
POLITECNICO DI MILANO
Master degree in Computer Science and Engineering

Dipartimento di Elettronica e Informazione

A Methodology for Error Simulation in

Convolutional Neural Networks Executed on

GPU

Supervisor: Antonio Rosario Miele

Co-supervisor: Luca Maria Cassano

SJTU Supervisor1: Jingwen Leng

Author:

Alessandro Toschi, matr. 894350

Academic year 2018-2019

1This thesis has been conducted within the double master degree program between Politec-

nico di Milano and Shanghai Jiao Tong University.

To my family.

Abstract

Nowadays, there is growing interest in employing Convolutional Neural

Networks (CNNs) in safety-critical systems. CNNs achieve higher accuracy

in perception tasks than the traditional Computer Vision (CV) algorithms.

CNNs are generally executed on Graphic Process Units (GPUs) because

the Single Instruction Multiple Data (SIMD) architecture of these units is

particularly well-suited to speed up the highly data-parallel elaborations

of such applications. The acceleration enables the application to meet

the strict requirements imposed by safety-critical systems, especially time

requirements. The combination, composed of a CNN executed on GPU,

is becoming more and more used in safety-critical systems. Therefore, we

must ensure the proper functioning of such a combination in any possible

situation, also in the presence of faults in the digital systems.

The reliability analysis aims at studying the behavior of systems under

the occurrence of faults; the goal is to determine whether the system is able

to work correctly by autonomously handling the occurred errors, or it fails,

thus producing a wrong result. The most insidious threats in our context

are the faults caused by environmental conditions, called soft errors. Soft

errors do not have disruptive effects, but they induce transient effects that

corrupt the state of the system. Indeed, a soft error may change the value

of a bit stored in a memory cell, thus inducing an error when that cell is

read. Therefore, the activation of a soft error may induce the application

to deviate its behavior from its expected functioning. As a matter of fact,

it is necessary to understand how the CNN behaves when the soft errors

are activated and how much it deviates from the nominal behavior. In

fact, the outcomes produced by the CNN can be used by decision-making

systems, which choices may have a direct impact on the safety of the users.

Traditionally, the literature is headed towards the reliability analysis of

CNNs executed on GPUs through the architectural fault injection. The

architectural fault injection for GPU is a technique that emulates the ac-

V

tivation of soft errors within the architecture of the device. The emulation

occurs by injecting bitflips in the GPU data-path, with effects similar to

those caused by the physical event. Although it is very accurate, the ar-

chitectural fault injection poses severe constraints on the system under

analysis. The implementation techniques, exploited by the fault injector to

emulate the faults, slow down the execution of the application. The slow

down may lead the application to not comply with the time constraints to

which the whole system is subject. Secondly, the integration of the fault

injector and the application is challenging because the application needs to

be modified to allow the fault injector to operate. The modification may

require to recompile the source code, which can be difficult if the applica-

tion uses closed-source libraries. Rather than fault injection, the reliability

analysis can also be performed through error simulation. The error simula-

tion is a technique that simulates the effects of the activation of soft errors

directly in the source code of the application running on the GPU. This

happens by corrupting one or more values of the application according to

error models. The implementation of an error simulator is far easier than a

fault injector because the error simulator can be directly integrated within

the Machine Learning (ML) frameworks, which are commonly used to de-

velop CNNs. The main issue related to the error simulation regards the

error models with which corrupting the application. The error models must

be capable of reproducing the effects of physical faults that occurred in the

underlying hardware. Thus, the error models are required to be validated.

When the error models are not validated, there is a risk to introduce errors

within the system that do not correspond to reality, leading to incorrect

outcomes. In the literature, we do not find any validated error models for

CNNs executed on GPU since the majority of the works are focused on the

architectural fault injection.

For these reasons, the purpose of this thesis is to define a methodologi-

cal framework for the error simulation using validated models in a CNN at

the application level. The goal of the framework is to connect the abstrac-

tion level of the GPU architecture, where faults are generally emulated,

and the abstraction level of the CNN, where the behavior of the program

is analyzed to evaluate the effects of the faults. At first, we have designed

a methodology to define the error models that enables us to derive vali-

dated error models for the single operator of the CNN. We have performed

several architectural fault injection campaigns, targeting the single CNN

operator, obtaining thousands of faulty outputs. The faulty outputs are

originated by the activation of soft errors injected during the fault injection

campaigns. The error models are built by analyzing these faulty outputs

according to three parameters: the number and domains of corrupted val-

ues and spatial patterns. These three parameters are defined statistically.

The statistic approach enables us to recreate any of the observed faulty

outputs by drawing each parameter from its distribution. The error mod-

els are thus validated by construction because derived upon the analysis

of the faulty outputs. Nonetheless, their effects will be further compared

to the ones obtained using the state-of-the-art GPU fault injector publicly

available. Besides the error modeling, the framework proposes an approach

for performing error simulation campaigns on a CNNs executed on GPU.

Such an approach enables us to sabotage the output of a CNN operator,

according to the error models defined above. The error simulation allows

a higher degree of integration with the application. The higher integration

leads us to speed up the execution of error campaigns compared to the

current practice.

The framework has been then implemented, bringing us to obtain a

repository of error models and an error simulator tool. For the sake of

demonstration, the error models repository contains the error models of

11 CNN operators, such as Convolution, Batch Normalization, or Leaky

ReLU. Nonetheless, the repository is extendable by applying the same er-

ror modeling approach to the other operators. Each model is thus composed

of the three probability distributions, one for each parameter. The error

simulator is a tool designed for corrupting the outputs of the CNN oper-

ators. The corruption, i.e., the insertion of errors, is performed according

to the error models present in the repository. The tool is built upon the

TensorFlow ML framework, with which the CNN is developed. The error

simulator also features some advanced injection techniques, such as check-

pointing, or the extensive usage of the cache. These optimizations enable

the tool to reuse the intermediate computations, achieving execution times

close to the native execution.

Finally, we have compared our framework to two baselines in real case

studies. The first comparison regards SASSIFI that is the state-of-the-

art GPU fault injector developed by NVIDIA. With that tool, we have

compared the execution times and accuracy of our error models. For this

comparison, we have used the TensorFlow implementation of the YOLO

V3 CNN, which is the state-of-the-art network for object detection. We

have simulated 137,000 errors with our error simulator tool in 15 hours. We

have injected 360,000 faults with SASSIFI to obtain the same amount of

errors because most of the faults have not been activated. The overall time

required by SASSIFI has been 92 hours; thus, the same campaign through

our error simulator is 6.1x times faster than the one using SASSIFI. Among

these 137,000 errors produced by our error simulator, we have analyzed the

effects generated by them in the output of YOLO V3. The obtained effects

are equal to the ones generated by SASSIFI in 98.72% of the cases.

The second comparison regards a novel error simulator, TensorFI, that

enables us to perform reliability analysis of CNNs. For this comparison,

we were not able to use the YOLO V3 network due to technical limitations

and design flaws present in TensorFI. Thus, we have used the LeNet-5

model for the MNIST dataset and a model for the CIFAR10 dataset, both

performing object classification within images. The models are significantly

smaller than YOLO V3 and enable us to test TensorFI. We have simulated

10,000 errors with our error simulator tool in 24.74 and 37.62 seconds for

LeNet-5 and CIFAR10 models, respectively. TensorFI has simulated the

same amount of errors in 1098.71 and 2409.47 seconds for LeNet-5 and

CIFAR10 models, respectively. The speedup induced by our tool compared

to TensorFI ranges from 44.41x to 64.04x times. TensorFI embeds error

models that are not validated and are far different from the ones we have

observed. The error models embedded in TensorFI are not probabilistic

and directly inherited from the fault models used in the architectural fault

injection. Therefore, the reliability analysis performed through TensorFI

cannot be trusted. The errors observed in the output of the single CNN

operator are far complicated than the single bitflip used in the architectural

fault injection. Hence, the fault models of the architectural fault injection

are not valid for the application level.

In conclusion, we have proved that our error models are validated, either

by construction and by comparison. Besides that, our error simulator is

faster than the current state-of-the-art tools, achieving execution times

close to the native executions.

Sommario

Al giorno d’oggi, si registra un ricorso crescente alle Convolutional Neural

Network (CNN) nei sistemi critici in quanto queste raggiungono accura-

tezze più elevate rispetto ai tradizionali algoritmi della Computer Vision

(CV). Le CNN sono eseguite sulle Graphic Process Unit (GPU) poiché

l’architettura Single Instruction Multiple Data (SIMD) di queste unità è

particolarmente adatta ad accelerare il lavoro di tali applicazioni. L’ac-

celerazione delle CNN sulle GPU è necessaria per rispettare gli stringenti

requisiti imposti dai sistemi critici, soprattutto per quanto riguarda i vinco-

li temporali. Il binomio costituito dalla CNN eseguita sulla GPU è sempre

più presente nei sistemi critici, e, per via della loro natura complessa, è

necessario assicurare il corretto funzionamento in ogni situazione possibile,

anche di fronte a guasti nei sistemi digitali.

L’analisi di affidabilità studia il comportamento dei sistemi in presenza

di guasti. L’obbiettivo è determinare se il sistema sia autonomamente

in grado di gestire l’occorrenza di guasti, oppure fallisce producendo un

risultato errato. Nel nostro contesto, le insidie maggiori sono rappresentate

dai guasti originati da fattori e condizioni ambientali, chiamati soft errors.

I soft errors non hanno effetti distruttivi o permanenti, ma generano guasti

transitori che corrompono lo stato del sistema. Infatti, l’occorrenza di

un soft error può commutare il valore di un bit contenuto in una cella di

memoria che, qualora sia letto, può produrre un errore. L’attivazione di

un soft error, cioè la sua lettura, può indurre l’applicazione a comportarsi

in modo diverso da quanto atteso. La necessità è quindi comprendere il

comportamento delle CNN quando si attivano i soft errors, quantificandone

la deviazione rispetto al funzionamento atteso. Questo è indispensabile

poiché i risultati prodotti dalla CNN potrebbero essere usati da sistemi

decisionali, le cui scelte hanno impatto sulla sicurezza degli utilizzatori.

Tradizionalmente, la letteratura è sempre stata orientata ad eseguire

analisi di affidabilità delle CNN eseguite su GPU attraverso tecniche di

IX

iniezioni guasti architetturali. Le iniezioni guasti architetturali su GPU

emulano l’attivazione dei soft errors all’interno della sua architettura. L’e-

mulazione avviene iniettando bitflip nel percorso dati della GPU, con effetti

analoghi a quelli causati dall’evento fisico. Per quanto molto accurata, l’i-

niezione guasti architetturale impone numerosi vincoli al sistema in oggetto.

Le tecniche usate dagli iniettori per emulare i guasti hanno come effetto col-

laterale quello di rallentare l’esecuzione dell’applicazione. Il rallentamento

può portare l’applicazione a non rispettare più i vincoli temporali a cui è

soggetto il sistema complessivo. In secondo luogo, l’integrazione dell’iniet-

tore guasti con l’applicazione è complessa poiché questa necessita di essere

modificata per permettere all’iniettore di operare. La modifica dell’applica-

zione può richiedere di modificare il codice sorgente, non sempre attuabile

con librerie di codice a sorgente chiuso. In alternativa all’iniezione guasti,

l’analisi di affidabilità può essere effettuata tramite simulazione d’errore.

La simulazione d’errore è una tecnica che simula gli effetti delle attivazioni

dei soft errors direttamente nel codice sorgente dell’applicazione eseguita

su GPU.

La simulazione avviene corrompendo uno o più dati dell’applicazione

secondo dei modelli d’errore. La realizzazione di un simulatore d’errore è

molto più semplice rispetto a quella di un iniettore guasti architetturali

perché il simulatore può integrarsi direttamente nelle librerie di Machine

Learning (ML) con cui vengono scritte le CNN. Il problema principale le-

gato al simulatore d’errore riguarda la validazione dei suoi modelli d’errore,

poiché devono essere in grado di riprodurre gli effetti fisici che si verifica-

no nel dispositivo sottostante. Se i modelli d’errore non sono validati, si

corre il rischio di introdurre errori nel sistema che non corrispondono alla

realtà, portando ad una analisi incorretta. Nella letteratura, non troviamo

riscontri di modelli d’errore validati per le CNN eseguite su GPU dato che

la maggior parte dei lavori è focalizzata sull’iniezione guasti architetturali.

Lo scopo di questa tesi è definire un framework metodologico per la

simulazione d’errore a livello applicativo su una CNN, attraverso model-

li d’errore validati. L’obbiettivo del framework è connettere il livello di

astrazione della GPU, dove vengono emulati i guasti, a quello della CNN,

dove viene analizzato il comportamento in presenza di tali guasti. In primo

luogo, abbiamo definito una metodologia per creare modelli d’errore vali-

dati sul singolo operatore della CNN. Successivamente, abbiamo eseguito

numerose campagne di iniezioni guasti architetturali sui singoli operatori

della CNN ottenendo migliaia di risultati corrotti. Questi risultati sono

originati dall’attivazione dei soft errors iniettati nelle campagne guasti. I

modelli d’errore sono definiti analizzando i risultati corrotti secondo tre

parametri: numero e domini dei valori corrotti e motivo spaziale. Il model-

lo cos̀ı descritto segue un approccio statistico, con cui è possibile ricreare

i risultati corrotti osservati secondo le distribuzioni di probabilità di ogni

parametro. I modelli d’errore sono perciò validati per costruzione poiché

derivati dall’analisi dei risultati corrotti. Nonostante questo, vogliamo of-

frire un’ulteriore comparazione dei nostri modelli d’errore confrontando gli

effetti che essi generano con quelli generati dal migliore iniettore guasti

architetturali per GPU. La seconda contribuzione del framework è un ap-

proccio per realizzare campagne di simulazione d’errore sulle CNN eseguite

su GPU. L’approccio consiste nel sabotare l’uscita di un operatore della

CNN, secondo i modelli d’errore definiti sopra. La simulazione d’errore

raggiunge un grado di integrazione maggiore con l’applicazione, riuscen-

do perciò a velocizzare l’esecuzione delle campagne di errore rispetto alle

pratiche attuali.

Il framework è stato poi implementato, ottenendo una collezione di mo-

delli d’errore e uno strumento di simulazione d’errore. A titolo dimostrati-

vo, abbiamo popolato la collezione con modelli d’errore basati su 11 opera-

tori della CNN, quali la Convolution, Batch Norm, oppure Leaky ReLU. La

collezione rimane aperta ad estensioni future per tutti gli ulteriori operato-

ri. Il simulatore d’errori è uno strumento progettato per corrompere l’uscita

di un operatore della CNN, inserendo errori secondo i modelli presenti nel-

la collezione. Il simulatore è basato sulla libreria di ML TensorFlow, e

integra alcune tecniche avanzate di iniezione, come il check-pointing e l’u-

so estensivo di cache, che gli assicurano tempi d’esecuzione vicini a quelli

nativi.

In chiusura, abbiamo comparato il nostro framework a due punti di

riferimento del settore su casi d’uso reali. La prima comparazione riguarda

SASSIFI che è lo stato dell’arte nel contesto di iniettori guasti architetturali

per GPU, sviluppato da NVIDIA. Con SASSIFI abbiamo testato i tempi

d’esecuzione nello svolgere la stessa campagna di errori e l’accuratezza dei

modelli d’errore. Il soggetto di questo confronto è stato YOLO V3 che è una

CNN stato dell’arte nel contesto dell’identificazione di oggetti. Abbiamo

simulato col nostro strumento 137,000 errori in 15 ore. Per ottenere lo

stesso numero di errori con SASSIFI, abbiamo iniettato 360,000 guasti

poiché la maggior parte di essi non si è attivato. Il tempo totale richiesto

da SASSIFI è stato di 92 ore, evidenziando che il nostro simulatore è stato

6.1 volte più veloce nel fare la stessa campagna di errori. Di questi 137000

errori abbiamo analizzato gli effetti nell’uscita di YOLO V3 sia per il nostro

simulatore che per SASSIFI, risultando capaci di generare il 98.72% degli

effetti di SASSIFI.

Il secondo confronto riguarda un emergente simulatore d’errore per CNN

chiamato TensorFI. Per via di limitazioni tecniche ed errori progettuali, non

è stato possibile utilizzare YOLO V3 con TensorFI. Al suo posto abbiamo

impiegato due CNN, LeNet-5 per il MNIST dataset e una implementazione

personale per CIFAR10. Entrambe le reti effettuano classificazione d’og-

getti in immagini. Abbiamo simulato 10,000 errori in entrambe le reti in

24.74 e 37.62 secondi rispettivamente per LeNet-5 e CIFAR10. Le stesse

campagne con TensorFI hanno richiesto 1098.71 e 2409.47 secondi rispet-

tivamente per LeNet-5 e CIFAR10. TensorFI integra modelli d’errore che

non sono probabilistici, importandoli direttamente dai modelli di guasto

usati nell’iniezione architetturale. Perciò, le analisi di affidabilità attraver-

so TensorFI non sono verosimili poiché gli errori osservati nell’uscita di un

singolo operatore della CNN sono molto più complessi dei bitflip usati a

livello architetturale. Quindi, i modelli di guasto architetturali non sono

validi per l’applicazione.

In conclusione, abbiamo dimostrato che i nostri modelli d’errore sono

validati sia per costruzione che per confronto. Inoltre, il nostro simulatore è

più veloce degli strumenti che attualmente rappresentano lo stato dell’arte,

ottenendo tempi di esecuzione molto prossimi a quelli nativi.

Ringraziamenti

The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge.

Stephen William Hawking

Ringrazio innanzitutto i professori Antonio Rosario Miele e Luca Maria

Cassano che mi hanno sapientemente guidato nella realizzazione di questa

tesi, curando meticolosamente ogni dettaglio portando al compimento di

questo lavoro di cui sono fiero ed orgoglioso.

Ringrazio i miei genitori, mia mamma e mio babbo, che mi hanno donato

il loro supporto incondizionato e tranquillità che mi hanno permesso di

raggiungere questo obiettivo e per questo vi sono eternamente grato.

Ringrazio mia sorella, i miei nipoti Sofia e Riccardo, che con la vostra

bellissima famiglia, a cui sono molto legato, mi siete stati sempre vicino.

Ringrazio la mia fidanzata Elena, per essere stata un faro lungo il mio

cammino nonchè compagna di vita. Grazie perchè se sono arrivato qui oggi

lo devo alla serenità e felicità che derivano dall’averti al mio fianco.

Ringrazio Francesco e Laura, compagni d’avventura dal 1995 coi quali

so di poter contare sempre e siete un punto fisso nella mia vita. Ringrazio

anche Federico, Ossama, e Pierpaolo per camminare al mio fianco avermi

reso lieta questa avventura.

Ringrazio gli amici “cinesi” per avermi sostenuto nella grande avventura

della Cina e per avermi aiutato in tutti quei momenti difficili regalandomi la

forza di concludere il viaggio. In particolare, Edoardo, Giulia, e Giacomo,

perchè siete stata una delle scoperte più preziose fatte in Cina.

Infine, ringrazio tutti per il vostro supporto e che se sono arrivato qui

oggi lo devo a tutti voi.

Grazie ancora!

Alessandro

XIII

Contents

List of Figures XVIII

List of Tables XXI

1 Introduction 1

1.1 Goal . 4

1.2 Thesis Outline . 5

2 Background and Related Work 7

2.1 Convolutional Neural Networks - CNNs 8

2.1.1 Tensor . 9

2.1.2 Convolution . 9

2.1.3 Dimensionality Reduction 11

2.1.4 Batch Normalization 12

2.1.5 Activation Functions 12

2.1.6 Element-wise Operators 14

2.2 Machine Learning Frameworks 15

2.2.1 TensorFlow . 15

2.2.2 Caffe . 17

2.3 Graphic Process Units - GPUs 18

2.3.1 Hardware Architecture 19

2.3.2 Programming Model 22

2.4 Faults in Digital Systems . 23

2.5 Related Work . 25

2.5.1 Fault Injectors for GPU devices 25

2.5.1.1 CUDA-GDB 26

2.5.1.2 GPU-Qin 26

2.5.1.3 SASSIFI . 27

2.5.1.4 LLFI-GPU 28

XV

CONTENTS CONTENTS

2.5.1.5 TensorFI 29

2.5.2 Methodologies for Reliability Analysis 31

2.5.2.1 Kernel and layer vulnerability factor to eval-

uate object detection reliability in GPUs . . 32

2.5.2.2 Understanding Error Propagation in Deep

Learning Neural Network (DNN) Accelera-

tors and Applications 33

2.5.2.3 Analyzing and Increasing the Reliability of

Convolutional Neural Networks on GPUs . . 33

2.5.2.4 A Reliability Analysis of a Deep Neural Net-

work . 34

2.5.2.5 Increasing the Efficiency and Efficacy of Selective-

Hardening for Parallel Applications 34

2.5.2.6 Evaluation of Histogram of Oriented Gradi-

ents Soft Errors Criticality for Automotive

Applications 34

3 Goals and Requirements 37

3.1 Working Scenario . 37

3.2 Constraints and Current Limitations 38

3.2.1 GPU Fault Injection 39

3.2.2 Error Simulation . 40

3.3 Contributions . 41

3.4 Key Performance Indicator (KPI) and Baseline Approaches . 42

4 The Proposed Framework for Error Modeling and Simula-

tion 45

4.1 An Overview of the Methodology 45

4.2 Operators Selection . 48

4.3 Architectural Fault Injection 48

4.3.1 Campaign Sizing . 49

4.3.2 Fault List Definition 50

4.3.3 Campaign Execution 50

4.4 Error Model Definition . 51

4.4.1 Cardinalities . 52

4.4.2 Domains of Corrupted Values 52

4.4.3 Spatial Patterns . 55

4.5 Error Simulation . 56

4.6 Framework Implementation 58

CONTENTS CONTENTS

5 Error Modeling 61

5.1 Operators Selection . 61

5.2 Architectural Fault Injection 64

5.3 Error Model Definition . 66

5.3.1 Cardinalities . 66

5.3.2 Domains of Corrupted Values 70

5.3.3 Spatial Patterns . 71

5.3.3.1 Same Feature Map 71

5.3.3.2 Multiple Feature Maps 73

5.3.3.3 Generality and Parametrization 74

5.4 Definition of the Error Models 76

6 Error Simulation 79

6.1 Overall Structure . 79

6.2 Instrumentation Phase . 80

6.3 Error List Generation . 83

6.4 Injection Phase . 86

6.5 Methodological and Implementation Flaws 89

6.5.1 Error Models . 89

6.5.2 Minor Differences and Setup Effort 89

6.6 Porting to Other ML Frameworks 91

7 Experimental Evaluation 93

7.1 Case Studies . 93

7.2 Accuracy Validation . 95

7.3 Execution Times Analysis 96

7.3.1 SASSIFI . 96

7.3.2 TensorFI . 98

7.4 Concluding Remarks . 98

8 Conclusions and Future Work 101

8.1 Future work . 103

Bibliography 105

CONTENTS CONTENTS

List of Figures

1.1 Situations originated by a soft error 3

2.1 CNN topology . 8

2.2 Graphical representation of a tensor 10

2.3 Example of 3x3 convolution. 11

2.4 Tensor rearrangement into columns format. 11

2.5 List of Rectified Units plots. 13

2.6 Sigmoid activation function. 14

2.7 Example of data-flow computational graph 16

2.8 Simplified version of the GPU hardware architecture. 20

2.9 GPU memory hierarchy. 21

2.10 Grid of thread blocks. 21

2.11 Linear scaling algorithm presented either in sequential and

GPU parallel version. 22

2.12 Injection modes, error models and instruction classes in SAS-

SIFI. 28

4.1 Methodological Framework 46

4.2 Offsets vector. 56

4.3 Strides vector. 56

4.4 Intersection of faults set and errors set. 57

4.5 Instantiation of the methodological flow. 59

5.1 Cardinalities of all the CNN’s operators 69

5.2 Domains of all the CNN’s operators 70

5.3 Spatial Patterns - Same Feature Map - Single Point 78

5.4 Spatial Patterns - Same Feature Map - Same Row 78

5.5 Spatial Patterns - Multiple Feature Maps - Bullet Wake . . . 78

5.6 Spatial Patterns - Multiple Feature Maps - Shatter Glass . . 78

XIX

LIST OF FIGURES LIST OF FIGURES

5.7 Spatial Patterns - Multiple Feature Maps - Quasi-Shatter

Glass . 78

6.1 Error simulator’s phases . 79

6.2 Example of replication of the data-flow graph 83

6.3 Structure of the error model files 85

6.4 Example of injection using the check-pointing technique . . . 88

6.5 Overlap of domains . 90

List of Tables

2.1 Functions belonging to the class of Rectified Units. 13

5.1 Set of operators that are considered in this framework 62

5.2 Mapping of TensorFlow and Caffe operators. 63

5.3 Combinations of injection modes, instructions’ classes and

fault model used in the fault injection campaigns. 65

5.4 Campaigns sizes for the Instruction Output Value (IOV) mode 68

5.5 Campaigns sizes for the IOV and Register File (RF) mode . 68

5.6 Distribution of the various spatial patterns on each consid-

ered operator. 75

5.7 Table of parameters for each spatial pattern class. 76

6.1 Comparison of domains of the two error simulators 90

7.1 Execution times of the error simulation and SASSIFI 97

7.2 Comparison of execution times between TensorFI and our

approach . 98

7.3 Comparisons of our framework with the other state-of-the-

art tools . 98

XXI

LIST OF TABLES LIST OF TABLES

Chapter 1

Introduction

Digital systems are nowadays widely employed in all the activities of our

life. Depending on the working scenario and the application role, digital

systems may assume a certain level of criticality for the success of the mis-

sion of the overall appliance/facility they are integrated into and for the

safety of people and the environment they interact with. More precisely,

systems are dubbed as safety-critical systems if their failure or malfunc-

tioning may cause injuries on the people that are around it or working

with it.

