
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Computer Science and Engineering - Ingegneria Informatica

Deterministic Policy Optimization:
an Approach to Safe Reinforcement Learning

Supervisor:

prof . marcello restelli

Assistant Supervisor:

dott. matteo papini

Master Graduation Thesis by:

pietro melzi

Student Id n. 900217

Academic Year 2018-2019





To everyone who shared this journey with me.





R I N G R A Z I A M E N T I

Desidero ringraziare il Prof. Marcello Restelli per avermi dato la pos-
sibilità di realizzare questa tesi. La sua competenza nel guidare il
lavoro di ricerca e le sue abilità nel dare i giusti consigli sono state
molto preziose per il conseguimento degli obiettivi prefissati.

Fondamentale è stato il contributo del Dott. Matteo Papini, desidero
ringraziarlo per i validi spunti e suggerimenti che mi ha fornito in
tutte le fasi di ricerca e di scrittura della tesi e per la disponibilità
dimostrata in ogni occasione di confronto.

Ringrazio la mia famiglia che ha sempre condiviso le mie scelte ed
è stata di grande aiuto in questi anni, Ashia Onlus che ha sostenuto
economicamente i miei studi, gli amici e tutte le persone con cui ho
condiviso questo percorso per la loro compagnia e il loro importante
sostegno morale.





C O N T E N T S

Abstract xiii
Estratto xv
1 introduction 1

2 preliminaries on reinforcement learning 5

2.1 Markov Decision Processes 5

2.1.1 Policy and Value Functions 6

2.1.2 Performance Measure 8

2.1.3 Properties of Reinforcement Learning (RL) tech-
niques 8

2.2 Tabular Solution Methods 9

2.2.1 Dynamic Programming 10

2.2.2 Uncomplete Knowledge of Markov Decision Pro-
cesses (MDPs) 12

2.3 Policy Search 13

2.3.1 Policy Representations 14

2.4 Special Markov Decision Processes 15

2.4.1 Bounded MDPs 15

2.4.2 Lipschitz MDPs 17

2.5 State abstraction 19

2.5.1 Irrelevance Abstractions 21

3 state of the art 23

3.1 Policy Gradient Methods 23

3.1.1 Policy Gradient Theorem 24

3.1.2 Policy Gradient Algorithms 24

3.2 Safe Reinforcement Learning 29

3.2.1 Safe Exploration 31

4 deterministic policy optimization 35

4.1 Passive Exploration via δ-MDPs 35

4.1.1 δ-MDPs 37

4.2 Deterministic Policy Optimization 38

4.3 Algorithmic Details 38

4.3.1 State aggregation 39

4.3.2 Abstract MDP estimation 40

4.3.3 Solving the abstract MDP 42

4.3.4 Projection 43

4.4 Abstract Transition Function construction 43

4.4.1 Deterministic linear environments 44

4.4.2 Deterministic non-linear environments 46

4.4.3 Stochastic environments 47

5 theoretical proofs 49

5.1 Theorems 49

5.2 Proofs 51



6 experiments 57

6.1 Minigolf 57

6.2 Double Integrator 59

6.3 Robot Adaptation 61

6.4 Experimental Details 64

6.4.1 Hyper-parameter tuning 64

6.4.2 Final Experiments 66

6.5 Qualitative Results 66

6.5.1 Abstract state-space visualization in Robot Adap-
tation 66

6.5.2 Abstract policy visualization in Minigolf 67

6.5.3 Agent behavior visualization in Robot Adapta-
tion 68

7 conclusions 71

bibliography 73

a appendix 77

a.1 Maximum Likelihood Problem in Double Integrator 77



L I S T O F F I G U R E S

Figure 6.1 Minigolf results, averaged over 10 random seeds
with 95% bootstrapped confidence intervals. On
the left: average return (γ = 0.99) per iteration.
On the right: number of failing episodes in a
batch of 500 (the same legend applies). 59

Figure 6.2 Double Integrator: average return (γ = 0.95)
per iteration, averaged over 5 random seeds
with 95% bootstrapped confidence intervals. 61

Figure 6.3 Robot Adaptation: average return (undiscounted)
per iteration, averaged over 10 random seeds
with 95% bootstrapped confidence intervals. 63

Figure 6.4 Robot Adaptation: abstract state visitation fre-
quencies at the initial iteration of Deterministic
Policy Optimization (DPO). 69

Figure 6.5 Robot Adaptation: abstract state visitation fre-
quencies at the fifth iteration of DPO. 69

Figure 6.6 Robot Adaptation: abstract state visitation fre-
quencies at the eighth iteration of DPO. 69

Figure 6.7 Robot Adaptation: abstract state visitation fre-
quencies at the 99-th (final) iteration of DPO. 69

Figure 6.8 Minigolf: initial policy for DPO. 69

Figure 6.9 Minigolf: policy after 33 iterations of DPO. 69

Figure 6.10 Minigolf: policy after 66 iterations of DPO. 70

Figure 6.11 Minigolf: policy after 99 iterations of DPO. 70

Figure 6.12 Minigolf: policy after 199 iterations of DPO. 70

Figure 6.13 Minigolf: policy after 299 iterations of DPO. 70

Figure 6.14 Minigolf: policy after 399 iterations of DPO. 70

Figure 6.15 Minigolf: final policy after 499 iterations of DPO. 70

L I S T O F TA B L E S

Table 6.1 Configurations used for hyper-parameter tun-
ing. We denote with n the number of iterations
(policy updates), with m the number of inde-
pendent runs, with N the batch size, with H
the task horizon, with γ the discount factor
and with |X| the number of abstract states. 64

Table 6.2 Grid search for DPO on Minigolf. 65



Table 6.3 Grid search for REINFORCE on Minigolf. 65

Table 6.4 Grid search for DPO on Double Integrator. 65

Table 6.5 Grid search for Policy Gradients with Parameter-
Based Exploration (PGPE) on Double Integra-
tor. 65

Table 6.6 Grid search for DPO on Robot Adaptation. 66

Table 6.7 Grid search for PGPE on Robot Adaptation. 66

Table 6.8 Configurations used for hyper-parameter tun-
ing, including hyper-parameters α, λ and σ.
We denote with n the number of iterations (pol-
icy updates), with m the number of indepen-
dent runs, with N the batch size, with H the
task horizon, with γ the discount factor and
with |X| the number of abstract states. 67

A C R O N Y M S

MDP Markov Decision Process

MDPs Markov Decision Processes

RL Reinforcement Learning

DP Dynamic Programming

BMDP Bounded-parameter MDP

PGPE Policy Gradients with Parameter-Based Exploration

DPG Deterministic Policy Gradient

DDPG Deep Deterministic Policy Gradient

MC Monte Carlo

TD Temporal Difference

IVI Interval Value Iteration

LC Lipschitz Continuous

TV Total Variation

PS Policy Search

RBF Radial Basis Functions

PG Policy Gradient



SPG Safe Policy Gradient

TDL Target Distribution Learning

DPO Deterministic Policy Optimization

RMSE Root Mean Square Error

BBO black-box optimization

LQR Linear-Quadratic Regulator





A B S T R A C T

In reinforcement learning, policy optimization algorithms normally
rely on action randomization to make the learning problem easier
and to guarantee a sufficient exploration of all the possible situations
in the task. Action randomization allows to execute and evaluate a
wide range of actions that otherwise may be neglected by the algo-
rithm. However, this practice may be unacceptable in real-life appli-
cations, such as industrial ones, where safety is a concern and devi-
ations from usual behavior are not welcome by stakeholders. There
exist multiple and not exclusive definitions of safety in reinforcement
learning, hence safety aspects can be modeled and incorporated in
the tasks in different ways. We consider the challenging scenario in
which a learning agent is deployed in the real world and must be able
to improve on-line without performing any random action, to ensure
safe exploration throughout the learning process. For the first time,
to the best of our knowledge, we propose a truly deterministic policy
optimization algorithm for continuous domains. To design this algo-
rithm, we require the validity of some assumptions on the regularity
of the environment, which we deem easy to satisfy in the scenarios
of interest. We also use state aggregation to build an abstract model
of the environment and exploit passive exploration, necessary to al-
low successful policy optimization. The proposed approach is tested
on simulated continuous control tasks, both in the case of learning
from scratch and in the case of having some prior knowledge of the
problem. The results obtained from the experiments are promising
and encourage the future development of the techniques presented
in this work.





E S T R AT T O

L’apprendimento per rinforzo è un insieme di tecniche di apprendi-
mento automatico che permettono a un agente autonomo che inter-
agisce con un ambiente di imparare il miglior comportamento possi-
bile, valutato rispetto al riscontro che l’agente riceve dall’ambiente.
Nell’apprendimento per rinforzo, gli algoritmi che permettono di
ottenere il miglior comportamento possibile solitamente richiedono
all’agente di eseguire delle azioni casuali per facilitare la risoluzione
del problema garantendo una sufficiente esplorazione delle possi-
bili situazioni in cui l’agente si può trovare. Far eseguire azioni
casuali all’agente permette di valutare un vasto numero di azioni,
che altrimenti verrebbero trascurate dall’algoritmo di apprendimento.
Tuttavia, questa tecnica può essere considerata inaccettabile in ap-
plicazioni reali dell’apprendimento per rinforzo, ad esempio nel
campo industriale dove la sicurezza è un requisito importante ed è
consigliabile evitare qualsiasi variazione dal comportamento usuale
dell’agente. Ci sono molte possibilità, non esclusive tra loro, per
definire il concetto di sicurezza in un problema di apprendimento
per rinforzo. Per questo motivo, la letteratura propone numerose
tecniche che affrontano la questione della sicurezza con approcci
tra loro diversi. Noi consideriamo uno scenario in cui l’agente in-
teragisce con un ambiente del mondo reale e deve imparare un
comportamento ottimale senza poter effettuare alcuna azione ca-
suale. Questa limitazione permette all’agente di esplorare l’ambiente
in sicurezza durante l’apprendimento del comportamento ottimale.
Per la prima volta, al meglio della nostra conoscenza, viene pro-
posto un algoritmo di ottimizzazione del comportamento dell’agente
in ambiente continuo che esegue solamente azioni deterministiche.
Questo algoritmo richiede che siano valide alcune assunzioni sulla
regolarità dell’ambiente, necessarie per avere una stima delle situ-
azioni non più osservabili in mancanza di azioni casuali. Nelle ap-
plicazioni per cui l’algoritmo è stato pensato, consideriamo realis-
tiche queste assunzioni. In questo algoritmo, inoltre, viene utilizzata
la tecnica dell’aggregazione degli stati per costruire un modello as-
tratto dell’ambiente e sfruttare una forma di esplorazione passiva,
necessaria per migliorare il comportamento dell’agente. Abbiamo tes-
tato il metodo proposto in simulazioni di problemi di controllo con-
tinuo, nei casi di totale assenza di informazioni riguardo al prob-
lema e disponibilità di una conoscenza preliminare. Nei problemi con-
siderati, affrontiamo un crescente livello di difficoltà dell’ambiente e
della rappresentazione dello stato dell’agente: a partire da un ambi-
ente deterministico monodimensionale, consideriamo prima un am-



biente stocastico bidimensionale e poi un ambiente deterministico a
nove dimensioni, rappresentato dai sensori con cui l’agente è equipag-
giato. Negli esperimenti effettuati, nonostante i limiti imposti per
ragioni di sicurezza sull’esplorazione, l’agente impara un compor-
tamento ottimale che è equiparabile a quello appreso con altri al-
goritmi esistenti, dove la questione della sicurezza non è consider-
ata. Questo documento contiene un’introduzione al lavoro svolto che
presenta le motivazioni alla base di esso, una parte teorica relativa
all’apprendimento per rinforzo e allo stato dell’arte, la presentazione
dell’algoritmo, la sua giustificazione teorica e la descrizione degli es-
perimenti con cui l’algoritmo è stato testato. I risultati ottenuti dagli
esperimenti sono promettenti e incoraggiano uno sviluppo futuro
delle tecniche presentate in questo lavoro.



1
I N T R O D U C T I O N

Reinforcement Learning (RL) is a machine learning field that includes
techniques that allow an agent to learn the best possible behavior
from its interaction with the environment. In RL, the agent explores
different situations and evaluates their effectiveness according to the
rewards it receives from the environment. RL techniques are applied
in numerous real-world domains, such as recommender systems, com-
puter systems, energy, finance, healthcare, robotics, transportation.
Details on specific applications are discussed in [Li, 2019]. One of
the challenges that arise in RL is the trade-off between exploration
and exploitation. To obtain a high reward, an agent must perform
actions that it has found to be effective in producing reward. How-
ever, to discover such actions, it has to try actions it has not selected
before [Sutton and Barto, 2018]. An intuitive strategy to address this
issue is to perform random actions at the beginning of the task, so as
to test as many actions as possible in a first phase and then exploit
the most rewarding actions in the long term. By executing random
actions in any state, the agent potentially executes and evaluates the
entire range of feasible behaviors it can undertake. Such an approach
strongly supports exploration and provides future advantages to the
agent. If the agent learns within a simulator there are no concerns
related to this strategy. Unfortunately, a simulator is not always avail-
able: when knowledge of the environment is lacking or too much
complexity is required to faithfully reproduce the real system, the
agent has to learn directly in the real world. When the agent interacts
with a real-life environment, serious drawbacks may come up. For in-
stance, the randomness of the action selections allows the execution
of unwanted actions in some specific situations.

1 .1 motivations

A lack of control over the agent’s behavior in the real world can lead
to dangerous actions that may damage the agent’s hardware or, even
worse, harm people that operate in the environment. Partly because
of this issue raised by safety concerns, RL techniques are scarcely
used in fields where they could otherwise provide outstanding bene-
fits as industrial robotics, surgery [Baek et al., 2018] or autonomous
driving. Again, another important scenario in which the randomness
of actions is unwanted and deemed dangerous is finance: certainly
nobody wants to perform stochastic operations involving their own
money, which is different than making bets in an informed way. In



2 introduction

all of these fields, the effectiveness of RL techniques is concealed by
the willingness to ensure a predictable agent’s behavior. Indeed, even
a single execution of a random and unsafe action may cause a failure
in the task or harm the environment, which is often less acceptable
than the consequences of epistemic uncertainty or an aleatory envi-
ronment. According to [García and Fernández, 2015], the latter can be
referred to as inherent uncertainty and it is unavoidable, the former is
called parameter uncertainty and it is due to the lack of knowledge of
the environment. Parameter uncertainty can be reduced by perform-
ing random actions that explore the environment but introduce a new
source of uncertainty: agent uncertainty. Several definitions of safety
have been proposed in RL (we discuss them in Section 3.2). These
definitions involve different aspects of safety, such as the variance in
the reward signal received by the agent or the ability to avoid the
exploration of dangerous regions of the environment, however, the
safety problem due to the randomness of the actions is poorly ad-
dressed. Moreover, many techniques in safe RL ensure convergence
to a safe behavior but do not set any constraint on intermediate solu-
tions. In RL the stochasticity on actions, widely used for intermediate
solutions, appears to be essential for successful learning. Indeed, if
the agent always performs the same action in every state, it may not
find any better action to improve its behavior. In this work, we want
to contradict the idea that stochastic behavior is fundamental to the
agent’s learning process.

1 .2 goal

Driven by these motivations, we explore an alternative strategy, which
ensures the safeness of the agent-environment interaction in every
instant by forcing the explorative behavior of the agent to be deter-
ministic. In particular, exploration in the environment is performed
according to the same deterministic policy that the agent is learning,
in order to perfectly monitor the agent’s behavior. In addition, we opt
for risk-averse approaches to implement specific parts of our strat-
egy in order to strengthen the concept of safeness. Several algorithms
that learn a deterministic policy have been proposed in the literature,
most of which are suitable for environments with a finite number of
feasible actions. In this work, we consider environments with contin-
uous (possibly infinite) actions, also for them there are algorithms
that learn deterministic policies. Two of these algorithms, Policy Gra-
dients with Parameter-Based Exploration (PGPE) [Sehnke et al. (2008),
subsection 3.1.2] and Deterministic Policy Gradient (DPG) [Silver et
al. (2014), subsection 3.1.2], have been considered in this work for
a comparison with our algorithm, called Deterministic Policy Opti-
mization (DPO). Anyhow, to the best of our knowledge, all existing
algorithms in continuous RL involve the execution of random actions.



introduction 3

1 .3 contributions

The solution we propose is free from this issue and it is suitable
for regular environments, i. e. environments where performing the
same action in similar states produces similar effects. In these envi-
ronments, once an action is executed in a certain state, we can eval-
uate its effect in other (similar) states, without necessarily redoing
the action. This assumption provides a sort of passive exploration
that the agent can exploit, instead of relying on the stochasticity of
its actions. As a result, in any state, the agent performs only a de-
terministic action and evaluates, within a certain precision, all the
actions that have been executed in similar states. Because of this, only
a subset of all feasible actions is evaluated in every state, therefore
the learning ability of the agent may be significantly reduced in this
approach: learning an optimal behavior may no longer be feasible or
require an unreasonable amount of time. On the other hand, this ap-
proach allows the agent to learn and improve its behavior without
the necessity of performing any random action. If the environment
is partially observable or we consider multi-agent contexts, the opti-
mal behavior may require stochasticity on actions. However, we do
not consider these settings in the work. We tested our algorithm on
simulated continuous control tasks obtaining promising results.

1 .4 outline

In this document we present our work according to the following
structure: Chapter 2 provides the theory (and notation) related to Re-
inforcement Learning (RL) and Markov Decision Process (MDP), Chap-
ter 3 illustrates the state of the art in Policy Gradient (PG) and safe RL

from which we started to develop our algorithm, Chapter 4 describes
the DPO algorithm, providing details on the implementation of its dif-
ferent building blocks, Chapter 5 contains a theoretical analysis of our
approach, in Chapter 6 the performed experiments are reported and
discussed, at last Chapter 7 concludes the thesis by providing some
hints for the future development of this work.





2
P R E L I M I N A R I E S O N R E I N F O R C E M E N T L E A R N I N G

According to [Sutton and Barto, 2018], Reinforcement Learning (RL)
consists in learning what to do so as to maximize a numerical re-
ward signal. The learner must discover which actions yield the most
reward by trying them. Actions may affect not only the immediate
reward but also the next situation and all subsequent rewards. The
problem of RL is formalized with mathematical tools coming from
dynamical systems theory, specifically with the Markov Decision Pro-
cesses (MDPs) that we detail in Section 2.1.

Chapter 2 provides a strong theoretical background for our work. Af-
ter the introduction on MDPs in Section 2.1, Section 2.2 addresses the
Tabular Methods used to solve MDPs. Even if the application of these
methods is limited by computational costs, they provide basic con-
cepts in RL. Section 2.3 explores Policy Search (PS), a class of methods
that solve RL problems when Tabular Methods are infeasible. PS offers
several advantages in the robotic field (described in Section 2.3) and
for this reason it is widely used there. Then, we present two special
types of MDPs in Section 2.4: Bounded MDPs, suitable to model uncer-
tainty in the environment, and Lipschitz MDPs, suitable to model reg-
ularity in the environment. Finally, Section 2.5 presents some topics
related to state discretization that will be useful for the description of
our approach.

