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Abstract

High-performance networks are those local, metropolitan, and wide area
networks that provide ultra-low latencies, bandwidths in the order of Gi-
gabits per second, and a very high reliability. The access to this class of
networks empowers applications enabling new forms of machine-to-machine
and machine-to-human interactions. In the last years, they started to be
available also outside research facilities, and the 5G cellular network is a
clear example of this trend. 5G has an important additional feature: it is a
wireless network. This characteristic allows also high-mobility robotic vehi-
cles to access the improved network performance.
In this thesis work we investigate how Unmanned Aerial Vehicles (UAVs), a
specific instance of high-mobility robotic vehicles, can benefit from networks
with such improved performance. In particular, we first identify some issues
and limitations of existing state-of-the-art solutions, then we identify and
describe some new application scenarios in which UAVs can be involved.
After this analysis, we come to the conclusion that it is not sufficient to
connect UAVs to a better network to benefit from all the advantages. It is
necessary a software platform to properly support this integration.
Hence, we propose a programming model and an architecture that specifi-
cally target the exploitation of high-performance networks. To evaluate our
contribution, we implement a proof-of-concept software platform that em-
bodies the requirements expressed by the programming model and by the
architecture, and that is deployable into real drones. We named this soft-
ware platform NG IDrOS.
Finally, we test the performance of this new software platform by measuring
a series of different performance metrics in different scenarios. These met-
rics demonstrate that the overhead latency added by the software stack is
lower than the latency introduced by the network transport, and that the
performance of NG IDrOS is inline with the performance of similar software
implementations.
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Sommario

Le reti ad alte prestazioni sono quelle reti locali, metropolitane e geografiche
che offrono bassissime latenze, larghezze di banda nell’ordine dei Gigabit al
secondo e un’elevata affidabilità. L’accesso a questa classe di reti abilita
le applicazioni a nuove forme d’interazione macchina-macchina e macchina-
uomo. Negli ultimi anni, queste reti hanno iniziato a essere progressivamente
disponibili anche fuori dai laboratori di ricerca, e la rete cellulare 5G è un
chiaro esempio di questa tendenza. Il 5G possiede anche una importante
caratteristica aggiuntiva: è una rete wireless. Questo consente anche ai ve-
icoli robot a elevata mobilità di accedere alle migliorate prestazioni della
rete.
In questo lavoro di tesi studiamo come gli Aeromobili a Pilotaggio Remoto
(APR), uno specifico tipo di veicoli robot a elevata mobilità, possano bene-
ficiare di queste migliorate performance di rete. In particolare, prima iden-
tifichiamo alcune limitazioni e problemi dell’attuale stato dell’arte, quindi
identifichiamo e descriviamo una serie di nuovi scenari applicativi in cui gli
APR possono essere coinvolti. Da questa analisi è evidente come non sia
sufficiente connettere gli APR a una rete migliore per beneficiare di tutti
i possibili vantaggi. È necessario che questa integrazione venga supportata
da una piattaforma software specificatamente progettata tenendo al centro
del processo le reti ad alte prestazioni.
Pertanto, proponiamo un modello di programmazione e un’architettura che
mirano specificatamente all’utilizzo delle reti ad alte prestazioni. Per va-
lutare il nostro contributo, implementiamo una piattaforma software che
soddisfi tutti i requisiti del modello di programmazione, che rispecchi la
struttura dell’architettura e che possa essere utilizzabile con droni veri e
propri. Questa piattaforma prende il nome di NG IDrOS.
Infine, testiamo le performance di questa nuova piattaforma software mis-
urando una serie di diversi indicatori di performance in scenari differenti.
Questi indicatori dimostrano che la latenza introdotta dalla piattaforma
software è minore di quella introdotta dal trasporto di rete, e che le perfor-
mance di NG IDrOS sono in linea con quelle di implementazioni software
simili.
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Chapter 1

Introduction

The rapid advancements in network technologies led to high-performance
networks to become more and more common outside experimental setups
or application specific setups. High-performance networks are those local,
metropolitan or wide area networks showing significant improvements in two
major performance indicators: latency and bandwidth. When we talk about
improved performance, we refer to a latency lower than 10 milliseconds and
to a bandwidth in the order of Gigabits per second.
Applications can strongly benefit from these improved performance: high
bandwidth allows a multitude of nodes to be connected at the same time
and lets applications transfer large amount of data in a very short time;
low latency allows distributed central loops in which clients can reach data
providers and service providers in milliseconds. Whenever high bandwidth
and low latency characteristics are present in the context of high availabil-
ity, applications are further extended to mission-critical scenarios requiring
ultra-reliable communication.

On these premises, new scenarios range from the context of massive inter-
net of things such as sensor networks, to extreme real-time interactions such
as tactile internet, and to lifeline operations such as disaster recovery and
e-health services [1]. The adoption and spread of this kind of applications
is expected to have high impact on both social and economic development
of our society in the immediate future [2] and are thus getting increasing
attention from both companies and governments.
Exploiting high-performance network characteristics without the constraints
of a wired connection enables the final step to extend applications to the
most interesting range of scenarios. Using wireless connectivity, devices can
be deployed anywhere, they can operate without any constrictions and, most
important, wireless connectivity fully allows client mobility.

UAVs — commonly known as drones — embrace the concept of client
mobility at its finest. UAVs are getting increasing interest in both indus-
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2 CHAPTER 1. INTRODUCTION

trial and consumer applications because of their ability to physically reach
inaccessible or risky areas. Furthermore, they are incredibly versatile to be
adapted to serve different scenarios because they can carry a specific pay-
load for each specific mission.
Just like drones are the perfect example of high mobility clients, the 5G
cellular network is a vivid example of wireless network connection providing
the aforementioned high-performance characteristics. The new technologies
designed to implement this new generation digital cellular network are ex-
pected to deliver data with less than a millisecond of delay and to provide
peak download speeds of 20 Gigabits per second, as well as the capability
to efficiently serve many more clients simultaneously [3] [4].

High-performance network connectivity can unlock an undiscovered po-
tential of high-mobility clients, extending the class of applications they can
be involved in, and enabling new machine to machine, machine to user, and
machine to environment interactions.
A 5G connected drone could, for example, overcome the limitations com-
ing from the constrained on-board computational power by leveraging cloud
computing or edge computing capabilities. Similarly, leveraging the extreme
low latency, an entire fleet of drones could in real-time exchange data and
resources to collaborate in order to accomplish a given mission. The real
use cases we are going to describe deal with search and rescue mission,
surveillance, aerial mapping, video streaming, and pollution monitoring.

1.1 Contribution

The research work underlying this thesis started with the purpose of iden-
tifying the class of applications that would benefit from high-performance
networks.
The goal was to identify the contexts in which high bandwidth, low latency
and high reliability can significantly impact the applications to a point that
these network characteristics become key enablers.
We studied the current state of the art of high-mobility robotic vehicles,
such as UAVs. We focused on autonomous high-mobility robotic vehicles,
i.e. those capable of accomplishing missions without or with limited human
intervention. Those robots are able to run applications to govern their be-
haviour, movements, and interactions.

We identified the opportunity to investigate the exploitation of high-performance
networks in two specific matters:

• To further overcome classical limitations of high mobility robotic vehi-
cles, such as constrained computational power and constrained power
source they typically carry on board.
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• To extend the class of applications in which high mobility robotic
vehicles can be involved in, by empowering them with new capabilities
that rely on the improved network performance.

The way we are going to investigate these opportunities is not by just
connecting high mobility robotic vehicles to a faster network and to verify
if already existing solutions can perform better. Our approach consists in
identifying, describing and then implementing and evaluating new solutions
that are specifically tailored to leverage the network characteristics.
To analyse the outcomes of such integration between high mobility robotic
vehicles and high performance wireless networks, in this thesis work we
propose a programming model, an architecture and a proof-of-concept im-
plementation, that we in detail describe in the following chapters.

The programming model is built upon two main pillars: the client mo-
bility and the network interactions. In the first place, it has the purpose of
providing a set of abstractions to both pilot the drone and to run navigation
or other kind of applications on it. The application programmer should have
the capabilities needed to interact with the motion-control stack and the on-
board payloads such as sensors and actuators. In this way, the programmer
is able to implement active sensing and active actuation techniques, that is
to implement applications to make the robotic vehicle fully autonomous in
accomplishing its tasks. Second, it provides abstractions for network interac-
tion, enabling the application programmer to implement remote monitoring
and remote control applications. The core contribution given by this pro-
gramming model is to support new advanced capabilities that are in first
place possible thanks to the improved network performance, and that are
not present in state-of-the-art solutions.

The first capability is about sharing hardware resources among clients.
Leveraging the ultra-low latency, programmers are able to build applica-
tions that access in real-time resources made available by other nodes in
the network. The programming model specifically provides abstractions to
support Remote Sensors Sharing, since sensors are core resources in robotic
vehicles missions. The second capability is about providing abstractions to
move the computation of application logic parts towards other hosts inside
the network. Exploiting Computation Offloading, programmers are able to
run complex applications on devices with limited resources by executing
the most intensive parts on hosts that share their computation power and
storage over the network. Thanks to the high bandwidth, large portions
of source codes, the input parameters, and the return values can be moved
among peers in a short time, regardless of their size. Ultra-low latency
guarantees that invocations and results are exchanged in milliseconds. The
last capability, named Communication Bus, leverages the reliability of the
network to empower programmers to have communication mechanisms and
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synchronization mechanisms at the core of their applications. The program-
ming model supports abstractions to create, join, and exchange information
over communication channels, which are created at runtime among peers.
Also in this case, the ultra-low latency guarantees that messages are ex-
changed in real-time.

The proposed architecture has the purpose of showing how all the in-
volved elements can be layered. Correctly layering the elements allows us
to create a clear distinction of functional roles and to correctly define the
requirements for each specific role. The architecture is built around the
programming model and it is meant to be flexible enough to support future
changes or extensions in the model itself. Being able to extend the architec-
ture and the programming model is central in the context of high-mobility
robotic vehicles, because it enables the integration towards new platform
and systems.

To conclude, a proof-of-concept implementation of the aforementioned
architecture and programming model is provided in order to be able to per-
form real-world use-cases evaluations and to test possible implementation
solutions. The software platform we implemented specifically targets UAVs
as instance of high mobility robotic vehicles, and the 5G cellular network
as instance of high-performance networks. This choice is made without any
lack of generality: everything is described applies to every kind of high mo-
bility robot such as copters and rovers, as well as other high-performance
network instances.

To evaluate the performance of this software platform, we designed and
executed a series of experiments to calculate the overhead that the software
stack adds over the network latency, as well as to evaluate how it performs
compared to similar implementations. On average, the software stack intro-
duces a latency that is lower than the one introduced by the network, and
performs better than the comparison applications in most of the conditions:
this demonstrates the suitability of the implementation choices we made.
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1.2 Thesis structure

The rest of this thesis work is structured into five chapters.

Chapter 2 contains the detailed description of background concepts that
are widely used in this document: UAVs, the 5G cellular network and the
Mobile Edge Computing. We then perform the analysis of current state-of-
the-art software platforms for drones in order to identify the gaps that limit
these software solutions from fully exploiting high-performance networks.

Chapter 3 contains the description and analysis of some motivating sce-
narios showing how high-mobility robotic vehicles can benefit from improved
network performances. Such benefits are able to solve part of the gaps
identified during the state-of-the-art analysis, as well as to support totally
new capabilities. From these scenarios, we derived a list of functional and
non-functional requirements that drove the design of a programming model.
Specifically, we describe three macro-functional areas that constitute the
core contribution of the programming model: Remote Sensors Sharing,
Computation Offloading and Communication Bus.

Chapter 4 presents the architecture of the software platform we designed
to support the programming model, named NG IDrOS. Particular emphasis
is given to the description of how functionality are layered and how compo-
nents are decoupled, and how this design strategy led to extensibility and
deployment flexibility.

Chapter 5 contains the description of the implementation we developed
for NG IDrOS, how it embodies the programming model and the architec-
ture that are outlined in previous chapters, and the choices we made during
the process. The most relevant part of this implementation is the one deal-
ing with the network. We decided to implement a network protocol based
on Calvin, an environment for IoT applications that mixes the Actor model
with the Flow Based programming model.

Chapter 6 presents the performance metrics, the experiments and the
comparison we performed to evaluate the implementation of the software
platform. In particular, we are going to show that the latency introduced
by NG IDrOS is lower than the latency introduced by the network transport,
and that its performance are in line with the performance of similar appli-
cations. This demonstrates the suitability of the implementation choices we
made.

Finally, Chapter 7 summarizes the conclusion of this thesis work and
proposes some possible future works to expand it.
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Chapter 2

Background and State of the
Art

2.1 Background

The purpose of this section is to provide to the reader some basic concepts
about paradigms and technologies that will serve as background knowledge
for future reasoning in this thesis work.
We will in detail describe UAVs as instance of high mobility robotic vehicles,
and the 5G cellular network as instance of high-performance networks. Fi-
nally, we will outline the Mobile Edge Computing paradigm, which is tightly
coupled with 5G.

2.1.1 Unmanned Aerial Vehicles

An Unmanned Aerial Vehicle, often shortened to UAV and commonly known
as drone, is an aircraft without a human pilot on board. The UAV is usually
a component of a more complex system including also a ground-based con-
troller connected to the drone. The whole system, including UAV, ground-
based controller and communication infrastructure is known as unmanned
aircraft systems (UAS). UAVs can fly autonomously or be remotely piloted.

UAVs developed mostly in military applications where missions are too
dangerous for humans or even unfeasible using traditional crewed aircraft.
Thanks to the rapid technological development of the XXI century, UAVs
started to be more and more employed also in civil applications. A big in-
put to civilian drones development came from the Do-It-Yourself community
that started to grow in 2007 as a group of amateurs that began to assemble
drones themselves [5].

Some current common civilian UAVs applications are [6]:

7
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• Inspection and monitoring;

• Surveying and mapping;

• Aerial photography and imaging;

• Search and rescue operations.

Outside these common applications, several experimental projects are being
carried on. For example, in 2016 Facebook tested solar-powered autonomous
drones to act as relay stations to provide internet access to remote areas [7].
Similar efforts are being carried out by Loon LLC — an Alphabet Inc. sub-
sidiary — to experiment high-altitude balloons placed in the stratosphere to
create an aerial wireless network to provide internet access to rural areas [8].

UAVs are extremely versatile and can be exploited in a very wide range
of scenarios because of their unconstrained, application-controlled mobility.
Moreover, they are able to carry a specific payload for a specific application.
They started to gain even more interest with the growth of the Internet
of Things, to the point of letting researchers talk about the Internet of
Drones [9]. The integration of UAVs inside the IoT ecosystem resulted to
be particularly successful for two main reasons [10]:

• Drones benefited from many technical advancements developed for
other IoT applications and devices. IoT empowered drones to evolve
into smart drones, with the possibility of running applications to make
them fully autonomous in fulfilling their tasks. The main result was
to overcome the locality bonding which constrained drones to work in
presence of a human operator.

• UAVs further extended IoT applications becoming IoT enablers on
their own. Drones can be sensors or actuators at the same time, and
their extreme mobility allows to carry these sensing and actuating ac-
tions everywhere, especially where the deployment of other IoT devices
is impossible or inconvenient.

However, there are three factors that can affect their operability and
should be carefully taken into account when designing drones applications:

• The constrained load capacity: drones are characterized by a max-
imum weight they can carry. This limit sums up the weight of the
drone itself (including engines, batteries, etc) and the weight of the
payloads. Increasing this limit requires, in most cases, to change the
size or the type of drone itself, for example moving from a quadcopter
to a hexacopter.
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• The constrained computational power: often drones do not host enough
on-board computational power to support real-time applications or
computational intensive applications.

• The limited operational times: drones operability is strongly affected
by power consumptions because this factor directly affects flight times.
Large batteries grant extended flight times but, at the same time, they
increase the overall weight, reducing the capacity for other payloads.

The extreme versatility we have described so far led to the development
of a very wide range of different drones during the years. A 2011 classifica-
tion, reported in 2.1, tries to characterize UAVs based on: operative range,
flight altitude, flight duration and weight [11].

Such classification is the one usually taken into consideration by regu-
latory laws, distinguishing which drones can be piloted without any licence

Category
Operative
Range [km]

Flight
Altitude [m]

Flight
Duration [h]

Weight [kg]

Tactical UAV

Nano < 1 100 < 1 < 0,0250

Micro < 10 250 1 < 5

Mini < 10 150 - 300 < 2 < 30

Close Range 10 - 30 3 000 2 - 4 150

Short Range 30 -70 3 000 3 - 6 200

Medium Range 70 - 200 5 000 6 - 10 1 250

Medium Range
Endurance

> 500 8 000 10 - 18 1 250

Low altitude
Deep Penetration

> 250 50 - 9 000 0,5 - 1 350

Low Altitudine
Long Endurance

> 500 3 000 > 24 < 30

Medium Altitudine
Long Endurance

> 500 14 000 24 - 48 1 500

Strategic UAV

High Altitude
Long Endurance

> 2 000 20 000 24 - 48 12 000

Special purpose UAV

Unnamed
combat aerial
vehicle

1 500 10 000 2 10 000

Table 2.1: Classification of UAVs based on operative range, flight altitude,
flight duration and weight.
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and which ones require a training course and a licence. Drones from Nano,
Micro and Mini categories are the ones more involved in civilian applica-
tions, mainly for the affordable devices costs and operational costs. Also the
limited flight altitude and the little weight allow to operate without strong
regulatory constraints. Drones falling into these categories are the ones in
scope for the purpose of this thesis work.

A more recent classification, realized in 2017, is instead focused on the
capabilities the UAV owns rather than on the wide disparity of size and
capacity [12]. This classification, reported in Table 2.2, is better at high-
lighting what the UAV can do and is thus convenient to understand when a
specific UAV is suitable for a specific application.
Categories we are mainly interested in for the purpose of this thesis work
are Navigation, Sensors and Data. The capability to pilot the drone using
an onboard navigation system, in particular, is a basic assumption for the
class of applications we are going to describe.

Category Capability Description

Launch and recovery The UAV owns or uses specific capa-
bilities to insert itself into the airspace
(“launch” phase) and/or capabilities to
be retrieved by an operator (“recovery”
phase)

Navigation The UAV is able to receive real-time
information from either an operator or
from an onboard navigation system

Sensors The UAV hosts technologies that de-
tect and measures various physical
properties

Data The information collected by the UAV
must either be stored locally or trans-
mitted to a remote location

Stealth The UAV is able to mask its presence
in the airspace, challenging both radars
and visual detection

Table 2.2: Classification of UAVs based on capabilities.
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2.1.2 5G cellular network

The 5G cellular network, often just shortened to 5G, is the 5th generation
cellular network technology described by the International Telecommunica-
tion Union (ITU ) in the IMT-2020 Standard.

Table 2.3 summarizes the minimum requirements for IMT-2020 5G can-
didate radio access technologies, according to [13].