Among the safety-critical systems, Autonomous Driving System (ADS)

represents the ultimate challenge in recent years [1]. An ADS is composed

of a set of high-level functionalities aimed at (partially) replacing the hu-

man driver with electronics and machinery in the various driving tasks,

such as perception, planning, and control of the vehicle. For instance, an

ADS is capable of detecting the lanes of the current track or identifying the

pedestrians and other obstacles by exploiting Computer Vision (CV) and

Machine Learning (ML) algorithms to automate the perception functional-

ities. Once the lanes and obstacles are identified, they are consumed by the

planner, which is the functionality having in charge of the decision-making

activities. The planner generates the feasible trajectories and selects the

best one by solving an optimization problem. Finally, further ML algo-

rithms are also employed in control to automate the car’s operations.

The functionalities offered by an ADS are classified and ruled by the

Society of Automotive Engineers (SAE), which is a standard developing

organization that produces the standards and regulations adopted by any

interested party in the field of autonomous driving. According to the SAE

standards [2], autonomous driving functionalities are classified according to

1

2 Chapter 1. Introduction

the provided level of automation in five levels, from the lowest automation

level 1 to the highest 5. A car equipped with an ADS of level 5 implies that

the car can drive under all conditions and everywhere without requiring

any intervention from the driver, which is now considered as a passenger.

Therefore, ADS of level 5 must expose a very high degree of reliability to

be able to face any situation, even the most critical since there are human

lives at stake.

At the same time, one of the most relevant problems in digital circuits is

that they may be subject to physical faults, leading to failures and malfunc-

tioning in the system’s behavior. The main causes of faults may be internal

to the devices, such as premature break-downs or aging of some compo-

nent, or external, mainly due to mechanical or thermal stress, or exposition

to radiations. Therefore, devices have considerable chances to experience

hard faults, such as permanent break down, or, with a higher frequency,

soft errors, causing temporary memory state change or data corruption.

The overall effect of a fault affecting a system is a possible deviation of the

executed application from its nominal behaviour to an erroneous one, thus

leading to the computation of a wrong result or even a system crash.

Radiation-induced faults have historically been considered a concern by

companies and researchers belonging to the aerospace domain. Neverthe-

less, it has been demonstrated that a (small) number of such faults may

also occur at the ground level [3]. According to this analysis, 2 faults every

thousand billion hours occur on average at ground-level. If we consider

that in 2019 the number of cars traveling in Europe has been 268 million

(see [4]), we can estimate that a fault would be observed on every single

car every 3.7 hours, which may be a concern. A fault that causes a wrong

result may pose the system into a critical state. The criticality of a wrong

result is far highly severe when it happens on information that is considered

the entry-point for many other following modules. In autonomous driving,

it is, therefore, necessary to focus primarily on the perception module be-

cause it is in charge of detecting the surrounding environment, assisted by

several sensors, such as cameras, radars, and LIDARs, by identifying the

present obstacles and many other elements, like traffic signs, lanes, and

semaphore’s lights. The information produced by the perception module

is consumed by other modules, such as the planner or the prediction mod-

ules, which are responsible for decision-making tasks. As a consequence,

the wrong information that is issued from the perception module can lead

to a wrong decision and next to dangerous repercussions, like the emer-

3

(a) Correct classification (b) Misclassification (c) Wrong placement

Figure 1.1: Two hypothetical situations originated by a soft error.

gency stop of the vehicle or, in the worst cases, the crash of the car. Let

us concretize this situation with the following example.

Consider an autonomous vehicle that is traveling at a constant speed

of 130 km/h on the highway, employing a level 5 ADS. The front camera

is capturing frames at 10 fps, which are then processed by the percep-

tion module to detect the obstacles within the frames. Suddenly, a soft

error occurs while the perception module was assigning the label to the

detected obstacle that is in front of the car. Instead of labeling the obsta-

cle as “Truck” (Figure 1.1(a)), the obstacle has been classified as “Traffic

Cone”, as shown in Figure 1.1(b). Another possibility is that a soft error

is manifested as the wrong placement of the bounding box that identifies

the truck, as shown in Figure 1.1(c). Both situations represent a danger

for the passengers. In the first case, the planner may select a trajectory to

overtake the traffic cone, but due to sudden change, the maneuver results

sharp and perilous. The only viable countermeasure for commercial ADS

that faces the second case is to trigger the watchdog and activates an emer-

gency brake. Both situations are not optimal from the passengers’ point

of view, even if not catastrophic, but a further effort should be spent to

define countermeasures that improve the management of critical situations

and soft errors.

Given these discussions, it is clear how it is mandatory to investigate the

reliability issues of the considered ADS, and, in particular, of the percep-

tion functionalities, to assess if they are robust enough or they need to be

hardened with some reliability-oriented mechanism. Such a kind of inves-

tigation is generally carried out by evaluating how the system reacts to the

occurrence of faults and how its behavior deviates from the nominal one.

4 Chapter 1. Introduction

The perception module exploits various CV algorithms to detect obstacles

and objects. Nowadays, the state-of-the-art techniques used in CV rely on

Convolutional Neural Networks (CNNs), which overtake traditional image

processing pipelines. CNNs are data-intensive computational models that

present a high degree of data parallelism, which is appropriately exploited

by accelerating them using Graphic Process Units (GPUs). The combina-

tion of CNNs and GPUs is successful because it is possible to achieve high

performance that meets the real-time constraints of the car’s ADS; on the

other hand, it is mandatory to assess the effects of faults on this specific

system.

Reliability analysis is generally performed in the later phases of the

design flow of a system as a final assessment. Unfortunately, this common

practice is not effective in the scenario of ADSs due to the high complexity

of both the applications and the underlying architectural platforms and the

too many strict requirements on the system (in terms of performance, power

consumption) and on the design activity (design time, costs and effort).

As a consequence, we claim that there is a need for novel reliability-related

design and analysis approaches to be tightly integrated with the rest of the

design flow and providing early feedback also on reliability issues.

1.1 Goal

The goal of this thesis is to propose a novel framework for the automatic

analysis of the reliability properties of CNNs executed on GPU devices.

The idea is to replace the classical reliability analysis performed through

physical fault injection or architectural fault emulation by means of an

error simulation approach acting at the functional level. This will ease

the reliability analysis both in terms of design effort and execution time

and will offer a better visibility/identification of the reliability issues of the

system, or sub-parts of the application pipeline, till to the early phases of

the design flow. In this way, the framework will support the designer in

understanding if a CNN is sufficiently resilient against faults, or it needs to

be hardened; in the latter case, whether it suffices to focus only on some

parts/step of the application pipeline, to keep overheads to a minimum (to

save power, time, area) or it is mandatory to harden the entire system.

In order to achieve such a result, the framework will be provided with a

methodology to properly define error models to be applied directly in the

application execution. Such models have to accurately represent the effects

1.2. Thesis Outline 5

caused by faults occurring in the underlying GPU device. The second part

of the proposed idea is the actual error simulator capable of automating

extensive experimental campaigns on the CNN under analysis by exploiting

the outcomes of the first phase. Such a simulator will be integrated with

the most popular ML frameworks; in such a way, the reliability analysis of

a CNN can be performed in the same environment in which it is designed,

thus offering fast feedback to the design activities.

1.2 Thesis Outline

The thesis is organized as follows:

• Chapter 2 introduces all the knowledge required to understand this

work. The background presents the theoretical discussion about the

CNNs, the ML frameworks, GPUs, and faults. A review of the litera-

ture is presented in the second part of the chapter, in which we com-

pare the current state-of-the-art GPU fault injector and the method-

ologies adopted in terms of reliability analysis.

• Chapter 3 states the current limitations and constraints of the litera-

ture, and we present the points that enhance the current state-of-the-

art methodologies.

• Chapter 4 presents the framework and the general methodologies be-

hind it. The methodologies are developed in the context of CNN

application executed on GPU, but the discussion is also offered in

a general way, applicable to a class of image processing applications

that are accelerated on a computing device.

• Chapter 5 presents the steps that characterize the error modeling

phase. Such a modeling phase aims to build an error model that is

representative of the architectural faults that occur on GPU. Sev-

eral GPU fault injection campaigns are executed targeting a CNN

operator, obtaining many faulty outputs. The steps provided by the

methodology enable us to analyze those faulty outputs and to derive

an error model built on them that is meaningful for the application

level.

• Chapter 6 presents the tool that can inject the errors modeled in the

previous phase into a CNN running in a ML framework, outperform-

ing traditional architectural fault injectors.

6 Chapter 1. Introduction

• Chapter 7 presents the evaluation and validation metrics of both the

error simulator and error models compared to the state-of-the-art

works.

• Chapter 8 encloses all the results obtained and our contributions.

Besides, we present the possible future works that extend the working

scenario.

Chapter 2

Background and Related Work

This chapter introduces the fundamental concepts, topics, and foreknowl-

edge needed to understand the working scenario considered in this the-

sis. The system under analysis is a Convolutional Neural Network (CNN),

which is an application widely employed in the context of image process-

ing and computer vision, executed on a Graphic Process Unit (GPU) de-

vice. CNNs consist of a graph of connected operations, which purpose and

meaning will be described in Section 2.1. CNNs are generally developed by

means of specific Machine Learning (ML) frameworks. Among the avail-

able ones, TensorFlow [5] is the most widespread and popular framework

that will be adopted by the application. Caffe [6] is an alternative ML

framework, mostly specialized in CNNs, that will be used to validate our

work. Both frameworks will be described in Section 2.2. CNNs are heavy

computational tasks that take great benefit from the parallel architecture

of GPUs. GPUs are parallel computing devices, which represent the target

architecture of this work, and its overview will be provided in Section 2.3.

Finally, the presentation of the background is completed by Section 2.4

where reliability issues related to faults possibly affecting the digital sys-

tems are briefly discussed. The second part of the chapter is dedicated to

the review of the literature and the analysis of the state-of-the-art works in

the context of reliability analysis of GPUs running CNN applications. Sec-

tion 2.5.1 presents the available fault injectors targeting GPU devices and,

later, Section 2.5.2 focuses on the methodologies to evaluate the vulnera-

bility of CNNs against faults. Benefits and limitations of the past works

are discussed to introduce the necessity of the approach proposed in this

thesis.

7

8 Chapter 2. Background and Related Work

2.1 Convolutional Neural Networks - CNNs

Convolutional Neural Network (CNN) [7] is a computing model that man-

ages multidimensional data, also known as tensors, and aims to derive

a semantic representation from the input to accomplish a high-end task.

CNNs are generally employed in the field of image processing and computer

vision. Images are the best data to be fed into a CNN and represent the

best candidates to which apply feature extraction. The CNN can perform

several tasks; it can classify items within an image, detects objects through

bounding boxes individuation, i.e., a rectangle of pixels, and performs im-

age segmentation, i.e., assigning to each pixel the most probable label. A

brief overview of the various operators or layers composing a CNN will be

carried out in the following subsections.

The standard topology of a CNN is composed of a series of blocks, as

shown as an example in Figure 2.1. The blocks follow a common pat-

tern repeated various times and consist of: one or more convolutional lay-

ers, a batch normalization, an activation function, and then max-pooling.

Depending on the task to accomplish, the CNN can have different termi-

nal blocks. The terminal blocks can be constituted of a traditional fully-

connected neural network if we are dealing with a classification task, like

in Figure 2.1. Otherwise, the output of the CNN can be a tensor itself,

which in this case, the network is referred to as fully convolutional, and this

situation is typical for image segmentation or object identification. Each

mentioned block has a different purpose. The convolutional layer is used to

learn and extract features from the input by learning the appropriate set

of weights. Such features are ones that maximize the network’s accuracy

against a loss function but are likely to be not human manageable or un-

derstandable. The batch normalization is a mathematical operation that

helps the training phase by fixing the data distribution, speeding up the

Max-Pool Convolution Max-Pool Dense

8@128x128
8@64x64

24@48x48
24@16x16 1x256

1x128

Figure 2.1: The typical topology of a CNN, credits to [8].

2.1. Convolutional Neural Networks - CNNs 9

learning. The activation function is a mathematical function that is applied

element-wise to emulate the biological activation of a neuron. The max-

pooling layer belongs to the category of dimensionality reduction operators,

which reduces the size of the tensor to increase the degree of generalization.

Recapping, CNN aims to learn a wide number of meaningful and semantic

features, up to thousands, while reducing the size of the tensor to generalize

its representation. In the following sections, the various blocks composing

the CNN are discussed in details.

2.1.1 Tensor

A tensor [9] is a data structure in which elements are arranged on regu-

lar grids stacked along a common axis, as shown in Figure 2.2. It is the

basic unit element of any CNN, representing the input and output of each

layer or operator. An intuitive representation of a tensor is an RGB image

because it is a grid of pixels, and each pixel is composed of three com-

ponents, i.e., the color components. The regular grids are either called

channels or feature-maps, depending on the context. The spatial repre-

sentation of a tensor is identified by the triplet (C × H × W), in which

C represents the number of channels or feature-maps and H ×W is the

grid size. This representation is known as channels-first because channels

are prefixed to grid size. The dual representation, known as channels-last,

places the channels after the grid size. These representations are equiva-

lent, except for low-level memory allocation layout, but they are useful to

interpret data with different semantic within the scope. ML applications

usually use the channels-first representation and the grids are referred to

feature-maps, whereas Computer Vision (CV) applications use channels-

last representation and channels.

2.1.2 Convolution

Convolution [9] is a linear operation that maps each element of a regular

grid, i.e., feature-map, to a linear combination of the element itself and its

neighbors. The coefficients of the linear combination take different names

depending on the application field. In ML literature is common to find

them named as kernel, weights, or mask. The convolution, viewed as a

generalization of filter operation, introduces the concept of weights sharing

because the kernel is shared among the elements of the grid and helps to

keep the model general and lightweight.

10 Chapter 2. Background and Related Work

The convolution can be mathematically formulated as a function g(x, y),

which operates on a grid f(x, y) and a kernel K of size (KW , KH):

g(x, y) =
∑
i

∑
j

f(x− i, y − j) ∗K(i, j)

The convolutional layer is used in CNNs to learn different filters, capable

of exploiting high-level aspects. It maps an input space (Ci × Hi × Wi)

to (Co × Ho × Wo) output space, in which Co is the number of filters

learnt by the layer. It is worth noting that the grid size in the output

space can change, letting the layer not only performing convolution but

also dimensionality reduction. This behavior can be obtained by setting

the stride parameter to a value greater than one. Instead of sliding the

kernel over each element of the grid, a non-unitary stride allows defining the

step between two successive elements, diminishing the number of processed

elements and so the size of the output grid. The layer learns a weight tensor

of shape (Ci×, Co×KH×KW), in which there is a kernel of size (KH×KW)

for each input and output feature map. Ci convolutions are executed,

and then the intermediary outputs are summed together, obtaining the ith

output feature map, as shown in Figure 2.3.

It is worth mentioning that the convolutional layer is implemented us-

ing matrix multiplication, in which the input tensor is suitably rearranged

into a data structure where each element and its neighbors are placed in

columns, converting a slide operation into a matrix multiplication. This

rearrangement operation puts each element and its neighbors into a col-

umn vector, projecting the two-dimensional space into a linearized one, as

shown in Figure 2.4. Column vectors are then stacked to form a matrix,

Figure 2.2: Graphical representation of a channels-first tensor, highlighting C channels and

H ×W grid size.

2.1. Convolutional Neural Networks - CNNs 11

+

+

Figure 2.3: Example of 3x3 convolution.

Figure 2.4: Tensor rearrangement into columns format.

and the kernel’s weights are linearized into a row vector. The two lineariza-

tions allow the convolution to be transformed into a matrix multiplication,

which is executed faster than a sliding operation because it can benefit the

presence of device accelerators, such as the GPU.

2.1.3 Dimensionality Reduction

Dimensionality reduction is a necessary operation to reduce the sensitiv-

ity of the model. The CNN learns representations that are sensitive to

the precise position of features in the input image. Small movements, i.e.,

translations, on the input image can lead to different feature maps and dif-

ferent classification, for example. To overcome this issue, it is necessary to

down-sampling the current representation because a lower resolution ver-

sion of the input still contains most of the significance. The dimensionality

reduction can be achieved either by setting a stride greater than one in a

convolutional layer, as described in the previous section or by using a pool-

ing operator. There exist many pooling operators, but the most used one

is the max pooling operator [9] that applies a max filter to non-overlapping

sub-regions of the input tensor.

12 Chapter 2. Background and Related Work

2.1.4 Batch Normalization

Batch normalization [10] is an operation that aims to reduce the internal

co-variance shift and induces a dramatic acceleration of the CNN train-

ing phase. The internal co-variance shift can be defined as the continuous

change in the distribution of input data. This issue represents a challeng-

ing problem because layers have to adapt to new data distributions while

learning the appropriate filters, which minimize the loss. This can cause

the learning algorithm to forever chase a moving target. Whitening the

input data helps layers to handle only consistent data, to avoid the insid-

ious issue of vanishing gradient, and to focus only on optimizing the loss,

achieving substantial speedup.

The normalization consists of scaling the input data to have zero mean

and unitary variance. The scaling is not performed globally over the whole

input, but it is applied grid-wise. Suppose of having an input tensor x with

shape (C ×H ×W), and x(c) indicates the c-ith channel, then:

x̂(c) =
x(c) − µ(c)

B√
σ
2(c)
B + ε

µ
(c)
B =

1

m

m∑
i=0

x(c)
m σ

2(c)
B =

1

m

m∑
i=0

(
x
(c)
i − µ

(c)
B

)
The training phase is assumed to be executed on batches of size m,

so the mean and variance are computed over a batch of input tensors.

Two additional trainable parameters, γ(c), and β(c), are introduced to let

the normalized data to be re-scaled over the original domain, ensuring

flexibility and avoiding to lose representation power induced by scaling.

y(c) = γ(c)x̂(c) + β(c)

This layer learns C scaling factors γ(c), C biases β(c) whereas C means µ
(c)
B ,

and C variances σ2(c) are computed during the training phase and remain

constants over the inference phase.

2.1.5 Activation Functions

An activation function is a mathematical function that is applied element-

wise to a tensor. The role of the activation function is to emulate the

biological activation of neurons by abstracting the rate of action potential

firing in cells [11].

Among the possible activation functions, we here mention the Rectified

Units class of functions, and then the Sigmoid one.

2.1. Convolutional Neural Networks - CNNs 13

Table 2.1: Functions belonging to the class of Rectified Units.

Name Math Formulation Figure

Rectified Linear Unit (ReLU) [14] f(x) = max(0, x) 2.5(1)

Leaky ReLU [15] f(x) =

{
x, if x ≥ 0

0.01x, if x < 0
2.5(2)

Parametric ReLU (PReLU) [16] f(x) =

{
x, if x ≥ 0

a x, if x < 0, a ∈ IR+
2.5(3)

Rectified Units. Rectified units [12] is a class of activation functions that

have gained great success in CNNs. They all share the common behavior

to be linear in the right half plane (x > 0) and zero or almost zero in the

left half plane (x < 0). Their main advantages [13] are:

1. Easy to compute, speeding up the execution.

2. The gradient of such functions allows us to write a deeper network

because it overcomes the vanishing gradient issue.

3. Produce a sparse output, which is closer to what happens in a human

brain since not all the neurons activate simultaneously.

Table 2.1 shows the most popular examples of the Rectified Units and

their mathematical formulation. Leaky ReLU and PReLU are a relaxation

of the ReLU, in which they do not crop negative values to zero but al-

lows some leakage, preventing the neuron from dying. The only difference

between Leaky Relu and PReLU is that the negative slope present in the

Leaky ReLU is fixed, while that parameter is trainable for the PReLU.

−4 −3 −2 −1 1 2 3 4

−1

1

2

3

4

x

f(x)ReLU

((1)) ReLU.

1 2 3 4

−1

1

2

3

4

−4 −3 −2 −1 x

f(x)Leaky ReLU

((2)) Leaky ReLU.

1 2 3 4

−1

1

2

3

4

−4 −3 −2 −1 x

f(x)PReLU

((3)) PReLU with a = 0.33.

Figure 2.5: List of Rectified Units plots.

14 Chapter 2. Background and Related Work

Sigmoid. The Sigmoid [17] (Figure 2.6) activation function is a monotonic

real function defined as:

f(x) =
1

1 + e−x

It is a popular activation function because it ranges between 0 and 1,

exhibiting a smooth exponential transition between the boundaries, and

usually is used to represent probabilities.

−6 −4 −2 2 4 6

−0.5

0.5

1

1.5

x

f(x)Sigmoid

Figure 2.6: Sigmoid activation function.

2.1.6 Element-wise Operators

It worth mention a set of simple element-wise operators that are widely

used in CNNs in the top-most graph or internally in the various already-

discussed operators. They represent arithmetic transformation of a tensor,

either by adding two tensors, by applying a function element-wise, or by

scaling by a factor. These operators are listed in the following list:

1. Add: adds two tensors, element-wise.

2. Mul: scales each tensor’s feature maps, likewise the BiasAdd opera-

tion.

3. Div: divides the tensor by a constant dividend.

4. Exp: applies the exponential function to a tensor, element-wise.

5. Biasadd: C scalar biases are added to the C feature maps of a tensor.

The biases are trainable and broadcasted at real-time to fill the feature

map size.

2.2. Machine Learning Frameworks 15

2.2 Machine Learning Frameworks

Designing a Machine Learning (ML) software is a challenging activity since

algorithms are very complex, requiring researchers and engineers to spend

months trying to replicate published papers results or by defining a model.

Such applications are benefiting the GPU acceleration, but writing custom

code that targets the GPU requires a considerable amount of time and

specific knowledge of the underlying architecture. ML frameworks have

been developed to ease such a design activity, exploiting the fact that, as

shown for CNN in Section 2.1, most of these algorithms are built upon a

set of standard operators.

The publicly available frameworks allow forgetting all the implemen-

tations details because they provide general and extensible interfaces that

would suit the majority of workloads. The frameworks are also optimized

to deliver the computation on the best available device, achieving high per-

formances. These aspects enable the user only to focus on the CNN model,

for instance, demanding all the implementation details to the framework,

shortening the time to deploy the ML model. Among these publicly avail-

able frameworks, we will present in the following sub-sections two of them,

i.e. TensorFlow and Caffe, since both of them have been employed in this

work with different purposes.

2.2.1 TensorFlow

TensorFlow [5] is a framework for designing ML models and executing them

on a wide variety of heterogeneous systems, ranging from mobile devices to

large distributed systems with numerous GPUs. It is developed by Google

and enables to write almost any ML model.

Among the many available models, it is particularly suitable for develop-

ing CNN models, by either supporting training and inference. TensorFlow

describes each computation using a state-full data-flow graph, as shown in

the example in Figure 2.7, in which each operation is mapped to a wide

variety of hardware platforms. TensorFlow expresses each operator of a

CNN as a node of the data-flow graph, having zero or more edges, both

incoming and outgoing, in which the values that flow in such edges are ten-

sors objects. The data-flow graph results to be a directed graph but with

the peculiarity of being append-only, which means that it is not possible

to remove a node from the graph once inserted nor altering the structure

or connection of an already existing node. What makes TensorFlow differ-

16 Chapter 2. Background and Related Work

ent from the other ML frameworks is that it decouples the definition of a

CNN, or any other models, from its instantiation and execution, through

the data-flow graph. When a CNN’s operator is added to the data-flow

graph, it represents an abstract computation, called operation. Afterward,

when the data-flow graph is executed, TensorFlow assigns the best avail-

able implementation to each operation, called kernel, which can be run on

a specific device, such as GPU or CPU.

WW

Biasadd

Batch Norm

ReLU

xx WW

Biasadd

Batch Norm

ReLU

W

Biasadd

Batch Norm

ReLU

xx WW

Biasadd

Batch Norm

ReLU

Figure 2.7: Example of data-flow computational graph. Blue objects are user’s inputs, green

objects are model parameters, and orange boxes are operators.

TensorFlow provides different levels of Application Program Interfaces

(APIs) with which it is possible to define the model. Such APIs range from

low-level APIs, which have a one-to-one match with the data-flow graph

operations, to high-level APIs, such as Keras [18], which have a higher

degree of abstraction and their usage can lead to the insertion of tens of

operation within the data-flow graph. The availability of such high-level

APIs is what makes TensorFlow so popular and used because with few

lines of codes is possible to create a complete CNN model capable of being

executed on the GPU.

The instantiation and execution of the data-flow graph are demanded

to a session interface, which is in charge of allocating the memory required

2.2. Machine Learning Frameworks 17

by each operation and identifies the best implementation kernel for each

operation. Usually, the session is created once, and then the data-flow

graph is fully or partially executed by providing the input tensors and the

outputs to be computed.

Finally, it worth mentioning two special components of the data-flow

graph, which are necessary for the later discussions on the error simulator

designed in this work:

• Control Dependency : it is a special edge that introduces priority

among operations. If the operation A is connected through a con-

trol dependency edge to the operation B, then the operation A will

be executed before the operation B.