2.1 markov decision processes

MDPs are a mathematical framework used for modeling RL problems
in which an agent, by interacting with an environment, learns how to
achieve a goal. MDPs are a formalization of sequential decision mak-
ing, where the decision taken by the agent influences immediate and
future rewards. The agent interacts with the environment by selecting
the actions to perform and receiving rewards and information on the
new situation. Rewards are provided by the environment in the form
of scalar values and the agent aims to maximize the sum of rewards
over time.

Definition 2.1 (MDP). A Markov Decision Process (MDP) is described
by a six-tuple M = 〈S,A, P, R, γ, p0〉, where:

• S is the state space, with S ⊆ RN.

• A is the action space, with A ⊆ RD.



6 preliminaries on reinforcement learning

• P : S×A → ∆(S) is the transition function, with P(s ′|s, a) de-
noting the probability of reaching state s ′ from state s by taking
action a. P(·|s, a) is a distribution of probability on the arriving
state, then for any state-action pair (s, a), the following equality
holds: ∑

s ′∈S
P(s ′|s, a) = 1 (2.1)

and P(s ′|s, a) > 0 ∀s, s ′ ∈ S, a ∈ A.

• R : S × A → R is the reward function, with R(s, a) denoting
the expected reward from taking action a in state s. Usually
the reward function is bounded with a finite value R such that
|R(s, a)| 6 R ∀s ∈ S, a ∈ A.

• γ ∈ [0, 1) is the discount factor, used to discount the present
effect of future rewards.

• p0 ∈ ∆(S) is the initial-state distribution.

The transition function P defines the dynamics of the MDP and satis-
fies the Markov property: the probability of reaching st depends only
on the immediately previous state and action, st−1 and at−1, and not
on earlier states and actions.

The interaction between agent and environment can be better ex-
plained with symbols: at each time step t the agent receives a rep-
resentation of the state st ∈ S and on that basis it selects an action
at ∈ A. One time step later, the agent receives a reward rt+1 and
finds itself in a new state st+1 ∈ S. We have defined the MDP fol-
lowing [Puterman, 2014]. In general, the state space S and the action
space A can be finite or continuous sets. We focus on continuous-
space MDPs as these are the most suitable for modeling continuous
control problems.

2.1.1 Policy and Value Functions

The behaviour of the agent is modeled with a policy π : S → ∆(A),
i. e. a mapping from states to probabilities of selecting each possible
action. The agent should learn a policy according to its goal of maxi-
mizing the sum of rewards collected during the task. Specific details
on how to learn policies that achieve this goal are given later, in Sec-
tion 2.2 and Section 2.3. The sum of rewards obtained by the agent, if
we consider the time steps k ∈ (t, T ], where the time step T represents
the horizon of the task, is called return Gt. In general, the return is
defined as a sum of discounted rewards:

Gt =

T∑
k=t+1

γk−t−1rk, (2.2)



2.1 markov decision processes 7

where rk is the reward obtained at step k. The horizon T can be fi-
nite or infinite. In the first case, the task is said to be episodic and the
agent-environment interaction breaks naturally into episodes. In the
second case (i. e. T = ∞), the task is said to be continuing and a dis-
count factor γ < 1 is required in order to obtain a return Gt <∞.

In this work, we denote with π(a|s) the probability of performing
the action a in the state s, according to the policy π. Since π(s) is a
distribution of probability, the following equality holds:∑

a∈A
π(a|s) = 1 ∀s ∈ S (2.3)

and π(a|s) > 0 ∀s ∈ S, a ∈ A. If the set of actions A is finite and for
each state s ∈ S there exists an action a such that π(a|s) = 1, the pol-
icy is deterministic. If the set of actions A is continuous and for each
state s ∈ S the probability distribution π(s) is a Dirac delta function,
the policy is deterministic. In the case of deterministic policies, π(s)
identifies the action prescribed by π when the agent is in state s.

Given a policy π, it is possible to compute, according to the policy,
the value function Vπ : S → R. This is a widely used function in RL

that measures how good it is for the agent to be in a given state s ∈ S,
according to the expected return obtainable from that state. Since the
rewards that the agent can expect to receive in the future depend on
the actions taken in any state, the value function is defined with re-
spect to policies: Vπ(s) is the expected sum of discounted rewards
that the agent collects by starting at state s and following policy π.
The value function can be defined recursively via the Bellman equa-
tion:

Vπ(s) =

∫
A

π(a|s)
(
R(s, a) + γ

∫
S

P(s ′|s, a)Vπ(s ′)ds ′
)

da. (2.4)

For control purposes, we can also define an action-value function
Qπ : S×A→ R:

Qπ(s, a) = R(s, a) + γ

∫
S

P(s ′|s, a)

∫
A

π(a ′|s ′)Qπ(s ′, a ′)da ′ ds ′.

(2.5)

Qπ(s, a) represents the expected return obtained from taking the ac-
tion a in state s and then following the policy π.

Finally, we denote with

Aπ(s, a) = Qπ(s, a) − Vπ(s) (2.6)

the advantage function of policy π, that represents the advantage in
terms of value functions given by performing action a in state s, in-
stead of the action prescribed by π(s).



8 preliminaries on reinforcement learning

2.1.2 Performance Measure

In order to evaluate how good a policy π is, we consider the expected
return obtained starting from a state s ∈ S drawn from the initial-state
distribution p0 and following the policy π. The performance measure
J(π) expressed in the form of an expected value is:

J(π) = E
s0∼p0

[G0] = (1− γ)−1 E
s∼δπ,a∼π

[R(s, a)] = E
s∼p0

[Vπ(s)],

(2.7)

where δπ is the γ-discounted future-state distribution. This function
is defined as:

δπ(s) = (1− γ) E
s0∼p0

∞∑
t=0

γtPπ(St = s|S0 = s0) (2.8)

and represents the probability of being in a certain state s during the
execution of the task, provided that the policy is π and the initial state
distribution is p0.

The performance measure is used to identify the optimal policy π∗

that we want to learn in the RL problem as:

π∗ ∈ arg max
π
J(π). (2.9)

To be precise, in RL the optimal policy π∗ is required to maximize the
value function (defined as in equation (2.4)) for each state s ∈ S. The
methods described in subsection 2.2.1 allow to obtain optimal policies
that satisfy this property. Instead, the set of optimal policies obtained
from (2.9) includes policies whose value function is not maximum in
every state. The criterion used to identify optimal policies in equation
(2.9) is weaker1 than the one used in subsection 2.2.1, however it is
appropriate in our work.

2.1.3 Properties of RL techniques

RL algorithms require exploration to learn the optimal policy π∗. Ex-
ploration is provided by the agent that evolves in the MDP according
to the current policy π and collects information about states, actions
and rewards at each time step t, until the (possibly infinite) horizon
T of the episode. All the information gathered by the agent is repre-
sented by a tuple called trajectory: 〈s0, a0, r1, s1, a1, ..., sT−1, aT−1, rT 〉,

1 The performance measure J depends on the initial state distribution p0. We consider,
for instance, an MDP whose state space S is composed of two regions such that it is
not possible to reach one region from the other. If the probability of being in one of
these two regions is equal to zero (according to p0), the policies maximizing J are
the ones that maximize J in the visited states, regardless of their performance in the
unvisited region.



2.2 tabular solution methods 9

where s0 ∼ p0, at ∼ π(·|st), rt = R(st, at), st+1 ∼ P(·|st, at). If the task
is episodic, usually the agent collects a batch ofN different trajectories
with the same policy π before updating it. The number N of trajecto-
ries is called batch size.

The policy used to generate trajectories can be different from the pol-
icy that the RL technique learns. We can distinguish between:

• On-policy algorithms: the policy used to interact with the envi-
ronment is the policy that is being learnt;

• Off-policy algorithms: the policy used to interact with the envi-
ronment is different from the policy that is being learnt. It is
called behavioral policy.

Another differentiation, important for our work, is between:

• Model-based algorithms: the agent knows or estimates the model
of the environment, as in the algorithm we present;

• Model-free algorithms: the agent has no knowledge on the model
of the environment.

2.2 tabular solution methods

Solving a RL task means finding a policy that maximizes the return
obtained by the agent in the task. First, we consider finite MDPs, a
subset of the MDPs defined in 2.1. In order to reason with finite MDPs,
we consider the state space S and the action space A as finite sets
of discrete values and we replace all the integrals appearing in the
expressions reported so far with summations. The methods used to
solve problems involving finite MDPs are called tabular because the
state space S and the action space A are small enough for the value
functions to be represented in a tabular format.

Policies can be partially ordered according to their value function:

π ′ < π ⇐⇒ Vπ
′
(s) > Vπ(s) ∀s ∈ S. (2.10)

In finite MDPs, there always exists a deterministic optimal policy π∗

such that π∗ > π ∀π ∈ Π, said Π the set of policies. The value
function V∗ computed according to π∗ has the following property:

V∗(s) = max
π
Vπ(s) ∀s ∈ S. (2.11)

Optimal value function V∗ and optimal action-value function Q∗ can
be written with the Bellman optimality equations:

V∗(s) = max
a

(
R(s, a) + γ

∑
s ′

P(s ′|s, a)V∗(s ′)
)

(2.12)



10 preliminaries on reinforcement learning

Q∗(s, a) = R(s, a) + γ
∑
s ′

P(s ′|s, a)max
a ′

Q∗(s ′, a ′). (2.13)

If the agent has a complete knowledge of the environment, i. e. the agent
knows the transition function P and the reward function R of the MDP

M representing the environment, Dynamic Programming (DP) can be
used to solve the RL problem. Details are provided in subsection 2.2.1.
Instead, if the agent has an incomplete knowledge of the environment,
the unknown functions P and R of MDP M can be estimated from ex-
perience. Details are provided in subsection 2.2.2.

When the problems involve finite MDPs with a larger state space or
continuous MDPs, tabular methods are no more suitable because value
functions cannot be represented as tables. Two main approaches are
possible:

• the value functions can be estimated with function approximators
and used to solve the task;

• the optimal policies can be directly searched in the space of
policies, without the necessity of computing any value function.
Details are provided in Section 2.3.

2.2.1 Dynamic Programming

Dynamic Programming (DP) is a collection of algorithms that can be
used to compute optimal policies, given a model of the environment
in the form of an MDP. Since DP is expensive and requires finite MDPs,
its utility in solving RL problems is limited. However DP provides
strong foundations for understanding the more advanced methods.
DP offers two algorithms that compute the optimal value functions:
policy iteration and value iteration.

policy iteration : In policy iteration, two consecutive operations
are performed on a policy π in order to obtain a policy π ′ that is better
according to the ordering rule in (2.10). These operations are called
policy evaluation and policy improvement and the goal of the algorithm
is to obtain the optimal value function V∗ through the sequence:

π0
E−→ Vπ0

I−→ π1
E−→ Vπ1

I−→ π2
E−→ ... I−→ π∗

E−→ V∗, (2.14)

where πi
E−→ Vπi indicates that policy evaluation is performed on pol-

icy πi to calculate the value function Vπi and Vπi I−→ πi+1 indicates
that policy improvement is performed from policy πi and its value
function Vπi to obtain the policy πi+1.

Policy evaluation consists in computing the value function Vπ for



2.2 tabular solution methods 11

every state s ∈ S, according to the current policy π, by iteratively
applying the following updating rule:

Vk+1(s) =
∑
a

π(a|s)
(
R(s, a) + γ

∑
s ′

P(s ′|s, a)Vk(s
′)
)
, (2.15)

until Vk+1(s) = Vk(s) ∀s ∈ S. When it happens, the convergence to
Vπ is obtained. The existence and uniqueness of Vπ are guaranteed
as long as either γ < 1 or eventual termination is guaranteed from
all states under the policy π [Sutton and Barto, 2018]. Formally policy
evaluation converges in the limit of infinite iterations, in practice the
algorithm stops when:

max
s∈S

|Vk+1(s) − Vk(s)| 6 ε, (2.16)

where ε is a fixed threshold. The value function Vπ is approximated
with the computed value function Vk+1.

Policy improvement consists in an update of policy π in a new de-
terministic policy π ′, according to the value function Vπ computed
in the previous policy evaluation. For each state s ∈ S, indeed, the
policy π ′ is computed according to the following rule:

π ′(s) = arg max
a

(
R(s, a) + γ

∑
s ′

P(s ′|s, a)Vπ(s ′)
)

. (2.17)

By contruction Vπ
′
(s) > Vπ(s) ∀s ∈ S, then the policy π ′ must be

as good as or better than π [Sutton and Barto, 2018]. When π ′(s) =

π(s) ∀s ∈ S or π ′ is as good as π (i. e. Vπ = Vπ
′
), the algorithm

terminates. The policy π ′ is optimal, hence π∗ = π ′.

Because a finite MDP has a finite number of policies, the entire pro-
cess is ensured to converge to an optimal policy π∗ and optimal value
function V∗ in a finite number of iterations.

value iteration : The main drawback in policy iteration is that,
for each policy evaluation, multiple iterations of the updating rule
(2.15) are required. If we truncate the policy evaluation after just one
application of the updating rule, we obtain value iteration. In value
iteration, the value function at each step is updated for all s ∈ S as
follows:

Vk+1(s) = max
a

(
R(s, a) + γ

∑
s ′

P(s ′|s, a)Vk(s
′)
)

. (2.18)

Differently from policy iteration, we don’t compute any intermedi-
ate policy πi. However, the sequence {Vk} of the value functions con-
verges to V∗ since value iteration is a special case of policy iteration.
The optimal policy π∗ is obtained applying (2.17), with V∗ instead of



12 preliminaries on reinforcement learning

Vπ.

For computational reasons, value iteration is implemented with the
stopping condition showed in equation (2.16). V∗ is approximated with
the last value function computed in the truncated sequence {Vk}.

2.2.2 Uncomplete Knowledge of MDPs

In many cases, however, it is not possible to apply DP. Some alterna-
tives are introduced below for sake of completeness. We don’t detail
these methods because they are not related to our work.

tabular alternatives to dp : If we do not have a complete
knowledge of the environment, we can learn the unknown dynamics
from experience, i. e. from the samples collected by the agent while
interacting with the environment. The samples are tuples 〈s, a, r, s ′〉t,
with s, s ′ ∈ S, a ∈ A and r = R(s, a). They contain information re-
lated to the agent-environment interaction at time step t. The two
main classes of algorithms are Monte Carlo (MC) and Temporal Dif-
ference (TD). MC methods involve episodic tasks, TD learning involves
continuing tasks.

approximate solution methods : The methods presented so
far are not suitable to solve RL problems that involve a very large or
infinite state space, such as the tasks in which a robot is free to move
in a wide area and its state is represented by several (possibly con-
tinuous) dimensions. In these problems we cannot expect to obtain
the optimal policy, and our goal is to find a good approximate solu-
tion using limited computational resources. In an environment with a
continuous state space S, the agent will always visit states never seen
before. Then, the experience we gather gives information on a sub-
set of states but we need to generalize it to all the state space S. The
generalization comes up in the form of function approximations. These
functions are estimated from samples and approximate value func-
tions over continuous state space S in place of using tables. Usually a
function approximation is a parameterized function fw : S→ R, with
parameter w ∈ Rd.

Several methods rely on value function approximation in order to
provide the solution of the RL problem. However, function approx-
imation brings new issues. First of all, convergence guarantees are
difficult to obtain for greedy policies, i. e. policies for which the action
to be performed in any state is the action having the highest value ac-
cording to some value functions2. If the policy is greedy, an arbitrary

2 For instance, π(s) = arg maxa∈AQ(s, a), with Q(s, a) a function approximation, is a
greedy policy.



2.3 policy search 13

small change in the estimated value of an action can cause it to be,
or not be, selected [Sutton et al., 1999]. Furthermore, approximated
value functions can introduce a bias that prevents the method to con-
verge even to a local optimum [Deisenroth, Neumann, and Peters,
2013] and increase the number of parameters to learn.

2.3 policy search

In contrast with value-based methods, Policy Search (PS) methods use
parametrized policies πθ, where θ ∈ Θ and Θ is the parameter space.
The set of parameter θ fixes in advance the candidate policies, i. e.
the policy class ΠΘ = {πθ|θ ∈ Θ}. PS methods directly operate in
the parameter space Θ (i. e. in the set of candidate policies) to find
the optimal parametrized policy and typically do not need to learn
a value function. PS copes with high dimensional state space S and
action space A and offers better convergence guarantees compared to
the methods that involve value-function approximation. PS methods
are more robust to noise because they are able to prevent a small vari-
ation in the state to produce a completely different action (this can
happen in greedy policies, for instance). PS methods can also incorpo-
rate domain knowledge in the policy definition (for instance, in the
motor primitive policies defined in [Peters and Schaal, 2008]) and can
be made safe by design. Because of these reasons, PS methods have
been found to be suitable in robotic applications.

Most of the algorithms in PS are model-free (i. e. they don’t require a
model of the environment) because directly learning a policy is often
easier than learning an accurate model. These methods update the
policy directly exploiting the sampled trajectories, hence it is impor-
tant to define an exploration strategy that provides variety in trajec-
tories. Exploration can be performed both in the action space and in
the parameter space. The former one can be implemented by adding
a noise ε directly to the executed actions, the noise is generally sam-
pled from a zero-mean Gaussian distribution. The latter consists in
a perturbation of the parameter vector θ of πθ. The magnitude of
noise present in any kind of exploration depends on some parame-
ters. These parameters can also be updated by the algorithms: usually
the size of exploration is gradually decreased to fine tune the policy
parameters. [Deisenroth, Neumann, and Peters, 2013].

The principal class of algorithms in PS is composed by Policy Gra-
dient (PG) methods. We detail this class in Section 3.1.



14 preliminaries on reinforcement learning

2.3.1 Policy Representations

In our work, we focus on the optimization of deterministic parametric
policies of the form πθ : S → A, with θ ∈ Θ ⊆ Rm×D. We will
often abbreviate πθ as θ in subscripts and function arguments, e. g.
Vθ ≡ Vπθ , J(θ) ≡ J(πθ). The simplest way of parametrizing πθ is by
means of a linear mapping. The linear policy is defined as:

πθ(s) = θ
Tφ(s), (2.19)

where θ ∈ Rm×D and φ : S → Rm is a feature function. This can be
the state itself or, for instance, a set of Radial Basis Functions (RBF).
An example of RBF is the Gaussian

φi(s;µi, σi) = exp
{
−(s− µi)

2
/
(2σ2i )

}
, (2.20)

where µi and σi are hyperparameters of the feature function φi, i =
1, . . . ,m. According to the parameters learnt by the algorithm, we can
distinguish between:

• Shallow policies: the hyperparameters included in the feature
functions are fixed throughout the algorithm, only the parame-
ter θ from πθ is learnt by the algorithm;

• Deep policies: both the hyperparameters included in the feature
functions and the parameter θ from πθ are learnt by the algo-
rithm.