Capability Description 5G requirement

Downlink peak data rate Minimum data rate technol-
ogy must support

20 Gbit/s

Uplink peak data rate Minimum data rate technol-
ogy must support

10 Gbit/s

User experienced downlink
data rate

Data rate in dense urban test
environment 95% of time

100 Mbit/s

User experienced uplink data
rate

Data rate in dense urban test
environment 95% of time

50 Mbit/s

Latency Radio network contribution
to packet travel time

1-4 ms

Mobility Maximum speed for handoff
and QoS requirements

500km/h

Connection density Total number of devices per
unit area

106/km2

Area traffic capacity Total traffic across coverage
area

10 Mbps/m2

Table 2.3: 5G cellular minimum network requirements from IMT-2020 stan-
dard

5G is not only an incremental advance over the 4G technology but, ex-
actly like the previous generations did, it is a major paradigm shift that
includes very high carrier frequencies with massive bandwidths, extreme
base station and device densities, and unprecedented numbers of antennas,
as it is reported in [14]. However, unlike the previous four generations, it
will also be highly integrative: tying any new 5G air interface and spectrum
together with LTE and WiFi to provide universal high-rate coverage and a
seamless user experience [14].

The high global interest in 5G research is fuelled by two orthogonal advance-
ments: in one hand the technical aspects such as the expected end-user high
bandwidths, low latency and the ability to support a very high number of
devices. On the other hand, the functional features that 5G is going to
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support, such as fixed-mobile convergence, device to device communication,
and the compliance with the Open Access network architecture [15].

5G is expected to have a rapid spread in the following years, being all
the major telecommunication carriers committed on a fast large-scale de-
ployment. It is the perfect technological candidate for bringing connectivity
to high-mobility robots like UAVs, given the widely extended coverage, the
lightweight modems and the easy integrability with existing connectivity
stacks currently supporting 3G/LTE mobile networks.

These are all reasons that make the 5G cellular network the perfect in-
stance of high-performance network for all the examples and use cases later
described in this thesis.

2.1.3 Multi-access Edge Computing

Multi-access edge computing, formerly mobile edge computing and often
shortened to MEC, is a technology developed with the aim of reducing mo-
bile networks load by locating storage and computing resources closer to
clients, avoiding data to be uploaded and downloaded to and from devices
and data centers connected to the internet [16]. This need is directly con-
nected to the exponential growth of mobile traffic, mainly addressable to the
changed habits of internet users, together with the spreading of the Internet
of Things and machine-to-machine connections.
MEC is based on virtualization technologies and infrastructures to enable
the deployment of applications directly at the edge of mobile networks, that
are macro base stations eNodeB of the LTE cellular network o Radio Net-
work Controller (RNC) of the 3G cellular network.

Moving applications closer to clients not only reduces the network load but
also allows new forms of interactions. It enables users to benefit from the
proximity of data sources, which leads to ultra-low latency and improved
bandwidth utilization. To provide an example, measures read from a sensor
will not need to hop across multiple datacenters spread in several countries,
but it will be directly available to the application.

Besides the technical aspects, MEC addresses two distinct market needs
at the same time:

1. The need of network operators to react to the growth of mobile traffic
in order to maintain quality of service, but especially to keep generat-
ing revenues and to reduce costs.

2. The need of enterprises to engage customers in more efficient, secure,
and low latency connections leveraging new forms of interaction.



2.1. BACKGROUND 13

MEC takes the form of an IT service environment that network operators
are expected in the future to open to certified third parties in order to deploy
personalized applications and address enterprise requests [17].
Applications will be able to leverage a wide set of APIs to access real-time
information about the radio network status in order to further improve and
personalize the user experience. MEC is recognized by the 5G Infrastruc-
ture Public Private Partnership, (5G-PPP), as one of the key emerging
technologies for 5G networks, together with Network Function Virtualiza-
tion and Software-Defined Network [18].

Figure 2.1, taken from [19], depicts the MEC framework and shows the
involved high level functions.
The network layer represents the connectivity to local area networks, cellu-
lar networks, and external networks such as the Internet.
The host layer contains the Mobile Edge (shortened to ME) host entity and
the related management entity. The ME host is further split into three
different entities: ME applications, ME Platform and the virtualization in-
frastructure. The ME platform provides a collection of baseline functionality
that are required to run applications and it enables them to discover, adver-
tise, offer and consume services. Together with the virtualization infrastruc-
ture, the ME platform provides computing, storage and network resources
to ME applications. These latter run as virtual machines on top of virtual-
ization infrastructure, and they interact with the ME platform via the APIs

Figure 2.1: The MEC framework.
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exposed by the platform itself. Applications can also offer services back to
the platform that can further provide those services available to other ap-
plications.
The system layer contains the system-level management entity, which has
the global visibility over the whole ME system.

Mobile Edge Computing is a technology that specifically targets mobile net-
works, but the concept of edge computing in the purpose of moving storage
and computing capabilities closer to clients, in order to achieve the benefits
of reduced latency and increased bandwidth and locality, is a concept that
can be exploited outside the context of mobile networks. In this thesis work,
different use cases will involve Mobile Edge Computing together with 5G,
but everything that is going to be described in this document can be applied
to any other high performance network and edge computing solution.

2.2 State of the art

2.2.1 Evolution of UAVs solutions

The research stream of software solutions for civilian UAVs progressively
addressed problems of increasing complexity.
The first issue that was addressed was the autonomy of drones. At the very
beginning, drones were piloted by a human being by means of a radio con-
troller and the limited aid of basic flight controllers. When flight controllers
became more sophisticated, being capable of autonomously takeoff, reach
a series of locations (called waypoints), keep the altitude and land, radio
controllers were replaced by ground stations. Ground stations are able to
plan the mission and monitor the execution, with human intervention rele-
gated to the handling of critical situations and failures only. Using ground
controllers, it is now possible to execute more complex applications and also
to build interactions with other systems. UAVs capabilities are incredibly
extended but autonomy is not yet totally achieved: a connection with the
ground controller is at any time necessary since no application logic is hosted
directly on the drone, that is completely slave of the flight commands com-
ing from the ground controller. Drones operative range is limited to the
connectivity range of their ground controller. But the range is not the only
constraint: it is not sufficient that a connection exists, but it also needs
to be reliable and fast enough during the entire mission. An application
coordinating multiple drones, at this point in the state of the art, needs to
synchronize the relative ground stations, or to empower the ground station
to control multiple UAVs simultaneously. Applications are strongly affected
by these limitations: a data gathering mission, for example, was rarely able
to transmit sensors readings in real time, while it was most likely to store
them to be later dumped and analysed.
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In this strive for autonomy, the next step was to move the application logic
directly on the drone. This was possible also thanks to the miniaturiza-
tion and cost reduction of computers, that could be carried onboard and
directly connected to the flight controller, together with sensors and actua-
tors. Applications can now be deployed directly into the drone, expanding
the operative range to potentially unlimited. At this point, however, new
constraints arise. First point: the computational power of computers that
can be carried on board is limited, not comparable to the one provided by
ground controllers, and the power they absorb affects the already little flight
times. Plus, a connection with the drone is still required for all those mis-
sions that expect to monitor results in real time, or the ones that need some
human intervention at some point. Still, synchronization and information
exchange with other UAVs during the flight remains a problem.

To address these new constraints and needs, drones were connected to the
internet. The spread and the significant performance improvements of wire-
less networks, and especially of cellular networks, made remote UAVs mon-
itoring, control and cooperation possible. The operative range is no more
constrained and synchronization inside fleets is now much simpler. This in-
tegration between internet and drones resulted to be particularly successful
because drones joined the fast growing IoT ecosystem, and started to benefit
from the researches and the improvements reached in other related fields.
The integration between UAVs and internet was so successful and the num-
ber of internet connected drones in the near future is expected to be so
high that led researches to think about the Internet of Drones: “a layered
network control architecture designed mainly for coordinating the access of
unmanned aerial vehicles to controlled airspace, and providing navigation
services between locations” [20].

The purpose of this section is to describe the most relevant solutions de-
veloped during the years, either as part of research projects or as part of
commercial products. For each system we are going to highlight which topics
they directly address among the ones described in the evolution process.

2.2.2 Robot Operating System

Robot Operating System, often shortened as ROS, is a suite of software
frameworks and libraries for robot software development. ROS was born
in 2007 at Stanford University [21] with the purpose of making a baseline
system that would provide a starting place for others in academia to build
upon. Despite his name, ROS is not an operating system in the traditional
sense of process management and scheduling. It provides services designed
for a heterogeneous computer cluster such as hardware abstraction, low-level



16 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Figure 2.2: Example of a basic ROS proces, taken from [22].

device control and message-passing between processes.

The core of the ROS architecture is centered on processes: they are rep-
resented as graphs where computational centers are the nodes, and edges
are called topics and represent information sharing routes among the nodes.
Through topics, the nodes can share information about sensor data, control,
state, planning, actuator, and application specific messages [22].
Around the core system, several packages of tools have been built to in-
crease the capabilities of systems by simplifying and providing solutions
to a number of common robotics development. Packages including common
and widely adopted algorithms and tools are shipped included with the ROS
distribution, while many other are developed by individuals, addressing very
specific problems, are distributed through code sharing. This huge modular-
ity, strongly designed upon open-source models, contributed to build a huge
ROS ecosystem and to spread the diffusion of ROS in very heterogeneous
application scenarios.

The scope of ROS is very wide: given its very low level nature, it can
be employed as “robot middleware” upon which it is possible to build po-
tentially any kind of application. In March 2011, a package for MAVLink
compatibility was released in the ROS ecosystem, porting ROS on UAVs [23].
The benefit coming from the adoption of ROS in research works is that it
allows focusing on a specific topic while exploiting his extraordinary wide set
of already implemented tools. For example, researchers worked on drones
interoperability through web services by means of REST interfaces: their
choice of using ROS as underlying layer allowed their software solution to
be insantly extended to the already available capabilities [24] in the ROS
ecosystem. Similarly, the possibility of reusing components already imple-
mented and tested by a very large community was crucial for researchers
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working on the design and test of missions for a network of autonomous
underwater vehicles [25].

2.2.3 IDrOS

IDrOS is a software platform developed by Daniel Cantoni as part of his
master thesis “System Support for Internet-connected Drones” and research
work at NESLab laboratory of Politecnico di Milano [26].
The main purposes declared in his work are:

• To fully integrate UAVs into the IoT context, enabling machine-to-
machine interaction in order to eliminate the need of a human based
control.

• To overcome the limitations of the classical waypoints based navigation
in order to make UAVs capable of autonomous navigation.

From these purposes, three functional requirements are derived as driver
for the entire research work:

1. Provide internet interfaces to control UAVs. Those interfaces should
support different internet protocols in order to allow the integration
of drones in a variety of applications.

2. Support an application model based on Active Sensing techniques in
order to allow autonomous UAV navigation exploiting data read from
sensors. This application model should abstract all the implementa-
tion details related to drone piloting.

3. To be compatible with different sensor models by enabling developers
to write custom sensor drivers to be installed into the system.

As depicted in Figure 2.3, IDrOS architecture is split into three layers:
hardware abstraction, application logic and internet interface.

Hardware abstraction This layer hides the implementation details related
to the communication with the drone flight controller and with the sensors
installed onboard. It provides high level interfaces to be exploited by upper
layers.
The sensor component provides capabilities to:

• Provide a standardized access point to sensors.

• Discover installed sensors at runtime.

• Retrieve values read from the sensors, hiding the implementations de-
tails of each specific sensor.
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The drone component provides capabilities to:

• Pilot the drone, hiding the implementation details relative to the spe-
cific communication protocol.

• Access to telemetry data coming from the flight controller.

Application logic This layer provides the functionality needed to run ap-
plications. It is further split into four components:

• Modules Manager This component exposes functionality to let the user
upload, list, delete applications. Applications can reference to either
sampling applications or data analysis applications, actually the two
types of application supported by the implementation.

• Mission Manager This component contains the biggest part of the appli-
cation logic needed to handle the flight, launch and control applications
and acquire data from sensors.

• Sensors Manager This component offers an even higher level of abstrac-
tion to interact with the sensors installed on board, actually wrapping
the sensor component from the hardware abstraction layer.

• Fail-Safe Manager This component holds all the application logic in charge
of handling the drone when some error occurs at any level in the soft-
ware or the drone flight is compromised by physical events. The main
goal of this component is to offer the functionality to safely land the
drone.

Internet Interface This layer holds all the capabilities needed by the user
or by other machines to communicate with the UAV and the IDrOS in-
stance. It supports several bindings to different internet protocols and it is
structured to easily support the addition of new ones.
The binding provided in the current IDrOS implementation are CoAP,
Constrained Application Protocol, and MQTT, Message Queue Telemetry
Transport.

IDrOS supports two deployment modes:

• Directly into the drone by means of a companion computer connected
to the flight controller. This is the deployment mode that best fits
with the purposes of the research work because the UAV is completely
autonomous. Limitations to this approach come from the available
computational power on the drone, that should be sufficient to run
iDrOS and given tasks.
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• Into the ground-based controller. In this deployment mode, the entire
mission is managed from the ground and flight parameters only are sent
to the drone. This overcomes limitations coming from computational
capacity, but it is required that a fast and reliable communication
channel (e.g. radio) is available. Drone operability is limited to the
coverage of such communication channel (e.g. for radio it is limited to
few kilometres).

Figure 2.3: IDrOS architecture.
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2.2.4 DroneKit

DroneKit is an open source SDK for Python and Android released by 3D
Robotics, Inc in 2015 [27].
The main issue addressed by DroneKit is to abstract several low level as-
pects of MAVLink, which is one of the most used protocols to communicate
with small UAVs.
DroneKit provides high level interfaces for connecting, monitoring and con-
trolling a vehicle [28]. Using such interfaces, researchers and developers can
easily implement the parts of their applications dealing with path planning,
autonomous flight and telemetry monitoring. The reduced effort to be spent
in controlling the drone allows developers to focus more on the core part of
their applications.

DroneKit became popular especially as part of the drones Do-It-Yourself
community. By abstracting low level concepts of MAVLink, DroneKit makes
very easy to pilot the drone without advanced aerodynamics knowledge or
flight control knowledge. Basic commands such as takeoff, land and flight-
to are sufficient to handle the movement of the drone, without the need of
understanding how DroneKit translates these instructions to the flight con-
troller, or how the flight controller translates these inputs to the rotors.

DroneKit is distributed in the form of two distinct SDKs providing the
same functionalities in two different deployment setups:

• Python SDK This SDK is designed to deploy applications directly on the
drone, by means of a companion computer directly connected to the
flight controller. This deployment setting is designed to make the
drone fully autonomous since no connection is needed with ground
controllers.

• Android SDK This SDK is designed to develop mobile applications to con-
trol the drone. Only flight information and commands are sent to the
flight controller by exploiting remote MAVLink interface capability.
This deployment setting constraints the operative range of the drone
since a low latency, reliable connection should be in place between the
mobile device and the drone.

2.2.5 Flytbase

FlytBase is a commercial platform provided by FlytBase, Inc that includes
hardware and software solutions to allow easy deployment of intelligent
drones, connected to cloud-based business applications.
FlytBase allows developers to build new applications using drones control
APIs and cloud APIs.
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FlytBase provides also a set of already implemented applications and the
possibility to get consulting during the development of new ones.
Typical FlytBase applications are:

• Warehouse Management;

• Security & Surveillance;

• Emergency Response;

• Delivery;

• Fleet Survey and Mapping.

FlytBase is made up of two main architectural components:

• FlytOS It is an operating system built on ROS (Robot Operating System)
and Linux to be installed directly into a companion computer con-
nected to the flight controller. It allows to pilot the UAV supporting
different flight stacks, to manage a wide range of payloads and on-
board sensors. It also offers standard OS capabilities such as logging,
updates management and user authentication. FlytOS is designed to
be natively integrated with FlytBase cloud capabilities.

• FlytCloud It provides APIs for real-time access and control to drone navi-
gation, telemetry and payload. FlytCloud offers Artificial Intelligence
capabilities, such as real-time object classification, object counting and
patterns change detection, as well as data analytics capabilities, such
as OrthoMosaic mapping, 3D reconstruction, Normalized Difference
Vegetation Index (NDVI )

The main customer target of FlytBase is constituted by companies; for this
reason they provide ad-hoc integration with several enterprise solutions such
as Microsoft Dynamics 365, SAP, and Salesforce.

2.2.6 Gap in the State of the Art

As it is extensively described in Section 1.1, the purpose of this thesis is to
investigate the integration of UAVs and high-performance networks in two
separate directions: to overcome historical UAVs limitations and to further
extend their capabilities.
Following these two directions, we can state that iDrOS and DroneKit
mainly focus on the first one, that Flytbase focuses on the second one,
and that ROS is so general purpose that it addresses both directions.

Both DroneKit and IDrOS main purpose is to make drones autonomous
by enabling application programmers to write and deploy applications onto
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them. Applications can leverage interfaces to pilot the drone and also to
manage the payloads. Despite DroneKit, IDrOS provides specific capabil-
ities to manage sensors installed on board with the purpose of enabling
application developers to implement active sensing techniques. They both
offer functionality to remotely monitor the drone, by acquiring the telemetry
and other parameters. DroneKit and IDrOS also enable machine-to-machine
interactions by creating remote interfaces that can be leveraged to control
and monitor. However, none of them offers any capability to support coor-
dination or inter-drone communication: any effort in this sense is entirely
left to the application developer.
DroneBase adds to the aforementioned capabilities all the benefits coming
from cloud connectivity, introducing new concepts such as scalability and
elasticity. DroneBase is built upon ROS, but it is a commercial closed-source
solution, and it mainly targets companies. It can be looked at as a reference
to investigate how UAVs applications are employed in business, but it can
not be taken into consideration for research purposes.
Talking about ROS, its scope is very general since it targets the entire spec-
trum of robots. It could virtually support each kind of UAVs application.
Using ROS, it is very easy to reuse components written for other research
areas, but as a drawback this extreme generality requires a lot of effort to
develop specific and scope optimized solutions.

None of the analysed solutions was built keeping high-performance net-
works at the core of the design process. This means that even enabling
them to such an improved network connectivity will not fully materialize
the potential benefits. All of them allow building custom applications but
the programming models and the architectures they are built upon are not
adequate to fully enable new application scenarios that involve ultra-low
latency, high bandwidth and extreme reliability.

In addiction to this, the adoption rate of the state-of-the-art systems we
have described so far is very low. Even if advanced solutions are available,
the vast majority of real applications do not leverage them. Many real-world
scenarios still rely or require a human pilot on site. Even beyond line of sight
piloting is still very far from being adopted. We can conclude stating that
there is a lot of work to be done in order to fully discover and exploit the
potentiality of drones.



Chapter 3

Exploiting High-Performance
Networks

3.1 Motivating Scenarios

The purpose of this section is to describe some real world use cases show-
ing how the integration between high-mobility robots and high-performance
networks leads to new application scenarios. In order to describe real use
cases, we are going to use UAVs as instances of high-mobility robots, and
5G as instance of high-performance networks. This specification, however,
does not affect the generality of the discussion: everything that is described
in the following sections can be abstracted and related to any type of robot
and network.
From these use cases, we are going to derive the capabilities and the func-
tionality that a software platform must provide for this integration to be
successful. These capabilities serve as input for the formal definition of the
programming model, provided in Section 3.2.