• Variable: it is a special operation that holds a reference to a mutable

persistent tensor that survives across multiple executions of the data-

flow graph, while most tensors do not. Variables are used to store

the weights and attributes of operations because they need to persist

during all the executions.

2.2.2 Caffe

Caffe [6] is an open-source modifiable framework for developing state-of-

the-art deep learning algorithm and possibly accelerating them on GPU.

Caffe focuses on CNNs by expressing them as directed acyclic graphs of

layers. The fundamental basic blocks of which Caffe is composed are blobs

and layers. Blobs are four-dimensional arrays used to store data, either

batch of images, layers’ parameters, or any other attributes. Blobs are

allocated on demand and provide a unified interface that handles all the

synchronization operations in heterogeneous contexts, for example copying

the memory from the GPU to the CPU and vice-versa when it is needed.

The layers are the essence of a neural network, and they provide two oper-

ations: the forward pass and backward pass. The forward pass, also known

as the inference phase, takes a set of input blobs and produces a set of

output blobs, while the backward pass is the inverse operation in the op-

posite direction, typical of the training phase. Each layer provides either

a CPU and a GPU implementation of each operation. The Caffe Network

is a data structure in charge of keeping the layout of the CNN, calling the

forward pass on layers in order, and determining which implementation

has to be executed according to the global settings. The global settings

contain a switch attribute that indicates if it has to use the GPU or CPU

18 Chapter 2. Background and Related Work

implementation. Caffe is designed to separate the model definition from its

implementation. The model is defined using the Protocol Buffer language

[19] with which the user outlines the network by stating the layers and their

connections. The model is then loaded by the Caffe Network that instan-

tiates the network as presented in the configuration file. This decoupling

leads the user to fast prototyping the CNN models without caring too much

about the implementations. However, the separation between the model

definition and the implementation is not that strong as in TensorFlow.

From the definition of a layer to its implementation is just a function call,

and this enables a greater degree of inspection and control of what is exe-

cuting. This closeness allows the framework to achieve high performances,

especially using the GPU because the whole abstraction level is bare-metal

to the hardware platform.

2.3 Graphic Process Units - GPUs

Graphic Process Units (GPUs) are computing devices designed to accel-

erate the rendering of 3D scenes. Such devices embed in hardware the

graphics pipeline, which contains all the processing steps that turn a 3D

model into a pixel buffer to be displayed on a screen. The processing steps

within the graphics pipeline are extremely regular tasks on the various ba-

sic chunks of the input data [20]; this means that the same operation is

applied to every pixel or element, without involving complex control logic

typical of the general-purpose tasks. In other words, the behavior exposed

by the graphics pipeline tasks, such as pixel manipulation, lighting, cam-

era transformation, and many more, is highly data parallel. The operations

performed on every pixel can be performed in parallel threads, which fol-

low a regular structure, with low presence of branches and divergencies,

and without occurring in complex data-race conditions. All these condi-

tions bring to the creation of a dedicated type of devices; in fact GPUs

are designed to accelerate such tasks and to provide a many-core architec-

ture able to leveraging the data-parallel nature of the graphics pipeline,

achieving outstanding performances, which are not comparable with tradi-

tional CPUs [21]. In the latest years, GPUs have been started to be also

applied in traditional High Performance Computing (HPC) tasks that ex-

hibit a high level of data-parallelism, similar to the graphics pipeline. This

shift has brought GPUs to approach more general-purpose tasks, like many

operations performed in ML, such as the General Matrix Multiplications

2.3. Graphic Process Units - GPUs 19

(GEMM) [22], which is the basic block of many operators, like the convo-

lution or dense layer. GPUs have therefore evolved to the General Purpose

GPU (GPGPU) paradigm by integrating new many-core architectures that

would also suit tasks not only confined to graphics pipelines, such as ML

and CV. Indeed, the two ML frameworks presented in the previous sections,

TensorFlow and Caffe, are both accelerated through GPU.

In the next two sections, we will briefly describe the hardware archi-

tecture and the programming model that characterize the GPU, using the

NVIDIA nomenclature.

2.3.1 Hardware Architecture

The GPU integrates a many-core architecture organized in two levels [23];

it is composed of an array of Streaming Multiprocessors (SMs), each of

them, in its turn, is a multi-core processor, as shown in Figure 2.81. Each

SM is a Single Instruction Multiple Data (SIMD) multi-core processor that

leverages on the data-parallelism by executing multiple threads in parallel

that share the same instructions stream and operate on different data. As

shown in Figure 2.8 right side, the internal structure of a SM presents the

following units:

• Scheduler : this unit is in charge of performing the fetch and decode

operation, which loads the instruction for the stream.

• Register File: this unit contains the registers used by each thread.

The maximum number of registers per thread is 255, while the maxi-

mum number of 32-bit register per SM is 32K or 64K [21], depending

on the architecture.

• Execution Units : each SM is composed of hundreds of execution units

that execute in parallel the instruction loaded by the schedule unit.

There exists three types of execution unit:

– ALU : arithmetic logic unit that manages either 32-bit floating-

point and integer values, with support of 64-bit values.

– LD/ST : memory unit, which performs loads and stores instruc-

tions.
1It is worth mentioning that in this background chapter we will present simplified schemes

of the GPU architecture for the sake of brief overview. For more detailed and accurate schemes

we suggest the reader to refer to NVIDIA documentation.

20 Chapter 2. Background and Related Work

Figure 2.8: Simplified version of the GPU hardware architecture.

– SFU : special function unit that executes transcendental func-

tions, such as sine, cosine, square root, and others.

The overall workflow of the SM is the following. The scheduler unit

does the fetch and decode of each instruction; then, the elaborations re-

quired by the instruction are performed by N execution units in parallel

on N different chunks of data. The parallel execution of the N threads

is an enhanced version of the SIMD paradigm called Single Instruction

Multiple Thread (SIMT), in which each thread has its private context,

stored separately in the register file, but it shares the execution flow with

a set of other threads. The scheduler of each SM is not able to manage

an arbitrary number of parallel threads at a time. In fact, the scheduler

partitions the threads into groups of threads, called warps ; in the NVIDIA

architecture, the warp has a fixed size of 32 threads each, and then the

scheduler manages them accordingly. The SM is also able to manage the

task-parallelism because the scheduler unit can dispatch multiple instruc-

tion streams in time-multiplexing. This enables the interleaved execution

of multiple warps, maximizing the throughput, while hiding the latencies of

slow operations, such as memory loads/stores. The task-parallelism is also

addressed t the higher level of the GPU architecture (left side of Figure 2.8,

which can schedule different warps among the available SMs, achieving a

two-level task-parallelism that is similar to a general many-core system.

The GPU features a complex hierarchy of memories shown in Figure 2.9.

The memory hierarchy is directly exposed to the program, thus, it has to

be explicitly managed by the software engineer. Such a memory hierarchy

consists of the following levels:

2.3. Graphic Process Units - GPUs 21

Figure 2.9: GPU memory hierarchy.

Figure 2.10: Grid of thread blocks.

• Register File: the fastest and closest memory available directly in the

SM. It holds all the local variables allocated by each thread.

• Local Memory : it is another private memory for each threads placed

again in the SM. It contains the variables that do not fit the register

file.

• Shared Memory : the shared memory is a user-defined cache that is

used to let threads in the same SM to cooperate by sharing data and

achieving the maximum performances.

• Global Memory : this is the largest available memory in the GPU. Such

a large memory cannot be installed directly in the SM but it resides

off-chip. This involves a slower access to this memory compared to

the shared memory.

22 Chapter 2. Background and Related Work

2.3.2 Programming Model

The basic program unit that can be accelerated on the GPU is called kernel,

according to the NVIDIA CUDA framework [21]. The kernel is actually

a traditional function, that, differently from the classical CPU sequential

execution, is automatically parallelized with a large set of threads by fol-

lowing the SIMT paradigm. The threads executing a kernel are structured

into a matrix directly mapping the input/output data to be processed; each

thread is identified by an unique index, as shown in Figure 2.10. Moreover,

the overall grid may be partitioned in sub-parts called blocks. The threads’

block has the peculiarity to be executed on the same SM, potentially in

different warps; running on the same SM, therefore, the block’s threads

share the same shared memory to exchange data.

void v e c s c a l a r (f loat ∗ vec , f loat s c a l a r)

{
for (int i = 0 ; i < N; i++)

{
vec [i] = vec [i] ∗ s c a l a r ;

}
}

Sequential version.

k e r n e l void v e c s c a l a r g p u (f loat ∗ vec , f loat s c a l a r)

{
int i = ge t th r ead ind ex () ;

vec [i] = vec [i] ∗ s c a l a r ;

}
...

v e c s ca l a r gpu<<<N>>>(. . .) ;

GPU parallel version.

Figure 2.11: Linear scaling algorithm presented either in sequential and GPU parallel version.

Figure 2.11 presents two versions of the same algorithm, performing

a linear scaling of a vector of N floating-point numbers by means of a

constant. The traditional version targeting a CPU contains a loop that

2.4. Faults in Digital Systems 23

performs the scaling operation on each single element in the vector. Instead,

the GPU kernel function specifies only the body of the operation, i.e., the

scaling, not presenting the loop, but acting on a single position of the

vector.At runtime, this code will be concurrently executed by a number

N of threads specified at the time of the kernel invocation. Each thread

will therefore access on a single vector position, by using its identifier as

the index. The effect is that the loop in the sequential code is transformed

in a parallel execution of its various iterations, each one performed by a

different thread.

2.4 Faults in Digital Systems

In the context of safety-critical or mission-critical systems, as the Au-

tonomous Driving Systems (ADSs) considered as the working scenario in

this thesis, resilience and reliability are two fundamental properties that

such systems must comply with. As a consequence, it is fundamental to

study the occurrence of faults in the devices and the effects they may have.

A fault is defined as a defect in the circuit causing a deviation of the

system from its nominal behavior. In the classic literature [24], faults are

classified according to their duration and persistence into three classes:

• Permanent Faults : represent irreversible physical changes in the de-

vice.

• Intermittent Faults : are usually caused by hardware instability acti-

vated by the variation of the working conditions, such as chip tem-

perature or supply voltage. In general, they do not affect the system

permanently but usually signal that a permanent fault is likely to

happen soon.

• Transient Faults : temporary and reversible modifications generated

by environmental conditions such as radiations, electromagnetic in-

terference, power supply, and electrostatic discharge.

On the one hand, semiconductor manufacturing technology has signifi-

cantly reduced the risk of occurrence of permanent and intermittent faults.

On the other hand, technology scaling makes electronic circuits more sus-

ceptible to radiations, cross-talk or other noise sources because the noise

margins have been reduced due to voltage scaling, and high operating fre-

quencies. These phenomena can deposit unwanted charges in electronic

24 Chapter 2. Background and Related Work

devices, thus producing glitches in the circuits, commonly referred to as

soft errors. When soft errors occur, then it is possible to restore the device

by resetting it or rewriting the interesting part. In particular, they mainly

cause bit-flips in the memory cells, i.e., a bit value erroneously changes

from 0 to 1 or vice-versa, thus representing a corruption of the processed

data.

Historically, these phenomena have appeared in space-born electron-

ics due to cosmic rays in 1975 [25], and then such phenomena have also

been experienced at ground level in 1978 [26]. In both cases, the states of

some bits had randomly changed, although the memory was not damaged.

Among all the possible soft errors, this work focuses on Single Event Upsets

(SEUs) that is the commutation of a single memory bit due to a particle

strike.

As a matter of fact, transient faults nowadays represent one of the

most relevant failure phenomena in modern electronic devices [27]. When

considering ADSs and their need for safety-critical properties, this is a

particularly challenging issue due to the large employment of GPU devices

for accelerating computations. Indeed, modern GPU architectures have

been the result of the discussed aggressive technology progress. It is worth

mentioning, for example, the number of transistors in two top-class GPUs

in different years; the NVIDIA GTX Titan [28], released in 2013, has 7.08

billion of transistors and fabrication process of 28 nm. In contrast, NVIDIA

Titan RTX [29], released in 2019, has 18.6 billion of transistors and a

fabrication process of 12 nm. Thus, GPU-based system must be accurately

investigated in terms of susceptibility to soft errors and reliability. It is

worth mentioning that NVIDIA devotes a large effort for the qualification of

its products by means of radiation tests in order to allow their employment

in automotive systems [30, 31].

Similarly to a CPU-based system, when a soft error occurs in a GPU ac-

celerating an application, its final effect on the application can be classified

as follows:

• Masked, if the output of the application does not differ from a golden

reference. The soft error has not been activated since it may have

occurred in a dead portion of the data that is not used by the program,

leaving no trace of it.

• Application Timeout, if the application hangs forever without any

possible recovery action except the restart.

2.5. Related Work 25

• Application Crash, if the application suddenly terminates.

• Silent Data Corruptions (SDCs) [32], if the application ends success-

fully, yielding an incorrect output that differs from the golden refer-

ence.

Among these effects, masked effect can be neglected since they has no

effect. Moreover, application crash and timeout do not represent a major

hazard; indeed, they are detectable by the operating system that may apply

proper countermeasures such as restarting the application. On the other

hand, SDCs represent a critical issue since they can put the system into an

incorrect state without any signal. As a conclusion, this thesis will focus

on SDCs caused by SEUs within the GPU.

2.5 Related Work

In this second part of the chapter, we will review the literature related to

the reliability analysis applied to the considered working scenario. We will

first discuss fault injection tools for GPUs and later the methodologies for

automating the analysis of the effects of faults in CNNs executed on GPU.

2.5.1 Fault Injectors for GPU devices

The classical approach to perform reliability analysis in digital systems is

based on the fault injection. The strategy consists in injecting a fault in

the circuit and analyzing its effects by monitoring the subsequent activity

of the system. Fault injection may be performed by different means, by

emulating the fault in the real system or simulating its effects in a model

of the system.

Fault injectors have similar structures and follow common steps. The

injector needs first to discover where to inject faults, creating a list of

inject-able sites, which, depending on the extent, can be executable trace,

assembly instructions, or source-code lines. This phase is either called in-

strumentation phase or profiling phase. From that list, inject-able sites

are drawn to populate the injection list and mapped with the proper er-

ror value. This injection list can be either generated ahead of time and

then reused for multiple inputs or generated during the execution of the

campaign. The campaign is performed by selecting one record from the

injection list, executing the program up to the injection site, replacing the

26 Chapter 2. Background and Related Work

value, and then resuming the execution. The last optional part is the out-

put analysis, which is context-dependent, and several implementations are

possible. The injector can either return the raw output or can provide a

classification of the fault according to user-defined comparisons. We here

review the literature on fault injectors for GPUs; it is worth mentioning

that we will present two of the discussed tools, SASSIFI and TensorFI,

with much more details since they will represent the reference points for

the work in this thesis.

2.5.1.1 CUDA-GDB

CUDA-GDB [33] is the NVIDIA tool for debugging CUDA applications.

Although it has been designed for other purposes, it can be used to imple-

ment a fault injector. CUDA-GDB can freeze the execution of a program at

any point, let the developer choose the variable of interest, replace its value

to mimic the effect of the fault, and then resume the execution. Before ex-

ecuting the fault injections campaign, a profiling routine should retrieve

the list of kernels and all their local variables. From the list, a kernel is

randomly selected, and a breakpoint is set in its correspondence. The de-

bugger stops the execution at the breakpoint and retrieves the variable’s

value, chosen randomly. According to the developer-defined policy, the

value is replaced, and the execution continues. This technique is easy and

fast to implement, has a great extent, and is capable of targeting the RF

and the output of instructions. However, the involvement of a debugger

requires the program to be compiled with the debug symbols, and it slows

down the execution.

2.5.1.2 GPU-Qin

GPU-Qin [34] is a fault injector built using the CUDA-GDB framework

introduced above, from which inherits the pros and cons. What makes it

different from CUDA-GDB is the grouping phase, which is executed first of

all. The threads within a kernel do not always execute the exact amount of

instructions, causing divergence. This issue limits the GPU to express its

full potential and should be minimized. Under this assumption, it is rea-

sonable to group threads according to their divergence behavior. A thread

is selected from each group and is executed in a simulator, GPU-Sim [35],

which is able to extract a complete trace of execution. The profiling phase

takes the traces and tries to map the executable instructions with their

2.5. Related Work 27

corresponding source-code lines. The injector implements only the single

bitflip as the fault model and is able to target the outputs of instructions,

the Register File (RF), and the source operands of LD/ST operations, i.e.,

predicate instructions. The performances achieved are consistent with the

methodology implemented. The grouping phase results to be slow since

the debugger executes instructions step-by-step that degrades the perfor-

mances since the step-by-step execution has user response time.

2.5.1.3 SASSIFI

SASSIFI [36] is the fault injector built by NVIDIA for its GPUs. It is the

best tool so far targeting NVIDIA’s GPUs, following all the methodological

steps presented at the beginning of Section 2.5.1. It uses low-level instru-

mentation that classifies it as a micro-architectural fault injector. SASSIFI

employs SASSI [36], another NVIDIA’s tool, which can instrument GPU

assembly instructions (SASS). The instrumentation tool inserts callbacks

to the user-space function before or after assembly instruction, i.e., the

micro-architecture. These callbacks allow retrieving the executed kernel’s

names, the execution count, and the assembly instruction codes together

with their register or memory information. Instruction codes are grouped

into classes of instructions, i.e., floating-points, loads, or instructions that

write to the RF, to provide coarser inject-able sites.

SASSIFI proposes three modes of injections:

1. RF Mode: selects a random instruction, from any within a thread,

and inserts a fault into one of the allocated registers for that thread.

2. Instruction Output Value (IOV) Mode: selects a random instruction,

from the ones that write to the RF within a thread, and inserts a

fault in the destination register after its execution.

3. Instruction Output Address (IOA) Mode: selects a random instruc-

tion, from the ones that write to the RF or memory within a thread,

and inserts a fault in the destination register or memory address (ST)

before its execution.

The injection sites list is made up of the injection mode, the error model

(single or double bitflip, random or zero value), and the class of instructions

to target, as shown in Figure 2.12. In the injection step, one injection site is

selected from the list per application run and injected using SASSI. Then,

28 Chapter 2. Background and Related Work

Figure 2.12: Injection modes, error models and instruction classes in SASSIFI.

the application is monitored to classify the execution’s behavior, i.e., crash,

hangs, SDCs, or masked results.

SASSIFI is the architectural GPU fault injector with the broader scope.

It is one of the fastest and its low-level extent, leading it to become the first

choice when it comes to GPU fault injector. On the contrary, it suffers from

several limitations: to be instrumented by SASSI, the program is required

to be recompiled for each injection mode (RF, IOV, and IOA). Compilation

might be not so trivial on large projects and cannot be performed on closed-

source libraries, like cuBLAS, excluding them from being injected. The

injector is compatible up to GPUs of the Maxwell series (2014) and works

only with Ubuntu 14 and CUDA 7.

2.5.1.4 LLFI-GPU

LLFI-GPU [37] is a GPU fault injector based on the open-source CPU

LLFI fault injector [38]. It is a compiler-based fault injector that uses the

LLVM compiler [39] to instrument the program and injects faults. The

instrumentation phase is done by intercepting the calls of the CUDA com-

piler to LLVM. The number of kernel calls, threads per kernel, and the

instructions executed are extracted during this phase. Besides, the code

necessary to inject faults is added before being passed to LLVM. After the

LLVM compilation, the Intermediate Representation (IR) is returned to

the CUDA compiler to be converted into SASS assembly. The injection

phase is common to the one described in Section 2.5.1. LLFI-GPU is faster

than injectors based on debugging but suffers from the need to recompile

the code and a narrower extent than SASSIFI.

2.5. Related Work 29

2.5.1.5 TensorFI

TensorFI [40] is a high level error simulator for TensorFlow that evalu-

ates the resilience of ML applications. This simulator differs from others

because it is built to be high level, abstracting the whole computing archi-

tecture and not relying on any platform. The injection of ML applications

presents different challenges than traditional architectural injection on pure

CNNs. The operators used in CNNs are a subset of the ones available in an

ML framework, and a ML application can include abstract operators that

give no clue about their implementations or architectural details. Usually,

such applications run on heterogeneous systems, operators target the best

execution device available, such as GPUs, CPUs, or even TPUs. The het-

erogeneity makes it difficult to perform architectural fault injection because

too dependent on the implementation rather than functionality. TensorFI

moves the scope of the fault injection from the architectural level to a higher

level, and this enables the possibility to target a wider range of applications

that otherwise will be excluded from traditional fault injection because of

their implementation details or complexity. TensorFI has been designed to

meet three goals:

• Ease of Use and Compatibility : the injector should be as transparent

as possible to either the developer and TensorFlow.

• Portability : the injector should be attachable to TensorFlow without

requiring any recompilation or modification of the framework itself by

the user.

• Speed of Execution: the injector’s behavior should not interfere with

the normal execution of the TensorFlow’s graph. The operators should

be executed on the best available device, so campaigns should be rea-

sonably fast time.

The injector is built as a two-phase injector, and its granularity is the

operator of the TensorFlow’s graph. During the instrumentation phase, the

original graph is replicated operator-by-operator, which ensures the com-

patibility goal and provides sufficient automation that abstracts the graph

details to the user. The replication inserts the necessary code to inject faults

within the output of such an operator and the control logic to trigger the

injection. At the end of this phase, two graphs coexist, the original and

the faulty one, which will be used during the execution phase. The injector

30 Chapter 2. Background and Related Work

relies on a configuration file for the campaign targets and settings and also

serves the purpose of minimizing the source-code intervention performed

by the user. The fault models, which are customizable in the configuration

file, are random number, zero, single and, multiple bitflips. These fault

models are either applied to a scalar, an element of the output tensor, or

the whole output tensor. The fault modes are not the only parameters

required to set up the campaign. The user is also required to specify the

injection’s probability of any operator it is interested in injecting together

with the number of instances in the model of such an operator, necessary

for the control logic that triggers the injection. The execution phase se-

lects at each iteration an injection site, i.e., an operator, according to the

probabilities and instances defined in the configuration file, executes it in

the faulty graph, replaces its output with the fault model chosen and then

resume the execution, returning the model’s output.

The fault modes embedded in TensorFI represent a design flaw be-

cause these are valid within the architectural level while no validation is

provided that these are still accurate for the functional level. Our experi-

ments will show how architectural faults, such as bitflips, are propagated

to the functional level, i.e., ML operators’ output, contesting the TensorFI

methodology.

Other flaws have been detected in TensorFI from an implementation

point of view, and these mines the design goals on which is built. Certain

operators, mainly the arithmetic ones (multiplication, addition, argmin,

etc.), are replicated with their NumPy’s implementations. Although the

semantics of the operation is preserved, two implementations of the same

algorithm, especially when managing floating-point values, can lead to two

slightly different outputs that may represent an issue if the context demands

high accuracy. The set of operators that are replicated by TensorFi are a

subset of the ones available in TensorFlow and are hard-coded within the

tool, so using this injector for a real-world model may not be possible if

the operators are not inject-able by TensorFI. This does not represent a

remote possibility because popular operators, such as LeakyReLU or Batch

Normalization, are not available, and the tool is not able to bypass unknown

operators to allow at least to run the model. Indeed it will crash because

not recognizing such operators. The developer is required to modify the

tool’s source-code if wants to enable new operators because the tool is not

designed to be extended but only internally modified. These two limitations

compromise the compatibility, transparency, and portability claimed by the

2.5. Related Work 31

tool.

The execution phase is based on the environment set up by the in-

strumentation phase and heavily relies on records that are listed in the

configuration file. The tool to properly work requires the user to insert

in the configuration file the exact number of instances for each inject-able

operator, from the ones and only from the ones that are hard-coded in the

tool, as explained above. An incorrect number of instances leads to a wrong

injection policy that will fail to select the right injection site bringing two

possible situations. A sub-sampling error reduces the pool of inject-able op-

erators when the instances count is underestimated. A super-sampling error

wastes iterations, not injecting any operators when the instances count is

overestimated. Large models can have hundreds or thousands of operators,

and accurately counting them, considering only the operators that are man-

aged by TensorFI, is not so trivial if not automatized and may vanishing

the ease of use property.

The speed of execution will be quantitatively analyzed in a further chap-

ter. Still, TensorFI is faster than any architectural fault injection, even

SASSIFI. Its speed is due to the fact that it belongs to the application

domain. Operating at the application domain does not involve any of the

strict constraints of the architectural fault injection, mostly time and mem-

ory overheads. However, the performances are better than the GPU fault

injectors, but, as we will demonstrate, are still far from being optimal. The

replication of the graph is done in a way that each time an operator needs

to be executed, TensorFI opens a TensorFlow’s session. The opening of a

TensorFlow’s session is a non-negligible operation that has a cost, quan-

tified in time. The time overhead derived from opening the TensorFlow’s

session is even more emphasized if the operator is accelerated on GPU

because it also has to occur the memory transfer between CPU and GPU.

2.5.2 Methodologies for Reliability Analysis

The reliability analysis of ML applications accelerated on GPU is used to

identify the most brittle operators or GPU kernels to faults when such

applications are deployed in safety-critical systems. The typical analysis

tries to correlate the injection of an architectural fault at the i-th layer,

operator, or GPU kernel, with the output of the ML model. This analysis

leads to identifying the parts that, if corrupted, bring the output of the

model to deviate from its nominal behavior. The outcome of the reliability

analysis is usually a statistical model that associates each layer with its

32 Chapter 2. Background and Related Work

probability of deviating from the nominal behavior, or, if the accomplished

task allows it, with the probability of a custom error class. The reliability

analysis represents the first step that allows us to develop custom hardening

strategies that try to mitigate the effects of faults when such applications

are used in safety-critical systems.

