̄) ∈ Xf ⇒ x(k) ∈ Xf , ∀k ≥ k̄ (5.13)

Finally, it is required that

u(k) = Kx(k) ⊆ U ∀x(k) ∈ Xf (5.14)

In this way, starting from and initial state x(k̄) ∈ Xf and eventually

applying the auxiliary control law, the state will belong to the terminal

set Xf and guarantee the control requirements.
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5.2 The autonomous wheelchair model

The approach proposed in this thesis can be applied to many different

autonomous vehicle. However, in order to make reference to a real case,

the electric wheelchair already considered in [5],[8] and [12], will be taken

into account.

The Degonda Twist t4 2x2 (shown in Figure 5.2) is a wheelchair for in-

door and outdoor use produced by Degonda Rehab SA. This wheelchair

is equipped with two rear driving wheels, whose motors are characterized

by a maximum power of 0.35[kW ], and three caster wheels with stabiliza-

tion function. It is also endowed with two SICK TiM561 time-of-flight

laser sensors able to identify the relative distance of the surrounding ob-

jects. The two sensors are positioned opposite to each other so as to

guarantee a complete 360◦ vision of the surrounding environment within

10[m] from the wheelchair.

Figure 5.2: Degonda Twist t4 2x2 wheelchair.

From a kinematic point of view, the motion of the considered au-

tonomous robot can be represented using a differential-drive vehicle model.

A differential-drive vehicle (illustrated in Figure 5.3) generally has two

separately controlled fixed wheels with a common axis of rotation, and
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one or more passive caster wheels to keep the robot statically balanced.

The two fixed wheels are actuated by independent motors, having a ro-

tational velocity ωR and ωL and linear velocity vR = ωRR and vL = ωLR,

where R is the wheels radius.

Figure 5.3: Differential drive vehicle

The vehicle control variables are its linear velocity v and angular

velocity ω. By simple kinematic considerations, we can relate them to

the angular speed of the two separately controlled wheels. In fact, the

linear velocity v is the average value between the two wheel velocities

v = R
ωR + ωL

2
(5.15)

while the rate of rotation ω of the vehicle around the Instantaneous

Center of Curvature, is generated by a difference in the velocity of the

two wheels

ω = R
ωR − ωL

d
(5.16)

From a practical point of view a differential drive vehicle is thus kine-

matically equivalent to a unicycle (depicted in Figure 5.4), and can be

represented using the unicycle nonlinear model, i.e.,
ẋ(t) = v(t)cosθ(t)

ẏ(t) = v(t)sinθ(t)

θ̇(t) = ω(t)

(5.17)
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where x(t), y(t), θ(t) are the state variables representing its center posi-

tion and orientation in the global reference system, and the longitudinal

and angular velocities (v(t) and ω(t) respectively) are the input variables.

Figure 5.4: Unicycle

The model is characterized by a non-linear relationship between the state

variables (x(t), y(t), θ(t)) and the control variables (v(t), ω(t)) and this

is not compatible with the development of a linear controller. However,

thanks to an inner feedback-linearizing loop [29], the system can be ap-

proximated as a particle, displaying a linear dynamics under a suitable

change of variables. The formulation of the trajectory tracking problem

is thus simplified. To this aim, with reference to [5], [8] and [12], a point

P placed at distance ε from the unicycle wheel axle center in the direction

of the longitudinal velocity (see Figure 5.5) is defined, whose coordinates

with respect to the global reference frame are:{
xP (t) = x(t) + ε cos θ(t)

yP (t) = y(t) + ε sin θ(t)
(5.18)

By deriving with respect to time:{
ẋP (t) = ẋ(t) + ε sin θ(t)θ̇(t)

ẏP (t) = ẏ(t) + ε cos θ(t)θ̇(t)
(5.19)

and recalling that ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t) and ω(t) = θ̇(t),
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]

Figure 5.5: Feedback Linearization unicycle model

it is possible to rewrite Eq. 5.19 in matrix form:[
ẋP (t)

ẏP (t)

]
=

[
vPx(t)

vPy(t)

]
=

[
cos θ(t) −ε sin θ(t)

sin θ(t) ε cos θ(t)

] [
v(t)

ω(t)

]
(5.20)

From which it is possible to retrieve the Feedback Linearization trans-

formation matrix:

T (θ, ε) =

[
cos θ(t) −ε sin θ(t)

sin θ(t) ε cos θ(t)

]
(5.21)

Matrix T (θ, ε) is non-singular, and thus invertible, ∀θ and ∀ε 6= 0. It

is then possible to relate the variables of the linearized system (vPx(t),

vPy(t)) and the real one (v(t), ω(t)).

The Feedback Linearization procedure starts from a 3D configuration

space (the vehicle pose), and ends with a reduced configuration space

(the vehicle position). In fact, the change of coordinates induces a loss

in the observability of the system, transforming it from a third order

system into a second order one. Therefore, the heading is not observ-

able anymore from the output. For this reason, the trajectory tracking

consists in a position control. If also a goal on orientation is required,

i.e. if the desired pose differs from the one tangent to the trajectory, a
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further orientation control that cannot exploit the Feeback Linearization

law needs to be introduced.

The final model obtained from the Feedback linearization procedure

is then described by a linear decoupled system, characterized by two

integrators: {
ẋP (t) = vPx(t)

ẏP (t) = vPy(t)
(5.22)

Eq. 5.22 is a continuous-time model. In order to make it compatible

with the discrete nature of the control approach used, a further transfor-

mation is thus needed. The Forward Euler method is then introduced.

This discretization approach is based on a truncated Taylor series expan-

sion, so that imposing:

s =
z − 1

τ
(5.23)

where τ is the sampling time set for the controller, it is then possible to

obtain the discrete model of the system:{
xP (k + 1) = xP (k) + τ vPx(k)

yP (k + 1) = yP (k) + τ vPy(k)
(5.24)

which can be rewritten in compact form:

ξ(k + 1) = A ξ(k) +B u(k) (5.25)

where:

A =

[
1 0

0 1

]
B =

[
τ 0

0 τ

]
ξ(k) =

[
xP (k)

yP (k)

]
u(k) =

[
vPx(k)

vPy(k)

]
(5.26)

5.3 Cost function

As already introduced, the cost function is designed to fulfill the require-

ments on the system variables, to guarantee the optimal convergence

of the state variables of interest to the desired reference value, and to

avoid excessive fluctuations in the control variables. In this section, the

finite horizon quadratic cost function is determined specifically for the

wheelchair under consideration, in order to perform the tracking of the

trajectory calculated by the Global Planner while meeting the control

requirements:
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J(k) =
N−1∑
i=0

(‖ξ(k + i)− ξref (k + i)‖2
Q + ‖u(k + i)‖2

R)+

+ ‖ξ(k +N)− ξref (k +N)‖2
S

(5.27)

where ξ(k + i) is the ith-step ahead state prediction computed based on

the current state ξ(k), on the input sequence u(k), ..., u(k+ i−1) and on

the previously introduced wheelchair model:

ξ(k + 1) = A ξ(k) +B u(k) (5.28)

where:

A =

[
1 0

0 1

]
B =

[
τ 0

0 τ

]
ξ(k) =

[
xP (k)

yP (k)

]
u(k) =

[
vPx(k)

vPy(k)

]
(5.29)

The weight matrices Q, R and S, must be tuned to ensure the fulfill-

ment of the requirements on the state and control variables, as well as

the system stability. This will be done in Chapter 6. The position refer-

ence ξref (k + i) is the trajectory planned by the Global Planner at the

considered time instant

ξref (k + i) =

[
xref (k + i)

yref (k + i)

]
(5.30)

In order to allow the optimization solver to find a solution to the

optimization problem, the cost function is formalized as an Open-Loop

Solution, derived by computing the prediction of the future states based

on the value of the current state ξ(k). In fact, in view of the Lagrange

equation:

ξ(k + i) = Aiξ(k) +
i−1∑
j=0

Ai−j−1Bu(k + j) , i > 0 (5.31)

Letting:

A =


I

A

A2

...