3.1.1 Sensors Sharing

In this use case, two drones are involved in a search and rescue mission over
a mountain area recently involved in a snow avalanche. Several people may
be involved in the disaster and the purpose of the UAVs crew is to find
trapped skiers in order to report their presence to the rescue teams. One
of the two drones is equipped with a radio receiver to scan for signals com-
ing from the avalanche beacons. Avalanche beacons are safety equipment
for skiers that actively transmit a radio signal at a specific frequency. The
second drone is equipped with an infrared camera in order to identify heat
sources that may come from trapped skiers. The two drones are equipped
with two different companion computers running two distinct applications
that control their flight path. The two drones are connected via 5G network,

23
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and the applications are able to synchronize and to mix data coming from
both the radio receiver and the infrared camera with the purpose of finding
the best path. First, the two UAVs follow the increasing gradient of the
radio signal, then the area is scanned with the infrared camera.

The software platform supporting such mission must allow the UAVs to
share their sensors, that is to allow a specific client to read the data com-
ing from a sensor physically connected to a different host. Exploiting the
low latency of high-performance networks, data can be exchanged in near
real time and clients experience no difference in reading from a local sen-
sor or from a remote sensor. Moreover, thanks to the high bandwidth, a
huge number of sensors and clients can push and pull data simultaneously
without affecting the quality of the service. The size of each reading can be
bigger and still transferred in a short time, effectively supporting a higher
resolution for the measurements.

The possibility to share sensors between clients is an enabling feature for:

• Creating a specialized crew of drones in which each member can con-
tribute to the mission with specific hardware equipment.

• Optimizing the overall power consumption by not duplicating the
hardware.

• Reducing the costs, since specific hardware and software components
can be deployed on a single client only and shared among the oth-
ers. This reduces purchase, installation, configuration and mainte-
nance costs.

3.1.2 Best Sensor Selection

In this scenario, a crew of UAVs is used to supervise a large distribution
warehouse. Each drone patrols a specific path, and they take turns in order
to overcome battery recharging times. When a threat is identified additional
drones are sent to the place in order to monitor a wider area. The warehouse
is composed by an internal, covered part, and an outside part. The same
drone may patrol both the inside and the outside of the warehouse. Each
UAV is equipped with a standard GPS sensor, but since the precision in the
inside part of the warehouse is not high enough to support the patrolling
mission, they are able to dynamically switch from the GPS to an indoor po-
sitioning system that is installed for the purpose. As soon as the precision
of the GPS returns above the minimum threshold, the navigation system
can switch back to the GPS sensor.

The purpose of this use case is to show how a software platform supporting



3.1. MOTIVATING SCENARIOS 25

this scenario must provide functionality to switch the provider of a specific
measurement at runtime, based on user-defined metrics and logics. In the
use case provided, the switch from one positioning system to the other is
triggered by the accuracy value of the GPS sensor.
The software platform must allow an application developer to implement
custom logic to trigger the switch among quantity providers: an example
may be to prefer a remote sensor and to accept a lower accuracy when the
battery is low, and to prefer a local sensor and a better accuracy when the
power level is high. Providing high level APIs to application developers to
build that kind of custom logics allows to adapt this capability to any spe-
cific mission scenario.
The examples provided so far describe a switch between a local sensor (i.e. a
sensor physically connected to the drone) and a remote sensor (i.e. a sensor
exploited remotely), but the same mechanism may be implemented for local
to local sensors switch, or for remote to remote sensors switch.

3.1.3 General Purpose Sensing

A drone is used to produce aerial shooting of a football match. The images
taken with the onboard camera offer to the viewers a unique point of view.
However, it is really difficult for a human pilot to keep the camera steadily
aligned with the position of the ball and to follow the rhythm of the match.
The application logic that pilots the drone and controls the camera is able to
remotely access the data coming from the tracking cameras already present
in the stadium. Knowing in real time the position of the ball and its esti-
mated trajectory allows to correctly position both the camera and the drone
itself.

The purpose of this use case is to show that the remotely exploited sensors
are not necessarily part of the mission as it happens in the first use case. The
purpose is to extend the range of this capability by allowing clients to read
data from sensors that are deployed for a different specific mission, but that
are at the same time available to support different applications. This allows
sensors to become multipurpose, providing the ability to serve applications
different from the ones for which they were originally intended for. In the
use case just described, the drone is leveraging some sensors that it knows
for sure are present (the ball tracking cameras in the stadium). The UAV
knows exactly how the sensors work and how to interact with them. This
scenario can be further extended by enabling clients to discover sensors at
runtime, as it happens in the use case below.

A wide countryside area is facing air pollution issues due to malicious and
illegal spill of toxic waste. People living in the area started to install sensor
stations near their houses, similar to home weather stations. These sensor
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stations are able to detect the pollution agents in the air and to publicly
expose the data they are collecting. UAVs flying over the area can remotely
access these data and use them to search for the illegal spills, by following
the increasing gradient of pullution agents concentration.

The difference with respect to the first use case is that now the number,
the type and the presence of the sensors is not a priori known by the ap-
plication. A software platform supporting this kind of applications must
enable runtime discovery of sensors and a specific mechanism to understand
the characteristics of unknown sensors, such as the unit of measurement and
the accuracy they provide.
In such context, sensors may appear and disappear at any time, and most
important, they are in relation with the position of the client. The discovery
mechanism must not apply to the entire population of the sensors, but it
must be limited to a specific area. In this sense, the software platform must
be robust with respect to the disappearance of a sensor, because it goes
away or because the client moves too far from it. On the other side, new
sensor may appear at any time.

3.1.4 Computer Vision for Assisted Navigation

A UAV is used to perform last mile delivery in a large city. While flying
among buildings, the GPS signal is not always present or accurate enough
to guarantee the precision needed for the autonomous flight. When the
GPS signal is not sufficient, the application can switch to a computer-vision
based navigation system. This navigation system is highly computational
intensive and its execution latency limits the max speed that the drone can
reach and the overall mission execution time. The application is able to
offload the computation of such navigation system to an external host that
is more suitable for computation, in order to reduce the latency. Whenever
the network conditions degrade and it becomes convenient to run the nav-
igation system onboard, the application is able to inload it any time. As
soon as the GPS signal is accurate enough, the application switches back to
this preferred navigation system.

This use case requires a software platform able to offload parts of the ap-
plication logic to a remote host and to inload it again. It must support
a peer-to-peer code exchange and a remote invocation mechanism. The
straightforward purpose of such capabilities is to improve performance by
moving complex computation to more suitable hosts. Other scenarios may
involve the exploitation of remote storage capabilities, the execution of crit-
ical parts of the application in a secured hosts, or the possibility to reduce
battery consumption by reducing the CPU load. For this kind of capabilities,
all the improved characteristics of the high-performance networks are key
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enabling elements: the low latency guarantees that the invocation requests
and results are quickly transferred among the clients; the high bandwidth
allows offloading large code parts or to perform a remote invocation with a
huge number of input parameters; the high reliability guarantees that no in-
vocation requests and no execution results are lost during the transfer from
one client to the other.

3.1.5 Peer to Peer Synchronization

An open land space is used for takeoff and land operations of a huge traffic
of drones. No central authority exists to control the traffic of the area. A
distributed synchronization mechanism exists among the drones in order to
avoid collisions. When a drone wants to takeoff or it is approaching the
space to land, it computes a desired trajectory and publishes it over a com-
munication bus. The trajectory is transferred to all the other drones in the
area in order to allow possible colliding drones to change their plan. When
two or more drones identify a possible collision, they open a dedicated chan-
nel over the communication bus and synchronize to change the trajectories.
This collision avoidance mechanism does not keep a central state, but the
knowledge needed to avoid crashes is kept in each client in the area.

This use case requires a software platform that is able to support the com-
munication of clients based on a communication bus, where messages are
sent over specific channels. Clients are able to create, join and leave chan-
nels at runtime. For this scenario, not only the ultra-low latency of high-
performance networks is relevant to ensure rapid messages exchange, but
also the high reliability ensures in-order delivery and that no messages get
lost. This last point enables this mechanism to be leveraged in critical parts
of the missions.

3.2 Programming Model

In this section it is described the programming model we designed to specif-
ically target the integration with high-performance networks. As it is men-
tioned in Section 1.1, the purpose of this integration is to overcome classical
limitations of UAVs and to expand the class of applications they can be
involved in.

From the use cases outlined in Section 3.1 we derived three macro-functional
areas that drove the design of the programming model: Remote Sensors ad-
dresses the functionality described in Section 3.1.1, Section 3.1.2 and in
Section 3.1.3; Computation Offloading addresses the functionality described
in Section 3.1.4; Communication Bus addresses the functionality described
in Section 3.1.5.
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Before outlining the programming model in detail, it is now useful to clearly
state which are the classical limitations that we want to overcome as well as
which are the new kinds of applications towards which we want to extend
the usage of drones to.
As it is described in Section 2.2, there is a trade-off between the degree of au-
tonomy that a UAV can achieve in executing its mission and the complexity
of the mission itself. A higher degree of autonomy requires that the drone is
not dependent on any ground station and that the applications are directly
loaded onto it. Being applications directly run onboard, the complexity
that can be managed is strictly dependent on the computing platform that
is installed on the drone. Typically, the computing platforms available for
civilian drones offer low power consumption processors with small computa-
tional power. A similar argument can also be extended to storage capabili-
ties, which are strictly related to hardware performance. The programming
model we developed proposes abstractions to overcome these limitations by
leveraging an approach inspired from the cloud computing and the mobile
code paradigm, that allows to offload and inload application parts at run-
time towards suitable hosts.

From the analysis of the state-of-the-art, it is also clear that current so-
lutions do not provide specific capabilities to support drones coordination
and cooperation. Leveraging the high reliability and the high performance
of the networks we are focusing on, coordination and cooperation can be
fully exploited as parts of the mission, creating new operative scenarios
and extending the application area of UAVs. The programming model that
we propose wants to address this gap by providing capabilities that allow
drones to share physical resources such as sensors and actuators. In addi-
tion to physical resources sharing, the programming model also focuses on
providing abstractions to reliable and real-time information exchange, with
the purpose of providing specific capabilities for drones coordination.

The last gap we targeted to overcome is to immerse drones and drones ap-
plications into the real world. This means to extend the logical boundaries
of the mission they are running by making them able to exploit resources
that were deployed for general purposes and that exist before and after the
duration of the drone mission. The way this gap is addressed is by providing
capabilities to register, discover and query such shared resources at runtime.

In order to develop a programming model that can be translated into a
fully functional software platform, the last section of this chapter is focused
on the flight control, the mission management and the remote drone inter-
face. These topics do not represent the core contribution of this thesis work,
however they contribute to the full picture.
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3.2.1 Sensors

This part of the programming model is focused on enabling UAVs to inter-
act and manage sensors.
The first aspect we addressed in designing this programming model is the
problem of sensors description and observations description. This is cru-
cial to allow clients to interact with sensors that are discovered at runtime.
Then we focused on the way clients should interact with sensors in order
to read their description and to request for observations. The last aspect
we addressed is the one directly connected with the exploitation of high-
performance networks: sensors sharing among clients.

The following requirements are the ones to be satisfied by the programming
model:

• FSR1 It must be possible to describe a sensor. Clients must be given the
capability to interact with unknown sensors by gleaning their charac-
teristics from their descriptors.

• FSR2 Clients must be able to interact with different types of physically
connected sensors.

• FSR3 Clients must be able to expose some physically-connected sensors
to be used by other clients.

• FSR4 Clients must be able to query the list of sensors exposed by other
clients.

• FSR5 After their discovery, clients must be able to use sensors shared by
other clients.

• FSR6 Clients must be able to interact with different types of remotely
connected sensors.

Several approaches have been proposed to describe sensors, and the vast
majority of them relies on ontologies [29], as direct derivation of knowledge
representation theory. This approach is capable of effectively describing a
vast diversity of sensors and their observations but it results to be too for-
mal for an operative usage. While ontologies are perfect metadata for large
datasets to be stored and shared, they do not well adapt to the needs of
real-time discovery, query and usage. A perfect descriptor in this applica-
tion scenario must be able to represent both static properties — i.e. those
that do not change over time, such as the identifier of the sensor — and
dynamic properties — i.e. those that may change over time, such as the
accuracy of the sensor.

The approach we propose for sensors description in our programming model
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is based on a series of categorizations. We identify as push sensors those
sensors that autonomously produce an observation at a given time rate; we
identify as pull sensors the ones for which each observation is the result of
an explicit request to the sensor.
The description of both push and pull sensors is expressed by means of prop-
erties. They can be categorized as: static properties that are the ones not
changing over time, and dynamic properties that are the ones whose value
may vary during the lifetime of the sensor.
The last categorization to be made is between mandatory properties and op-
tional properties. Mandatory properties allow us to define a set of minimal
information that should be provided to describe a sensor, while optional
properties provide enough flexibility to capture differences among sensors
and also to implement application-specific use cases.

The following list contains the mandatory properties we identified and their
description:

• Identifier This property is used to identify the sensor.

• Type This property can hold “push” or “pull” in order to identify the type
of sensor.

• Interval For push sensors, this property represents the frequency at which
new observations are produced, for pull sensors it represents the time
interval between the observation request and its effective availability.

• Quantity This property indicates the quantity measured by the sensor.

• Quantity Unit of Measure This property indicates the unity of measure of
the quantity measured by the sensor.

• Accuracy This property represents the accuracy of the sensor at the time
of the request. It can be either static or dynamic.

• Accuracy Unit of Measure This property indicates the unity of measure
of the accuracy.

• Accuracy Type can hold “static” or ”dynamic” to indicate whether the
accuracy of the sensor is the same over time or it may vary.

This way of describing a sensor satisfies our first requirement FSR1.

To address requirement FSR2, sensors must be accessed through a common
interface in order to hide every implementation detail related to hardware
or software characteristics of the sensor itself. Two are the methods exposed
by this interface:
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• read For push sensors, it retrieves and returns the last observation pro-
duced by the sensor, without requesting for a new one; for pull sensors,
it requests a new observation and returns it as soon as it is available.

• describe Returns the set of properties defined as descriptors for the sensor.

Using this interface, clients are able to use sensors without effectively being
aware of their characteristics: they are just providers of given quantities,
accessed through the read method. Also the ”push” or ”pull” nature of
the sensor is hidden behind this method. All the other information about
the sensor can be gleaned by looking at its descriptor retrieved through the
describe method.
This interface is implemented by the sensor driver, which is the piece of
software intermediating the interaction with the sensor. The sensor driver
is installed into the client to which the sensor is physically connected. We
call the client into whom the sensor driver is installed the host for that spe-
cific sensor.

To address requirements FSR3, FSR4 and FSR5, clients are able to expose
some of their physically-connected sensors to make them available for other
clients. When a sensor is remotely exposed, it continues to be exploitable
by the client to which it is connected. At the same time, other clients are
able to discover it and access its observations.
Clients are able to query the set of all the remotely exposed sensors. Queries
are based on one or more properties from the sensor descriptor. Using the
sensor identifier and the identifier of its host, any client is able to remotely
use that sensor.
We identify as local sensors the ones that are physically connected to a client,
and we identify as remote sensor the ones that a client accesses remotely
and that are phisically connected to a different host. Figura 3.1 reports an
example of this taxonomy.

Sensor
examaple.sensorA

Client
example.clientA Physical Connection Remote Connection

Client
example.clientB

Figure 3.1: Taxonomy of sensors sharing. Sensor example.sensorA is phys-
ically connected to client example.clientA, which is the sensor host for this
sensor. Client example.clientB remotely exploits examples.sensorA, which
is a remote sensor for this client.
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To address requirement FSR6, clients must interact to remote sensors
using a common interface that hides all the details of the remote connection.
This interface exposes the exact same methods exposed by the sensor driver:

• read For remote push sensors, it retrieves and returns the last observation
provided by the sensor; for remote pull sensors, it requests a new
observation and returns it as soon it is available.

• describe Returns the set of properties defined as descriptors for the remote
sensor.

This interface is implemented by a Remote Sensor driver. It works as proxy
for all the remote sensors and implements all the information exchanges
needed between the client and the host of the remote sensor. The methods
exposed by this proxy are identical to the ones exposed by the local sensor
driver. In this way, there is no difference from an application logic point of
view in accessing a remote or a local sensor through their driver.

It is clear that in the setup described so far it is possible that several sensors
are able to measure the same quantity for a client, being them physically
connected to it or remotely accessed. To fully enable the best sensor selec-
tion scenario as it is described in the use case in Section 3.1.2, we decided
to further abstract the interaction with the sensors by means of a compo-
nent called Sensors Manager. The purpose of this software component is to
implement a comparison between the sensors providing the same quantity.

When a measurement is requested to the Sensors Manager, three possible
behaviours are possible:

• All In this working mode, only the measurement from the best sensor is
returned as result of the request.

• Conservative In this working mode, the best provider is not computed
for each request, but it remains cached until some specific event is
triggered.

• Exclusive In this working mode, the application developer explicitly spec-
ifies the provider of a quantity.

The first working mode ensures that the best provider is selected every
time a measurement is requested, but it is the one requiring more efforts
since all the providers must be queried every time. This working mode
best fits in contexts where the accuracy of providers is expected to change
very frequently. The second working mode best fits situations where the
accuracy of sensors is expected to remain quite constant over time, since
the provider of a quantity is computed only after specific events. In this
case, only one sensor is queried when a request is issued, but it may happen
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that a suboptimal measurement is returned until the best provider is not
computed again.
The working mode can be set per quantity, meaning that different quantities
can be retrieved using different working modes, and it must be possible to
change it at runtime.

3.2.2 Computation Offloading

This part of the programming model is focused on enabling clients to offload
parts of their application logic to be executed on a remote host. Starting
from the scenario described in Section 3.1.4 we derived the following func-
tional requirements:

• FCOR1 Clients must be able to offload one or more functions.

• FCOR2 Clients must be able to select the host towards which the func-
tions are offloaded.

• FCOR3 Clients must be able to inload functions that were previously
offloaded.

The approach we propose in our programming model starts from the con-
cept of mobile code which is largely adopted in distributed environments [30].
The underlying concept is the capability to move the code to be executed
among hosts, together with its execution stack. However, while the full
code mobility paradigm allows a code to be exchanged among peers mul-
tiple times, in the programming model we propose the code exchange is
supported only on a peer-to-peer basis. This means that when a function
is offloaded towards a remote host, it can be inloaded again only from that
specific host.
We can distinguish two specific roles in the process:

• Offloader Is the client moving out the code.

• Remote Host Is the client receiving the code, and executing it upon re-
quest.

This restriction to the full code mobility paradigm is due to the high
complexity needed to support the mobility among multiple peers, which is
not relevant for the requirements we want to satisfy. The main purpose of
computation offloading in the context we are analysing is to move the exe-
cution towards hosts where more resources are available, and such hosts are
likely to be stable and do not change frequently over time.