In the next sub-sections, we will describe the current state-of-the-art

works on the reliability analysis of CNN accelerated through GPU.

2.5.2.1 Kernel and layer vulnerability factor to evaluate object de-

tection reliability in GPUs

The work in [41] proposes two new vulnerability factors to evaluate ob-

ject detection applications on GPUs. Kernel Vulnerability Factor (KVF)

and Layer Vulnerability Factor (LVF) indicate the probability of faults in

a kernel or layer to affect the output. These factors are used to define

a new hardening strategy that cleverly aims to replicate only the most

corruptible kernels or layers. Instead of replicating the whole program or

hardware components, only the most brittle and weak tiers can be repli-

cated, increasing the performances and reducing the waste. These metrics

are assessed for two algorithms: Histogram of Oriented Gradients (HOG)

for KVF [42] and You Only Look Once (YOLO) [43] for LVF. HOG is a

gradient-based algorithm that can detect objects by grouping adjacent spa-

tial regions, based on their gradients. The KFV for HOG is evaluated using

fault injections at both architectural and high level, using either NVIDIA

SASSIFI and CUDA-GDB. YOLO is a popular CNN for object detection

that achieves high accuracy and low inference time. The LVF is evaluated

using fault injections only at the architectural level, using NVIDIA SAS-

SIFI. The error model used in CUDA-GDB is the random value, whereas

NVIDIA SASSIFI uses the bitflip and two modes: RF and IOV. The IOV

campaign resulted in a higher impact than the RF campaign, but both are

overtaken by CUDA-GDB, meaning that the high level faults are likely to

produce an SDC. Based on the KVF and LVF analysis, a Double Module

Redundancy (DMR) strategy is used to replicate the sensitive kernels, and

layers achieving a high percentage of SDCs detected, up to 80%.

2.5. Related Work 33

2.5.2.2 Understanding Error Propagation in Deep Learning Neural

Network (DNN) Accelerators and Applications

The work in [44] studies the impact of faults in DNNs and proposes solu-

tions to mitigate their effects. It targets four popular convolutional neural

networks: ConvNet, AlexNet, CaffeNet, and NiN. These networks are exe-

cuted on a DNN simulator, Tiny-CNN [45], which has been appropriately

modified for fault injections. The work aims to examine the effects of faults

in DNNs, executed on DNN accelerators, and classifies the error propaga-

tion according to the network topologies, data types, layer positions, and

types. The analysis highlighted that corrupting the exponent bits of a

floating-point value are likely to induce an SDC, while not for the mantissa

and sign bits. However, the SDC probability is higher if the data type is

wider, i.e., 32 bits floating-point against 16 bits floating-point. Bitflips are

not symmetrical; a transition from 0 to 1 is likely to impact more than a

transition from 1 to 0. Finally, the work identifies in the Local Response

Layer (LRN), introduced in AlexNet [46], a valid helper that normalizing

values and can mitigate the effect of large deviations in the values’ domain.

2.5.2.3 Analyzing and Increasing the Reliability of Convolutional

Neural Networks on GPUs

The work in [47] evaluates the reliability of GPUs, executing three CNN

benchmarks: YOLO, Faster R-CNN, and ResNet, exposed to a real radia-

tion test through neutron beams. The GPUs under test belong to three ar-

chitectures: Kepler, Maxwell, and Pascal, both developed by NVIDIA. The

radiation test poses attention to the electronic implementation of GPUs:

FinFET devices (Pascal series) have an error rate that is one order of

magnitude lower than CMOS devices (Kepler and Maxwell series). The

radiation test also results in a higher percentage of crashes than SDCs,

which is the opposite of the software-based fault injections. The experi-

ments confirm the tendency of fault to spread across several threads within

the architecture of GPUs and that deeper networks (ResNet and Faster

R-CNN) are more likely to experience SDCs and crashes than YOLO. The

evidence that from 67% to 82% of GPU processing is spent on GEMM

has suggested adopting an algorithm-based fault tolerance (ABFT) strat-

egy for matrix multiplication [48] that can correct up to 87% of critical

errors. The second part of the work is focused on software-based fault in-

jections, through SASSIFI, targeting YOLO, which leads to a redesign of

34 Chapter 2. Background and Related Work

the max-pool layer that detects up to 89% of critical SDCs.

2.5.2.4 A Reliability Analysis of a Deep Neural Network

The work in [49] is a straightforward experiment that tests the reliability

of two CNNs, YOLO and LeNET, against faults. The experiment is based

on the open-source framework darknet [50] and uses a custom fault injector

that is built upon it. Unlike traditional GPU fault injector, this version

targets only layers’ weights by inserting a fault (bitflip) into a weights’ ele-

ment of a specific layer before its execution and restoring it before the next

run. The classification of the faulty output follows a traditional structure:

Masked if no differences are reported w.r.t. the golden referece; Safe if the

absolute difference is less than 5%; and Unsafe if the two previous condi-

tions are unmet. The results of the experiment confirm that exponent bits

are more sensitive to faults and cause critical behaviors.

2.5.2.5 Increasing the Efficiency and Efficacy of Selective-Hardening

for Parallel Applications

The work in [51] proposes a methodology to perform selective hardening

instead of performing traditional hardening techniques like DMR and Triple

Module Redundancy (TMR). The aim is to increase the reliability of parallel

codes while minimizing the cost and the overhead induced by replication.

The strategy focuses on the source-codes and ranks the code portions based

on the probability that corrupting them leads to impact the output of the

program (PVF) and on the memory overhead. The ratio between PVF and

the memory overhead allows us to find a good balance between efficiency

and efficacy since considering only PVF may introduce excessive overhead.

The rank helps to identify the most sensitive portions, and their replication

can protect up to 60% of the source-code costing only 3% of overhead.

2.5.2.6 Evaluation of Histogram of Oriented Gradients Soft Errors

Criticality for Automotive Applications

The work in [52] targets Pedestrian Detectors, implemented through a HOG

algorithm and Support Vector Machine (SVM) classifier, that runs on two

different GPU architectures. The output of this task is a set of bounding

boxes, a structure that contains the size and position of the identified object

within the image in pixel units. The paper proposes a classification of

such bounding boxes when objectives of fault injection campaign. When

2.5. Related Work 35

comparing a faulty output with a golden reference, the first parameter to

evaluate is if the number of bounding boxes differs. That difference can be

either 0, > 0, or < 0. The case where the difference is zero is a necessary

but not sufficient condition of masked execution. The second parameter is

the center of mass, which catches the presence of shifts along the x-axis and

y-axis among faulty outputs and the golden reference. The last parameters

are Precision and Recall that two common metrics to evaluate the accuracy

of a detector. The GPUs are under test for either a radiation test and

software-based fault injection, through a CUDA-GDB-style injector. Both

experiments agree on the conclusion: the algorithm is robust against SDCs,

whereas it experiences a lot of crashes, especially in the radiation test. The

software-based highlighted the code sections that should be hardened to

reduce the number of critical errors.

Before proceeding, let us sum up what has been mentioned above about

GPU fault injectors and the reliability methodologies. GPU fault injectors

are accurate and integrate fault models as closest as possible to the physical

event. However, they are costly because the architectural fault injection

is slow, and the application must respect all the constraints exhibited by

the fault injector. Therefore, it is interesting the error simulation because

it overcomes the constraints of the architectural fault injection, especially

the speed with which it is possible to obtain usable results, but the error

simulators need to employ validated error models; otherwise, the analysis

will be useless. Thereby arises the need for building error models built upon

the architectural fault injection, which are valid at the application layer,

resorting to the architectural fault injection once and then reiterating the

error models built.

For what concerns the reliability methodologies, they are always focused

on classifying the errors in terms of ML model’s output. This vision leads

to produce results that are difficult to port to other applications than the

one that has originated it because it is too dependent on the target. What

can really help the reliability analysis of safety-critical systems is to define

a reliability analysis and methodology focused on each operator of the

ML model, instead of the output. Achieving that, it is possible to port

such analysis also to other applications, gaining generality and abstraction,

which, if combined with error simulation, can open scenarios difficult to

reach using the traditional approaches.

In conclusion, in this chapter, we have presented the background on

36 Chapter 2. Background and Related Work

the target system we would like to consider in this work, consisting of the

CNN application running on a GPU. Then, we have analyzed the tools and

methodologies for the reliability analysis of this kind of system, discussing

benefits and limitations. Given these basic, in the next chapter, we will

present the goal of this thesis and then, in the rest of the work, the proposed

solution.

Chapter 3

Goals and Requirements

Based on the background discussed in the previous chapter, we here present

the working scenario addressed in this thesis aiming at focusing on the re-

liability analysis of Convolutional Neural Networks (CNNs) executed on

Graphic Process Units (GPUs). After that, we will discuss first the re-

quirements of this task, also commenting on the limitation of the current

practice in reliability analysis through fault/error injection we noticed dur-

ing the review of the literature. Finally, we will present the goals of this

work, and we define the Key Performance Indicators (KPIs) and baselines

we will use to evaluate the achieved results.

3.1 Working Scenario

In Chapter 1, we described a motivating example, in which a soft error was

presented in the perception module, leading to the wrong classification and

the wrong placement of an obstacle. The perception module is backed by

several CNNs running on GPU. The example described may be originated

by the following chain of events:

• There is a CNN, executed on a GPU, that processes an image.

• Suddenly, a Single Event Upset (SEU) manifest itself within the GPU

architecture, by flipping the state of a memory cell.

• The corrupted memory cell is currently used and consumed by the

CNN application, leading the output of the CNN to deviate from its

nominal behavior, i.e., misclassifying.

37

38 Chapter 3. Goals and Requirements

• In such a scenario, the SEU has turned into a Silent Data Corruption

(SDC).

• Finally, the SDC is propagated to the application level, posing the

system into a critical state.

CNNs and GPUs are, respectively, computing models and accelerator

devices that are not safe by design. CNNs are designed to achieve the

highest accuracy, and their models are not intrinsic robust [53, 54, 55],

although there exists a shared belief that they are. GPUs are designed for

performances, and only in recent years have been started to be deployed in

safety-critical systems, but they present some weaknesses for what concerns

the faults in their architectures, as reported in works [47, 56].

The duo CNN and GPU, when used in safety-critical systems, like au-

tonomous driving, require an accurate evaluation of its behavior when faults

occur, in particular SDCs. Therefore, in this thesis, we consider a CNN

application, executed on GPU, managing images. There is the quest, there-

fore, of new frameworks capable of evaluating the reliability of such a com-

bination in its application domain, providing a validated error model that

is representative of the GPU and is built upon the observed SDCs obtained

through GPU fault injection campaigns. The framework should anticipate

the reliability analysis already from the development stage with a faster

timing, compatible with the requirements necessary for the system, and

with lower complexity.

3.2 Constraints and Current Limitations

The reliability analysis of a complex safety-critical system is generally chal-

lenging because current methodologies and tools do not properly connect

the architecture/device level where faults are generally modeled and the

application one where the error propagates in the functionality. The main

reason is that the evaluation of the hardware device, through architectural

fault injection, poses severe and numerous constraints that make it diffi-

cult to port the results at the abstraction level of the application execution.

On the other hand, when simulating errors directly in the application, the

lack of error models makes the analysis not effective nor significant. In

the next sections, we discuss in detail these limitations of each of these

worlds, describing the implementation and methodological limitations of

3.2. Constraints and Current Limitations 39

either architecture-level fault injection and application-level error simula-

tion.

3.2.1 GPU Fault Injection

The fault injection is the current practice for the reliability assessment of

systems; it is supported by a strong background and is closed to the reality

of events. However, the fault injection in GPUs has few shortcomings,

mainly related to execution times and flexibility. In the next paragraphs,

we will detail each of these factors.

Recompilation The integration of many GPU fault injectors, either debugger-

or compiler-based, with their target applications requires the target appli-

cations to be re-compiled along with the GPU fault injector. In the case

of closed-source or legacy applications, such an integration cannot be per-

formed. Many external libraries that are widely used in Machine Learning

(ML) frameworks, such as cuDNN [22] or cuBLAS [57], are provided as

closed-source. These situations severely limit the applicability and integra-

bility of GPU fault injectors with their target applications.

Execution Times and Limits Execution time is the principal cost of the

architectural fault injection because the time required to perform a cam-

paign is higher due to the broader scope and so the broader injection space.

The techniques used to inject faults, either by instrumentation callbacks

or debugger stop-and-resume, are not negligible and executed for every

instruction to discriminate if the injection site has been reached or not.

For instance, in SASSIFI [58], the time overhead, quantified as the ratio

between the instrumented and clean execution time, can range from 1.02x

up to 166x. The increased execution time is problematic not so much for

the single execution but for the execution of the campaigns, in which the

same instance is executed hundreds or thousands of times. In this case,

the time overhead accumulated by each execution can become prohibitive,

and the duration of a campaign can last up to hours, days, or weeks. An-

other limitation is due to the slowness with which the GPU fault injectors

load and allocate the memory from the CPU to the GPU. Such a slowness

makes the architectural fault injection to be likely unfeasible with CNN

containing gigabytes of data, requiring to analyze each layer or operator in

an isolated environment.

40 Chapter 3. Goals and Requirements

Flexibility The traditional approach adopted in the analysis of CNNs,

executed on GPU, through fault injection campaigns, is to compare the

output of the network with a golden reference. This approach, even though

it is valid, lacks flexibility because we can only correlate the ith operator of

the CNN, in which it is inserted the fault, and the output of the network.

This lack of flexibility addresses the following issues:

• It is not possible to derive a typical behavior of the single operator

that is portable or reproducible to other networks.

• There exist errors that are manifested in the output of a specific

operator but are then absorbed by the other layers of the network,

not resulting in a deviation of the network’s output.

• It is not possible to force the generation of a specific error in the

output of the network because fault injectors are not so responsive.

All these reasons lead the results of the analysis of a CNN executed

on GPU to not be portable or reproducible to other networks because all

the results are linked to the output of the network, which changes from

network to network.

3.2.2 Error Simulation

As discussed in the literature review, the error simulation is an alternative

approach for the reliability analysis of safety-critical systems, generally

adopted in other research fields such as the ones on middle-wares and dis-

tributed systems. It aims at overcoming all the constraints imposed by

the architectural fault injection by directly injecting errors in the applica-

tion execution. The error simulation works at the application level with a

coarser granularity than the architectural fault injection. Thus, the errors

used in the error simulation need to be different from the well-known and

validated fault models used in the architectural fault injection, but still,

have to be representative of the behavior of the GPU when affected by a

fault.

Lack of Error Models The error simulation and the assessment of the

application can be disjoint from the architectural fault injection. The lit-

erature has exhaustively studied the architectural fault injection, so the

fault models used in that field are validated and representative of a phys-

ical event. Porting those fault models as-is (or some variants of them, as

3.3. Contributions 41

in [40]) at the application level is not legit. In fact, the effects of the faults

at the functional level on the application’s output or in some intermediate

step are different and more elaborate than a simple corruption of scalar

values, as generally occurs within the registers at the architecture level.

In our scenario, in order to replace the classical fault injection with the

error simulation, there is the quest of validated error models capable of

describing the effects of the faults in a GPU running a CNN application.

Such error models need to be defined in terms of corruptions of tensors,

being the intermediate data exchanged by the various operators of a CNN

in a more sophisticated way than the classical single or multiple scalar value

corruption, as in [40], since this strategy is not representative of the real

effects.

Lack of Available Tools The current state of availability of error sim-

ulator tools for CNNs executed on GPU is lacking. Well-designed errors

simulators for this context, capable of exploiting all the execution tech-

niques widely used in many architectural fault injector, do not exist yet.

TensorFI [40] is the only error simulator that is publicly available for this

context. However, its implementation is not well designed because it does

not take advantage of the ML framework, which is built upon and does not

include typical strategies used by traditional fault injectors to speedup the

execution of the campaigns, such as check-pointing or cache. The result is

a tool that finds it hard to be employed in real case scenarios because its

current state is closer to a prototype than a complete and usable product.

3.3 Contributions

The goal of this thesis is to provide a methodological framework for the reli-

ability assessment of CNNs, executed on GPU. The framework is composed

of two parts for the error modeling, and the error simulation, respectively,

and it is directly integrated into a popular ML framework.

The error modeling is a methodology that shifts the errors obtained

though GPU fault injection campaigns towards the application level. The

error modeling methodology operates on each CNN operator, characterizing

the errors that appear in its output through GPU fault injection campaigns.

This approach creates a correlation between the fault injected within the

operator and its output. The whole error modeling is performed once

because once extracted, the error models are representative of the GPU

42 Chapter 3. Goals and Requirements

behavior, and the architectural fault injection is no longer required. The

error simulation is a methodology that enables the reliability assessment

of CNNs in the application domain, by injecting errors in the output of

CNN’s operators.

The error simulation relies on the errors modeled according to the pro-

posed methodology, and integrates itself directly in the application, over-

coming all the issues derived from the architectural fault injection. The

error simulator is well-designed, completely integrated with the ML frame-

work, and employing techniques, like the check-pointing, to accelerate the

execution of the campaigns.

The advantage offered by this approach is the capability to inject errors

with the same accuracy of the architectural fault injection, and, at the

same time, with the higher flexibility and simplicity offered by the error

simulation, and with shorter execution times.

3.4 KPI and Baseline Approaches

The proposed and developed framework is evaluated against the following

KPIs, which we consider essential to overcomes the most critical issues

among the ones presented in Section 3.2:

• Accuracy : we aim that the errors, injected with the error simulator

and modelled according to our methodology, produce the same effects

in the output of the whole CNN network like the ones produced by the

architectural fault injection campaigns. The error models are repre-

sentative of the effects of the SEUs injected in the architecture of the

GPU. We have modeled these effects upon the single CNN operator’s

output, which represents the granularity achievable at the application

level. Therefore, the error models are validated by construction in the

case of the single operator’s output. Although that, we want to en-

sure that the effects in the output of the whole CNN network are the

same, or at least comparable.

• Execution Times : We aim to obtain for our error simulator execution

times that are lower than the architectural fault injection and other

error simulators when performing the same campaign. Given a fixed

number of faults or errors, depending on the context, to insert in a

CNN, the execution time is the elapsed time from the first injection to

the last one. We want that our error simulator is capable of inserting

3.4. KPI and Baseline Approaches 43

that number of errors faster than the baseline for the architectural

fault injection and error simulation.

Our framework is evaluated on that KPIs and compared to two base-

lines, which represent the state-of-the-art for the architectural fault injec-

tion and error simulation:

• SASSIFI [58] is the best available for what concerns the GPU fault

injection. Its fault models are validated, and its micro-architectural

scope makes it the most precise available tool.

• TensorFI [40] is one of the newest solutions in the field of error simula-

tion for CNNs. Its scope and approach make it the direct competitor

of our error simulator.

In this chapter, we have introduced the limitations of the current state-

of-the-art approach and presented the KPIs on which we evaluate our

framework. In the next chapter, we are going to introduce the method-

ological framework proposed in this thesis.

44 Chapter 3. Goals and Requirements

Chapter 4

The Proposed Framework for

Error Modeling and

Simulation

This chapter presents the main proposal of this thesis, which is the method-

ological framework for the reliability analysis of Convolutional Neural Net-

works (CNNs) applications executed on Graphic Process Units (GPUs)

based on error simulation. We first provide an overall view of the frame-

work by discussing the key ideas at the basis of it. Then, we will detail the

various phases of the designed methodology and, finally, we will present

the prototypical implementation. This implementation will be employed in

the next chapters in real-world cases.

4.1 An Overview of the Methodology

The discussion of the previous chapters has shown how the reliability analy-

sis of a CNN running on a GPU (and, more in general, of any software-based

system) relies on two different abstraction levels, the architecture level and

the application one. Indeed, fault models have been widely validated at

the architecture level, thus offering a realistic approach for their emulation.

On the other hand, the analysis of the fault effects has to be performed

at the application level since the interest is in understanding how the sys-

tem functionality deviates from the nominal one. The main limitation of

the current practice is, therefore, the fact that the two abstraction levels

are unconnected, thus limiting the capabilities of performing a reliability

analysis.

45

46
Chapter 4. The Proposed Framework for Error Modeling and

Simulation

CNN
Application

Error
Models

Error
Simulation

Architectural
Fault Injection

Error
Model

Definition

Application Level

Architecture Level

Operators
Selection

ML Framework

Error Modeling

Figure 4.1: Methodological Framework

The goal of the methodology we propose here is to connect these two

abstraction levels by means of a methodology for a systematic analysis of

the effects of the faults injected at the architecture level into the appli-

cation behavior by defining specific error models, which are validated by

design. These error models enable, therefore, an accurate and realistic er-

ror simulation directly on the CNN application under analysis. As a result,

this approach is able to overcome the lack of error simulation, thus offering

the possibility to the benefit of its higher flexibility in the analysis and

performance in terms of execution time than the classical fault injection.

The first step in this error modeling and simulation is, therefore, the

identification of the basic element in the CNN model to consequently define

the error models as the corruptions of its nominal behavior. As discussed

in Section 2.2, all the Machine Learning (ML) frameworks express the ML

models, and consequently, the CNNs models, in the form of a data-flow

graph. Each data-flow graph is populated by many CNN operators, each

one performing an elaboration on a set of input tensors (multidimensional

matrices of data), and producing one or more output tensors. Therefore, we

identify the CNN operator as the basic element we will consider in the error

simulation. Then, due to the fact that we aim at focusing on Silent Data

Corruptions (SDCs) as discussed in Section 3.1, we define error models

based on the corruptions of the output tensor of the CNN operators.

Figure 4.1 presents the overall methodological framework we propose in

this work. The framework is horizontally divided into two parts according

to the two considered abstraction levels, the bottom part devoted to the

error modeling while the top part to the error simulation. The error

4.1. An Overview of the Methodology 47

modeling aims at defining the error models for each CNN operator used

in CNN applications. This part is composed of the following activities:

• Operator selection. The input of this part of the framework is the

list of all operators available in a ML framework. Being the list of

all ML operators quite large, and each operator parametric, the first

step is devoted to the identification of the minimal representative set

of operators and their corresponding parametrization.

• Architectural fault injection. An extensive fault injection cam-

paign with a GPU fault injector is performed on each CNN operator

of the set identified in the first step. Then, being interested in con-

sidering SDCs, we collected the raw results for all the runs producing

in a corrupted output tensor.

• Error model definition. Finally, the raw results of the fault in-

jection campaigns performed on each CNN operator are analyzed to

extract recurrent corruption patters and consequently defining the

corresponding error models. The final output is a repository of error

models.

The output of the error modeling is a repository of error models. Such

a repository is then used in the top part of the methodological framework

by an error simulator implemented on the top of a widely-used design

framework for ML applications and directly acting on the CNN model.

Within the discussed methodological framework, the error modeling is

the most onerous and time-consuming activity. However, this step is exe-

cuted once to set up the repository. On the other hand, the error simulation

can be performed countless times using the models in the repository and

can target any possible CNN design. The error modeling is the transi-

tioning step that allows the two levels to communicate because it takes as

input the faulty tensors obtained through the architectural fault injection

and returns the application-level error model. The models derived using

this methodology are specific of the operator under analysis and not of the

network they belong to. This peculiarity enables us to reproduce the same

error model for a CNN operator to different instances of it even belonging

to different networks, assuming the input data distribution as normalized

or at least comparable. Therefore, this framework allows us to overcome

the limits presented in the state-of-the-art works on the reliability analysis

of CNNs executed on GPU since their methodologies are difficult to be

applied in a different network from where it is applied.

48
Chapter 4. The Proposed Framework for Error Modeling and

Simulation

In the next sections, we will describe in detail each step of the frame-

work.

4.2 Operators Selection

The fault injection is not performed to carpet upon each operator of the

CNN. Indeed, we select the smallest subset of operators that is meaningful

for error modeling under the same conditions. Among the instances of the

same operator type, the selection criterion is to privilege the instance that

manages the smallest data in terms of shape. The reasons why we prefer

the instance that manages the smallest data are:

• Lower loading and execution times of the operator’s instance, which

facilitate and reduce the execution time of the whole fault injection

campaign.

• Smaller outputs to analyze because the error modeling phase works

better by generalizing towards bigger tensors than the vice-versa.

The instances of the same operator’s type but with parameters, for exam-

ple, a convolution with 3× 3 kernels and a convolution with 5× 5 kernels,

should be considered as two different operator types because they may

generate two different error models.

After having identified the set of operator’s instances to inject, they

should be isolated and restricted to a confined environment. It is necessary

to extract for each operator’s instance its inputs, outputs, and parameters

in order to be executed in the environment. Therefore, such an environment

is considered as a stub, composed of the following steps:

• Preamble: loads of the inputs, outputs, and parameters of the opera-

tor’s instance.

• Execution: the run of the CNN operator’s instance.

• Epilogue: computes the difference between the computed output ten-

sor and the golden output loaded before.

4.3 Architectural Fault Injection

The architectural fault injection aims to characterize the output of the

CNN operators to faults inserted in the GPU kernels that make up their

4.3. Architectural Fault Injection 49

implementation. This phase presents all the steps to follow to be able to

execute a fault injection campaign over a CNN operator.