More complex policy parametrizations include deep neural networks
[Duan et al., 2016]. Stochastic policies randomize over actions.

softmax policies : A possible policy parameterization for PS meth-
ods is the one that uses the softmax function. The policies defined ac-
cording to the softmax function are also called Gibbs policies. This kind
of policies is mostly used when the action set A is discrete because,
in order to define the probability π(a|s), it is required to consider all
the feasible actions in the state s:

πθ(a|s) =
exp

(
θTφ(s, a)

)
∑
ak∈A(s) exp

(
θTφ(s, ak)

) , (2.21)

where A(s) is the set of actions that can be performed in state s and
φ(s, a) is a feature function depending both on state and action.

normal policies : A common parametrization for countinuous
actions represented by real numbers, is the normal distribution. The
policy can be defined as the normal probability density over a scalar



2.4 special markov decision processes 15

action, with mean µ and standard deviation σ given by parametric
function approximators that depend on the state:

πθ(a|s) =
1

σ(s,θ)
√
2π

exp
(
−

(a− µ(s,θ))2

2σ(s,θ)2

)
, (2.22)

where µ(s,θ) = θTµφ(s) and σ(s,θ) = exp
(
θTσφ(s)

)
. The policy’s

parameter vector is θ = [θµ,θσ]
T . This is only a possible parameteri-

zation for the standard deviation σ of the normal distribution, in this
configuration the exploration is said to be heteroscedastic because the
standard deviation changes according to the state. Usually the stan-
dard deviation σ of the normal distribution is represented by a single
parameter that does not depend on the state.

2.4 special markov decision processes

In this section we present two special classes of MDPs that allow us to
represent some properties of interest for the MDPs considered in this
work.

2.4.1 Bounded MDPs

A Bounded-parameter MDP (BMDP) [Givan, Leach, and Dean, 2000]
is a five-tuple 〈S,A, Pl, Rl, γ〉, where S, A and γ are defined as for
(finite) MDPs, and Pl, Rl are analogous to the MDP transition and re-
ward functions, but yield closed real intervals instead of real values:
given a lower bound P and an upper bound P, Pl = [P;P]. Similarly
we can specify the interval Rl. This can be used to model uncertainty
on the true nature of a decision process. To ensure that Pl admits
only well-formed transition functions, we require that for any action
a and state s, the sum of the lower bounds of Pl(s ′|s, a) over all states
s ′ must be less than or equal to one, while the upper bounds must
sum to a value greater than or equal to one.

A BMDP Ml = 〈S,A, Pl, Rl, γ〉 defines a set of exact MDPs. For any
exact MDP M = 〈S ′,A ′, P ′, R ′, γ ′〉, we have M ∈ Ml if S = S ′,A =

A ′, γ = γ ′, and for any action a and states s, s ′, R ′(s, a) belongs to
the interval Rl(s, a) and P ′(s ′|s, a) belongs to the interval Pl(s ′|s, a).
An interval value function Vl is a mapping from states to closed real
intervals. We use such functions to indicate that the value of a given
state for any exact MDP falls within the selected interval. As in the
case of (exact) value functions, interval value functions are specified
w.r.t. a fixed policy π, i. e. :

Vπl (s) =
[
Vπ(s), V

π
(s)
]
=
[

min
M∈Ml

VπM(s), max
M∈Ml

VπM(s)
]
. (2.23)



16 preliminaries on reinforcement learning

As shown in [Givan, Leach, and Dean, 2000], Ml includes both an
MDP that simultaneously achieves Vπ(s) for all s ∈ S and another one
that achieves Vπ(s) for all s ∈ S.

The notion of optimal value function in BMDPs requires an ordering
rule for intervals. We can define two different possible orderings:

[l1, u1] 6pes [l2, u2]⇔

l1 < l2, or

l1 = l2 and u1 6 u2
(2.24)

[l1, u1] 6opt [l2, u2]⇔

u1 < u2, or

u1 = u2 and l1 6 l2
(2.25)

We use these orderings rules to partially order interval value func-
tions in the following way:

V1l 6 V2l ⇐⇒ V1l(s) 6∗ V2l(s) ∀s ∈ S, (2.26)

with 6∗ defined either as 6pes in (2.24) or 6opt in (2.25).

As stated in [Givan, Leach, and Dean, 2000], there exists at least one
optimistically and one pessimistically optimal policy:

V∗lopt = max
π∈Π

Vπl using 6opt to order interval value functions,

V∗lpes = max
π∈Π

Vπl using 6pes to order interval value functions.

In order to better understand the meaning of the optimal policies, we
consider a game in which we choose a policy π and then a second
player chooses an MDP M ∈ Ml to evaluate the policy. V∗opt is the
best value function we can obtain if the second player cooperates in
the game, V∗pes is the best value function obtainable if the second
player is an adversary.

interval value iteration : In [Givan, Leach, and Dean, 2000]
it is defined the Interval Value Iteration (IVI) algorithm that computes
optimal value intervals, which is similar to the standard value itera-
tion presented in subsection 2.2.1. In IVI the updating rule is:

Vl,k+1(s) = max
a∈A,6∗

[
min
M∈Ml

VIM,a(Vk)(s), max
M∈Ml

VIM,a(Vk)(s)
]
,

(2.27)

where 6∗ is 6pes or 6opt. Given an MDP M with transition function
P and reward function R, an action a ∈ A and a value function v,
VIM,a(v)(s) is a single iteration of policy evaluation, where the action
is fixed and

VIM,a(v)(s) = R(s, a) + γ
∑
s ′∈S

P(s ′|s, a)v(s ′). (2.28)



2.4 special markov decision processes 17

In (2.27) it is required to perform two iterations of VI. The two value
functions used to perform the iterations (i. e. the functions used in-
stead of v in (2.28)) are obtained from the interval value function
Vl,k. For the first iteration, v = Vk, with Vk being the lower bounds
in Vl,k; for the second one v = Vk with Vk being the upper bounds
in Vl,k.

Instead of searching in the set Ml, the MDP M that minimizes (max-
imizes) the expression contained in min(max) operator in (2.27) can
be directly obtained by computing an exact transition function P from
the interval transition function Pl ofMl. In order to do that, the arriv-
ing states s ′ ∈ S are sorted in increasing (decreasing) order according
to their value V(V). Then, for all the state-action pairs (s, a) ∈ S×A

and given an ordering of arriving states s ′1, s
′
2, ..., s

′
k, we calculate the

index r, with 1 6 r 6 k, that maximizes the following expression
without letting it exceed 1:

r−1∑
i=1

P(s ′i|s, a) +

k∑
i=r

P(s ′i|s, a). (2.29)

The exact transition function P(·|s, a) is defined by assigning the up-
per bound P(s ′|s, a) to the transition probabilities involving states s ′

with an index lower than r, the lower bound P(s ′|s, a) to the transition
probabilities involving states s ′ with an index greater than r and the
probability that ensures

∑
s ′∈S P(s

′|s, a) = 1 to the state with index r.

According to [Givan, Leach, and Dean, 2000], the IVI algorithm is
able to converge to V∗lopt or V∗lpes in a polynomial number of itera-
tions, where polynomial is relative to the problem size.

2.4.2 Lipschitz MDPs

We introduce the notion of Lipschitz continuity in order to define some
properties of regularity in the MDP. These properties can be exploited
in policy gradient algorithms, for instance in [Pirotta, Restelli, and
Bascetta, 2015] it is shown how they can ensure a performance im-
provement at each iteration of policy-parameter updates. In this sec-
tion we provide basic concepts related to Lipschitz continuity and
useful bounds that will be exploited in our work.

Definition 2.2 (Lipschitz continuity). Given two metric spaces (X, dX)
and (Y, dY) where dX and dY denote the corresponding metric func-
tions, a function f : X → Y is called Lf-Lipschitz Continuous (LC)
if

∀(x1, x2) ∈ X2, dY(f(x1), f(x2)) 6 LfdX(x1, x2). (2.30)



18 preliminaries on reinforcement learning

The smallest Lf for which (2.30) holds is called Lipschitz constant of f.
For real-valued functions (e. g. the reward function R), we use the Eu-
clidean distance as metric for the codomain distance. The same met-
ric can be used to measure the distance between states and actions,
as long as they can be represented in a numeric (possibly multidi-
mensional) format. For the transition function P and the stochastic
policies π we need to introduce a distance between probability dis-
tributions. We consider the Kantorovich or L1-Wasserstein metric on
probability measures, defined as follows:

Definition 2.3 (Kantorovich metric). Given two probability measures
p and q, the Kantorvich measure K(p, q) is:

K(p, q) = sup
f

{∣∣∣ ∫
x

f(x)d
(
p(x) − q(x)

)
dx
∣∣∣ : Lf 6 1}. (2.31)

In the case of deterministic policies, the probability distributions p
and q are Dirac delta functions. The Kantorovich distance between
two Dirac delta functions is equal to the distance of their locations.
As an alternative to the Kantorovich metric, we can consider the Total
Variation (TV) distance, defined as:

Definition 2.4 (Total Variation distance). Given two probability mea-
sures p and q, the TV distance TV(p, q) is:

TV(p, q) =
1

2

∫
x

∣∣p(x) − q(x)∣∣dx. (2.32)

This metric is more demanding than Kantorovich metric: MDPs that
are Lipchitz according to TV are also Lipschitz according to the Kan-
torovich metric but not vice versa.

In this work, it is also important to consider the Hausdorff metric to
measure the distance of two subsets of a metric space. We use it in
the abstract state space since each abstract state X is a subset of the
state space S.

Definition 2.5 (Hausdorff metric). Let X and Y be two non-empy sub-
sets of a metric space (M,d). The Hausdorff distance dH(X, Y) is de-
fined as:

dH(X, Y) = max
{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}

. (2.33)

In this work, we restrict our attention to Lipschitz-continuous MDPs

and policies. We make similar assumptions as in [Pirotta, Restelli,
and Bascetta, 2015]. For the MDP, we require both the continuity of
the transition model and the reward:

Assumption 1 (Lipschitz MDP). For all s, s̃ ∈ S and a, ã ∈ A:

K (P(·|s, a), P(·|s̃, ã)) 6 LPdSA ((s, a), (s̃, ã)) , (2.34)



2.5 state abstraction 19

|R(s, a) − R(s̃, ã)| 6 LRdSA ((s, a), (s̃, ã)) , (2.35)

for some positive real constants LP and LR.

where dSA ((s, a), (s̃, ã)) = ‖s− s̃‖ + ‖a− ã‖ is the taxicab norm on
S × A. We also require our policy to be continuous both w.r.t. the
input state and its parameters:

Assumption 2 (Lipschitz Policies). For all s, s̃ ∈ S and θ, θ̃ ∈ Θ:

K
(
πθ(·|s), πθ(·|s̃)

)
6 Lπθ ‖s− s̃‖ , (2.36)

K
(
πθ(·|s), πθ̃(·|s)

)
6 LΘ

∥∥∥θ− θ̃
∥∥∥ , (2.37)

for some positive real constants {Lπθ}θ∈Θ and LΘ. In case πθ is a determin-
istic policy, (2.36) and (2.37) are replaced with:

‖πθ(s) − πθ(s̃)‖ 6 Lπθ ‖s− s̃‖ , (2.38)∥∥πθ(s) − πθ̃(s)∥∥ 6 LΘ ∥∥∥θ− θ̃
∥∥∥ . (2.39)

We use the Euclidean norm to measure distances on S, A and Θ, but
everything works for general metrics. In the following, we will always
assume that LP(1+ Lπθ) < γ

−1. These assumptions are enough to
guarantee the Lipschitz continuity of the value functions w.r.t. states
and actions:

Lemma 2.1 (Rachelson and Lagoudakis, 2010). Under Assumptions 1
and 2, for all s, s̃ ∈ S, a, ã ∈ A and θ ∈ Θ:∣∣∣Vθ(s) − Vθ(s̃)∣∣∣ 6 LVθ ‖s− s̃‖ , (2.40)∣∣∣Qθ(s, a) −Qθ(s̃, ã)∣∣∣ 6 LQθdSA ((s, a), (s̃, ã)) , (2.41)

where LQθ = LR
1−γLP(1+Lπθ)

and LVθ = LQθ(1+ Lπθ),

and also of the future-state distributions w.r.t. policy parameters:

Lemma 2.2 (Pirotta, Restelli, and Bascetta, 2015). Under Assumptions 1
and 2, for all θ, θ̃ ∈ Θ:

K
(
δθ, δθ̃

)
6 Lδθ

∥∥∥θ− θ̃
∥∥∥ , (2.42)

where Lδθ = γLPLπθ
/
(1− γLP(1+ Lπθ)).

2.5 state abstraction

An abstraction is a mapping from one problem representation to a
new simpler representation that preserves some properties of inter-
est. State abstractions [Li, Walsh, and Littman, 2006] map MDPs to
MDPs with simpler state spaces, typically for computational purposes.



20 preliminaries on reinforcement learning

Let M = 〈S,A, P, R, γ〉 be the ground MDP and its abstract version be
M̃ = 〈X,A, P̃, R̃, γ〉. We define the abstraction function as Γ : S → X,
so that Γ(s) ∈ X is the abstract state corresponding to the ground state
s and Γ−1(X) ⊆ S denotes the inverse image of X under Γ . P̃ is the
abstract transition function, with P̃(X ′|X, a) denoting the probability
of reaching X ′ from X by taking action a, and R̃ is the reward func-
tion with R̃(X, a) denoting the expected reward from taking action a
in abstract state X.

To guarantee P̃ and R̃ are well-defined, we can use a weighting func-
tion w : S → [0, 1] such that

∫
Γ−1(X)w(s)ds = 1 for all X ∈ X. With

these weights at hand, we can define the transition and reward func-
tions of the abstract MDP as follows:

R̃(X, a) =

∫
Γ−1(X)

w(s)R(s, a)ds,

P̃(X ′|X, a) =

∫
Γ−1(X)

w(s)

∫
Γ−1(X ′)

P(s ′|s, a)dsds ′.

These definitions may be not enough to include in the abstraction
definition the notion of state similarity because they are valid regard-
less of the abstraction function Γ and the weighting function w con-
sidered. Another drawback is that the abstract states X ∈ X are of-
ten imperfect because representing the current environment in terms
of abstract states necessarily neglects information. However, finding
solution in the abstract state space X is typically faster than in the
ground state space S because groups of states are treated as a unit.
State abstraction allows to apply learning techniques in large, real-
world environments. A central issue in the theory of abstraction is to
distinguish between relevant and irrelevant information, in order to
use the former to outline how the state abstraction is performed and
discard the latter.

Several state abstractions schemes have been proposed, all of them
aggregating the ground states s that are similar according to some
measure into the same abstract state X. For instance, in [Ferns, Panan-
gaden, and Precup, 2012] a measure of similarity d : S × S → R

between states is defined as follows:

d(s, s̃) = max
a∈A

(
cRdR(R(s, a), R(s̃, a)) + cPdP(P(·|s, a), P(·|s̃, a))

)
,

(2.43)

where cR and cP are two constants such that cR + cP = 1, dR is a dis-
tance measure (usually the Euclidean distance) and dP is a distance
measure for probability distributions (for instance, the Kantorovich
distance defined in (2.31)). We can choose some seed states and clus-
ter all the remaining states according to the distance metric in (2.43).



2.5 state abstraction 21

In this work, we focus on state aggregation where X is a partition of
S and s ∈ Γ(s). Hence, we will often identify Γ−1(X) with X (as a
set) itself. When it is possible, state abstraction focuses on the preser-
vation of those properties that allow an agent to perform optimal
behaviours.

2.5.1 Irrelevance Abstractions

In [Li, Walsh, and Littman, 2006], five different types of abstractions
are presented, all of which preserve some information that is critical
for solving the original MDP. They can be ordered from the method
that prescribes the finest abstraction to the method that prescribes
the coarsest one. Here we report the five types of abstraction, called
irrelevance abstractions:

• A model-irrelevance abstraction Γmodel is such that for any ac-
tion a and ay avstract state X, Γmodel(s1) = Γmodel(s2) implies
R(s1, a) = R(s2, a) and

∫
X ′ P(s

′|s1, a)ds ′ =
∫
X ′ P(s

′|s2, a)ds ′.

• A Qπ-irrelevance abstraction ΓQπ is such that for any policy
π and any action a, ΓQπ(s1) = ΓQπ(s2) implies Qπ(s1, a) =

Qπ(s2, a).

• A Q∗-irrelevance abstraction ΓQ∗ is such that for any action a,
ΓQ∗(s1) = ΓQ∗(s2) implies Q∗(s1, a) = Q∗(s2, a).

• An a∗-irrelevance abstraction Γa∗ is such that every abstract
state X has an action a∗ that is optimal for all the states s ∈ X,
and Γa∗(s1) = Γa∗(s2) implies that Q∗(s1, a∗) = Q∗(s2, a∗).

• A π∗-irrelevance abstraction Γπ∗ is such that every abstract state
X has an action a∗ that is optimal for all the states s ∈ X, and
Γπ∗(s1) = Γπ∗(s2) implies that Q∗(s1, a∗) = maxaQ∗(s1, a) and
Q∗(s2, a

∗) = maxaQ∗(s2, a).

However, even the coarsest irrelevance abstraction is impossible to be
implemented in most of the MDPs, obviously if we leave out the naive
state abstraction in which the set of abstract states X corresponds to
the set of ground states S.

Γmodel is a special case of state abstraction, called bisimulation, where
states with the same transition and reward functions are aggregated.
The rule for aggregation is very strict and not applicable in most of
the cases. Because of this, in approximated bisimulation the require-
ments of exact equivalence for the transition and reward functions
are replaced with bounds that allow to aggregate in the same ab-
stract state X all the states s for which the difference in the functions
is below a certain value. From these bounds, it is possible to build
a BMDP and solve it with the method discussed in subsection 2.4.1



22 preliminaries on reinforcement learning

[Dean, Givan, and Leach, 2013].

The policies obtained by solving the abstract MDP are a (possibly
stochastic) mapping from abstract states to actions. Given an abstract
policy ρ, it can be translated in the ground state space S as:

π(a|s) = ρ(a|Γ(s)) (2.44)

The intuitive explanation for equation (2.44) is that the action pre-
scribed by ρ in the abstract state X is copied into all the ground states
s ∈ X. However, this translation does not ensure to preserve the per-
formance of ρ in M̃ for π in M.

Coarser abstraction methods provide a better computational efficiency
and generalization w.r.t. finer abstractions but have looser perfor-
mance loss bounds. Indeed, in [Li, Walsh, and Littman, 2006] it is
stated that in Γmodel, ΓQπ , Γ∗Q and Γa∗ abstractions, the optimal ab-
stract policy ρ∗ is optimal also in the ground MDP, while it can be
suboptimal in Γπ∗ abstractions. The optimal policy in the ground MDP

could require information that is not available in the abstract MDP.
For instance, when the agent is in the abstract state X, it does not
know the exact ground state s ∈ X in which it is. The agent in the
abstract space X can only partially observe the ground states s. A
non-markovian abstract solution that keeps track of the entire agent’s
history may address the problem of finding an optimal policy in both
the abstract and the ground state spaces, however it is more compli-
cated to learn this kind of solution.



3
S TAT E O F T H E A RT

In this chapter we present two topics from RL that are crucial in our
work, namely Policy Gradient (PG) (Section 3.1) and Safe Reinforce-
ment Learning (Section 3.2). We also provide the description of some
existing algorithm or implementation strategies, some of them repre-
senting the state of the art, that we consider in this work in order to
make a comparison with our algorithm.

3.1 policy gradient methods

Most of the algorithms in PS learn the parameterized policy πθ, with
θ ∈ Θ ⊆ Rd, according to the gradient of some scalar performance
measure J(θ) with respect to the policy parameter θ. These methods
seek to maximize performance, so they perform gradient ascent up-
dating the parameter θ in the direction of ∇̂J(θ):

θ← θ+α∇̂J(θ), (3.1)

where ∇̂J(θ) ∈ Rd is a stochastic estimate whose expectation
approximates the gradient of the performance measure with respect
to its argument θ and α > 0 is the step size, a scalar that controls the
size of each update and can change through time. In PG methods, the
policy π(a|s,θ) has to be differentiable with respect to its parameters
θ ∈ Rd ∀s ∈ S, ∀a ∈ A.

