
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Computer Engineering

DEVELOPMENT OF MACHINE LEARNING
ALGORITHMS FOR LONG-TERM ROOMS

RENTALS PRICING

Supervisor: Prof. Marcello RESTELLI
Co-supervisor: Francesco TROVÒ Ph.D.

Ing. Alessandro NUARA
Ing. Giulia ROMANO

Master Thesis dissertation of:
Giovanni Maria GIANOLA Matr. 894107

Academic year 2018-2019

Ringraziamenti

Vorrei ringraziare tutte le persone che mi sono state vicine durante il mio
percorso universitario e che mi hanno permesso di ottenere questo splendido
risultato.
Innanzitutto, un sentito ringraziamento al mio relatore Marcello perché per
primo mi ha avvicinato e appassionato al mondo dell’intelligenza artificiale
e mi ha permesso di svolgere questo lavoro di tesi. Grazie ai miei collab-
oratori: Francesco, Alessandro e Giulia, per i vostri consigli, per la vostra
disponibilità e per avermi accolto nel vostro gruppo di ricerca.
Un ringraziamento alla mia famiglia che non ha mai smesso di credere in
me e mi ha sempre supportato nelle mie decisioni durante tutto il percorso
di studi. Grazie al loro instancabile sostegno, sia morale che economico,
contribuendo alla mia formazione personale.
Infine, ringrazio tutti i miei amici e compagni che hanno condiviso con me
momenti belli e brutti e hanno avuto un peso determinante nel consegui-
mento di questo risultato.

Grazie.

Giovanni

I

II

Sommario

Il mercato degli affitti a lungo termine di stanze nelle grandi città ha cono-
sciuto un incremento considerevole negli ultimi anni, registrando in alcune
città un aumento della domanda superiore all’80%. Data l’offerta di stanze
ridotta e un flusso di utenti ancora contenuto, fino a qualche anno fa i pochi
player sul mercato esistenti potevano permettersi di gestire manualmente
il pricing delle stanze. Tuttavia, la contemporanea crescita del numero di
stanze da affittare e la presenza di una concorrenza sempre più ampia hanno
reso la gestione del processo di pricing attraverso sistemi automatici una ne-
cessità improrogabile. Questo ha portato DoveVivo, la prima e la più grande
azienda italiana di co-living, ad investire in soluzioni tecnologiche per au-
tomatizzare il processo di pricing delle stanze. Questo progetto, nato dalla
collaborazione con il Politecnico di Milano, si propone di creare modelli e
algoritmi capaci di catturare le peculiarità di questo problema e di gene-
rare in maniera automatica degli schemi di pricing per le stanze in affitto.
L’approccio seguito per sviluppare tali modelli è quello data-driven, motivato
dal fatto che l’azienda target di questo studio possiede dei dati storici, i quali
possono essere utilizzati per estrarre le informazioni necessarie per costruire
modelli accurati. Il nostro contributo consiste nel fornire tutti gli strumenti
di data analysis e machine learning necessari per trasformare i dati grezzi
raccolti in informazioni utili per supportare il processo di decision making
aziendale.

Proponiamo due diverse formulazioni del problema. Inizialmente vogliamo
replicare il lavoro manuale eseguito dal team di pricing interno a DoveVivo,
costruendo modelli che minimizzano l’errore stimato del prezzo di listino.
Infine, partendo dall’idea che maggiore è il prezzo assegnato ad una stanza,
maggiore sarà la probabilità che questa rimanga sfitta per un più lungo peri-
odo di tempo, proponiamo un secondo approccio che si basa sull’identificare
ed assegnare il più alto prezzo ad una stanza che minimizzi il numero di
giorni di sfitto.

Dai nostri esperimenti abbiamo ottenuto dei risultati molto soddisfacenti
a parere degli esperiti di pricing dell’azienda. Cercando di emulare l’assegnamento

III

dei prezzi che fa DoveVivo attualmente, otteniamo un errore di circa il 3%

rispetto a quanto fatto dal team di pricing correntemente. Mentre i risul-
tati della seconda formulazione ci mostrano come sia possibile incrementare
i prezzi attuali di listino, fino ad un massimo del 5%, senza rischiare di avere
periodi significativi di sfitto.

IV

V

VI

Abstract

The market for long-term rental of rooms in large cities has observed a
considerable increase in recent years, recording in some cities an increase in
demand of more than 80%. Given the reduced offer of rooms and a still
limited flow of users, until some years ago, the few existing players in the
market could afford to manage the room pricing manually. However, the
simultaneous growth in the number of rooms to rent and the presence of
ever stronger competition have made the management of the pricing process
through automatic systems an essential need. This led DoveVivo, the first
and largest Italian co-living company, to invest in technological solutions to
automate the room pricing process. This project, born from the collaboration
with the Politecnico di Milano, aims to create models and algorithms able to
capture the peculiarities of this problem and automatically generate pricing
schemes for rented rooms. The approach followed to develop these models is
the data-driven one, motivated by the fact that the target company of this
study has a large database of historical data, which can be used to extract
the information necessary to build an accurate model. Our contribution
is to provide all the data analysis and machine learning tools necessary to
transform the raw data collected by DoveVivo into useful information to
support the corporate pricing process.

We propose two different formulations of the problem. Initially, we want
to replicate the manual work performed by the internal pricing team at
DoveVivo, building models that minimize the estimated error of the listing
price. Then, we propose a second approach that is based on identifying and
assigning the best price to a room that minimizes the number of vacancy
days. From the experiments conducted on real-world data we obtained sat-
isfactory results: we get an error of about 3% when estimating the price set
by the DoveVivo pricing team and show that it is possible to increase the
current listing prices, up to a maximum of 5%, without risking to have days
of vacancy.

VII

VIII

Contents

Sommario V

Abstract VIII

1 Introduction 1

2 State of the Art 5
2.1 Business Model . 5
2.2 Rental Process . 6
2.3 Pricing process . 7
2.4 Publication of an online price 9
2.5 Related Works . 9

3 Problem Formulation 11
3.1 User Formulation . 11

3.1.1 Reservation Price . 11
3.1.2 Room Evaluation Process 13

3.2 Formulation . 14
3.2.1 Maximize the Revenue 14
3.2.2 Minimize the Number of Vacancy Days 15

4 Theoretical Background 17
4.1 Machine Learning . 17

4.1.1 Supervised Learning 18
4.2 Linear Models for Regression 19

4.2.1 Linear Basis Function Models 19
4.2.2 Loss function for Regression 20
4.2.3 Direct Approach: Minimising Least Squares 21
4.2.4 Regularized least squares 22
4.2.5 Non-Negative Least Square 23
4.2.6 Bounded - Variable Least Square 24

IX

4.3 Non-Parametric models . 25
4.3.1 Kernel Methods . 25
4.3.2 Sparse Kernel Machine 26
4.3.3 SVMs for regression 28

4.4 Tree Based Algorithms . 28
4.4.1 Decision Tree . 28
4.4.2 Decision Forests . 31
4.4.3 Random Forest . 32
4.4.4 Extra Trees . 33
4.4.5 eXtreme Gradient Boosting 34

4.5 Model Evaluation . 34
4.5.1 Cross-Validation . 35
4.5.2 Evaluation Metrics . 35

5 Proposed Algorithms 41
5.1 Pre-processing Techniques . 42
5.2 Data Cleaning . 43

5.2.1 Dealing with Missing Values 43
5.2.2 Dealing with Outliers 44
5.2.3 Dealing with Inconsistent data and Duplicates 45

5.3 Feature Encoding and Data Normalization 46
5.3.1 Feature Encoding and Discretization 46
5.3.2 Min-Max Data Normalization 48

5.4 Data Reduction . 49
5.4.1 Feature Selection . 49

5.5 Feature Sampling . 51
5.6 First Problem Formulation - Data Pipeline 52

5.6.1 Data Cleaning . 53
5.6.2 Feature Engineering 54

5.7 Second Problem Formulation - Data Pipeline 56
5.7.1 Motivation . 56
5.7.2 Data Cleaning . 58
5.7.3 Contract History Reconstruction 59
5.7.4 Feature Engineering 59
5.7.5 Data Filtering . 60
5.7.6 Data Sampling for Monotone Classifier 61

6 Experiments 63
6.1 First Problem Formulation - Experiment 63

6.1.1 Data Collection and Feature Description 63

X

6.1.2 Data Cleaning and Data Exploration 66
6.1.3 Modelling . 74
6.1.4 Results . 78

6.2 Second Problem Formulation - Experiment 81
6.2.1 Data Collection and Feature Description 81
6.2.2 Data Cleaning and Data Exploration 82
6.2.3 Modelling . 88
6.2.4 Results . 89

7 Conclusion and Future Development 93
7.1 Limitations and Future Works 94

Bibliography 97

XI

XII

List of Figures

2.1 DoveVivo’s business model. 6
2.2 Renting process. 7
2.3 Online prices trends. 9

4.1 Examples of basis functions, showing polynomials (on the
left), sigmoid functions (center), and Gaussian basis (on the
right). 20

4.2 Decision tree example on direct mailing response. 30
4.3 Example of Random Forest classifier. 33
4.4 Confusion matrix. 37

5.1 Data analysis pipeline. 42
5.2 Boxplot of the distribution of room square footage. 46
5.3 Example of Undersampling and Oversampling. 52
5.4 Trend of the vacancy period compared to the rental price. . . 57
5.5 Monotonous classifier behaviour compared to the rental price. 58
5.6 Example of methodology that uses the classifier to predict

vacancy. 58
5.7 Overlapping contracts. 60

6.1 Bed type variable distribution. 67
6.2 Numeric variables boxplots. 68
6.3 DoveVivo’s rooms over Milan’s surface. 69
6.4 DoveVivo’s regions, each with its own label. 71
6.5 DoveVivo’s rooms over initial Milan’s regions. 71
6.6 DoveVivo’s rooms over newly-defined Milan’s regions. 72
6.7 Data distribution plot. 74
6.8 Correlation matrix heatmap for rooms’ dataset. 75
6.9 Regression models without zones. 79
6.10 Regression models with zones. 80
6.11 Contract history reconstruction. 84

XIII

6.12 Correlation matrix heatmap contracts dataset. 87
6.13 Plot of listing price increment - Single rooms. 90
6.14 Cumulative histogram of listing price percentage increment -

Single rooms. 91

XIV

List of Tables

5.1 Example of One Hot Encoding method. 47

6.1 Binary Features. 65
6.2 Classification models evaluation with their standard deviation. 89

XV

XVI

Chapter 1

Introduction

Milan has marked a new record in the rents domain, with requests that on av-
erage for a two-room apartment have reached almost 1, 300 euros per month,
with an increase of 5.8% in the semester from March to September 2019, as
emerged from data collected by the Immobiliare.it and Mioaffitto portals.1

The prices increase are justified by a demand that continues to grow and
marks +4.2% on a half-yearly basis and to which the offer is unable to keep
up: compared to March 2019, the properties offered for rent fell by 3.2%.
The rent demand, in Milan, first increased by nearly 80% in 2018, while the
offer decreased, the number of leased properties, for example, decreased by
10%.2 Since 2015, rental prices have increased by 22%, making Milan the
most expensive city in Italy, with an average of 17, 5 AC/m2. Until twenty
years ago, the contracts were concluded directly with the owners, who adver-
tised their properties through paper ads or by relying on agencies, facing, in
this case, high costs of commission. Today, however, owners and users can
make rental contact more easily through online platforms. Some of these
companies behave actively, renovating and renting rooms (DoveVivo), others
replacing them in the role of the real estate intermediary. In this area, there
is still no leading company, but the business is expanding very quickly.

In the face of the strong growth experienced by DoveVivo in recent years,
automating the pricing procedure has become a tangible need. From 2013 to
2017 DoveVivo recorded an average turnover growth rate of 38%, currently
manages a thousand houses in 5 cities and stipulates around 1400 contracts
per year.3 The expected growth for the next few years requires technological

1https://www.ilsole24ore.com/art/affitti-corsa-milano-altre-citta-aumenti-contenuti-
AC6eZEj?fromSearch.

2https://www.ilsole24ore.com/art/affitti-milano-boom-domanda-e-canoni-rialzo-
AE27TE6E.

3https://www.dovevivo.it/.

1

2 Chapter 1. Introduction

support capable of managing the complexity of the problem by analyzing the
numerous parameters that characterize the environment, in which DoveVivo
offers its services.

This project, born from the collaboration with the Politecnico di Milano,
aims to capture the peculiarities of the problem and automatically generate
pricing schemes for rented rooms via machine learning models and algo-
rithms. The approach followed to develop these models is the data-driven
one, motivated by the fact that the target company of this study, DoveVivo,
has historical data, which can be used to extract useful information in order
to build an accurate pricing model.

We start by focusing on the data provided by DoveVivo gathered in the
past few years. The initial phase concerns a process of inspection, cleaning,
transformation and integration of data intending to obtain useful informa-
tion. Our work follows two main directions:

• the first approach aims to emulate the manual work done by DoveVivo’s
pricing team and then generalize the pricing method. These methods
take into account various characteristics of the room and flat, as well
as geographical factors such as coordinates and neighborhood;

• the second approach takes advantage of the contract history of each
room. We analyze the past contracts of each room and generalize the
price trend also for future samples. In this case, the criterion used is
to minimize the number of vacancy days of a room given a price.

The predictions provided by these models are intended as a suggestion for
the company itself useful for decision-making.

The thesis is structured in the following way:

• in Chapter 2 we provide a general description of DoveVivo. We give a
general idea of the company’s business model and the used approach
for the rooms’ pricing;

• In Chapter 3 we provide two mathematical representations of the prob-
lem of finding the right price to assign to a room;

• in Chapter 4 we provide the theoretical foundation on which this work
is based. We present some key concepts from the machine learning field,
learning algorithms for regression and classification problems and the
metrics we used to evaluate our work;

3

• in Chapter 5 we firstly show some basic techniques to handle and pre-
process data to be used for machine learning models. Then, we provide
the pipeline’s steps used for each problem definition: from raw data to
a clean dataset;

• in Chapter 6 we present the dataset we used for this work, showing its
main characteristics and limitations, and we provide some experiments
to validate our choices;

• in Chapter 7 we draw conclusions, summarize the main results of our
work, and propose some future developments.

4 Chapter 1. Introduction

Chapter 2

State of the Art

In this chapter, we give a general perspective of DoveVivo, presenting its
business model based on the concept of co-living. Then we describe the
process followed by a potential client to rent a room and the process used
by the company’s pricing team to price a new room. Finally, we provide an
overview of some works on the pricing problem present in the literature.

2.1 Business Model

DoveVivo managed to understand in advance what the needs of the market
were, and at the same time identified a gap in the sector, completely frag-
mented. The company has started an industrialization process by proposing
an offer conceived and created following a model that goes from researching
the property to marketing the room product. The model satisfies the need
to offer co-living solutions to an increasingly large pool of potential students
and off-site workers and, at the same time, to cope with the management
and rental of a large number of properties. As shown in the Figure 2.1 the
business model starts, in fact, from the research and analysis of mainly large
flats (≈ 80/100 m2) and their context to enter into a standard long-term
lease agreement with the corresponding owner (8−10 years) with authoriza-
tion to sublease. Throughout the period, DoveVivo guarantees a constant
income for the owners and eliminates the associated costs. DoveVivo’s team
of architects, designers and technicians renovate and furnish the apartments
with new and trendy furniture, modern and functional appliances and acces-
sories. DoveVivo also takes care of all the paperwork, insures the property
against damages and handles all the property management responsibilities.
From that moment, the model develops along a structured process that al-
lows home seekers to use the dovevivo.it website to select a new home based

5

6 Chapter 2. State of the Art

Asset
development

Sale of the
product

Costumer
care

Asset management

Research and
acquisition
of the asset

Figure 2.1: DoveVivo’s business model.

on the type of needs, the area and the preferences related to the housemates.
DoveVivo represents, for the entire duration of the contract, the point of
reference for tenants and owners, offering complementary services to the
rent: fee including utilities, 24-hour assistance, ordinary maintenance, rapid
and professional management of extraordinary maintenance interventions,
relationship with condominium administrations and between co-tenants, a
dedicated app for a smart and direct relationship with tenants, loyalty card
with discounts and benefits. The purpose of this integration is to offer a ser-
vice, supported by structured processes, digital tools and a strong customer
care orientation, which fully satisfies the needs of the targets involved and
which allows us to accompany them from brand consideration to loyalty and
final satisfaction.

2.2 Rental Process

Despite this rapid expansion, the price of available rooms is still established
manually, using the experience of the sales team. The growth forecast for the
next few years, however, makes it necessary to create adequate technological
support, capable of automatically optimizing the pricing process.

Currently, the rental process followed by a user to go from a possible
renter to a tenant, illustrated in Figure 2.2, takes place through the following
phases:

• the potential customer gets in touch with DoveVivo through the web-
site, social networks (e.g., Facebook) or by going directly to the com-
pany’s headquarter. The user also has the option to virtually inspect

2.3. Pricing process 7

€ 1200 € 900€ 1000

YESNO

dovevivo.it

POTENTIAL
 CLIENT

AGENT

SOCIAL

AGREE?

Figure 2.2: Renting process.

some sample flats through the website;

• customer interested in seeing the flat in person can arrange an appoint-
ment with a DoveVivo agent who proceeds by scheduling a visit to the
desired room. The agent may also propose some other room, up to
three, some of which may not be present among those published online
on the website;

• finally, if the customer is interested in one of the rooms visited, he
proceed with the signing of the pre-contract and, then, of the contract.

2.3 Pricing process

Currently, room prices are assigned manually by evaluating the following
characteristics:

• room: square footage, bed size, balcony, private bathroom, walk-in
closet, single/double, electric stove;

• apartment: number of tenants, the ratio of bathrooms to tenants, di-
mension of common areas, presence of a living room, new or renovated
bathrooms, floor, washing machine, dishwasher, wi-fi;

8 Chapter 2. State of the Art

• building: status of the building, reception, lift, neighborhood, public
transport, services (for example supermarket and pharmacy).

Some of these features are not stored in the databases, for instance,
electric stove, presence of a living room, new or renovated bathrooms, status
of the building, services. The only way to confirm the presence and the
quality of these services is by checking the room of interest in person or
using photos of the room. The sales department creates a list of fixed prices
which are then modified, taking into account the time of year when the room
is vacant. Given the high demand, the price applied might vary over time,
for instance, during September, the price may be higher than the one in
June. The list of prices is based on the months in which there is a high
demand. The goal is to be able to sign an indeterminate contract in these
months to maximize profit. One of the techniques currently used to manage
the months with the least demand is to provide a discount on the rent or
to stipulate fixed-term contracts with a lower price, which last up to those
periods with high demand. At this point, the tenant can choose whether to
stay by signing an indeterminate contract with a higher price, equal to the
listing price. There are two possible scenarios in which a room needs a new
price: DoveVivo acquires a new apartment and, therefore, a new price must
be assigned to the rooms, or the renter leaves a room, and its price must be
updated. The processes currently used to price a room in the two cases are
as follows:

• price estimation for a new bedroom s:

– check the price p(s1) of s1, the closest DoveVivo’s room to s;

– observe and compare the characteristics of s and those of s1;

– get an estimation of the price p(s) through a comparison with s1
(for example, evaluating present and absent factors and modifying
the price accordingly).

• price update of a room s:

– the prices p(s) are updated periodically based on market trends;

– the prices p(s) are increased by an additional ∆(s) based on the
room’s furniture.