4.3.1 Campaign Sizing

Sizing the fault injection campaigns is crucial to obtain relevant results

for the error modeling. An underestimate number of faults can lead to

results that are not statistically relevant or accurate; for instance, with a

small fault list, some error may be not generated, thus causing an imprecise

error model characterization. On the opposite, an overestimated number

of faults may not provide any additional information and results in a waste

of time and resources. In our context, the inject-able sites are the GPU

assembly instructions, which make part of the GPU kernels of the operator’s

implementation. The number of inject-able instructions, although it is

finite, can be enormous, up to be considered infinitely large, if considered

with multiple inputs.

Therefore, we adopted an ad-hoc approach for properly defined the cam-

paign size, taking into account explicitly the architecture of the GPU. The

data and thread parallelism are two mechanisms that the user is aware

of. Each thread does not manage the whole available memory, but only

a small fraction of it and executes the same instructions of other threads.

The reasonable number of GPU assembly instructions to consider is not

the whole number of instructions executed by all the threads but only the

number of instructions executed by one thread, assuming the computation

equal and uniform for any thread, according to the Single Instruction Mul-

tiple Thread (SIMT) paradigm. Depending on the flexibility of the GPU

fault injector, the assembly instructions considered for the campaign can

be restricted to a subclass or family of instructions, for example, consid-

ering only the floating-point instructions or only the memory instructions

(LD/ST). This flexibility allows defining different campaign sizes for each

of the family of instructions. Given the following parameters:

1. T : number of threads.

2. M : global memory allocated for the kernel.

3. N : number of instructions either all or of one family of instructions.

The estimated campaign size n provided by the heuristic evaluation is:

n =
M

T
×N

50
Chapter 4. The Proposed Framework for Error Modeling and

Simulation

This estimation, however, can be adjusted and rounded up to the upper

thousand according to the user’s preferences.

4.3.2 Fault List Definition

Once the operators have been selected and the campaigns are sized, all that

remains is to execute those campaigns. To execute a campaign, the GPU

fault injector needs to generate the fault or injection list. This action is

nearly always dependant on the chosen tool and varies with it. However,

the generation of the fault list requires the chosen campaign size and the

fault model that we want to inject. In all the methodology, we consider the

fault model the single bitflip for two reasons:

1. It is the most used and validates model for the representation of a par-

ticle strike. This work [59] shows how little is the difference between

a single and double bitflip, so we stick with the single bitflip.

2. Other fault models, like the random or zero models, have not been

considered because the input distribution of each operator does not

require such models. The ranges of values are confined, and they do

not span all the possible values within the floating-point domain. The

ranges are controlled either by the normalization layers, which help

to have a zero mean and unitary variance tensor, and the activation

functions, which have narrow co-domains.

The high number of values that are present within an input tensor

combined with the SIMT architecture of the GPU induces a high degree

of randomness that, given the high symmetry of threads within the GPU,

justifies the usage of few datasets of inputs and outputs for each execution

of the operators.

4.3.3 Campaign Execution

After having sized the campaigns, extracted the datasets, and generated

the fault lists, the campaigns for the various CNN operators are executed

one at a time, and all the faulty tensors are collected and stored for the

subsequent analysis.

4.4. Error Model Definition 51

4.4 Error Model Definition

The definition of the error models is the core of the proposed methodology.

It represents the way of characterizing the errors, derived from the architec-

tural fault injection, towards the application-level by classifying them with

the parameters that the application is able to understand. The basic unit

of any CNN is the tensor, so every result to be managed and interpretable

by the CNN must be expressed in the form of a tensor. We aim to derive

classes of errors that are common to all the instances of the same type. Be-

fore jumping to the formal specification of the errors’ classes is necessary

to state formally what we consider an error, which definition will hold in

whole work. Given two floating-point values v and v′, which represent the

golden value and the output value respectively, then v′ is considered as an

error if the following inequality holds:

|v − v′| ≥ ε ε > 0

The term ε is a positive small number that defines when two floating-

point are assumed to be equal. This threshold is context-sensitive, so the

correct value depends on the context and the accuracy required, always

keeping in mind that the floating-point arithmetic is not associative, as

presented in the well-known document in [60], thus different implemen-

tations may lead to two results that are slightly different. In this work,

we have considered being reasonable to choose a ε equal to 10−3 for the

CNN application, justified by the high regularity of the data because all

the tensors are normalized, i.e., they exhibit zero mean and unitary vari-

ance. Given the definition of what an error is, in its turn, we define a faulty

tensor or output, a tensor that has at least one error with respect to the

golden reference.

The classification of the faulty tensors is performed according to three

parameters: the cardinality, the spatial pattern, and the domains of cor-

rupted values. These three parameters allow to classify each faulty ten-

sor and to build a repository of errors that are representative of the ones

observed in the architectural fault injection but apply to any operator’s

instance of the same type, providing enough abstraction and generaliza-

tion to apply them also to tensors that do not have the same shape as the

observed ones. More important, these three parameters can be described

in the form of an algorithm so the models are representable as three func-

tions that applied to a tensor, it generates a new tensor according to the

52
Chapter 4. The Proposed Framework for Error Modeling and

Simulation

observed errors.

4.4.1 Cardinalities

The first parameter by which the faulty tensors are analyzed is the car-

dinality. The cardinality is an intuitive concept that counts the number

of errors that are present in the faulty tensor with respect to the golden

reference, according to the definition of error provided at the beginning of

this section. From analyzing all the faulty tensors of a CNN’s operator is

possible to build a histogram in which each cardinality is assigned its prob-

ability considering the total number of cases in which that cardinality has

appeared compared to the total number of faulty outputs. The probability

map, represented as a histogram, is the first evidence of the differences

between the architectural fault injection and the functional error simula-

tion. The single fault, i.e., the single bitflip, at the architectural level, can

result in one or more than one error in the output of the tensor. Finally,

the probability map of cardinalities allows a higher degree of flexibility of

the system evaluation because the analysis can be focused on a specific

cardinality or a subset of them since it is a statistical model.

Algorithm 1 presents the steps to extract the cardinality given a faulty

tensor and the golden tensor. The first step is to compute the absolute

difference between the faulty tensor and the golden tensor, obtaining a

difference tensor. Recalling the definition of error given at the beginning

of this chapter, each element of the difference tensor is checked if greater

than the threshold, obtaining a boolean equality tensor. If the comparison

holds, then it represents an error, and its location in the equality tensor is

set to True, otherwise False. The cardinality represents the number of True

elements, which is obtainable by summing up the equality tensor. Then

each cardinality will feed into a dictionary that represents the histogram

for the operator.

4.4.2 Domains of Corrupted Values

The analysis of the domains of corrupted values aims to determine, in a

qualitative way, how the faulty value deviates from the golden value in

terms of magnitude. This classification is necessary because the error sim-

ulation must be able to reproduce the same error, so knowing statistically

which kind of domains have assumed the errors w.r.t. the golden refer-

ence is essential. The classification we proposed is either based on specific

4.4. Error Model Definition 53

Algorithm 1: Extraction of the cardinality of a faulty tensor.

Input: faulty tensor and golden tensor.

Output: Cardinality of the faulty tensor.

1 begin

2 differences tensor = ||golden tensor - faulty tensor||;
3 equality tensor = differences tensor > ε;

4 return equality tensor.sum()

5 end

values, such as NaN or zero values, and a range of values represents some

domains. The domains are presented in the following list, each associated

with an explanation of its origin:

1. NaN : the faulty value has become a NaN value, while the correspond-

ing golden value is not. The NaN value may originate as a consequence

of an illegal computation in computing units of the GPU.

2. Zero: the faulty value is zero, while the corresponding golden value is

not. A zero value is likely to appear when a write instruction is not

executed due to the bitflip, by changing the address or the register of

destination for the example.

3. Bitflip: the faulty value differs by only one bit with respect to the

golden value. This is the case when the bitflip injected by the GPU

fault injector is presented as-is in the output of the operator. In this

situation, the bitflip has not been absorbed by other computations

and is likely to be injected just before a write operation close to the

end of the kernel.

4. [−1; 1]\{0}: the difference of the golden value and faulty value ranges

between the closed interval −1 and 1, zero excluded because it will

not be an error otherwise. This class models a fault that is presented

in the significand bits of an IEEE 754 floating-point value. It is a

qualitative class that is justified by the high regularity of the data in

the CNN.

5. Random: this is the case when the faulty value does not lie in the

previous domains. Thus, the error that will be generated is a random

bit-string of the same size of the targeted data-type.

54
Chapter 4. The Proposed Framework for Error Modeling and

Simulation

Algorithm 2: Domains classification of errors for a CNN’s operator.

1 begin

2 nan count = 0;

3 zero count = 0;

4 bitflip count = 0;

5 between interval count = 0;

6 random count = 0;

7 foreach faulty tensor ∈ faulty tensors do

8 error locations = find errors(golden tensor, faulty tensor);

9 foreach error location ∈ error locations do

10 f value = faulty tensor[error location];

11 g value = golden tensor[error location];

12 if is nan(f value) and not is nan(g value) then

13 nan count++;

14 else if is zero(f value) and not is zero(g value) then

15 zero count++;

16 else if is bitflip(f value, g value) then

17 bitflip count++;

18 else

19 if -1 ≤ g value - f value ≤ 1 then

20 between interval count++;

21 else

22 random count++;

23 end if

24 end if

25 end foreach

26 end foreach

27 return all the counters

28 end

Algorithm 2 presents the classification described above and is applied to

all the faulty outputs of a CNN’s operator. The order of the comparisons

is not casual but enforces the correct classification of the bitflip and the

closed interval [−1; 1]. Basically, it is tested if the faulty value belongs to

one of the domains, and if so, the corresponding counter is increased. In the

end, each counter is divided by the total number of faulty values analyzed,

obtaining a probability map for each domain.

4.4. Error Model Definition 55

4.4.3 Spatial Patterns

The last parameter that is part of our error modeling methodology is the

spatial pattern, which models the spatial locations of the indexes of the

errors within the faulty tensors. The locations of errors are not random, but

they follow patterns that are highly dependant on the computing device,

the GPU, and the implementation of CNN’s operators. In the previous two

parameters, the cardinality and the domains of corrupted values, can be

considered as independent from the shape of the analyzed tensor and can be

reproduced to other shaped tensors without efforts. This is not valid for the

spatial patterns because they are dependant on the shape of the analyzed

tensor. Therefore, it is necessary to spend the effort to classify the spatial

patterns according to a model that is reproducible and applicable also to

tensors with different shapes from the observed ones. Another difference

with the respect to the previous two parameters is that it is not possible

to derive a classification for the spatial patterns in advance without having

manually inspected the faulty tensors at first.

The indexes of the errors’ locations within the tensor can be:

• linear : if we consider the tensor as a uni-dimensional vector and an

index is the offset from the first element.

• multi-dimensional : if we consider the index as a triple belonging to

the space featuremaps× height× width of the tensor.

The choice of using one or another representation for the indexes is ir-

relevant, and we will use the one that better simply the discussion. The

indexes of the errors in the first instance are absolute positions, but to be

applied to other shaped tensors, we need to find another representation

that enables the indexes to be freed from their absolute locations. Starting

from the absolute locations of the errors, we define two additional vectors

that will help the classification:

• Offset Vector : the indexes are sorted, and the first index is subtracted

to all the others, obtaining a vector that is relative to the first index.

• Stride Vector : contains the strides between consecutive pairs of items

of the offset vector.

Both representations will be used to represent different patterns.

To better clarify this methodology, let us introduce a practice exam-

ple of classification, which helps to illustrate each step. Suppose of hav-

ing experienced five errors, which locations expressed as linear indexes are

56
Chapter 4. The Proposed Framework for Error Modeling and

Simulation

Figure 4.2: Offsets vector.

Figure 4.3: Strides vector.

[21, 24, 26, 30, 33]. The offsets vector is [0, 3, 5, 9, 12], and the strides vector

is [3, 2, 4, 3], as shown in Figure 4.2 and Figure 4.3. Suppose of wanting to

determine if that pattern is a row pattern, i.e., all the errors are located on

the same row, and the width of the tensor’s feature map is 4. That pattern

is not a row pattern for the tensor under analysis because there are more

errors than elements in a row. However, when classifying, it is important to

generalize the pattern, and under the assumption of analyzing the smallest

possible tensor, that pattern is a row pattern for a tensor of width 8. To

catch this abstraction is possible to analyze the strides vector and for the

row pattern discriminate if all the strides are less than the tensor’s width.

This condition holds even for the case of width 4, and under this logic, it

will be classified as a row pattern.

4.5 Error Simulation

The error simulation is the evaluation of the reliability of the system by

inserting the errors in the output of the CNN’s operators through a tool

called error simulator. The error simulation is entirely done at the appli-

cation level, as shown in Figure 4.1, and uses an approach based on the

saboteur that split into two sections the execution of the CNN to modify

the output of a CNN operator and resuming the execution. Using the error

models repository, build according to the previous methodology, the error

simulation is not linked with the device level. Thus it is possible to test

the system even without the physical GPU because the error models embed

its behavior against faults. This feature is essential to properly evaluate

the system already from the early stage of the development, even in sim-

4.5. Error Simulation 57

((1)) ((2)) ((3))

Figure 4.4: Intersection of faults set and errors set.

ulated environments that are not equipped with the full hardware, when

it is tested for correctness. To ensure that the early assessment is possi-

ble, the error simulation should comply with the following implementation

constraints:

• Overheads : the error simulator must not introduce excessive over-

heads, either related to time and memory. An excessive time over-

head is not compatible with real-time systems with strict temporal

deadlines, at the risk of testing a distorted system not more repre-

sentative of the original one. Excessive memory usage by the error

simulator may lead to the saturation of the available memory, risking

compromising the nominal operativity of the systems.

• Transparency : the error simulator should be as transparent as possi-

ble, either respect to the user and the ML framework used to define

the CNN. This constraint requires the error simulator to be easy to

integrate with the system without demanding for the upheaval of it

and not to change the behavior of the ML framework.

The error models used by the error simulator need to be trusted and

validated, i.e., they need to be representative of the GPU behavior against

faults and as accurate as of the observed faulty tensors. Otherwise, the

whole error simulation is useless because we are testing the system with

errors that have no foundation. In the following list, we will describe three

situations that represent different possibilities of overlap between the set of

architectural faults and the error models. The set of the architectural faults

represents all the errors observed in the fault injections campaigns. On the

other hand, the error models set represents all the errors that our modeling

is capable of reproducing in the target CNN, through the error simulation.

The intersection between these two sets identifies all the errors that have

been experienced during the architectural fault injection campaigns and

are reproducible by the error simulator. The left uncovered part, i.e., the

portion of the architectural faults set that is not covered by the error models

58
Chapter 4. The Proposed Framework for Error Modeling and

Simulation

set, represents all the errors observed during the fault injection campaigns

that are not reproducible by the error models, due to its limited expression

capabilities. The right uncovered part, i.e., the portion of the error models

set that is not covered by the architectural faults set, represents all the

errors that are generated by the error models but have not been observed

in the architectural faults. This latter case is more dangerous than the

previous one because we have modeled errors that have no foundation in

reality, risk of compromising the reliability and robustness of our error

models.

• Figure 4.4(1): in this situation, the two sets completely overlap, rep-

resenting the best achievable. This means that the error models have

the same expressive power of the architectural fault injection.

• Figure 4.4(2): in this situation, the two sets are overlapped for the

majority but not completely in both sets. This means that the error

models are able to catch the majority of the architectural faults, but

not all. On the other side, the modeling introduces some artifacts, i.e.,

errors that have not been seen in the architectural fault campaigns,

which are not be representative of the GPU behaviors. This situation

is almost unavoidable because the modeling cannot be 100% accurate,

but we should try to minimize the uncovered parts.

• Figure 4.4(3): in this situation, the two sets are little overlapped.

This represents the worst situation possible because the modeling is

able to catch a minority of architectural faults and introduces many

errors that are not linked to the GPU. This case should be avoided as

much as possible, and a reliability analysis performed using this error

model is almost useless because we are testing for a problem that is

not reflected in reality.

In the next section, we will introduce the implementation of the frame-

work here presented, specifying which tools have been used and which ones

have been created in-house for this purpose.

4.6 Framework Implementation

We have designed and implemented a prototype of the proposed method-

ological framework by using both state-of-the-art tools and in-house ones.

4.6. Framework Implementation 59

CNN
Model

Error
Simulation

Architectural
Fault Injection

Error Model
Definition

Application Level

Architecture Level

Operators Selection

TensorFlow

Error Modeling

Operators
Extractor

Caffe
SASSIFI

Experiment
Instance

Domains
Cardinalities

Spatial Patterns
Analyzers

Figure 4.5: Instantiation of the methodological flow.

The structure of the designed software infrastructure is presented in Fig-

ure 4.5. The scheme mimics the one in Figure 4.1, in which each box has

been expanded with the tools used or implemented to achieve that func-

tionality. We have employed TensorFlow for modeling CNNs since it is one

of the most popular frameworks for designing and training framework for

this kind of ML applications. Therefore, we have implemented an in-house

error simulator tool, which is integrated into the TensorFlow framework, to

perform the application-level reliability analysis based on the repository of

available error models. Indeed, as we will show later in Chapter 6, we dis-

carded the publicly-available state-of-the-art tool, i.e., TensorFI [40], due

to its limitations both in terms of setup effort and execution time required

for the error injection campaigns. Finally, it is worth mentioning that, even

if we selected TensorFlow, the proposed idea at the basis of the method-

ological framework and the error simulation is compliant with various other

ML frameworks, such as Caffe or PyTorch. Future work is devoted to the

porting of the error simulator in such frameworks. The lower part of the

framework, which consists of the architectural fault injection on GPUs and

the definition of the error models, has been designed around the state-

of-the-art tool for NVIDIA devices that is SASSIFI [58]. Unfortunately,

TensorFlow is not compliant with SASSIFI due to different requirements

in terms of versions of the CUDA library. SASSIFI requires CUDA 7.0,

while TensorFlow requires at least the subsequent CUDA 8.0. Therefore,

the Caffe framework [6] has been employed as the replacement of Tensor-

60
Chapter 4. The Proposed Framework for Error Modeling and

Simulation

Flow for the architectural fault injection and the next error modeling phase.

Caffe is designed as bare to metal, directly exposing the GPU implemen-

tation of operators. The proposed approach is technically sound because

there exists a one-to-one mapping between CNN’s operators in TensorFlow

and Caffe. Unless small implementation details, the operators’ function-

alities are preserved between these two ML frameworks, and it has been

tested, for each operator, to obtain the same output under the same clean

execution. The framework employs a custom Python script, named “Op-

erators Extractor”, to extract all the CNN’s operators from TensorFlow,

with which it is possible to select the relative Caffe operators by manual

inspecting both ML frameworks. This mapping represents the connection

between the application and the architectural levels. Besides extracting

the operators’ list, the ”Operators Extractor” script can also retrieve an

instance of the desired operator in terms of input, output, and parame-

ter tensors. Once the operators are extracted, and the mapping between

TensorFlow and Caffe is set, we create a C++ script, called “Experiment

Instance” that embeds the GPU implementation of the operator’s instance,

exposed by the Caffe framework. The “Experiment Instance” represents

the unit that will be executed numerous times by SASSIFI, as specified by

the campaign size. The campaign sizing is a semi-supervised task because

we rely on an automatic functionality offered by SASSIFI that counts all

the assembly instructions executed by an operator, with which we man-

ually choose the best size. After having performed all the fault injection

campaigns with SASSIFI, the framework uses three Python scripts to build

the error models repository, which scripts classify the faulty tensors. One

script for each parameter of the error model, i.e., cardinalities, domains of

corrupted values, and spatial patterns, that extract, classify and model the

errors. The experimental setup and the execution of the architecture-level

fault injection campaign for executing the error modeling methodology are

provided in the next section, while the results and the analysis of the out-

comes are discussed later.

Here in this chapter, we have presented the general methodology, which

is behind the framework. All the details for what concerns the error mod-

eling and the error simulator will be detailed in the next two chapters.

Chapter 5

Error Modeling

The methodological framework presented in the previous chapter is here

implemented and demonstrated. In this chapter, we will discuss the appli-

cation of the error modeling applied for the single operators of a Convolu-

tional Neural Network (CNN), presenting a detailed implementation about

each step of the methodological framework. Then, the discussion on the

design and implementation of the error simulator is presented in the next

chapter.

5.1 Operators Selection

The error modeling methodology has been applied only on a subset of

all the possible CNN operators, which is a well-formed and representative

subset, for the sake of demonstration and to validate the methodology;

nonetheless, the experiments here performed can also be repeated for the

remaining operators.

The CNN’s operators that we consider for our experiments are taken

from a TensorFlow implementation of the YOLO V3 CNN [43, 61, 62].

YOLO V3 is the case study used in the validation and evaluation part

of this work. Table 5.1 lists the operator types extracted from YOLO

V3, and the considered instances, in terms of input and output sizes. The

instances have been chosen following the considerations made in Section 4.2.

We privileged and chosen the smallest instance for each operator’s type.

This choice has been motivated by the fact that managing smaller data

implies lower execution times, enabling us to perform the architectural

fault injection in reasonable times. Smaller data translates into producing

smaller objects to analyze. The whole error modeling methodology is easier

61

62 Chapter 5. Error Modeling

Table 5.1: Set of operators that are considered in this framework. The table shows the

operator’s type, the sizes of the input and the outputs, and some optionally note.

Operator Input Output Note

Convolution 1 512× 13× 13 256× 13× 13
Kernel size = 1 and

strides = 1

Convolution 2 128× 52× 52 256× 52× 52
Kernel size = 3 and

strides = 1

Convolution 3 256× 52× 52 512× 26× 26
Kernel size = 3 and

strides = 2

Add 1024× 13× 13 1024× 13× 13

Batch Norm 256× 13× 13 256× 13× 13

Biasadd 256× 13× 13 256× 13× 13

Div 1× 10647 1× 10647

Exp 1× 8112× 2 1× 8112× 2

Leaky ReLU 256× 26× 26 256× 26× 26 Negative slope = 0.1

Mul 1× 8112× 2 1× 8112× 2

Sigmoid 1× 2028× 80 1× 2028× 80

to be applied to a small tensor and then generalized towards a bigger one

than vice-versa. Because of these reasons and under the same conditions,

there is no excuse to choose a tensor different from the smallest one. The

“Operators Extractor” script retrieves the list of operators from TensorFlow

from which we selected the smallest instance for each operator, and in

Table 5.1 are reported all the selected instances for this framework.

It is worth noting that we choose three instances of the convolutional

operator because they perform three slightly different operations, although

they both implement the same functionality, as described in Section 2.1.

Therefore, from the analysis point of view, their differences can lead to

different error models for the three instances.

• Convolution 1 uses 1× 1 kernels. A convolution operation with 1× 1

kernels is no longer a neighbor operation because each element is mul-

tiplied by the kernel without involving any neighbor. The operation

degenerates to an operation that scales each feature map by a factor.

The implementation of such an operation is still carried out through

General Matrix Multiplications (GEMM) but does not require any

rearrangement of the data because no neighbors are involved as in

5.1. Operators Selection 63

Table 5.2: Mapping of TensorFlow and Caffe operators.

Operator TensorFlow Caffe

Convolution 1 tf.nn.conv2d conv layer.hpp

Convolution 2 tf.nn.conv2d conv layer.hpp

Convolution 3 tf.nn.conv2d conv layer.hpp

Add tf.add caffe gpu add

Batch Norm tf.nn.batch normalization
batch norm layer.hpp

scale layer.hpp

Biasadd tf.nn.bias add bias layer.hpp

Div tf.div scale layer.hpp

Exp tf.math.exp caffe gpu exp

Leaky ReLU tf.nn.leaky relu rely layer.hpp

Mul tf.mul scale layer.hpp

Sigmoid tf.math.sigmoid sigmoid layer.hpp

the other cases.

• Convolution 2 is a traditional convolution with a kernel of size 3. The

implementation of this operation requires that each element and its

neighbors are placed into column vectors before executing the GEMM.

This displacement involves a custom Graphic Process Unit (GPU)

kernel that creates the column vectors. So, the operation is composed

of two kernels instead of one, as in the previous case.

• Convolution 3 is like the Convolution 2 but has the strides parameter

set to 2. As mentioned in Section 2.1, a strides parameter set to

2 lets the operation also perform dimensionality reduction, halving

the output space because not all the elements are considered in the

computation.

From the list of operators, we manually build the one-to-one mapping

between Caffe and TensorFlow, displayed in Table 5.2 since, as discussed,

we are using two different Machine Learning (ML) frameworks in the top-

most and bottom-most parts of the methodological framework.

For each operator’s instance, it is necessary to define and extract the in-

put, output, and parameter tensors from the TensorFlow model, using the

“Operators Extractor” script. The output represents the golden reference,

64 Chapter 5. Error Modeling

and it has a double purpose. It is used first to align the Caffe implemen-

tation of the operator with TensorFlow to ensure and guarantee to obtain

the same result. The golden reference will also be used by the “Experiment

Instance” script to provide a first coarse classification during the fault injec-

tion campaigns. All those tensors are saved as NumPy archives (.npy) [63],

which is the standard binary file format to store NumPy arrays on disk.

It is worth mentioning that we extracted for each operator two different

input/output datasets, while the parameters remain constant over the ex-

periments. The choice of extracting only two different datasets is motivated

by the fact that each tensor contains thousand of values, which are valid

inputs for the GPU kernels. This as well as the regularity of data induced

by normalization, which narrows the domain of the tensor’s elements, and

the extremely symmetric architecture of the GPU and the task performed,

allows exploring the injection space extensively.