With appropriate policy parametrization the action probabilities
change smoothly as a function of the learned parameter, whereas
for greedy policies the action probabilities may change enormously
for a small change in the estimated action values. Stronger con-
vergence guarantees are available for policy-gradient methods and
approximate gradient ascent can be performed as in equation (3.1).
According to [Peters, 2010], if the gradient estimate is unbiased1 and
learning rates fulfill the following conditions:

∞∑
t=1

αt =∞ ∞∑
t=1

α2t <∞ (3.2)

the learning process is guaranteed to converge to at least a local
optimum.

1 In [Williams, 1992a] it is proved that an unbiased estimate of the gradient can be
obtained from samples without the assistance of approximate functions.



24 state of the art

Some methods also learn approximations to value-functions
and are called actor-critic methods, where "actor" is a reference to
the learned policy, and "critic" refers to the learned value function.
In these methods, the function approximation for value function
introduces bias but reduces variance and accelerates learning.

3.1.1 Policy Gradient Theorem

It may seem challenging to change the policy parameter in a way
that ensures improvement. The problem is that the performance J(θ),
i. e. the measure to maximize, depends on both the action selections
and the distribution of states in which those selctions are made, and
both of these are affected by the policy parameter θ. We have to
estimate the performance gradient with respect to θ but the gradient
is affected by the unknown effect of policy changes. Fortunately,
there is a theoretical answer to this challenge in the form of the policy
gradient theorem, which provides an analytic expression for ∇θJ(θ)
that does not involve the derivative of the state distribution δθ(s).

The theorem is from [Sutton et al., 1999] and we enunciate it in
the case of continuous state space S and action space A:

Theorem 3.1 (Policy Gradient Theorem). Given a stochastic policy πθ
differentiable w.r.t. its parameter, the gradient of performance mea-
sure J(θ) with respect to the policy parameter θ can be written as:

∇θJ(θ) =
∫
S

δθ(s)

∫
A

∇θπ(a|s)Qθ(s, a)dads. (3.3)

Starting from (3.3), the performance gradient ∇θJ(θ) can be esti-
mated from samples in different ways. In subsection 3.1.2 we present
some PG algorithms. Generally, a batch of N trajectories is sampled
and N single estimates of the gradient are averaged to obtain the fi-
nal estimate. This estimate is the ∇̂J(θ) used in (3.1) to perform a
gradient ascent iteration that updates the policy parameter θ.

3.1.2 Policy Gradient Algorithms

In this section we present some PG algorithms that have some inter-
esting properties for our work. We compare these existing algorithms
and their properties with the algorithm proposed in our work. The
first algorithm we present is REINFORCE, a method directly derived
from the Policy Gradient Theorem that shows how the gradient of
performance can be easily estimated from samples. Then, we present
two methods that learn deterministic policies. The difference between
these two methods is the way in which exploration is performed:
in Policy Gradients with Parameter-Based Exploration (PGPE) explo-
ration is performed in the policy space while in Deterministic Policy



3.1 policy gradient methods 25

Gradient (DPG) exploration is performed in action space by means of
a behavioural policy (i. e. a policy that collects samples, different from
the policy that is being learnt).

reinforce : In REINFORCE the gradient of perfor-
mance ∇θJ(θ) can be estimated from a single trajectory
〈s0, a0, r1, s1, a1, ..., sT−1, aT−1, rT 〉 without performing any sort
of perturbation on parameters θ, according to [Williams, 1992b].
Starting from (3.3), we can write the gradient as an expected value
depending on the state distribution δθ and the parameterized policy
πθ. Then, the samples collected following πθ can be used for the
estimation of ∇θJ(θ):

∇θJ(θ) =
∫
s

δθ(s)

∫
a

πθ(a|s)
∇θπθ(a|s)
πθ(a|s)

Qθ(s, a)dads

= E
s∼δθ,a∼πθ

[∇θπθ(a|s)
πθ(a|s)

Qθ(s, a)
]

= E
s∼δθ,a∼πθ

[
∇θ logπθ(a|s)Qθ(s, a)

]
(3.4)

where (3.4) is obtained by considering ∇θ logπθ(a|s) =
∇θπθ(a|s)
πθ(a|s)

and Qθ(s, a), usually unknown, can be replaced by an action-value
function approximation.

In episodic tasks, the return Gt can be computed from every time step
t once the episode is terminated. Then, Qθ(s, a) can be approximated
with Gt for every state-action pair (st, at) sampled in the trajectory.
This approximation is unbiased, because Eπθ [Gt|st, at] = Q

θ(st, at).
Given a batch of N trajectories 〈s0, a0, r1, s1, a1, ..., sT−1, aT−1, rT 〉
from an episodic task, the gradient of performance can be estimated
as:

∇̂θJ(θ) =
〈 T−1∑
t=0

∇θ logπθ(at|st)Gt
〉
N
, (3.5)

where 〈·〉N denotes the average of the inner expression over the N
trajectories.

REINFORCE has good theoretical convergence properties: by
construction, an improvement in expected performance and conver-
gence to a local optimum under standard stochastic approximation
conditions are ensured [Sutton and Barto, 2018]. However, it presents
an high variance that slows the convergence process. In order to
mitigate this problem, we consider baseline functions b : S → R, i. e.
functions that don’t depend on the action and can reduce variance
in the estimate without introducing bias. Indeed, we observe that if
b(s) does not depend on a we can modify (3.3) in the following way:

∇θJ(θ) =
∫
s

δθ(s)

∫
a

∇θπθ(a|s)
(
Qθ(s, a) − b(s)

)
dads. (3.6)



26 state of the art

The new term appearing in (3.6) doesn’t affect the value of gradient:∫
a

b(s)∇θπθ(a|s)da = b(s)∇θ
∫
a

πθ(a|s)da = b(s)∇θ1 = 0. (3.7)

An intuitive baseline b(s) that can be used is the value function Vθ(s).
In some tasks, Qθ(s, a) can assume high values and the use of Vθ(s)
as baseline provides an effect of normalization. The difference in ex-
pression (3.6) becomes the advantage function Aθ(s, a) when V is
used as a baseline:

∇θJ(θ) =
∫
s

δθ(s)

∫
a

∇θπθ(a|s)
(
Qθ(s, a) − Vθ(s)

)
dads. (3.8)

In [Peters and Schaal, 2008] a different formulation for the estimation
of gradient is provided. It is used in the GPOMDP algorithm and
reduces variance in the estimation of gradient because it prevents to
sum, for each time-step, the rewards obtained from the current time-
step until the end of the episode:

∇̂GPOMDPθ J(θ) =
〈 T−1∑
l=0

( l∑
k=0

∇θ logπθ(ak|sk)
)(
γlrl+1 − bl

)〉
N

.

(3.9)

Apart from the baseline bl, this expression is equivalent to (3.5). In
this work, we consider the GPOMDP estimation of gradient with the
variance-minimizing baseline provided by [Peters and Schaal, 2008]:

bl =

〈(∑l
k=0∇θ logπθ(ak|sk)

)2
γlrl+1

〉
N〈(∑l

k=0∇θ logπθ(ak|sk)
)2〉

N

, (3.10)

where the square operation is performed in an element-wise manner
on the vector. This is one of the most common policy gradient algo-
rithms and we use it in this work to compare our algorithm with a
standard algorithm in policy search.

policy gradient with parameter-based exploration

(pgpe): PGPE [Sehnke et al., 2008] is a method that estimates a
gradient by directly sampling in parameter space. In PGPE the policy
is defined by a distribution over the parameters of deterministic
controllers that we indicate with the function µθ : S → A. At the
beginning of each step, the parameter θ of the controller is sampled
and then, the deterministic policy µθ generated from θ is followed
for all the episode length. Even if samples are collected with a
detrministic policy, the choice of the policy is stochastic and then
unexpected behaviour could arise in the task.

The variance of the estimates obtained with PGPE is lower than



3.1 policy gradient methods 27

the variance of the estimates obtained with REINFORCE [Zhao et al.,
2013]. This is due to the fact that, in REINFORCE, a repetitive sam-
pling from a stochastic policy injects noise in the gradient estimate at
every time-step. Furthemore, the variance increases linearly with the
length of the history since each state depends on the entire sequence
of previous samples.

As we said, in PGPE the stochasticity that in REINFORCE was
given by a stochastic policy πθ is replaced by a probability distri-
bution over the parameters θ themselves. In turn, this probability
distribution is parameterized with parameter ρ, independent from θ.
Given a parameter space Θ for (deterministic) controllers µθ,θ ∈ Θ,
the policy considered to perform exploration in the task is:

πρ(a|s) =

∫
Θ

pρ(θ)δµθ(s) dθ, (3.11)

where δµθ(s) is the Dirac delta function corresponding to the deter-
ministic controller µθ depending on parameter θ sampled from a
distribution with probability pρ(θ).

Given a trajectory h ∈ H, where H is the set of possible trajec-
tories, a probability pρ(h,θ) of sampling parameter θ and trajectory
h and defined G(h) the return of trajectory h, we can define a
suitable performance measure J(ρ) as:

J(ρ) =

∫
Θ

∫
H

pρ(h,θ)G(h)dhdθ. (3.12)

From 3.12, we can write the expected value of the gradient of J w.r.t.
the distribution parameter ρ as:

∇̂ρJ(ρ) ≈ ∇ρ logpρ(θ)G(h), (3.13)

where θ is sampled at the beginning of the episode and h is resulting
from the deterministic controller µθ. This is a black-box optimiza-
tion (BBO) approach because it uses a constant policy perturbation
during policy execution and it stores only scalar return in the
trajectory [Stulp and Sigaud, 2012]. Differently from REINFORCE,
for instance, PGPE does not use information fron single time steps
and, then, it does not exploit the temporal structure of RL problems.

Usually, we can consider the parameter ρ learnt by the algo-
rithm as ρ =

(
{µi}, {σi}

)
, where µi and σi are the parameters that

determine an indipendent normal distribution.

deterministic policy gradient (dpg): DPG [Silver et al.,
2014] is a class of algorithms that learn a parametric deterministic
policy µθ defined as µθ : S → A. The approach in DPG is similar to



28 state of the art

the one used in PG methods that learn stochastic policies πθ, where
the gradient of performance is estimated according to the Policy
Gradient Theorem (3.1.1). However, for deterministic policies the
gradient of performance is slightly different than the one computed
by the theorem (3.3).

Indeed, by considering a deterministic policy µθ with parameter vec-
tor θ ∈ Rn and performance objective J(µθ) = Es∼δµ [R(s, µθ(s))], the
expression for Deterministic Policy Gradient derived by the theorem is
the following:

Theorem 3.2 (Deterministic Policy Gradient Theorem). Suppose that
P(s ′|s, a),∇aP(s ′|s, a), µθ(s),∇θµθ(s), R(s, a),∇aR(s, a), p0(s) are
continuous in all parameters θ and variables s, a, s ′. Then,

∇θJ(µθ) = Es∼δµ
[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
. (3.14)

In order to ensure exploration while learning a deterministic policy
µθ, an off-policy algorithm is introduced. Both in our work and in
DPG algorithms a deteministic policy is learnt. However, during the
learning phase DPG algorithms collect samples from a stochastic
behavioral policy, differently from what our goal aims: to avoid the
execution of random actions.

More precisely, relying on Theorem 3.2 an off-policy actor-critic
algorithm can be derived. It learns a deterministic target policy
µθ(s) from trajectories generated by an arbitrary stochastic be-
havioral policy π(a|s). A critic estimates the action-value function
Qw(s, a) ≈ Qµ(s, a), where w is the parameter of the function
approximator Qw(s, a). In [Silver et al., 2014] the conditions required
for a function approximator to be compatible (i. e. avoid to introduce
any bias in gradient update) are specified.

Deep Deterministic Policy Gradient (DDPG) is an algorithm of
the DPG class that follows an off-policy actor-critic scheme. It uses
four neural networks: an actor µθ, a critic Qφ, a target actor µθtarg
and a target critic Qφtarg, where θ, φ,θtarg and φtarg are the
parameters of the neural networks. The behavioral policy is obtained
from µθ by adding a Gaussian noise to the action prescribed. From
the collected samples, a batch B of samples i = (s, a, r, s ′) is gener-
ated in order to perform a parameter update.

The critic parameter φ is updated in a way such that the following
loss measure L is minimized:

L =
1

|B|

∑
i∈B

(
yi −Qφ(si, ai)

)2
, (3.15)



3.2 safe reinforcement learning 29

where yi = ri + γQφtarg

(
s ′, µθtarg(s

′)
)

. The actor parameter µ is
updated by one step of gradient ascent using an expression derived
from Theorem 3.2 and applying the inverse of chain rule:

1

|B|

∑
i∈B
∇θQφ

(
s, µθ(s)

)
(3.16)

Finally, the target policy are updated as follows, in order to ensure
stability in learning according to hyperparameter ρ:

φtarg = ρφtarg + (1− ρ)φ (3.17)

θtarg = ρθtarg + (1− ρ)θ (3.18)

3.2 safe reinforcement learning

In RL several definitions of safety have been proposed and also
methods that ensure a certain degree of safety according to some
measures of risk. These definitions refer to different facets of safety,
hence they are not conflicting to each other. In this section, firstly we
provide an overview of the different methods that face the problem
of safe learning, using the same classification proposed by García
and Fernández, then we focus on the more specific issue related to
safe exploration.

According to [García and Fernández, 2015], there exist two main
trends for Safe RL. The first one is based on the modification of the
optimality criterion to introduce the concept of risk. The second is
based on the modification of the exploration process, so as to avoid
the exploration of actions that may lead the system to undesirable
or catastrophic situations. Regarding the first trend, there are several
alternatives to quantify risk:

• Worst Case Criterion: a policy is considered to be optimal if it has
the maximum return w.r.t. the worst-case scenario, namely the
worst possible trajectory in terms of return:

max
π∈Π

min
h∈Hπ

E
π,h

[G0], (3.19)

where Hπ is a set of trajectories that occurs under the policy
π and the quantity to maximize-minimize is an expected value
w.r.t. the policy π and the trajectory h [Heger, 1994]. This cri-
terion is used to mitigate the effects of variability induced by a
given policy. It is also possible to use this kind of criterion when
the transition function P is uncertain:

max
π∈Π

min
P

E
π,P

[G0], (3.20)



30 state of the art

• Risk-Sensitive Criterion: the optimization criterion balances re-
turn and risk by means of a scalar parameter that is included
in the objective function and allows the sensitivity to the risk to
be controlled. Risk can be defined, for instance, as the variance
of return or as the probability of entering into an error state
[Geibel and Wysotzki, 2005].

• Constrained Criterion: the method maximizes the expectation of
return subject to one or more constraints. It is defined as:

max
π∈Π

E
π
[G] subject to ci ∈ C, (3.21)

where G is the return and C is the set of constraints ci, with
ci = fi 6 ti. fi is a function related with the return and ti is its
threshold [Moldovan and Abbeel, 2012]. The set of constraints
C limits the space of allowable policies and makes this opti-
mization criterion suitable for risky domains. The constraints,
for instance, can ensure that the expectation of return exceeds a
minimum threshold or that the variance of the return does not
exceed a maximum threshold.

Regarding the modification of the exploration process, it can be mod-
ified through the incorporation of external knowledge in three differ-
ent ways:

• Providing Initial Knowledge: examples gathered from a teacher
or previous information on the task can be used to provide an
initial knowledge for the learning algorithm. From the ealier
steps of the algorithm, the most relevant regions of the state
and action spaces are visited. It considerably reduces random
exploration providing guidance in the form of reasonable poli-
cies [Driessens and Džeroski, 2004].

• Deriving a policy from a finite set of demonstrations: a set of exam-
ples provided by a teacher, that replace examples provided by
exploration, can be used to learn a model from which to derive
a policy in an off-line and, hence, safe manner. An example of
this approach, related to autonomous helicopter flight, is pro-
vided in [Abbeel, Coates, and Ng, 2010].

• Providing Teach Advice: a human or a simple controller assists the
exploration during the learning process and provides advice. In
some approaches, the teacher can provide advice only when the
agent explicitly asks for, as in [Clouse, 1997], in others whenever
it feels it is necessary.

Alternatively, the exploration can be managed through the use of
a risk measure that favors the execution of low-risk actions, this
approach is called Risk-directed Exploration. An example of it is



3.2 safe reinforcement learning 31

provided in [Gehring and Precup, 2013], where the notion of state
controllability is defined. This notion tells the agent in which states
the effects of actions are easier to predict.

Accidents in learning systems may emerge from a poor design
of real-world systems. According to [Amodei et al., 2016], the system
could behave undesirably if the designers wrongly carry out one of
the following:

• assign a wrong objective function: the function may not con-
sider the negative side effects of some actions. Moreover, the
function may allow the agent to hack the reward. Indeed, the
agent may find a way to obtain an high reward with an unin-
tended behavior;

• define an objective function that is too expensive to evaluate
frequently;

• enable undesirable behavior during the learning phase: the
agent may perform dangerous exploratory moves (subsection
3.2.1) or it may have difficulties to recognize environments that
are different from the training one.

Another approach to safe RL is presented in [Thomas et al., 2019].
Here it is proposed a framework that simplifies the problem of speci-
fying and regulating undesirable behavior. The framework allows to
easily constrain the behavior of the algorithm, without requiring ex-
tensive domain knowledge or additional data analysis, by setting the
maximum admissible probability of undesirable behavior.