AN


(2(N+1),2)

B =


0 0 . . . 0

B 0 . . . 0

AB B . . . 0
...

...
. . .

...

AN−1B AN−2B . . . B


(2(N+1),2N)

(5.32)
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Ξ(k) =

 ξ(k)
...

ξ(k +N)


(2(N+1),1)

U(k) =

 u(k)
...

u(k +N − 1)


(2N,1)

(5.33)

it follows that:

Ξ(k) = A ξ(k) + B U(k) (5.34)

The cost function J(ξ(k), u(k), k) can then be equivalently rewritten as:

J̃(ξ(k),U(k)) = ||Ξ(k)− Ξref ||2Q + ||U(k)||2R =

= (Ξ(k)− Ξref )T Q (Ξ(k)− Ξref ) + UT (k) R U(k) (5.35)

where the matrices Q and R are defined as:

Q =


Q

. . .

Q

S


(2(N+1),2(N+1))

R =

R . . .

R


(2N,2N)

(5.36)

By recalling Equation (5.32):

J̃(k) = (A ξ(k) + B U(k)− Ξref )T Q (A ξ(k) + B U(k)− Ξref ) +

+ UT (k) R U(k)

(5.37)

and rearranging:

J̃ = UT (k)HU(k) + 2fTU(k) + cost (5.38)
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a cost function formalization suitable to solve the optimization problem

is obtained, where H = BTQB + R is called Hessian matrix and f =

(Aξ(k) − Ξref )TQB is the gradient vector, while cost represents all the

terms not depending from U(k).

5.4 Control variable constraints

The main advantage in the formulation of the Model Predictive Control

is based on the fact that it is possible to directly include the constraints

related to the state and the control variables. This allows to take into

account the intrinsic limitations of the system, i.e. actuator limitations,

comfort requirements and the presence of obstacles. In this section, the

constraints related to the control variables will be discussed.

To take into account actuator limitations and comfort requirements, max-

imum velocity constraints are enforced on the vehicle longitudinal speed

v, as well as constraints on the velocity variation.

5.4.1 Velocity constraints

From the Feedback Linearization procedure, and in particular from Eq.

5.19, it is possible to relate the linearized system velocity vP and the real

system one v as

vP =
√
v2
Px + v2

Py =
√
v2 + ε2ω2 (5.39)

Therefore, by enforcing an upper bound to the speed vP of point P , it is

possible to impose constraints on the vehicle velocity v and thus on the

velocities of the right and left wheels of the vehicle.

In fact, from the Differential Drive vehicle model, in Eq. 5.15 and Eq.

5.16, it follows that

|v| = |vR + vL|
2

≤ vmax (5.40)

εω =
|vR − vL|ε

d
≤ vmax (5.41)
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it can be observed that, by imposing a maximum over v, |vR| and |vL|
are guaranteed to remain constrained, as required.

Hence, ∀i ∈ {0, ..., N − 1} it is necessary that:

0 ≤
√
v2
Px(k + i) + v2

Py(k + i) ≤ vmax (5.42)

for a suitable value of vmax depending on the vehicle limitations.

Since the constraint in Eq. 5.42 is nonlinear, the optimization prob-

lem to be solved at the discrete-time instant becomes a quadratically

constrained quadratic programming problem. Differently from [8] and

[5], this constraint will not be linearized with a first-order truncated

Taylor series. In fact, as it will be proven in simulations, the choice

of implementing the non-linear constraint will provide a more accurate

solution without affecting significantly the solver performances.

In quadratic programming, the quadratic constraints on the control

variables can be expressed as:

L U(k) + U(k)TQ U(k) ≤ R (5.43)

where

U(k) =

 u(k)
...

u(k +N − 1)


(2N,1)

u(k + i) =

[
vPx(k + i)

vPy(k + i)

]
(5.44)

and L is the (2, N) dimensional matrix reporting the linear parts of the

N quadratic constraints; Q is the (1, N) dimensional matrix, containing

N (N,N) dimensional matrices, related to the quadratic part of the

constraints, while R is the (1, N) dimensional row vector for the scalar

inequality terms of the constraints.

This formulation is thus equivalent to N quadratic constraints of the

kind:

Li u(k + i) + u(k + i)T Qi u(k + i) ≤ Ri (5.45)

∀i ∈ {0, ..., N − 1}
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where Li is the (1, 2) dimensional row vector reporting the linear part of

the i−th quadratic constraint, Qi is the (2, 2) dimensional matrix related

to the quadratic part of the constraint, while Ri is the scalar term of the

quadratic inequality constraint.

In this particular case, the conditions imposed on the linearized system

control variables ∀i ∈ {0, ..., N − 1} are then expressed as:

[
vPx(k + i) vPy(k + i)

] [1 0

0 1

] [
vPx(k + i)

vPy(k + i)

]
≤ v2

max (5.46)

since ∀i ∈ {0, ..., N − 1}:

Li =
[
0 0

]
Qi =

[
1 0

0 1

]
Ri =

[
v2
max

]
(5.47)

These non-linear constraints proved in simulation to be effective.

However, another formulation of the problem allowed to write an equiv-

alent set of linear constraints limiting the vehicle velocity, suitable to

be included in a quadratic and numerically simpler optimization prob-

lem. The implementation of these constraints proved to be equivalently

effective in simulation.

Exploiting the relationships obtained through the Feedback Lineariza-

tion procedure: {
v = vPx cosθ + vPy sinθ

ω = 1
ε
(vPy cosθ − vPx sinθ)

(5.48)

As well as the Differential Drive kinematic relationship:

v =
ωR + ωL

2
R ω =

ωR − ωL

d
R (5.49)

ωR =
2v + dω

2R
ωL =

2v − dω
2R

(5.50)

The following relationships can be obtained by substitution:

ωR =
1

2R
(2cosθ − d

ε
sinθ)vPx +

1

2R
(2sinθ +

d

ε
cosθ)vPy (5.51)

ωL =
1

2R
(2cosθ +

d

ε
sinθ)vPx +

1

2R
(2sinθ − d

ε
cosθ)vPy (5.52)
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It is therefore possible to impose constraints on the linearized system

control variables vPx and vPy in the form of:

ω̄m ≤ ωR ≤ ω̄M ω̄m ≤ ωL ≤ ω̄M (5.53)

where ω̄m and ω̄M are the minimum and maximum limits, respectively,

of the wheelchair angular velocity.