Offloading and inloading operations are handled by a dedicated component.
This component is in charge of handling the entire lifecycle of an offloaded
function, from the moment the offloading is invoked to the moment that
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the function is inloaded again. When the offloading request is issued, the
function source code is sent to target host. Every invocation the to function
is intercepted and issued to the target host, together with the possible input
parameters. Once the execution on the target host is completed, possible
return values are sent back to the invoking host. Possible errors and excep-
tions must be propagated back too. This effectively mixes the code mobility
model with the Remote Method Invocation model, and it is an additional
reason to the restriction of the full code mobility paradigm, since complex
mechanisms must be put in place to identify where to invoke a function once
it is has been moved among multiple peers.

In order to support a wider range of application scenarios, an additional
requirement must be satisfied:

• FCOR4 Both stateful and stateless function must be supported.

The execution of stateless functions depends only on possible input param-
eters and nothing else. Stateful functions, instead, require keeping track of
additional information that forms the state of the function. This informa-
tion must be transferred from the local host to the target host when the
function is offloaded, and transferred back from the target host to the local
host when the function is inloaded again.
In the programming model we propose, the variables forming the internal
state of a stateful function must be explicitly marked in order to identify
them as part of the set of information that must be transported back and
forth.

In a context of extreme client mobility, like the ones in which UAVs usually
operate, losing connection to target host means also to lose the internal sta-
tus of offloaded stateful functions. To overcome possible issues coming from
this possibility, two offloading modes of stateful functions are supported in
the programming model:

• State Saver In this offloading mode, every time the function is invoked on
the target host, the internal state of the function is sent back to the
invoking host, together with possible return values or errors.

• Transfer Once In this offloading mode, the state is transferred back from
the target host to the invoking host only when the function is inloaded
back.

The first working mode is designed to ensure the maximum operability in
poor network conditions scenarios, or when hosts are most likely to appear
and disappear. As a drawback, it requires more effort related to the overhead
of transferring the state back after each invocation. The second working
mode is more conservative and requires less effort, but it is more suitable
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to failures due to interrupted connection between the invoking host and the
target host.
In the programming model we propose, no explicit management of failures is
in place, except for a basic timeout mechanism, since the intrinsic reliability
of the high-performance networks is sufficient to limit the occurrences and
the complexity of failures.

3.2.3 Communication Bus

This part of the programming model is focused on enabling clients to ex-
change information and messages. Exploiting the improved characteristics of
high-performance networks, applications can leverage information exchange
between clients also for critical parts without worrying about reliability of
the exchange mechanism.
We identified a mono-directional multi-recipients information exchange mech-
anism based on the publish-subscriber paradigm which can be formalized in
the following functional requirements:

• CBFR1 Clients must be able to instantiate communication channels.

• CBFR2 Clients must be able to join communication channels instantiated
by other clients.

• CBFR3 Clients must be able to leave a communication channel they pre-
viously joined.

• CBFR4 Clients must be able to send messages in the channel.

• CBFR5 Each client in the channel must receive messages sent by other
clients in the channel (except for the sender itself).

• CBFR6 No messages are dropped by the communication channel.

• CBFR7 Messages are received by each client in the exact order they are
sent.

To the core requirements listed above, we decided to add an additional
optional one:

• OPTCBFR1 Clients must be able to limit the access to the channels they
create.

The approach we decided to formalise for our programming model is similar
to what is described by the MQTT protocol [31], which is widely used for
sensors communications and mobile applications. All these requirements
are satisfied by the functionality provided by a dedicated component. This
component implements a specific interface providing the following methods:
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• create To instantiate a new communication channel.

• join To join an existing communication channel.

• send To send new messages over the channel.

• getMembers To retrieve the list of clients in the channel.

• incomingMessageCallback Invoked when a new message is sent to the
clients.

To address requirement OPTCBFR1 two additional methods must be pro-
vided:

• create whitelist To instantiate a new communication channel together with
the list of nodes that can join it.

• create blacklist To instantiate a new communication channel together with
the list of nodes that can not join it.

In order to address requirements CBFR6 and CBFR7 we entirely rely on
the characteristics of the high-performance network to which clients are con-
nected to. No specific retransmission controls or error correction mechanisms
are in place. The purpose of this choice is to keep the end-to-end latency of
message exchange at the minimum by not introducing the overhead needed
by such mechanisms.

3.2.4 Flight Control and Mission Management

This part of the programming model is focused on providing access to the
flight controller, on offering capabilities for mission management and on ex-
posing an interface that is remotely accessible to manage several aspects
of the drone. What is described here is mostly revisited starting from the
programming model proposed by Daniel Cantoni in his master thesis [26].
These topics are not part of the core contribution of this thesis work. The
flight controller, for instance, is specifically needed for UAVs and does not
fully apply to other high-mobility robots, which need a similar but different
component to move on the ground or in the water. For this reason, this
part of the programming model needs to be revised when targetting differ-
ent robots.

The access to the flight controller must be intermediated by a high-level
interface in order to hide specific details related to the type of drone (e.g.
multi-rotor, fixed wing, single rotor, etc) but also specific details related to
the model of the flight controller installed onboard.
This interface must provide methods to both send commands to the flight
controller and to retrieve the status of the drone from it.
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The methods to control the drone include:

• The command to arm and disarm the drone;

• The command to take off and reach a given altitude from the ground;

• The command to land;

• The command to reach a specific position specified by its latitude,
longitude and altitude;

• The command to switch among the flight modes supported by the
flight controller.

The methods to retrieve the status of the drone from the flight controller
are:

• Retrieve the drone speed in x, y and z axis;

• Retrieve the drone ground speed and air speed;

• Retrieve the orientation of the drone;

• Retrieve the status of the GPS signal;

• Retrieve the current flight mode;

• Retrieve the current location expressed as latitude, longitude and al-
titude.

All these flight control commands can be programmed, together with sensors
interactions, communication bus capabilities and computation offloading, to
create a mission.
The mission management part of the programming model is focused on
providing the functionality needed to:

• Store missions into the drone;

• List all the missions stored into the drone;

• Run a specific mission;

• Interrupt the execution of the mission.

Specifically to the last point, we categorize between cyclic missions, that
are the ones that run in loop until they are explicitly stopped, and acyclic
missions, that are the ones with a predefined end. Only one mission at a
time can run on the UAV.
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The last part of the programming model to be described is related to the
functionality needed to remotely access the drone via internet. Remotely ac-
cessing the drone is needed to both control it and monitor it. This also allows
the drone to be integrated inside the IoT ecosystem, enabling machine-to-
machine interactions that would not be possible otherwise.
Through this interface, it must be possible to:

• Install, uninstall and list sensor drivers;

• Upload, delete, list missions;

• Start and stop a mission.

As per the original IDrOS programming model, several protocols must be
available to access such interface. This topic is further detailed from an
architectural point of view in Section 4.2.1.



Chapter 4

New Generation IDrOS:
Architecture

4.1 Overview

In this chapter it is described the architecture of New Generation IDrOS
(shortened to NG IDrOS), that is the software platform we have designed
to support the programming model that is described in Section 3.2. This
software platform is an evolution of the one originally developed by Daniel
Cantoni in his master thesis [26], that is presented in Figure 2.3 and de-
scribed in Section 2.2.3. The software platform that he described, designed
and implemented is mainly focused on integrating drones into the IoT ecosys-
tem and in supporting active sensing techniques. From the original IDrOS,
we inherit and enhance the parts addressing the internet interface, the flight
control and the mission management. The new parts we designed address
the functionality directly related to the exploitation of high-performance
networks.

We decided to split NG IDrOS into two distinct software components:

• NG IDrOS Drone This the part of the platform is directly deployed onto
the drone. It works as interface towards the hardware and offers ca-
pabilities to run user-written missions.

• NG IDrOS Central This part of the platform works as central node be-
tween all clients for coordination and synchronization purposes. It can
either be deployed on a drone, on a dedicated host or into the cloud.

We will describe the reason behind this split and both the two parts in the
following sections. The purpose of designing this architecture is to provide
a bridge between the programming model that is described in Section 3.2
and the implementation that is described in Section 5.

39
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As it is shown in Figure 4.1, the architecture of NG IDrOS Drone is split
into three layers: Remote Control Layer, Application Logic Layer and Con-
nection Layer. Similarly, the architecture of NG IDrOS Central is split into
two layers: Application Logic Layer and Connection Layer. The architecture
of NG IDrOS Central is represented in Figure 4.3.

Layering the architecture allows to separate the components from a func-
tional point of view. Layers and components are integrated with each other
using decoupling interfaces. Layering and decoupling allow changing and ex-
tending some parts of the software platform without affecting all the others,
making it very simple to extend the software platform with new functional-
ity, and building integrations with new systems.

The last section of this chapter is dedicated to describe some deployment
settings and some interactions between NG IDrOS Drone and NG IDrOS
Central.

4.2 NG IDrOS Drone

This part of the software platform is the one directly deployed onto the drone
and it offers capabilities to control the hardware, to exploit high-performance
network capabilities, to manage user modules, and to run missions. It also
provides a remote interface, accessible through the internet, to monitor and
control the drone. This remote interface is exploitable to integrate the plat-
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form with external systems. NG IDrOS Drone can also be deployed on
devices that are not UAVs. For instance, it can be deployed on a dedicated
board to make a sensor exploitable by remote hosts. In this case, only the
needed components and modules of the architecture would be instantiated.
The architecture of this software component is layered into three separate
levels: the Connection Layer holds the components needed to interface the
system with the hardware — sensors and flight controller — and the func-
tionality needed to exploit high-performance networks. The Application
Logic Layer exposes a set of APIs to be leveraged by application develop-
ers to manage modules, missions and sensors. APIs from the Application
Logic Layer are also exposed by the network protocols implemented in the
Remote Control Layer, that provides functionality to remotely access the
system through the internet. This network interface is also exploitable by
external systems to implement machine-to-machine integrations.

4.2.1 Connection Layer

This layer holds the connectivity towards the flight controller, towards the
locally connected sensors, and it also holds the functionality needed for
the exploitation of high-performance networks. These features are grouped
into two separate components: Hardware Abstraction and High-Performance
Networks Abstraction.
The first one holds two modules: Drone provides the functionality to in-
teract with the flight controller; Sensors provides an interface towards the
locally installed sensors.

Specifically, the Drone module satisfies the requirements of the program-
ming model related to the flight control that are defined in Section 3.2.4,
and it provides the following functionalities:

• To abstract the communication towards the flight controller;

• To support multiple types of flight controllers by hiding the specific
communication protocol;

• To provide high-level APIs to the application developer to takeoff,
land, reach a specific GPS coordinate, retrieve telemetry information,
change flight mode.

The high-level APIs provided by this module are intended to simplify
the number of commands that usually must be sent to the flight controller
to pilot the drone. They must also be agnostic with respect to the kind of
drone and flight controller. This allows to write missions that can be reused
in different deployment configurations without any change needed.
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The Sensors module satisfies the requirements of the programming model
related to local sensors that are defined in Section 3.2.2, and it provides the
following functionalities:

• To list sensors that are installed onboard;

• To provide high-level APIs to access the descriptor of a sensor and to
request for observations.

Each sensor that is installed on board needs a Driver to be loaded into
IDrOS in order to allow the platform to support different type of sensors.
All sensor drivers must implement the same methods that are specified by a
common interface. The high-level APIs exposed by the Sensors module hide
every implementation detail of the sensor, such as specific communication
protocols. Also the fact that the sensor is of push or pull type is hidden to
the application developer.
This module was already present in the original IDrOS architecture, in this
new version we extend it to support descriptors. Moreover, while in the
original IDrOS the Sensors module was directly exploited by application
developers in writing drones missions, in this new architecture the access to
sensors is further mediated by the Sensors Manager from the Application
Logic Layer. This further mediation is needed to:

• Provide to the application logic layer a unified access point to both
local sensors and remote sensors.

• Implement the providers comparison mechanisms and the best sensor
selection mechanism.

The second component included in this layer holds three modules: Re-
mote Sensors provides the functionality to interact with remote sensors and
to publish local sensors as exploitable by remote hosts; Communication Bus
holds all the functionality needed to create, join, send and receive mes-
sages through the communication bus; Computation Offloader provides the
functionality needed to offload and inload part of the application logic at
runtime. All these components, grouped in the High-Performance Networks
Abstraction, access network transport using a specific interface.

The Remote Sensors module satisfies the requirements of the programming
model related to remote sensors that are defined in Section 3.2.1, and it
provides the following functionalities:

• To discover remote sensors by means of queries based on the properties
contained in their descriptors;

• To retrieve properties from the descriptor of a remote sensor;
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• To obtain measurements from a remote sensor;

• To make local sensors available to be exploited by remote hosts.

The exchange of information between the client hosting a sensor and the
client accessing that sensor remotely can happen by means of a point-to-
point connection or be mediated by an instance of NG IDrOS Central. As
for the Sensors module in the Hardware Abstraction component, the APIs
exposed by this module are directly exposed to the application developers,
but they are further intermediated by the Sensors Manager module from
the Application Logic Layer.

The Communication Bus module satisfies the requirements of the program-
ming model defined in Section 3.2.3, and it is the module in charge of:

• Creating a new communication bus channel or join an existing one;

• Restricting the access to a specific bus channel by means of whitelisting
or blacklisting mechanisms;

• Sending messages to other clients over the bus channel;

• Receiving messages sent over the bus channel by other clients.

The exchange of messages through a communication bus must use an in-
stance of NG IDrOS Central as dispatcher. Messages are first sent to the
central node, then they are forwarded towards all the relevant hosts. In this
way, subscriptions for a specific bus channel are kept only on the central
node. Plus, networks interconnections issues can be easily solved, as it is
further detailed in Section 4.3.

The last component, Computation Offloader, satisfies the requirements of
the programming model defined in Section 3.2.2, and it provides the follow-
ing functionalities:

• To move user-defined functions towards a remote host;

• To forward the invocation of an offloaded function towards the offload-
ing host;

• To return the result provided by the offloading host after a remote
invocation;

• To inload previously offloaded functions on user request.

Both static functions — i.e. functions whose execution depends only on
the input parameters and have not internal status — and dynamic func-
tions — i.e. functions whose execution depends on the input parameters



44 CHAPTER 4. NEW GENERATION IDROS: ARCHITECTURE

and on an internal status — can be offloaded. This component is in charge
of keeping track of the status of dynamic functions and to send it to the
offloading host as well as restoring it when the function is inloaded again.
This component must support all the offloading modes as they are described
in Section 3.2.2.

All these modules access the high-performance network by means of a spe-
cific protocol. NG IDrOS must be able to support different protocols in
order to guarantee the maximum degree of interoperability with other sys-
tems. Each different protocol may implement some peculiarities regarding
non-functional aspects, such as security requirements or performance re-
quirements.

4.2.2 Application Logic Layer

This architectural layer holds all the components and modules needed to
allow the user to run application and missions on IDrOS. These components
and modules implement all the requirements expressed for the programming
model in Section 3.2, plus some additional requirements that are needed to
implement the architecture in a real deployment setting. We decided to
split a drone mission into two separate parts: a Navigation Module and
one or more Data Acquisition Modules. In addition, we created a Fail Safe
Manager module to provide to the application developers APIs to manage
hazards and malfunctions. This layer is split into two separate components
Application Logic and User Modules. This split between modules and com-
ponents is reported in Figure 4.2.

The User Modules component holds the modules uploaded by the user into
the system. These modules are then used by the Mission Manager to build
up the mission to be executed by the drone. We decided to create a dis-
tinction between Data Acquisition Modules and Navigation Modules: they
both are made of user-written code in which the application developer can
exploit the APIs exposed by NG IDrOS, but the first ones are focused on
the navigation part of the drone - i.e. piloting the drone - while the second
ones are focused on the data acquisition part of the mission. Each mission

Figure 4.2: Application Logic Layer from the NG IDrOS Architecture.
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is then build up of one and only one Navigation Module and zero to many
Data Acquisition Modules, depending on the mission needs. The two types
of modules are not isolated and can exchange information: a data acquisi-
tion module may request navigation status to the navigation module, and
similarly the navigation module may request the advancement status of data
processing to a data acquisition module.

The Mission Management component holds four different modules: Mod-
ules Manager, Sensors Manager, Mission Manager, and Fail Safe Manager.
The Modules Manager provides to the software platform the following ca-
pabilities:

• To upload data navigation modules and data acquisition modules;

• To list currently stored navigation modules and data acquisition mod-
ules;

• To delete a navigation module or a data acquisition module;

• To upload a sensor driver;

• To list currently installed sensor drivers;

• To delete a sensor driver.

All these operations are allowed only when the drone is not executing a
mission, since no hot-swap mechanism are in place for modules or drivers.

The Mission Manager must implement all the requirements of the pro-
gramming model as defined in Section 3.2.4. It allows to:

• Select the modules included in the mission: one and only one Naviga-
tion Module, zero or more Data Acquisition Modules;

• Set a mission as cyclic or not cyclic;

• Start and stop a mission;

• During a mission, it enables the information exchange between the
Navigation Module and the Data Acquisition Modules.

The functionalities provided by this module are mainly exploitable through
a control network interface, as we are going to describe in Section 4.2.3.
The Sensors Manager module provides the access to both locally installed
sensors and the remote accessed ones, providing a unified interface that hides
any implementation detail between the two. This module implements all the
logic about the sensor selection as described in Section 3.2.4.

The Fail Safe Manager is needed inside the architecture in order to handle
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hazard situations or hardware failures that may compromise the integrity of
the drone. A typical example is the presence of strong wind at high altitude
that may cause the drone to precipitate. This module provides functional-
ity to stop the execution of the mission and guide the drone safely to land.
The Fail Safe Manager may be invoked by the remote interface and also be
included in the code of a Navigation Module.

4.2.3 Remote Control Layer

This architectural layer allows NG IDrOS to be accessed remotely and to
be integrated with other IoT applications. This layer exposes an interface
towards all the components from the Mission Management module of the
Application Logic Layer. This remote layer is accessed through the network
by means of specific protocols, such as MQTT, COaP or HTTP. The archi-
tecture must support multiple protocols in order to ensure the integration
with a number of different external systems. New protocols can be sup-
ported by implementing the specific interface that is used to integrate the
Remote Control Layer and the Application Logic Layer. A running instance
of NG IDrOS Drone must be able to expose the APIs provided by this layer
using the implemented protocols.

The high decoupling between this layer and the rest of the architecture
allows to add new supported protocol without any change needed to the
rest of the software platform.

4.3 NG IDrOS Central

This part of the software platform works as central node among drones in
order to enable some functionalities for high-performance networks exploita-
tion.
This component can be deployed on a dedicated virtual host (such as on
a Mobile Edge Computing virtual machine provided by the 5G infrastruc-
ture), on a drone (together with an instance of NG IDrOS Drone), in a
cloud environment (such as Amazon Web Services), or on any other kind of
physical host. It can be deployed as part of a specific drones mission or as
general purpose instance, serving multiple missions during its lifetime.

The role of this component is to behave as a coordinator and as shared
repository between clients. Specifically, this software component works as:

• Repository of remotely accessible sensors;

• Resolver for remote sensors queries;
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• Dispatcher of measurement requests and measurement values for re-
mote sensors;

• Execution host for offloaded functions;

• Repository of communication bus channels;

• Dispatcher of messages sent over communication bus.