3.2.1 Safe Exploration

In our work, it is fundamental to ensure that the agent learns in com-
plete safety (i. e. the agent doesn’t perform undesired actions through-
out the learning phase). The second class of safe methods is suitable
for this. However, it requires external knowledge, in the form of expe-
rience samples or teacher advice, that is not always available. Instead,
the methods of the first class can learn an optimal policy (according
to a definition of return that includes risk) but they trade-off short
term loss in performance for a long term gain. This is not accettable
in the case of safety-critical applications, regardless of whether the re-
turn contains a measure of risk. Moreover, when the risk is encoded
in the reward function, any sort of performance oscillation points out
a dangerous situation that can cause failure or harm the environment.
In order to avoid this source of risk, a monotonic improvement in per-
formance can be required while learning the policy. Here we describe
two state of the art approaches to safe exploration, the first one for
finite MDPs and the second one for policy gradient methods. Both of



32 state of the art

the methods rely on a statistical confidence ε in order to define safety
constraints, then the complete avoidance of unwanted actions is only
ensured with high probability.

safe exploration in finite mdps : [Turchetta, Berkenkamp,
and Krause, 2016] address the problem of safely exploring finite MDPs,
where safety is defined in terms of a constraint that satisfies regularity
conditions. The algorithm, called SafeMDP, cautiously explores safe
states and actions, obtains noisy observations and gains knowledge
on the safety of unvisited state-action pairs. Starting from a set of
states and actions that are known to be safe, the regularity assump-
tions are exploited in order to evaluate only state-action pairs known
to fulfill the safety constraint. The reward (encoding a measure of
safety) is unknown and drawn from a Gaussian distribution. At each
iteration of the algorithm a posterior distribution is computed from
the sampled rewards, affected by an additive noise drawn from a zero-
mean Gaussian distribution. The reward function R(s) is Lipschitz
continuous, with Lipschitz constant LR. Since only noisy measure-
ments are observed, R(s) is known up to some statistical confidence
ε. By considering the Lipschitz continuity of R(s) and the confidence
ε and starting from some safe set Ss, the resulting set of safe states is:

Rsafeε (Ss) = Ss ∪ {s ∈ S|∃s ′ ∈ Ss : R(s
′) − ε− LRd(s, s

′) > h}, (3.22)

where h represents a safety threshold. The obtained set is then re-
stricted by considering only the safe states that are reachable and
from which we can move to other safe states. By iteratively applying
the operator Rsafeε in (3.22) to the restricted set of safe states Ss and
updating the Gaussian distribution of R(s) from samples, we obtain
the largest set of states that can be safely reached by the exploring
agent.

safe policy gradients : Safe Policy Gradient (SPG) is an algo-
rithm from [Papini, Pirotta, and Restelli, 2019] in which the learning
agent is constrained to never worsen its performance during learning.
According to the classification of safe RL methods, the algorithm is
included in the constrained criterion class as oscillating performances
may violate the constraint, called Monotonic Improvement. It can be
considered a safety constraint only when the risk is perfectly encoded
in the reward. This work involves actor-only PG from a stochastic op-
timization perspective and smoothing policies, i. e. twice-differentiable
parametric policies πθ, with θ ∈ Θ, for which properties2 that induce
the smoothness of performance are valid. In [Papini, Pirotta, and

2 The parameter space Θ is convex. For every state s and in expectation over ac-
tions a ∼ πθ(·|s), the Euclidean norm ‖∇ logπθ(a|s)‖, the squared Euclidean norm
‖∇ logπθ(a|s)‖2 and the spectral norm

∥∥∇∇T logπθ(a|s)
∥∥ are upper-bounded by

non-negative constants.



3.2 safe reinforcement learning 33

Restelli, 2019] it is shown that Gaussian and softmax policies are
smoothing. From upper bounds on the variance of policy gradient
estimators, a lower bound on the performance improvement (with
a certain confidence ε) provided by gradient-based updates is
calculated and expressed as a function of some meta-parameters.
These meta-parameters are the step size α of the parameter updates
and the batch size N of the gradient estimators. Then, the adaptive
meta-parameters that guarantee monotonic improvement with high
probability are identified.

PG methods may suffer from the explosion of gradients when
the current policy is close to be deterministic, leading to unstable
training process. Target Distribution Learning (TDL) [Zhang, Li, and
Li, 2019] addresses this problem, alternating between proposing a
target distribution and training the policy to approach the target
distribution. The target policy is the solution of a constrained
optimization problem where the constraints involve the difference
between updated policies, so that the algorithm leads to more stable
improvements.





4
D E T E R M I N I S T I C P O L I C Y O P T I M I Z AT I O N

This is the most important chapter in our work, where we present
the algorithm we designed, called Deterministic Policy Optimiza-
tion (DPO). The chapter is divided in four sections. In Section 4.1
we provide an explanation of the approach that we followed, moti-
vated by the aim of this work (presented in Chapter 1 and recalled
in Section 4.1), in Section 4.2 we describe the algorithm according
to high-level pseudocode of it. Details on the implementation of the
different parts of the algorithm are provided in Section 4.3, while in
Section 4.4 we explain how to address the concrete issues that arise
in the algorithm, related to the necessity of function estimations.

4.1 passive exploration via δ-mdps

As mentioned in Chapter 1, the goal of this work is to ensure that the
agent is able to learn a deterministic policy avoiding the execution
of dangerous actions throughout the learning phase (in this way the
agent does not harm itself or the environment in which it evolves).
We address this requirement on exploration by forcing the agent to
gather the samples needed for improving the parametric policy with-
out performing any random action. A way to satisfy this strict constraint
is to learn a deterministic policy and use it to collect samples so that
no random actions can be performed at all. By doing this, the exact
action that will be performed by the agent is known in every moment.
This choice, unfortunately, prevents any form of active exploration
and the possibility to update the parametric policy with existing algo-
rithms. The fundamental reason is that, by observing a single action
for each (continuous) state and without any probability measure over
actions, the agent has no way of preferring one action over another
for that particular state, which makes policy optimization impossible.

However, if the environment is sufficiently regular, we can ex-
ploit a form of passive exploration. The key idea is to aggregate states
in such a way as to observe a variety of actions within these larger,
abstract states. This variety is obtained by considering, for every
abstract state, the set of actions chosen by our deterministic policy
in the different states belonging to the same aggregate. In a sense,
aggregation allows transferring the diversity of the states visited
by the agent (both over different time-steps of the same episode
and over independent episodes) into actions. Variety over states
is encoded by the future-state distribution δθ, depending on the



36 deterministic policy optimization

deterministic policy πθ, and is fueled by stochastic transitions and
random restarts that allow to ideally cover the entire state space S.
The price to pay in order to consider state aggregation is basically a
discretization error, that could be, in general, unbounded. However,
in Lipschitz MDPs we can keep this error under control, as we will
show in Chapter 5.

In a Lipschitz MDP (see subsection 2.4.2 for details on it), if we
know the effect of performing an action a in a state s, we can exploit
this knowledge to obtain information about the effect of performing
the same action a on a different state s̃. As an example we can
consider a deterministic environment1 in which we collect a sample
(s, a, s ′), where the next-state s ′ is obtained from a state-action pair
(s, a). In deterministic environments, the next state s ′ is computed
as s ′ = f(s, a) according to the function f : S×A → S that conducts
the state transition from s to s ′. For a deterministic environment,
the assumption of Lipschitz regularity on the transition function P
defined in (2.34) can be rewritten as:

‖f(s, a) − f(s̃, ã)‖ 6 LPdSA ((s, a), (s̃, ã)) , (4.1)

for some positive real constant LP. From this inequality, the next-state
s̃ ′ resulting from an initial state-action pair (s̃, ã) can be estimated
even if the agent never executes the action ã in the state s̃. The esti-
mation of s̃ ′ comes in the form of an interval, we show how it can be
derived in the case of one-dimensional states and action spaces:

−LPdSA (·) 6 f(s, a) − f(s̃, ã) 6 LPdSA (·)
f(s, a) − LPdSA (·) 6 f(s̃, ã) 6 f(s, a) + LPdSA (·)

s− LPdSA (·) 6 s̃ ′ 6 s+ LPdSA (·) , (4.2)

where dSA (·) = dSA ((s, a), (s̃, ã)) is the taxicab norm on S×A con-
sidered in (2.34). Details on how to derive the intervals in the case of
multi-dimensional states are provided in Section 4.4. The tightness of
the estimated intervals, and then their precision, increases according
to the similarity between the state-action pairs (s, a) and (s̃, ã) used
to build the intervals. It appears to be a good idea, starting from an
observed state-action pair (s, a), to estimate the effect of executing the
action a in all the states s̃ visited by the agent that are considered sim-
ilar to s. In this way, the agent only performs the actions suggested by
the deterministic policy and estimates intervals that can be deemed
sufficiently accurate. For a more detailed explanation of how these
simple considerations are used to estimate the unknown information
required by the algorithm, refer to Section 4.4.

1 An environment in which the transition function P is a Dirac delta function.



4.1 passive exploration via δ-mdps 37

4.1.1 δ-MDPs

We are going to exploit the ideas derived above by building an ab-
stract MDP in which the state space is composed by aggregates of
states. We divide the original state space S into a partition X. To take
advantage of the Lipschitz continuity of our environment, we need
to aggregate states taking their mutual distance into account. For this
reason, we only consider tessellations of the state space, such as grids.
We denote as D(X) = sups,s̃∈X ‖s− s̃‖ the diameter of an abstract
state X ∈ X. We want that the transition and the reward functions
of our abstract MDP are able to model the overall effect of actions on
the abstract states, so that the optimization in the abstract MDP corre-
sponds to the resolution of the original policy optimization problem.
Doing this exactly would require additional assumptions, like bisim-
ulation (details in Section 2.5), which we deem too restrictive. Indeed,
bisimulation is an equivalence relation that allows to obtain a partition
of the state space composed by equivalence classes where the optimal
values and the optimal policies of the original MDP are preserved [Gi-
van, Dean, and Greig, 2003], however this assumption is too stringent
and difficult to obtain. [Ferns, Panangaden, and Precup, 2012] shows
with an example that in a simple MDP with only fours states, the con-
straints on the transition function P needed to ensure bisimulation
are already strict. Hence, we design a solution that approximates the
resolution of the original problem. To achieve this purpose, we con-
sider the future-state distribution δθ in order to define the weighting
function for the state abstraction (details in Section 2.5), obtaining:

R̃θ(X, a) =

∫
X

δθ(s)

Zθ(X)
R(s, a)ds, (4.3)

P̃θ(X
′|X, a) =

∫
X

δθ(s)

Zθ(X)

∫
X ′
P(s ′|s, a)dsds ′, (4.4)

with weighting function w(s) = δθ(s)/Zθ(X), where Zθ(X) =∫
X δ
θ(s)ds is a normalization factor necessary to ensure that the

weights sum to one. This completes the definition of our abstract MDP,
called δ-MDP in the following to stress the fundamental role of the
future-state distribution δθ in its definition:

Definition 4.1. Given an MDP 〈S,A, P, R, γ〉, a policy πθ, and a par-
tition X of S, the corresponding δθ-MDP is 〈X,A, P̃θ, R̃θ, γ〉, where
R̃θ is defined as in Equation (4.3) and P̃θ as in Equation (4.4) for all
X,X ′ ∈ X and a ∈ A.

An initial-state distribution for the δ-MDP can be defined as p̃0(X) =∫
X p0(s)ds ∀X ∈ X, where p0 is the initial-state distribution for the

original MDP. A (stationary2, Markovian) abstract policy ρ : X→ ∆(A)

is a (possibly stochastic) mapping from abstract states to actions. In

2 The policy does not changes over time.



38 deterministic policy optimization

order not to confuse them with concrete policies π, we denote them
with the letter ρ. Fixed the abstract MDP, we can define value func-
tions Vρ and Qρ, future-state distribution δρ (over X) and optimal
policy ρ∗, as in any MDP. Note that there is no direct correspondence,
in general, between concrete and abstract policies, since the behav-
ior of a concrete policy may appear non-Markovian in the abstract
MDP [Li, Walsh, and Littman, 2006]. However, we introduce a simple
"concretization" operator C : ρ 7→ π from abstract policies to concrete
policies, defined as (Cρ)(s) = ρ(Γ(s)) for any ρ : X → A and s ∈ S.
The resulting concrete policy π = Cρ performs the same action ρ(X)
for all states s ∈ X, hence it is a piece-wise constant function.

4.2 deterministic policy optimization

In this section, we show how to use the δ-MDP defined in Section 4.1
to approximately solve the policy optimization problem, under
Lipschitz conditions but without access to random actions. The
proposed methodology is as follows: given the original MDP and
a deterministic parametric policy πθ, we build the corresponding
δθ-MDP using only the data collected with πθ itself. This requires
estimating the abstract reward and transition functions. To do so, we
can actively exploit the Lipschitz conditions, as discussed in the next
sections (Section 4.3, Section 4.4).

The solution of the δθ-MDP is a deterministic optimal abstract
policy ρ∗, which is guaranteed to exist and maximizes Vρ(X) for
all X ∈ X. This abstract policy can be emulated in the original
MDP by Cρ∗, the piecewise-constant policy, even if in general Cρ∗

is not optimal for the original MDP and may not belong to the
original parametric policy space. Hence, we need to project it back
as πθ ′ = PΠΘ(Cρ

∗), where P is a projection operator. The new
parameter vector θ ′ identifies the novel policy that we are going to
run in the environment. The procedure can then be repeated. We
call this general method Deterministic Policy Optimization (DPO for
short), and we outline (at high level) the different phases of it in
Algorithm 1. Details on the implementation of the single phases are
described in Section 4.3. We provide a theoretical justification of this
approach in Chapter 5.

4.3 algorithmic details

In this section, we provide further details on our implementation of
the different phases of DPO, outlined in Algorithm 1: state aggregation
(or state partition), estimation of R̃θ and P̃θ for the creation of the δ-
MDP, solution of it and projection of Cρ∗ into ΠΘ.



4.3 algorithmic details 39

Algorithm 1 DPO

1: Input: policy class ΠΘ, initial policy parameter θ, batch size N
2: Partition the state space into X

3: for t = 0, 1, . . . do
4: Collect N samples with πθ
5: Estimate R̃θ and P̃θ over X
6: Solve the δθ-MDP to find optimal abstract policy ρ∗

7: Project Cρ∗ back into ΠΘ to find θ ′

8: θ← θ ′

9: end for

4.3.1 State aggregation

We discretize the state space S ⊆ RN into a regular grid X, in which
each hyperrectangular cell is an abstract state. We assume that the
domain of each of the N state variables is a continuous interval. If
a variable is unbounded or the bounds are unknown, they are set
equal to the minimum and maximum value on the corresponding di-
mension, observed among the collected samples. For each dimension
i ∈ N, it is provided in input to the algorithm a scalar k that indicates
the number of subsets in which the i − th dimension of the state
space S has to be divided. We consider each dimension i separately
from the others and we divide the one-dimensional space in a par-
tition of k convex subsets with constant diameter. For instance, we
consider a two-dimensional space in the domain [2; 4]× [−4; 4] ⊂ R2

and a vector k = [2, 4] representing the number of subsets in which
each dimension has to be divided. The first dimension is divided in
two subsets having domains [2; 3) and [3; 4], the second dimension
is divided in four subsets having domains [−4;−2), [−2; 0), [0; 2) and
[2; 4]. Hence, the original state space S is divided in 8 subsets X ∈ X,
the domain of each subset X is the combination of one intervals
from the first dimension and one from the second dimensions. By
partitioning in this way, the measure of the subsets’edges can vary a
lot among the different state-dimensions. If the original state space S

contains an absorbing state, we add an absorbing abstract state to X.
This can be useful for modeling indefinite-horizon tasks.

The state space partition is not required to be the same across
the different iterations of the algorithm, since a new δ-MDP is
built at each iteration. For instance, if some state-dimensions are
unbounded and we establish the minimum and maximum possible
values for them based on the collected samples at each iteration,
the size of the subsets in the partition changes between iterations,
according to the minimum and maximum values considered. An
adaptive discretization of the state space, i. e. a discretization that
changes between iterations based on the evolving situation, can



40 deterministic policy optimization

provide benefits such as more efficient use of the collected samples.
However, for computational reasons we can avoid to compute a new
partition of the state space at the beginning of each iteration and
keep a fixed one across the multiple iterations. In the latter case, if
we collect a samples whose starting state is outside from the grid, the
sample can be assigned to the closest cell in the partition. If naively
implemented, this aggregation strategy is clearly subject to the curse
of dimensionality. However, only the abstract states that are actually
visited by πθ are considered in the next steps of the algorithm,
so the size of the δ-MDP is polynomial in the number of collected
samples3. More details on how the abstract state space X is built in
the experiments and how the chosen aggregation strategy affects the
performances of the algorithm are provided in Chapter 6.

4.3.2 Abstract MDP estimation

A fundamental aspect in the creation of the δ-MDP is the estimation
of the γ-discounted future-state distribution δθ(s), which we avoid
to explicitly perform because it would require too many samples to
obtain an accurate estimation. To construct the δθ-MDP, given the cur-
rent policy πθ, we need to estimate the abstract reward function R̃θ
and the abstract transition function P̃θ. As we previously said, the
weighting function w(s) that weighs the abstract functions R̃θ(X, a)
and P̃θ(X ′|X, a) of the δ-MDP is defined according to δθ(s). The exact
computation of the abstract functions would require knowledge of
the future state distribution δθ, which is out of reach. However, we
can write the abstract functions as expected values:

R̃θ(X, a) = E
s∼p(s|X)

R(s, a) (4.5)

P̃θ(X
′|X, a) = E

s∼p(s|X)

∫
X ′
P(s ′|s, a)ds ′ (4.6)

where p(s|X) = Zθ(X)−1δθ(s)1X(s) is the probability of visiting state
s conditioned by s ∈ X, and 1X(·) is the indicator function for set X.
In this way, we can simply estimate the abstract function via Monte
Carlo estimation using the samples collected with πθ, since the
visited states are distributed as δθ. While this is enough for R̃θ(X, a),
since R(s, a) is usually known for all the state-action pairs (s, a)

or designed by humans, estimating P̃θ(X ′|X, a) for all the abstract
states and actions without any knowledge of P(·|s, a) requires
more effort. All we get from the agent-environment interactions
is a finite set of samples (s, a, s ′). This means that, for almost all
the actions in A, we do not have any samples. Fortunately, we can

3 Efficiently exploring high-dimensional state spaces is still a difficult problem: consid-
ering only the visited abstract states allows to contain the computational complexity
of the algorithm but does not reduce the difficulty of covering an high-dimensional
state space with exploration.



4.3 algorithmic details 41

leverage our Lipschitz assumptions to fill in this missing information.

We first consider deterministic environments, where P(·|s, a) is
a Dirac delta function that exactly identifies the next state s ′ resulting
from a state-action pair (s, a), to be more precise:

P(s ′|s, a) =

1 if s ′ = f(s, a)

0 otherwise
(4.7)

For simplicity, we denote this deterministic mapping as f : S×A→ S

and write s ′ = f(s, a). Let ∆(s, a) := f(s, a) − s be the state difference
obtained transitioning from s to s ′. From Assumption 1 on Lipschitz
MDPs and fixed an action a ∈ A, we obtain:

‖∆(s, a) −∆(s̃, a)‖ 6 L∆ ‖s− s̃‖ , (4.8)

for all s, s̃ ∈ S, hence the state difference ∆ is also Lipschitz continu-
ous. A valid Lipschitz constant L∆ that can be obtained from Assump-
tion 1 is (1+ LP), as we show below. Since the Kantorovich distance
between two Dirac delta functions is equal to the distance of their
locations, we can use Assumption 1 to obtain a Lipschitz constant L∆
for state-difference function ∆. For every a ∈ A and s, s̃ ∈ S:

‖∆(s, a) −∆(s̃, a)‖ = ‖f(s, a) − s− f(s̃, a) + s̃‖
6 ‖f(s, a) − f(s̃, a)‖ + ‖s− s̃‖ (4.9)

= K (P(·|s, a), P(·|s̃, a)) + ‖s− s̃‖
6 LP ‖s− s̃‖ + ‖s− s̃‖ (4.10)

6 L∆ ‖s− s̃‖ with L∆ = (1+ LP) , (4.11)

where (4.9) is from the triangle inequality and (4.10) is from Assump-
tion 1.