In fact, assuming θ (the state variable representing the wheelchair orien-

tation) to be known, the contraints 5.53 can be written as:

1

2R

[
2cosθ − d

ε
sinθ 2sinθ + d

ε
cosθ

2cosθ + d
ε
sinθ 2sinθ − d

ε
cosθ

] [
vPx

vPy

]
≤
[
ω̄M

ω̄M

]
(5.54)

− 1

2R

[
2cosθ − d

ε
sinθ 2sinθ + d

ε
cosθ

2cosθ + d
ε
sinθ 2sinθ − d

ε
cosθ

] [
vPx

vPy

]
≤ −

[
ω̄m

ω̄m

]
(5.55)

or, in matrix form as:

[
Ā

−Ā

]
(4,2)

[
vPx

vPy

]
(2,1)

≤ b̄(4,1) (5.56)

where

Ā =
1

2R

[
2cosθ − d

ε
sinθ 2sinθ + d

ε
cosθ

2cosθ + d
ε
sinθ 2sinθ − d

ε
cosθ

]
b̄ =


ω̄M

ω̄M

−ω̄m

−ω̄m

 (5.57)

The linear velocity constraints along the entire prediction horizon (∀i ∈
{0, ..., N − 1}) can then be written in the form of:

Āvel U(k) ≤ b̄vel (5.58)
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with

Āvel =



Ā1 0 · · · 0

0 Ā2 · · · 0
...

...
. . .

...

0 0 · · · ĀN

−Ā1 0 · · · 0

0 −Ā2 · · · 0
...

...
. . .

...

0 0 · · · −ĀN


(4N,2N)

b̄vel =



ω̄M

...

...

ω̄M

−ω̄m

...

...

−ω̄m


(4N,1)

(5.59)

The values of θ(i) can be reasonably estimated considering the values of

the control sequence determined at the previous time instant, U(k − 1).

5.4.2 Velocity variation constraints

In order to make the Model Predictive Control solution consistent with

the system dynamics (with reference to the maximum allowed accelera-

tion), and to satisfy passenger comfort and trajectory smoothness needs,

it is important to limit the velocity variation between two consecutive

time instants. To take into account the discrete-time nature of the Model

Predictive Control, the velocity variation at time instant k can be ex-

pressed in as:

∆v(k) = v(k)− v(k − 1) (5.60)

The constraint can be then imposed by limiting the velocity variation

between two following time instants:

−∆vmax ≤ ∆v(k) ≤ ∆vmax (5.61)

The threshold value ∆vmax can be evaluated taking into account the

vehicle limitations. In fact, the maximum velocity variation can be re-

trieved by considering the product between the controller sampling time

τ and maximum value of the average acceleration āmax:
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∆vmax = āmax τ (5.62)

In this particular case, the constraints at time instant k + i can be

imposed directly on the decoupled control variables vPx(k+ i), vPy(k+ i):

−∆vmax ≤ vPx(k + i)− vPx(k + i− 1) ≤ ∆vmax (5.63)

−∆vmax ≤ vPy(k + i)− vPy(k + i− 1) ≤ ∆vmax (5.64)

By considering the velocity variation constraints along the entire predic-

tion horizon (∀i ∈ {0, ..., N−1}), the following condition is thus obtained:

Avar(V U(k)− v0) ≤ ∆V (5.65)

with:

Avar =



1
. . .

1

−1
. . .

−1


(4N,2N)

∆V =

∆vmax

...

∆vmax


(4N,1)

v0 =


vPx(k − 1)

vPy(k − 1)

0
...

0


(2N,1)

V =


I(2)

−I(2)
. . .
. . . . . .

−I(2) I(2)


(2N,2N)

(5.66)

where I(2) is the identity matrix of order 2.

Recalling that, in quadratic programming, linear constraints along

the entire prediction horizon, can be expressed in the form:
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Ainequ U(k) ≤ binequ

Aequ U(k) = bequ

Umin ≤ U(k) ≤ Umax

(5.67)

where matrices Aineq and Aeq highlight the number of conditions to be

imposed, bineq and beq are vectors of constant terms, while Umin and Umax

are the lower and the upper bounds respectively for every instant of the

chosen prediction horizon (sees more in [28]).

The condition to be imposed can thus be expressed as:

A∆v U(k) ≤ b∆v (5.68)

By rearranging Eq. 5.65, matrices A∆v and b∆v can be obtained as:

A∆v = [AvarV ](4N,2N) b∆v = [∆V + Avarv0](4N,1) (5.69)

5.5 Position Constraints

In the previous section, constraints related to the control variables were

introduced, in order to handle actuator limitations, comfort and safety

requirements. To take into account all the boundaries that characterize a

real context, especially in a crowded environment, the presence of obsta-

cles and people must be considered. Therefore, it is necessary to enforce

constraints related to the state variables:

x(k) ∈ X (5.70)

In fact, since the state of the system coincides with the position of the

vehicle, the trust region described trough the constraints is defined as the

free space of the environment in which the robot is able to move freely.

The approach presented in the previous chapter allows to compute a poly-

topic region of obstacle-free space within sensor range, by generating a

set of hyperplanes which separate the convex region of space contain-

ing the wheelchair from the detected obstacles. Considering the vehicle
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Configuration space, the hyperplanes, delimiting the trust region take

the form of:

hx x+ hy y ≤ l (5.71)

where hx and hy are the coefficients related to the variables x and y

identifying the slope of the 1-dimensional line, while l is the constant

term defining the distance from the origin. Each equation of the form

(5.71) can be implemented within the MPC formulation as linear state

constraints dividing the state space into two half planes, one representing

the admissible free space, while the other the forbidden space.

If a pedestrian is not in potential collision with the vehicle, there is no

need to reduce the trust region with the introduction of a constraint.

To ensure that the half plane denoting the free space is the one in which

the estimated position of the vehicle is contained, the following relation-

ship must hold:

hx x̂c + hy ŷc ≤ l (5.72)

where x̂c and ŷc are the coordinates of the vehicle estimated position. If

that is not the case, in order to obtain an inequality with the lower or

equal sign, suitable for the MPC implementation, it is necessary to invert

the signs:

(−hx) x̂c + (−hy) ŷc ≤ (−l) (5.73)

5.5.1 State Constraint Implementation

The constraint related to the position can thus be determined as illus-

trated in the previous chapter, and defined, for each time instant k + i

within the selected prediction horizon N , as linear constraints of the kind:

h(i)
x x(k + i) + h(i)

y y(k + i) ≤ l(i) i = 0, ..., N (5.74)

In fact, inside a prediction horizon, different constraints for a given pedes-

trian can be defined, according to the position and relative speed at each
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time instant.

As for the control variables case, in quadratic programming, linear sys-

tem state constraints along the entire prediction horizon can be expressed

in the form of a linear inequality:

AineqxΞ(k) ≤ bineqx (5.75)

where Aineq is a matrix whose rows correspond to the condition imposed

at a given time instant in the prediction horizon, while bineq is the vector

of constant terms. To include the state constraints in the Model Predic-

tive control formulation, it is necessary to express them with respect to

the vector of control variables U(k).

By recalling the Lagrange equation:

Aineqx(Aξ(k) + BU(k)︸ ︷︷ ︸
Ξ(k)

) ≤ bineqx (5.76)

it follows that

Aineq U(k) ≤ bineq (5.77)

with

Aineq = AineqxB bineq = bineqx − AineqxAξ(k) (5.78)

Constraints in the form (5.74), ∀i ∈ (0, ..., N), can then be rewritten in

a more suitable MPC formulation as:

hk . . .

hk+N


(N+1,2(N+1))

 ξ(k)
...

ξ(k +N)


(2(N+1),1)

≤

 lk
...

lk+N


(N+1,1)

(5.79)

extending the position constraints to the overall prediction horizon [k, k+

N ].

At every time instant, the robot can access only its actual position, ex-

pressed as:

ξ(k) =

[
xP (k)

yP (k)

]
(5.80)

52



However, the constraints are computed not only with respect to the ac-

tual position of the vehicle, but also for the future ones in the whole

prediction horizon k, ..., k +N . This problem can be solved by recalling

the Lagrange Equation:

Ξ(k) =


I

A

A2

...