The architecture of this software component is split into two layers: the
Connection Layer and the Application Logic Layer.

The Connection Layer holds the protocols to exploit the high-performance
networks, similarly to the same layer present in the architecture of NG
IDrOS Drone. In order for two clients to interact, regardless the fact that
they are instances of NG IDrOS Drone or instances of NG IDrOS Central,
they must access the network through the same protocol, or through proto-
cols that are compatible.
The other requirement for two clients to interact is that they must be able to
reach each other inside the local-area, metropolitan-area, wide-area network
they are connected to. The role of NG IDrOS Central is also to overcome
possible network limitations that clients can experience, such as NAT lim-
itations, blocked ports or missing interconnection between networks. For
example, it can work as public node exposed at a globally reachable ad-
dress, or as bridge node between two local isolated networks. In Section
4.4 we describe some examples regarding the usage of NG IDrOS Central to
overcome network limitations.

Figure 4.3: The NG IDrOS Central architecture.
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The Application Logic Layer is composed by three modules, each of which
is related to a macro-functionality that exploits high-performance networks:
Global Sensors Manager, Offoading Manager and Global Communication
Bus Manager.

The functionalities provided by the Global Sensors Manager module are:

• To keep a repository of sensors that are exposed by NG IDrOS Drone
clients;

• To resolve queries issued over the exposed sensors;

• To retrieve dynamic properties of a sensor descriptor from its local
host;

• To forward measurements requests and measurements values between
a remote sensor consumer and a remote sensor provider.

Clients that want to make a local sensor available for remote exploitation
must send the sensor descriptor to a central node. Clients that want to
connect to a remote sensor must first issue a query to the central node in
order to discover it. Once the query results contain a sensor that satisfies
the needs of the issuing client, it can choose to connect directly to the sensor
host or to use the central node as intermediate bridge.
Two connection modes to remote sensors are supported:

• Direct a peer-to-peer connection is open between the clients. The network
configurations must allow such scenario;

• Centralized the NG IDrOS Central instance works as broker of read re-
quests and measurements values among clients.

The functionalities provided by the Offloading Manager are:

• To receive the code of offloaded functions;

• To handle requests of remote invocations towards offloaded functions;

• To run offloaded functions on request;

• To send back the execution result and possible execution errors.

Several instances of NG IDrOS Central may be available for a client at the
same time. Each client must be able to select towards which host the func-
tion will be offloaded. The Offloading Manager must support both static
and dynamic functions, which means it must be able to restore the internal
status of a dynamic function when it is received, and it must be able to
dump and send back such status when the function is inloaded back.

The Global Communication Bus Manager offers the following features:
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• To keep a repository of created communication bus channels, together
with their members;

• To add and remove clients from a bus channel;

• To implement exclusion logic as from the requirements of the program-
ming model;

• To receive and forward messages inside the bus.

As it is already stated in Section 3.2.3, no special mechanisms are imple-
mented to guarantee the in-order delivery of messages or the errors correc-
tion. For this reason, no specific architectural components are present at
the moment to handle this kind of needs.

An instance of NG IDrOS Central must be able to choose which of the
modules from the application logic layer to instantiate, since not all features
may be required at the same time. For example, an instance of NG IDrOS
Central can be deployed on a drone only to coordinate a communication
bus. In this scenario, only the Global Communication Bus Manager will be
instantiated in order to save physical resources on the host.

4.4 Deployment Settings

The content of this section has the purpose of showing and describing some
deployment settings that are supported by the architecture of NG IDrOS.
We are going to highlight the role of NG IDrOS Central in different network
conditions, as well as to highlight how the high modularity and functional
decoupling that drove the design of the architecture make NG IDrOS flexi-
ble to support several deployment modes.

Each deployment setting is associated to a high-level sequence diagram in
order to describe how the components inside the architecture interact, and
how instances of NG IDrOS Core and instances of NG IDrOS Central inter-
act.

4.4.1 Mobile Edge Computing

4.4.1.1 Two separate local networks

The deployment setting shown in Figure 4.4 is the example of a possible
deployment that exploits the hosting capabilities provided by the Mobile
Edge Computing available in the 5G infrastructure. Three different networks
are present: Network A is the local network generated by the 5G Antenna
A; Network B is the local network generated by the 5G Antenna B; Mobile
Edge Computing Network is the network where mobile edge virtual machines
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are hosted.
The following interconnections exist between the three networks:

• Network A and Mobile Edge Computing Network are interconnected;

• Network B and Mobile Edge Computing Network are interconnected;

• No interconnection exists between Network A and Network B.

A drone is connected to Network A, running an instance of NG IDrOS
Drone. A pull sensor is connected to Network B, running an instance of NG
IDrOS Drone that remotely exposes the sensor. No architectural compo-
nents for flight control or mission management are instantiated as part of
NG IDrOS Drone Instance #2, but only the ones related to remote sensors
sharing. Since Network A and Network B are not directly interconnected,
no client-to-client connection can happen between the drone and the sensor.

The sequence diagram represented in Figure 4.5 shows an interaction be-
tween the two clients in whom the drone can remotely access the sensor.
Since the two networks are not interconnected, the only connection mode
is centralized, leveraging the NG IDrOS Central instance as bridge and as
dispatcher.

Figure 4.4: Example of NG IDrOS deployment on Mobile Edge Computing
with clients in isolated networks.
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The diagram also shows the interaction between the components and the
modules inside the architectures.

The diagram starts with the sensor being published in the global repos-
itory hosted into the NG IDrOS Central instance. The second part consists
of the query request, resolution and results processing. The last part of the
diagram starts from the Sensors Manager of the Application Logic Layer
of the instance #1 of NG IDrOS Drone requesting a measurement to the
Remote Sensors module: the request is sent to the central node, and is

NG IDrOS CentralNG IDrOS  Drone Instance #1 NG IDrOS Drone Instance #2

Sensors
Manager

Remote
Sensors

Remote
Sensors

DriverSensors

Publish Sensor

Query Remote Sensors
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Query Result Processing

Remote Sensor Connect

Remote Sensor Connect

Process Connection

Request Measurement

Request Measurement

Request Measurement

Sensor Read
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Measurement

Measurement

Measurement

Measurement

Measurement

Figure 4.5: Sequence diagram of remote sensor exploitation inside the de-
ployment setting of Figure 4.4.
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then forwarded to the Remote Sensors module from the Connection Layer
of NG IDrOS Drone instance #2. Internally, the request goes to the Sensors
module of the Hardware Abstraction component and finally arrives at the
driver. Once the measurement is ready, the return value follows back the
entire chain and is returned to the Sensors Manager of the first NG IDrOS
Drone instance.

In this specific deployment setup, the instance of NG IDrOS Central is
working as bridge between the two networks. With such setup it is possible
not only to connect hosts from two isolated networks, but also to overcome
issues coming from NAT restrictions or client isolation inside the network.

This connection mode adds to the end-to-end latency of the process the
overhead coming from the intermediation of the central node. However,
only one network connection must be issued to the central node: this saves
physical resources at the nodes. Moreover, the central node can avoid issu-
ing a new read request towards the remote sensor if it is already waiting for
a return value for a previous request. By implementing this requests caching
mechanism, the number of requests is further reduced.

4.4.1.2 Interconnected Local Networks

The deployment setting shown in Figure 4.6 is the example of a possible de-
ployment that exploits the hosting capabilities provided by the Mobile Edge
Computing inside the 5G network. Three different networks are present:
Network A is the local network generated by the 5G Antenna A; Network B
is the local network generated by the 5G Antenna B; Mobile Edge Comput-
ing Network is the network where mobile edge virtual machines are hosted.
The following interconnections exist between the three networks:

• Network A and Mobile Edge Computing Network are interconnected;

• Network B and Mobile Edge Computing Network are interconnected;

• Network A and Network B are interconnected.

The sequence diagram represented in Figure 4.7 shows a remote sensor
exploitation based on a client-to-client connection. Differently from the se-
quence diagram of Figure 4.5, once the query result is processed, the instance
of NG IDrOS Central is no more involved in the measurements requests and
exchanges. This connection mode reduces the overhead introduced by the
bridging of the central node, however it significantly increases the amount
of connection and requests that each client must handle. A high number of
requests may lead to bottlenecks for low computational power devices.
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Figure 4.6: Example of IDrOS deployment on Mobile Edge Computing with
two clients in interconnected networks.
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Figure 4.7: Sequence diagram of remote sensor exploitation through a client-
to-client connection inside the deployment setting of Figure 4.6.
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4.4.2 Local Host

The deployment setting represented in Figure 4.8 shows three drones de-
ployed in the same local network provided by a 5G antenna, and an instance
of NG IDrOS central deployed in the Mobile Edge Computing environment.
Each drone runs an instance of NG IDrOS Drone, and only one of the three
also runs an instance of NG IDrOS Central.
In this deployment setting, the NG IDrOS Central instance #1, running on
the Mobile Edge Computing environment, is leveraged by NG IDrOS Drone
instance #1 for computation offloading. The instance of NG IDrOS Central
#2 is used as dispatcher for a communication bus involving both the three
drones.
Since the perimeter of the communication bus is limited to the three drones
in the same network, having the coordinator hosted in the same network
guarantees a reduced latency. The computational power available at the
host must be sufficient to support both an instance of NG IDrOS Central
and an instance of NG IDrOS Drone at the same time, as well as to support
a higher number of connections at the same time.

The sequence diagram represented in Figure 4.9 shows two distinct interac-
tions among the clients present in the aforementioned deployment setting.
The first one involves NG IDrOS Drone #1 and the instance of NG IDrOS
Central deployed in the Mobile Edge Computing environment. It starts with
the Application Logic Layer requesting to offload a function to the Compu-
tation Offloader of the Connection Layer. The request, together with the
code and the actual internal status of the function are forwarded to the
Offloading Manager of the NG IDrOS Central instance. Then, a remote
invocation flow is shown.

The second interaction shows the creation of a communication bus, and
a message exchange over it. Also in this case the interaction starts with the
request being issued by the Application Logic Layer of NG IDrOS Drone
instance #1, but in this case it is sent by the Communication Bus to the
Global Communication Bus Manager of the NG IDrOS central instance #2.

The diagram does not show the possible interaction of drone #2 joining
the communication bus as well. In this case, since the instance of NG
IDrOS Central that is coordinating the bus is hosted by the same client, the
communication is going to leverage the loopback interface of the host.
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Figure 4.8: Example of IDrOS deployment with IDrOS NG Central deployed
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4.4.3 Bluetooth Network

The descripiton of this last deployment setting, reported in Figure 4.10, has
the purpose of empathizing the flexibility of NG IDrOS to be adapted to
very different deployment scenarios.

Three drones are connected through a high-performance peer-to-peer Blue-
tooth network. One of these three hosts runs an instance of NG IDrOS
Central together with an instance of NG IDrOS Drone. These two instances
are able to interact using the loopback interface of the host, based on the
IP protocol. The other two hosts run an instance of NG IDrOS Drone. All
the three hosts communicate the one with the other using the Bluetooth
protocol.
This deployment setting is particularly efficient to run drones mission where
an internet connection is not present. Of course, missions must be adapted
to take into consideration the limitations coming from the Bluetooth con-
nection, such as the maximum distance between the drones or the increased
transmission errors. However, for all the other aspects, the application logic
does not need any further change.

The architecture we designed is able to support this deployment by just
providing to all the instances a Network Interface based on the Bluetooth
Protocol. No changes are needed to the other core parts of the platform.

Figure 4.10: Example of NG IDrOS deployment involving a Bluetooth high-
performance network.



Chapter 5

Implementation

The purpose of this chapter is to describe the details and choices that have
driven the implementation of NG IDrOS. For each component and module
of the architecture we are going to highlight the main implementation char-
acteristics, also with respect to the way the component or the module is
integrated with the rest of the system. The implementation we developed
specifically targets UAVs as instances of high-mobility robots, and the 5G
cellular network as instance of a high-performance network. For this reason,
some parts of the implementation target UAVs and the 5G as well, and must
be reviewed to port NG IDrOS to other robots or networks.

The first decision we took at the beginning of the development was to
implement NG IDrOS using Python 3.7. This choice was driven by the high
availability of libraries and by the high compatibility with different hard-
ware platforms. These two characteristics guarantee a variety of different
deployment settings, as well as a high degree of interoperability with other
systems.
We then decided to implement both NG IDrOS Drone and NG IDrOS Cen-
tral in one software package, and to use a configuration file to specify which
one of the two must be instantiated. Thanks to this approach, just one
software package must be shipped to hosts, and it makes easier to switch
from one instance to the other, as well as to run both in parallel on the same
host. From a development point of view, this allowed reusing most of the
software components and will make it easier to maintain them. A drawback
from this approach is the slightly increased overall size of the package.

5.1 Connection Layer

In this chapter we are going to report the implementation details for the
Connection Layer, which is the lowest level of the NG IDrOS Drone archi-
tecture, that is reported in Figure 5.1. The role of this layer is to handle

57
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Figure 5.1: Control Layer from the NG IDrOS Architecture.

the interfaces with the flight controller, with the physical sensors and the
exploitation of the network, as it is extensively described in Section 4.2. In
this section we are also going to report the implementation of NG IDrOS
Central, described in Section 4.3, because the two are closely related from
the implementation point of view. Since we sdecided to implement a sin-
gle software package including both the software components, this layer is
actually implemented once and shared among the two.

5.1.1 Hardware Abstraction

5.1.1.1 Flight Controller

The Drone component has the purpose of providing a simplified set of APIs
to the Application Logic Layer that can be easily exploited by application
developers to pilot the drone. In order for this module to provide these APIs,
it should be able to open, manage, and then close a connection towards the
flight controller. A flight controller is made up of a software platform and
of the hardware device into which the software is deployed. Several flight
controllers exist: they mainly differentiate for the number of flight modes
they support, the variety of drones they can control (e.g. quadcopters, hex-
acopters) and the variety of hardware platforms they can run onto. For the
development of NG IDrOS, we decided to target ArduCopter [32], which is
one of the most used and community-supported flight controllers. It can be
deployed into a large variety of hardware platforms (e.g. Pixhawk [33], DJI
Flight Controllers [34], and others), and it supports the MAVLink proto-
col [35] for communication.
The MAVLink protocol is based on the exchange of header-only messages
and was originally designed for the communication between a ground station
and the UAV. Being header-only means that the structure and the content
itself of the message can be inferred from the structure of the header, and
this is the main reason that makes MAVLink such a lightweight commu-
nication protocol. MAVLink supports a variety of different sensors, such
as gyroscopes, accelerometers and magnetometers. It also allows to control
some payloads, such as gimbals. It is a widely adopted protocol, and in-



5.1. CONNECTION LAYER 59

tegrating it into NG IDrOS makes the platform natively compatible with
several existing drones platforms. MAVLink can be exploited using a wired
connection towards the flight controller or also using a TCP/IP network con-
nection. During the implementation phase we leveraged a lot the TCP/IP
connection mode because it can be used to connect to drone simulators,
such as the DroneKit SITL simulator [36]. The same can be done dur-
ing application development and testing. For a real deployment setting the
direct wired connection should be preferred since it is more stable and faster.

We decided to build a MAVLink interface based on the pymavlink library
[37]. Several other libraries are available for Python (e.g. MAVProxy [38]
and DroneKit [27]) that provide a higher level of abstraction. However, we
decided to use pymavlink since it is the reference implementation for the
protocol. We used the interface built by Cantoni in his thesis [26] as start-
ing point, and we adapted it to the new NG IDrOS architecture. The final
set of APIs that the Drone component exposes to the application logic layer
are reported in Listing 5.1.

1 de f arm ( ) −> void :
2 Arms the drone be f o r e the f l i g h t
3
4 de f t a k e o f f ( a l t i t u d e ) −> void :
5 Takes o f f the drone and reaches the s p e c i f i e d a l t i t u d e
6
7 de f land ( ) −> void :
8 Makes the drone to land
9

10 de f return home ( ) −> void :
11 Makes the drone to land at the p lace i t has taken o f f
12
13 de f s e t f l i g h tmode ( f l ightmode , vars ) −> void :
14 Changes the cur rent f l i g h t mode . The vars parameter i s op t i ona l

and app l i e s to a subset o f f l i g h t modes only .
15
16 de f g e t l o c a t i o n ( ) −> ( l a t , long , a l t ) :
17 Returns l a t i t ude , l ong i tude and a l t i t u d e o f the drone from the

te l emetry provided by the f l i g h t c o n t r o l l e r
18
19 de f ge t speed ( ) −> ( vx , vy , vz ) :
20 Returns the drone speed with r e sp e c t to the three space ax i s
21
22 de f heading ( ) −> heading :
23 Returns the o r i e n t a t i o n o f the drone

Listing 5.1: APIs exposed by the Drone component

The flight modes supported by NG IDrOS are:

• Stabilize This mode allows the pilot to manually control the roll and pitch
of the UAV using a radio controller, but it uses the flight controller to
self-level.
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• AltHold This mode allows the pilot to manually control the roll, pitch,
and yaw of the UAV using a radio controller, but it uses the flight
controller to maintain a consistent altitude.

• Guided This mode allows the UAV to autonomously reach a specified
position and altitude. In order to use this mode, a GPS sensor must
be installed onboard.

• Loiter & PosHold These two modes use the flight controller to maintain
the location, heading and altitude of the UAV.

The APIs we listed and the flight modes we decided to support consist
of a subset of all the features supported by the flight controller and a subset
of all the available flight modes. Thanks to the layered and decoupled archi-
tecture of NG IDrOS, both the APIs and the supported flight modes can be
easily extended without impacting any other part of the software platform.
It is just sufficient to extend the Flight Controller Interface and the Drone
component.

5.1.1.2 Sensor

The purpose of the Sensors module is to provide an access interface towards
the sensors installed onboard. A driver must be provided for each sensor
that is installed onboard. The driver must include both the descriptor of
the sensor and the implementation to request measurements.
Each sensor driver must implement a specific abstract class, named Driver,
that defines the mandatory methods to be implemented, as well as the
mandatory properties of the descriptor. This interface is reported in List-
ing 5.2.

The attributes belonging to the sensor descriptor are marked with the
specific decorator @descriptor. Additional custom properties can be added
to the descriptor just by using this decorator. The Driver also specifies if the
sensor is remotely exploitable by other clients, by means of the makeremote
decorator applied to the entire class.
Listing 5.3 provides an example of a driver for a pull temperature sensor,
that is remotely exposed to other clients and that communicates with the
hardware via the GPIO interface.