Under additional assumptions, such as the linearity of the tran-
sition function f(s, a), we can obtain constants lower than one or
even equal to zero. The latter happens when the state difference
depends only on the action, which can be realistic, or at least a
good approximation, for some continuous control problems. We
discuss these different settings and provide detailed computations
of the Lipschitz constants in Section 4.4. When L∆ = 0, we can
easily generate extra "fictitious" samples. For instance, given sample
(s, a, s ′), we can generate (s̃, a, s̃ ′) for any other state s̃ ∈ S by
setting s̃ ′ = s̃ + (s ′ − s). Indeed, from the inequality in (4.11) and
considering L∆ = 0, we obtain ∆(s, a) = ∆(s̃, a). In this way, for each
action a performed by policy πθ in abstract state X, we can have
several (fictitious) samples (one for each visited state s ∈ X). With
these samples, we can simply estimate P̃θ(X ′|X, a) as the ratio of the
next states that fall into X ′ when we consider samples and fictitious



42 deterministic policy optimization

samples involving any state s ∈ X and the action a. To be more
precise, given a batch D of samples collected with πθ and fictitious
samples, the abstract transition function P̃θ is estimated as:

P̃θ(X
′|X, a) =

∣∣(s, a, s ′) ∈ D : s ∈ X, s ′ ∈ X ′
∣∣∣∣(s, a, s ′) ∈ D : s ∈ X

∣∣ . (4.12)

When L∆ 6= 0, we can still use (4.8) to get a region containing s̃ ′. From
this, we can estimate lower and upper bounds on the transition func-
tion P̃. As a result, the δ-MDP will be a BMDP [Givan, Leach, and Dean,
2000] instead of a regular one. In the case of stochastic environments,
we follow a different approach for estimating the abstract transition
kernel. We define a maximum-likelihood problem using data sam-
pled from πθ and fictitious samples. We then add special constraints
to this problem as to enforce the Lipschitz continuity of P̃θ(X ′|X, a)
w.r.t. actions. The resulting problem is still convex and can be solved
with standard optimization tools. Details on BMDP are provided in
subsection 2.4.1, details on the algorithm involving BMDPs and the
constrained optimization approach are provided in Section 4.4.

4.3.3 Solving the abstract MDP

In the previous paragraph, we have proposed a way to estimate the
abstract transition function for state-action pairs not experienced by
the agent, by exploiting the assumptions about the regularity of the
environment. However, this still applies only to the actions actually
performed by the agent. As a result, our approximation of the δ-MDP

has a finite action set. This introduces a further model bias, but allows
us to employ dynamic programming to find the optimal abstract
policy. This kind of error can be reduced by increasing the number
of collected episodes, or the control frequency. Furthermore, under
our Lipschitz assumptions, the finite actions actually performed by
the agent are supposedly good representatives for the other ones.

We solve this approximate δ-MDP via value iteration (subsection
2.2.1), with a stopping condition (introduced for computational
reasons) on the max-norm distance between consecutive state-value
functions. The value iteration on the δ-MDP is stopped when, said
Vk(X) the value function of state X at the k− th iteration and ε the
constant used as a threshold in the algorithm,

|Vk(X) − Vk−1(X)| < ε ∀X ∈ X. (4.13)

In the case of multiple optimal policies, we keep track of the entire
set of optimal actions for each abstract state X so that we can set, for
every state s ∈ X, a possibly different optimal action of X as target
in the regression problem described in subsection 4.3.4. We do this



4.4 abstract transition function construction 43

to minimize the difference between the deterministic policy πθ be-
fore and after the update of its parameter θ, while we consider for
the update only actions that are optimal in X. We may need to eval-
uate abstract states for which no samples have been collected by the
agent. We propose a risk-averse solution, which consists of consider-
ing these "unknown" abstract states as absorbing and set their value
to the lowest known value.

4.3.4 Projection

Given the optimal abstract policy ρ∗, its concretization Cρ∗ is easily
obtained by copying the action selected by ρ∗ for all the states of the
same abstract state. We then need to represent Cρ∗ in the space ΠΘ
of the original policy πθ. This projection phase can be approached as
a regression problem, where the target for πθ ′(s) is Cρ∗(s). The prob-
lem consists in finding the parameter θ ′ that minimizes the following
expression:

‖Cρ− πθ ′‖δθ + λ
∥∥θ ′ −θ∥∥ , (4.14)

where the expression is evaluated for all the collected samples
(s, a, s ′). When the abstract optimal policy ρ∗ prescribes multiple
optimal actions for a certain abstract state X ∈ X, in order to facilitate
the projection, we consider for each sample (s, a, s ′), with s ∈ X, that
Cρ(s) is the action with the smallest Euclidean distance from the
action prescribed by πθ(s), among the optimal actions related to the
abstract state X.

The first term from (4.14) is the Root Mean Square Error (RMSE)
loss, weighted by the future state distribution δθ. For differentiable
policies (including neural networks), this loss can be minimized via
gradient descent from the samples collected with πθ. The second
term from (4.14) penalizes solutions that are too far from the current
policy parameters and it can be used as a regularization term in the
regression problem. In practice, the regularization coefficient λ can
be tuned as a meta-parameter. Note that, without this projection step,
there would be no room for further policy improvement, as the next
δ-MDP would have just one action per abstract state. The projection
error actually allows the agent to evaluate new actions and visit new
regions of the state space.

4.4 abstract transition function construction

In this section, we provide additional details on the estimation of the
δ-MDP outlined in Section 4.3.2 and used to exploit passive explo-
ration and update the deterministic policy of the agent. We describe
the different approaches that we propose to estimate the abstract tran-



44 deterministic policy optimization

sition function P̃, these approaches depend on the nature of the en-
vironment considered in the task. We inspect environments with an
increasing level of difficulty: in subsection 4.4.1 we derive two Lip-
schitz constants that can be useful to estimate the arriving state in
deterministic linear environments, in subsection 4.4.2 we propose to
estimate the δ-MDP with a BMDP when the environment is determinis-
tic but non-linear, in subsection 4.4.3 we build a constrained optimiza-
tion problem to ensure a property of P̃ in the case the environment is
stochastic.

4.4.1 Deterministic linear environments

We call linear a deterministic environment in which f(s, a) is linear
w.r.t. the input variables s and a. For these environments, we can
write f(s, a) = As+ Ba, where A and B are (possibly unknown and
then estimated) constant matrices. With f(s, a) defined in this way, we
can obtain a Lipschitz constant for ∆ possibly smaller than the one
derived in (4.11):

‖∆(s, a) −∆(s̃, a)‖ = ‖As+Ba− s− (As̃+Ba− s̃)‖
6 L∆ ‖s− s̃‖ with L∆ = ‖A− I‖ , (4.15)

where ‖A− I‖ is the induced matrix norm of A− I compatible with
the vector norm considered. In the case the latter is the Euclidean
norm, the induced matrix norm is the spectral norm. In general, the
constant obtained in (4.15) can be smaller than (1+ LP) and even
equal to zero. When ∆(s, a) depends only on the performed action
a and not on the starting state s, A = I and L∆ = 0. From (4.11), if
we consider L∆ = 0 instead of L∆ = (1+ LP), we obtain the equality
∆(s, a) = ∆(s̃, a) that allows to exactly predict the arriving state
s̃ ′ = f(s̃, a) for an un-sampled pair (s̃, a) as s̃ ′ = s̃+∆(s, a), from a
sampled pair (s, a).

When ∆(s, a) also depends on the starting state s, the matrix A

is different from the identity matrix I. If we know the matrix A or
we have high confidence on its estimation, we can use the matrix
to calculate the arriving state s̃ ′ for an un-sampled pair (s̃, a).
Reasoning on a generic dimension i of the state space, we obtain:

∆(s, a)i = (A− I)i · s+ (B)i · a(
∆(s, a) −∆(s̃, a)

)
i
= (A− I)i · (s− s̃), (4.16)

where (A− I)i and (B)i are the i− th rows of matrices (A− I) and
B and · is the scalar product between vectors. We can derive the i-th
dimension of the arriving state s̃ ′ as:

s̃ ′i = s̃i +
(
s ′i − si

)
− (A− I)i · (s− s̃). (4.17)



4.4 abstract transition function construction 45

Unfortunately, when we are not able to estimate with precision the
matrix A we cannot generate "fictitious" samples exactly. However,
we exploit the inequality in (4.11) to obtain an interval (or a higher-
dimensional region) including the unknown s̃ ′ = f(s̃, a), instead of
the exact point s̃ ′. Here we show how to obtain the interval in the
simple case of one-dimensional states:

−L∆ |s− s̃| 6 ∆s(s, a) −∆s(s̃, a) 6 L∆ |s− s̃|

∆(s, a) − L∆ |s− s̃| 6 ∆(s̃, a) 6 ∆(s, a) + L∆ |s− s̃|

∆(s, a) − L∆ |s− s̃| 6 f(s̃, a) − s̃ 6 ∆(s, a) + L∆ |s− s̃| .
(4.18)

From (4.18) we derive:

s̃ ′ = f(s̃, a) ∈
[
s̃+∆(s, a) − L∆ |s− s̃| ; s̃+∆(s, a) + L∆ |s− s̃|

]
,

(4.19)

where L∆ is the exact (if known) or an estimated Lipschitz con-
stant and | · | is the absolute value operator. When the state space
is N−dimensional with N > 2, the interval that we estimate is an hy-
perrectangle. Since |∆(s, a) −∆(s̃, a)|i 6 ‖∆(s, a) −∆(s̃, a)‖, for each
dimension i ∈ [1;N] we apply inequalities from (4.11) and (4.18) to
derive the i− th bound of the hyperrectangle as:

s̃ ′i ∈
[
s̃i +∆(s, a)i − L∆ ‖s− s̃‖ ; s̃i +∆(s, a)i + L∆ ‖s− s̃‖

]
,

(4.20)

where L∆ is an estimation of the Lipschitz constant in (4.15) and ‖·‖
is the Euclidean norm operator.

In tasks where a lot of precision is required in order to estimate
s̃ ′, the computed intervals could be not tight enough to represent
s̃ ′ with the required accuracy. We can increase the precision by
computing a second interval on s̃ ′ and considering the intersection
of the two intervals on s̃ ′ as the most precise estimate. The second
interval is calculated by considering two state-action pairs having
the same state and different actions: the sampled pair (s̃, ã) and the
un-sampled pair (s̃, a).

‖∆(s̃, a) −∆(s̃, ã)‖ = ‖As̃+Ba− s̃− (As̃+Bã− s̃)‖
6 L∆(a) ‖a− ã‖ with L∆(a) = ‖B‖ . (4.21)

Similarly to (4.18), we obtain the new interval containing s̃ ′ = f(s̃, a)
in the case of one-dimensional states:

s̃ ′ ∈
[
s̃+∆(s̃, ã) − L∆(a) ‖a− ã‖ ; s̃+∆(s̃, ã) + L∆(a) ‖a− ã‖

]
,

(4.22)



46 deterministic policy optimization

with L∆(a) = ‖B‖. For the N-dimensional case, we can apply the
same reasoning used previously.

Hence, given (real) samples (s1, a1, s
′
1) and (s2, a2, s

′
2), we can

generate fictitious next states for both (s1, a2) and (s2, a1), intersect-
ing two intervals for each of them.

4.4.2 Deterministic non-linear environments

When the (deterministic) transition function is non-linear, we are
not able to exactly predict the next state of un-sampled state-action
pairs. However, we can still exploit the Lipschitz assumptions to
obtain upper and lower bounds (or multi-dimensional regions) for
the next-states. To do so, we can consider L∆ = (1+ LP), as shown
in (4.11) for general deterministic transitions, or we can estimate a
smaller L∆ from data. The result is an abstract BMDP (see subsection
2.4.1 for details) instead of a regular one.

If we have L∆ 6= 0 and we estimate with (4.11) the fictitious ar-
riving state s̃ ′ = f(s̃, a), where (s̃, a) is an unseen state-action pair,
we obtain a region including s̃ ′ instead of the exact point s̃ ′. The in-
formation provided by the estimation of the fictitious arriving states
is not sufficient to compute an exact P̃θ(X ′|X, a) for each abstract
state-action pair (X, a) of the δ-MDP. The value of each P̃θ(X ′|X, a) is a
range of probabilities, whose lower and upper bounds are computed
by evaluating all the estimated intervals related to some s̃ ′ = f(s̃, a),
where s̃ ∈ X. The intervals estimated for fictitious arriving states can
be entirely contained in a single abstract state X ′ ∈ X or they can
overlay multiple abstract states of X. We estimate the lower bound
P̃θ(X

′|X, a) as the ratio of the intervals entirely contained into X ′ and

the upper bound P̃θ(X ′|X, a) as the ratio of the intervals that overlay
X ′. To be more precise, given a batch D of samples collected with πθ
and fictitious samples (s, ã, X ′l), with X ′l representing the possible
arriving abstract states X ′ according to the collected samples or the
estimation, the bounds of the abstract transition function P̃l,θ are
estimated as:

P̃θ(X
′|X, a) =

∣∣(s, a, X ′l) ∈ D : s ∈ X,X ′l = {X ′}
∣∣∣∣(s, a, X ′l) ∈ D : s ∈ X

∣∣ , (4.23)

P̃θ(X
′|X, a) =

∣∣(s, a, X ′l) ∈ D : s ∈ X,X ′ ∈ X ′l
∣∣∣∣(s, a, X ′l) ∈ D : s ∈ X

∣∣ . (4.24)

Once we have P̃l,θ(X ′|X, a), we can build the δ-MDP as a BMDP. Ac-
cording to [Givan, Leach, and Dean, 2000], the BMDP can be solved
following an optimistic or a pessimistic criterion. Motivated by risk-
aversion, we choose the second one, so as to obtain the solution of



4.4 abstract transition function construction 47

the exact MDP whose transition function is the P̃θ(X ′|X, a) that max-
imizes the probability of transitioning to the abstract states with the
lowest value function.

4.4.3 Stochastic environments

For stochastic environments, we propose a different approach for es-
timating the abstract transition kernel from the collected data while
exploiting regularities of the environment. To do so, we require a
stronger assumption on the transition function P w.r.t. actions:

Assumption 3. For all s ∈ S and a, ã ∈ A:

TV (P(·|s, a), P(·|s, ã)) 6 LTV ‖a− ã‖ , (4.25)

for some positive real constant LTV , where TV(·, ·) denotes the Total Varia-
tion (TV) distance defined in (2.32).

We can use this assumption to derive a Lipschitz constant for the
abstract transition function:∣∣∣P̃(X ′|X, a) − P̃(X ′|X, ã)∣∣∣ 6 ∫

X

w(s)

∫
X ′

∣∣∣P(s ′|s, a) − P(s ′|s, ã)∣∣∣ds ′ ds
6
∫
X

w(s)

∫
S

∣∣∣P(s ′|s, a) − P(s ′|s, ã)∣∣∣ds ′ ds
(4.26)

= 2

∫
X

w(s) TV (P(·|s, a), P(·|s, ã)) ds (4.27)

6 L
P̃
‖a− ã‖ with L

P̃
= 2LTV , (4.28)

where (4.26) extends the inner integral to the entire state space S (the
integrands are all non-negative) and (4.27) is from the definition of
the total variation distance. We formulate the estimation of P̃ as a
maximum likelihood problem, with additional constraints obtained
from (4.28). Let D be the set of available (real or fictitious) samples, in
the form of (s, a, s ′) tuples. Let XD denote the set of visited abstract
states, i. e. for which there exists at least an s ∈ X that appears in D.
Moreover, let AX be the set of actions from the dataset that were per-
formed in a state of X, for X ∈ XD. The objective of our optimization
problem is to maximize the likelihood of the samples:

max
P̃∈R|X|×|A|×|X|

∏
X,X ′∈XD,a∈AX

P̃(X ′|X, a). (4.29)

This can be reformulated as a convex program as follows:

min
P̃∈R|X|×|A|×|X|

−
∑

X,X ′∈XD,a∈AX

log P̃(X ′|X, a)

subject to P̃(X ′|X, a) > 0 ∀X,X ′ ∈ XD, a ∈ AX



48 deterministic policy optimization

∑
X ′∈XD

P̃(X ′|X, a) = 1 ∀X ∈ XD, a ∈ AX.

(4.30)

We then add additional constraints that enforce in our estimate of P̃
the regularity property we know to be true from (4.28):

min
P̃∈R|X|×|A|×|X|

−
∑

X,X ′∈XD,a∈AX

log P̃(X ′|X, a)

subject to P̃(X ′|X, a) > 0 ∀X,X ′ ∈ XD, a ∈ AX∑
X ′∈XD

P̃(X ′|X, a) = 1 ∀X ∈ XD, a ∈ AX∣∣∣P̃(X ′|X, a) − P̃(X ′|X, ã)∣∣∣
6 L

P̃
‖a− ã‖ ∀X,X ′ ∈ XD, a ∈ AX.

(4.31)

This is still a convex program and can be solved with standard op-
timization tools. In many cases, we can still generate fictitious sam-
ples as in the deterministic setting (see Section 6.2). These are simply
added to the dataset D.



5
T H E O R E T I C A L P R O O F S

In this chapter we provide some theoretical proofs that sustain the
goodness of the solution proposed with the DPO algorithm and pro-
vide further insights that justify the approach we used in the specific
phases of the algorithm. Firstly, we enunciate some theorems in Sec-
tion 5.1, together with some considerations that confirm the consis-
tency of DPO. The proofs of these theorems are provided in Section
5.2.

5.1 theorems

The overall goal that we consider in each iteration of the algorithm
is the maximization of performance improvement J(θ ′) − J(θ). From
the following lower bound we obtain a justification, under Lipschitz
assumptions, for the approach we propose in DPO:

Theorem 5.1. For any deterministic parametric policy πθ : S→ A,
state partition X and deterministic abstract policy ρ : X→ A, let
πθ ′ = PΠΘ(Cρ), where PΠΘ is the projection operator that projects
policies in the policy space ΠΘ and C is the "concretization" opera-
tor that converts abstract policies in concrete policies. Then, under
Assumptions 1 and 2:

J(θ ′) − J(θ) >
1

1− γ

∑
X∈X

∫
X

δθ(s)Aθ(s, ρ(X))ds

−
LQθ

1− γ
‖Cρ− πθ ′‖δθ −

Lshift

1− γ

∥∥θ ′ −θ∥∥ ,
where Lshift = Lδθ

(
LQθ

(
1+ Lπθ ′

)
+ LVθ

)
, Lδθ is from Lemma 2.2,

and LQθ , LVθ are from Lemma 2.1.