AN


(2(N+1),2)

ξ(k)+


0 0 . . . 0

B 0 . . . 0

AB B . . . 0
...

...
. . .

...

AN−1B AN−2B . . . B


(2(N+1),2N)

U(k)

(5.81)

In which the vector:

Ξ(k) =

 ξ(k)
...

ξ(k +N)


(2(N+1),1)

(5.82)

represents all the predicted future positions of the vehicle based on the

control variables U(k) computed at the corresponding time instant. It is

then possible to rewrite (5.79) by taking into account this aspect:

hk|k−1

. . .

hk+N |k−1


︸ ︷︷ ︸

Hobs

 ξ(k)
...

ξ(k +N)


︸ ︷︷ ︸

Ξ(k)

≤

 lk|k−1

...

lk+N |k−1


︸ ︷︷ ︸

Lobs

(5.83)

In this case, the subscripts k|k − 1, ..., k +N |k − 1 express the fact that

the constraint will be computed for the whole prediction horizon, by

taking into account the information retrieved in the previous execution.

In particular, by assuming a particle-like pedestrian kinematic model,

the pedestrian positions (xi, yi) can be predicted as:{
xi+1 = xi + τ vx

yi+1 = yi + τ vy
∀i = 0, ..., N − 1 (5.84)

with (x0, y0), vx and vy correspond to the sensors initially detected posi-

tion and velocity.
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In conclusion, Eq. 5.83 can thus be expressed in compact form as:

[Hobs](N+1,2(N+1)) [Ξ(k)](2(N+1),1) ≤ [Lobs](N+1,1) (5.85)

As already mentioned, it is necessary to express the constraint in a

formulation suitable for the MPC:

Hobs (Aξ(k) + BU(k))︸ ︷︷ ︸
Ξ(k)

≤ Lobs (5.86)

from which

HobsBU(k) ≤ Lobs −HobsAξ(k) (5.87)

That can be rewritten as:

Aobs U(k) ≤ bobs (5.88)

where

Aobs = [HobsB](N+1,2N) bobs = [Lobs −HobsAξ(k)](N+1,1) (5.89)

This constraint is related to a single obstacle. Notably, by defining A
(j)
obs

and b
(j)
obs as the constraint related to the j − th obstacle, it is possible to

represent all the position constraints by defining:

 A
(1)
obs
...

A
(nobs)
obs


(nobs(N+1),2N)

 b
(1)
obs
...

b
(nobs)
obs


(nobs(N+1),1)

(5.90)

5.6 Slack variables

In order to allow autonomous vehicles to navigate in human-crowded

environments safely and taking into account human comfort, it is nec-

essary to model subtle human behaviours and navigation rules. Gen-

erally speaking, human social conventions are tendencies. While these
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result instinctive to humans, despite several dissimilitudes appear be-

tween different cultures, socially compliant navigation is still difficult to

quantify and implement in an autonomous navigation algorithm, due to

the stochasticity in people’s behaviors. In this work, a novel approach

was implemented to enable socially compliant human-robot interactions,

based on the socially aware navigation model presented in the previous

chapter. This method relies on the introduction of soft position con-

straints that consider the navigation behavior of interacting pedestrians,

modeling their personal space (as in [25]) in order to avoid it, unless in

over-crowded or critical conditions. In fact, constraints may be hard or

soft; hard constraints provide an absolute limit, while soft constraints

allow to slightly exceed them, but at a high associated cost in the per-

formance index. So, if the problem results unfeasible, the constraints

are relaxed in order to allow the solvability of the problem. In fact, by

slightly enlarging the trust region the vehicle can get closer than the stan-

dard social distance to humans in a significantly crowded environment.

The relaxation is allowed up to a certain limit, of course. In fact, the

autonomous vehicle is forbidden in any case to cause collisions.

This introduction was intended to produce sociable, human-like paths;

however, it helped to solve another intrinsic issue in the nature of the

Model Predictive Control constraint definition. In fact, it may happen

that the hard position constraints previously defined, despite guarantee-

ing safety, could provide an excessively strict solution, which may result

in the unfeasibility of the control problem. This behaviour can be caused

by sensors failures, uncertainties, noise, etc.

5.6.1 Soft Position Constraints

In order to formalize the model presented in Chapter 4, in a context

related to an autonomous wheelchair, the work developed in [5] will be

taken into account. As already mentioned, the slack variables related

to the position are introduced to respect the human-like tendencies to

preserve the approaching pedestrians’ personal space, thus reducing the

trust region of the vehicle state space, as shown in Figure 5.6.

This choice was done due to the fact that, if the problem admits a fea-

sible solution, this is related to the position of point P defined by the

aforementioned Feedback linearization procedure. If the vehicle can find

a feasible solution, it will maintain a bigger distance from the pedestrian;

otherwise, it will get slightly closer to the personal space, with the hard
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Figure 5.6: Trust Region with Hard and Soft Constrains

bound of avoiding to enter the close phase of intimate distance.

The position constraints will be then defined as:

h(i)(j)
x x(k + i) + h(i)(j)

y y(k + i) ≤ l(i)(j) −∆l(i)(j)(1− u(j)
sl p(k)) (5.91)

∀i ∈ {0, ..., N}, ∀j ∈ {0, ..., nobs}

where ∆l(i)(j) = ∆l
(i)(j)
sl

√
(h

(i)(j)
x )2 + (h

(i)(j)
y )2. The coefficient ∆l

(i)(j)
sl rep-

resents the safety distance to be imposed in order to correctly include

the pedestrian personal space. In fact, the size of the vehicle and of

the pedestrian are already taken into account in the standard position

constraints, as previously reported. The addition of slack variables aims

to fulfill the human-comfort navigation requirements. The coefficient

∆l
(i)(j)
sl is determined as introduced in Chapter 4.

The slack variables introduced in Eq. 5.91 must assume values between

0 and 1:

0 ≤ u
(j)
sl p(k) ≤ 1 (5.92)

∀j ∈ {0, ..., nobs}
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It is then obtained that:


h

(i)(j)
x x(k + i) + h

(i)(j)
y y(k + i) ≤ l(i)(j), if u

(j)
sl p(k) = 1

h
(i)(j)
x x(k + i) + h

(i)(j)
y y(k + i) ≤ l(i)(j) −∆l(i)(j), if u

(j)
sl p(k) = 0

(5.93)

In order to extend the modified position constraints to the whole predic-

tion horizon, it is necessary to define:

E(j) =


0 . . . 0 . . . −∆l(i)(j) 0 . . . 0
...

...
...

...
...

0 . . . 0 . . . −∆l(i)(j)︸ ︷︷ ︸
j-th position

0 . . . 0


(N+1,nobs)

(5.94)

where the vector different from zero occupies the j − th position.

The extraction matrix (5.94) allows to formulate:

u
(j)
sl p(k) = E(j) usl p(k) (5.95)

and considering the following variant of the position constraints:

[H
(j)
obs](N+1,2(N+1)) Ξ(k) ≤ [L̄

(j)
obs](N+1,1) (5.96)

where

L̄
(j)
obs = L

(j)
obs −

 ∆l(j)

...