Note that at the moment both these operations are performed manually,
relying on the experience of the pricing team present at DoveVivo. This
approach clearly does not scale well in the case the turnover of the renters
and acquired rooms becomes larger and larger.

2.4. Publication of an online price 9

t0

p(t)

ttf t0

p(t)

ttf t0

p(t)

ttf

Figure 2.3: Online prices trends.

2.4 Publication of an online price

The phase that goes from the online publication of a price for a room to
the signing of a new contract, can take place with 3 different scenarios.
Figure 2.3 shows the trend over time of the price published online for a given
room. The price is made visible at the instant t0 while tf is the instant in
which a user agrees to rent that bedroom at the corresponding price. The
first plot represents the case in which DoveVivo proposes a price which, after
a certain time, is accepted by the customer. The second graphic shows the
case in which the proposed price is not accepted by any customer for a certain
period and therefore is lowered hoping to find an available user. The third
graphic, in contrast, represents the situation in which DoveVivo offers a very
low price and, given the massive influx of customers, decides to raise it. The
first case seems to be the most common. Price changes represented by the
second and third graphics are not currently traced. The data exposed by
the databases are the listing price and the contract price which is the one
accepted by the user as a monthly fee, that is, the one at time tf . In general,
DoveVivo’s intention is to avoid price changes during the negotiations phase
which goes from the online publication date of a room to the signature of
its lease. They would like to set a fixed and appropriate price for each room
before publishing it online.

2.5 Related Works

One of the main reasons that push the real estate agencies to resort and
invest in complex technologies in the pricing field is the economic growth in
Italy after 2015. The Real Estate Market report of Caldirola and Martino

10 Chapter 2. State of the Art

(2016) analyze the trend of the Italian real estate market and in particular
how this growth is related to the increase in investments in the retail sector.
In traditional pricing problems, are usually analyzed scenarios in which the
seller owns a limited (Babaioff et al., 2015) or unlimited (Trovò et al., 2018;
Trovo et al., 2015) quantity of identical goods. In our case, however, we
rarely have to price two products (bedrooms) with the same characteristics.
Therefore, it is not possible to accurately estimate the demand curve. An
alternative solution, is provided by Ye et al. [2018], who offer a tool that
helps landlords on Airbnb to estimate an excellent daily price. This solution
cannot be used in our setting as it does not incorporate an estimate of the
period of stay, crucial for determining the earnings in our specific case. In
fact, it assumes that users’ periods of stay are dictated by factors that cannot
be controlled by the owner, while experts in the sector have confirmed that
staying in a rented room for an extended period is greatly influenced by the
price of the room (Gibbs et al., 2018). More generally, we can model our
problem as a posted-price auction Chawla et al. (2010), in which the price of
an asset changes dynamically over time. However, these algorithms require
knowledge of parameters that are unknown in real applications, such as the
probability distribution of values assigned by users to goods. The growth
of the real estate market in recent years has made this sector increasingly
competitive. For this reason, together with the non-disclosure of data for
commercial purposes, we are not aware of the pricing systems of other private
companies.

Chapter 3

Problem Formulation

In this chapter, we provide the formulation of the pricing problem that we are
going to tackle from a mathematical perspective. We start by defining the
potential renter and how he/she evaluates a room, introducing the concept
of Reservation Price. Then, we give an overview of the room evaluation
phases followed by a user before renting a room. We also provide a high-level
description of the update mechanism of the user’s utility of a room, which is
a value that represents a user’s intention to sign a lease for a specific place.
Finally, we provide two different formulations of the problem of finding the
right price to assign to a room exploiting DoveVivo’s data, more specifically:

• maximizing the revenue;

• minimizing the number of vacancy days.

DoveVivo collects several data about rooms such as location, prices, and fea-
tures, historical contracts and flats characteristics. We focused our analysis
on the rooms located in Milan. Each apartment is assigned to a geograph-
ical area defined by DoveVivo. Each area broadly corresponds to a set of
neighborhoods in Milan.

3.1 User Formulation

To better illustrate the evaluation process of a property, we formally define
what we mean by a potential renter and what are the steps she/he takes
before signing a rental contract.

3.1.1 Reservation Price

Each user has a personal evaluation of a property which, we assume, is
the price he/she is giving to the rental of a specific bedroom. Every user

11

12 Chapter 3. Problem Formulation

establishes his/her reservation price, that is, the maximum price that he/she
is willing to pay to obtain that good. Below we define the reservation price
vji and the uji utility of the i-th user for the j-th room:

vji = f(xj1, xj2, . . . , xjM), (3.1)

uji := vji − pj , (3.2)

where pj is the price assigned to the j-th bed, xjk is the k-th feature, in a
set of M different features, of the j-th bed.

Formally, before entering the website, the user i-th has a reservation
price vjk for a generic room Sk in a set of possible S rooms. The rooms
currently available are included in the set D ⊂ S and have prices p1, . . . , pK .
The i-th user is interested in the room Sk if and only if its utility value uji
is positive. Suppose that the user behaves optimistically, that is if he/she
knows partial information about a room Sk, he/she assigns the maximum
possible evaluation for a room in S with characteristics consistent with the
room Sk. This way, the assessment of a user turns out to be a monotonous
function weakly decreasing with the advancement of the phases and, due to
this decrease, the user abandons the purchase if in a particular phase its
utility is negative. The deal of a contract occurs only if the utility of the
room Sk selected on the website is positive in the signing contract phase.

Since users assign a different price for each room, we model the set of
possible users through a distribution. If we knew the real distribution of
users for the evaluation of a specific room, it would be enough to recommend
a price slightly lower than the maximum reservation price to have a good
trade-off between cost and time it takes to sell the room. Although, in a
realistic scenario, it is not possible to know this information. Therefore, we
have to estimate the distribution of users.

Assume, for simplicity, that users follow a given Gaussian distribution.
First, we choose a price to assign to a room, and, then, the number of users
that are coming to evaluate the offer is extracted from the distribution. We
face two possible situations:

• If the user’s reservation price is below the price chosen for the room,
the room is not chosen by the user;

• Otherwise, if the reservation price is extracted above the chosen price,
the room is taken.

Intuitively, the higher the price we assign to the room, the longer it will take
to be rented by a user. That means that the more we increase the room price,
the lower is the probability of extracting a user with a suitable reservation

3.1. User Formulation 13

price, and consequently, it takes more time to rent it. On the other hand, if
we assign a low price, the higher is the probability to sample a useful user,
the time to rent the room is reduced accordingly, but the profit will likely
decrease. This is, in a nutshell, the problem of selecting the optimal price,
i.e., the tradeoff between revenues and time spent in waiting for the suitable
user.

3.1.2 Room Evaluation Process

The evaluation process of a room by a potential renter is divided into three
phases in which he or she acquires more and more information gradually.

1. In the first phase, the user gets in touch with DoveVivo through the
website. Here the client can observe the map of the selected city and the
markers placed on it that indicate the position and price of each room.
From these first two characteristics (price and geographical area), the
user starts to create a first reservation price vji for each room j ob-
served. Although, this assessment is based on incomplete information
and will, therefore, be intended to modify with the progress of the
phases and information acquired. At this point, it is possible to cal-
culate the utility uji of a certain room. If the utility is greater than
zero, the user is prompted to obtain further information. Otherwise,
the user will discard the room and focus his/her interest on those who
can still provide him/her with some positive utility. If all the observed
rooms provide a negative utility, the user abandons the search and will
not proceed in the following phases.

2. In the second phase, the user selects the rooms that in the first phase
had provided a positive utility. In this way, always through the site,
the features of the room are disclosed, for instance, the room and flat
square footage, the presence of a balcony, the number of roommates.
This new piece of information helps the user to update the reservation
price by getting v′ji. Again the new reservation price can give a positive
or negative utility u′ji. In the second case, the user discards the room.

3. In the last phase, the user obtains all the information on the room
after a personal visit. The user creates a final opinion of the room by
observing a different set of features of the room, such as the neighbor-
hood, the people who are currently living there, the roommates, the
aesthetics of the building. The reservation price v′′ji is the final one. If
still u′′ji is positive for a certain room, it means that the user, observing
all its characteristics, agrees to rent it.

14 Chapter 3. Problem Formulation

We model optimistic users by assuming that if he/she does not know a
specific feature of any room, his/her utility assumes the best values contex-
tually. As the user passes through phases, he/she becomes more aware of
the characteristics of any room and refines the first impressions of the room.
The evaluation of the user turns out to be a monotonous function that de-
creases marginally with the progression of the phases and, as a result of this
decrease, the user abandons the purchase if its utility is negative during a
particular stage.

If we knew the users’ evaluations for a specific room, we would have to
recommend a price slightly lower than the maximum reservation price. In
a real scenario, it is not possible to know this information. So we try to
estimate vji as well as possible with the available data. The given contract
price can undoubtedly be considered a lower bound of the user’s reservation
price.

3.2 Formulation

3.2.1 Maximize the Revenue

The idea is to emulate the pricing process carried out by DoveVivo given a
data set of rooms. Formally, given an N ×M dataset X = {x1, . . . ,xN}
corresponding to N rooms, where xn represent the vector of the M features
of the rooms and the corresponding continuous target values t = {t1, . . . , tN}
indicating the observed listing price of the rooms, we provide an estimation
of the unknown mapping f : X −→ t. We want to minimize the estimation
error, that is, the expected value of the reconstruction error over the input
space. As a proxy of this unknown quantity, we choose as a loss function
the empirical expected value L(w) of the squared error :

L(w) =
1

2

N∑
n=1

(f(xn,w)− tn)2. (3.3)

For each room n, we have a vector of features xn = {xn,1, . . . , xn,M} that
describe the apartment and the area in which it is located. It includes:

• categorical features, such as the apartment address or the room type;

• binary features, representing the presence or absence of a characteristic
such as reception, air conditioning or cellar;

• numerical features, such as the square footage, the number of rooms in
the apartment or the floor.

3.2. Formulation 15

The target tn represents the listing price of the n-th room, assigned by Dove-
Vivo. This is a regression problem and our goal is to build a predictive model,
exploiting different available data. The model aims to suggest DoveVivo em-
ployees a listing price for an unseen new room in the Milan area, maximizing
the revenue while finding a price as close as possible to users’ reservation
prices.

3.2.2 Minimize the Number of Vacancy Days

The same problem can be formulated differently if we already have informa-
tion about past rent contract for the room: try to find the best price that
allows to rent a room in the shortest possible time. In this circumstance, an
excellent way to generalize the listing price of a room is by minimizing the
number of vacancy days.

The lack of a large number of data leads us to a more effective formulation
of the problem that takes into account the history of the contracts of the
rooms. In addition to the above-mentioned features specific of the room, we
also have:

• the start and end date of the contract;

• the days of vacancies occurred before signing the contract;

• a price associated with each contract.

Taking into account the contracts’ characteristic combined with the features
of the room as in the previous formulation, we want to predict a binary
target value that identifies whether a room generates a vacancy or not.

We have an N × M dataset of inputs Z = {z1, . . . , zN} called design
matrix. zi = (xi,yi, ti) where i is a the index corresponding to a contract
for a specific room in the dataset. xi denotes the features, yi represents
the contracts data and ti is the price assigned to the room i at the time of
contract yi. The target value si, which represents the vacancy, can assume
two different class of values:

• si ∈ {0, 1} in this case we have a binary target value denoting whether
or not the room generated vacancy.

• si ∈ [0,+∞) in this case we have a continuous target value denoting
the number of vacancy days.

we want to determine the unknown mapping f̃ : Z −→ s. According to the
type of target, there are two distinct classes of problems: the former one is
a classification problem; the latter one is a regression problem.

16 Chapter 3. Problem Formulation

Chapter 4

Theoretical Background

4.1 Machine Learning

Machine Learning (ML) is a field of Artificial Intelligence (AI) that provides
systems with the capability to automatically learn and improve from experi-
ence without being explicitly programmed (Bishop, 2006). Machine learning
focuses on the development of computer programs that can access data and
use it to learn for themselves.

"A computer program is said to
learn from experience E
with respect to some class of tasks T
and performance measure P,
improves with experience E" Mitchell et al. (1997)

The process of learning starts with observations or samples, such as ex-
amples, direct experience, or instruction, to search for patterns in data and
make better decisions in the future based on the samples that we provide.
The purpose is to allow computers to learn automatically without human
intervention or assistance and adjust actions accordingly.

Technically, ML is the systematic study of algorithms and statistical
models that computer systems use to accomplish a specific task without
using precise instructions, relying on patterns and deduction instead. Ma-
chine learning algorithms build a mathematical model based on sample data,
known as training data, to make predictions or decisions. Machine learning
algorithms are used in a wide variety of applications, such as email filtering,
computer vision and stock prediction, where it is difficult or infeasible to de-
velop a conventional algorithm for effectively performing the task. The study
of mathematical optimization delivers methods, theory and application do-

17

18 Chapter 4. Theoretical Background

mains to the field of machine learning. In its application across business
problems, machine learning is also referred to as predictive analytics.

4.1.1 Supervised Learning

Supervised learning is the largest, most mature, most widely used sub-field
of machine learning. Supervised learning algorithms build a mathematical
model of a set of data that contains both the inputs and the desired out-
puts Russel (2007). The data is known as training data and consists of a
set of training examples. Each training example has one or more inputs
and the desired output, also known as a supervisory signal. In the mathe-
matical model, each training example is represented by an array or vector,
sometimes called a feature vector, and a matrix represents the training data.
Through iterative optimization of an objective function, supervised learning
algorithms aim to estimate the unknown model that maps known inputs
to known outputs Mohri et al. (2018). An optimal function will allow the
algorithm to determine the output for unseen inputs correctly.

Definition 1. Given a training set of N example input-output pairs

(x1, y1), (x2, y2), . . . , (xN , yN), (4.1)

where each yj was generated by an unknown function y = f(x), supervised
learning aims to find a function h(·) that approximates the true function f(·).

Here x and y can be any numerical value. The function h(·) is a hypoth-
esis. Learning is a search through the space of possible hypotheses for one
that will perform well, even on new examples beyond the training set. To
measure the accuracy of a hypothesis, we give it a test set of examples that
are distinct from the training set. We say a hypothesis generalizes well
if it correctly predicts the value of y for different examples. Sometimes the
function f is stochastic, it is not strictly a function of x, and what we have
to learn is a conditional probability distribution, P (Y |x). When the output
y is one of a finite set of values, the learning problem is called classification
and is called binary classification if there are only two values (true or false,
for example). When y is a continuous value, the learning problem is called
regression. Technically, solving a regression problem is finding a conditional
expectation or average value of y, because the probability that we have found
precisely the right real-valued number for y is 0.

4.2. Linear Models for Regression 19

4.2 Linear Models for Regression

The purpose of regression is to predict the value of one or more continuous
target variables. Given a training data set comprising N observations xn,
where n ∈ {1, . . . , N}, together with corresponding target values yn, the goal
is to predict the value of t for a new value of x. In the simplest approach,
this can be done by directly constructing an appropriate function y(x) whose
values for new inputs x constitute the predictions for the corresponding val-
ues of t in such a way as to minimize the expected value of a suitably chosen
loss function. A common choice of loss function for real-valued variables is
the squared loss, for which the conditional expectation of t gives the optimal
solution.

4.2.1 Linear Basis Function Models

The simplest linear model for regression is the one that involves a linear
combination of the input variables

y(x,w) = w0 + w1x1 + . . .+ wDxD, (4.2)

where x = (x1, . . . , xD)T . This is often simply known as linear regression.
The key property of this model is that it is a linear function of the parameters
w0, . . . , wD. It is also, a linear function of the input variables xi, and this
imposes significant limitations on the model. Therefore is possible to extend
the class of models by considering linear combinations of fixed nonlinear
functions of the input variables, of the form

y(x,w) = w0 +
M−1∑
j=1

wjφj(x), (4.3)

where φj(x) are known as basis functions. By denoting the maximum value
of the index j byM−1, the total number of parameters in this model will be
M . The parameter w0 allows for any fixed offset in the data and is sometimes
called a bias parameter. It is often convenient to define an additional dummy
‘basis function’ φ0(x) = 1 so that

y(x,w) =

M−1∑
j=0

wjφj(x) = wTφ(x), (4.4)

where w = (w0, . . . , wM−1)
T and φ = (φ0, . . . , φM−1)

T . By using nonlinear
basis functions, we allow the function y(x,w) to be a nonlinear function of
the input vector x. Functions of this form are called linear models, however,

20 Chapter 4. Theoretical Background

because this function is linear in w. It is this linearity in the parameters
that will greatly simplify the analysis of this class of models. There are
many other possible choices for the basis functions, for example

φj(x) = exp

{
−(x− µj)2

2s2

}
, (4.5)

where the µj govern the locations of the basis functions in input space, and
the parameter s governs their spatial scale. These are usually referred to as
Gaussian basis functions. Another possibility is the sigmoidal basis function
of the form

φj(x) = σ

(
x− µj
s

)
, (4.6)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp (−a)
. (4.7)

-1 0 1

1.0

0.5

0.0

0.5

1.0

-1 0 1

0.00

0.25

0.50

0.75

1.00

-1 0 1

0.00

0.25

0.50

0.75

1.00

Figure 4.1: Examples of basis functions, showing polynomials (on the left), sigmoid
functions (center), and Gaussian basis (on the right).

4.2.2 Loss function for Regression

The loss function is a method of evaluating how well specific algorithm mod-
els the given data. If prediction deviates too much from actual results, loss
function will arise a huge number. It is needed to define the loss error func-
tion L(t, y(x)) where t is the output and y is what your model predicts.
Once the loss function is defined, the expected value is computed concerning
a conditional probability distribution P . P is a function of the input x and
the output t, the distribution that is expected to have over test samples.
The average , or expected loss is given by:

E[L] =

∫ ∫
L(t, y(x))p(x, t)dxdt. (4.8)

4.2. Linear Models for Regression 21

A common choice is the squared loss function, where L is the difference
between t and y(x) to the power of 2.

E[L] =

∫ ∫
(t− y(x))2p(x, t)dxdt. (4.9)

The optimal solution (if we assume a completely flexible function) is the
conditional average:

y(x) =

∫
tp(t|x)dt = E[t|x]. (4.10)

4.2.3 Direct Approach: Minimising Least Squares

Unlike a probabilistic approach, direct optimization one simply tries to search
the space of the models to minimize the loss function. This means finding
a regression function y(x) directly from the training data. Given a data set
with N samples, consider the following error function:

L(w) =
1

2

N∑
n=1

(y(xn,w)− tn)2. (4.11)

This is half the residual sum of squares (RSS), also called sum of squared
errors (SSE) It can also be written as the sum of the l2-norm of the vector
of residual errors.

RSS(w) = ‖ε‖22 =

N∑
i−1

ε2i . (4.12)

In mathematics, an expression is said to be a closed-form if it can be ex-
pressed analytically in terms of a finite number of certain “well-known” func-
tions. Typically, these functions are defined to be elementary functions con-
stants or elementary operations of arithmetic. The Ordinary least square
(OLS) is an example of a closed-form solution to estimate the parame-
ter of a linear regression model. Let us introduce the matrix Φ, which
is the matrix with the number of rows equal to the number of samples
N , and a column for each feature M . Let us write RSS in matrix form
with Φ = (φ(x1), . . . ,φ(xN))T , also called design matrix (Φ ∈ RN×M), and
t = (t1, . . . , tN)T

L(w) =
1

2
RSS(w) =

1

2
(t− Φw)T (t− Φw). (4.13)

We have rewritten the L formula in matrix notation. Now we have to find
the minimum of the function, which means that the gradient with respect to

22 Chapter 4. Theoretical Background

w must be zero and the ascend point (curvature) must be positive. Compute
the first and second derivatives.