The “Experiment Instance” is the C++ script that allows us to ex-

ecute the CNN operator’s instance, following the guidelines provided in

Section 4.2. The structure of each script is regular and described as fol-

lows:

• Preamble: during this step, the script loads the input, output, and

parameter tensors required by the instance. The script uses the open-

source Cnpy library [64] to load a NumPy archive into a C++ vector.

After loading the tensors, it setup and allocates the memory required

by Caffe.

• Execution: this step is different for each instance, and here it is created

the Caffe layer with the parameters load in the previous phase. The

layer is then executed on the GPU.

• Epilogue: the last step provides a first coarse classification of the out-

put tensor. If the output tensor, computed by Caffe, differs w.r.t. the

golden reference of at least one tensor’s element, then such an output

tensor is saved on disk as a NumPy archive, otherwise is discarded.

5.2 Architectural Fault Injection

We here discuss in detail how the tools in Figure 4.5 have been configured,

and the architecture-level fault injection campaign has been performed.

As presented in Section 2.5.1.3, SASSIFI offers three modes of injection:

Register File (RF), Instruction Output Value (IOV), and Instruction Out-

5.2. Architectural Fault Injection 65

Table 5.3: Combinations of injection modes, instructions’ classes and fault model used in

the fault injection campaigns.

Injection Mode Instructions’ Classes Fault Model

IOV GPR, STORE OP, PR OP Single Bitflip

IOA GPR, STORE OP Single Bitflip

RF GPR Single Bitflip

put Address (IOA). Each CNN operator’s instance has been tested with

every mode. Therefore, we are able to target the register file, the output

register of instructions, and the memory addresses.

Such a scope is sufficient enough to derive a comprehensive view of the

underlying architecture and the behavior of each CNN’s operator. SASSIFI

provides quite fine control to choose the instructions to target for each

injection mode, so it is possible to specify for each injection mode which

class of instructions to target. The classes of instructions are described in

the following list:

1. General Purpose Register (GPR): this class contains all the instruc-

tions that write to any register, such as integer, floating-point, move,

and load instructions.

2. Store Operation (STORE OP): this class contains all the store in-

structions, either global and shared.

3. Predicate Operation (PR OP): this class contains all the instructions

that write to the predicate registers, which are used for branching and

control flow.

Table 5.3 presents the partition of injection modes, instructions’ classes,

and fault models, which are used for the campaigns.

As anticipated in Section 5.2, the campaign sizing is a semi-supervised

task. SASSIFI provides a functionality that counts the assembly instruc-

tions contained in an executable program. Thus, using that function on

each “Experiment Instance”, we retrieve the instruction counts for each

instance. That counters are manually inspected, and knowing how many

memory manages each instance (input and output tensors), we derive the

campaign size using the heuristic presented in Section 4.3. Table 5.4 and

Table 5.5 show for each injection mode and instruction class the number

of faults injected.

66 Chapter 5. Error Modeling

After having estimated the size of each campaign, SASSIFI provides

another script that generates the fault list, given the injection mode, the

instruction class, and the number of faults to insert (campaign size). Such

a list is generated ahead-of-time, and then SASSIFI consumes it and the

“Experiment Instance”, performing the GPU fault injection campaign.

5.3 Error Model Definition

The outcomes produced by the fault injection campaigns have been sub-

jected to three automatic scripts for error modeling implementing the ap-

proach presented in Section 4.4, and results are here discussed and com-

mented.

5.3.1 Cardinalities

Cardinality is an index we defined to represent how many times the same

error count has appeared in all the faulty tensor within an operator’s ex-

periment. This information defines in a probabilistic way how many values

the error simulator has to corrupt in the output tensor to mimic the effects

of faults corrupting the execution of an operator on GPU.

Bar charts in Figure 5.1 present for each considered operator the prob-

ability distributions for the various cardinalities extracted from the exper-

iments’ outcomes. From a coarse analysis of the cardinalities obtained is

possible to highlight two clusters of cardinalities. The first set presents

only low cardinalities, i.e., the maximum number of errors within the same

tensor is 4. By contrary, the second set contains both low and high cardinal-

ities, i.e., ranging from 1 error up to tens of errors within the same tensor.

The operators that exhibit low cardinalities, which are Add, Biasadd, Div,

Exp, Leaky ReLU, Mul, and Sigmoid, are implemented as “linear kernels”.

Linear kernels are straightforward GPU kernels, in which each thread pro-

cesses one and only one element without involving any shared memory

or cooperation between threads or blocks. The insertion of a fault in a

thread of a “linear kernel” is rare to propagate to multiple elements, so it

is reasonable to observe such cardinalities.

The operators that exhibit both low and high cardinalities are the three

Convolutions and the Batch Norm. Such operators are composed of sev-

eral kernels and heavily rely on GEMM, which benefits from the use of

shared memory and threads cooperation. The corruption of one of those

5.3. Error Model Definition 67

threads can propagate to other threads and result in many errors in the

output. However, the probabilities of high cardinalities are far lower than

the low cardinalities. The number of instructions that have effects on other

threads, i.e., the shared instructions, is lower than the number of instruc-

tions confined to the current thread. Such a condition is then reflected in

their probability distributions.

Two other cardinalities pop up on the radar and are linked to the ar-

chitecture of the GPU:

• 16 : it represents the block size used in Caffe, so the corruption of a

block of threads leads to 16 errors in the output. Notice that also

15 is a cardinality tied to the block size because one location can be

corrupted twice within the same thread block.

• 32 : it represents the size of the warp on NVIDIA GPUs. So, 32 errors

correspond to the corruption of an entire warp. The same reason for

15 applies to 31 because the same location can be corrupted twice.

68 Chapter 5. Error Modeling

Table 5.4: Campaigns sizes for the IOV mode. Values are expressed in thousands.

Operator
IOV

GPR PR OP STORE OP

Convolution 1 20K 6K 2K

Convolution 2 10K 2K 4K

Convolution 3 20K 2K 2K

Add 4K 2K 1K

Batch Norm 30K 10K 4K

Biasadd 4K 2K 1K

Div 4K 2K 1K

Exp 4K 2K 1K

Leaky ReLU 4K 2K 1K

Mul 4K 2K 1K

Sigmoid 4K 2K 1K

Partial Sums 108K 34K 19K

Total 161K

Table 5.5: Campaigns sizes for the IOV and RF mode. Values are expressed in thousands.

Operator
IOA RF

GPR STORE OP GPR

Convolution 1 13K 2K 13K

Convolution 2 10K 2K 10K

Convolution 3 20K 2K 20K

Add 4K 1K 4K

Batch Norm 20K 4K 20K

Biasadd 4K 1K 4K

Div 4K 1K 4K

Exp 4K 1K 4K

Leaky ReLU 4K 1K 4K

Mul 4K 1K 4K

Sigmoid 4K 1K 4K

Partial Sums 91K 17K 91K

Total 108K 91K

5.3. Error Model Definition 69

1 2 3

10

30

50

70

90

P
ro

b
a

b
il
it

ie
s

%

90.2744

9.268
0.4576

((1)) Add
1 2 3

10

30

50

70

90

P
ro

b
a

b
il
it

ie
s

%

90.0922

9.8943
< 1‰

((2)) Biasadd
1 2 4

10

30

50

70

90

P
ro

b
a

b
il
it

ie
s

%

84.9077

15.0697

< 1‰

((3)) Div
1 2

10

30

50

70

90

P
ro

b
a

b
il
it

ie
s

%

91.9057

8.0943

((4)) Exp

1 2 3

10

30

50

70

90

P
ro

b
a

b
il
it

ie
s

%

84.4787

15.4826

< 1‰

((5)) Leaky ReLU
1 2

10

30

50

70

90

P
ro

b
a

b
il
it

ie
s

%

88.4316

11.5684

((6)) Mul
1 11-14 15 16 17-30 2-10 31 32-46

10

30

50

P
ro

b
a

b
il
it

ie
s

%

42.6817

11.1141
5.8455

10.22458.2671
14.0346

7.2008

0.6317

((7)) Convolution 1

1 2

10

30

50

70

90

P
ro

b
a

b
il
it

ie
s

%

89.7486

10.2514

((8)) Mul
1 2-8 9-12 13-14 15 16 17-30 31-47 48-64 68-97 98-115 116-128

10

30

50

P
ro

b
a

b
il
it

ie
s

%

40.947

9.443 7.243 6.688 5.378
8.335 8.341

4.641
7.688

0.144 0.32 0.775

((9)) Convolution 2

1 2-13 14-15 16 17-28 29-40 41-52 53-64 75-102 103-118 119-684

10

30

50

P
ro

b
a

b
il
it

ie
s

%

50.545

5.021
8.993

16.274

1.294

9.008

0.318

7.382

< 1‰ < 1‰ 1.003

((10)) Convolution 3

1 2 3-9 10-15 16 17-27 28-46 53-135 141-166 167-232 256-338 413-2704

10

30

50

70

90

P
ro

b
a

b
il
it

ie
s

%

77.759

7.917
0.558 1.602

10.144
0.198 0.79 < 1‰ < 1‰ 0.839 < 1‰ < 1‰

((11)) Batch Norm

Figure 5.1: Cardinalities of all the CNN’s operators. For the sake of brevity, some cardinalities have been grouped into ranges

for a better visualization.

70 Chapter 5. Error Modeling

5.3.2 Domains of Corrupted Values

In a second step, we have analyzed how each single corrupted value
varies from the golden counterpart, i.e., we have analyzed the domains
of the corrupted values. Different from the cardinalities, it is not possi-
ble to link the results obtained to a specific architectural detail of the
GPU; moreover such analysis only determined five coarse grained ranges
of values in which each corrupted value falls into. Figure 5.2 shows the
domains for each CNN’s operator, showing only the percentage of oc-
currence of each case.

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

< 1‰

62.869

9.0713

25.123

2.8906

((1)) Add

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

5.5999

< 1‰

< 1‰

69.0187

25.308

((2)) Batch Norm

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

0.5253

< 1‰

8.6607

67.0356

23.7784

((3)) Biasadd

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

0.246

0.4129

< 1‰

97.986

1.346

((4)) Convolution 1

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

0.4374

0.2966

< 1‰

97.3695

1.8264

((5)) Convolution 2

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

0.183

0.2963

< 1‰

97.1023

2.4046

((6)) Convolution 3

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

1.7776

0.8986

39.8515

0.9767

56.4956

((7)) Div

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

0.6885

47.4824

14.7181

23.569

13.542

((8)) Exp

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

< 1‰

0.1002

10.2906

82.6929

6.8996

((9)) Leaky ReLU

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

0.6199

0.9609

16.3515

1.7048

80.3629

((10)) Mul

0 20 40 60 80 100

Probabilities %

NaN

Zero

Bitflip

[−1; 1]

Random

0.5748

7.6709

0.1783

40.0198

51.5559

((11)) Sigmoid

Figure 5.2: Domains of all the CNN’s operators. Here are presented the results only in relative terms for the sake of brevity.

5.3. Error Model Definition 71

5.3.3 Spatial Patterns

Finally, we have analyzed the spatial patters of the errors, i.e., how the
corrupted values are spatially distributed in the output tensor. The pre-
vious two parameters, the cardinalities and domains of corrupted values,
do not require specific knowledge of the context for their formulations.
Indeed, it has been possible to define the classes for both parameters in
advance. This condition does not hold for the spatial patterns because the
classes of locations of the corrupted values are explicitly dependant on the
GPU architecture and the CNN. Thus, it is not possible to formulate in
advance the classes for the spatial patterns, and their formulation has been
a semi-supervised task.

Convolution 1 has been the first operator to be considered for this anal-
ysis. The faulty tensors of the Convolution 1 operator have been manually
inspected to derive the spatial pattern classification. Then, the classifica-
tion has been automatized and converted into an algorithmic procedure,
which has been applied and validated to the faulty tensors of all the other
operators. We can state that the classification derived by inspecting the
faulty tensors of the Convolution 1 operator and then automatically ap-
plied to all the other tensors is sound and accurate because we are able to
recognize the 98.83% of spatial patterns, leaving only the 1.17% of them
unclassified.

The analysis of spatial patterns must be executed explicitly resorting to
the knowledge of tensor, by classifying the patterns in the three-dimensional
space instead of considering the linearized version. Such an abstraction
degree allows classifying the patterns in the context of CNN, directly in-
terpretable and manageable by the application level. The corrupted values
are also located according to patterns that are linked to the GPU and its
parallel architecture. The first coarse classification of the patterns concerns
if the locations are placed on the same feature map or spread among several
feature maps. In the next sections, we will detail each case presenting then
a further fine classification.

5.3.3.1 Same Feature Map

This class of patterns considers only those locations that lie within the same
feature map. This specific condition lets the problem be reconsidered and
analyzed in terms of matrices instead of the full tensor because the tensor is
just composed of several matrices stacked along a common axis. Therefore,
the locations are classified according to the matrices notations, looking for

72 Chapter 5. Error Modeling

matching the locations of the corrupted values to specific anchors, such as
rows and columns. From our experimental results, it has been noted that
only faulty tensors with low cardinalities (≤ 16) present the errors that lie
within the same feature map. Two factors motivate this observation. De-
spite the convolution and the batch normalization, all the other operators
are implemented as linear kernels, which involves no cooperation among
threads nor usage of the shared memory, so faults tend to propagate to one
or two elements mostly. Complex operators like the convolution or batch
normalization highly resort to GEMM, which is implemented using shared
memory and threads cooperation to achieve high performances. The inser-
tion of a fault within a code portion that manages shared data is likely to
propagate to other threads belonging to the same block, according to the
GPU programming model presented in Section 2.3. Hence, it is possible,
according to the event presented above, that a set of elements in number
near to the GPU block size result corrupted, lying within the same feature
map.

Spatial patterns in the same feature map are presented in the following
list:

• Single Point : this is the simplest case, in which only one value is
corrupted, as shown in Figure 5.3. It has been proved and checked
that there no exist a location for the single point that has a probability
of appearing higher than the uniform probability. For this reason, this
class will generate one corrupted value in a random location within
the tensor.

• Same Row : the locations are placed on the same row of the feature
map, as shown in Figure 5.4(1). Despite the trivial case, this pattern
applies also for the cases shown in Figure 5.4(2) and Figure 5.4(3).
In the first case the row is not complete, whereas the second case
presents a scatter pattern but in both cases the errors lies within
the same row. For the last case, shown in Figure 5.4(4), apparently
seems that the locations are not on the same row, which is true for
the example in figure. However, that pattern has to be generalized to
any possible shaped tensor, so for a possible larger tensor that pattern
is on the same row. This pattern happens when all the strides within
the strides vector are strictly less then the width of the tensor.

• Same Block : the locations are spaced in multiples of the GPU block
size.

5.3. Error Model Definition 73

• Unclassified : it is not possible to classify the locations according to
the previous three classes, so they are assumed to be random within
the feature map.

The “Same Block” and “Unclassified” classes are not shown in figures
because it is not possible to represent them in a meaningful way.

5.3.3.2 Multiple Feature Maps

In contrast to the previous class, the locations are spread across multiple
feature maps. This class applies only to “complex” operators, such as the
three convolutions and the batch normalization, and only to those faulty
tensors that present high cardinalities (≥ 16). The intuitive explanation
of these locations is always related to the shared memory and threads
cooperation but also to the control of the GPU. If a fault targets a warp
or its execution, then it is likely to observe a high number of errors in the
output. Despite the previous case, it is necessary to take full advantage of
the notion of the tensor.

Spatial patterns in multiple feature map are presented in the following
list:

• Bullet Wake: the same location within a feature map is corrupted in
multiple feature maps, as shown in Figure 5.5(1) and 5.5(2). To detect
this behavior, it is checked if the locations are spaced in multiples of
the feature map size, i.e., H × width. The feature maps involved can
be sequential, or they can have any scatter pattern within a starting
and ending feature map.

• Same Block : similar to the case for the same feature maps, this case
is when locations are spaced in multiples of the GPU block size and
they are spread across multiple feature maps.

• Shatter Glass : this class is an evolution of the bullet wake in which
there is a common shared location among all the feature maps,but
then in one or more feature maps, the errors can spread over the rows
or columns following the patterns presented for the same feature map
case classification, including the common location. The examples of
such a class are shown in Figure 5.6(1), 5.6(2), and 5.6(3).

• Quasi-Shatter Glass : this class is a relaxation of the previous one in
which some times the shared location cannot be present in all the

74 Chapter 5. Error Modeling

feature maps, but the row or column pattern is present, as shown in
Figure 5.7(1), 5.7(2), and 5.7(3).

• Unclassified : it is not possible to classify the errors’ locations accord-
ing to the previous three classes, so they are assumed to be random
within the whole tensor.

The “Same Block” and “Unclassified” classes are not shown in figures
because it is not possible to represent them in a meaningful way.

The probabilities of occurrence of the various spatial patterns for each
considered CNN operator are reported in Table 5.6. It is worth mention-
ing that the type and the probability of occurrence of the various spatial
patterns are highly dependent on the algorithm of the analyzed operator.
For this reason for linear operators, such as Add or Biasadd, the single
point failure has a very high probability of occurrence; on the opposite,
for the more complex Convolution 1 operator, other spatial patterns are
more frequent. It is not excluded that for other operators we have not
analyzed here, different new patterns can be observed; for instance, in case
of operators having a column-based organization of the data matrices, a
Same Column spatial pattern is observed in place of the Same Row one.
Indeed, as a final note, such a pattern has already been noticed for the
considered operators, but with such a low frequency (close to zero) that we
have decided not to report it as a new pattern but in the Unclassified one.

5.3.3.3 Generality and Parametrization

The outcome of the error modeling phase is a set of probability distribu-
tions, one per each operator and parameter. The first two parameters, the
cardinalities and the domains of corrupted values, are fixed, which means
the model is the same for all the operators, to which are assigned differ-
ent probabilities according to the operator type. These parameters already
provide a sufficient degree of generality and completeness. The spatial
patterns have a more complex model and representation than the other
two parameters. The spatial patterns are different for each operator but
also for each cardinality within the same operator. This happens because
the spatial patterns and cardinalities are related to each other. Thus, the
structure of the spatial pattern model is indexed by cardinalities, and, for
each cardinality, we have a different probability distribution following the
classification provided at the beginning of this section. The probability
distribution is not sufficient to represent a spatial pattern because we also
need to store the pattern itself in terms of tensor’s indexes or locations

5.3. Error Model Definition 75

T
ab

le
5.

6:
D

is
tr

ib
u

ti
on

of
th

e
va

ri
ou

s
sp

at
ia

l
p

at
te

rn
s

on
ea

ch
co

n
si

d
er

ed
op

er
at

or
.

S
a
m

e
F
e
a
tu

re
M

a
p

M
u

lt
ip

le
F
e
a
tu

re
M

a
p

s

O
p

e
ra

to
r

S
in

g
le

P
o
in

t

S
a
m

e

R
o
w

S
a
m

e

B
lo

ck
U

n
c
la

s.
B

u
ll
e
t

W
a
k
e

S
a
m

e

B
lo

ck

S
h

a
tt

e
r

G
la

ss

Q
u

a
si

S
h

a
tt

e
r

G
la

ss

U
n

c
la

s.

A
d

d
0.

90
3

0
.0

1
8

0.
0

0.
00

8
0.

0
0.

05
9

0.
0

0.
0

0.
01

2

B
a
tc

h
N

o
rm

0.
77

8
0
.0

2
5

0.
01

0.
00

1
0.

12
7

0.
02

8
0.

01
1

0.
0

0.
02

B
ia

sa
d

d
0.

90
1

0
.0

1
2

0.
0

0.
01

0.
00

2
0.

03
7

0.
0

0.
0

0.
03

8

C
o
n
vo

lu
ti

on
1

0.
37

6
0
.2

1
7

0.
0

0.
0

0.
22

6
0.

0
0.

17
4

0.
00

4
0.

00
3

C
o
n
vo

lu
ti

on
2

0.
40

9
0
.1

3
1

0.
00

1
0.

0
0.

32
9

0.
01

2
0.

10
3

0.
01

2
0.

00
3

C
o
n
vo

lu
ti

on
3

0.
50

5
0
.1

2
4

0.
00

1
0.

0
0.

25
4

0.
0

0.
11

0.
00

5
0.

00
1

D
iv

0.
84

9
0
.0

6
7

0.
08

4
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0

E
x
p

0.
91

9
0
.0

0
5

0.
0

0.
0

0.
0

0.
04

3
0.

0
0.

0
0.

03
3

L
ea

k
y

R
eL

U
0.

84
5

0
.0

1
5

0.
00

8
0.

03
0.

0
0.

04
8

0.
0

0.
0

0.
05

4

M
u

l
0.

88
4

0
.0

0
3

0.
0

0.
0

0.
0

0.
04

0.
0

0.
0

0.
07

3

S
ig

m
oi

d
0.

89
7

0
.0

1
3

0.
0

0.
0

0.
0

0.
05

0.
0

0.
0

0.
04

76 Chapter 5. Error Modeling

Table 5.7: Table of parameters for each spatial pattern class.

Class Unit Parameters

Same Row offset vector
maximum distance in lin-

ear index

Same Column
vector of relative column

indexes

maximum relative column

index

Bullet Wake
vector of relative feature

map indexes

maximum of the relative

feature map indexes

Shatter Glass

list of pairs feature map

indexes and linear indexes

w.r.t. the shared element

within each feature map

of different feature

maps involved, maximum

of the relative feature

maps indexes, minimum

and maximum linear in-

dexes within the feature

map w.r.t. the shared ele-

ment

Quasi Shatter Glass the same as Shatter Glass the same as Shatter Glass

Same Block
vector of relative indexes

of the GPU block size

maximum relative index

of the GPU block size.

Random offset vector –

to be reproducible. Hence, alongside the probability distribution, we store
the pattern using the parametrization provided in Table 5.7. Therefore,
a spatial pattern is identified either by a probability distribution and a
numerical representation that contains the information referred to as the
assigned pattern class.

5.4 Definition of the Error Models

The analysis of the fault injection campaigns, according to the three pa-
rameters, has resulted in a repository of probability distributions, one per
each parameter and operator. Such a repository represents our error model
with which we define an error algorithmically. Given the output tensor, the
operator’s type that has originated it, and the error model, we can generate
an error for that tensor using a saboteur approach. The generation of an
error follows the following steps in order:

1. Draw of the cardinality from the cardinalities probability distribution

5.4. Definition of the Error Models 77

of the given operator.

2. Draw of the corrupted values, as many as the drawn cardinality, from
the distribution of the domains of the given operator.

3. Draw and generation of the spatial pattern according to the drawn
cardinality and the given operator.

Following these three steps, we can corrupt the output of any CNN operator
through an algorithm and, therefore, being able to inject errors.

In this chapter, we have first presented the overall structure of the pro-
posed methodological framework for the error simulation in CNNs executed
on GPU devices. Then, we have focused the discussion on the execution of
the error modeling methodology. The result is a repository of error models
for the various operators of a CNN. In the next chapter, we will continue
the discussion on the implementation of the methodological framework pre-
senting the designed and prototyped error simulator where the defined error
models repository has been integrated into.

An analytic view of all the results presented in this chapter, regarding
the error models, is available in the GitHub repository of this thesis [65].
There you can find either absolute and probabilistic results for each oper-
ator and for each model’s parameter, which are not particularly amenable
to be displayed in their entirety.

78 Chapter 5. Error Modeling

Figure 5.3: Spatial Patterns - Same Feature Map - Single Point

((1)) ((2)) ((3)) ((4))

Figure 5.4: Spatial Patterns - Same Feature Map - Same Row

((1)) ((2))

Figure 5.5: Spatial Patterns - Multiple Feature Maps - Bullet Wake

((1)) ((2)) ((3))

Figure 5.6: Spatial Patterns - Multiple Feature Maps - Shatter Glass

((1)) ((2)) ((3))

Figure 5.7: Spatial Patterns - Multiple Feature Maps - Quasi-Shatter Glass

Chapter 6

Error Simulation

In the previous chapter, we presented the error modeling and the instan-
tiation of the methodological framework neglecting the error simulation,
which is here designed and implemented. The first section presents the
overall structure of the error simulator, whose phases will be individually
detailed in the next sections. Finally, we compare our error simulator tool
to the literature, highlighting the strengths and weaknesses.

6.1 Overall Structure

The error simulator is a tool developed in Python that allows us to inject
errors, according to the models extracted in the previous chapter, in the
output of any Convolutional Neural Network (CNN)’s operator, within the
TensorFlow framework. This tool falls in the category of functional error
simulators because it works at the application level, ignoring the underlying
architecture, in which the CNN’s operators are executed. Nevertheless, the
workflow of this simulator does not differ from the traditional organization

Instrumentation InjectionError List
Generation

Error Simulator

CNN

Error Model

Figure 6.1: The phases of which the error simulator is composed of.

79

80 Chapter 6. Error Simulation

of an architecture-level fault injector, as discussed presented in Section 2.5.1
for the Graphic Process Units (GPUs). The error simulator is composed of
three main phases, as shown in Figure 6.1, introduced in the following list:

• Instrumentation: given the CNN model, expressed as the TensorFlow
data-flow graph, the error simulator replicates it and inserts the in-
strumentation logic that is needed to extract all the operators that
are inject-able.

– Input: the CNN data-flow graph and TensorFlow’s session.

– Output: the list of inject-able operators and replicated data-flow
graph.

• Error List Generation: knowing the inject-able operators and the
campaign size, the error simulator generates the list of errors, which
form the campaign.

– Input: the list of inject-able operators, the error model, the
campaign size, and the injection policy.