This lower bound on performance improvement can serve as a sur-
rogate optimization objective. In particular, the first term provides
a criterion for selecting the abstract policy ρ, while the remaining
terms provide a principled way to project it back into the original
policy space. We perform these two tasks separately, as we said in
Section 4.2 and more specifically in subsection 4.3.3 and subsection
4.3.4. This is clearly a simplification, as the surrogate objective should
be optimized jointly for ρ and θ ′. First, let us consider the projection
part:

min
θ ′∈Θ

‖Cρ− πθ ′‖δθ + λ
∥∥θ ′ −θ∥∥ , (5.1)



50 theoretical proofs

where λ = Lshift
/
LQθ . The first term accounts for the difference be-

tween the piecewise-constant policy and the updated parametric pol-
icy. It would be minimized by an exact projection. Since the error
is weighted by the future-state distribution, we can use the samples
collected with the original deterministic policy to approximately per-
form the projection, which is a regression problem. The second term
accounts for the distributional mismatch between the future-state dis-
tributions of the two parametric policies. It can be added as a regu-
larization term in the regression (subsection 4.3.4). Now we focus on
the problem of selecting the best abstract policy:

max
ρ:X→A

∑
X∈X

∫
X

δθ(s)Aθ(s, ρ(X))ds, (5.2)

and show that the optimal policy of the δ-MDP is indeed a reasonable
choice. This problem has no trivial solution, as we do not know the
advantage function Aθ, and estimating it for all (infinite) states and
actions with our limited samples is out of reach. Let us first define
the equivalent maximization problem:

max
ρ:X→A

∑
X∈X

Wρ(X), (5.3)

where Wρ(X) = Zθ(X)
−1
∫
X δ
θ(s)Qθ(s, ρ(X))ds. Wρ(X) is obtained

from (5.2), we observe that we can maximize the expression by inde-
pendently maximize each term of the sum:

max
ρ:X→A

∑
X∈X

Zθ(X)
−1

∫
X

δθ(s)Aθ(s, ρ(X))ds (5.4)

max
ρ:X→A

∑
X∈X

Zθ(X)
−1

∫
X

δθ(s)
(
Qθ(s, ρ(X)) − Vθ(s)

)
ds (5.5)

max
ρ:X→A

∑
X∈X

Zθ(X)
−1

∫
X

δθ(s)Qθ(s, ρ(X))ds, (5.6)

where in (5.4) Zθ(X)−1 does not depend on ρ, (5.5) is from the def-
inition of advantage function and (5.6) by observing that Vθ does
not depend on ρ. This is equivalent to finding, for each abstract state
X ∈ X, the action that maximizes Wρ(X). In DPO, we solve the δ-MDP

for an optimal (deterministic) abstract policy ρ∗ (subsection 4.3.3),
which maximizes the value function Vρ(X) for all X ∈ X. The fol-
lowing Theorem establishes the similarity of Wρ with Vρ under the
Lipschitz assumptions, justifying our approach:

Theorem 5.2. Fixed a deterministic parametric policy πθ : S→ A and
a state partition X, for any deterministic abstract policy ρ : X → A,
let Wρ(X) = Zθ(X)

−1
∫
X δ
θ(s)Qθ(s, ρ(X))ds. Then, under Assump-

tions 1 and 2, for all X ∈ X, provided ρ(X) ∈ πθ(X):

|Wρ(X) − Vρ(X)| 6
γLVθDmax

1− γ
,



5.2 proofs 51

where πθ(X) ⊆ A denotes the image of X under πθ, i. e. the set of
actions performed in the states s ∈ X according to πθ, LVθ is from
Lemma 2.1 and Dmax = maxX∈X {D(X)}.

An immediate consequence is that:

Wρ∗(X) > Vρ
∗
(X) −

γLVθDmax

1− γ
, (5.7)

i. e. for a sufficiently fine discretization (depending on the environ-
ment regularity) we can use the optimal policy ρ∗ of the δ-MDP as
an approximate maximizer of (5.3). This is also an approximately
optimal solution, for ρ alone (fixed the projection operator), to our
surrogate objective from Theorem 5.1. These theoretical bounds
justify our definition of δ-MDP and how we use the optimal abstract
policy to update the original parameters.

In addition, this analysis provides some insight into how choos-
ing the partition X affects the optimization problem. From (5.7), it
would seem that a finer discretization is always better. However, an
important assumption of Theorem 5.2 suggests that this is not the
case: for the error bound to hold, ρ must be chosen so that, for all
X ∈ X, ρ(X) belongs to πθ(X), the subset of actions performed by the
original policy πθ in the states of X. This additional constraint on
the abstract policy is necessary to keep the discretization error under
control, but it introduces a further model bias in the solution of the
policy optimization problem, since the optimum over the complete
action space may no longer be attainable. This bias is larger when
the restricted action sets are smaller, which may result from very fine
discretizations. Intuitively, we must guarantee a sufficient amount of
variety among the candidate actions of each abstract state. This can
be seen as a trade-off between (passive) exploration and precision.
The state partition should be chosen so as to optimize this trade-off,
which may require an adaptive discretization schedule. We leave the
theoretical study of this problem as future work, instead providing a
sensitivity analysis to grid resolution in Section 6.2.

5.2 proofs

In this section, we provide complete proofs for the formal statements
presented in Section 5.1. In order to do that, we also introduce and
prove some auxiliary lemmas that involve the advantage function
Aθ(s, a) := Qθ(s, a) − Vθ(s), defined according to a policy πθ. This
function is Lipschitz w.r.t. states and actions:

Lemma 5.3. Under Assumptions 1 and 2, for all θ ∈ Θ, s, s̃ ∈ S and
a, ã ∈ A:∣∣∣Aθ(s, a) −Aθ(s̃, ã)∣∣∣ 6 LQθ ‖a− ã‖ + (LQθ + LVθ) ‖s− s̃‖ ,



52 theoretical proofs

where LQθ and LVθ are from Lemma 2.1.

Proof.∣∣∣Aθ(s, a) −Aθ(s̃, ã)∣∣∣ 6 ∣∣∣Qθ(s, a) − Vθ(s) −Qθ(s̃, ã) + Vθ(s̃)∣∣∣
6
∣∣∣Qθ(s, a) −Qθ(s̃, ã)∣∣∣+ ∣∣∣Vθ(s) − Vθ(s̃)∣∣∣

6 LQθ (‖s− s̃‖ + ‖a− ã‖) + LVθ ‖s− s̃‖ (5.8)

= LQθ ‖a− ã‖ +
(
LQθ + LVθ

)
‖s− s̃‖ ,

where (5.8) is from Lemma 2.1. �

The following special case will be useful:

Lemma 5.4. Under Assumptions 1 and 2, for all θ,θ ′ ∈ Θ and s ∈ S:

|Aθ(s, πθ ′(s)) −A
θ(s̃, πθ ′(s̃))| 6 LAθ

θ ′
‖s− s̃‖ ,

where LAθ
θ ′

=
(
LQθ(1+ Lπθ ′ ) + LVθ

)
, and LQθ , LVθ are from Lemma 2.1.

Proof. From Lemma 5.3:

|Aθ(s, πθ ′(s)) −A
θ(s̃, πθ ′(s̃))| 6 LQθ ‖πθ ′(s) − πθ ′(s̃)‖+

+
(
LQθ + LVθ

)
‖s− s̃‖

6
(
LQθ(1+ Lπθ ′ ) + LVθ

)
‖s− s̃‖ ,

(5.9)

where the last inequality is from Assumption 2. �

We can now prove the main Theorem 5.1:

Theorem 5.1. For any deterministic parametric policy πθ : S→ A,
state partition X and deterministic abstract policy ρ : X→ A, let
πθ ′ = PΠΘ(Cρ), where PΠΘ is the projection operator that projects
policies in the policy space ΠΘ and C is the "concretization" opera-
tor that converts abstract policies in concrete policies. Then, under
Assumptions 1 and 2:

J(θ ′) − J(θ) >
1

1− γ

∑
X∈X

∫
X

δθ(s)Aθ(s, ρ(X))ds

−
LQθ

1− γ
‖Cρ− πθ ′‖δθ −

Lshift

1− γ

∥∥θ ′ −θ∥∥ ,
where Lshift = Lδθ

(
LQθ

(
1+ Lπθ ′

)
+ LVθ

)
, Lδθ is from Lemma 2.2,

and LQθ , LVθ are from Lemma 2.1.

Proof. From the Performance Improvement Lemma [Kakade and
Langford, 2002]:

J(θ ′) − J(θ) =
1

1− γ

∫
S

δθ
′
(s)Aθ(s, πθ ′(s))ds



5.2 proofs 53

=
1

1− γ

∫
S

δθ(s)Aθ(s,Cρ(s))ds

+
1

1− γ

∫
S

δθ(s)
(
Aθ(s, πθ ′(s)) −A

θ(s,Cρ(s))
)

ds

+
1

1− γ

∫
S

(
δθ
′
(s) − δθ(s)

)
Aθ(s, πθ ′(s))ds

=
1

1− γ

∑
X∈X

∫
X

δθ(s)Aθ(s, ρ(X))ds

+
1

1− γ

∫
S

δθ(s)
(
Aθ(s, πθ ′(s) −A

θ(s,Cρ(s))
)

ds

+
1

1− γ

∫
S

(
δθ
′
(s) − δθ(s)

)
Aθ(s, πθ ′(s))ds (5.10)

>
1

1− γ

∑
X∈X

∫
X

δθ(s)Aθ(s, ρ(X))ds

−
1

1− γ
LQθ

∫
S

δθ(s) ‖πθ ′(s) − Cρ(s)‖ ds

+
1

1− γ

∫
S

(
δθ
′
(s) − δθ(s)

)
Aθ(s, πθ ′(s))ds (5.11)

>
1

1− γ

∑
X∈X

∫
X

δθ(s)Aθ(s, ρ(X))ds

−
LQθ

1− γ

∫
S

δθ(s) ‖πθ ′(s) − Cρ(s)‖ ds

−
LAθ

θ ′

1− γ
K
(
δθ
′
, δθ
)

(5.12)

=
1

1− γ

∑
X∈X

∫
X

δθ(s)Aθ(s, ρ(X))ds

−
LQθ

1− γ
‖πθ ′(s) − Cρ(s)‖δθ −

LAθ
θ ′

1− γ
K
(
δθ
′
, δθ
)

>
1

1− γ

∑
X∈X

∫
X

δθ(s)Aθ(s, ρ(X))ds

−
LQθ

1− γ
‖πθ ′(s) − Cρ(s)‖δθ −

LδLAθ
θ ′

1− γ

∥∥θ ′ −θ∥∥ ,
where (5.10) is from the fact that X is a partition of S and Cρ(s) = ρ(X)

for all s ∈ X; (5.11) is from Lemma 5.3 with s̃ = s, a = πθ ′(s) and ã =

Cρ(s); (5.12) is from Lemma 5.4 and the definition of the Kantorovich
distance; and the last inequality is from Lemma 2.2. �

We now establish a relationship between the surrogate objective
Wρ(X) and the value function of the current policy in the original
MDP:

Lemma 5.5. Fixed a deterministic parametric policy πθ : S → A and
a state partition X, for any deterministic abstract policy ρ : X → A, let



54 theoretical proofs

Wρ(X) = Zθ(X)
−1
∫
X δ
θ(s)Qθ(s, ρ(X))ds. Then, under Assumptions 1

and 2, for all X ∈ X, provided ρ(X) ∈ π(X), and for all s ∈ X:

|Vθ(s) −Wρ(X)| 6 LVθD(X),

where LVθ is from Lemma 2.1.

Proof.

|Vθ(s)−Wρ(X)| = Zθ(X)
−1

∣∣∣∣∫
X

δθ(s ′)
(
Vθ(s) −Qθ(s ′, ρ(X))

)
ds ′
∣∣∣∣

(5.13)

= Zθ(X)
−1

∣∣∣∣∫
X

δθ(s ′)
(
Qθ(s, πθ(s)) −Q

θ(s ′, ρ(X))
)

ds ′
∣∣∣∣

6 Zθ(X)
−1

∫
X

δθ(s ′)
∣∣∣Qθ(s, πθ(s)) −Qθ(s ′, ρ(X))∣∣∣ ds ′

6
∣∣∣Qθ(s, πθ(s)) −Qθ(s, ρ(X))∣∣∣+Zθ(X)−1∫
X

δθ(s ′)
∣∣∣Qθ(s, ρ(X)) −Qθ(s ′, ρ(X))∣∣∣ ds ′ (5.14)

6 LQθD(πθ(X)) + LQθD(X) (5.15)

6 LQθ(1+ Lπθ)D(X) (5.16)

= LVθD(X), (5.17)

where (5.13) is from the definition of Wρ(X); (5.14) is obtained
by applying the triangular inequality after adding and subtracting
Qθ(s, ρ(X)); (5.15) is from Lemma 2.1 and the fact that both πθ(s)
and ρ(X) belong to πθ(X), and all the considered states belong to X;
(5.16) if from Assumption 2 since:

D(πθ(X)) = sup
a,ã∈πθ(X)

‖a− ã‖

= sup
s,s̃∈X

‖πθ(s) − πθ(s̃)‖

6 Lπθ sup
s,s̃∈X

‖s− s̃‖

= LπθD(X); (5.18)

and (5.17) is from the definition of LVθ in Lemma 2.1. �

Finally, we can relate Wρ to the value function of abstract policy ρ in
the abstract MDP and prove Theorem 5.2.

Theorem 5.2. Fixed a deterministic parametric policy πθ : S→ A and
a state partition X, for any deterministic abstract policy ρ : X → A,
let Wρ(X) = Zθ(X)

−1
∫
X δ
θ(s)Qθ(s, ρ(X))ds. Then, under Assump-

tions 1 and 2, for all X ∈ X, provided ρ(X) ∈ πθ(X):

|Wρ(X) − Vρ(X)| 6
γLVθDmax

1− γ
,



5.2 proofs 55

where πθ(X) ⊆ A denotes the image of X under πθ, i. e. the set of
actions performed in the states s ∈ X according to πθ, LVθ is from
Lemma 2.1 and Dmax = maxX∈X {D(X)}.

Proof. First, by Bellman’s equation:

Wρ(X) = Zθ(X)
−1

∫
X

δθ(s)Qθ(s, ρ(X))ds

= Zθ(X)
−1

∫
X

δθ(s)R(s, ρ(X))ds

+ γZθ(X)
−1

∫
X

δθ(s)

∫
S

p(s ′|s, ρ(X))Vθ(s ′)ds ′ ds (5.19)

= R̃θ(s, ρ(X))

+ γZθ(X)
−1

∫
X

δθ(s)

∫
S

p(s ′|s, ρ(X))Vθ(s ′)ds ′ ds (5.20)

= R̃θ(s, ρ(X))

+ γ
∑
X ′∈X

Zθ(X)
−1

∫
X

δθ(s)

∫
X ′
p(s ′|s, ρ(X))Vθ(s ′)ds ′ ds,

(5.21)

where (5.19) is from Bellman’s equation for Qθ, (5.20) is from the
definition of R̃θ, and (5.21) is from the fact that X is a partition of S.
Hence:

|Wρ(X) − Vρ(X)| =

∣∣∣∣∣γ ∑
X ′∈X

Zθ(X)
−1

∫
X

δθ(s)

∫
X ′
p(s ′|s, ρ(X))Vθ(s ′)ds ′ ds− γ

∑
X ′∈X

P̃θ(X
′|X, ρ(X))Vρ(X ′)

∣∣∣∣∣
(5.22)

= γZθ(X)
−1

∣∣∣∣∣∑
X ′∈X

∫
X

δθ(s)

∫
X ′
p(s ′|s, ρ(X))Vθ(s ′)ds ′ ds

−
∑
X ′∈X

∫
X

δθ(s)

∫
X ′
p(s ′|s, ρ(X))ds ′ dsVρ(X ′)

∣∣∣∣∣ (5.23)

6 γZθ(X)
−1
∑
X ′∈X

∫
X

δθ(s)

∫
X ′
p(s ′|s, ρ(X))

∣∣∣Vθ(s ′) − Vρ(X ′)∣∣∣ ds ′ ds

6 γZθ(X)
−1
∑
X ′∈X

∫
X

δθ(s)

∫
X ′
p(s ′|s, ρ(X))

∣∣∣Vθ(s ′) −Wρ(X ′)
∣∣∣ ds ′ ds

+ γZθ(X)
−1
∑
X ′∈X

∫
X

δθ(s)

∫
X ′
p(s ′|s, ρ(X))

∣∣Wρ(X ′) − Vρ(X ′)
∣∣ ds ′ ds

(5.24)

6 γLVθ
∑
X ′∈X

P̃θ(X
′|X, ρ(X))D(X ′)

+ γ
∑
X ′∈X

P̃θ(X
′|X, ρ(X))

∣∣Wρ(X ′) − Vρ(X ′)
∣∣ (5.25)



56 theoretical proofs

6
γLVθ

∑
X ′∈X P̃θ(X

′|X, ρ(X))D(X ′)

1− γ
(5.26)

6
γLVθDmax

1− γ
,

where (5.22) is from (5.21) and Bellman’s equation for Vρ (the abstract
reward terms cancel out); (5.23) is from the definition of P̃θ; (5.24)
is obtained by applying the triangular inequality after adding and
subtracting Wρ(X); (5.25) is from Lemma 5.5 and the definition of P̃θ;
(5.26) is by recursion on |Wρ(X) − Vρ(X)|; and the last inequality is
from the definition of Dmax. �



6
E X P E R I M E N T S

In this chapter, we test DPO on simulated continuous control tasks. De-
tails on task and policy definitions are provided for each experiment:
in Section 6.1 for the Minigolf experiment, in Section 6.2 for the Dou-
ble Integrator experiment and in Section 6.3 for the Robot Adaptation
experiment. In Section 6.4 we provide details on how experiments
were performed, we also report the results of the tuning phase (pre-
vious to the experiments) performed on some hyperparameters. Hy-
perparameters for all the algorithms are selected via grid search, for
DPO the regularization coefficient λ and the projection step size α are
tuned in this way. Additional results that help to better understand
the behavior of DPO are provided in Section 6.5.

6.1 minigolf

We begin the experimental phase of this work with a one-dimensional
task, adapted from [D’Oro et al., 2019], where the agent has to throw
a ball into a hole by hitting it with a putter as few times as possible.
The policy is an RBF network mapping the scalar state (the ball-hole
distance) to the scalar action (the applied force). The agent receives
a reward of −1 for every intermediate hit, and receives a penalty of
−100 for overshooting, i. e. for throwing the ball over the hole. We
refer to the latter event as a failure in the following. The ball is initial-
ized at a random position at each episode. If not for the initialization,
the environment is deterministic and has nonlinear dynamics, com-
plicated by the variable friction of the course, which is proportional
to the distance of the ball from the hole. We compare DPO with REIN-
FORCE (see subsection 3.1.2 for more details on REINFORCE). The
latter learns the mean and standard deviation of a Gaussian (or nor-
mal) policy, described in subsection 2.3.1. For DPO, we discretize the
state space into 12 equally sized intervals. We use the BMDP approach
with Lipschitz constant1 L∆ = 0.3. We also evaluate DPO under the
simplifying assumption L∆ = 0, obtaining better results in practice.
The initial policy standard deviation and the learning rate for RE-
INFORCE are tuned before running the final experiment. Details on
hyperparameter selection are reported in Section 6.4.

task specifications The state space is one-dimensional and
represented by the interval (0, 20]. States whose value is greater than

1 We assume to know the Lipschitz constant, but it should be estimated from data or
hand-tuned in practice.



58 experiments

20 are set to 20, states whose value is lower or equal to 0 cause the end
of the episode. The action space is one-dimensional and represented
by the interval [10−5, 5]. Actions whose value is outside from the in-
terval are clipped. The environment is deterministic, with a function
f(s, a) that exactly computes the arriving state s ′ from every pair
(s, a):

s ′ = f(s, a) = s− at+ 0.5× dt2,
where t = a

d and d = 5
7 × friction(s)× 9.81. Friction is computed as:

frict(s) = friction_low+
friction_high− friction_low

smax − smin
× s,

where friction_low = 0.131, friction_high = 0.19, smax = 20 and
smin = 0. The Lipschitz constant L∆ of the environment is computed
as follows:

∆(s, a) = −0.5× a2

d(s)
; friction(s) = 0.131+ 2.95× 10−3 × s,

‖∆(s, a) −∆(s̃, a)‖ =
∥∥∥∥−0.5× a2( 1

7× frict(s) −
1

7× frict(s̃)
)∥∥∥∥

=
∥∥−0.0714× a2∥∥ ∥∥∥∥2.95× 10−3 × (s̃− s)

frict(s)× frict(s̃)

∥∥∥∥
(6.1)

= L∆ ‖s− s̃‖ with L∆ = 0.3, (6.2)

where (6.2) is obtained from (6.1) considering the maximum possible
value for actions and the minimum possible value for states, so as to
maximize L∆. At any time step, the reward function depends only on
the current state: the effect of every action performed is observable in
the reward of the next step of the episode:

R(s) =


0 if s ∈ [−4, 0],

−100 if s < −4,

−1 otherwise.