∂L(w)

∂w
= −ΦT (t− Φw), (4.14)

∂2L(w)

∂w∂wT
= ΦTΦ. (4.15)

The ascend is ΦTΦ which is symmetric, semi-positive (all the item values are
non-negative). If they are all positive it means you have only one minimum.
If they have zeros, it means that you have more than one solution. Assuming
ΦTΦ nonsingular, the weights of the model:

ŵOLS = (ΦTΦ)−1ΦT t. (4.16)

Theorem 1. (Gauss-Markov Theorem) The least squares estimate of w has
the smallest variance among all linear unbiased estimates.

It follows that the least-squares estimator has the lowest Mean Square
Error (MSE) of all linear estimators with no bias. However, there may exist
a biased estimator with smaller MSE.

4.2.4 Regularized least squares

In linear models, overfitting is typically associated with large weight values.
To avoid overfitting (Bülhmann and van der Geer, 2011), the loss function
can be modified by adding a component related to the complexity of the
model:

L(w) = LD(w) + λLW (w), (4.17)

where λ ∈ R+ is the regularization coefficient that controls the relative
importance of the data-dependent error LD(w) and the regularization term
LW (w).

By introducing the parameter λ, the optimization becomes a trade-off be-
tween the minimization of the data error and the complexity of the model.
The model complexity is the order of magnitude of the weights. The regu-
larisation parameter controls this trade-off: high λ values lead to a strong
regularisation, that is to prefer simple models, while low λ values imply a
low regularisation, that is more complex models. The choice of LW (w) de-
termines the type of regularisation. Among the most common regularisation
choices we find:

• Ridge Regression: LW (w) = 1
2 ‖w‖

2
2;

4.2. Linear Models for Regression 23

• Lasso Regression: LW (w) = 1
2 ‖w‖1;

where ‖w‖2 =
√∑M−1

j=0 w2
j and ‖w‖1 =

∑M−1
j=0 |wj |. Ridge regulariza-

tion, also known as Tikhonov regularization or l2, shrinks the coefficients
and it helps to reduce the model complexity and multi-collinearity. So lower
the constraint (low λ) on the features, the model will resemble linear regres-
sion model. In this case the loss function is still quadratic in parameters w,
therefore, exists a closed-form solution. The vector of the optimal parameters
becomes:

ŵ = (λI + ΦTΦ)−1ΦT t, (4.18)

where I is the identity matrix.
On the other hand, lasso regression not only helps in reducing over-fitting,

but it can help us in feature selection. This type of regularisation (l1) for λ
significantly high can lead to zero coefficients forming a sparse model. For
example, some of the features are entirely neglected for the evaluation of
output. Just like Ridge regression, the regularisation parameter λ can be
controlled.

4.2.5 Non-Negative Least Square

The estimation of parameters in an OLS problem is not always that straight-
forward because in many real-world problems the underlying parameters
represent quantities that can take on only non-negative values, for example,
amounts of materials, chemical concentrations, pixel intensities, to name a
few. In such a case, the least-squares problem must be modified to include
non-negativity constraints on the model parameters (Chen and Plemmons,
2010). The resulting problem is called Non-negative Least Squares (NNLS),
and is formulated as follows:

Problem 1. (NNLS Problem) Given a matrix A ∈ Rm×n and the set of
observed values given by b ∈ Rn, find a non-negative vector x ∈ Rn to
minimize the functional f(x) = 1

2 ‖Ax− b‖2, for example

min
x
f(x) =

1

2
‖Ax− b‖2 ,

subject to x ≥ 0. (4.19)

Here x ≥ 0 means that each component of the vector x should be non-
negative, and ‖.‖2 denotes the l2 norm.

The first widely used algorithm for solving this problem is an active-set
method published by Lawson and Hanson (1995) in their book Solving Least

24 Chapter 4. Theoretical Background

Squares Problems. In pseudocode, this algorithm looks as follows (Chen and
Plemmons, 2010):

Algorithm 1 Non Negative Least Square - NNLS
Input A ∈ Rm×n,b ∈ Rm

Output x∗ ≥ 0 such that x∗ = argmin ‖Ax− b‖2.

function NNLS(A ∈ Rm×n, b ∈ Rm)
Initialization: P = ∅, R = {1, 2, . . . , n}, x = 0, w = AT(b−Ax)

repeat
j = argmaxi∈r(wi)

Include the index j in P and remove it form R

sP = [(AP)TAP]−1(AP)Tb

repeat
α = −mini∈P [xi/(xi − si)]
x := x+ α(s− x)

Update R and P
sP = [(AP)TAP]−1(AP)Tb

sR = 0

until min(sP) > 0

x = s

w = AT(b−Ax)

until R = ∅ ∨ [maxi∈R(wi) > tolerance]

end function

Notation: The matrix AP is a matrix associated with only the variables
currently in the passive set P . It is proved by Lawson and Hanson that the
iteration of the NNLS algorithm is finite. Given sufficient time, the algorithm
will reach a point where the Kuhn-Tucker conditions are satisfied, and it will
terminate (Chen and Plemmons, 2010).

4.2.6 Bounded - Variable Least Square

A generalization of NNLS is bounded-variable least squares (BVLS), with
simultaneous upper and lower bounds αi ≤ xi ≤ β (Stark and Parker, 1995).
This problem rise when is needed to apply a different constraint for each
variable of a least-square problem, and is formulated as follows:

Problem 2. (BVLS Problem) Given a matrix A ∈ Rm×n and the set of
observed values given by b ∈ Rn, find a constraints vector x ∈ Rn to minimize
the functional f(x) = 1

2 ‖Ax− b‖2, for example

min
x
f(x) =

1

2
‖Ax− b‖2 ,

subject to αi ≤ x ≤ βi. (4.20)

∀α, β ∈ (−∞,+∞).

4.3. Non-Parametric models 25

Here αi ≤ x ≤ βi. means that each component of the vector x should
be in the range of (α, β), and ‖.‖2 denotes the l2 norm. This optimization
problem is convex, hence a found minimum (if iterations have converged) is
guaranteed to be global. BVLS uses an active set strategy similar to that of
NNLS, except two active sets are maintained, one for variables at their lower
bounds and one for variables at their upper bounds. The proof that BVLS
converges to a solution of problem bvls follows that for NNLS (Lawson and
Hanson, 1995).

4.3 Non-Parametric models

The methods seen so far use the training data to estimate a fixed set of
parameters w. That defines our hypothesis h(x), and at that point, we
can throw away the training data, because they are all summarised by w.
A learning model that summarises data with a set of parameters of fixed
size (independent of the number of training examples) is called a parametric
model. A nonparametric model, instead, is one that cannot be characterized
by a limited set of parameters. For example, suppose that each hypothesis
we generate retains within itself all of the training examples and uses all
of them to predict the next example. Such a hypothesis family would be
nonparametric because the effective number of parameters is unbounded; it
grows with the number of examples. This approach is called instance-based
learning or memory-based learning (Russel, 2007). This kind of learning
involves storing the entire training set in order to make predictions for future
data points. They typically require a metric to be defined that measures the
similarity of any two vectors in input space, and are generally fast to ‘train’
but slow at making predictions for test data points.

4.3.1 Kernel Methods

Many linear parametric models can be re-cast into an equivalent dual repre-
sentation in which the predictions are also based on linear combinations of
a kernel function evaluated at the training data points (Bishop, 2006). For
models which are based on a fixed nonlinear feature space mapping φ(x),
the kernel function is given by the relation:

k(x,x′) = φ(x)Tφ(x′). (4.21)

The kernel is a symmetric function of its arguments so that k(x,x′) =

k(x′,x). The simplest example of a kernel function is obtained by consider-
ing the identity mapping for the feature space so that φ(x) = x, in which

26 Chapter 4. Theoretical Background

case k(x,x′) = xTx′. We shall refer to this as the linear kernel. The concept
of a kernel formulated as an inner product in a feature space allows us to
build interesting extensions of many well-known algorithms by making use
of the kernel trick. The idea is that, if we have an algorithm formulated in
such a way that the input vector x enters only in the form of scalar products,
then we can replace that scalar product with some other choice of kernel.
There are numerous forms of kernel functions in common use. Many have the
property of being a function only of the difference between the arguments,
so that k(x,x′) = k(x− x′), which are known as stationary kernels because
they are invariant to translations in input space. A further specialization
involves homogeneous kernels, also known as radial basis functions, which
depend only on the magnitude of the distance (typically Euclidean) between
the arguments so that k(x,x′) = k(‖x− x′‖).

4.3.2 Sparse Kernel Machine

Consider kernel-based algorithms that have sparse solutions, so that predic-
tions for new inputs depend only on the kernel function evaluated at a subset
of the training data points. One of the most popular kernel-based algorithms
is support vector machine (SVM), which became popular in some years ago
for solving problems in classification, regression, and novelty detection. An
important property of support vector machines is that the determination of
the model parameters corresponds to a convex optimization problem, and so
any local solution is also a global optimum (Bishop, 2006).

The two-class classification problem using linear models of the form

y(x) = wTφ(x) + b, (4.22)

where φ(x) denotes a fixed feature-space transformation, with bias parame-
ter b explicit. The training data set comprises N input vectors x1, . . . , xN ,
with corresponding target values t1, . . . , tN where tn ∈ {−1, 1}, and new
data points x are classified according to the sign of y(x). We assume that
the training data set is linearly separable in feature space, so that by defi-
nition there exists at least one choice of the parameters w and b such that
the function satisfies y(xn) > 0 for points having tn = +1 and y(xn) < 0

for points having tn = −1, so that tny(xn) > 0 for all training data points.
There may exist many such solutions that separate the classes correctly. The
support vector machine approaches this problem through the concept of the
margin, which is defined to be the smallest distance between the decision
boundary and any of the samples. In support vector machines, the decision
boundary is chosen to be the one for which the margin is maximized. The

4.3. Non-Parametric models 27

margin is given by the perpendicular distance to the closest point xn from
the data set, and we wish to optimize the parameters w and b in order to
maximize this distance. Thus the maximum margin solution is found by
solving

w∗ = arg max
w,b

{
1

‖w‖ min
n

[tn(wTφ(xn) + b)]

}
. (4.23)

Direct solution of this optimization problem would be very complex, and
so we shall convert it into an equivalent problem that is much easier to
solve. The optimization problem then simply requires that we maximize
‖w‖−1, which is equivalent to minimizing ‖w‖2, and so we have to solve the
optimization problem

arg min
w,b

1

2
‖w‖2

subject to tn(wTφ(xn) + b) ≥ 1, n ∈ {1, . . . , N}. (4.24)

This is an example of a quadratic programming problem in which we are
trying to minimize a quadratic function subject to a set of linear inequality
constraints.

In order to solve this constrained optimization problem, we introduce La-
grange multipliers an ≥ 0, with one multiplier and for each of the constraints,
giving the Lagrangian function:

L(w, b, a) =
1

2
‖w‖2 −

N∑
n=1

an
{
tn(wTφ(xn) + b)− 1

}
, (4.25)

where a = (a1, . . . , aN)T . Note the minus sign in front of the Lagrange
multiplier term, because we are minimizing with respect to w and b, and
maximizing with respect to a. Setting the derivatives of L(w, b, a) with
respect to w and b equal to zero, we obtain the following two conditions:

w =

N∑
n=1

antnφ(xn), (4.26)

0 =

N∑
n=1

antn. (4.27)

Eliminating w and b from L(w, b, a) using these conditions then gives the
dual representation of the maximum margin problem in which we maximize:

L̃(a) =

N∑
n=1

−1

2

N∑
n=1

M∑
m=1

anamtntmk(xn,xm), (4.28)

28 Chapter 4. Theoretical Background

subject to the constraints

an ≥ 0, n = 1, . . . , N,

N∑
n=1

antn = 0. (4.29)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this
takes the form of a quadratic programming problem in which we optimize
a quadratic function of a subject to a set of inequality constraints. The
classification of new points with the train model is

y(x) = sign

(N∑
n=1

αntnk(x,xn) + b

)
. (4.30)

4.3.3 SVMs for regression

Support Vector Machine can also be used as a regression method, maintain-
ing all the main features that characterize the algorithm (maximal margin).
The Support Vector Regression (SVR) uses the same principles as the SVM
for classification, with only a few minor differences. First of all, because the
output is a real number, it becomes challenging to predict the information
at hand, which has infinite possibilities. In the case of regression, a margin
of tolerance (epsilon) is set in approximation to the SVM which would have
already requested from the problem. However, the main idea is always the
same: to minimize error, to individualize the hyperplane, which maximizes
the margin, keeping in mind that part of the error is tolerated.

4.4 Tree Based Algorithms

Tree-based algorithms are considered to be one of the best supervised learn-
ing methods which are mostly used. Tree-based algorithms enhance predic-
tive models with high accuracy, stability and ease of interpretation. They
map nonlinear relationships quite well, unlike linear models. They are adapt-
able to solve any problem (classification or regression) at hand. Methods such
as decision trees, random forest, gradient boosting are used popularly in all
forms of data science and analytics issues.

4.4.1 Decision Tree

The decision tree is a type of supervised learning algorithm (having a prede-
fined target variable) that is mostly used in classification problems. It works

4.4. Tree Based Algorithms 29

for both categorical and continuous input and output variables. We call C
the set of classes or labels. The purpose of the classifier is to assign a label
j ∈ C to an input vector of features x. In this technique, we split the pop-
ulation or sample into two or more homogeneous sets (or sub-populations)
based on the most significant splitter in input variables.

The type of decision tree is based on the type of target variable we have.
It can be of two kinds:

• Categorical Variable Decision Tree: Decision Tree, which has a
categorical target variable then it is called the Categorical Variable
decision tree. Such as binary target value;

• Continuous Variable Decision Tree: Decision Tree, which has a
continuous target variable, then it is called Continuous Variable Deci-
sion Tree.

A decision tree is a classifier expressed as a recursive partition of the
instance space. The decision tree consists of nodes that form a Rooted
Tree; namely, it is a Directed Tree with a node called a root that has no
incoming edges. All other nodes have exactly one incoming edge. A node
with outgoing edges is referred to as an internal node. All other nodes are
called leaves (also known as terminal nodes or decision nodes) (Rokach and
Maimon, 2008). In a decision tree, each internal node splits the instance
space into two or more sub-spaces according to a certain discrete function
of the input attributes values. In the simplest and most frequent case, each
test considers a single attribute, such that the instance space is partitioned
according to the value of the attribute. In the case of numeric attributes, the
condition refers to a range. Each leaf is assigned to one class representing
the most appropriate target value.

Figure 4.2 provides an example of a decision tree that predicts whether or
not a potential customer will respond to a direct mailing. Internal nodes are
represented as circles, whereas leaves are denoted as triangles. Two or more
branches may grow out from each internal node. Each node corresponds with
a specific characteristic, and the branches correspond with a range of values.
These ranges of values must be mutually exclusive and complete. These two
properties of disjointness and completeness are essential since they ensure
that each data instance is mapped to one instance. Instances are classified
by navigating them from the root of the tree down to a leaf according to the
outcome of the tests along the path. We start with the root of a tree; we
consider the characteristic that corresponds to the root, and then we define
to which branch the observed value of the given characteristic corresponds.

30 Chapter 4. Theoretical Background

Then, we consider the node in which the given branch appears. We repeat
the same operations for this node until we reach a leaf. Each node is labeled
with the attribute it tests, and its branches are labeled with its corresponding
values. In the case of numeric attributes, decision trees can be geometrically
interpreted as a collection of hyperplanes, each orthogonal to one of the axes.

Age

Gender

Last
Response

No

No Yes

Yes

YesNo

FemaleMale

> 30≤ 30

Figure 4.2: Decision tree example on direct mailing response.

A decision tree divides the space into axis-parallel boxes and associates
each box with the most frequent label in it. It begins by finding the best
horizontal split and the best vertical split (best in the sense of yielding the
lowest misclassification rate). Therefore, by adopting a greedy strategy,
we keep the split that gives the lowest error and move on to develop the
tree’s branches. The procedure is recursively applied to each of the resulting
branches. Complicated decision trees might have a limited generalization
capability, for example: although it seems to classify all training instances
correctly, it fails to do so in new and unseen instances. In some cases, we
should prefer simple trees over complicated ones even if the latter seems to
outperform the former in the training set.

Regression models map the input space into a real-value domain. For
instance, a regressor can predict the demand for a specific product given its
characteristics. Formally, the goal is to examine y|x for a response y and a
set of predictors x. The basic idea is to combine decision trees and linear
regression to forecast numerical target attributes based on a set of input
attributes. These methods perform induction utilizing an efficient recursive
partitioning algorithm. The choice of the best split at each node of the tree

4.4. Tree Based Algorithms 31

is usually guided by a least squares error criterion.

4.4.2 Decision Forests

The main idea of an ensemble methodology is to combine a set of models
(often called weak learners), each of which solves the same original task,
in order to obtain a better composite global model, with more accurate and
reliable estimates or decisions than can be obtained from using a single model
(Rokach and Maimon, 2008).

Definition 2 (Strong Learner). A strong learner is an inducer that is given
a training set consisting of labeled data and produces a classifier which can
be arbitrarily accurate.

Definition 3 (Weak Learner). A weak learner produces a classifier which is
only slightly more accurate than random classification.

Most of the time, a weak learner model perform not so well by themselves
either because it has a high bias (low degree of freedom models, for example)
or because it has too much variance to be robust (high degree of freedom
models, for example). Then, the idea of ensemble methods is to try reducing
bias and or variance of such weak learners by combining several of them
in order to create a keen learner (or ensemble model) that achieves better
performances. One crucial point is that our choice of weak learners should be
coherent with the way we aggregate these models. If we choose base models
with low bias but high variance, it should be with an aggregating method
that tends to reduce variance whereas if we choose base models with low
variance but high bias, it should be with an aggregating method that tends
to reduce bias. We can mention two major kinds of meta-algorithms that
aims at combining weak learners:

• bagging: that often considers homogeneous weak learners learn them
independently from each other in parallel and combines them follow-
ing some kind of deterministic averaging process. Bagging will mainly
focus on getting an ensemble model with less variance than its com-
ponents. This approach is based on bootstrapping. This statistical
technique consists in generating samples of size B (called bootstrap
samples) from an initial data set of size N by randomly drawing with
replacement B observations. First, we create multiple bootstrap sam-
ples so that each new bootstrap sample will act as another independent
data set drawn from the true distribution. Then, we can fit a weak
learner for each of these samples and finally aggregate them such that

32 Chapter 4. Theoretical Background

we kind of “average” their outputs and, so, obtain an ensemble model
with less variance than its components;

• boosting: that often considers homogeneous weak learners learn them
sequentially in a very adaptive way (a base model depends on the
previous ones) and combines them following a deterministic strategy.
Boosting will mainly try to produce a strong model less biased than
their components (even if variance can also be reduced). Each model
in the sequence is fitted, giving more importance to observations in
the data set that were badly handled by the previous models in the
sequence. Intuitively, each new model focuses its efforts on the most
difficult observations to fit up to now, so that we obtain, at the end
of the process, a strong learner with lower bias. Boosting, like bag-
ging, can be used for regression as well as for classification problems.
Adaptive Boosting, Gradient Boosting (Friedman, 2001) and Newton
Boosting (Mason et al., 2000) are three implementation of boosting
algorithms. Both of theme fits a weak classifier to weighted versions
of the data iteratively. At each iteration, the data is reweighted such
that misclassified data points receive larger weights than others. The
resulting model can be written as follows:

f̂(x) ≡
M∑
m=1

θ̂mĉm(x), (4.31)

where ĉm(x) ∈ {−1, 1} are the weak classifiers and clear classifications
are given by ĉm(x) = sign(f̂(x)) (Freund et al., 1996).