∆l
(j)
N+1,1

 (5.97)

it is possible to express condition (5.91) with respect to the set of enlarged

control variables Ū(k):

Ū(k) =

[
U(k)

usl p(k)

]
(2N+nobs,1)

(5.98)

as the enlarged set of constraints:

Ā
(j)
obsŪ(k) ≤ b̄

(j)
obs (5.99)

with:
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Ā
(j)
obs =

[
H

(j)
obsB E(j)

]
(N+1,2N+nobs)

b̄
(j)
obs = L̄

(j)
obs −H

(j)
obsAξ(k) (5.100)

However, in order to consider the enlarged optimization problem, it is

fundamental to make the appropriate modifications to the cost function

formulation, compatibly with the new requirements. To this aim, the

new cost function becomes:

J̄(k) = J(k) + ||usl p(k)||2Sp
(5.101)

where Sp is the additional weight matrix:

Sp =

sp . . .

sp


(nobs,nobs)

(5.102)

while usl p(k) is the nobs-dimensional vector ( where nobs is the number

of obstacles) representing the set of slack variables related to the state

variables.

The value of the parameters sp will be chosen by selecting a very high

weight with respect to q and r, in order to allow the controller to impose

slack variables values different from zero only if the problem feasibility

is compromised.

Finally, it is possible to formulate the new cost function in matrix form:

J̄(k) =
1

2
Ū(k)T H̄Ū(k) + 2f̄T Ū(k) + cost (5.103)

where

H̄ =

[
H

Sp

]
(2N+nobs+2,2N+nobs)

(5.104)

f̄T =
[
fT 0(1,nobs)

]
(1,2N+nobs)

(5.105)
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Chapter 6

Simulation results

In order to test the effectiveness of the integrated strategy for autonomous

navigation in human-crowded environments, simulations were run in the

MATLAB R© environment, exploiting the ILOG CPLEX Optimization

Studio 12.5.0 IBM R©. All the simulations were performed on an IntelCore

i5-6200U @2.40 GHz personal computer with 12GB RAM. The vehicle

taken into account for the analysis is an electric wheelchair, endowed with

two driving wheels and equipped with two SICK TiM561 laser sensors

characterized by a maximum range of 10[m] and a scanning frequency of

15[Hz]. The wheelchair discrete-time model is:

ξ(k + 1) = A ξ(k) +B u(k) (6.1)

where:

A =

[
1 0

0 1

]
B =

[
τ 0

0 τ

]
ξ(k) =

[
xP (k)

yP (k)

]
u(k) =

[
vPx(k)

vPy(k)

]
(6.2)

The following subsections will introduce the software used, the tuning

of the PRM and MPC algorithm parameters, and the results obtained

in simulation. In particular, three different pedestrian avoidance simu-

lation cases will be analyzed: a single pedestrian scenario, a simulation

in a crowded room, and a real environment based on the ETH Walking

Pedestrians (EWAP) Dataset [33].

6.1 Software

The control algorithm was implemented in the MATLAB R© environment,

developed by MathWorks. MATLAB R© is a programming platform that



combines a desktop environment tuned for iterative analysis and design

processes with a matrix-based programming language. The Probabilistic

RoadMap (PRM) path planning algorithm from MATLAB R© Robotics

System ToolboxTM was exploited to create the collision-free waypoints to

reach the destination goal. Robotics System ToolboxTM provides tools

and algorithms for designing, simulating, and testing manipulators, mo-

bile robots, and humanoid robots.

The ILOG CPLEX Optimization Studio 12.5.0 from IBM R© was ex-

ploited as the control algorithm solver. CPLEX, a feature of IBM ILOG

Optimization Studio, offers state of the art performance and robustness

in an optimization engine for solving problems expressed as mathematical

programming models. In particular, the optimization function cplexqcp

allows to solve quadratically constrained linear/quadratic programming

problems, specified as follows:

min
x

0.5 xTHx+ fx

subject to Aineq x ≤ bineq,

Aeq x = beq,

lx+ xTQx ≤ r,

lb ≤ x ≤ ub.

(6.3)

where the matrix H and the row vector f constitute the objective func-

tion to minimize, while Aineq, bineq, Aeq, beq,l, Q, r, lb and ub are matrices

and vectors of suitable dimensions expressing the linear inequality con-

straints, the linear equality contraints, the quadratic constraints, lower

and upper bounds.

6.2 Parameter Tuning

6.2.1 PRM

The Probabilistic RoadMap (PRM) path planning algorithm from

MATLAB R© Robotics System ToolboxTM was exploited to create the

collision-free waypoints to reach the destination goal. As already speci-

fied, only the static part of the environment is considered in the Global

Planning analysis, e.g., the fixed obstacles of the selected map. Before

performing the search, the environment map is inflated, in order to take

into account the vehicle dimensions (as shown in Figures 6.1a and 6.1b).
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(a) A priori knowledge of the environment (b) Probabilistic RoadMap planning

Figure 6.1: PRM algorithm

The PRM algorithm introduces the mobileRobotPRM object to ran-

domly generate nodes and to create connections between them, based

on the PRM algorithm parameters and on the obstacle locations speci-

fied in the considered map of the environment (Figure 6.1a). In fact, the

PRM algorithm uses the network of connected nodes to find an obstacle-

free path from a start to an end location [1].

Among the PRM parameters, the number of nodes, NumNodes, as well

as the ConnectionDistance, must be tuned properly, in order to fit the

complexity of the map and to achieve the desired path efficiency. The

NumNodes property specifies the number of points, or nodes, placed on

the map, which the algorithm uses to generate a roadmap. Using the

ConnectionDistance property as an upper threshold for distance, the al-

gorithm connects each node to all nodes reachable with a collision-free

path within the connection distance. As shown in Figure 6.2, increas-

ing the number of nodes can increase the number of feasible paths, thus

boosting the efficiency of the final path. However, the increased com-

plexity increases computation time. On the other hand, by lowering

the connection distance, the map can be simplified, since the number of

connections is limited and the computation time reduced. However, a

lowered distance limits the number of available paths.

As already mentioned, whenever the Local Planner does not find a solu-

tion to the trajectory tracking problem, i.e., the Model Predictive Control

optimization fails repeatedly, the path needs to be replanned. The num-
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ber of nodes constituting the Probabilistic Roadmap is then increased,

augmenting the NumNodes property by 50, in order to determine more

feasible paths and to boost the efficiency of the final path.

The starting NumNodes and ConnectionDistance property values are, for

the environment considered in the following simulations: NumNodes =

300 and ConnectionDistance = 20.

(a) PRM implementation with NumNodes

= 250 and ConnectionDistance = 30

(b) PRM implementation with NumNodes

= 250 and ConnectionDistance = 5

(c) PRM implementation with NumNodes

= 1000 and ConnectionDistance = 30

(d) PRM implementation with NumNodes

= 1000 and ConnectionDistance = 5

Figure 6.2: NumNodes and ConnectionDistance parameters tuning.
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6.2.2 MPC

To verify the effectiveness of the reference trajectory generation and

tracking, and to determine a suitable value for the MPC parameters,

the MPC control algorithm was tested in simulation considering a free

environment, without the presence of people. The MPC parameters were

tuned to take into account the uncertainties and delays (of measurement

and actuation) of the control over the system, and to meet the compu-

tational constraints of the computer.