We decided to implement the sensor descriptor by means of methods in-
side the sensor driver because of the presence of dynamic properties, whose
values are not static and may change at each invocation. A different ap-
proach, such as a structured XML file, would have increased the complexity
needed to support such dynamic properties.
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1 c l a s s Driver ( AbstractClass )
2 /∗ Sensor Desc r ip to r ∗/
3 @descr iptor @abstractmethod
4 de f i d e n t i f i e r :
5 Returns the i d e n t i f i e r o f the s enso r
6
7 @descr iptor @abstractmethod
8 de f i n t e r v a l :
9 Returns the i n t e r v a l o f the s enso r

10
11 @descr iptor @abstractmethod
12 de f type :
13 Return the type o f the sensor , PUSH or PULL
14
15 @descr iptor @abstractmethod
16 de f quant i ty :
17 Returns the quant i ty mesured by the senso r
18
19 @descr iptor @abstractmethod
20 de f quantity uom :
21 Returns the un i t o f measurement o f the quant i ty read by the

senso r
22
23 @descr iptor @abstractmethod
24 de f accuracy :
25 Return the accuracy o f the s enso r . I t can be a s t a t i c

value , or a dynamic value
26
27 @descr iptor @abstractmethod
28 de f accuracy uom :
29 Returns the un i t o f measurement o f the accuracy
30
31 @descr iptor
32 de f accuracy type :
33 Returns STATIC i f the accuracy method i s a s t a t i c method ,

DYNAMIC otherwhise
34
35 @classmethod
36 de f d e s c r i p t i o n ( c l s ) −> d i c t :
37 Returns an ob j e c t conta in ing a l l the p r op e r t i e s o f the

d e s c r i p t o r
38
39 /∗ Sensor Measurements ∗/
40 @abstractmethod
41 de f r e a d ( s e l f ) :
42 Requests a measurement to the senso r and re tu rn s i t s va lue

Listing 5.2: The Driver interface.
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1 @makeremote
2 c l a s s ExampleTemperatureSensor ( Driver ) :
3 @descr iptor
4 de f i d e n t i f i e r :
5 re turn ” example sensor ”
6
7 @descr iptor
8 de f i n t e r v a l :
9 re turn 0 .5 //Corresponds to 2Hz

10
11 @descr iptor
12 de f type :
13 re turn PULL
14
15 @descr iptor
16 de f quant i ty :
17 re turn ” temperature ”
18
19 @descr iptor
20 de f quantity uom :
21 return ” cen t i g rade ”
22
23 @descr iptor
24 de f accuracy uom :
25 return ” cen t i g rade ”
26
27 @descr iptor
28 de f accuracy type :
29 re turn STATIC
30
31 @descr iptor
32 de f accuracy :
33 re turn 0 .1
34
35 @descr iptor
36 de f sensor brand : // Custom s t a t i c d e s c r i p t o r property
37 return ”ST”
38
39 de f r e ad ( ) : // Read the GPIO
40 GPIO. input (4 ) ;

Listing 5.3: Example of sensor driver of a pull remotely exposed temperature
sensor, with a custom descriptor property.

5.1.2 High Performance Networks Abstraction

The implementation of this component required most of the effort during
the implementation phase, since it is related to the core contribution of this
thesis work. In this section we are going to describe the Remote Sensors,
Communication Bus and Computation Offloader modules of the architec-
ture. Then, we are going to present the network protocol we implemented.
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5.1.2.1 Remote Sensors, Communication Bus and Computation
Offloader

All these three modules provide specific functionality related to a specific
aspect of the high-performance networks exploitation. Our implementation
approach was to define all the three as abstract classes that must be imple-
mented by the network protocol.

The Remote Sensors module contains the methods that must be imple-
mented for remote sensors discovery, connection, disconnection and mea-
surements read. It also contains the class Remote Sensor Driver that prox-
ies the access towards remote sensors. Listing 5.4 reports the methods of the
Remote Sensor class, while Listing 5.5 reports the methods of the Remote
Sensor Driver.

1 c l a s s RemoteSensors ( AbstractClass ) :
2 @abstractmethod
3 de f s e n s o r s d i s c o v e r y ( s e l f , query , c a l l b a ck=None ) −> L i s t :
4 Invoked to i s s u e a remote s enso r query . I t r e tu rn s a

p o s s i b l e empty l i s t .
5
6 @abstractmethod
7 de f r emote senso r connec t ( s e l f , r emote sensor ) −> bool :
8 Invoked to connect to a remote s enso r .
9

10 @abstractmethod
11 de f r emote s en so r d i s connec t ( s e l f , r emote sensor ) −> bool :
12 Invoked to i n t e r r up t the connect ion with a remote

sensor , whenever i t i s no l onge r needed .
13
14 @abstractmethod
15 de f r emote s enso r r ead ( s e l f , r emote sensor ) :
16 Invoked to acqu i r e a measurement from the senso r .

Listing 5.4: The Remote Sensors module.

1 c l a s s RemoteSensorDriver ( Sensor ) :
2 de f i n i t ( s e l f , d e s c r i p t o r , r emo t e i n t e r f a c e ) :
3 A remote s enso r must be i n i t i a t e d by means o f i t s

d e s c r i p t o r and the remote i n t e r f a c e ob j e c t
4
5 de f r e a d ( s e l f ) :
6 This method invokes the r emote s enso r r ead method from

the remote i n t e r f a c e .
7
8 @classmethod
9 de f d e s c r i p t i o n ( c l s ) −> d i c t :

10 Returns an ob j e c t conta in ing a l l the p r op e r t i e s o f the
d e s c r i p t o r

Listing 5.5: The Remote Sensor Driver.
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The descriptor of a remote sensor requires an additional mandatory field
named remote host which keeps a reference to the physical host to which
the sensor is physically connected. This is needed by the remote interface
in order to know towards which host the requests must be issued.
In order for a Remote Sensor Driver to look exactly as a local sensor driver,
when the class is instantiated, a set of methods is dynamically created from
the names of the properties in its descriptor. In this way, not only the prop-
erties that we defined as mandatory can be accessed through a method that
corresponds to the name of the property, but also the custom defined ones.
The methods exposed by these two classes are not directly accessed by the
application developers, but are exposed only toward the Global Sensors Man-
ager of the application layer.
The Communication Bus module holds the abstract methods that must be
implemented by the network protocol in order to provide the functionality to
create, join and leave a communication bus channel, and to send and receive
messages using it. Since these methods are directly accessed by the appli-
cation logic layer, they hide the unnecessary implementation detail. These
methods are reported in Listing 5.6.

1 c l a s s CommunicationBus ( Sensor ) :
2 @abstractmethod
3 de f c r ea t e bu s channe l ( channel name , n od e s w i t e l i s t ,

n o d e s b l a c k l i s t ) :
4 This method a l l ows to c r e a t e a new channel over the

bus , us ing a b l a c k l i s t or wh i t e l i s t f i l t e r i n g
5
6 @abstractmethod
7 de f j o i n bu s channe l ( channel name ) :
8 This method i s used to j o i n a s p e c i f i c channel
9

10 @abstractmethod
11 de f l e ave bus channe l ( channel name ) :
12 This method i s used to l eave a s p e c i f i c channel
13
14 @abstractmethod
15 de f get bus members ( channel name ) :
16 t h i s method re tu rn s the l i s t o f members in a s p e c i f i c

channel
17
18 @abstractmethod
19 de f send message ( channel name , message ) :
20 This method i s used to send a message over a s p e c i f i c

channel
21
22 @abstractmethod
23 de f on incoming message ( s e l f , channel name , message ) :
24 This c a l l b a ck i s invoked when a new message i s r e c e i v ed

in a s p e c i f i c bus channel

Listing 5.6: The Communication Bus module
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The last module hold by this component is the Computation Offloader.
It exposes methods to offload, inload and then invoke an offloaded function.
These methods are directly exploitable by the application developer, and for
this reason all the implementation details are hidden. For example, all the
methods are valid for both static and dynamic functions, even though the
mechanisms behind are radically different. This module is an abstract class
whose implementation must be provided by the network protocol. Listing 5.7
reports the methods of this abstract class.

1 c l a s s ComputationOff loader ( AbstractClass ) :
2 @staticmethod
3 de f i n i t me thod o f f l o ad i n g (method )
4 Of f l oads the method given as input
5
6 @staticmethod
7 de f dump g loba l va r i ab l e s (method ) :
8 Ret r i eve s the va lue s o f the s t a t e v a r i a b l e s o f the

method given as input from the remote host
9

10 @staticmethod
11 de f r evoke method o f f l oad ing (method ) :
12 In l oads back the method given as input
13
14 @staticmethod
15 de f o f f l oaded method invoca t i on (method , argv ) :
16 Remotely invokes the method given as input , with the

g iven input parameters

Listing 5.7: The Computation Offloader module

5.1.3 Calvin

Before describing the network protocol we implemented, it is necessary to
present Calvin [39], which is the application environment upon which we
decided to implement the protocol.

Calvin is an open-source project by Ericsson Research started in 2015 and
currently under development. The purpose of Calvin is to reduce the frag-
mentation of communication protocols, platforms and environments that are
used in IoT applications. The way it tries to reach this goal is by providing to
application developers a different way of building and managing distributed
IoT applications based on a combination of the Actors paradigm [40] and of
the Flow Based paradigm [41].
At the core of Calvin there is the division of an application into four different
aspects:

• Describe the functional parts that make the application, and design
them to be reusable.
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• Connect the components that build up an application.

• Deploy the components according to their connections.

• Manage the mapping of components to hardware during the lifetime
of the application.

The describe aspect is based on the Actor model. An actor is a reusable
software component that runs into a specific runtime. Actors can commu-
nicate with each other only by means of tokens exchanged over input and
output ports. Providing data over the input port of an actor is the only
way to influence its status, and this allows one to move and migrate actors
across runtimes, because it makes possible to wrap the actor together with
its status at a given moment. While processing data incoming from an in-
put port, actors may produce outbound tokens sent over their output ports.
The description of an actor is made up of its action, its port and of the
conditions that trigger an action.
Connections among actors are represented by means of graphs where the
actors are the nodes and there are directed arcs going from output to input
ports. Connections are the only way to exchange tokens between input and
output ports.

When defining an actor, no specific information for its deployment is
provided, because this stage is dynamically handled. Also, no instructions
are specified on how tokens should be transferred among them. During the
deployment phase, actors are mapped to a Calvin runtime that is reachable
by the user executing the deployment operation. This runtime immediately
migrates the actor towards the most suitable runtime (that can be this ini-
tial runtime itself). Runtimes form a mesh network wherein actors can move
among nodes. This functionality is based on tagging each runtime with spe-
cific attributes, that can be then specified as requirements by actors. An
example of such a tag can be the availability of a time provider, and actors
requiring a time provider will automatically be migrated to tagged hosts. An
actor will be deployed following load-balancing criteria if it does not require
specific capabilities. The way actors communicate depends on where they
are deployed and it is inherited from the way runtimes are connected the one
with the other. Mixed communication protocols are possible in the mesh:
for example, half of the nodes may communicate using Bluetooth while the
other half using the IP protocol. It is sufficient that a single runtime is able
to use both the protocols to create a bridge and form a single mesh.
Once all the actors are deployed on a runtime that satisfies all their re-
quirements, the application can start running and it enters into the manage
phase. During this phase, actors are monitored and can migrate and can
scale based on the needs.

Calvin applications are written using a specific language named Calvin
Script. Each application starts with the definition of the actors involved
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into the application. Then, the connections among their ports are defined.
Listing 5.8 reports the example of Calvin application for a vending machine.
The language used to define actors depends on the language used to imple-
ment the Calvin runtime they are going to be deployed into. Currently, the
reference runtime is written using Python, and so are mostly of the available
actors. Listing 5.9 is the example of an actor generating a random number
inside an interval specified by a lower and an upper bound.

1 /∗ Actors De f i n i t i o n ∗/
2 moneyhandler : MoneyHandler ( currency=”euro ”)
3 d i sp en s e r : Dispenser ( )
4 keypad : KeyPad ( )
5 itemdb : Database ( )
6
7 /∗ Actors Connection ∗/
8 keypad . number > itemdb . cho i c e
9 itemdb . va lue > moneyhandler . r eque s t

10 itemdb . cho i c e > d i sp en s e r . cho i c e
11 moneyhandler . ok > d i sp en s e r . ok

Listing 5.8: Example of Calvin application for a vending machine

1 c l a s s RandomNumber( Actor ) :
2 ”””
3 Produce random number ( f l o a t i n g po int ) in range [ lower . . .

upper )
4 Inputs :
5 t r i g g e r : Any token
6 Outputs :
7 number : Random number in range [ lower . . . upper )
8 ”””
9 @manage ( [ ’ lower ’ , ’ upper ’ ] )

10 de f i n i t ( s e l f , lower , upper ) :
11 s e l f . lower = lower
12 s e l f . upper = upper
13 s e l f . setup ( )
14
15 de f setup ( s e l f ) :
16 s e l f . rng = c a l v i n l i b . use (”math . random”)
17
18 de f d id migrate ( s e l f ) :
19 //This method i s f i r e d soon a f t e r the ac to r migrat ion
20 s e l f . setup ( )
21
22 @condit ion ( a c t i on i npu t =[ ’ t r i g g e r ’ ] , a c t i on output =[ ’number ’ ] )
23 de f ac t i on ( s e l f , t r i g g e r ) :
24 re turn s e l f . rng . random number ( s e l f . lower , s e l f . upper )
25
26 a c t i o n p r i o r i t y = ( act ion , )
27 r e qu i r e s = [ ’ math . random ’ ]

Listing 5.9: Example of Calvin Actor producing a random number
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The definition of an Actor always starts with the statement of its input
and output ports, together with optional descriptions for the ports and for
the actor itself. The manage decorator (line 9) defines the variables that
form the state of the actor. The condition decorator (line 22) is used to
define which input ports trigger the action, and which ports are used for
the output. At line 26, it is specified the order in which actions must be
evaluated, while at line 27 the capabilities that the actor requires in order
to be deployed on a runtime.
The Calvin Runtime is specified by means of a set of lightweight APIs of
which multiple implementations can be provided. This component of the
Calvin stack is partially platform-dependent, since it is stacked directly on
top of the operating system, as it shown in Figure 5.2. Calvin runtime sys-
tems can be extended by adding new capabilities using a plug-in mechanism:
this flexibility makes Calvin suitable to be adapted for application-specific
scenarios, and it is the key feature that allowed us to build a network pro-
tocol upon Calvin.

At the moment of writing, two different implementations of the Calvin
runtime exist:

• Calvin Base Is a Python implementation of the runtime and it is the ref-
erence of the APIs.

• Calvin Costrained Is a C implementation of the runtime that targets de-
vices with constraints on memory, computing, and power consumption.

Since actors and applications are stacked on the platform independent part,
as it is shown in Figure 5.2, they can agnostically be deployed on Calvin Base
and Calvin Constrained instances. This flexibility makes Calvin deployable
in a very wide range of hardware devices, and it is a relevant feature we are
going to exploit in our design.

Figure 5.2: The Calvin software stack, taken from [39].
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5.1.4 Calvin Network Protocol

We decided to build an NG IDrOS network protocol based on Calvin for
five main reasons:

• To leverage the automatic deployment mechanism and the built-in
migration features;

• To exploit the wide range of hardware devices into which a Calvin
runtime (base or constrained) can be hosted;

• To benefit from the built-in creation of the mesh network;

• For the network-agnostic management of the connections, which is
totally delegated to the operative system;

• For the built-in capability to create a mesh of nodes using different
connection protocols, such as IP and Bluetooth.

These technical aspects allowed us to save a lot of effort during the devel-
opment phase because we leveraged Calvin features and avoided to start an
implementation from scratch for each of them. Together with the technical
aspects, we decided to use Calvin because we agree with the goal of Calvin
of reducing fragmentation of IoT, and we did not want to further contribute
to this fragmentation by creating a new and isolated platform. Furthermore,
using Calvin as network protocol allows NG IDrOS to be integrable in the
growing ecosystem of Calvin applications.

However, using Calvin to develop our network protocol required a con-
siderable effort because Calvin is distributed as a standalone runtime and
no libraries or APIs exist to interact with it. The approach we followed was
then to run an instance of Calvin runtime in parallel with an instance of NG
IDrOS, and to exploit the command line interface to let NG IDrOS talk with
Calvin. At NG IDrOS startup it is checked if a Calvin runtime is present on
the host, and it is started if it is not already running. This creates a tight
coupling between a Calvin runtime instance and an NG IDrOS instance,
that can not work properly without a running Calvin runtime on the same
host. A Calvin runtime instance is started using the csruntime command.
The logs of the runtime are captured during its entire lifecycle to monitor
for errors or malfunctioning.

The implementation of this Calvin based network protocol followed four
distinct phases, that we are going to describe in this section:

1. Implementation of custom modules to extend Calvin base runtime
capabilities;



70 CHAPTER 5. IMPLEMENTATION

2. Implementation of Calvin actors;

3. Implementation of generative programming capability for NG IDrOS
to autonomously generate Calvin Script applications;

4. Implementation of an NG IDrOS class to implement all the abstract
classes from the Hardware High-Performance Networks Abstraction
component.

5.1.4.1 Implementation of Calvin Runtime Modules

The first step was to extend the standard capabilities of the Calvin base
runtime by means of two ad-hoc module needed for NG IDrOS Central:
Central Sensors Manager Module and Central Bus Manager Module. Calvin
runtimes capabilities can be easily extended by means of a plug-in mecha-
nism. Each new module, named calvinsys module must implement a specific
abstract class that prescripts the methods to be implemented. It is then
sufficient to place the file in the runtime modules folder and it will be auto-
matically loaded at startup time and made usable by actors.

The Central Sensors Manager module implements the functionality de-
scribed in Section 4.3 for the Global Sensors Manager module from the
architecture: it works as repository of remote sensors, as resolver of queries
and it forwards measurements requests and values among hosts. It main-
tains an internal state tracking the provider of each sensor, which host is
connected to which remote sensor, and it keeps an internal buffer of sen-
sors measurements. It is capable of caching read requests for pull sensors
with the purpose of reducing the number of requests issued towards the sen-
sor and of reducing the latency. When requests arrive while this module
is already waiting for a response from the sensor, no additional requests
are issued towards it: as soon as the measurement is available, it is dis-
tributed as response to all the queries arrived in the interval. This caching
mechanism mitigates both the latency introduced by the sensor and by the
network connection between the central node and the sensor host. Figure
5.3 reports a timeline showing an example of this caching mechanism. In
order to forward the values produced by push sensor to each host connected
to it, this module provides a method invoked by the sensor every time a new
measurement is available.

This calvinsys module is also in charge of attaching a logic timestamp
to each measurement coming from sensors: in this way it is possible to
have temporal references without any effort to synchronize clocks among
hosts. This module adds the idros.host-central-sensors-manager tag to the
capabilities of the Calvin runtime, in order for actors to be correctly deployed
into it.
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Figure 5.3: Example timeline of sensor requests caching. Requests #2 and #3 are
not issued towards the sensor because the module is still waiting for the response
of request #1. When the measurement is ready, it is returned to all the requests.

The Central Bus Manager module implements the functionality described
in Section 4.3 for the Global Communication Bus Manager module from the
architecture: it works as repository of existing bus channels and it keeps the
list of memberships. It implements the blacklisting and whitelisting that
prevent hosts to join a specific bus channel if they are not intended to. It
provides a method to retrieve channel members and one to send messages.
This module adds the idros.host-central-bus-manager tag to the capabilities
of the Calvin runtime.

Both the calvinsys modules we described are distributed as part of NG
IDrOS: at startup, it is checked if these two modules are already present in
the Calvin runtime, otherwise they are installed.