4.4.3 Random Forest

Random forests are an ensemble learning method for classification, regression
and other tasks that operate by constructing a multitude of decision trees at
training time and outputting the class that is the mode of the classes (clas-
sification) or mean prediction (regression) of the individual trees (Ho, 1995).
The random forest approach is a bagging method where deep trees, fitted on
bootstrap samples, are combined to produce an output with lower variance.
However, random forests also use another trick to make the multiple fitted
trees a bit less correlated with each other: when growing each tree, instead of
only sampling over the observations in the data set to generate a bootstrap
sample, we also sample over features and keep only a random subset of them
to build the tree.

Random forests use a modified tree learning algorithm that selects, at
each candidate split in the learning process, a random subset of the features.

4.4. Tree Based Algorithms 33

This process is sometimes called “feature bagging”. The reason for doing this
is the correlation of the trees in an ordinary bootstrap sample: if one or a
few features are robust predictors for the response variable (target output),
these features will be selected in many of the trees, causing them to become
correlated.

N1 feature

CLASS B

N2 feature

CLASS C

N3 feature

CLASS D

N4 feature

CLASS B

DATASET

MAJORITY VOTING

FINAL CLASS

Figure 4.3: Example of Random Forest classifier.

4.4.4 Extra Trees

Adding one further step of randomization yields extremely randomized trees,
or Extra Trees. While similar to ordinary random forests in that they are an
ensemble of individual trees, there are two main differences: first, each tree
is trained using the whole learning sample (rather than a bootstrap sam-
ple), and second, the top-down splitting in the tree learner is randomized.
Instead of computing the locally optimal cut-point for each feature under
consideration (based on, for example, Gini impurity), a random cut-point is
selected.1 This value is selected from a uniform distribution within the fea-
ture’s empirical range (in the tree’s training set). Then, of all the randomly
generated splits, the split that yields the highest score is chosen to split the
node (Geurts et al., 2006).

1Gini impurity is a measure of how often a randomly chosen element from the set would
be incorrectly labeled if it was randomly labeled according to the distribution of labels
in the subset. The Gini impurity can be computed by summing the probability pi of an
item with label i being chosen times the probability

∑
k 6=i pk = 1 − pi of a mistake in

categorizing that item. It reaches its minimum (zero) when all cases in the node fall into
a single target category.

34 Chapter 4. Theoretical Background

4.4.5 eXtreme Gradient Boosting

eXtreme Gradient Boosting or XGBoost is an optimized distributed gradi-
ent boosting open-source library designed to be highly efficient, flexible and
portable. It implements machine learning algorithms under the Gradient
Boosting framework. XGBoost provides a parallel tree boosting (also known
as GBDT, GBM or MART) that solve many data science problems in a
fast and accurate way.2 Nielsen (2016) in his work details how weight func-
tion affects the determination of the fit and shows that the tree boosting
can be seen to take the bias-variance trade-off directly into consideration
during fitting. The neighborhoods are kept as large as possible in order
to avoid increasing variance unnecessarily and only made smaller when com-
plex structure seems apparent. While coming to a high dimensional problem,
tree boosting “beats” the curse of dimensionality by not relying on any dis-
tance metric. Also, the similarity between data points is learned from the
data through adaptive adjustment of neighborhoods. This makes the model
immune to the curse of dimensionality. Also, more deep-rooted trees help
to capture the interaction of the features. Thus there will be no need to
search for appropriate transformations. Thus, with the benefits of boosting
tree models, for example, adaptively determined neighborhoods, MART and
XGBoost, in general, should make a better fit than other methods. They
can perform automatic feature selection and capture high-order interactions
without breaking down. By comparing MART and XGBoost, while MART
does only set an equal number of terminal nodes across all trees, XGBoost
set a Tmax and regularisation parameter to make the tree deeper while still
keeping the variance lower. The Newton boosting used by XGBoost is likely
to learn better structures compared to MART’s gradient boosting. XGBoost
also includes an extra randomization parameter, for example, column sub-
sampling, this helps to reduce the correlation of each tree even further.

4.5 Model Evaluation

The “No Free Lunch” theorem states that there is no one model that works
best for every problem. (Wolpert and Macready, 1997) The assumptions of
a great model for one problem may not hold for another problem, so it is
common in machine learning to try multiple models and find one that works
best for a particular problem. This is especially true in supervised learn-
ing; validation or cross-validation is commonly used to assess the predictive
accuracies of multiple models of varying complexity to find the best model.

2https://xgboost.ai/about.

4.5. Model Evaluation 35

Multiple algorithms could also train a model that works well; for example,
linear regression could be trained by the normal equations or by gradient
descent. In this section, we introduce which techniques to use to evaluate
different prediction models. While training a model is a crucial step, how
the model generalizes on unseen data is an equally important aspect that
should be considered in every machine learning pipeline. We need to know
whether it works and, consequently, if we can trust its predictions.

4.5.1 Cross-Validation

Cross-validation is a technique that involves partitioning the original observa-
tion data set into a training set, used to train the model, and an independent
set used to evaluate the analysis (Kohavi et al., 1995). The most common
cross-validation technique is k-fold cross-validation, where the original data
set is partitioned into k equal size subsamples, called folds (Bishop, 2006).
The k is a user-specified number, usually with 5 or 10 as its preferred value.
Each k-th times, one of the k subsets is used as the test set/validation set,
and the other k − 1 subsets are put together to form a training set. The
error estimation is averaged over all k trials to get the total effectiveness
of our model. Formally, randomly divide training data into k equal parts:
D1, . . . , Dk, for each part i learn model yD\Di

using data points not in Di.
Estimate the error of yD\Di

on a validation set Di:

LDi =
k

N

∑
(xn,tn)∈Di

(tn − yD\Di
(xn))2. (4.32)

k-fold cross validation error is average over data splits

Lk−fold =
1

k

k∑
i=1

LDi . (4.33)

As can be seen, every data point gets to be in a test set exactly once and gets
to be in a training set k− 1 times. This significantly reduces bias, as we are
using most of the data for fitting, and it also significantly reduces variance,
as most of the data is also being used in the test set. Interchanging the
training and test sets also adds to the effectiveness of this method.

4.5.2 Evaluation Metrics

Model evaluation metrics are required to quantify model performance. The
choice of evaluation metrics depends on a given machine learning task (such

36 Chapter 4. Theoretical Background

as classification, regression, ranking, clustering, topic modeling, among oth-
ers). Some metrics, such as precision-recall, are useful for multiple tasks.
Supervised learning tasks such as classification and regression constitutes a
majority of machine learning applications. The basic classification or regres-
sion pipeline works as follows:

• we start by some initial configuration of the model and predict the
output based on some input;

• the predicted value is then compared with the target, and the measure
of our model performance is taken;

• then the various parameters of the model are adjusted iteratively in-
order to reach the optimal value of the performance metric.

Classification Metrics

Given an input vector x, the purpose of the classification is to assign it to one
of the discrete classes Ck where k ∈ {1, . . . ,K} (Bishop, 2006). Generally, we
assume that classes are disjointed in such a way that each input is assigned
to one and only one class. The space of the input variables is, therefore
divided into decision-making regions whose edges are called decision-making
surfaces. When we talk about linear models for classification, we mean that
decision surfaces are linear functions of input x, they are (D−1)-dimensional
hyperplanes defined within the D-dimensional space of the inputs. The other
way around, nonlinear models create decision surfaces given by nonlinear
functions of the inputs. The performances of a classifier are measured using
the confusion matrix and the percentage of inputs correctly classified.

Figure 4.4 shows the confusion matrix of a binary classifier (two possible
classes 1 = True, 0 = False):

• true Positive (TP): number of positive class data classified correctly;

• true Negative (TN): number of negative class data classified correctly;

• false Negative (FN): number of positive class data wrongly classified
as negative class;

• false Positive (FP): number of negative class data wrongly classified as
positive class.

The most commonly used indicators to measure classifiers performance
are the following:

4.5. Model Evaluation 37

Actual
value

Prediction outcome

p n total

p′ True
Positive

False
Negative

P′

n′ False
Positive

True
Negative

N′

total P N

Figure 4.4: Confusion matrix.

• Accuracy: the number of correct predictions made by the model over
all kinds of predictions made.

accuracy =
number of correctly classified predictions

total number of predictions

=
TP + TN

TP + FN + FP + TN
. (4.34)

Accuracy is a good measure when the target variable classes in the
data are nearly balanced;

• Precision: is the fraction of relevant instances among the retrieved
instances.

precision =
TP

TP + FP
. (4.35)

Precision focuses on minimising False positives;

• Recall: is the fraction of the total amount of relevant instances that
were retrieved.

recall =
TP

TP + FN
. (4.36)

Recall focuses more on minimising False Negatives;

• F1 score: the harmonic mean of the recall and Precision.

f1_score = 2
Precision ·Recall
Precision+Recall

. (4.37)

38 Chapter 4. Theoretical Background

Regression Metrics

Regression task is the prediction of the state of an outcome variable at a
particular time point with the help of other correlated independent variables
(Bishop, 2006). The regression task, unlike the classification task, outputs
continuous value within a given range. The most commonly used indicators
to measure regressors performance are the following:

• Mean Squared Error (MSE): is the average of the squared difference
between the target value and the value predicted by the regression
model. As it squares the differences, it penalizes even a small error
which leads to over-estimation of how bad the model is. It is preferred
more than other metrics because it is differentiable and hence can be
optimized better. It if defined as follows:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2, (4.38)

where n is the number of predictions, Yi is the vector of observed
values of the variable being predicted and Ŷ is the predicted values;

• Root Mean Squared Error (RMSE) : is the square root of the
averaged squared difference between the target value and the value
predicted by the model. It is preferred more in some cases because the
errors are first squared before averaging, which poses a high penalty
on large errors. This implies that RMSE is useful when large errors
are undesired. It if defined as follows:

RMSE =
√
MSE (4.39)

=

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2, (4.40)

where n is the number of predictions, Yi is the vector of observed
values of the variable being predicted and Ŷ is the predicted values;

• Mean Absolute Error (MAE): is the absolute difference between
the target value and the value predicted by the model. The MAE is
more robust to outliers and does not penalise the errors as extremely as
MSE. MAE is a linear score which means all the individual differences
are weighted equally. It if defined as follows:

MAE =
1

n

n∑
i=1

|Yi − Ŷi|, (4.41)

4.5. Model Evaluation 39

where n is the number of predictions, Yi is the vector of observed
values of the variable being predicted and Ŷ is the predicted values.

40 Chapter 4. Theoretical Background

Chapter 5

Proposed Algorithms

The following section introduces the techniques and methodologies coming
from the machine learning field, which have been developed and used to
handle the challenges associated with pricing long-term room rents. Data
analytics using machine learning relies on an established suite of events, also
known as the data analytics pipeline (L’heureux et al., 2017). Figure 5.1
shows a representation of the pipeline based on the work of Labrinidis and
Jagadish (2012), along with the three types of manipulations:

• Data manipulations: the first manipulations to be attempted in an
effort to apply machine learning to a dataset is to try to modify the
data in order to select only the relevant information. This modifica-
tion takes place in the data pre-processing stage of the pipeline. Two
intuitive data manipulations for learning are dimensionality reduction
and instance selection. Additionally, data clearing is another impor-
tant aspect of data manipulations, concerning to pre-processing steps
such, as noise and outlier removal;

• Processing manipulations: to improve machine learning performance,
processing manipulations focus on modifying how data are processed
and stored. Here, the term storage refers not only to physical storage
on a permanent medium but also to how data are represented in mem-
ory. Processing manipulations can happen during three phases of the
data analytics pipeline: data transformation, data storage, and data
analysis;

• Algorithm manipulations: include approaches that modify existing al-
gorithms, with or without applying new paradigms. Many algorithms
are used to accomplish different business goals. The better features are
used, the better the predictive power is. After cleaning the data and

41

42 Chapter 5. Proposed Algorithms

Data
Collection

Data
Pre-Processing

Data
Transformation

Data
Storage

Data
Analysis

Decision
Making

Data
Manipulation

Processing
Manipulation

Algorithm
Manipulation

Figure 5.1: Data analysis pipeline.

finding what features are most important, using a model as a predictive
tool enhance the business decision making.

In this chapter, we mainly focus on giving a theoretical explanation and
justification of the technique used for data manipulation.

5.1 Pre-processing Techniques

Data gathered in datasets can present multiple forms and come from many
different sources. Data directly extracted from relational databases or ob-
tained from the real world is completely raw: it has not been transformed,
cleansed or changed at all. Therefore, it may contain errors due to wrong
data entry procedures or missing data, or inconsistencies due to ill-handled
merging data processes. Many pre-processing techniques have been designed
to overcome the problems present in such real-world datasets and to obtain
a final, reliable and accurate dataset to apply a machine learning technique
later (Zhang et al., 2003). Gathering all the data elements together is not
an easy task when the examples come from different sources, and they have
to be merged in a single dataset. Integrating data from different databases
is usually called data integration. If some attributes are calculated from the
others, the datasets will present a large size, but the information contained
will not scale accordingly: detecting and eliminating redundant attributes is
needed. Having a consistent dataset without measurable inconsistencies does
not mean that the data is clean. Errors like missing values or uncontrolled
noise may be still present. A data cleaning step is usually needed to filter or
correct the wrong data. Otherwise, the knowledge extracted by a machine
learning algorithms will be barely accurate. Ending up with a consistent
and almost error-free dataset does not mean that the data is in the best
form for an algorithm. Some algorithms work much better with normalized
attribute values. Others are not able to work with nominal valued attributes
or benefit from small transformations in the data. Data normalization and
data transformation techniques have been designed to adapt a dataset to the

5.2. Data Cleaning 43

needs of the machine learning algorithm that will be applied afterward. Note
that eliminating redundant attributes and inconsistencies may still yield a
large dataset that will slow down the process. The use of data reduction
techniques to transform the dataset are quite useful, as they can reduce the
number of attributes or instances while maintaining as much information
as possible. To sum up, real-world data is usually incomplete, unclean and
inconsistent. Therefore, data pre-processing techniques are needed to im-
prove the accuracy and efficiency of the subsequent learning technique used
(García et al., 2015).

The rest of the chapter further describes the techniques used to per-
form the preparation of a generic dataset to replicate the analysis we do on
DoveVivo’s data. Formally, given a set X of rooms features and a target
t denoting its listing price, which transformation and techniques should we
use to have a ready-to-use dataset for prediction?

5.2 Data Cleaning

Real-world data tend to be incomplete, noisy, and inconsistent. Data Clean-
ing routines attempt to fill in Missing Values (MV), smooth out noise while
identifying outliers, and correct inconsistencies in the data. Data can be
noisy, having incorrect attribute values. Owing to the following, the data
collection instruments used may be fault. Maybe human or computer errors
occurred at data entry. Errors in data transmission can also occur. "Dirty"
data can confuse the mining procedure. Although most mining routines have
some procedures, they deal with incomplete or noisy data, which are not al-
ways robust. Therefore, a useful Data Pre-processing step is to run the data
through some Data Cleaning routines.1

5.2.1 Dealing with Missing Values

Many existing, industrial and research datasets contain missing values in
their attribute values. Intuitively an MV is just a value for an attribute
that was not introduced or was lost in the recording process. There are
various reasons for their existence, such as manual data entry procedures,
equipment errors and incorrect measurements. The simplest way of dealing
with MVs is to discard the examples that contain them. However, this
method is practical only when the data contains a relatively small number
of examples with MVs, and when analysis of the complete examples will not

1https://medium.com/easyread/basics-of-data-pre-processing-71c314bc7188

44 Chapter 5. Proposed Algorithms

lead to serious bias during the inference (Little and Rubin, 2019). MVs make
performing data analysis difficult. There are several types of missing values:

• Missing Completely At Random (MCAR): the mechanism that
causes the missing data does not depend on both the data observed or
the missing data;

• Missing At Random (MAR): the mechanism that causes the lack of
the data depends on the observed data but not on the missing data;

• Not Missing At Random (NMAR): the mechanism that causes the
missing data depends on the missing data itself.

The management of missing values can be carried out with different tech-
niques (Graham et al., 2012) and depends strongly on the category to which
they belong. The most straightforward and fastest computational approach
is to discard all rows containing a missing value. Instead, if the data is not
MCAR, this method could introduce bias in the final estimate. There is
also a risk of excessively reducing the number of examples in the dataset.
A computationally more demanding approach is to replace the missing val-
ues of a specific attribute with information obtained from the dataset itself,
for example, with the mean, the median or with the results predicted by a
regression having as output the attribute considered. It is also possible to
keep track of the replaced values by reporting a column of dummy variables
that indicate whether the value of the given attribute was missing for a par-
ticular example. This technique reduces variability and cannot be used for
NMARs. Some algorithms autonomously manage missing values according
to predefined criteria. To treat NMARs it is necessary to go back to the
data source to get more information. The techniques adopted for this type
of data are treated in depth in (Graham et al., 2012).

5.2.2 Dealing with Outliers

An outlier is a data point that is distant from other similar points. They
may be due to variability in the measurement or may indicate experimental
errors. If possible, outliers should be excluded from the dataset. However,
detecting that anomalous instances might be very difficult, and is not al-
ways possible. Having outliers can produce several negative consequences
in machine learning problems. Several approaches have been studied in the
literature to deal with noisy data. Among them, the most important are:

• Robust learners: these are techniques characterized by being less in-
fluenced by noisy data. Examples of robust learners are Support Vec-

5.2. Data Cleaning 45

tor Machine and C4.5 (Quinlan, 2014) algorithm. C4.5 uses pruning
strategies to reduce the chances to reduce the possibility that trees
overfit to noise in the training data. However, if the noise level is
relatively high, even a robust learner may have poor performances;

• Data polishing methods: they aim to correct noisy instances before
training a learner. This option is only viable when datasets are small
because it is generally time-consuming;

• Noise filters (Khoshgoftaar and Rebours, 2007): identify noisy in-
stances which can be eliminated from the training data. These are
used with many learners that are sensitive to noisy data and require
data pre-processing to address the problem.

A practical way to recognize the outliers of a particular dataset is to
visually detect them plotting the data.

Definition 4. In descriptive statistics, a box plot is a method for graphically
depicting groups of numerical data through their quartiles. Box plots may
also have lines extending horizontally from the boxes (whiskers) indicating
variability outside the upper and lower quartiles, hence the terms box-and-
whisker plot and box-and-whisker diagram. Outliers are plotted as individual
points.

Figure 5.2 is an example of a boxplot showing the distribution of the
rooms square footage. Outliers are plotted as diamonds in the plot, and
the population is grouped and displayed as a box. This method allows us
to eliminate automatically discarding all the data over a certain quantile,
indicated in the figure as a vertical line. These data are classified as outliers.