Choice of weights in the MPC cost function

Recalling the MPC cost function

J(k) =
N−1∑
i=0

(‖ξ(k + i)− ξref (k + i)‖2
Q + ‖u(k + i)‖2

R)+

+ ‖ξ(k +N)− ξref (k +N)‖2
S

(6.4)

and the discrete system model

ξ(k + 1) = A ξ(k) +B u(k) (6.5)

where:

A =

[
1 0

0 1

]
B =

[
τ 0

0 τ

]
ξ(k) =

[
xP (k)

yP (k)

]
u(k) =

[
vPx(k)

vPy(k)

]
(6.6)

the matrices Q, R and S are design parameters expressing the penalty

given to the error on the state, to the control variables and to the fi-

nal state variables, respectively. Since the wheelchair model (6.5) is a

symmetric decoupled system, the weight matrices can be designed as:

Q =

[
q 0

0 q

]
R =

[
r 0

0 r

]
S =

[
s 0

0 s

]
(6.7)

where q and r are selected in order to guarantee the desired trajectory

tracking and control performance, while the parameter s is determined

to ensure the asymptotic stability of the system.

A good trade-off between the parameters r and q ensures a satisfactory

tracking performance, complying with actuation and comfort needs. The

calibration of the r and q weights for the control algorithm must be
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validated experimentally. The values reported in this work were chosen

taking into account the experimental results reported in [8] and [12].

As it can be seen from the simulation reported in Figure 6.3, Figure

6.4 and Figure 6.5, the reference trajectory planned with constraints

on the acceleration (a ≤ 0.2[m/s2]), velocity (v ≤ 0.55[m/s2]), jerk

(j ≤ 0.2[m/s3]) and snap (s ≤ 0.2[m/s4]), in human-free conditions, can

be easily tracked with satisfactory results. In fact, the controlled system

converges towards the time-varying reference, complying with actuation

and comfort constraints (in the form of velocity and velocity variation

limitations). The velocity constraints were implemented in both methods

presented in the previous Chapter, i.e., in form of linear inequalities and

as quadratic constraints. Both implementations produced the same simu-

lation results reported in Figure 6.3, Figure 6.4 and Figure 6.5. However,

the implementation with linear constraints converged faster to a solution,

as expected. As mentioned in [8], due to the intrinsic actuation delays

and the uncertainties that affect the real system, the system closed loop

behaviour would tend to be oscillatory. Therefore, it is necessary to use

suitably calibrated thresholds for detecting the condition of convergence

to the final reference that force the speed references to zero if the posi-

tion is within a certain threshold distance from the goal. This threshold

distance needs to be suitably calibrated in order to ensure a stop that

complies with actuators limitations and comfort needs.

Figure 6.3: The trajectory can be easily followed by the vehicle in simulation. The

selected parameter values were r = 1 and q = 1.

64



Figure 6.4: Velocity profiles related to Figure 6.3. The orange line represents the

planned reference velocity profile, while the blue line reports the simulated one.

The red dashed lines highlight the set lower and upper velocity limitations.

Figure 6.5: Acceleration profile related to Figure 6.3. The orange line represents

the planned reference acceleration profile, while the blue line reports the simulated

one. The red dashed lines highlight the lower and upper acceleration limitations.
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A good trade-off for the MPC parameters was found by selecting:

q = 1→ Q =

[
1 0

0 1

]
(6.8)

r = 1→ R =

[
1 0

0 1

]
(6.9)

By recalling Eq: 5.10, the time-varying auxiliary control law can be

defined as:

u(k) = Kξ(k) (6.10)

where K is the symmetric diagonal matrix:

K =

[
k 0

0 k

]
(6.11)

By solving the Discrete Riccati Equation (5.12), the relationship between

the gain k and the terminal cost parameter s can be retrieved:

s =
(q + k2r)

1− (1 + τk)2
(6.12)

The symmetric diagonal gain matrix K must be selected in order to

guarantee the asymptotic stability of the system. The solution reported

in [5], retrieved trough the Pole Placement method, is exploited. In fact,

by imposing:

k > −2

τ
(6.13)

the position of the eigenvalues of the closed-loop system

ξ(k + 1) = (A+BK)ξ(k) (6.14)

guarantee the asymptotic stability of the system.

To avoid excessive oscillatory behaviour, a more conservative requirement

can be imposed:

k > −1

τ
(6.15)

A fraction of the limit value is then selected:

k = − 1

n τ
, with n > 1 (6.16)
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In particular, in this work, the selected value was n = 2:

k = − 1

2τ
(6.17)

and thus:

s =
(q + k2r)

1− (1 + τk)2
= 9.67 (6.18)

S =

[
9.67 0

0 9.67

]
(6.19)

Choice of the prediction horizon and the controller sampling

time

The choice of the prediction horizon N , as well as the controller sampling

time τ , depend on computational and control requirements. For example,

an excessively short sampling time, although positive for the controller

reactivity, may preclude the resolution in real time of the optimization

problem. Moreover, it is necessary to recall that the prediction horizon

Tph, defined as the time window within which the controller predicts the

system evolution, is related to N and τ as:

N τ = Tph (6.20)

The predictive ability of the controller increases in a longer prediction

horizon; on the other hand, the computational load, which is related

to the execution time, increases as well. The controller has a faster

reactivity with a smaller sampling time τ . However, a high value of N

implies a greater computational load. Furthermore, a small value of τ

is required to satisfy the hypothesis that, during the controller sampling

time τ , the velocity of each moving obstacle, in particular of pedestrians,

remains constant.

A trade-off between problem solvability and control performance needs to

be achieved within the time interval τ . A good compromise was obtained

by setting Tph equal to 4 s and:

τ = 0.2 s N = 20 (6.21)

This choice is consistent with respect to the implementation of both

exact linear and nonlinear velocity constraints, which provide an accurate
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Figure 6.6: Computational time of the simulation with quadratic velocity con-

straints related to Figure 6.3

solution without affecting significantly the solver performance. In fact,

as it can be seen from Figure 6.6 (reporting the computational time of

the slowest simulation related to Figure 6.3, i.e., the one with quadratic

velocity constraints), the MPC computational time is definitely accept-

able, excluding the first iteration where the optimization environment is

initialized. Notably, a C++ implementation would be even faster that

the current Matlab implementation.

In order to guarantee the fulfillment of the control requirements, the

vehicle stop needs to be achieved within the prediction horizon Tph.

Therefore, the time window Tph must assume a higher value than the

worst case braking time, i.e., starting from the maximum reachable speed.

As a consequence

Tph = 4[s] >
vmax

amax

(6.22)

Moreover, the choice of the maximum longitudinal velocity value vmax

and of the maximum velocity variation ∆vmax must take into account

the comfort requirements and the intrinsic delays on the system. These

maximum reported values were chosen with reference to the experiments
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on the real system in [8]. As for the maximum velocity variation, it was

chosen to set a limit on the maximum average acceleration equal to:

amax = 0.2[m/s2] (6.23)

which is reasonable in terms of comfort. From this, it is possible to

retrieve the value of the maximum velocity variation by considering the

product between the controller sampling time τ and maximum value of

the average acceleration āmax:

∆vmax = āmax τ (6.24)

The choice of the maximum longitudinal velocity value vmax was made

by taking into account the experimental tests in [8] that placed the real

system in a limit situation (providing the control algorithm with a time-

varying rotating reference outside the admissible region) in order to ob-

serve the effects of uncertainties and delays of the system over the com-

pliance with the imposed constraints. The limit value of:

vmax = 0.55 [m/s] (6.25)

was chosen, since it is conservative and reasonably safe for autonomous

navigation.

6.3 Pedestrian Avoidance Simulations

In order to prove the consistency of the constraints on the status (and

of the relative slack variables) in the definition of a convex obstacle-free

trust region, the wheelchair behaviaour when encountering an approach-

ing pedestrian was simulated in MATLAB. First of all, it is necessary to

introduce the pedestrian kinematic model used in the following simula-

tions. In fact, this work is developed under the assumption that, during

the controller sampling time τ , the velocity of each moving obstacle, in

particular of pedestrians, remains constant. Since the controller sam-

pling time was set as τ = 0.2[s], this assumption can be easily accepted.