– Output: the error list.

• Injection: the error simulator consumes the error list. This phase can
be reiterated many times because it is possible to inject several inputs
using the same error list.

– Input: the error list, the CNN input.

– Output: the list of output tensors after the campaign execution.

6.2 Instrumentation Phase

The core of the instrumentation phase is to extract the inject-able sites, i.e.,
the graph’s operators, in which it is possible to inject the errors. This whole
phase is automatic and does not require any user intervention, easing the
complexity, especially in the case of large networks. The extraction of the
inject-able sites needs to take into account the following aspects concerning
the TensorFlow data-flow graph:

• The data-flow graph is append-only, which means we can append
operators to the graph, but we cannot modify the already existing
relationships among the operators, i.e., the edges, nor remove them.
Therefore, any modifications of the actual data-flow graph require the
building of a replica of it.

6.2. Instrumentation Phase 81

• The data-flow graph may contain operators that are not relevant to
the inference phase, such as training optimizer or save/restore op-
erations. Therefore, the inject-able operators are the ones who are
activated and triggered during the inference phase, discarding the
ones who are not executed during this phase.

The extraction of the inject-able operators, according to the definition
above, cannot be done using the original data-flow graph because the pub-
lic Application Program Interfaces (APIs) of TensorFlow do not allow us
to retrieve the execution trace. Therefore, it is necessary to insert within
the data-flow graph the instrumentation code to be able to determine if a
certain operator has been executed or not. The instrumentation code is a
Python function, which is inserted before each operator, that, if executed,
it will append to a global list the signature of the operator, which contains
the identifier and the shape of the output of the operator. The insertion
of such an instrumentation code directly in the original data-flow graph is
not possible because of three reasons:

1. The data-flow graph is not modifiable, if not building a new one.

2. Even if it was possible to modify the original data-flow graph, we want
to design our error simulator to be as transparent as possible to the
user, leaving the data and objects provided by the user untouched.

3. The execution of the instrumentation code is within the Python envi-
ronment, while the TensorFlow’s operators are executed from a C++
library, which represents a different application environment. Since
the instrumentation code is inserted before each operator, this contin-
uous shift of environment induces a time overhead because the context
is switched from Python to C++ back and forth. This time overhead
induced by a single execution of the instrumented data-flow graph
is negligible because the extraction is performed only once while us-
ing the instrumented graph also for the injection would lead to an
unsustainable and avoidable time overhead.

Thus, the insertion of the instrumentation code requires to create a new
data-flow graph, which is a replica of the original one. Figure 6.2 shows an
example of data-flow graph replication.

The steps performed during the instrumentation phase are shown in the
form of pseudo-code in Algorithm 3, and are explained in the following list:

• The inputs of the instrumentation phase are the original data-flow

82 Chapter 6. Error Simulation

Algorithm 3: Pseudo-code of the instrumentation phase.

Input: old graph, fetches, and input feed dict

Output: List of activated operators

1 begin

2 activated operators = [];

3 new graph = tf.Graph();

4 foreach op ∈ old graph.operators() do

5 new op = create op replica(op);

6 new graph.append with control dependency(new op, instr func);

7 end foreach

8 assign variables(old graph, new graph);

9 session.run(fetches, feed dict=input feed dict);

10 return activated operators;

11 end

graph (“old graph”), the output of the CNN model (“fetches”), and
the input parameters of the CNN model (“input feed dict”).

• Line 2 and Line 3: we create the new TensorFlow’s data-flow graph
and the list that will contain the operator’s signatures.

• Line 5: we replicate each operator of the original data-flow graph
using only the public APIs of TensorFlow.

• Line 6: the replicated operator is appended to the new data-flow
graph, having set the instrumentation function as control dependency.
As detailed in Section 2.2.1, the control dependency is a mechanism
that forces the execution of the operation before the current one. In
our case, we force the execution of the instrumentation function be-
fore the current operator, so when the current operator is executed
necessarily, the instrumentation has already been executed. The in-
strumentation function inserts in the activation list the signature of
the operator, which is the operator’s name and the shape of the output
tensor.

• Line 8: the replication of an operator does not involve the transferring
of its parameters. To do so, we have to copy the parameters one at
a time using the TensorFlow’s assignment function to transfer them
from one graph to the other.

6.3. Error List Generation 83

• Line 9: we perform an inference run with the new data-flow graph,
using the session object of TensorFlow.

• Line 10: the list contains all the activated operators, which have
executed during the inference run.

Figure 6.2: Example of replication of the data-flow graph. The left graph is the original one,

while the right graph is the replicated one. All the parameters are shared between the two

graphs, as well as the input tensors.

6.3 Error List Generation

The error simulation campaign can be performed on all the inject-able op-
erators or a subset of them. The user can specify the focus of the campaign
by indicating with which injection policy the error simulator has to generate
the error list. The injection policies are:

• Random: no restriction is applied; all the operators are considered.

• Operator Type: this policy focuses only on a specific operator type.

84 Chapter 6. Error Simulation

• Operator Specific: this policy focuses on a specific instance of an
operator.

The policies are applied by filtering the list activated operators and
removing all those who do not meet the condition specified by the user.

The error model repository is presented as a set of JSON files, one
for each operator type and for each parameter, which the error simulator
loads during this phase. The cardinalities and domains of corrupted values
are stored as lookup tables, in which, for each operator type, we have
the domain or the cardinality associated with its probability, as shown in
Figure 6.3. The spatial patterns are stored as a double-entry lookup table,
as shown in Figure 6.3(c), in which, for each operator and cardinality, we
have a first probability distribution that identifies the pattern class and
then, for each class, the patterns themselves, each associated with their
intra-class probability.

As anticipated in the previous chapter in Section 5.4, the error model
can be algorithmically described. Therefore, the error list generation is
outlined as a procedure, shown in the form of pseudo-code in Algorithm 4,
and explained in the following list:

• Line 3: the inject-able operators are filtered according to the user-
defined injection policy.

• Line 4: we generate as many errors as the user-defined campaign size.

• Line 5: we draw a random operator from the filtered ones. The
selection is performed with replacement because the same operator
can be injected more than once.

• Line 6: we draw a cardinality using the probabilities associated with
the selected operator type.

• Line 7: we draw as many domains as the cardinality using the prob-
abilities associated with the selected operator type.

• Line 8: we draw the spatial pattern for the selected operator and
cardinality.

• Line 9: we append to the error list all the extracted objects.

• Line 11: the error list is generated and returned.

6.3. Error List Generation 85

1 ‘ ‘ Convolution 1 ’ ’ :

2 {
3 1 : 0 . 972 ,

4 4 : 0 . 02 ,

5 8 : 0 . 008 ,

6
...

7 } ,

8
...

9 }

(a)

1 ‘ ‘ Leaky ReLU ’ ’ :

2 {
3 NaN : 0 .005 ,

4 Zero : 0 . 01 ,

5 B i t f l i p : 0 . 1 ,

6 [−1; 1] : 0 . 85 ,

7 Random : 0 .035

8 } ,

9
...

(b)

1 ‘ ‘ Biasadd ’ ’ :

2 {
3 2 : {
4 ‘ ‘ Class ’ ’ : {
5 ‘ ‘SAME FEATURE MAP SAME ROW’ ’ : 0 . 32 ,

6 ‘ ‘SAME FEATURE MAP SAME COLUMN’ ’ : 0 . 17 ,

7
...

8 }
9 ‘ ‘ Pattern ’ ’ : {

10 ‘ ‘SAME FEATURE MAP SAME ROW’ ’ : {
11 (0 , 2) : 0 . 57 ,

12 (0 , 4) : 0 . 33 ,

13 RANDOM(64) : 0 . 1

14 }
15 }
16 }

17
...

18 }

(c)

Figure 6.3: Box (a) represents the structure of the cardinality, Box (b) represents the struc-

ture of the domains of corrupted values, and Box (c) represents the structure of the spatial

patterns.

86 Chapter 6. Error Simulation

Algorithm 4: Pseudo-code of the error list generation phase.

Input: operators, injection policy, campaign size, error models

Output: Error list

1 begin

2 error list = [];

3 filtered op = filter operators(operators, injection policy);

4 for i← 0 to campaign size do

5 op = select operator(filtered op);

6 cardinality = select cardinality(error models, op);

7 domains = select domains(error models, cardinality, op);

8 patterns = select patterns(error models, cardinality, op);

9 error list.append(op, cardinality, domains, patterns);

10 end for

11 return error list;

12 end

6.4 Injection Phase

The error simulation exploits a technique based on saboteurs, to actually
inject the corrupted values, and execution check-pointing to speedup exe-
cutions by “jumping” directly to the operator to be corrupted. The check-
pointing splits the inference execution of the CNN into two parts, as shown
in Figure 6.4. In the first part, the CNN is executed up to the operator we
want to inject, retrieving its output, using the CNN input provided by the
user. Then, such an output is modified according to the domains and the
pattern extracted for the considered error. The second part reintroduces
the modified output in the network, and the CNN is executed up to the
end. This approach is described for the injection of one operator, and it is
simply repeated for each error in the list when performing an error cam-
paign. Whenever the same operator is targeted more than once, then its
output is cached, so we can avoid to perform the first part of execution and
to reuse the already extracted output.

Once again, this phase can be described in the form of an algorithm,
as shown in the pseudo-code in Algorithm 5, and the following list details
each step:

• Line 2: this list will contain all the outputs produced during the
campaign execution.

• Line 3: the cache is a dictionary that contains the operator as key

6.4. Injection Phase 87

Algorithm 5: Pseudo-code of the error injection phase.

Input: error list, fetches, input feed dict

Output: Output list

1 begin

2 output list = [];

3 cache = {};
4 foreach (op, cardinality, domains, pattern) ∈ error list do

5 if op /∈ cache then

6 output = session.run(op, feed dict=input feed dict);

7 cache[op] = output;

8 output = cache[op];

9 modify output(output, cardinality, domains, pattern);

10 net output = session.run(fetches, feed dict={op: output});
11 output list.append(net output);

12 end foreach

13 return output list

14 end

and its output as value.

• Line 4: we iterate over the error list, extracting, for each error, the
operator, the cardinality, the domains, and the spatial pattern.

• Line 5: we check if the current operator is in the cache or not.

• Line 6, 7: if the current operator is not in cache, then we compute its
output and store it on the cache for further reuse.

• Line 8, 9: we extract a copy of the output from the cache, and we
modify it in-place according to the cardinality, domains, and spatial
pattern.

• Line 10, 11: we complete the second part of the execution, providing
the modified output, and then we append the model’s output in the
list.

• Line 13: we return to the user the list of outputs.

88 Chapter 6. Error Simulation

Figure 6.4: Example of injection using the check-pointing technique. The model is evaluated

until the Batch Norm operator, then its output is returned to the application domain, in

which the errors are injected. After that step, the modified output is brought back within

the network, resuming the execution.

6.5. Methodological and Implementation Flaws 89

6.5 Methodological and Implementation Flaws

During the development and design of our error simulator, we have noticed
some differences between our approach and our direct competitor, Ten-
sorFI. Such differences regard either methodological and implementation
details, which have been taken into account during the development, which
are not found in our tool. The next two sub-sections describe in detail each
difference.

6.5.1 Error Models

The biggest methodological flaw presents in TensorFI is related to the error
models it embeds and their validation. TensorFI does not provide any
justification nor validation of its error models, which are directly inherited
from the architectural fault injection. The first difference between the error
models of the two tools is that our error models are probabilistic, so we are
able to inject at least one corrupted value up to tens of them, while TensorFI
can corrupt one element or the whole tensor. In our analysis of more than
100,000 faulty tensors, we have never experienced the case in which the
whole tensor has been corrupted. Thus, the only common point between
the two models is considering only the corruption of one value, and in
that case, it does not make sense to discuss its spatial location because it is
random within the tensor. Therefore, the only comparison between the two
models regards one corrupted value and its domain, and Table 6.1 presents
the domains offered by TensorFI and our framework. Figure 6.5 shows
how the domains overlap, highlighting that TensorFI provides a small set
of errors compared to our simulator and the architectural fault injection.
TensorFI does not consider at all more than one corrupted value, losing
all the patterns typical of the GPU and also introduces errors that are
not validated. Therefore, the error models embedded in TensorFI are not
significant, and one should avoid relying on them for the reliability analysis
of a system because they do not represent the GPU behavior against faults
and introduce errors that are not related to the hardware or other behavior.

6.5.2 Minor Differences and Setup Effort

TensorFI does not replicate the data-flow graph one-to-one, but it copies
each operator trying to guess also its parameters but fails to achieve this
task because some parameters are hard-coded or unsupported. This is the
case of the convolution operator or other operators that do no support

90 Chapter 6. Error Simulation

Table 6.1: Comparison of the domains of corrupted values offered by TensorFI and our error

simulator.

Domain TensorFI Our Approach

NaN Not present Present

Zero Present Present

Bitflip Present Present

[−1; 1]
Achievable but not by default

(requires code modification)
Present

Random
Present, but restricted to the

range [0, 1)

Present, can generate any 32-

bit floating-point value.

TensorFI

Whole
Tensor
Corruption

1

Bitflip

Zero
Random

[-1;1]
NaN

Bullet Wake

Same Row
...

Architectural
Fault Injection

Our Error
Simulator

Figure 6.5: Overlap of the domains of TensorFI, our error simulator, and the architectural

fault injection.

the typical representation of tensor used in Machine Learning (ML), i.e.,
C×H×W , but support only H×W ×C, making difficult to support real
models, since the majority of them are expressed using the former form.
Such an approach can lead to incomplete representations or dark errors
related to the guessing of parameters. The technique used to replicate the
graph by our implementation relies on the public APIs of TensorFlow. It
provides an identical copy of the data-flow graph, so it implicitly supports
and copies all the parameters and tensor’s formats. The approach adopted
by TensorFI has also reflected in the number of supported operators, which
is relegated to only those who are covered in the source codes. On the
contrary, our replication is total and covers any possible operator with any
possible configuration because our replication is deep and accurate.

TensorFI has a partially-automated instrumentation phase that repli-
cates the original data-flow graph but relies on a configuration file, filled by

6.6. Porting to Other ML Frameworks 91

the user, to generate the injection sites at run-time. The configuration file
contains a section in which the user must express the number of instances
of each operator present in the data-flow graph. However, as pointed out
in Section 2.5.1.5, the extraction of the number of instances is not trivial
because only the operators that are target-able by TensorFI need to be
counted and only the instances that are used by the inference phase. This
approach fails to scale for a network with tens or hundreds of operators.
The instrumentation phase provided by our tool is completely automated
and does not require any user interaction. The difference is quantifiable in
at most a pair of minutes for our automatic instrumentation, while it can
take up to hours to configure TensorFI properly.

6.6 Porting to Other ML Frameworks

This error simulation approach has been proved to work also for other
ML frameworks, such as Caffe and PyTorch. We have built two proof
of concept experiments that, using the same methodology of this error
simulator, achieve the goal of injecting errors in a CNN, meeting all the
requirements presented so far. Summing up, the check-pointing method
is portable to other ML frameworks, but every implementation requires
specific adaptation of the instrumentation phase to adhere to the frame-
work under analysis. Caffe and PyTorch do not rely on data-flow graph
computation. Instead, they make use of the eager execution, an impera-
tive environment that evaluates operation immediately without decoupling
the definition and the execution like in TensorFlow. The flexibility of ML
frameworks has allowed to develop the tool in just over 1000 lines of code,
584 for the error simulator and 667 for the model and injection sites gen-
eration.

We have here presented the error simulator and the methodology behind
it. In the next section, we compare our error simulator against a GPU fault
injector to assess the correctness of the simulator in a real case scenario.

92 Chapter 6. Error Simulation

Chapter 7

Experimental Evaluation

This chapter presents an experimental evaluation of the proposed method-
ological framework against the baselines and using the Key Performance
Indicators (KPIs), both identified in Chapter 3. In the first section of the
chapter, we present the case studies, which are three Convolutional Neu-
ral Networks (CNNs) and their datasets, which will be used as the targets
of the experiments. In the second section, we will provide the accuracy
validation of our approach against the current practice, which is the ar-
chitectural fault injection, considering the state-of-the-art Graphic Process
Unit (GPU) fault injector, SASSIFI [58]. In the third section, we will pro-
vide comparisons of the execution times of our framework with respect to
SASSIFI and TensorFI [40]. We will also highlight some additional notes
about TensorFI ans its flaws. The final section sums up all the obtained
results, providing a comprehensive view of them.

All the experiments and comparisons have been performed on the same
machine, which is a MacBook Pro 2014 equipped with an Intel Core® i7-
4870HQ as CPU and a NVIDIA GeForce GT 750M as GPU, running on
Ubuntu 18.04 LTS.

7.1 Case Studies

We have used three different CNN models and three different datasets for
the evaluation of our framework. The following list presents the three
different CNN models, while, after that, we will motivate the reasons for
using three different models.

• YOLO V3 [43, 61, 62]. It represents the state-of-the-art in the ob-
ject detection task enough to be employed in commercial autonomous

93

94 Chapter 7. Experimental Evaluation

driving systems like Apollo [66] and Autoware [67]. We have con-
sidered one implementation for TensorFlow trained upon the COCO
dataset [68]. The network falls in the category of deep neural networks
because it contains 45 different operator types and more than 6000
operator’s instances. The COCO dataset with which is trained con-
tains more than 330 thousand RGB images and 80 object categories.
In the accuracy validation, we will compare the output of this net-
work to check if the error simulation is capable of producing the same
effects as the architectural fault injection. The output of the network
is a list of detection for each of the 80 object categories. Detection
is a tuple of five elements (x1, y1, x2, y2, p), in which the first four el-
ements are the pixel coordinates of the bounding box, which marks
the object within the image, and the last element is the probability
assigned to this object.

• LeNet-5 [7]. It is a CNN used for hand-written digits classification
for the MNIST dataset [69], capable of achieving 99.05% accuracy. It
is a simple network composed of two convolutional layers and three
dense layers. The MNIST dataset contains 60 thousand black-and-
white images, representing hand-written digits.

• CIFAR10. It is a CNN used for object classification for the CIFAR10
dataset [70]. The implementation we have chosen is taken from a
Keras tutorial [71], which is capable of achieving 78% accuracy. The
CIFAR10 dataset contains 60 thousand RGB images and 10 object
categories.

YOLO V3 has been our primary target because it is a deep model,
containing several different operator types and instances, and it is a state-
of-the-art model employed in real safety-critical systems. For these reasons,
it was our primary choice because it represents an excellent with which test
our methodology and with which we have designed and performed all the
experiments regarding the architectural fault injections. Therefore, it has
been possible to execute YOLO V3 with SASSIFI and Caffe, adopting some
precautions that will be explained in the next section. The same does not
apply for TensorFI because it has not been possible to execute YOLO V3
with it due to its technical limitations, as pointed in Section 2.5.1.5. Faced
with this fact, we have chosen to use two other CNN models, which are
significantly smaller, CIFAR10 and LeNet-5, and allow us to compare the
execution times of our approach and TensorFI. In this way, we are still able
to compare our approach with the two baselines.

7.2. Accuracy Validation 95

7.2 Accuracy Validation

In Section 3.4, we have defined the accuracy as the capability of reproducing
in the network’s output the same effects of the architectural fault injection
campaigns. The baseline for this validation is SASSIFI because it is the
state-of-the-art of GPU fault injection and the most accurate tool since its
fault models are highly accurate. The network used for this validation is
the TensorFlow implementation of YOLO V3, as explained above.

The rules with which we compare the effects of the injected errors and
faults, respectively, are presented as follows. The output of the YOLO
V3 network is a list of detection for each object category. Thus, we have
80 lists, possibly empty if no object associated with that list has been
detected, containing the detection expressed as tuples. Each list is asso-
ciated with an object category; for instance, the list 0 is associated with
the object category 0 that represents the “person” class, and so on. The
effects of a fault/error can be the removal or modification of a detection
or the appearance of a new detection in any possible object category. We
assume that the detection obtained though the architectural fault injection
is our golden reference, and we check if the detection obtained trough er-
ror simulation report the same effects. We count how many times we can
match the detection and, if divided by the total number of detection, it
expresses the percentage of accuracy of our detection. The complement
of that percentage express how many detection have not been matched on
both sides.

Theoretically, to compare the two tools, we should have performed two
campaigns, one with SASSIFI, and one with our error simulator, both tar-
geting the whole YOLO V3 network, by injecting the same number of fault-
s/errors and comparing the outputs. Unfortunately, a network-wide cam-
paign cannot be performed with SASSIFI due to technical limits; SASSIFI
is not able to load the whole CNN during the execution of the campaigns.
Indeed, the functioning of SASSIFI introduces a huge time overhead when
it comes to loading and allocating the GPU memory required by the CNN,
which demands more than 1 Gb of memory.

To overcome this issue, we have modified the experimental framework
to run with SASSIFI only the specific operator of the CNN to be corrupted
while the rest of the data-flow graph is executed in TensorFlow by following
this execution flow:

1. The subpart of the data-flow graph before the considered operator
is executed in the standard TensorFlow environment to compute the

96 Chapter 7. Experimental Evaluation

input tensors.

2. The fault injection campaign is performed by means of SASSIFI on
the sole operator to be corrupted to collect, for each run, the output
tensor.

3. For each collected output tensor, the subpart of the data-flow graph,
after the considered operator, is executed in the standard TensorFlow
environment by providing in input such a tensor.

In practice, for the sake of time, we have reused the outcomes of the fault
injection campaign discussed in Chapter 5. For what concerns the error
simulator, we injected only in the instances targeted by the architectural
fault injection by inserting the same amount of errors like the one observed
in the experiment. In this way, the two tools are comparable, and we are
able to check if we obtain the same errors referred to as the output of the
network having injected in the same locations of the network.

The architectural fault injection campaigns have resulted in 137,004
faulty tensors, which then are inserted in TensorFlow in the same operator’s
instance that has originated that faulty tensor. With the error simulation,
we have performed the same error campaign by inserting 137004 errors
in the same operator’s instances and then collecting all the outputs. The
analysis of the outputs, according to the procedure described above, has
highlighted that our approach is 98.72% accurate, which means that we
can reproduce the same effects of the architectural fault injection in the
98.72% of the cases. This result leads us to consider that our error models
are validated and accurate as of the architectural fault injection.

7.3 Execution Times Analysis

The execution time is the time elapsed for performing an error simulation
or fault injection campaign. The execution times are comparable only if
the two tools are performing a campaign of the same size. This analysis is
divided into two sections, one for each tool, which sections are presented
as follows.

7.3.1 SASSIFI

During the experiments carried out for the realization of the framework,
we have injected 360 thousand faults with SASSIFI, which have resulted
in 137,004 faulty tensors.

7.3. Execution Times Analysis 97

Table 7.1: Execution times of the error simulation and SASSIFI, either in hybrid and full

version. The values are expressed in hours.

Campaign of 360k faults resulted in 137k faulty tensors

SASSIFI + TensorFlow SASSIFI Our Approach

92 h 833 h 15 h

In the previous section, we stated that it was not possible to execute the
full network of YOLO V3 because SASSIFI induces a severe time overhead,
due to the memory loading. The time required for a single execution of
the whole network requires 12 minutes for the Instruction Output Value
(IOV) and Register File (RF) modes, and 19 minutes for the Instruction
Output Address (IOA) mode. If we wanted to execute the same amount of
injections with the full network as done in the experiments, the estimated
time required is quantifiable as 833 hours, which is more than a month
(≈ 34 days).

The time required by SASSIFI to inject 360 thousand faults has been
277,880 seconds (> 77 hours). The 360 thousand faults have generated
137,004 faulty tensors, which have been reinserted in TensorFlow, requiring
54,281 seconds (>15 hours). In total, the full experiment has required
332,081 seconds (> 92 hours).

In total, we have injected 360,000 faults resulting at a time of 277,880
seconds (> 77 hours), obtaining 137,004 faulty tensors to be reinserted
in the CNN, which represents the second component. The reinsertion of
the 137,004 faulty tensors has required 54,281 seconds (> 15 hours). The
overall time required by the architectural fault injection is 332,081 seconds
(> 92 hours).

In the context of the error simulation, we are able to generate as many
faulty tensors as we want at run-time with no additional time overhead.
Thus, we need to insert, with our error simulator, in the same instances
of the CNN used in the architectural fault injection, the same amount of
faulty tensors. The insertion with our tool of 137,004 faulty tensors has
required 54,414 seconds (> 15 hours).

The results highlight that our error simulator induces a speedup of 6.1x
times than the traditional approach with a saving of 277,667 seconds (>
77 hours) for injecting the same amount of faulty tensors in the CNN. In
both cases, the setup and pre-processing times have not been considered
because they are constant and performed once, not changing the overall
outcome. The execution times are summarized in Table 7.1.

98 Chapter 7. Experimental Evaluation

Table 7.2: Comparison of execution times between TensorFI and our approach. The values

are expressed in seconds.

Campaign of 10,000 error simulations

Dataset TensorFI Our Approach

MNIST 1098.71 s 24.74 s

CIFAR10 2409.47 s 37.62 s

Table 7.3: The subject of the analysis is our tool and the symbols are the evaluation of the

current tool for that KPI compared to our tool.