5.2.3 Dealing with Inconsistent data and Duplicates

Real-world data is often incomplete, inconsistent, and lacking in certain be-
haviors or trends and is likely to contain many errors. They create variations
on data that simply should not exist. An inconsistency problem is when
different information is stored under the same variable. For example, the
variable denoting the flat’s floor stores only one ordinal number, but some-
one inputs the number in letters. Indeed, since "second" and "2" refer to
the same value, they should be represented in the same way.

A dataset may also include data objects which are duplicates of one
another. It may happen, for example, when the same person submits a form
more than once. In most cases, the duplicates are removed not to give that

46 Chapter 5. Proposed Algorithms

10 15 20 25 30 35
rooms square footage

Figure 5.2: Boxplot of the distribution of room square footage.

particular data object an advantage or bias, when running machine learning
algorithms.

5.3 Feature Encoding and Data Normalization

Feature Encoding and Data Normalization are two methods needed to pre-
pare a raw dataset to be used as input to machine learning algorithms. The
former is to transform categorical variables into continuous variables. There
are different techniques based on specific needs, such as whether or not the
hierarchy between the data is maintained. Data normalization is a method
used to impose a range of values that the features must assume in order to
make them independent of the unit of measurement used. In data processing,
it is also known as Feature Scaling.

5.3.1 Feature Encoding and Discretization

The whole purpose of data pre-processing is to encode the data, that means
modifying in such a way machine can understand it. We are now focusing on
transforming categorical data to numerical data. Feature encoding performs
transformations on the data such that it can be easily accepted as input
for machine learning algorithms while still retaining its original meaning.
There are some general criteria and rules which are followed when performing
feature encoding (García et al., 2015).

5.3. Feature Encoding and Data Normalization 47

Name City Milan Rome Florence

0 Bob Milan 1 0 0

1 Jhon Rome 0 1 0

2 Bea Milan 1 0 0

3 Al Milan 1 0 0

4 Robe Florence 0 0 1

5 Jack Rome 0 1 0

6 Steve Florence 0 0 1

Table 5.1: Example of One Hot Encoding method.

For Continuous variables:

• Ordinal : An order-preserving change of values. This approach, called
Label Encoding, is straightforward and it involves converting each value
in a column to a number. The notion of small, medium and large can
be represented equally well with the help of a new function, that is,
〈NewV alue = f(OldV alue)〉 for example, {0, 1, 2}. Label encoding,
also induce order/precedence in numbers which means that an algo-
rithm might understand that data has some kind of hierarchy/order
0 < 1 < 2 < . . . < 6 and might give more weight to a feature in
calculation than another. This means that if we are not interested in
preserving the order, this is not the right method;

• Nominal : Any one-to-one mapping can be done which retains the
meaning. The ordering issue caused by Label Encoding can be ad-
dressed in another common alternative approach called One-Hot En-
coding. In this strategy, each category value is converted into a new
column and assigned a 1 or 0 (notation for true/false) value to the
column. Although this approach eliminates the hierarchy/order issues
but does have the downside of adding more columns to the dataset.
An example is presented in Table 5.1.

There are other two methods used for Numerical variables instead that
are worth mentioning briefly:

• Interval : Simple mathematical transformation like using the equation
〈NewV alue = a OldV alue+b〉, a and b being constants. For example,

48 Chapter 5. Proposed Algorithms

Fahrenheit and Celsius scales, which differ in their Zero values size of
a unit, can be encoded in this manner.

• Ratio: These variables can be scaled to any particular measures while
still maintaining the meaning and ratio of their values. Simple mathe-
matical transformations work in this case as well, like the transforma-
tion 〈NewV alue = a OldV alue + b〉. For, length can be measured in
meters or feet; money can be taken in different currencies.

The discretization process transforms quantitative data into qualitative
data, that is, numerical attributes into discrete or nominal attributes with a
finite number of intervals, obtaining a non-overlapping partition of a contin-
uous domain. An association between each interval with a discrete numerical
value is then established. In practice, discretization can be viewed as a data
reduction method since it maps data from a vast spectrum of numeric val-
ues to a significantly reduced subset of discrete values (García et al., 2015).
Equal-Frequency is an unsupervised discretization method and consists of
separating all possible values into N number of bins, each having the same
amount of observations. Intervals may correspond to quantile values. This
technique can handle outliers and can be combined with categorical encod-
ing.

5.3.2 Min-Max Data Normalization

Many machine learning algorithms search for patterns and trends in the data
by comparing the features of data points. However, there is an issue when
the features are on drastically different scales. Consider a rooms’ dataset.
Two potential features might be the square footage of the room, and the total
number of bathrooms in the house. A machine learning algorithm could try
to predict which price is most suitable for a specific room. However, when
the algorithm compares data points, the feature with the larger scale will
completely dominate the other. The goal of normalization is to make every
data point have the same scale so that each feature is equally important.
Min-max normalization is one of the most common ways to normalize data.
For every feature, the minimum value of that feature gets transformed into
a 0, the maximum value gets transformed into a 1, and every other value
gets transformed into a decimal between 0 and 1. Let X be the random
variable corresponding to an attribute and let xi, . . . , xn the random samples
extracted from X. With the range normalization technique, each value is

5.4. Data Reduction 49

scaled concerning the range of X or formally:

x′i =
xi −mini{xi}

maxi{xi} −mini{xi}
, (5.1)

where x′i is the normalized sample and the denominator of the fraction is the
range of the set of samples.

5.4 Data Reduction

Data reduction techniques can be applied to achieve a reduced representation
of the dataset; it is much smaller in volume and tries to keep most of the
integrity of the original data (Han et al., 2011). In the case of data reduction,
the data produced usually maintains the essential structure and integrity of
the original data, but the amount of data is downsized (García et al., 2015).
Therefore, the goal is to provide the mining process with a mechanism to
produce the same (or almost the same) outcome.

One of the well-known problems in Data Mining is the Curse of Dimen-
sionality, related with the usual high amount of attributes in data (García
et al., 2015). Dimensionality becomes a severe obstacle for the efficiency
of most of the machine learning algorithms because of their computational
complexity. Indeed, the high dimensionality of the input increases the size
of the search space exponentially and also increases the chance to obtain
invalid models.

5.4.1 Feature Selection

Definition 5. Feature Selection (FS) is a process that chooses an optimal
subset of features according to a certain criterion.

The criterion determines the details of evaluating feature subsets. The
selection of the criterion must be made according to the purposes of FS. For
example, an optimal subset could be a minimal subset that could give the
best estimate of predictive accuracy (García et al., 2015).

Generally, the objective of FS is to identify the features in the dataset,
which are essential, and discard others as redundant or irrelevant. Since
FS reduces the dimensionality of the data, machine learning algorithms,
can operate faster and obtain better outcomes. The main reason for this
achieved improvement is mainly raised by a smoother and more compact
representation of the target concept. Reasons for performing FS may include:

• removing irrelevant data;

50 Chapter 5. Proposed Algorithms

• increasing predictive accuracy of learned models;

• improving learning efficiency, such as reducing storage requirements
and computational cost;

• reducing the complexity of the resulting model description, improving
the understanding of the data and the model.

There are various methodologies and techniques used to subset the fea-
ture space and help learning models perform better and efficiently:

• Filter methods select features independently of any machine learning
algorithms. Features are selected based on their scores in various sta-
tistical tests for their correlation with the outcome variable. For in-
stance, using Pearson’s Correlation (Biesiada and Duch, 2007). This
set of methods do not remove multicollinearity. It is necessary to deal
with multicollinearity of features as well before training models;

• Wrapper methods, try to use a subset of features and train a model
using them. Based on the inferences that we draw from the previous
model, we decide to add or remove features from the subset. The
problem is essentially reduced to a search problem. These methods
are usually computationally costly in terms of time-consuming. Some
common examples of wrapper methods are forward feature selection,
backward feature elimination, recursive feature elimination. They are
defined as follows:

– Forward Selection: Forward selection is an iterative method in
which we start with having no feature in the model. In each iter-
ation, we keep adding the feature which best improves our model
till an addition of a new variable does not improve the perfor-
mance of the model. Algorithm 2 provides details for Sequential
Forward Feature set Generation. Here, the best feature f is cho-
sen by FindNext(F). f is added into S and removed from F ,
growing S and shrinking F . There can be two stopping criteria,
either when the F set is empty or when S satisfies U . Adopting
only the first criterion, we can obtain a ranked list of features;

– Backward Elimination: In backward elimination, we start with
all the features and removes the least significant feature at each
iteration which improves the performance of the model. We repeat
this until no improvement is observed on the removal of features;

5.5. Feature Sampling 51

– Recursive Feature elimination: It is a greedy optimization algo-
rithm which aims to find the best performing feature subset. It
repeatedly creates models and keeps aside the best or the worst
performing feature at each iteration. It constructs the next model
with the left features until all the features are exhausted. It then
ranks the features based on the order of their elimination;

• Embedded methods combine the qualities’ of filter and wrapper meth-
ods. It is implemented by algorithms that have their built-in feature
selection methods. Some of the most popular examples of these meth-
ods are LASSO and RIDGE regression which have inbuilt penalization
functions to reduce overfitting.

Algorithm 2 Sequential Forward Feature set Generation - SFG
1: function SFG(F - full set, U - measure)
2: initialize: S = {} . S stores the selected features
3: repeat
4: f = FindNext(F)

5: S = S ∪ {f}
6: F = F − {f}
7: until S satisfies U or F = {}
8: return S

9: end function

5.5 Feature Sampling

Imbalanced classifications pose a challenge for predictive modeling (Japkow-
icz and Stephen, 2002). Most of the machine learning algorithms used for
classification were designed with the assumption of an equal number of ex-
amples for each class. This results in models that have poor predictive
performance, specifically for the minority class. Over and under-sampling
methodologies have received significant attention to counter the effect of
imbalanced datasets (Chawla, 2009).

A widely adopted technique for dealing with highly unbalanced datasets
is called resampling. It consists of removing samples from the majority
class (undersampling) and/or adding more examples from the minority class
(oversampling). Undersampling is the process where you randomly delete
some of the observations from the majority class to match the numbers with
the minority class. Oversampling is the process that samples data for the
minority class to match the number of observations in the majority class.
Figure 5.3 shows an example of how undersampling and oversampling work.

52 Chapter 5. Proposed Algorithms

Original data set

Samples of
majority class

(a) Undersampling

Original data set

Copies of the
minority class

(b) Oversampling

Figure 5.3: Example of Undersampling and Oversampling.

The key principle here is that the sampling should be done in such a
manner that the sample generated should have approximately the same prop-
erties as the original dataset, meaning that the sample is representative of
the original distribution. This involves choosing the correct sample size and
sampling strategy. Simple Random Sampling dictates that there is an equal
probability of selecting any particular entity. It has two main variations as
well:

• Sampling without Replacement : As each item is selected, it is removed
from the set of all the objects that form the total dataset;

• Sampling with Replacement : Items are not removed from the total
dataset after getting selected. This means they can get selected more
than once.

Despite the advantage of balancing classes, these techniques also have
their weaknesses. The most straightforward implementation of oversampling
is to duplicate random records from the minority class, which can cause
overfitting. In undersampling, the most straightforward technique involves
removing random records from the majority class, which can cause loss of
information.

5.6 First Problem Formulation - Data Pipeline

In this paragraph, we describe the general pipeline used to obtain a dataset
ready to be applied as input to machine learning algorithms. We want to
prepare a dataset to accomplish the regression task of predicting a room price
maximizing the revenue. Taking advantage of the data analysis techniques
described so far and solving some of the problems that may arise during this
pre-processing phase.

5.6. First Problem Formulation - Data Pipeline 53

We assume to have a dataset of rooms X composed of different features
and a price associated which is our target t. The problem we have to solve
is to build a model that generalizes the mapping from the features of the
rooms to the final price assigned.

5.6.1 Data Cleaning

The first step on every pre-processing pipeline is the data quality assessment.
We must follow some steps to clean the data, transform it and to integrate
it with additional information. First of all, our work is based on a specific
city: Milan, we make this choice because prices vary a lot from one city to
another, so it is good to consider only one place at a time. The features to
consider are of different nature:

• features that characterize the room, for example, square footage, type
of bed (single bed or double bed), type of room (single room or double
room), whether or not it has a private bathroom;

• features that represent the apartment in which the room is located,
such as, the number of other single or double rooms in the apartment,
the floor, the presence or absence of a balcony, air conditioning, wash-
ing machine or lift;

• features that represent the area in which the room is located: ge-
ographic coordinates, neighborhood or proximity to services such as
means of transport.

In order to feed a machine learning algorithm, the data must be clean;
this means that they must be free of inconsistencies, missing values and
outliers. In the previous paragraphs, we present several techniques to solve
these problems; it is important to note:

• duplicate data must be deleted;

• eliminate samples with missing values if these values cannot be some-
how derived from other sources or recalculated. It is reasonable to
assume that these missing values are MCAR or MAR and, therefore,
we delete the rows that contain them. If for a specific room, the data
on the square footage is missing, and this information can not be ob-
tained in any other way, e.g., from another data source, we opted to
remove it;

54 Chapter 5. Proposed Algorithms

• eliminate features that contain a large number of missing values not
attributable to the dataset; this also helps for the problem of curse of
dimensionality ;

• machine learning algorithms take numeric data as input. Therefore,
it is necessary to transform all categorical variables into numeric ones.
We used the methods mentioned earlier of Feature Decoding:

– Label Encoding for categorical features such as the floor, the
type of room (single or double) or the type of bed (single or dou-
ble);

– One-Hot Encoding for categorical features where we do not
want to guarantee the numeric order. For example, to divide the
dataset into clusters, we create a binary column for each cluster,
assigning a one in the column corresponding to the zone to which
the sample belongs;

• from our analysis, information regarding the geographical area in which
the house is located is essential. Therefore, it is highly recommended
that, among the features of a room, the geographical coordinates, i.e.,
latitude and longitude, are present.

At this point, it is necessary to filter the data to eliminate all those
samples that have been entered incorrectly in the raw dataset. This data
can be trivially eliminated by filtering, feature by feature, the values for
predefined intervals. For instance, the square footage of a room is commonly
from 5 to 50 square meters. All values outside this range are most likely
outliers. Alternatively, an excellent way to manually inspect them is by
defining a threshold quantile using a box plot, as shown in Figure 5.2. All the
values outside the leftmost and the rightmost hinge are considered outliers.

5.6.2 Feature Engineering

It is possible to integrate the initial dataset with additional information re-
garding the position of the house concerning other city’s places of interest.
Our analysis shows how the introduction of the data about the proximity of
the room to public transport may favor the evaluation of a room positively.
Another decisive factor from our analysis was to understand how the price
fluctuates concerning the proximity to the city center. Therefore, we car-
ried out a transformation of variables from Cartesian coordinates to polar
coordinates.

5.6. First Problem Formulation - Data Pipeline 55

Haversine formula

The distance between two points uses the haversine formula to calculate the
great-circle distance between two points. That is the shortest distance over
the earth’s surface, giving an "as-the-crow-flies" distance between the points
(ignoring any hills they fly over), or formally:

a = sin2

(
∆φ

2

)
+ cos(φ1) cos(φ2) sin2

(
∆λ

2

)
,

c = 2 arctan(
√
a,
√

(1− a)),

distance = Rc, (5.2)

where φ is latitude, λ is longitude, R is earth’s radius (mean radius =
6.371km), arctan(y, x) indicates the angle in radiant between the positive
half-axis of the X of a Cartesian plane and a point of coordinates (x, y)

lying on it.

Relative Bearing

On the other hand, the angle between a specific room and the city center
is calculated using the relative bearing which, in the naval context, refers to
the angle between the craft’s forward direction and the location of another
object:

Θ = arctan(sin(∆λ) cos(φ2),

cos(φ1) sin(φ2)− cos(φ1) cos(φ2) cos(∆λ)), (5.3)

where φ1, λ1 is the start point, φ2, λ2 the end point, and ∆λ is the difference
in longitude.

Room style

Another factor that we consider essential to integrate into the dataset is the
information on how old the apartment is. This information is not present
in the database so we rely on the "age" of the room which can be obtained
considering the number of years from today until the starting date of the con-
tract with the owner. Older the room, the more likely it has been renovated
before.

Normalization

Finally, having at this point, a clean and balanced dataset, we just have to
normalize the data to eliminate any difference in scale and unit of measure

56 Chapter 5. Proposed Algorithms

between the features. The Min-Max normalization formula in Equation 5.1
re-scales the values of a feature in a range [0, 1]. In this way, each feature is
equally important.

5.7 Second Problem Formulation - Data Pipeline

In this section, we see in detail what are the main reasons that lead us to a
second formulation of the pricing problem based on a classifier. The latter
predicts whether, at the end of a contract, a certain bed will remain vacant
for some days or not. Next, we show what features a contract dataset must
have for our purpose. The pre-processing phase starts from the reconstruc-
tion of the contract history up to the creation of new features to introduce
seasonality in the data.

5.7.1 Motivation

What we create is a classifier that takes as input a dataset Z and returns
a binary value relative to vacancy. Each sample in the dataset corresponds
to a contract. It is composed of the room’s features, as in the previous
formulation, historical data referring to the contract and the monthly fee
assigned to the room from the contract to the time. The classifier’s output
can take two values:

• 1: there will be days of vacancy between one contract and the next;

• 0: there will be no vacancy days at the end of the current contract.

Our reasoning starts with practical evaluations. A room with recogniz-
able features by users will be more requested than the others; therefore less
likely to go through vacant periods Given the strong demand for the rental
market in Milan, we are induced to raise the prices of rental properties. How-
ever, we wonder how much we can modify it without causing a consequent
vacancy period, and we proceed as follows:

1. consider a wide range of prices centered on the current listing price
and discretize it, thus obtaining a vector of prices for each bedroom.

2. for each room, we give the classifier the room’s characteristics, which
are fixed, and, one at a time, the prices of the vector created in the
previous point. In this way, we obtain a binary vector that predicts
the vacancy for each proposed price;

5.7. Second Problem Formulation - Data Pipeline 57

N
um

be
r o

f v
ac

an
cy

 d
ay

PriceP'

Figure 5.4: Trend of the vacancy period compared to the rental price.

3. observe the binary vector and select the highest price among those
that do not give vacancy or among those that, given as input to the
classifier, return an output equal to zero.

We expect the classifier to have monotonous increasing behavior or that
the vector returned for each room is composed of a sequence of zeros followed
by a sequence of ones. Intuitively this trend of the vector means that, by
raising the price of a given bedroom, the difficulty in finding a new interested
user by the end date of the contract increases. The trend of the duration
of the vacancy period concerning the price changes is shown in Figure 5.4:
vacancies increase as the price increases. P ′ represents the maximum price
that can be assigned to the room that guarantees not having a vacancy
period following the end of the contract. Figure 5.5 shows the monotonous
behavior a classifier should have in this scenario as we increase the price of
a room: it returns 0 if the price is below P ′, hence 1 denotes the room will
likely have vacancy.

Figure 5.6 shows an example illustrating this methodology. In this ex-
ample, we have chosen to assign prices included in the range P ± 10%P ,
where P is the listing price currently in use. In particular, we discretized
this interval into sub-intervals of amplitude 10AC, and we have discovered,
observing the vector of the outputs of the classifier, that the ideal price P ′

is 580AC.

58 Chapter 5. Proposed Algorithms

Pr
ed
ic
tio

n

Price

1

0
P'

Figure 5.5: Monotonous classifier behaviour compared to the rental price.