Therefore, the kinematic of a pedestrian can be characterized as a particle

motion model, which is described by the following discrete time model:{
x(k + 1) = x(k) + τ vx(k)

y(k + 1) = y(k) + τ vy(k)
(6.26)

69



The above characterization allows to prove the consistency of position

constraints, as highlighted in the following simulations.

The first simulation, as reported in Figure 6.7 and Figure 6.8, takes

into account an approaching pedestrian heading towards the wheelchair

from the left, starting from position Pped = [3, 8] with velocity vped =

[0.4,−0.4]. The wheelchair starts from position Ps = [3, 3] and needs to

reach Pg = [7, 7], following the reference trajectory. Figure 6.7 shows

the evolution of the pedestrian avoiding trajectory, while in Figure 6.8

the final trajectory of the wheelchair is reported, as well as the reference

trajectory planned by the Global Planner and the pedestrian trajectory.

In this simulation, the robot is forced to deviate from the planned trajec-

tory, in order to avoid collision. Not only is the pedestrian avoided, but

also both the actuation constraints and the personal space are respected,

as shown in Figures 6.9, 6.10 (reporting the velocity and acceleration

profile corresponding to the simulated trajectory) and Figure 6.11 (high-

lighting the distance from the pedestrian).

To avoid collision, the wheelchair centre must not exceed a distance of

0.75[m] from the pedestrian estimated centre, as indicated by the red

dashed line in Figure 6.11; this limit distance considers the wheelchair

dimensions as well as those of an average pedestrian. The smallest dis-

tance detected in simulation was 1.8926[m]. This distance takes into

account the pedestrian personal space function value (with the introduc-

tion of slack variables) measured between the wheelchair position and

the pedestrian one. The pedestrian personal space function is composed,

as presented in Chapter 4, by two Gaussian functions: below the X-axis,

the function is a symmetric Gaussian with

σx = σy = 3v (6.27)

where v is the relative velocity between the person and the wheelchair;

above the X-axis, it is an elliptical function with

σy = 1.5σx (6.28)

Since no other obstacle is detected within the path, the pedestrian Per-

sonal Space is fully respected, as shown in Figure 6.11.
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(a) t = 0.6 s (b) t = 3.8 s

(c) t = 7 s (d) t = 8.2 s

(e) t = 9.2 s (f) t = 15.6 s

Figure 6.7: First Navigation simulation: Evolution of the pedestrian avoiding

trajectory. The blue circle and stars represent the wheelchair occupied space, past

and current position, whereas the cyan and red circle are the pedestrian position

and virtual box, and the ellipsoidal red shape highlight the personal space. The

black circle represents the reference trajectory, connecting the PRM waypoints

(red stars), at the current time instant. The black lines are the constraints on the

state space imposed along the prediction horizon.
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Figure 6.8: First Navigation simulation: Final trajectory from start to goal

Figure 6.9: First Navigation simulation: Velocity profiles
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Figure 6.10: First Navigation simulation: Acceleration profiles

Figure 6.11: First Navigation simulation: Distance from pedestrian
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6.4 Simulation in a crowded environment

To test the behavior of the proposed integrated strategy, a simulation

in a crowded environments was performed. The navigation simulation

presented in Figures 6.12, 6.13, 6.14, 6.15, 6.16, and 6.17, describes the

results of a test carried out in a narrow environment, a room, where

the wheelchair is surrounded by eight pedestrians, either standing or in

motion. Five pedestrian are static, and are positioned in Pped1 = [5, 5],

Pped2 = [5, 6], Pped3 = [4, 5.5], Pped4 = [6.5, 7.5] and Pped5 = [3, 8]. Three

pedestrians are walking, starting from Pped6 = [1, 8], Pped7 = [11, 11] and

Pped8 = [1, 0], with velocities vped6 = [0.5,−0.5], vped7 = [−0.5,−0.5] and

vped8 = [0.5, 0.7]. The wheelchair starts from position Ps = [2.5, 3.5] and

needs to reach Pg = [7.5, 9], following the reference trajectory planned

by the Global Planner. Figures 6.12 and 6.13 show the evolution of the

pedestrian avoiding trajectory from start to goal position, highlighting

the trajectory tracking, the pedestrian personal space avoidance and the

trajectory replanning in unexpectedly crowded circumstances. In Fig-

ure 6.14 the final trajectory of the wheelchair is reported, as well as the

reference trajectories. In the figures, the blue star and circle represent

the wheelchair position and occupied space, respectively, whereas the

magenta circles contained in the red circles and ellipses highlight the

pedestrian positions, virtual boxes and personal spaces. The small black

circles represents the reference trajectory up to the current time instant,

while the red stars represent the PRM waypoints. The coloured lines are

the constraints on the state space imposed along the prediction horizon.

The black areas represent the obstacle region occupied by fixed obstacles

(walls). Since multiple pedestrians are encountered, the wheelchair de-

viates from the planned reference trajectory - which is not optimal and

generated without the obstacle avoidance action enforced by the MPC

controller - and needs to follow a different trajectory. Thus, as it can

be seen in Figure 6.12f, the trajectory is replanned, in order to reach

the goal position. In this way, the vehicle manages to reach the destina-

tion safely, complying with control and comfort requirements as shown in

Figures 6.15 and 6.16 (reporting the velocity and acceleration profile cor-

responding to the simulated trajectory), avoiding each pedestrian, and

respecting their personal space as much as possible, i.e., without compro-

mising the solvability of the optimization problem. To avoid collisions,

the wheelchair must not exceed a distance of 0.75[m] from the pedestrian

estimated centre, as indicated with the red dashed line in Figure 6.17;
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this limit distance considers the wheelchair dimensions as well as those of

an average pedestrian. The smallest distance from the closest pedestrian

detected in simulation was 1.1810[m]. This value takes into account the

pedestrian Personal Space function. This is a smaller value from the

one reported in the previous section, due to different and more complex

environmental conditions (more people and walls).

(a) PRM path planning (b) t = 0s

(c) t = 2.2s (d) t = 8.4s

(e) t = 11.6s (f) t = 19.6s

Figure 6.12: Simulation in a crowded room: Evolution of the pedestrian avoiding

trajectory until replanning is needed
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(a) PRM path replanning (b) t = 20.2s

(c) t = 24s (d) t = 26s

(e) t = 29.8s (f) t = 34.8s

Figure 6.13: Simulation in a crowded room: Evolution of the pedestrian avoiding

trajectory after replanning
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Figure 6.14: Simulation in a crowded room: Final trajectory from start to goal

Figure 6.15: Simulation in a crowded room: Velocity profiles. The orange line

represents the planned reference velocity profile, while the blue line reports the

simulated one. The red dashed lines highlight the set lower and upper velocity

limitations.
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Figure 6.16: Simulation in a crowded room: Acceleration profiles. The orange line

represents the planned reference acceleration profile, while the blue line reports

the simulated one. The red dashed lines highlight the lower and upper limitations.

Figure 6.17: Simulation in a crowded room: Distance from pedestrian. The

red dashed lines highlight the minimum required distance, while continuous lines

report the simulated distances from the different pedestrians.