KPI SASSIFI TensorFI

Execution Times 6.1x 44.41x - 64.04x

Accuracy ≈ >>

7.3.2 TensorFI

As anticipated at the beginning of this chapter, we cannot use the YOLO
V3 network for TensorFI, due to its technical limits. Therefore, we de-
signed two ad-hoc experiments to test the execution times of TensorFI,
each composed of 10,000 errors to inject in LeNet-5 and CIFAR10, respec-
tively. Our tool has performed the MNIST experiment in 24.74 seconds,
while the CIFAR10 in 37.62 seconds. TensorFI has performed the two ex-
periments in 1098.71 and 2409.47 seconds, respectively. Our tool induces
a speedup compared to TensorFI, which varies from 44.41x for the MNIST
dataset to 64.04x for the CIFAR10 dataset. If we compare the results to a
plain execution, i.e., the time duration of 10,000 executions in clean condi-
tions, our simulator induces a mean time overhead of 1.55x while TensorFI
exhibits a time overhead of 67.79x for the MNIST dataset and 101.52x
for the CIFAR10 dataset. Table 7.2 shows the different execution times
obtained by our error simulator and TensorFI.

The results obtained by TensorFI are due to implementation flaws be-
cause it does not provide any advanced injection technique, like the check-
pointing, nor employs optimizations, such as the reusing of the intermediate
computations.

7.4 Concluding Remarks

After having compared our framework with the current state-of-the-art
tools, we can outline the concluding remarks regarding our tool. Table 7.3

7.4. Concluding Remarks 99

includes all the results in a schematic form, which are described as follows.
SASSIFI is the current state-of-the-art tool for what concerns the GPU

fault injection, being the most accurate tool available. However, it has
severe limitations for what concerns the applicability and integration with
the target application and the considerable amount of time required for
the execution of the campaigns. Our error simulator overcomes the limi-
tations addressed by SASSIFI. The tool has validated error models, either
by construction and comparison, which makes it significant and relevant,
with an accuracy that is comparable to the one achievable with SASSIFI,
being able to reproduce the 98.72% of the errors obtained with SASSIFI.
The execution times achieved by our error simulator enables us to perform
all the experiments executed in this thesis is only 15 hours compared to
the 92 hours required by SASSIFI. This is transformed to a speedup of the
6.1x, which makes it preferable as a tool for testing the reliability of such
systems.

TensorFI is the first tool that tries to join two worlds by applying the
error simulation in the context of the reliability analysis of CNNs executed
on GPU. Although the idea is heading in the right direction and has been a
source of inspiration for this work, the realization leaves much to be desired.
The error models it employs are not validated; thus, the whole reliability
analysis performed with this tool is not significant and useless because it
responds to a problem that does not exist. The execution times are far from
being optimal and acceptable, introducing an excessive time overhead and
a poorly designed implementation of the tool with no efficient injection
techniques like check-pointing or any sort of cache. Our tool induces a
speedup of the 44.41x and 64.04x for the MNIST and CIFAR10 models,
respectively.

100 Chapter 7. Experimental Evaluation

Chapter 8

Conclusions and Future Work

Nowadays, Convolutional Neural Networks (CNNs) are widely employed
for perception functionalities in many safety-critical systems because of
their high accuracy, which overcomes traditional Computer Vision (CV)
algorithms. Among all these systems, CNNs are highly engaged in Au-
tonomous Driving Systems (ADSs), in which they perform many machine
vision tasks within the perception modules in such systems. When deployed
in safety-critical systems, the CNNs must deal and comply with temporal
constraints, which make it necessary to execute them fast. Graphic Process
Units (GPUs) are computing devices that, thanks to their parallel archi-
tecture and the Single Instruction Multiple Data (SIMD) paradigm, are
capable of accelerating the execution of CNNs up to make them compliant
with the temporal requirements of safety-critical systems. Therefore, it is
very common to find in safety-critical systems the duo composed of CNN
executed on GPU.

This couple must ensure the proper functioning in any possible situa-
tion, so it is necessary to carry out the reliability analysis on them to outline
their behavior against faults, which may make the system to deviate from
its nominal behavior. Traditionally, this type of analysis is complex to carry
out because the CNN and the GPU are placed in two different abstraction
levels, respectively, the application level and the architectural level. The
currently available tools and state-of-the-art methodologies still make it
difficult to connect these two levels, limiting the efficacy of the reliability
analysis.

In this thesis, we have proposed a novel methodological framework for
the reliability analysis of CNNs executed on GPUs by facilitating the con-
nection between the architecture level where faults are classically emulated
and the application level where the produced errors are analyzed. The

101

102 Chapter 8. Conclusions and Future Work

framework is composed of two parts, the error modeling, and the error
simulation, respectively.

The error modeling is a methodology that enables us to characterize the
errors appearing in each CNN operator’s output in response to GPU fault
injection campaigns, performed through the state-of-the-art GPU fault in-
jector, SASSIFI [58]. The characterization leads us to create an error model
repository that contains the errors modeled according to three parameters,
the cardinalities, the spatial patterns, and the domains of corrupted values.
These three parameters are the application-oriented representation of the
errors originated by architectural faults. Therefore, error modeling is the
connection link between the two abstraction levels, which makes possible
the reliability analysis of the overall system.

The error simulation is a methodology that enables us to assess the relia-
bility of a target CNN by sabotaging the outputs of its operators according
to the models defined in the error models repository. This methodology
is implemented through an error simulator tool, built upon TensorFlow,
capable of targeting CNN models in their application domain, exploiting
advanced injection techniques, like the check-pointing, or optimizations,
like the caching of intermediate computations.

Either the error modeling and error simulation have been validated
through several experiments against the current state-of-the-art tools and
best practices. The metrics with which we have evaluated our framework
are execution times, the times spent on performing an error simulation
campaign, and the accuracy of the error models. The framework has been
compared with SASSIFI, which is the state-of-the-art GPU fault injector
and the most accurate tool for the GPU. The experiments highlighted that
our framework is 6.1x times faster than SASSIFI and is almost accurate as
it since it is able to reproduce the 98.72% of the errors obtained during the
fault injection campaigns. The second tool with which we have compared
our framework is TensorFI [40], which is the only error simulator publicly
available for the reliability analysis of CNNs. Although TensorFI is a novel
contribution in this field, it has evident methodological and implementa-
tion flaws. Our framework compared to TensorFI, it turns out that our
error simulator is from 44.41x to 64.04x times faster than TensorFI when
performing the same error simulation campaign. The accuracy of TensorFI
can be evaluated only qualitatively. However, it embeds error models that
are not validated nor similar to our error models, making TensorFI a tool of
doubtful value since its error models are not accurate and so the reliability
analysis is not truthful.

8.1. Future work 103

8.1 Future work

The discussed work presents various future directions aimed at extending
the considered working scenario, as discussed in the following.

Finalizing the error modeling. The error modeling is a general method-
ology for characterizing the errors in the output of CNN operators. In
this work, we have applied this methodology only on a relevant subset of
operators included in the YOLO V3 CNNs considered in the experimental
sessions. Therefore, it is worth to extend the set of analyzed operators
with the missing ones (for instance, the max pooling operator) to derive a
comprehensive repository of error models, which is applicable to any CNN
model.

Porting to other Machine Learning (ML) frameworks. TensorFlow has
been considered in this thesis as the framework to integrate the error simu-
lator because it is the reference point of the field. However, there exist other
popular ML frameworks that we may consider in the future to integrate the
error simulator. Caffe is one of them, and although it is discontinued, it
still covers a niche demanding raw performances, which justifies our inter-
est in this framework. PyTorch [72] is another high-level ML framework,
which is qualified as the direct competitor of TensorFlow for popularity.
The porting of the proposed error simulator to these frameworks would
enable us to cover the majority of the tools used by the ML community,
thus extending the benefits of our reliability analysis methodology in the
case of design of CNNs for mission-/safety-critical applications.

Considering other types of devices. In this work, the system under
analysis was the duo CNN executed on GPU. However, there are also al-
ternative solutions to execute CNNs, for instance by accelerating on Field
Programmable Gate Array (FPGA) devices, or in case of unavailability
of any accelerator, on CPU. One of the most interesting future work is
to consider such alternative devices. Indeed, the proposed methodological
framework is highly flexible; it will require only to re-perform a new error
modeling activity on the newly considered device, in the same way we have
shown for the GPU. The new output of such an activity will be a new list
of error models that will be integrated into the repository so that the error
simulator can also be employed in these new scenarios without requiring
any relevant modification.

104 Chapter 8. Conclusions and Future Work

Considering other types of ML and image processing applications.

The CNNs are just a subset of all the models present in the ML world,
particularly suitable for managing images, and, therefore, they are widely
employed in the CV field. However, there exist other ML models and im-
age processing applications widely employed in safety-critical systems, such
as Recurrent Neural Networks (RNNs), Histogram of Oriented Gradients
method, Bayesian Networks, and many more. It would be worth applying
the proposed methodological framework to analyze all these other applica-
tions to study their intrinsic error resilience.

Integration of the proposed framework in reliability-driven design

flows. The output of the methodological framework applied on a given
case study is a report of the susceptibility to faults of the various parts of
the application under analysis. Such output is highly valuable in the cases
we aim at performing a cost-aware hardening of a safety-critical system,
for instance by applying the selective duplication as in [51]. Therefore,
a last interesting future work consists in the definition of comprehensive
reliability-driver design flows capable at exploiting the outcome of our re-
liability analysis for a cost-effective hardening; the integration of all these
separate methods in a single picture will offer the possibility to improve
the quality of both the obtained system implementation, in terms of higher
performance and reliability, and the design flow, in terms of a reduced
design time and effort.

Bibliography

[1] M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray, “Au-
tonomous driving in urban environments: approaches, lessons and
challenges,” Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, vol. 368, no. 1928,
pp. 4649–4672, 2010.

[2] S. International, “Automated driving: levels of driving automation are
defined in new sae international standard j3016,” 2014.

[3] E. Normand, “Single event upset at ground level,” IEEE transactions
on Nuclear Science, vol. 43, no. 6, pp. 2742–2750, 1996.

[4] “Report: Vehicles in use - europe 2019 acea - european automobile
manufacturers’ association.” https://www.acea.be/publications/

article/report-vehicles-in-use-europe-2019. (Accessed on
03/20/2020).

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015. Soft-
ware available from tensorflow.org.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[7] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwrit-

105

https://www.acea.be/publications/article/report-vehicles-in-use-europe-2019
https://www.acea.be/publications/article/report-vehicles-in-use-europe-2019

106 BIBLIOGRAPHY

ten zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–
551, 1989.

[8] “Nn svg.” http://alexlenail.me/NN-SVG/LeNet.html. (Accessed
on 12/18/2019).

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[10] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR,
vol. abs/1502.03167, 2015.

[11] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in
nerve,” The Journal of physiology, vol. 117, no. 4, pp. 500–544, 1952.

[12] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of recti-
fied activations in convolutional network,” CoRR, vol. abs/1505.00853,
2015.

[13] D. Liu, “A practical guide to relu - danqing
liu - medium.” https://medium.com/@danqing/

a-practical-guide-to-relu-b83ca804f1f7, 11 2017. (Accessed on
12/17/2019).

[14] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international confer-
ence on machine learning (ICML-10), pp. 807–814, 2010.

[15] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, p. 3,
2013.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

[17] J. Han and C. Moraga, “The influence of the sigmoid function pa-
rameters on the speed of backpropagation learning,” in International
Workshop on Artificial Neural Networks, pp. 195–201, Springer, 1995.

[18] F. Chollet et al., “Keras.” https://keras.io, 2015.

http://alexlenail.me/NN-SVG/LeNet.html
http://www.deeplearningbook.org
https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
https://keras.io

BIBLIOGRAPHY 107

[19] “Protocol buffers — google developers.” https://developers.

google.com/protocol-buffers/. (Accessed on 02/26/2020).

[20] “Graphics pipeline - win32 apps — microsoft docs.” https:

//docs.microsoft.com/en-us/windows/win32/direct3d11/

overviews-direct3d-11-graphics-pipeline. (Accessed on
02/26/2020).

[21] NVIDIA, “Cuda c programming guide.” https://docs.nvidia.com/

cuda/cuda-c-programming-guide/index.html.

[22] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer, “cudnn: Efficient primitives for deep learn-
ing,” arXiv preprint arXiv:1410.0759, 2014.

[23] “Nvidia-kepler-gk110-gk210-architecture-whitepaper.pdf.”
https://www.nvidia.com/content/dam/en-zz/

Solutions/Data-Center/tesla-product-literature/

NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf.
(Accessed on 02/26/2020).

[24] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,”
IEEE micro, vol. 23, no. 4, pp. 14–19, 2003.

[25] D. Binder, E. C. Smith, and A. Holman, “Satellite anomalies from
galactic cosmic rays,” IEEE Transactions on Nuclear Science, vol. 22,
no. 6, pp. 2675–2680, 1975.

[26] T. C. May and M. H. Woods, “A new physical mechanism for soft
errors in dynamic memories,” in 16th International Reliability Physics
Symposium, pp. 33–40, IEEE, 1978.

[27] J. Maiz and N. Seifert, “Introduction to the special issue on soft er-
rors and data integrity in terrestrial computer systems,” IEEE Trans-
actions on Device and Materials Reliability, vol. 5, pp. 303–304, Sep.
2005.

[28] “Geforce gtx titan — specifications — geforce.” https://www.

geforce.com/hardware/desktop-gpus/geforce-gtx-titan/

specifications. (Accessed on 01/09/2020).

[29] “Scheda grafica definitiva per pc titan rtx con turing — nvidia.”
https://www.nvidia.com/it-it/deep-learning-ai/products/

titan-rtx/. (Accessed on 01/09/2020).

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan/specifications
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan/specifications
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan/specifications
https://www.nvidia.com/it-it/deep-learning-ai/products/titan-rtx/
https://www.nvidia.com/it-it/deep-learning-ai/products/titan-rtx/

108 BIBLIOGRAPHY

[30] E. J. Wyrwas, “Proton testing of nvidia gtx 1050 gpu,” 2017.

[31] E. J. Wyrwas, C. Szabo, K. A. LaBel, M. Campola, and M. O’Bryan,
“Standardizing gpu radiation test approaches,” 2018.

[32] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level
detectors for reducing silent data corruptions,” in IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN 2012),
pp. 1–12, IEEE, 2012.

[33] “Cuda-gdb :: Cuda toolkit documentation.” https://docs.nvidia.

com/cuda/cuda-gdb/index.html. (Accessed on 01/14/2020).

[34] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “Gpu-
qin: A methodology for evaluating the error resilience of gpgpu ap-
plications,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 221–230, IEEE, 2014.

[35] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE International Symposium on Performance Analysis of Systems
and Software, pp. 163–174, IEEE, 2009.

[36] M. Stephenson, S. K. Sastry Hari, Y. Lee, E. Ebrahimi, D. R. Johnson,
D. Nellans, M. O’Connor, and S. W. Keckler, “Flexible software profil-
ing of gpu architectures,” in ACM SIGARCH Computer Architecture
News, vol. 43, pp. 185–197, ACM, 2015.

[37] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding er-
ror propagation in gpgpu applications,” in SC’16: Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pp. 240–251, IEEE, 2016.

[38] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware faults,”
in 2014 44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pp. 375–382, IEEE, 2014.

[39] C. Lattner and V. Adve, “Llvm: A compilation framework for life-
long program analysis & transformation,” in Proceedings of the inter-
national symposium on Code generation and optimization: feedback-
directed and runtime optimization, p. 75, IEEE Computer Society,
2004.

https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html

BIBLIOGRAPHY 109

[40] G. Li, K. Pattabiraman, and N. DeBardeleben, “Tensorfi: A config-
urable fault injector for tensorflow applications,” in 2018 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops
(ISSREW), pp. 313–320, IEEE, 2018.

[41] F. F. dos Santos, L. Carro, and P. Rech, “Kernel and layer vulner-
ability factor to evaluate object detection reliability in gpus,” IET
Computers & Digital Techniques, vol. 13, no. 3, pp. 178–186, 2018.

[42] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” 2005.

[43] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 779–788,
2016.

[44] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in Proceedings of
the International Conference for High Performance Computing, Net-
working, Storage and Analysis, p. 8, ACM, 2017.

[45] “tiny-dnn/tiny-dnn: header only, dependency-free deep learning
framework in c++14.” https://github.com/tiny-dnn/tiny-dnn.
(Accessed on 01/16/2020).

[46] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, pp. 1097–1105, 2012.

[47] F. F. dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of
convolutional neural networks on gpus,” IEEE Transactions on Reli-
ability, vol. 68, no. 2, pp. 663–677, 2018.

[48] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE transactions on computers, vol. 100, no. 6,
pp. 518–528, 1984.

[49] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability anal-
ysis of a deep neural network,” in 2019 IEEE Latin American Test
Symposium (LATS), pp. 1–6, IEEE, 2019.

https://github.com/tiny-dnn/tiny-dnn

110 BIBLIOGRAPHY

[50] “Darknet: Open source neural networks in c.” https://pjreddie.

com/darknet/. (Accessed on 01/16/2020).

[51] D. Oliveira, P. Navaux, and P. Rech, “Increasing the efficiency and
efficacy of selective-hardening for parallel applications,” in 2019 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pp. 1–6, IEEE, 2019.

[52] F. Fernandes, L. Weigel, C. Jung, P. Navaux, L. Carro, and P. Rech,
“Evaluation of histogram of oriented gradients soft errors criticality
for automotive applications,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 13, no. 4, p. 38, 2016.

[53] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” arXiv preprint
arXiv:1903.12261, 2019.

[54] A. Azulay and Y. Weiss, “Why do deep convolutional networks gener-
alize so poorly to small image transformations?,” Journal of Machine
Learning Research, vol. 20, no. 184, pp. 1–25, 2019.

[55] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi, “Measuring neural net robustness with constraints,” in
Advances in neural information processing systems, pp. 2613–2621,
2016.

[56] D. A. G. De Oliveira, L. L. Pilla, M. Hanzich, V. Fratin, F. Fernan-
des, C. Lunardi, J. M. Cela, P. O. A. Navaux, L. Carro, and P. Rech,
“Radiation-induced error criticality in modern hpc parallel accelera-
tors,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 577–588, IEEE, 2017.

[57] “cublas — nvidia developer.” https://developer.nvidia.com/

cublas. (Accessed on 03/17/2020).

[58] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“Sassifi: An architecture-level fault injection tool for gpu application
resilience evaluation,” in 2017 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), pp. 249–258,
IEEE, 2017.

[59] F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson, “A study
of the impact of single bit-flip and double bit-flip errors on program ex-

https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas

BIBLIOGRAPHY 111

ecution,” in International Conference on Computer Safety, Reliability,
and Security, pp. 265–276, Springer, 2013.

[60] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Computing Surveys (CSUR), vol. 23,
no. 1, pp. 5–48, 1991.

[61] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv
preprint arXiv:1612.08242, 2016.

[62] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[63] “numpy.lib.format — numpy v1.17 manual.” https://docs.scipy.

org/doc/numpy/reference/generated/numpy.lib.format.html#

module-numpy.lib.format. (Accessed on 03/24/2020).

[64] “rogersce/cnpy: library to read/write .npy and .npz files in c/c++.”
https://github.com/rogersce/cnpy. (Accessed on 03/24/2020).

[65] “Alessandrotoschi/a-methodology-for-error-simulation-in-cnns-
executed-on-gpu-results.” https://github.com/AlessandroToschi/

A-Methodology-for-Error-Simulation-in-CNNs-Executed-on-GPU-Results.
(Accessed on 03/29/2020).

[66] “Apollo.” http://apollo.auto/. (Accessed on 01/22/2020).

[67] “Autoware.ai.” https://www.autoware.ai/. (Accessed on
02/12/2020).

[68] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision, pp. 740–755,
Springer, 2014.

[69] “Mnist handwritten digit database, yann lecun, corinna cortes and
chris burges.” http://yann.lecun.com/exdb/mnist/. (Accessed on
03/23/2020).

[70] “Cifar-10 image classification in tensorflow - to-
wards data science.” https://towardsdatascience.com/

cifar-10-image-classification-in-tensorflow-5b501f7dc77c.
(Accessed on 03/24/2020).

https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.format.html#module-numpy.lib.format
https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.format.html#module-numpy.lib.format
https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.format.html#module-numpy.lib.format
https://github.com/rogersce/cnpy
https://github.com/AlessandroToschi/A-Methodology-for-Error-Simulation-in-CNNs-Executed-on-GPU-Results
https://github.com/AlessandroToschi/A-Methodology-for-Error-Simulation-in-CNNs-Executed-on-GPU-Results
http://apollo.auto/
https://www.autoware.ai/
http://yann.lecun.com/exdb/mnist/
https://towardsdatascience.com/cifar-10-image-classification-in-tensorflow-5b501f7dc77c
https://towardsdatascience.com/cifar-10-image-classification-in-tensorflow-5b501f7dc77c

112 BIBLIOGRAPHY

[71] “keras-apache-mxnet/cifar10 cnn.py at master ·
awslabs/keras-apache-mxnet.” https://github.com/awslabs/

keras-apache-mxnet/blob/master/examples/cifar10_cnn.py.
(Accessed on 03/27/2020).

[72] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems, pp. 8024–8035, 2019.

https://github.com/awslabs/keras-apache-mxnet/blob/master/examples/cifar10_cnn.py
https://github.com/awslabs/keras-apache-mxnet/blob/master/examples/cifar10_cnn.py

Acronyms

ADS Autonomous Driving System. 1–4, 23, 24, 101

API Application Program Interface. 16, 81, 82, 90

CNN Convolutional Neural Network. V–XII, XIX, 4, 5, 7–18, 25, 29, 32–
34, 36–43, 45–57, 59–61, 64, 65, 69–71, 74, 77, 79, 80, 82, 86, 91,
93–95, 97, 99, 101–104

CV Computer Vision. V, IX, 1, 4, 9, 19, 101, 104

FPGA Field Programmable Gate Array. 103

GEMM General Matrix Multiplications. 18, 33, 62, 63, 66, 72

GPGPU General Purpose GPU. 19

GPR General Purpose Register. 65, 68

GPU Graphic Process Unit. V–VII, IX–XI, XV, XVI, XIX, 4, 5, 7, 11,
15–29, 31–43, 45, 47–50, 53, 55–60, 63, 64, 66, 67, 70–73, 76, 77, 80,
89, 91, 93, 95, 99, 101–103

HPC High Performance Computing. 18

IOA Instruction Output Address. 27, 64, 65, 68, 97

IOV Instruction Output Value. XXI, 27, 32, 64, 65, 68, 97

KPI Key Performance Indicator. XVI, 37, 42, 43, 93, 98

ML Machine Learning. VI, VII, X, XI, XVII, 1, 5, 7, 9, 15, 16, 18, 19,
29–31, 35, 39, 41, 42, 46, 47, 57, 59, 60, 63, 90, 91, 103, 104

113

114 Acronyms

PR OP Predicate Operation. 65, 68

RF Register File. XXI, 27, 32, 64, 65, 68, 97

RNN Recurrent Neural Network. 104

SAE Society of Automotive Engineers. 1

SDC Silent Data Corruption. 25, 28, 32–35, 38, 46, 47

SEU Single Event Upset. 24, 25, 37, 38, 42

SIMD Single Instruction Multiple Data. V, IX, 19, 20, 101

SIMT Single Instruction Multiple Thread. 20, 22, 49, 50

SM Streaming Multiprocessor. 19–22

STORE OP Store Operation. 65, 68

	List of Figures
	List of Tables
	Introduction
	Goal
	Thesis Outline

	Background and Related Work
	Convolutional Neural Networks - CNNs
	Tensor
	Convolution
	Dimensionality Reduction
	Batch Normalization
	Activation Functions
	Element-wise Operators

	Machine Learning Frameworks
	TensorFlow
	Caffe

	Graphic Process Units - GPUs
	Hardware Architecture
	Programming Model

	Faults in Digital Systems
	Related Work
	Fault Injectors for gpu devices
	CUDA-GDB
	GPU-Qin
	SASSIFI
	LLFI-GPU
	TensorFI

	Methodologies for Reliability Analysis
	Kernel and layer vulnerability factor to evaluate object detection reliability in gpu
	Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications
	Analyzing and Increasing the Reliability of Convolutional Neural Networks on gpu
	A Reliability Analysis of a Deep Neural Network
	Increasing the Efficiency and Efficacy of Selective-Hardening for Parallel Applications
	Evaluation of Histogram of Oriented Gradients Soft Errors Criticality for Automotive Applications

	Goals and Requirements
	Working Scenario
	Constraints and Current Limitations
	gpu Fault Injection
	Error Simulation

	Contributions
	kpi and Baseline Approaches

	The Proposed Framework for Error Modeling and Simulation
	An Overview of the Methodology
	Operators Selection
	Architectural Fault Injection
	Campaign Sizing
	Fault List Definition
	Campaign Execution

	Error Model Definition
	Cardinalities
	Domains of Corrupted Values
	Spatial Patterns

	Error Simulation
	Framework Implementation

	Error Modeling
	Operators Selection
	Architectural Fault Injection
	Error Model Definition
	Cardinalities
	Domains of Corrupted Values
	Spatial Patterns
	Same Feature Map
	Multiple Feature Maps
	Generality and Parametrization

	Definition of the Error Models

	Error Simulation
	Overall Structure
	Instrumentation Phase
	Error List Generation
	Injection Phase
	Methodological and Implementation Flaws
	Error Models
	Minor Differences and Setup Effort

	Porting to Other ml Frameworks

	Experimental Evaluation
	Case Studies
	Accuracy Validation
	Execution Times Analysis
	SASSIFI
	TensorFI

	Concluding Remarks

	Conclusions and Future Work
	Future work

	Bibliography