5.1.4.2 Implementation of Calvin Actors

The second step was to implement the calvin actors needed to connect dif-
ferent NG IDrOS instances. We developed nine actors in total: five related
to remote sensors, two to computation offloading and two to the remote
bus. The actor model of Calvin led us to develop the entire network pro-
tocol using an asynchronous approach: each network interaction does not
block the execution, and callbacks are triggered once results are ready. This
is an approach we already declared as the best candidate to implement a
network protocol before choosing Calvin, since it best fits the needs of a
highly distributed environment.
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Remote Sensors

For Remote Sensors capabilities we had to implement actors able to connect
clients to the NG IDrOS Central instances where the Central Sensors Man-
ager module is running. Figure 5.4 shows a scenario where all the Calvin
actors for Remote Sensors are present. Figure 5.5 shows the connections
between the input and the output ports of the actors.

For this purpose, the first actor we implemented was the Central Sensors
Manager Connector. This actor is deployed into the Calvin runtime of an
NG IDrOS Central instance by each NG IDrOS Drone client that wants
to connect to it. It requires the specific capability tag idros.host-central-
sensors-manager because, once deployed, it connects to the Central Bus
Manager module. This actor has four input ports:

• register When the descriptor of a sensor is sent to this input port, the sen-
sor is added to the remote sensors list of the Central Sensors Manager,
and mapped to its hosting client.

Figure 5.4: Host A runs an instance of NG IDrOS Central and hosts a Central
Sensors Manager calvinsys module. On the same runtime, there are two Central
Sensors Manager Connectors actors, one deployed by Host A and one by Host
B. Both Host A and Host B have a remote sensor that is remotely exposed and
is connected to the NG IDrOS Central via the Idros Sensor actor. Host C is
connected to the remote sensor of Host B in a distributed manner, for this reason
the Distributed Idros Sensor Connector actor is deployed on C, and the Distribute
Idros Sensor actor is deployed on B.
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Figure 5.5: Calvin actors connection for centralized remote sensors.

• queries in When a query is sent to this input port, it is resolved by search-
ing into the list of remote sensors of the Central Bus Manager.

• events in Inputs on this port are able to trigger three distinct events into
the Central Bus Manager: remote sensor connection, remote sensor
disconnection, and remote sensor read request. Each of these events
is distinguished by a specific payload.

• values in This port is used by remote sensors to send their measurements.
Push sensors autonomously publish measurements over this port based
on their frequency, while pull sensors will publish a measurement only
after a specific request.

These are the input ports of the actor:

• queries result out This port is used to send out the results of a query.

• pull requests out This port is used to issue measurement requests against
pull sensors.

• values out This port is used to sent push sensors measurements to all the
clients that are connected to them.

To allow an NG IDrOS Drone instance to communicate with the Central
Sensors Manager Connector actor, we developed the Local Sensors Manager
Connector actor. This actor has two input ports and two output ports:

• events out This output port is used to forward three kinds of event:

• Connect to a remote sensor;

• Disconnect from a remote sensor;

• Get a sensor measurement.

• queries result in This input port is used to receive results from remote
sensors queries.
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• values in This input port is used to receive measurement values after read
requests.

• queries out This output port is used to send remote sensors queries.

A Calvin actor is also deployed for each sensor that is available for remote
access. This actor is deployed on the same host where the sensor is physically
hosted, and it is connected to the Central Sensors Manager Connector on
the NG IDrOS Central. These are the input and output ports of the actor:

• read requests in This port is used to receive read requests for the sensor.

• register This port is used to register the sensor at the central node by
means of the sensor descriptor.

• values out This port is used to send sensor measurements. Push sensor
autonomously send measurements based on their frequency of the sen-
sor. Pull sensors send measurements only after an explicit request.

These three actors described so far implement all the functionality needed
for the centralized connection mode of remote sensors. Two more actors were
developed to support the distributed remote sensors connection. Figure 5.6
shows the connections among the ports of these two actors.

The Distributed Idros Sensor actor is deployed on the same host where
the sensor is connected, and works as an interface towards it. This actor
has only one input port and one output port:

• read requests in This input port is used to receive read requests. It is used
for pull sensors only.

• values out This output port is used to send sensor measurements once
they are ready.

The actor to be deployed on the host that wants to connect to the remote
sensor is named Distributed Idros Sensor Connector and has one input port
and one output port:

Figure 5.6: Calvin actors connection for distributed remote sensor connec-
tion.



5.1. CONNECTION LAYER 75

• values in This input port is used to receive measurements from the sensor.

• read requests out This output port is used to issue measurement requests
towards pull sensor.

Computation Offloading

For computation offloading we developed two actors: one is deployed on
the remote host that receives and runs the function, the other one on the
offloader host. No calvinsys modules are needed to extend the Calvin base
runtime capabilities for this functionality because it can be implemented
just using Calvin actors. Figure 5.7 reports the deployment setup of the two
actors, as well as the connections between their ports.

Computation Receiver is the actor deployed on the remote host. It im-
plements the functionality needed for the Offloading Manager component of
the NG IDrOS Central architecture, described in Section 4.3. The function
to be offloaded is directly injected into the actor by means of generative pro-
gramming techniques [42]: the source code of the function to be offloaded is
extracted from the offloader host, manipulated and injected into the Python
code of the actor. The manipulation is needed to extract the variables that
form the state of dynamic functions. In order to identify the variables that
form the internal state of a function, we implemented a custom Python type
hint named makeglobal. Each variable marked with this type hint is added
to the state of the function, and its value will be transferred back and forth
when the function is offloaded and inloaded.
Listing 5.10 is an example of a function to be offloaded. Functions can be
offloaded by marking them with the specific @offload decorator (line 1) or
by passing them to the method exposed by the Computation Offloader class.
When a function is marked with the decorator it is offloaded at startup time.

Figure 5.7: Calvin actors deployment and connections for computation of-
floading capability.
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Using the method exposed by the Computation Offloader the function can
be offloaded at any time during the execution of the application.

1 @of f load
2 de f func t i on ( input params ) {
3 s t a t e v a r i a b l e : makeglobal = value
4 non s t a t e v a r i a b l e = value
5
6 //Function l o g i c
7 }

Listing 5.10: Source code example of function to be offloaded

This actor has two input ports and two output ports:

• exec Request Tokens on this input port trigger the execution of the of-
floaded function. If the method has input parameters, they are sent
as part of the request.

• state request Tokens on this input port will trigger the output of the state
of the function on the corresponding output port. This port is relevant
for dynamic functions only.

• exec result This output port is used to send execution results following a
remote invocation.

• state dump This port is used to send the state of the function after a
dump request. This port is relevant for dynamic functions only.

The second actor we implemented is named Computation Offloader and
it is deployed on the host that requests the computation offloading. It mir-
rors the ports of the Computation Receiver actor, as it is reported in Figure
5.7.

Communication Bus
In order to develop the functionality related to the communication bus, we
implemented two actors: one is deployed on the NG IDrOS Central instance
that runs as coordinator, the other one is deployed on the client that ac-
cesses the bus. The NG IDrOS Central instance holds an actor for each
clients that is connected to the bus. Figure 5.8 represents the deployment
and connections between these two actors.

The Central Bus Connector requires the capability tag idros.host-central-
bus-manager to be deployed on a Calvin runtime because it establishes a
connection towards the Central Bus Manager calvinsys module that effec-
tively implements the bus coordinator. This actor has two input ports and
one output port:
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• event in Tokens on this input port trigger three different events, depend-
ing on the payload:

• Create a new bus channel, optionally specifying a blacklist or a
whitelist of clients;

• Join a bus channel, specified by the channel name;

• Leave a bus channel, specified by the channel name.

When a create, join, or leave request is received, it is forwarded to the
Central Bus Manager module, where the application logic is actually
implemented.

• msg in This input port is used to receive messages for a specific bus chan-
nel. When an inbound message arrives, it is forwarded to the Central
Bus Manager module.

• msg out This output port is used to forward messages to all the members
of a channel. Tokens on this port are triggered by the Central Bus
Manager module, which keeps the list of participants to each channel.

The Bus Connector actor is instead deployed on the host that is con-
necting to the bus, and it mirrors the ports of the Central Bus Connector,
as it is shown in Figure 5.8.

5.1.4.3 Implementation of automatic Calvin Script generation

The third step of the implementation phase addressed the development of
NG IDrOS capabilities to autonomously write Calvin Script applications.
The approach we followed derives from the generative programming ap-
proach [42]: actors are declared, and their ports are connected programmat-
ically, then the application is deployed in the mesh of nodes using the local
Calvin runtime as starting point. This generative programming approach

Figure 5.8: Calvin actors deployment and connections for communication
bus functionality.
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is used also to declare where actors must be deployed by generating a re-
quirements JSON file, deployed together with the application, that specifies
the deployment requirements. Deployment requirements can be expressed
both by specifying the capability tags that the hosting runtime must have,
or by directly specifying the target host by its identifier. The first approach
is used to deploy actors on the Calvin runtime of the NG IDrOS Central
instances. The second one is used to force the deployment of an actor on a
specific runtime, and to inhibit its migration towards other runtimes.
This generative programming approach allows to create Calvin applications
that exactly fits the application logic needs, and consequently to deploy only
the actors that are really needed. For example, no applications are created
and no actors are deployed if the drone mission does not include any func-
tion to be offloaded.

The deployment of the application is performed using the csdeploy com-
mand provided by the Calvin base runtime. This command takes as input
a Calvin Script file and a JSON requirements file. The output of this com-
mand is captured and parsed to detect errors and implement corrective
actions. At this point, the built-in capability of Calvin deploys the actors
on the runtimes present in the network that satisfy the requirements. If
the deployment fails because not all the requirements can be fulfilled — e.g.
because the mesh of nodes is not complete, or because it doesn’t include
suitable nodes at all — an error is returned and corrective actions can be
taken by the application logic.

5.1.4.4 Implementation of the Abstract Classes

The fourth and last step of the implementation phase addressed the imple-
mentation of the abstract classes we described in Section 5.1.2: we included
everything in a single class containing the methods from all the abstract
ones, and named it Calvin Remote. In order for this class to communicate
with the actors deployed on the local Calvin runtime, we implemented a
Remote Method Invocation (RMI) mechanism over the loopback interface
using the Pyro4 Python library [43].
We decided to use this library because it reduces the implementation effort.
It is sufficient to expose the methods over the loopback interface and to
invoke them as they were standard methods. This approach allows passing
back and forth input values and return values, but also to propagate excep-
tions when they happen. Even though other lower level approaches, such as
socket based ones, may grant a lower latency in this internal communication,
they would have required much more implementation effort to guarantee the
same capabilities. It is a small overhead we decided to pay, and that can be
easily changed in the future.
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5.2 Application Logic Layer

In this section we describe the modules contained in the middle layer of
the NG IDrOS architecture, the Application Logic Layer, that is reported in
Figure 5.9. This layer manages user-built modules and provides functionality
to start and manage a drone mission. The Sensors Manager component is
in charge of providing a unified access interface to both local and remote
sensors, as well as to implement the requirements of the programming model
described in Section 3.2.1

The Modules Manager provides functionality to upload, delete, and list
navigation modules and data acquisition modules. These functionalities are
mainly exploited through the Remote Control layer of the architecture, and
remotely exposed through one or more network protocols. We decided to
implement these upload, list and delete functionality in the easiest possible
way: modules are uploaded into a specific folder, and from such specific
folder they are loaded or deleted. We decided not to implement more com-
plex mechanisms, such as local databases, because at the moment there
are no additional information to be stored except for the files themselves.
Both Navigation Modules and Data Acquisition Modules must implement
an abstract class that prescribes the existence of the start() method: this
is invoked by the Mission Manager when the mission begins. This module
is also in charge of providing capabilities to upload, delete, and list sensor
drivers. The exact same approach is applied to sensor drivers too: they are
loaded into a specific folder of the system, and from there they are loaded
into the system or deleted.

At startup time, the Sensors Manager module scans each file in this spe-
cific folder and instantiates the sensors. For push sensors, separated threads
are spawned to acquire the measurements at the given sensor frequency.
These values are stored into a local buffer which is used to provide values to
measurement requests. This module is capable of managing local or remote
sensors agnostically, since they implement two abstract classes containing
the exact same methods, as it is described in Section 3.2.1.
This module keeps an internal mapping between each sensor and the quan-

Figure 5.9: The Application Logic Layer from the NG IDrOS Architecture.
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tity they measure. The idea is that application developers, in writing their
missions, do not access a specific sensor, but request to the Sensors Module
the observation of a specific quantity. Since multiple sensors may be avail-
able to provide the same quantity at the same time, this module provides
capability to compare sensors and to select the best provider.
In the current NG IDrOS implementation, two sensors are comparable if
they measure the same quantity, if they have the same unit of metric, and
also if their accuracy is provided with the same unit of metric. The com-
parison is simply based on the value of the accuracy read from the sensor
descriptor. Figure 5.10 reports an example highlighting the concept of com-
parable sensors.

The current implementation of the Sensors Manager supports the three
working modes described by the programming model:

• All In this working mode, an observation is retrieved from all sensors
providing the requested quantity, together with their accuracy. Com-
parable sensors are compared and for each tuple {quantity unit of
measurement, accuracy unit of measurement} the best observation is
returned.

• Conservative In this working mode, every time a new sensor is registered
to the Manager, its accuracy is retrieved and compared with the one
of the other comparable sensors. The best provider is stored for each
tuple {quantity unit of measurement, accuracy unit of measurement}.
Only the best provider of a quantity is queried. The best provider
is computed again every time the best provider is removed from the

Sensor A

Quantity: temperature
Quantity uom: celsius

Accuracy uom: percentage

Sensor B

Quantity: temperature
Quantity uom: celsius

Accuracy uom: percentage

Sensor C

Quantity: temperature
Quantity uom: fahrenheit

Accuracy uom: percentage

Sensor D

Quantity: temperature
Quantity uom: fahrenheit
Accuracy uom: fahrenheit

Figure 5.10: Example of Sensors Comparison. Sensors A and B are comparable
because their quantity unit of measurement and accuracy unit of measurement are
the same. Sensor C and Sensor D are not comparable because their accuracy unit
of measurement is different.
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Manager.

• Exclusive In this working mode, the client explicitly specifies the provider
of a quantity.

The first working mode always ensures that the best providers are se-
lected to provide a quantity. This requires to query all sensor at each request
and this may cause a series of drawbacks, such as an increased power con-
sumption or a high number of connections opened towards remote sensors.
The second working mode reduces these drawbacks coming from the need
of querying all the sensors, but it may cause suboptimal providers to be
used as sources of observations. The last working mode gives the flexibility
to the application developer to explicitly specify the provider of a quantity,
actually empowering him to write custom logics to switch between providers.

The Mission Manager exposes five methods:

• add module(module) Used to add a navigation module or a data acquisi-
tion module to the mission. This operation is permitted only when a
mission is not already running.

• remove module(module) Used to remove a previously added module to
the mission. This operation is permitted only when a mission is not
already running.

• view modules() Shows which modules were added to the current mission.

• start mission() Starts the mission by invoking the start() method on each
navigation module or data acquisition module that was added to the
mission.

• mission status() Used to identify if a mission is currently running on the
drone.

These methods are exploited mainly by accessing them through the Control
Layer of the architecture.

The last module to be described in this layer is the Fail Safe Manager.
We inherited this module from Cantoni’s IDrOS implementation [26] and we
limited our efforts in making it compatible with NG IDrOS, since it already
provides the functionality needed. This module offers two methods that are
able to override all the commands sent by the navigation module: one to
land the drone, one to make him return to the takeoff position. The purpose
of this module is to provide functionality to stop the execution of any kind
of mission and to preserve the integrity of the UAV.
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5.3 Remote Control Layer

This layer of the architecture provides a remote interface that can be ac-
cessed through different internet protocols. This interface exposes the mod-
ules of the Application Logic Layer and can be leveraged to create machine-
to-machine interactions with other systems, as well as to remotely control
the drone and its mission.

The original IDrOS implementation includes a binding to two different in-
ternet protocols: MQTT and CoAP. It provides a sophisticated mechanism
based on handlers to parse incoming requests.

Since this layer does not represent the core part of this thesis work, we
decided to reduce the implementation effort for this layer and to simplify it
with respect to the first version of IDrOS.
We removed both the MQTT and CoAP binding, and we created a very
simple socket server to handle requests. This socket server accepts requests
built using the JSON format [44] with a very specific structure, which is
directly mapped to the methods exposed by the modules of the Application
Logic Layer. In this JSON payload, it must be specified which is the target
module, which method of this module must be invoked, and which are the
input parameters. Listing 5.11 reports the structure of the JSON format,
while 5.12 reports an example of a payload to start the drone mission after
5 seconds.

1 {
2 module : ”module ” ,
3 method : ”method” ,
4 input parameters : [
5 {
6 name : ”name” ,
7 value : ” va lue ”
8 } ,
9 . . .

10 ]
11 }

Listing 5.11: JSON structure for
Remote Control Layer payloads.

{
module : ”MissionManager ” ,
method : ” s t a r t m i s s i o n ” ,
input parameters : [

{
name : ” t o f f s e t ” ,
va lue : ”5000”

}

]
}

Listing 5.12: Example of JSON
payload



Chapter 6

Evaluation

In this chapter we present the evaluation tests we designed and executed
to measure the performance of the network protocol we implemented using
Calvin. We decided to focus the evaluation phase on the network protocol
because the performance of this architectural component influences the per-
formance of the entire software platform that is built around it.

To perform the experiments, we decided to avoid the usage of simula-
tors because they would not allow to test the actual implementation of NG
IDrOS, but they would require to rewrite entire parts of the software.
We decided to perform the experiments by deploying the real NG IDrOS im-
plementation on a real hardware. The testbed we built, reported in Figure
6.1, simulates a real-world deployment setting of NG IDrOS:

• Host A is an instance of NG IDrOS Central running in the Mobile
Edge Computing infrastructure, providing storage and computation
resources.

• Hosts B and C are two instances of NG IDrOS Drone running a mis-
sion.

• Host B and C can not directly communicate because they are in iso-
lated networks. They leverage Host A as bridge between the two
networks.

• They are connected to the internet using a 5G connection.

This testbed simulates one out of all the possible deployment scenarios for
NG IDrOS, and it includes only three hosts. The drawback of running the
tests on real hardware is the limited scalability that prevented us to test
different deployment settings or scenarios including more than 3 hosts.

83
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Figure 6.1: The testbed used for Calvin network protocol evaluation.

We used the NetEm tool available on Linux to simulate the performance
of the 5G cellular network [45]. This tool allows to software simulate network
conditions by imposing several parameters, such as:

• The baseline latency;

• The packets loss rate and its distribution;

• The packets corruption rate;

• The packets duplication rate.

Specifically, we imposed over Eth1 and Eth0 connections of Host A a latency
of 4 milliseconds, which is the upper-bound of the theoretical target latency
of 5G, as we reported in Section 2.1.2. We leveraged the same tool also to
simulate the packet loss over the links: we tested every scenario imposing a
packet loss rate from 0% to 10% with a 2% step and a random distribution.
We decided to limit our investigations to a maximum of 10% because it is
expected to be the maximum packet loss rate of the radio link at around
1000 connected clients [46].