78



6.5 Simulation in a real environment

Finally, a simulation was performed considering a real environment, ex-

ploiting the BIWI Walking Pedestrians Dataset (EWAP) [33] from The

Computer Vision Laboratory, ETH Zurich. This manually annotated

dataset includes data about walking pedestrians in busy scenarios from

a bird eye view, reporting a video together with the information about the

pedestrians position, velocity and destination estimated from the video,

as well as the obstacle map. The sequence considered in the following

simulation was acquired at 25 fps from the 4th floor of Hotel Schweizerhof

in Bahanhofstr, Zurich, by Stefano Pellegrini and Andreas Ess in 2009.

However the annotation was done at 2.5 fps, that is with a timestep of

0.4 seconds. Since the controller sampling time is of 0.2 seconds, the

data about position and velocity of each detected pedestrian needed to

be interpolated, in order to provide a value for each time instant. Not

all pedestrians in the video are reported in the dataset, especially the

subjects at the border of the scene. The sequence reports the pedestrian

positions and velocities in meters (meters/seconds), obtained with the

given homography matrix, as well as annonation regarding people that

seemed to walk in groups and the assumed destinations for all the sub-

jects walking in the scene. The third direction, i.e., the perpendicular to

the ground is not used. Being already given, the pedestrian trajectories

do not consider the wheelchair presence.

The simulation takes into account the scenario of a wheelchair getting

off the bus, that is required to reach the entrance of the hotel, as shown

in Figures 6.18 and 6.19. Since multiple pedestrians are encountered, the

wheelchair deviates from the planned reference trajectory. In this way,

the vehicle manages to reach the destination safely, complying with con-

trol and comfort requirements as shown in Figures 6.20 and 6.21 (report-

ing the velocity and acceleration profile corresponding to the simulated

trajectory), avoiding each pedestrian, and respecting their personal space

as much as possible, i.e., without compromising the solvability of the op-

timization problem. To avoid collision, the wheelchair must not exceed

a distance of 0.75[m] from the pedestrian estimated centre, as indicated

with the red dashed line in Figure 6.22; this limit distance considers the

wheelchair dimensions as well as those of an average pedestrian. The

smallest distance from the closest pedestrian pedestrian in the dataset

detected in simulation was 1.3459[m], which is consistent with the avoid-

ance of pedestrian and their personal space. The fixed obstacles in the
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scene are reported in Figure 6.23.

The implemented approach produced satisfactory simulation results even

in a real environment, accomplishing the given task while ensuring a so-

cially compliant navigation.

(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Simulation in a real environment: Evolution of the pedestrian avoid-

ing trajectory. In black the reference trajectory, in red the actual system trajectory,

the wheelchair dimensions, and the detected pedestrian estimated center.
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Figure 6.19: Simulation in a real environment: Final trajectory from start to goal

Figure 6.20: Simulation in a real environment: Velocity profiles. The blue lines

report the simulated velocity profile, while the red dashed lines highlight the set

lower and upper velocity limitations.
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Figure 6.21: Simulation in a real environment: Acceleration profiles. The blue

lines report the simulated acceleration profile, while the red dashed lines highlight

the set lower and upper acceleration limitations.

Figure 6.22: Simulation in a real environment: Distance from pedestrian. The

red dashed lines highlight the minimum required distance, while continuous lines

report the simulated distances from the different pedestrians.
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Figure 6.23: Map reporting the fixed obstacles in the scene of Figures 6.18 and

6.19.
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Chapter 7

Conclusion and future work

In this thesis a solution for the problem of socially compliant autonomous

navigation in human crowded environments is developed. The approach

is based on the integration of two layers, with the Local Planner that

can correct the trajectory designed by the Global Planner according to

the obstacles detected, and the Global Planner that can intervene and

replan a new trajectory whenever the Local Planner is not able to solve

the trajectory tracking problem. The Global Planner computes a feasi-

ble trajectory in the given environment. It generates a feasible geometric

path exploiting a Probabilistic Roadmaps (PRM) algorithm, which is

then endowed with the time information through a Trapezoidal Velocity

Profile based approach. The Local Planner solves a trajectory track-

ing problem while reactively acting in order to detect obstacles from

sensor data and ensure collision avoidance, pedestrian safety and com-

fort. A novel approach for obstacle avoidance and socially compliant

human-robot interactions is introduced, which is based on the introduc-

tion of a circular virtual box surrounding the detected obstacle as well as

the pedestrian personal spaces. The Local sensor-based Planner is im-

plemented via Model Predictive Control (MPC) casting the motion de-

sign into an optimization problem, with operational, collision avoidance,

safety and human comfort requirements as constraints. To prove the ef-

fectiveness of the solution, some simulations were run where the MPC

parameters were calibrated to guarantee satisfactory results in terms of

passenger comfort and safety as well as dynamic performance, reaching

an acceptable trade-off that takes into account the system limitations.

Then the control algorithm was tested in the simple case of trajectory

tracking without obstacles, verifying the compliance with the constraints



on velocity (both linear and quadratic) and acceleration. Finally, a set

of tests designed to verify the compliance with the human aware pedes-

trian avoidance requirements were performed in different contexts and

situations: a single pedestrian scenario, a simulation in a crowded room,

and a real environment based on the ETH Walking Pedestrians (EWAP)

Dataset [33]. Pedestrian avoidance, in compliance with velocity and ac-

celeration constraints, is always achieved, and the personal space is fully

respected, unless the wheelchair is in critical or overcrowded situations,

where a slightly shorter distance is maintained from pedestrians.

Despite the satisfactory results, some issues were identified that may be

part of future works: the trajectory generation could be improved by

using an asymptotically optimal sampling-based motion planning algo-

rithm for real-time navigation in dynamic environments, such as RRTX

[30], instead of PRM that provides only a feasible path. Moreover, an-

other interesting aspect would be to adopt pedestrian stochastic models,

in order to allow the wheelchair to predict the formation of groups of

people and avoid generating a trajectory too close to areas with a high

human-density.
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Appendix A

Ellipsoidal State Constraints

The idea behind this approach is to determine an ellipsoidal admissible

state space, generating a quadratically constrained quadratic optimiza-

tion problem. First of all, by analyzing the obstacles data gathered from

the available equipment, the velocity and the dimensions of the obstacle

are determined. Its approximate center can thus be defined, as well as

its closest point to the vehicle. The nearest points collected among all

the detected obstacles, as well as from the known environment from the

plant, will become the vertexes of a polygon (which can be described as

a set of linear inequalities) if the resulting area is convex, as shown in

Figures A.1 and A.2. If that is not the case, it will require adjustments

in order to ensure the admissibility of the optimization problem.

By determining the maximum Area inscribed ellipse, the ellipsoidal ad-

missible state space constraint is defined.

Maximum Area inscribed ellipsoid

As stated in [6], if we consider the problem of finding the ellipsoid of

maximum volume that lies inside a convex set C, the ellipsoid can be

parametrized as the image of the unit ball under an affine transformation,

i.e., as

ξ = {Bu+ d | u ≤ 1} (A.1)

Considering the case where C is a polyhedron described by a set of linear

inequalities:

C = {x | aTi x ≤ bi, i = 1, ...,m} (A.2)
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Figure A.1: Ellipsoidal constraint. The red star represents the vehicle position,

while the black areas highlight the walls and detected obstacles positions.

By rearraging the constraints a convex optimization problem in B and d

can be formulated as:

max log detB−1

s.t.‖Bai‖+ aTi d ≤ Bi

(A.3)

The Matlab implementation for this optimization problem exploited the

CVX code from [10]. However, the implementation in the MPC frame-

work resulted to be too computationally intensive, thus not applicable in

practice.

Figure A.2: Maximum Area inscribed ellipse.