P = LISTING PRICE
PMIN = P - 10%P
PMAX = P + 10%P

10€

PPMIN PMAXP

500 510 520 530 540 550 560 570 580 590 600 610 620
0 0 0 0 0 0 0 0 0 1 1 1 1

P = 560€

PERCENTAGE INCREASE ≅	0.0357

Figure 5.6: Example of methodology that uses the classifier to predict vacancy.

5.7.2 Data Cleaning

In this section, we firstly, describe in detail which characteristics the dataset
must-have. Then, we show the pre-processing steps to follow to create a
dataset for the classification problem. The features to be considered for this
formulation are of different types:

• features concerning the characteristics of the room;

• features concerning the characteristics of the contract, including the
listing price of the room at the time of the contract.

As we have already said, each sample of this dataset corresponds to a contract
for a rented room. In particular, each contract contains:

• contract start and end date;

5.7. Second Problem Formulation - Data Pipeline 59

• date of the stipulation of the contract which corresponds to the date
on which the tenant signs the contract;

• contract cancellation date which corresponds to the date on which the
tenant decides to leave the room;

• a binary value relating to the status of the contract: active or inactive;

• the monthly fee for the room;

• a unique identifier for the contract and the room.

The dataset cleaning phase starts with the data assessment. As in the
previous formulation, any type of missing and inconsistent data must be
adjusted in such a way as not to create problems with the machine learning
models we are going to use.

5.7.3 Contract History Reconstruction

A crucial step in guaranteeing the chronological correctness of the data is
the reconstruction of the contract history. This procedure is mainly used
to detect and possibly correct inconsistencies in the data. Therefore, it
must be ensured that the contract history does not contain any type of
inconsistency for a specific room. This means that there can not be two
different contracts active simultaneously for the same room. Similarly, the
end date of a contract cannot happen later than the beginning of the next
contract. These inconsistencies are usually due to human input errors in
databases. Where possible, it is always better to fix these inconsistencies
without eliminating the data. For instance, if two chronologically contiguous
contracts are partially overlapping, as shown in Figure 5.7, it is possible to
terminate the first contract before the beginning of the next one. On the
other hand, if by mistake two or more contracts have the same start and end
validity dates, it is better to eliminate all the duplicates.

5.7.4 Feature Engineering

Generally, room rents contracts are not stationary over the year. For in-
stance, a period in which the fees usually increase is close to the beginning
of the university semesters, i.e., September and February. For the study of
seasonal patterns, we introduced new numerical features. It is possible to
describe the seasonal pattern as one sine and one cosine function (Stolwijk

60 Chapter 5. Proposed Algorithms

c1
c2

c1
c2

c1
c2

Overlapping contracts

Solution 1:

Solution 2:

Start contract
End contract

Figure 5.7: Overlapping contracts.

et al., 1999):

SinDatai = sin

(
2πxi
365

)
, (5.4)

CosDatai = cos

(
2πxi
365

)
, (5.5)

where i represents the i-th sample, and xi is the day of the year of the
starting date contracts of the i-th contract.

We also introduced:

• the number of years from today to the beginning of the contract with
the owner of the room (called passive contract date);

• the year in which the contract started;

• the duration of each contract in days;

• the number of vacancy days between one contract and the next one;

• the percentage increase in monthly fees between one contract and the
next one.

5.7.5 Data Filtering

We proceed by filtering the data. We only consider contracts that have a
valid contract end date which corresponds to considering only concluded
contracts. Finally, we assign to each sample a binary value starting from the
number of vacancy days:

• 1: if the number of vacancy days exceeds 10, that amount being sig-
nificant for business purposes;

5.7. Second Problem Formulation - Data Pipeline 61

• 0: otherwise.

This last feature is the target on which we train our classification model.

5.7.6 Data Sampling for Monotone Classifier

The main characteristic of the model we build is that it has to follow the
trend of a monotonous function. This means that as a given value increases
(listing price), the target will be increasingly inclined to return a positive
value (vacancy). At the same time, if the price drops, the prediction will
be more likely to be negative. The idea is that if a contract with certain
characteristics and with a price p generates vacancy, then increasing the
price will continue to produce vacancy. Taking advantage of the oversampling
technique, we sample all the contracts with label one without replacement,
as seen in Section 5.5, and assign a new price higher by a small percentage
compared to the initial one. In this way, we also increase the number of
samples of the dataset.

Data Integration

From our analysis, it is essential to integrate the room data with additional
information taken from other sources. An in-depth geographical analysis
allows us to identify and cluster rooms with similar particularities. This
allows us to build targeted and more specific models for each individual
cluster. Taking advantage of the division into neighborhoods of the city
already performed in the dataset, we are able to analyze a sub-group of
rooms at a time and create an ad hoc models. In the case of data provided
by DoveVivo, exploiting a grouping of rooms on a geographical basis allowed
us to notice and fix some inconsistencies. In particular, the company assigns
a specific area of Milan to each room, and this region was not consistent with
the actual position of the room. Other types of information to be integrated
into the rooms dataset are the presence of services such as supermarkets,
pharmacies and public transport nearby.

62 Chapter 5. Proposed Algorithms

Chapter 6

Experiments

In the following chapter, we analyze in detail the data provided by DoveVivo
for both problem formulations presented in Section 3.2. After a first qual-
itative and quantitative analysis of the data, we show how they have been
cleaned, transformed, and used. We take advantage of the pre-processing
techniques introduced in the previous chapter, detailing what problems we
have encountered and how we have overcome them, what information we
had and what we integrated to strengthen the model and improve perfor-
mance. Finally, we show the results we obtain by comparing different learn-
ing models, exploiting, therefore, supervised learning techniques introduced
in Chapter 4 both for regression and classification. To evaluate the per-
formances achieved by the various models, we use the evaluation metrics
presented in Section 4.5.2.

6.1 First Problem Formulation - Experiment

6.1.1 Data Collection and Feature Description

We take the data of the DoveVivo’s rooms by querying their data storage
systems via remote connection. The data are structured in different tables,
so we have to join multiple instances to get a first dataset to analyze. We
mainly need four tables:

• clu_postoletto: all the room information resides;

• clu_appartamento: contains information about the apartment;

• clu_città: includes all the information on the city in which the apart-
ment is located;

• clu_locazione: includes information on the contracts for each room.

63

64 Chapter 6. Experiments

Then, we perform a first filtering of the data directly from the query. We
do not use samples where the information is missing. We only examine rooms
currently owned by DoveVivo, since there may be rooms in the system that
no longer belong to the company. Given the considerable difference in the
trend of the real estate market between one city and another, our analysis
focus only on the city of Milan. This allows us to have a discrete pool of data
following a similar price trend. We only take into consideration the single
or double rooms in Milan intended to private audiences (B2C contracts)
currently under the responsibility of DoveVivo.

Features Description

After a first screening of the data, we obtain a dataset of 31 features and
2540 samples, where each sample corresponds to a specific room. In this
section, we observe in detail the features that comprise the dataset. They
are:

• data_stipula: is the date on which the last currently active contract
for a room is signed. For our analyzes, this field is used to filter data
in such a way to eliminate inconsistencies. For example, we check that
every stipulate date is before the contract start date;

• prezzo_listino: listing price associated with each room which may
differ from the contract price. It is a continuous numeric field expressed
in euros and will constitute the target for regression models;

• prezzo_utenze: price of the utilities of a house, usually the value is
around 40-50 euros and must be added to the listing price to obtain
the final price;

• mq_stanza: continuous value that represents the square footage of
each room in square meters;

• num_singole: represents the total number of single rooms in the
examined apartment;

• num_doppie: represents the total number of double rooms in the
examined apartment;

• num_bagni_app: represents the total number of bathrooms in the
examined apartment;

• tipo_stanza: this field represents the type of a room. The field
can assume two values: "Stanza singola" (single room) and "Stanza
doppia" (double room);

6.1. First Problem Formulation - Experiment 65

• The Table 6.1 lists the 14 binary features that represent the presence
or absence of benefits in the home, with the corresponding number of
positive occurrences:

Table 6.1: Binary Features.

Field Name Benefit Name Positive occurrences

bagno_privato private restroom 2488

fb_balcone balcony 804

fb_giardino garden 5

fb_wifi Wi-Fi connection 2541

fb_cantina cellar 41

fb_parcheggio_bici bicycle park 1502

fb_parcheggio_moto motorcycle park 4

fb_parcheggio_auto car park 0

fb_lavatrice washing machine 2541

fb_portineria reception 1695

fb_condizionatore air-conditioner 21

fb_terrazzo terrace 5

fb_lavastoviglie dish washer 2386

fb_ascensore elevator 2013

• lat_lon: represent the geographical coordinates of each room. the
field has the following format (latitude, longitude);

• id_zona / nome_zona: they represent the zone to which the room
belongs. DoveVivo assigns to each room an area that broadly corre-
sponds to agglomerate some contiguous neighbourhoods of the city of
Milan. In total 19 areas cover the entire surface of the municipality;

• piano: represents the floor on which the apartment is located inside
an apartment building. It is a positive numeric value.

• tipo_letto: this data gives us information on the type of bed in a

66 Chapter 6. Experiments

room. This field can assume three different values: "Singolo" (sin-
gle bed), "Matrimoniale" (King-size bed), and "Una piazza e mezzo"
(Queen-size bed);

• data_inizio_passivo: this field represents the date on which the
contract involving DoveVivo and the owner of an apartment started.
This data is used to indicate how old an apartment is.

6.1.2 Data Cleaning and Data Exploration

Duplicate and Inconsistency Management

Consistency check for the date of the contracts’ stipulation: we eliminate all
mistakenly entered dates in the database. If there is a date corresponding to
a future day, the corresponding sample is discarded. Furthermore, if selecting
only the active contracts, two rows are corresponding to the same room, we
keep the one with the most recent contract stipulation date.

Handle categorical variables

In the data provided by DoveVivo, there are some categorical variables to be
handled. Let us see in detail how each categorical variable was processed.

• tipo_stanza: this field assumes two categorical values to indicate
whether the sample considered is a single or double room. We apply
Label Encoding (Section 5.3) to transform the categorical variable into
numeric:

– single room: 1;

– double room: 0;

• lat_lon: this field is composed of two strings divided by a comma:
the first member corresponds to the latitude of the room, while the
second one corresponds to the longitude. Therefore, we isolate the two
values and finally create two new distinct variables in the dataset with
the latitude and longitude values;

• nome_zona: this field contains 19 unique names to indicate the areas
in which the city of Milan is divided by DoveVivo. We apply One-Hot
Encoding (Section 5.3) to map the categorical attribute into 19 binary
variables, each of which describes a specific area;

• tipo_letto: Figure 6.1 shows how the values associated with the
tipo_letto variable are distributed. Given the deficient number of

6.1. First Problem Formulation - Experiment 67

Queen-size bed Single bed King-size bed
0

500

1000

1500

2000

C
ou

nt

2073

445

23

Figure 6.1: Bed type variable distribution.

king-size beds, we decided to consider them together with the queen-
size bed. Then apply Label Encoding (Section 5.3) to transform the
categorical variable into numeric:

– double bed: 1;

– single bed: 0;

• data_inizio_passivo: we decided to keep this field to indicate how
old a room is. We calculate for each room the number of year from
today to the passive start date;

• piano: in most cases, this variable contains numeric values that indi-
cate the floor of the room. Some values, however, are shown in string
format: for example, ’three’ to indicate the 3rd floor. In this phase,
we have translated natural language into numbers. Instead, all those
inconsistent values that do not indicate a positive integer have been
eliminated.

Handle data outliers

Outlier is a term used in statistics to define, in a set of observations, an
anomalous and aberrant value. Figure 6.2 shows the boxplots of some of
the numeric variables that we examine, more specifically listing price, floor,
room and apartment square footage. To eliminate these values far from other
observations, we have imposed ranges of values within which the sample is
considered acceptable. Outliers should be eliminated or, if possible, corrected

68 Chapter 6. Experiments

listing price

400

600

800

1000

E
u

ro

floor
0

2

4

6

8

10

12

F
lo

or

room square footage
0

10

20

30

S
qu

ar
e

m
et

er

apartment square footage
0

100

200

300

400

S
qu

ar
e

m
et

er

Figure 6.2: Numeric variables boxplots.

if data are incorrectly reported. If, on the other hand, they are data relating
to rooms with characteristics that make them very different from all the
others, we must identify the corresponding rooms, price them by hand and
study them individually. In both cases, the pre-processing phase identifies
the outliers. It eliminates them from the dataset so that they are not used
for training the model and it exports them in specific files from which they
can then be examined separately. The ranges outside which the data have
been considered outliers are the following:

• contract price ∈ [100, 5000];

• price list ∈ [100, 5000];

• floor ∈ [0, 20]

• square meters room ∈ [7, 50];

• square meters apartment ∈ [30, 700].

Numerical Variables Transformation and Feature Engineering

Let us discuss how we deal with the problem from a geographical point of
view. A preliminary analysis we conduct shows that the proximity to the
center of Milan is directly proportional to the listing price. In Figure 6.3, the

6.1. First Problem Formulation - Experiment 69

500

600

700

800

900

L
is

ti
n

g
p

ri
ce

Figure 6.3: DoveVivo’s rooms over Milan’s surface.

rooms of DoveVivo are displayed on the area of the municipality of Milan.
The blue star represents the Duomo of Milan, which is the reference point
that we used as the center of the city. We transform the continuous numerical
variables of latitude and longitude into a new reference system composed
of radius and angle. Specifically, the radius indicates the distance of each
apartment from the Duomo of Milan. The angle indicates the inclination
with respect to the north. The new coordinates are added to the dataset.
The distance between two points on the Earth’s surface is calculated using
the Haversine formula (Equation (5.2)), while the angle is calculated using
the Relative Bearing formula (Equation (5.3)).

On the website of the municipality of Milan is possible to consult and
use a large amount of data concerning various aspects of the city, e.g., envi-
ronment, energy, health, transport.1 From a detailed spatial analysis of the
areas indicated by DoveVivo for each room, we noticed some inconsistencies
between the actual position of the room and the area set by the company.
These are the main steps that allow us to fix them:

• we downloaded the coordinates of the vertices of the polygons that
1https://dati.comune.milano.it/.

70 Chapter 6. Experiments

form the districts of Milan. The latter are 89, many more than the
areas indicated by DoveVivo;

• we manually agglomerate the districts of Milan to obtain 19 macro-
areas such as those declared by the company. Figure 6.4 shows the
Milan surface divided into the 19 regions;

• we represent DoveVivo’s rooms on the map of Milan given the coordi-
nates;

• using the convex hull method, we have traced the smallest convex set
on the sheet that encloses all the rooms area by area taking as reference
the zone indicated by DoveVivo in the data. It can be easily seen from
Figure 6.5 that some rooms are not spatially located in the correct
area;

• exploiting the geographical coordinates of the rooms and the vertices
of the regions, we recalculate the area to which each room belongs. We
modify the label nome_zona of each room with the zone to which it
belongs. Figure 6.6 shows the final results after the re-positioning of
each room.

6.1. First Problem Formulation - Experiment 71

Bicocca / Monza / Casoretto

Cadorna / Castello / Moscova

Centrale / Garibaldi / Isola

Cermenate / Missaglia / Ripamonti

Certosa / Bovisa / Affori

Città Studi / Lambrate / Ortica

Crocetta / Tribunale / MonteneroDuomo / Missori / Cordusio

Lodi / Brenta / Rogoredo

Lorenteggio / Bande Nere / Primaticcio / Bisceglie

Martini / Molise / Forlanini

Pagano / De Angeli / Fiera

Porta Genova / Navigli / Ticinese

Porta Romana / Bocconi

Porta Venezia / Buenos Aires / Repubblica

Romolo / Barona / Famagosta

San Siro / Lampugnano / Bonola

Santagostino / Santambrogio

Sarpi / Sempione / Monumentale

Figure 6.4: DoveVivo’s regions, each with its own label.

Figure 6.5: DoveVivo’s rooms over initial Milan’s regions.

72 Chapter 6. Experiments

Figure 6.6: DoveVivo’s rooms over newly-defined Milan’s regions.

In a big city, intuitively, the value of an apartment increases with the
proximity to the public means of transport. Therefore, we introduced to
the dataset, for each room, the closeness in meters from the nearest metro
station. To do this, we use the coordinates of the metro stations provided
by the city of Milan. We calculate the distance between each room with all
the metro stops, and for each of them, we keep the smaller gap. Distance is
calculated using the Haversine formula in Equation (5.2).

However, living near a to subway station is not always considered pos-
itive, especially in areas more distant from the downtown. This is because
the stations are noisy places and sometimes are the center of areas of urban
decay. To verify our idea, we decide to discretize the distance in 4 bands, ex-
ploiting the Equal-Frequency discretization in Equation (5.3.1). Each block
contains approximately the same number of rooms, obtaining the following
labels:

• 0 m ≤ d1 < 300 m;

• 300 m ≤ d2 < 650 m;

• 650 m ≤ d3 < 1000 m;

• d4 ≥ 1000 m;

6.1. First Problem Formulation - Experiment 73

where di are the 4 ranges of distances. We replace each continuous distance
value with the corresponding label. Since the proximity of the stations is not
always considered a positive factor, we do not preserve the order for all the
four batches by assigning a value from 1 to 4. We use the One-Hot-Encoding
method (Section 5.1) to create four new binary variables to add to the rooms
dataset. In this way, the models assign a different weight to each distance
based on what they learn area by area.

The last operations we carry out are the elimination of all irrelevant
binary features, that is, containing a number of ones greater than 95% con-
cerning the total, or vice versa with a number of ones less than 5%. This
is because their contribution can affect the performance of the final model.
Machine Learning algorithms do not consider a feature if almost all, or none,
of the samples, have it. Therefore, we eliminate garden, wi fi, cellar, motor-
cycle parking, car parking, washing machine, air conditioning, terrace and
dishwasher. We decide to keep the information on the private bathroom as
very relevant to the prediction of the final price. Finally, using the min-max
formula in Equation (5.3.2). We normalize all the data in the range [0, 1], in
this way, all the variables have the same importance.

Data Visualization

After the pre-processing phase, we obtain a clean dataset with no missing,
inconsistent or outlier values. We obtain a matrix consisting of 2398 unique
rooms and 43 numeric features. The latter are composed as follows:

• listing price;

• nineteen zones: binary features result of the One-Hot Encoding process
(Section 5.1);

• nine features that characterize the apartment. Four numeric: number
of single and double rooms, number of bathrooms and the number
of years from the start of the passive contract. Five binary features:
balcony, bike parking, floor, lift and concierge;

• four features that characterize the room. One numerical: square footage.
Three binaries: single or double room, private bathroom, type of bed;

• eight features that indicate the geographical position of the room: four
binary features to indicate the distance of the nearest metro, distance
from the Duomo of Milan, angle, latitude and longitude.