Also the hardware equipment of the hosts have been chosen to simulate
the performance of the deployment setting we described.
Host A is a server machine that simulates a virtual machine inside the Mobile
Edge Computing infrastructure. It is equipped with:

• Intel Xeon CPU E3-1270 v5 @ 2.60GHz.

• 64GB DDR4 RAM @ 2400 MHz.

• 2 x Gigabit Ethernet network card adapters.

Hosts B and C are two Raspberry Pi model 3B+, which is a common
companion computer for UAVs. This specific model of the Raspberry is
equipped with:

• ARM Cortex-A53 @ 1.4GHz.

• 500MB SDRAM.
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• Gigabit Ethernet network adapter.

Since most of the performance metrics are related to latency measures,
the clocks of the three hosts must be perfectly synchronized. For this pur-
pose, we configured Host A to be an NTP server [47] for the two networks.
This guarantees an accuracy in clock synchronization of ±0.3 milliseconds.

The following sections describe the tests and performance metrics we
measured for the three features we implemented to exploit the high-performance
networks: Remote Sensors, Computation Offloading, and Communication
Bus.

6.1 Remote Sensors

The performance metric we want to measure to evaluate the performance of
the remote sensors functionality is the latency overhead introduced by the
NG IDrOS stack. The sum of the latency introduced by the software and
the latency introduced by the network transport is the end-to-end latency
of a remote sensor read. The purpose is to verify if the end-to-end latency
is suitable for real-time remote sensor exploitation.

To perform this experiment, we implemented a software emulated sensor
with a zero second interval, that is able to output a measurement immedi-
ately after a request. This sensor is physically connected to Host B and it
is remotely exploitable. We then implemented a drone mission to run on
Host C that connects to this sensor and requests measurements. Since the
two hosts are in two isolated networks, each measurement request is sent to
Host A and is then forwarded to the sensor. In the same way, each output
value is first sent to the central node and is then returned to the application.
This deployment setting is inspired by a real-world deployment in which an
instance of NG IDrOS Central acts as bridge between two isolated networks
to form a single mesh of nodes.

In this scenario, each measurement request goes through two hops to
reach the sensor. In the same way, each measurement value goes through
2 hops to reach the application. Hence, the baseline latency added by the
network transport is equal to 4x4 milliseconds = 16 milliseconds.

We implemented the drone mission to execute from one to 250 measure-
ment requests per second with a step of five, and logged the time interval
between the read request and the moment the sensor value was returned to
the application. We executed each experiment by imposing a packet loss
rate in the interval [0%, 10%] with a step of 2%. To give a better statistical
relevance to the results, we repeated each experiment 5 times. Table 6.1
and Figure 6.2 report the results averaged over the 5 repetitions.
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Packet Loss [%] Amount of Remote
Reads

Average Latency
[ms]

Standard Error
[ms]

0 18375 26.89 0.153

2 18375 27.80 0.152

4 18375 28.20 0.153

6 18375 28.75 0.157

8 18375 29.12 0.147

10 18375 29.93 0.158

Table 6.1: Remote sensor read experiments results.

Figure 6.2: Remote sensor read experiments results.



6.1. REMOTE SENSORS 87

From these results we derive the following conclusions:

• The average end-to-end latency of a remote sensor read, in the packet
loss rate interval we tested, is ∼ 28 milliseconds. Being the network
transport baseline latency equal to 16 milliseconds, we can conclude
that the software stacks accounts for the 43% of the end-to-end latency.

• The end-to-end latency in the interval we tested is slightly sensitive to
the packet loss rate. The end-to-end latency measured at 10% packet
loss rate is 11.3% higher than the one measured at 0% packet loss rate.

• The end-to-end latency in the interval we tested is slightly sensitive to
the read requests rate.

The root cause for the last two behaviours listed above is the double caching
mechanism that is implemented in the software stack: both at NG IDrOS
Central and at NG IDrOS Drone level, when observation requests arrive
while the system is already waiting for the response of a previous request,
no new queries are issued towards the sensor. As soon as the measurement is
available, it is returned to all the pending requests. This mechanism is able
to mitigate the latency introduced by both the TCP retransmissions caused
by the packet loss and by the high number of read requests in parallel.
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6.2 Offloading of Static Functions

We decided to evaluate different performance metrics for the offloading of
static functions and for the offloading of dynamic functions. For this reason,
we implemented two separate experiments to test the two features.

For static functions offloading, we decided to evaluate two metrics:

• The execution time at increasing invocation rate.

• The execution time at increasing network packet loss rate.

The purpose is to verify if there are conditions in which the overhead in-
troduced by the software stack makes the offloading disadvantageous with
respect to a local execution.

The experiment we designed involves Host B and Host A: the first one
offloads the function, the second one receives and executes it. This experi-
ment is inspired by a real use case, where a low computational power host
exploits a more powerful one to execute a complex part of the application
logic.
The function to be offloaded was designed to emphasize the performance dif-
ference between the hosts. Listing 6.1 reports the function we implemented,
while Table 6.2 reports the average execution times of the function for each
host. The execution of the test function on the Raspberry Pi is on average
15.5 times slower than its execution on the server machine.

1 de f t e s t ( ) :
2 var acc = 0
3
4 f o r i in range (0 , 4000) :
5 f o r q in range (0 , i ) :
6 acc += ( i ∗ i ∗ i )
7
8 re turn acc

Listing 6.1: Evaluation function
for static computation offloading.

Host Number
for execu-

tions

Average
execution
time [s]

Host A 1000 0.45

Host B 1000 7

Table 6.2: Average execution times of
test function on Host A and Host B.

Since the execution time on the Raspberry Pi is 7 seconds, we tested
the invocation rate in the range [1, 60/7 = 8] invocations per minute. We
repeated each experiment imposing a network packet loss rate in the range
[0%, 10%] with a 2% step. We measured the time interval between the re-
mote invocation and the moment the result value was returned. In these
measurements, we have not included the time needed to offload the function
— i.e. to transfer the source code — since the test function is static and
does not include an internal state which size may influence the offloading
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time. Moreover, the offloading of the source code is an operation executed
only once during the lifetime of a NG IDrOS application. The evaluation of
the offloading and inloading times is performed in section 6.3 for dynamic
functions.

The graphs reported in Figure 6.3 show the result of the experiments. It
is clear that it is always convenient to offload the function instead of running
it locally. The benefit is higher with the increasing number of invocations per
minute because the server machine has more cores to handle the executions
in parallel.

Figure 6.3: Comparison between the local execution time and the remote
execution time of the test function.
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The packet loss rate does not significantly affect the end-to-end execu-
tion time because the network time, including the TCP retransmissions, is
negligible with respect to the execution time. On average, the execution
time accounts for the 95% of the end-to-end latency.

To further validate these results, we decided to compare the network proto-
col with a classic Remote Method Invocation implementation. We used the
Python library Pyro4 to remotely expose the test function from Host A to
Host B, and we tested the same execution rate range imposing a fixed 4%
network packet loss rate. As per the original experiment, the measurements
do not include the time needed to offload the source code. In fact, in this
experiment the source code to be executed is directly hosted in the server
machine and it is only remotely invoked.

The results of this comparison experiment are reported in Figure 6.4:
the performance of NG IDrOS is slightly better than the performance of
Pyro4. On average, the execution time on NG IDrOS is ∼450 milliseconds
shorter than the execution time on the Pyro4 based application. To have a
better statistical evidence of this comparison, we performed the experiment
10 times and averaged the results. The standard error of NG IDrOS mean
is 0.169 seconds, the standard error of Pyro4 mean is 0.33 seconds.

Figure 6.4: Comparison between NG IDrOS network protocol and a Remote
Method Invocation implementation based on Pyro4.
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6.3 Offloading of Dynamic Functions

The performance metrics we decided to measure to test the offloading of
dynamic functions are:

• The offloading time, that is the time needed to move the source code
and the function state towards the receiver host.

• The inloading time, that is the time needed to acquire back the internal
status of the function.

The purpose is to verify how time performance is impacted by the size of the
internal state and by the packet loss. In particular, when the state is moved
among peers it requires some time to be serialized and then deserialized and
restored. The latency introduced by these operations sums with the latency
introduced by the network transport. Moreover, while the offloading of the
source code is an action that happens few times — in most cases just once —
during the lifecycle of a NG IDrOS application, the state may be transferred
multiple times. To measure these metrics, we modified the experiment de-
scribed in Section 6.2 by adding an internal state to the test function. The
pseudocode of the final evaluation function we used for the experiments is
reported in Listing 6.2. The function logic is not influenced by the internal
status in order to keep its execution time constant: this performance metric
is not relevant for these experiments, while it was analysed in Section 6.2.

1 de f t e s t ( ) :
2 i n t e r n a l s t a t u s = [ Int ] ∗ ( S t a t eS i z e )
3 acc = 0
4
5 f o r i in range (0 , 4000) :
6 f o r q in range (0 , i ) :
7 acc += ( i ∗ i ∗ i )
8
9 re turn acc

Listing 6.2: Evaluation function for dynamic computation offloading.

To simulate the internal status of the function, we implemented an array
of variable size (line 2). In our experiments, we increased the dimension of
the array from 0 to 1000 integer elements, varying its size from 0 to 4000
bytes. We tested how the offloading time and the execution time change
also with respect to the packet loss rate in the range [0%, 10%] with a 2%
step. The results of the experiments are reported in Figure 6.5.

From the graphs, we can derive the following conclusions:

• The number of state variables in the range we tested does not sig-
nificantly affect the inloading and offloading times, since there is no
increasing trend in the average times.
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• The average inloading time is higher than the average offloading time
because it is influenced by the time needed to restore the variables, and
in our experiments it is driven by the performance of the Raspberry.

• The packet loss rate in the interval we evaluated does not significantly
affect the inloading and offloading times, because the network transfer
time, including TCP retransmissions, is negligible with respect to the
time needed to serialize, deseralize and restore the status.

Figure 6.5: Evaluation of Inloading Time and Offloading Time with respect
to state size and network packet loss. Deployment errors are not shown.
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We also compared the inloading time and offloading time with respect
to a standard Remote Method Invocation application. We used the Pyro4
library to expose, from Host A to Host C, three functions:

• One to transfer the source code of the function, together with its in-
ternal status;

• One to remotely invoke the source code;

• One to dump the internal status of the function.

We executed the comparison imposing a fixed 4% network packet loss rate,
and the results are reported in Figure 6.6. From the graphs, we can conclude
that the performance of NG IDrOS are four times worse than the Pyro4
implementation. We identified two main root causes for this:

• The endpoints used in the Pyro4 implementation are statically typed
into the application, while Calvin, before starting the offload, dynam-
ically deploys the actors. The deployment phase is the major factor
that causes this performance gap.

• Pyro4 has a better serialization and deserialization mechanism to trans-
fer the variables composing the status of the function.

These experiments allowed us to evaluate also the reliability of the de-
ployment mechanism of Calvin actors. We stressed the Calvin runtime by
offloading, running, and inloading functions for 1000 times in a row and in
a short time range.

Table 6.3 reports the occurrences of deployment failures with respect to
the size of the function state and the packet loss. The maximum failure rate
in our experiments is equal to 0.006%. The failure rate, although it is very
low, is correlated with the increase of the packet loss rate.

(a) Inloading Time Comparison. (b) Offloading Time Comparison.

Figure 6.6: Comparison of Inloading and Offloading times between NG
IDrOS and comparison application implemented using Pyro4.
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0%
packet

loss

2%
packet

loss

4%
packet

loss

6%
packet

loss

8%
packet

loss

10%
packet

loss

0-200
variables

2 1 1 2 2 2

200-400
variables

0 1 0 2 1 1

400-600
variables

0 0 0 1 1 0

600-800
variables

0 0 0 0 0 1

800-1000
variables

0 0 0 1 1 1

Total 2 2 1 6 5 5

Table 6.3: Occurences of Calvin application deployment failure with respect
to number of state variables and network packet loss.

6.4 Communication Bus

To evaluate the implementation of the network protocol that addresses the
communication bus functionality, we decided to compare the performance
of NG IDrOS with a publish-subscribe application.
The performance metric we decided to measure is the end-to-end transmis-
sion time of a message, that is the time difference between the moment a
message is received and the moment it was sent. We excluded from the anal-
ysis the creation of the bus channel and the channel join, because they are
operations executed only once in the lifetime of an application. We designed
an experiment to evaluate how this performance metric is impacted by the
number of messages sent per second and by the network packet loss rate.

On NG IDrOS side, we implemented two drone missions:

• Mission A At startup time, this mission creates a bus channel with a
specific name and waits for a member. As soon as a new member
joins, it starts sending messages over the bus. It sends from one to
250 messages per second and logs the timestamp of each message right
before sending it.

• Mission B At startup time, this mission joins a specific bus channel and
waits for messages. It logs the time for each received messages.

We deployed Mission A on Host B and Mission B on Host C. The message
broker is provided by the NG IDrOS Central instance on Host A. This de-
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ployment scenario is inspired by a read world scenario in which the message
broker is hosted on a server machine — e.g. inside the Mobile Edge Com-
puting infrastructure — that works as bridge between two isolated networks.

To implement the comparison publish-subscribe application, we have chosen
to rely on the MQTT protocol. In the same deployment setup of Figure 6.1,
we hosted a MQTT broker on Host A, and two MQTT clients on Host B
and C. For the broker we used mosquitto [48], which is one of the most used
implementation of the MQTT broker. For the two clients, we implemented
a sender and a receiver application based on the paho mqtt [49] Python li-
brary. We set the Quality Of Service for the message exchange at level 2.
This QOS level guarantees the highest reliability in MQTT, since it ensures
that each message is received once and only once by each client subscribed
to a topic. The behaviour of the application is exactly the same of the NG
IDrOS mission.

In this deployment scenario, the hops count for each message is 2. Hence,
the baseline network latency is equal to 2x4 milliseconds = 8 milliseconds.
Figure 6.7 reports the result of the experiments. From the graphs we can
conclude that:

• The MTTQ implementation is 2 times faster than the NG IDrOS
implementation.

• Both the applications show a slightly increasing trend related to the
increase of the number of messages sent per second, present in all the
graphs except for the 0% packet loss rate.

• Both the applications show an increasing trend in the average end-to-
end transmission time related to the increase of the packet loss.

The root causes we identified for the behaviours described above are:

• MQTT performs better than NG IDrOS because Calvin exchanges
tokes among actors with a polling mechanism: the presence of tokens
at input ports is checked periodiocally at a given interval. This intro-
duces a small delay from the moment a token is available on the port
and moment the corresponding action is triggered. Moreover, this is
impacted by the performances of the Raspberry Pi, since a thread is
spawned to check over each input port.

• Both in MQTT and NG IDrOS, the end-to-end time is slightly affected
by the message rate because both the applications rely on the TCP/IP
protocol, which guarantees the in-order delivery of messages. This
implies that with a high rate of messages per second, if one is lost and
needs to be retransmitted it will delay the delivery of all the following
ones.



96 CHAPTER 6. EVALUATION

• Both in MQTT and NG IDrOS, the end-to-end time is sensitive to
packet loss because they both rely on the TCP/IP protocol. A higher
packets loss leads to an increase of packets retransmission. However,
the impact on the end-to-end latency is limited because, since the
connection between the clients is intermediated by the broker, the
retransmission affects only one network hop.

Moreover, the average end-to-end time of NG IDrOS shows a higher variance
with respect to MQTT. The cause of this behaviour is the polling mechanism
of Calvin, that affects the general performance due to the high number of
thread spawned.

Figure 6.7: End-to-end message delivery time comparison between NG
IDrOS Communication Bus and a MQTT application.



Chapter 7

Conclusion

In this thesis work we investigated the possible outcomes of the integration
between high-performance networks and high-mobility robotic vehicles.
With a specific focus on UAVs and wireless networks, we explored two par-
allel directions: to solve the current state-of-the-art issues and limitations,
and to identify new application scenarios in which UAVs can be involved.
The outcome of this analysis clearly indicates that it is not sufficient to
connect UAVs to a faster network to benefit from the improved network
performance. A proper software platform must support this integration.
Hence, we identified three macro-functionalities for which the improved net-
work performance represents a key enabler element.
The capability to share sensors among clients, that we named Sensors Shar-
ing, mainly exploits the ultra-low latency. The capability to dynamically of-
fload some application parts, that we named Computation Offloading, lever-
ages the high bandwidth and low latency. And finally, the capability to open
communication channels among clients that are steady enough to support
core functionality, that we named Communication Bus, is mainly based on
the high reliability of the network.
We derived a list of functional and non-functional requirements to describe
these features. These requirements drove the development of a programming
model, whose pillars are the support the extreme client mobility, the com-
patibility with different hardware platforms, and the exploitation of high-
performance networks.
We designed the architecture of a software platform — New Generation
IDrOS — to support this programming model. The core concepts underly-
ing this architecture are the layering of the functionality and the decoupling
of the components. These two characteristics guarantee the possibility to
add and extend parts of the architecture without impacting the others.
This architecture then served as a blueprint to develop a working imple-
mentation of the software platform, that can be deployed on real UAVs.
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The core part of this implementation is represented by the network pro-
tocol because it is directly connected to the exploitation of high-performance
networks.
The network protocol we implemented is based on Calvin, an open-source
application environment that mixes the Actor paradigm with the Flow Based
paradigm. The core purpose of Calvin is to simplify the way IoT applica-
tions are developed, and thus to reduce the fragmentation of programming
languages, protocols, and environments. We decided to build the network
protocol over Calvin not only to leverage some technical aspects, but also
to adhere to its philosophy: reducing fragmentation in IoT.
The evaluation experiments we performed over this network protocol demon-
strated that its performance is adequate to support the purposes of the soft-
ware platform, even though there are several aspects that can be improved.
The latency added by the NG IDrOS stack is on average lower than the
latency introduced by the network transport, and also the comparison with
respect to similar implementations shows that the performance of NG IDrOS
is in line with the performance of similar implementations.

There are several aspects that we set aside during this thesis work, and
they represent good starting points for future works.
The principal aspect is related to security. Both the programming model
and the architecture completely miss any reference to security. We believe
that security by design is a necessity in our context and it would be of pri-
mary relevance when extending NG IDrOS.
A different aspect that can be investigated is the extension of the compu-
tation offloading model to the full code mobility paradigm. The current
design of the software platform does not support the ability to migrate the
computation to multiple peers, but it is limited to a one-to-one exchange.
Supporting the complete offloading model would lead the way to other in-
teresting features, such as autonomous load-balancing or failure recovery.
This last one is another missing aspect in this thesis work. Especially the
possibility to recover NG IDrOS Central instances from failures would be
crucial in a real application scenarios.
An additional aspect we believe would be a relevant future work, is related
to error detection mechanisms for messages exchange over the communica-
tion bus. Our original idea was to support the application of user-defined
validation mechanisms to be applied to incoming messages. This would fur-
ther improve the reliability of the communication channel and would make
it even more suitable to support core parts of the applications.
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