74 Chapter 6. Experiments

250 500 750 1000
0

100

200

300

400

500

600

700

C
ou

nt
listing_price []

10 20 30 40
0

100

200

300

400

500

600

700

C
ou

nt

room_square_footage [m2]

0 5 10
0

100

200

300

400

500

600

700

C
ou

nt

number_single_room

0 2 4
0

500

1000

1500

2000

C
ou

nt

number_double_room

0 5
0

200

400

600

800

1000

C
ou

nt

number_restroom

0 5 10
0

200

400

600

800

C
ou

nt

floor

0 5 10
0

100

200

300

400

500

600

C
ou

nt

year_starting_passive_contract [m2]

45.40 45.45 45.50
0

200

400

600

800

C
ou

nt

latitude

9.1 9.2
0

100

200

300

400

500

600

C
ou

nt

longitude

0.0 2.5 5.0 7.5
0

100

200

300

400

500

600

700

C
ou

nt

duomo_distance [km]

0 200 400
0

200

400

600

800

C
ou

nt

relative_bearing [degrees]

Figure 6.7: Data distribution plot.

Figure 6.7 shows the data distribution for each individual numeric fea-
ture. Figure 6.8 shows the correlation matrix, which is a table showing
correlation coefficients between variables. Each cell in the table shows the
correlation between two variables. Looking at it, we see that most numeric
and categorical variables have a low correlation so they can all be used as
input to a regression model.

6.1.3 Modelling

The purpose of this first group of models is to replicate DoveVivo’s current
pricing strategy automatically. More precisely, we are looking for a model
capable of predicting prices that reflect those currently assigned by the sales
team. The goal of the prediction is to approximate the current listing prices
accurately. Moreover, this tool can be used to isolate those rooms for which
the predicted listing price is very different from the current one. Indeed, there
could exist some rooms whose price has been set according to specific criteria,
which, therefore, must be priced according to ad-hoc criteria. Otherwise, if

6.1. First Problem Formulation - Experiment 75

lis
ti

ng
pr

ic
e

ro
om

sq
ua

re
fo

ot
ag

e

nu
m

b
er

si
ng

le
ro

om

nu
m

b
er

do
ub

le
ro

om

nu
m

b
er

re
st

ro
om

pr
iv

at
e

re
st

ro
om

ba
lc

on
y

bi
ke

pa
rk

re
ce

pt
io

n

el
ev

at
or

fl
o

or

b
ed

ty
p

e

st
ar

t
ye

ar
pa

ss
iv

e
co

nt
ra

ct

si
ng

le
ro

om

la
ti

tu
de

lo
ng

it
ud

e

du
om

o
di

st
an

ce

re
la

ti
ve

b
ea

ri
ng

listing price

room square footage

number single room

number double room

number restroom

private restroom

balcony

bike park

reception

elevator

floor

bed type

start year passive contract

single room

latitude

longitude

duomo distance

relative bearing

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.8: Correlation matrix heatmap for rooms’ dataset.

these rooms do not have such particular characteristics as to justify the gap
between the predicted and the listing price, it is possible to consider the
price returned by the model as a suggestion of an increase or decrease in the
value to assign. We now present the various regression models that we have
applied to DoveVivo datasets.

The regression models we designed are:

• Setup 1
Zone Model with Latitude and Longitude: we have built a different
model for each zone. According to the area where a given room is
located, a specific model is applied. Among the inputs of the dataset
containing only active contracts, the latitude and longitude attributes
were chosen to indicate the apartment coordinates;

• Setup 2
Zone Model with Radius and Angle: we built a different model for each
zone. According to the area where a given room is located, a specific

76 Chapter 6. Experiments

model is applied in which, among the inputs of the dataset containing
only the active contracts, the attributes radius and angle have been
chosen to indicate the coordinates of the apartment;

• Setup 3
Unique Model with Latitude and Longitude: a unique model for the
whole dataset. The attributes that express the position of the apart-
ment are latitude and longitude;

• Setup 4
Unique Model with Radius and Angle: a unique model for the whole
dataset. The attributes that express the position of the apartment are
radius and angle.

We built both parametric models such as linear regression and non-parametric
regressions based on decision trees, ensemble of decision trees, and Support
Vector Machine. In parametric modeling training data are used to set the
weights of the model, then, during the test phase, the parameters are used
to obtain predictions on unseen test points. Conversely, in non-parametric
modeling, predictions are made directly as a function of the training data,
so they are needed at test time. The Machine Learning models we tested are
those that are described in detail in Chapter 4.

Parametric Models

In our experiments, we tested four parametric linear regression models using
three different optimizers:

• Ordinary Least Square (OLS) (Section 4.2.3): chooses the param-
eters of a linear function of a set of variables by the principle of least
squares, i.e., minimizing the sum of the squares of the differences be-
tween the observed dependent variable in the given dataset and those
predicted by the linear function;

• Non-Negative Least Square (NNLS) (Section 4.2.5): is a type of
constrained least squares problem where the coefficients are not allowed
to be negative. Each component of the vector of parameters should be
non-negative;

• Bounded Variable Least Squares (BVLS) (Section 4.2.6): is a
generalization of the NNLS method with simultaneous upper and lower
fixed bounds for each parameter to be calculated. We also tried this
approach exploiting second-order polynomial variables.

6.1. First Problem Formulation - Experiment 77

The idea of exploiting optimizers different than the classic OLS arises
from the need to impose a predetermined sign on the parameters of the
regression. Indeed, it is natural to think that some features should not
provide a negative contribution to the final price. In the same way, it is not
exact to claim that all the features assign a positive or zero supplement to
the prediction. Using BVLS, it is possible to set a range of values that the
parameter corresponding to each variable can take. In this way, it is possible
to assign a positive range of values to the reception, square footage or single
room features while a negative range of values to features like the number
of locals in the apartment and distance from the Duomo.

Training and Hyperparameters Tuning

Generally, after the training phase, we need to test the model performances
on data that has not been used before. In such cases, the solution is to split
the dataset into two subsets. One for training and the other for testing; this
is done before training the model. We use 75% of the data for training and
the remaining 25% for testing.

An l2 regularization factor is applied to each model tested to avoid over-
fitting problems (Section 4.2.4). In order to achieve better performance,
reducing the loss function, we tuned some parameters of the models. In
the specific case of the algorithms based on the ensemble of decision trees.
Typically, in machine learning, the objective function is multidimensional
because it takes in a set of model hyperparameters. For simple functions in
low dimensions, it is possible to find the minimum loss by creating a grid
of input values (i.e, performing grid search) and seeing which one yields the
lowest loss. The main parameters we tuned using a grid search are:

• number of trees;

• the minimum number of samples required to split an internal node;

• the minimum number of samples required to be at a leaf node;

• the maximum depth of the tree.

Performance Metrics and Models Comparison

The metrics that we use to evaluate the performance of the various models
and then to compare them are RMSE, MEA and ME. Each error was cal-
culated by 10-fold cross-validation, as described in Section 4.5.1. Regarding
the setups that exploit zone models, the calculation of the overall RMSE
error was carried out as follows:

78 Chapter 6. Experiments

• the dataset is first divided into 19 subsets, one for each zone;

• the data are then divided into train and test. A model is built for each
subset;

• for each zone z ∈ {0, . . . , 18} we calculate the mean square errorMSEz
as follows:

MSEz(y, ŷ) =

∑nz−1
i=0 (yzi − ŷzi)

nz
, (6.1)

where nz is the number of samples in the dataset coming from zone z,
yi is the i-th observed values of the variable being predicted and ŷi is
the predicted values. Using the k-fold cross-validation with number of
folds nf = 10, as described in Section 4.5.1, we have the crossvalidated
MSE:

MSEz_cv(y, ŷ) =

∑nf−1
k=0 MSEz(y, ŷ)

nf

=

nf−1∑
k=0

nz−1∑
i=0

(yzi − ŷzi)
nznf

; (6.2)

• the sum of quadratic error for a specific region SSEz_cv is;

SSEz_cv = nz MSEz_cv(y, ŷ); (6.3)

• the total RMSE becomes:

RMSEcv =

√∑nZ−1
z=0 SSEz_cv∑nZ−1

z=0 nz
, (6.4)

where nZ = 19 is the number of different zones the rooms are divided
in.

The same approach is applied for each regression metric.

6.1.4 Results

The results of the previously presented models are described in Figures 6.9a,
6.9b, 6.10a, and 6.10b. The figures show the performances of the models
sorted by Root Mean Square Error (RMSE). As described in Section 4.5.2,
the lower is this value, the lower is the average error the model makes in
predicting new values. As far as parametric models are concerned, a zone
approach performs much better. Indeed, regarding the BVLS and OLS bar
in the graphics in Figures 6.10a and 6.10b, we get an error in terms of RMSE

6.1. First Problem Formulation - Experiment 79

XGBoo
st

Extr
aT

re
e

Ran
do

mFor
es

t

Dec
isi

on
Tr

ee

Qua
dr

ati
cB

VLS
BVLS OLS

SVM
NNLS

0

10

20

30

40

50

60

70

E
ur

o
[

]

21.5 (3.0%)
24.2 (3.4%) 25.2 (3.6%)

32.4 (4.6%)

51.5 (7.3%)

65.9 (9.3%)
69.5 (9.9%)

72.9 (10.3%) 74.0 (10.5%)

-0.1 0.3 0.6 1.1 0.7 -0.1 -1.8 -0.9
-4.2

Total_RMSE
Total_ME
Total_MEA

(a) Regression models without zones using latitude and longitude.

XGBoo
st

Extr
aT

re
e

Ran
do

mFor
es

t

Dec
isi

on
Tr

ee

Qua
dr

ati
cB

VLS
BVLS OLS

SVM
NNLS

0

10

20

30

40

50

60

70

E
ur

o
[

]

21.1 (3.0%)
23.4 (3.3%)

25.2 (3.6%)

31.9 (4.5%)

41.0 (5.8%) 41.8 (5.9%)
43.6 (6.2%)

47.7 (6.8%)

74.8 (10.6%)

0.4 0.5 0.6 0.8 2.0 0.1 -0.2
-2.4 -4.1

Total_RMSE
Total_ME
Total_MEA

(b) Regression models without zones using distance and angle.

Figure 6.9: Regression models without zones.

from 4 to 4.3 percentage points. The RMSE percentage is calculated on the
price range obtained by the difference between the maximum and the mini-
mum price offered by DoveVivo in its pricing list. This delta price is around

80 Chapter 6. Experiments

XGBoo
st

Extr
aT

re
es

Ran
do

mFor
es

t
OLS

BVLS
SVM

NNLS

Dec
isi

on
Tr

ee

Qua
dr

ati
cB

VLS

0

10

20

30

40

50

60

70
E

ur
o

[
]

24.0 (3.4%)
25.9 (3.7%)

27.9 (4.0%) 28.9 (4.1%) 30.0 (4.3%)

44.3 (6.3%) 44.9 (6.4%)

50.9 (7.2%)

68.2 (9.7%)

0.1 0.4 0.3 0.1 0.3 0.5
-2.9 -1.6

4.9

Total_RMSE
Total_ME
Total_MEA

(a) Regression models with zones using latitude and longitude.

XGBoo
st

Extr
aT

re
es

Ran
do

mFor
es

t
OLS

BVLS
SVM

NNLS

Dec
isi

on
Tr

ee

Qua
dr

ati
cB

VLS

0

10

20

30

40

50

E
ur

o
[

]

22.3 (3.2%)

25.7 (3.6%) 26.6 (3.8%)
28.1 (4.0%) 29.4 (4.2%)

44.0 (6.2%)
45.5 (6.5%)

50.0 (7.1%)

56.2 (8.0%)

0.6 0.9 0.9 0.2 0.4 0.2
-2.1

0.9 3.0

Total_RMSE
Total_ME
Total_MEA

(b) Regression models with zones using distance and angle.

Figure 6.10: Regression models with zones.

700 euros. We have transformed this percentage value into the corresponding
amount in money: the prices returned by the parametric models of BVLS
and OLS differ on average about 29 euros from those in the DoveVivo price

6.2. Second Problem Formulation - Experiment 81

list. The lowest RMSE error is the one provided by a decision tree ensemble
models: XGBoost, which is described in Section 4.4.5. The results confirm
it to be the best model in terms of average error for all our experiments.
In particular, in the setup of models without zones taking advantage of the
distance and the angle, shown in Figure 6.9b, XGBoost obtains a percentage
error of about 3 percentage points corresponding to 21.10AC. These prices
are close to those offered by DoveVivo they can be used as a suggestion to
follow to create the new price lists while those that deviate a lot can be seen
as a suggestion of price variation.

6.2 Second Problem Formulation - Experiment

6.2.1 Data Collection and Feature Description

Like the previous formulation, the data necessary for our analyses are col-
lected through SQL queries from DoveVivo’s database. As explained in Sec-
tion 3.2.2, for this second formulation, we also need data regarding room
contracts. For these data, we need to access the following database tables:

• clu_postoletto: containing all the room information;

• clu_locazione: includes information on the contracts for each room.

We perform a first filtering of the data through the query. We only consider
the contracts of the rooms of the city of Milan with the end date of the
contract greater than the start date.

Features Description

From the query, we obtain a dataset of 11 features and 9825 samples, where
each row corresponds to a contract, active or concluded, of a room with a
tenant. In this section, we analyze in detail which variables we extract to
create in our dataset:

• clu_datastipula: is the date on which a new customer signs the lease
contract with DoveVivo for a bed;

• clu_datainiziocontratto: it is the effective date on which the lease
begins;

• clu_datadisdetta: it is the date on which a tenant of a room informs
DoveVivo about his/her desire to leave the room;

82 Chapter 6. Experiments

• clu_datascadenza: it is the effective end date of the contract stip-
ulated between a customer and DoveVivo. Contracts usually have a
standard duration of 4 years; if the tenant wants to leave the room
earlier, he must inform the company a few months in advance;

• clu_starting passive: this is the date on which the rental contract
between DoveVivo and the owner of an apartment begins. This field is
used to indicate how old an apartment is;

• clu_canonemensile: represents the monthly contract price at which
the room is rented during all the duration of the contract;

• clu_modellocontratto: it is a binary field that contains only two
values of string type about the kind of contract:

– CNT-DET: indicates that the contract is short-term, that is, last-
ing a few months;

– CNT-IND: indicates that this is an indeterminate type of con-
tract. Indeterminate means a standard 4 + 4-year lease;

• st_contratto: is a binary field indicating the status of the contract:

– Active: indicates that the contract is currently active and in
progress;

– End of Validity: indicates that the contract is concluded;

• st_postoletto: is a binary field indicating the status of the room:

– Active: indicates that the room is still under the responsibility of
DoveVivo;

– Inactive: indicates that the room is no longer operable by Dove-
Vivo.

6.2.2 Data Cleaning and Data Exploration

We want to build an algorithm able to predict the binary label regarding
the vacancy of a room given a specific price. In this section, we present our
analysis on raw data to see how the dataset should be, before moving on to
the algorithm modeling phase. The first step is to reconstruct the DoveVivo’s
contracts history. The purpose of this descriptive analysis is to:

• Identify and possibly eliminate inconsistencies and outliers;

6.2. Second Problem Formulation - Experiment 83

• Reconstruct the history of all the contracts stipulated for each bed by
calculating the elapsed period between the checkout date and the start
date of the subsequent contract, i.e., the period of stay and the rental
period.

The phase of data cleaning and data inconsistency resolution is of funda-
mental importance. The matrix Z corresponds to all the available con-
tracts where zi is a vector representing the generic contract i-th, with i ∈
{1, . . . , nc}, where nc is the number of contracts. We list the type of incon-
sistencies we can find in the dataset and the solutions we use to fix them:

• to analyze a single room at the time, we group the rows of the dataset
by id_postoletto and order them by the date of the beginning of the
contract;

• if two contracts are partially overlapping, i.e, if the contract xji ex-
piration date is greater than the starting date of the contract xji+1.
Where j denotes the j-th room in the dataset, the expiration date of
the contract xji is moved one day before the contract starting date of
xji+1. Figure 5.7 presents an example of overlapping contracts and how
to fix them;

• in case that two or more consecutive contracts, for the same room, are
completely overlapping, we keep only one of them;

• for each contract xi that the stipulation date is earlier than the start
date. If not, we move the stipulation date before the start of the
contract.

Data Filtering

The data we analyzed has been collected over the past ten years. Over time,
the storage criteria changed and generate unwanted errors. Therefore, usable
data are less than those available collected by DoveVivo, and only the most
recent can be analyzed. The filtering phase is used to eliminate all the values:
inconsistent, outliers or missing. More specifically:

• we remove all contracts xi with a monthly fee lower than 200 or higher
than 1000 euros;

• we only keep terminated contracts. That is, where the field st_contratto
is equal to 0, we drop the contract since it lacks some of the necessary
information (censored data);

84 Chapter 6. Experiments

2017-01 2017-05 2017-09 2018-01 2018-05 2018-09 2019-01 2019-05 2019-09 2020-01

60F8A
E4C59
AE6B6
6016C

ADCB2
451D6

CAE11
D39DF
8CD79
86E11
91846
5810A
B8E11
79C6D
6FD79
08F28

E5CE9
7859C
8D896

A50AA

R
oo

m
id

en
ti

fie
r

Stipulation

Cancellation

Contract

Figure 6.11: Contract history reconstruction.

• we select indeterminate contracts since during a preliminary analysis
we detected that they have a completely different distribution;

• we keep contracts that last at least 30 days. There is no duration field
in the dataset, but it can be calculated considering the contract expir-
ing date of the generic xi minus the start date of the same contract.

Figure 6.11 shows a depiction of some of the contracts of DoveVivo’s
rooms on a temporal axis. Each row represents a room: the duration of
the contract is marked with two red Xs joined by a line, the date of the
conclusion of the contract by a green dot while the date of termination by
a black star. We can observe that for some rooms there is a period of a few
months between one contract and the subsequent, while for others, this time
is almost zero.

Data Integration and Feature Engineering

We integrate the dataset obtained so far with the data regarding the rooms.
The selection of the proper features to be included has been lead by the
previous analysis described in Section 6.1, which allowed us to get a clean
dataset with all the DoveVivo operating rooms of Milan. We merge the two
datasets (using the variable id_postoletto as an identifier of the room).
Unlike the first formulation, the model we create to classify vacancies needs

6.2. Second Problem Formulation - Experiment 85

a binary target not included in the initial data. As for the classifier label,
we create other features to give the model more robustness:

• clu_sfitto: this field indicates the number of days a room has been
without tenants before being rented. To calculate the vacancy of a
generic room we must consider two consecutive contracts xji and xji+1.
clu_sfitto is calculated by the difference between the contract starting
date of xji+1 and the expiring date of xji . We denoted a sample as an
outlier and therefore eliminated it if the sample with clu_sfitto less
than 0 or greater than 100 days, where the upper bound have been
selected by asking the opinion of DoveVivo’s expert team;

• clu_sfitto_cla: the classifier needs a binary target, we discretise the
clu_sfitto field to obtain two classes:

– class 1: if we have at least ten days of vacancy;

– class 0: otherwise;

• sindata and cosdata: attributes to allow the model to capture sea-
sonal patterns, calculated through the formulas in Equations (5.4) and
(5.5);

• anno_contratto: it is the year of the beginning of the contract; xji ;

• mese_inizio_passivo: to indicate how old an apartment is, we in-
troduce the number of months from the clu_datainiziopassivo to
the present day;

• clu_aumperc: this field indicates the percentage increase in monthly
fee that a room has, compared to the previous contract. If the price
rises, the increase also increases;

• NiNb: maximum number of tenants per number of bathrooms in the
apartment. Given a generic room x, we have:

NiNb =
nsr + 2ndr

nb
,

where nsr and ndr are the number of single and double rooms in an
apartment, respectively, and nb is the number of bathrooms present in
the flat.

The prices listed in the database under the label clu_canonemensile,
refer to the contract prices that a tenant has undertaken to pay monthly for
the contract duration. DoveVivo gave us a small dataset containing the old

86 Chapter 6. Experiments

listing prices. Ordinarily, the company updates prices once or twice a year.
The price list provided is composed as follows:

• id_postoletto: unique code of each room;

• Lists of prices divided by time, the date to be considered is the stipu-
lation of the contract:

– ListingPrices2016 if the stipulation date is before 1-May-2017;

– ListingPrices2017 if the stipulation date is before 1-May-2018;

– ListingPrices2018-1 if the stipulation date is before 1-Nov-
2018;

– ListingPrices2018-2 if the stipulation date is before 1-Jul-2019;

– ListingPrices2019 if the stipulation date is after 1-Jul-2019;

We integrate this new information by adding the clu_prezzolistino feature
in the dataset. When an id_postoletto or a corresponding price is missing
in the old prices dataset, we choose to use the monthly contract fee as the
listing price instead.

Class Balance analysis and Data Normalization

The ratio between the number of positive classes, in the target feature, com-
pared to the total is about 1 : 10. This means that only one sample out of
10 is labeled as having been vacated. In Section 5.5, we discussed how to
deal with a class unbalance problem. In particular, we use a variant of the
oversampling technique to obtain two results. First, we want to guarantee
the monotonicity of the prediction that makes our model and then we want
to make the classes less unbalanced. Starting from the idea that if a contract
with a price p generates vacancy, then the same contract with a price p+10%

will inevitably create vacancy. In this way, we sample without replacement
all the rows of the dataset having a positive target, update the value of the
price and the percentage increase accordingly.

We drop all the rooms and contract identifiers and dates, to obtain a
dataset composed of numeric features. Finally, using the min-max formula
in Equation (5.3.2). We normalize all the data in the range [0, 1], in this
way, all the variables have the same importance.

Data Visualization

At this point, we got a dataset of 8522 contracts of 1742 unique rooms, 22

features and a target ratio of 1 : 5:

6.2. Second Problem Formulation - Experiment 87

lis
ti

ng
pr

ic
e

p
er

ce
nt

ag
e

in
cr

ea
se

si
nd

at
a

co
sd

at
a

co
nt

ra
ct

ye
ar

va
ca

nc
y

m
on

th
s

si
nc

e
pa

ss
iv

e

ro
om

sq
ua

re
fo

ot
ag

e

pr
iv

at
e

re
st

ro
om

ba
lc

on
y

bi
ke

pa
rk

re
ce

pt
io

n

el
ev

at
or

fl
o

or

b
ed

ty
p

e

m
et

ro
di

st
an

ce
1

m
et

ro
di

st
an

ce
2

m
et

ro
di

st
an

ce
3

m
et

ro
di

st
an

ce
4

du
om

o
di

st
an

ce

re
la

ti
ve

b
ea

ri
ng

N
iN

b

listing price

percentage increase

sindata

cosdata

contract year

vacancy

months since passive

room square footage

private restroom

balcony

bike park

reception

elevator

floor

bed type

metro distance 1

metro distance 2

metro distance 3

metro distance 4

duomo distance

relative bearing

NiNb

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.12: Correlation matrix heatmap contracts dataset.

• vacancy, target of the problem;

• five numeric features that represent the contract: percentage increase,
sindata, cosada, contract year and monthly fee;

• sixteen features representing the room and apartment of interest. Ten
binaries: private bathroom, balcony, bike parking, elevator, bed type,
reception and four attributes to indicate the proximity to the nearest
metro. Six numerical features: number of months from the beginning
of the passive contract, room square footage, floor, distance and angle
from the Duomo, NiNb.

Figure 6.12 shows the correlation matrix, which is a table showing corre-
lation coefficients between couples of numerical variables. The table allows
us to see which pairs of attributes have the highest correlation. Looking
at it, we see that most numeric and categorical variables have a correlation
factor close to zero so they can all be used as input to a classification model.

88 Chapter 6. Experiments

6.2.3 Modelling

The purpose of this formulation, as described in Section 3.2.2, is to create a
classifier capable of determining whether a room generates vacancy. Given
a monthly fee for a room, the model must be able to classify the room
supporting a monotonous behavior. This means that as a price increases for
a particular room, the prediction will be more and more likely to be positive,
hence the room will generate vacancy. Figure 5.5 shows the behavior that the
model has to pursue. Two non-parametric models are considered: Decision
Tree Classifier and XGBoost Classifier. They are detailed in Section 4.4.1
and 4.4.5, respectively.

Training and Hyperparameters Tuning

The training phase is made on 75% of the available data while the test phase
on the remaining 25%. The two models we use in this experiment, Decision
Tree and XGBoost, have several hyperparameters that need to be tuned to
achieve optimal performances.2

We use the random search (Bergstra and Bengio, 2012) approach together
with 10-fold cross-validation to find the best parameters for the models. The
hyperparameters that need to be set are the following:

• Decision Tree Classifier:

– min_samples_split: the minimum number of samples required
to split an internal node of the tree;

– min_samples_leaf : the minimum number of samples required
to be at a leaf node;

– max_features: the number of features to consider when looking
for the best split;

– max_depth: the maximum depth of the tree.

• eXtreme Gradient Boosting Classifier:

– eta: step size shrinkage used in update to prevents overfitting,
correspond to the learning rate;

– max_depth: maximum depth of a tree;

– lambda: L2 regularization term on weights;
2We used the implementation of these methods available in Python. Specifically,

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
and https://xgboost-clone.readthedocs.io/en/latest/parameter.html.

6.2. Second Problem Formulation - Experiment 89

Table 6.2: Classification models evaluation with their standard deviation.

XGBoost Decision Tree

Accuracy 0.941 (±0.003) 0.739 (±0.024)

Recall 0.910 (±0.019) 0.446 (±0.033)

Precision 0.822 (±0.017) 0.595 (±0.059)

F1-score 0.863 (±0.006) 0.507 (±0.022)

– min_child_weight: minimum sum of instance weight (hessian)
needed in a child.

For both models considered, it is also possible to assign a different weight
for each class. Associating a different cost to each class allow to penalize one
category compared to the other during the training phase. Cost-sensitive
learning approaches are designed with the idea that an expensive cost is
imposed on a classifier when a misclassification happens during the training
phase (Ali et al., 2015). These penalties can bias the model to pay more
attention to the minority class.

Performance Metrics and Models Comparison

The selected models are evaluated with the standard classification metrics
described in Section 4.5.2. The results obtained in terms of accuracy, recall,
precision and f1, are calculated exploiting 10-fold cross-validation.

6.2.4 Results

The results for this task are reported in Table 6.2. The XGBoost model
achieves better overall performance on every evaluation metric compared to
a single Decision Tree. We verify the results obtained by examining the
XGBoost classifier with a test dataset, following the procedure illustrated in
Section 5.7.1. From the dataset of the rooms, we consider a cost range for
each room centered on the listing price pi, where i indicates a generic room
of the dataset. For each room, we construct a price vector pi with range
[pi − 5% · pi, pi + 5% · pi] and a uniform step size of 5 AC. So we create a
new set of rooms by replicating each sample as many times as the length of
the new price vector pi. We add the features concerning the contracts to
the new test rooms dataset, to obtain a matrix of samples suitable for our
model. These features are:

90 Chapter 6. Experiments

0 20 40 60 80 100
Room Index

500

600

700

800

900

1000

L
is

ti
n

g
P

ri
ce

DV Listing Price

PoliMi Listing Price

Figure 6.13: Plot of listing price increment - Single rooms.

• contract year equal to 2020, we want to predict a new room;

• sindata and cosdata, computed on 1st January 2020;

• price increase percentage, given the new prices, this field must be re-
calculated based on the list price assigned by DoveVivo;

• NiNb;

• number of months since passive contracts.

In this way, we obtain a dataset of 33664 samples consisting of 2398 unique
rooms. At this point, we can use the classifier to predict the vacancy of
each room vector. The result is a monotonous binary vector for each room
as a function of the assigned prices. Zero if the corresponding amount will
not generate vacancy, one if the room will likely have a vacancy. We assign
to each place the price p̂i associated with the first occurrence of one in the
vector pi. The room, therefore, obtains a positive price increment if the
predicted value is higher than the listing price proposed by DoveVivo.

Figure 6.13 shows a sub-sample of 100 single rooms with the associated
increment or reduction in price. A black arrow denotes the price change
from the one assigned by DoveVivo, red dot, to the amount proposed by our
classifier, blue star.

6.2. Second Problem Formulation - Experiment 91

−4 −2 0 2 4 6
Percentage [%]

0

100

200

300

400

500

C
ou

nt

Figure 6.14: Cumulative histogram of listing price percentage increment - Single
rooms.

Finally, Figure 6.14 shows the percentage increase in the listing price of
the classifier compared to those offered by DoveVivo. These new proposed
prices are intended as a suggestion. From these results, it can be understood
that for some rooms, it is possible to raise the price to 6% without causing
a loss, as they do not generate vacancies.

92 Chapter 6. Experiments

Chapter 7

Conclusion and Future
Development

In this work, we aim to create models and algorithms capable of capturing
the peculiarities of the pricing problem and automatically generate pricing
schemes for the rooms rented by DoveVivo. The substantial growth of the
real estate market and the increase in demand for rental rooms in Milan
in recent years has made the automation of the pricing process a neces-
sity. This situation has pushed DoveVivo to explore different solutions and
eventually to invest in infrastructures that can support and help in man-
aging the complexity of the pricing problem. Our study and analysis took
into consideration numerous parameters and variables that are typical of the
marketplace and environment in which the company offers its services and
are based on the data collected by the company during the last 10 years. We
proposed two different data-driven approaches to provide tools to support
the DoveVivo’s pricing strategy: the first approach replicates the current
process of pricing that is based on the market value of the rooms set up
by a pricing team in DoveVivo. This price of a new room is generalized by
collecting information of similar rooms in the designated geographical area;
the second approach analyzes the past contracts and value of each room and
define a price that minimizes the time between a contract and another

Initially, we focused on the analysis and processing of the raw data pro-
vided by DoveVivo: cleaning them, filtering them, refining them and inte-
grating them with new information. The pre-processing phase allowed us
to create two different datasets to deal with the two different approaches.
Finally, for both formulations, different supervised machine learning mod-
els were selected and compared. The experiments we have carried out have
shown how to obtain an RMSE of 3% (about 22AC) exploiting XGBoost Re-

93

94 Chapter 7. Conclusion and Future Development

gressor on DoveVivo rooms’ data. While a classifier has revealed us how for
some rooms it is possible to raise the current listing price to a maximum of
5% without risking having vacancy days and therefore a financial loss.

7.1 Limitations and Future Works

The first limitation in this research work was the lack of a large amount of
data available for the analysis. Problems of small dataset are various and
mainly regarding high variance: over-fitting becomes much harder to avoid,
outliers become much more dangerous, and noise, in general, becomes a real
issue. The analysis proposed for our formulations exploit samples supplied
only by DoveVivo, which could produce biased results in terms of inputs
generalization. The best way to solve this problem is to find additional data
to enlarge and integrate the current dataset of Milan rooms. Further data
could be provided by real estate companies and online platforms operating
in the Milan area other than DoveVivo. There is the possibility that the
data gathered from different sources could be incompatible with the one of
DoveVivo, mainly because of the different way of collecting and storing them.
However, they would be relevant in carrying out analysis regarding the trend
of the rental market.

Another limitation is the absence of information regarding the furnishings
of the apartments. This data is critical, considering that the DoveVivo’s
pricing team takes into account the style and type of furnishings of each
home it owns. Unfortunately, this information is not stored in the databases
that have been provided to us and therefore, it cannot be retrieved yet. It
would be useful to start recording the dates of renovation and modernization
of the apartments, to obtain more accurate and time-dependent prediction
results.

For what concerns possible future works, many interesting directions can
be taken to improve the work we have already done:

• Integrate into the room dataset other information regarding, for ex-
ample, public surface transports or primary goods services such as
supermarkets;

• Aggregate the rooms data of a city, by areas or neighbourhoods as we
have done, allows a more detailed and accurate analysis. In the same
way, it is interesting to try to cluster the rooms according to other judg-
ment methods: points of interest, services, proximity to universities or
urban areas in heavy expansion;

7.1. Limitations and Future Works 95

• Study and introduce indicators of past and present market or social
trends to build more robust, flexible and time-dependent models;

• Finally, alternative supervised models could be introduced and tested.
For example, in this work no in-depth analysis was carried out with
Deep Learning models exploiting neural networks.

96 Chapter 7. Conclusion and Future Development

Bibliography

A. Ali, S. M. Shamsuddin, A. L. Ralescu, et al. Classification with class
imbalance problem: a review. Int. J. Advance Soft Compu. Appl, 7(3):
176–204, 2015.

M. Babaioff, S. Dughmi, R. Kleinberg, and A. Slivkins. Dynamic pricing
with limited supply. ACM Transactions on Economics and Computation
(TEAC), 3(1):1–26, 2015.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.
Journal of machine learning research, 13(Feb):281–305, 2012.

J. Biesiada and W. Duch. Feature selection for high-dimensional data—a
pearson redundancy based filter. In Computer recognition systems 2, pages
242–249. Springer, 2007.

C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

P. Bülhmann and S. van der Geer. Statistics for high dimensional data.
Statistics (New York). Springer-Verlag, Berlin, 2011.

E. Caldirola and A. Martino. Real estate market overview italy | 2016, 2016.

N. V. Chawla. Data mining for imbalanced datasets: An overview. In Data
mining and knowledge discovery handbook, pages 875–886. Springer, 2009.

S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan. Multi-parameter
mechanism design and sequential posted pricing. In Proceedings of the
forty-second ACM symposium on Theory of computing, pages 311–320,
2010.

D. Chen and R. J. Plemmons. Nonnegativity constraints in numerical anal-
ysis. In The birth of numerical analysis, pages 109–139. World Scientific,
2010.

97

98 BIBLIOGRAPHY

Y. Freund, R. E. Schapire, et al. Experiments with a new boosting algorithm.
In icml, volume 96, pages 148–156. Citeseer, 1996.

J. H. Friedman. Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics, pages 1189–1232, 2001.

S. García, J. Luengo, and F. Herrera. Data preprocessing in data mining.
Springer, 2015.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3–42, 2006.

C. Gibbs, D. Guttentag, U. Gretzel, J. Morton, and A. Goodwill. Pricing in
the sharing economy: a hedonic pricing model applied to airbnb listings.
Journal of Travel & Tourism Marketing, 35(1):46–56, 2018.

J. W. Graham, P. E. Cumsille, and A. E. Shevock. Methods for handling
missing data. Handbook of Psychology, Second Edition, 2, 2012.

J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques.
Elsevier, 2011.

T. K. Ho. Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, volume 1, pages 278–
282. IEEE, 1995.

N. Japkowicz and S. Stephen. The class imbalance problem: A systematic
study. Intelligent data analysis, 6(5):429–449, 2002.

T. M. Khoshgoftaar and P. Rebours. Improving software quality prediction
by noise filtering techniques. Journal of Computer Science and Technology,
22(3):387–396, 2007.

R. Kohavi et al. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In IJCAI, volume 14:2, pages 1137–1145.
Montreal, Canada, 1995.

A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big
data. Proceedings of the VLDB Endowment, 5(12):2032–2033, 2012.

C. L. Lawson and R. J. Hanson. Solving least squares problems, volume 15.
Siam, 1995.

R. J. Little and D. B. Rubin. Statistical analysis with missing data, volume
793. John Wiley & Sons, 2019.

BIBLIOGRAPHY 99

A. L’heureux, K. Grolinger, H. F. Elyamany, and M. A. Capretz. Machine
learning with big data: Challenges and approaches. IEEE Access, 5:7776–
7797, 2017.

L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean. Boosting algorithms as
gradient descent. In Advances in neural information processing systems,
pages 512–518, 2000.

T. M. Mitchell et al. Machine learning. 1997. Burr Ridge, IL: McGraw Hill,
45(37):870–877, 1997.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine
learning. MIT press, 2018.

D. Nielsen. Tree boosting with xgboost-why does xgboost win" every" ma-
chine learning competition? Master’s thesis, NTNU, 2016.

J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

L. Rokach and O. Z. Maimon. Data mining with decision trees: theory and
applications, volume 69. World scientific, 2008.

S. Russel. Artificial intelligence. a modern approach/russel s., norvig p, 2007.

P. B. Stark and R. L. Parker. Bounded-variable least-squares: an algorithm
and applications. Computational Statistics, 10:129–129, 1995.

A. Stolwijk, H. Straatman, and G. Zielhuis. Studying seasonality by using
sine and cosine functions in regression analysis. Journal of Epidemiology
& Community Health, 53(4):235–238, 1999.

F. Trovo, S. Paladino, M. Restelli, and N. Gatti. Multi–armed bandit for pric-
ing. In Proceedings of the European Workshop on Reinforcement Learning
(EWRL), 2015.

F. Trovò, S. Paladino, M. Restelli, and N. Gatti. Improving multi-armed
bandit algorithms in online pricing settings. International Journal of Ap-
proximate Reasoning, 98:196–235, 2018.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

P. Ye, J. Qian, J. Chen, C.-h. Wu, Y. Zhou, S. De Mars, F. Yang, and
L. Zhang. Customized regression model for airbnb dynamic pricing. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 932–940, 2018.

100 BIBLIOGRAPHY

S. Zhang, C. Zhang, and Q. Yang. Data preparation for data mining. Applied
artificial intelligence, 17(5-6):375–381, 2003.

	Sommario
	Abstract
	Introduction
	State of the Art
	Business Model
	Rental Process
	Pricing process
	Publication of an online price
	Related Works

	Problem Formulation
	User Formulation
	Reservation Price
	Room Evaluation Process

	Formulation
	Maximize the Revenue
	Minimize the Number of Vacancy Days

	Theoretical Background
	Machine Learning
	Supervised Learning

	Linear Models for Regression
	Linear Basis Function Models
	Loss function for Regression
	Direct Approach: Minimising Least Squares
	Regularized least squares
	Non-Negative Least Square
	Bounded - Variable Least Square

	Non-Parametric models
	Kernel Methods
	Sparse Kernel Machine
	SVMs for regression

	Tree Based Algorithms
	Decision Tree
	Decision Forests
	Random Forest
	Extra Trees
	eXtreme Gradient Boosting

	Model Evaluation
	Cross-Validation
	Evaluation Metrics

	Proposed Algorithms
	Pre-processing Techniques
	Data Cleaning
	Dealing with Missing Values
	Dealing with Outliers
	Dealing with Inconsistent data and Duplicates

	Feature Encoding and Data Normalization
	Feature Encoding and Discretization
	Min-Max Data Normalization

	Data Reduction
	Feature Selection

	Feature Sampling
	First Problem Formulation - Data Pipeline
	Data Cleaning
	Feature Engineering

	Second Problem Formulation - Data Pipeline
	Motivation
	Data Cleaning
	Contract History Reconstruction
	Feature Engineering
	Data Filtering
	Data Sampling for Monotone Classifier

	Experiments
	First Problem Formulation - Experiment
	Data Collection and Feature Description
	Data Cleaning and Data Exploration
	Modelling
	Results

	Second Problem Formulation - Experiment
	Data Collection and Feature Description
	Data Cleaning and Data Exploration
	Modelling
	Results

	Conclusion and Future Development
	Limitations and Future Works

	Bibliography