The policy used for this task is a radial-basis network composed of
four Gaussian functions φi, with constant hyper-parameters µi and
σi. The action prescribed by the policy is computed as a = φ(s)Tθ,
where θ ∈ R4, the learned parameters, are the weights given to each
Gaussian function. The initial values for θ are [1, 1, 1, 1]. The RBF
hyperparameters are as follows:

φi(s;µi, σi) = exp
{
−(s− µi)

2
/
(2σ2i )

}
,

µi ∈ (4, 8, 12, 16),

σi ∈ (4, 4, 4, 4).



6.2 double integrator 59

0 200 400 600

−8

−6

−4

−2

Iterations

A
ve
ra
ge

R
et
u
rn

DPO (L∆ = 0)

DPO (L∆ = 0.3)
REINFORCE

REINFORCE*

0 200 400 600

0

10

20

Iterations

F
ai
lu
re
s

Figure 6.1: Minigolf results, averaged over 10 random seeds with 95%
bootstrapped confidence intervals. On the left: average return
(γ = 0.99) per iteration. On the right: number of failing episodes
in a batch of 500 (the same legend applies).

In the case of REINFORCE, a Gaussian noise η ∼ N(0, σ2) is added
to the action, where σ = eω and ω ∈ R is an additional learned
parameter. The initial value for σ is selected as a hyper-parameter.
We set a discount factor of γ = 0.99 and a maximum task horizon of
20 time steps.

results Figure 6.1 shows average return and total failures over it-
erations (all algorithms use a constant batch size of 500 episodes per
iteration). The performance of DPO is comparable with that of REIN-
FORCE. However, the L∆ = 0 version is able to solve the task without
any failure. This is not the case for REINFORCE, not even when the
hyperparameters are explicitly selected as to minimize the number of
failures (REINFORCE* in the figure). In fact, in this task, an almost-
optimal stochastic policy has non-zero probability of overshooting.
This source of risk is removed by DPO, which is entirely deterministic.
However, without explicit safety constraints, a failing policy can still
be learned, as happens in the L∆ = 0.3 case.

6.2 double integrator

Next, we consider a two-dimensional stochastic environment. In the
Double Integrator task [Recht, 2018], a mass on a line must be brought
to a target point by applying a force. The state is two-dimensional
and includes distance from the goal and speed of the mass, both
randomly initialized. The task is modeled as a special case of two-
dimensional Linear-Quadratic Regulator (LQR) [Peters, 2002], which
means the transition function is linear plus an additive zero-mean
Gaussian noise and the optimal policy is also linear. The LQR can be
applied in several situations, for instance [Recht, 2018] shows how to
balance battery life versus speed for a quadrotor. A Gaussian noise on
the output of the transition function makes the task stochastic. Hence,



60 experiments

we use the constrained-max-likelihood approach for DPO presented in
subsection 4.4.3. We can still exploit the underlying linear dynamics
of the task to easily generate fictitious samples. For each abstract state
X, we compute a fictitious sample for each unseen pair (s̃, a), where
s̃ ∈ X and a is sampled from a state s ∈ X. The next states for ficti-
tious samples are computed from the equation (4.15) using L∆ = 0, as
if the noise was not present. In Double Integrator, the Gaussian noise
is added to each dimension of the state independently from the other
one. Then, we can define a separate constraint (similar to (4.31)) for
each of the two dimensions of the state space, possibly with a differ-
ent constant L

P̃
for each dimension, to increase the precision of the

abstract transition function (see Section A.1 for details).

task specifications The environment has a two-dimensional
state and a scalar action. Both the state dimensions and the actions
are represented with real values in the interval [−1, 1]. The arriving
state s ′ is computed with the following equation:

s ′ = As+Ba+ ε, ε ∼ N(0, ν2),

where:

A =

[
1 τ

0 1

]
, B =

[
0
τ

mass

]
,

ν = 0.1, mass = 1 and τ = 1. Since the term ε is a Gaussian noise,
P(s ′|s, a) will be a Gaussian distribution. The reward function is:

R(s) = −(sTQs+ ra2),

(6.3)

where:

Q =

[
1 0

0 0

]
, (6.4)

and r = 0.1. The policy used for this task is linear in the state, with
initial parameters = [−0.3,−0.3]. Hence, the optimal policy is included
among the achievable policies because we are considering a LQR task.
For PGPE, a factored Gaussian hyper-policy N

(
ρ, diag(σ2)

)
is defined

over the two-dimensional parameter space, where σ = eω, ρ,ω ∈
R2 are learned parameters, and ρ is always initialized to [−0.3,−0.3].
Both the components of σ are initialized to the same scalar σ, selected
as a hyper-parameter. We set a discount factor of γ = 0.95 and a
maximum task horizon of 20 time steps.

results We study the performance of DPO under different grid
sizes. We also report the performance of PGPE [Sehnke et al., 2008] as



6.3 robot adaptation 61

0 20 40 60 80 100 120
−6
−5
−4
−3
−2
−1

Iterations

A
ve
ra
ge

R
et
u
rn

DPO 3x3
DPO 9x9

DPO 13x13
PGPE

Figure 6.2: Double Integrator: average return (γ = 0.95) per iteration, av-
eraged over 5 random seeds with 95% bootstrapped confidence
intervals.

a reference. As shown in Figure 6.2, as expected, a very coarse dis-
cretization (3× 3) leads to large errors and instabilities, while a very
fine one (13× 13) limits exploration, resulting in slower convergence
than 9× 9. PGPE is very fast to find the optimal deterministic policy,
but its randomization over policy parameters results in stochastic be-
havior.

6.3 robot adaptation

Finally, we consider a more realistic scenario. A mobile robot on a
flat surface has to reach goal areas specified by the user. The task
is adapted from Safety Gym [Ray, Achiam, and Amodei, 2019] and
based on MuJoCo [Todorov, Erez, and Tassa, 2012]. The robot has a
speed-based actuator for turning and a force-based one for going for-
ward and backward, resulting in a two-dimensional action. Its state is
composed of typical sensor observations (accelerometer, velocimeter,
gyroscope, magnetometer) and a compass pointing to the current
goal, for a total of 9 state variables. The goal is a randomly placed
circular area, and the robot is rewarded for approaching it through a
dense reward signal. Whenever reached, the goal is placed at a new
random position. We initialize the robot with a good deterministic
linear policy, learned with PGPE, whose performance (averaged over
1000 test episodes) is reported as a black dashed line in Figure 6.3.
Imagine this policy has been learned in a controlled environment,
then the robot has been deployed in a facility where random actions
are not permitted.



62 experiments

Then, a fault occurs, in the form of a fixed offset (20°) on the
angle measured by the goal compass. The lower performance of
the original policy after the fault is reported as a red dotted line in
Figure 6.3. A corresponding difference in the agent’s behavior can
be appreciated from the animation feature provided by MuJoCo
to observe the simulation (see subsection 6.5.3). The environment
is deterministic. We also make the simplifying assumption L∆ = 0

and show the results for a hand-tuned regularization parameter λ.
For each policy update, a batch of 10 episodes of 200 steps each is
collected, and we show the average return over each batch.

task specifications This is a custom environment built using
the Safety Gym library [Ray, Achiam, and Amodei, 2019], which re-
lies on the MuJoCo simulator [Todorov, Erez, and Tassa, 2012]. The
task is composed by a mobile robot that moves on a flat surface with
the aim of reaching a randomly placed goal area. The state space
considered in the task is composed by 9 variables that represent the
measurements of some sensors mounted on the robot. The robot is
equipped with four standard sensors (accelerometer, velocimeter, gy-
roscope, magnetometer) and a compass that detects the orientation
of the robot with regard to the goal area. Since the environment is
flat, some of the data coming from the sensor (e. g. vertical acceler-
ation) are unnecessary and are simply discarded in order to reduce
the dimensionality of the state space. The reduced state is composed
by the following variables, reported here in the order in which they
are considered in the implementation. All measurements are in the
robot’s frame of reference:

• Linear acceleration in the plane (coordinates of a 2D vector).

• Cosine and sine of the angle observed by the compass, which
indicates the direction of the goal.

• Angular velocity of the robot (w.r.t. yaw);

• Magnetic flux observed by the magnetometer (coordinates of a
2D vector).

• Linear velocity in the plane (coordinates of a 2D vector).

Note that the robot has no information regarding its position in the
world’s frame of reference, which is not necessary for this task. The
reward function is defined as:

R(st, at) = r×∆distance_from_goal(t),

where r = 1, ∆distance_from_goal = distance(t) − distance(t− 1)
and distance(t) measures the distance of the robot from the goal
at time step t. To compute ∆distance_from_goal, the environment
keeps a memory of previous distances. This, together with the fact



6.3 robot adaptation 63

0 20 40 60 80 100

3

3.5

4

4.5

Iterations

A
ve
ra
ge

R
et
u
rn

DPO
PGPE

Figure 6.3: Robot Adaptation: average return (undiscounted) per iteration,
averaged over 10 random seeds with 95% bootstrapped confi-
dence intervals.

that distance(t) cannot be computed from the available observations,
prevents us to compute R(s, a) for all states and actions, as assumed
in subsection 4.3.2. However, since R(st, at) is independent from at,
we can estimate R(X, a) for any abstract state X and action a simply
by averaging the rewards obtained in the states of X, regardless of
the performed action. The delayed effect of actions on rewards is cap-
tured by also estimating the abstract transition function anyway. For
this task, we use a linear policy. The initial parameters, learned with
PGPE and representing an almost optimal policy before the compass
fault, are reported here:

θ0 =

[
0.11 0.02 4.30 0.11 0.02 0.11 0.02 −0.18 −0.04

−0.01 0.49 0.11 −12.07 1.07 −0.05 −0.22 0.04 −0.40

]
.

For PGPE, a factored Gaussian hyper-policy N(ρ, diag(σ2)) is defined
over the 18-dimensional parameter space, where σ = eω, ρ,ω ∈ R18

are learned parameters, and ρ is initialized as θ0. All the components
of σ are initialized to the same scalar σ, selected as a hyper-parameter.
We set a discount factor of 1 and a maximum task horizon of 200 (2000
in some experiments) time steps.

results Using DPO, the agent can adapt the policy parameters to
the environmental change, as shown in Figure 6.3. The performance
of PGPE is also reported as a reference. Both algorithms are able to
fine-tune the policy back to its original performance. However, DPO

does that without action randomization.



64 experiments

6.4 experimental details

In this section we provide further details on how the experiments
presented in Section 6.1, Section 6.2 and Section 6.3 were conducted.

6.4.1 Hyper-parameter tuning

For each task, we have to tune some hyper-parameters before apply-
ing the different algorithms. We do so via grid search. We define a
set of reasonable values for these parameters and we fix a criterion
for choosing the best parameters to be used in the algorithm. We com-
pute the sum over n iterations of the performance measure (estimated
from the collected samples at each iteration of the algorithm) and av-
erage it over m independent runs, performed with different random
seeds. The values of n and m for the different experiments, together
with other details, are reported in Table 6.1. The results of the grid
search are reported in Tables 6.2-6.7. The bold values in the tables
represent the combination of parameters used to perform the final
experiments. For REINFORCE [Williams, 1992a], the selected hyper-
parameters are the step size α and the policy initial standard devia-
tion σ. For DPO, the learning rate α of the projection phase and the
regularization coefficient λ (see Section 4.3). For PGPE [Sehnke et al.,
2008], the step size α and the hyper-policy initial standard deviation
σ.

Task Algorithm n m N H γ |X|

Minigolf DPO 300 5 500 20 0.99 12

REINFORCE 300 5 500 20 0.99 –

Double Integrator DPO 60 3 500 20 0.95 92

PGPE 100 5 500 20 0.95 –

Robot Adaptation DPO 500 5 1 2000 1 59

PGPE 100 5 10 200 1 –

Table 6.1: Configurations used for hyper-parameter tuning. We denote
with n the number of iterations (policy updates), with m the
number of independent runs, with N the batch size, with H the
task horizon, with γ the discount factor and with |X| the number
of abstract states.

minigolf For REINFORCE (Table 6.3) we performed the final
experiment with two different combinations of parameters: (α =

0.05, logσ = −2) selected according to the criterion used in the tuning
phase and (α = 0.005, logσ = −3), that provided the lowest number
of failures in the tuning phase.



6.4 experimental details 65

α

λ
0.0005 0.001 0.005

0.001 -524.69 -526.51 -538.16

0.005 -529.29 -530.28 -533.53

0.01 -572.35 -573.54 -566.87

Table 6.2: Grid search for DPO on Minigolf.

α

logσ
-4 -3 -2

0.005 -897.95 -883.72 -876.55

0.01 -1011.65 -744.81 -734.89

0.05 -4971.86 -2965.25 -551.86

Table 6.3: Grid search for REINFORCE on Minigolf.

double integrator Hyper-parameter selection was performed
for the 9× 9 discretization, and kept fixed in the final experiments for
other discretizations. We used a fixed α (also for the next task) since
its effects on performance are negligible.

α

λ
0.0001 0.0005 0.001

0.025 -107.52 -108.55 -110.13

Table 6.4: Grid search for DPO on Double Integrator.

α

σ
0.1 0.5 1

0.1 -187.86 -184.57 -190.18

0.5 -174.69 -158.39 -161.64

1 -169.29 -153.93 -159.28

Table 6.5: Grid search for PGPE on Double Integrator.

robot adaptation To verify the convergence of DPO, we run it
on a longer number of iterations than PGPE. We also used a single,
longer episode per iteration, which is more realistic. However, these
settings were aligned for the final experiments, to make the compari-
son fair.



66 experiments

α

λ
0.001 0.01 0.05

0.005 20658.70 23163.38 23553.37

Table 6.6: Grid search for DPO on Robot Adaptation.

α

σ
0.1 0.5 1

0.1 337.33 378.27 358.08

0.5 372.23 413.78 402.46

1 395.88 419.37 405.55

Table 6.7: Grid search for PGPE on Robot Adaptation.

6.4.2 Final Experiments

The results of the final experiments (averaged over multiple runs per-
formed with separate random seeds) are reported in the figures in
Section 6.1, Section 6.2 and Section 6.3. We recap the final configura-
tions in Table 6.8 for the sake of reproducibility.

6.5 qualitative results

In this section, we provide additional results on DPO, with the pur-
pose of better understanding its workings in practice.

6.5.1 Abstract state-space visualization in Robot Adaptation

The Robot Adaptation task has a 9-dimensional state space, dis-
cretized into a Cartesian grid of 5 buckets per dimension. The total
number of abstract states is very large (∼ 106) and could cause compu-
tational issues. However, as mentioned, only a subset of the abstract
state space is actually visited by the agent and needs to be considered
in the computations of DPO. The colormaps of Figures 6.4-6.7 show
the visitation frequencies, for different iterations of the algorithm, of
the abstract states, projected onto two of the most relevant state vari-
ables (the goal compass measurements) for visualization purposes.
Axes labels are the bucket indexes, and the values are the ratios of
total visits over 2000 time steps, averaged over 10 episodes. We can
see that some abstract states are not visited at all. These are ignored
in the estimation of the abstract transition and reward functions, in
the value iteration phase and in the projection phase. Note how the



6.5 qualitative results 67

Task Alg α λ σ n m

Minigolf DPO 0.001 0.0005 – 700 10

REINFORCE 0.05 – e−2 700 10

REINFORCE* 0.005 – e−3 700 10

Double Integrator DPO 0.025 0.0001 – 120 5

PGPE 1 – 0.5 120 5

Robot Adaptation DPO 0.005 0.05 – 100 10

PGPE 1 – 0.5 100 10

Task Alg N H γ |X|

Minigolf DPO 500 20 0.99 12

REINFORCE 500 20 0.99 –

REINFORCE* 500 20 0.99 –

Double Integrator DPO 500 20 0.95 {32, 92, 132}

PGPE 500 20 0.95 –

Robot Adaptation DPO 10 200 1 59

PGPE 10 200 1 –

Table 6.8: Configurations used for hyper-parameter tuning, including
hyper-parameters α, λ and σ. We denote with n the number of
iterations (policy updates), with m the number of independent
runs, with N the batch size, with H the task horizon, with γ the
discount factor and with |X| the number of abstract states.

visits change across iterations, and some previously ignored abstract
states must be added to the abstract MDP. The central states are never
visited, as they correspond to unfeasible configurations (the two vari-
ables are the sine and cosine of an angle and their squares must al-
ways sum to one). We can also see an improvement in the agent’s
behavior: abstract state (0, 2) (the most visited one) corresponds to
the agent facing the goal. After 99 iterations, the visitation frequency
of this state has significantly increased, meaning that the agent is able
to point to the goal very quickly.

6.5.2 Abstract policy visualization in Minigolf

In Figures 6.8-6.15 we visualize the policies (abstract and concrete)
learned by DPO, for different iterations of the Minigolf experiment.
The plots have the original state space on the horizontal axis and the
continuous action space on the vertical one (both are one-dimensional
in this task). The red line represents the deterministic policy, which is



68 experiments

linear in a vector of Gaussian radial-basis features (hence non-linear
in the state). White boxes correspond to the 12 abstract states and
represent the restricted action space considered in the value iteration
phase. Blue boxes represent the range of optimal actions obtained via
value iteration. Note that, in this task, several optimal abstract policies
exist. These are all considered as valid targets in the projection phase,
in order to make the projection to the original policy space easier. The
dotted line denotes the maximum action allowed by the environment
(larger actions are clipped). When the box is placed above the dotted
line, then, all the actions should be considered as optimal. This is not
the case of the rightmost box in Figures 6.14 and 6.15, where only a
subset of the actions above the dotted line is considered as optimal.
Indeed, by solving the task with L∆ = 0, we assume that the friction
has the same effect everywhere in the abstract state, which is not true
in general. As a result, actions sampled where the friction is lower are
evaluated better than they are.

6.5.3 Agent behavior visualization in Robot Adaptation

Visualizing the robot’s behavior in different phases of the algorithm
is useful to understand both the effect of the simulated fault and
the nature of the performance drop it introduces (highlighted with
horizontal lines in Figure 6.3). We uploaded four videos here2 that
show how the robot behaves in different situations. In the first video,
we observe the behavior of the robot when the actions are prescribed
according to an almost-optimal policy (learned with PGPE) and no
fault is introduced in the task. The robot easily turns in the direction
of the goal and then goes straight to it. In the second video, we can see
the behavior of the robot, equipped with the same policy as before,
once a damage in the goal compass (a constant offset, see Section 6.3
for further details) is simulated in the task. In the video we can see
that the robot easily moves toward the goal but, in proximity of it,
it performs a loop around the goal before reaching it. In the third
video we observe the behavior of the robot at the 8th iteration of the
DPO algorithm. The performance sensibly improves but the behavior
is still similar to the previous one. In the fourth video, we observe
the behavior of the robot equipped with the policy learned after 100
iterations of DPO. The robot is now able to reach the goal without
performing any loop around it, as he was doing before the compass
damage was introduced in the task.

2 https://www.youtube.com/playlist?list=PLT0QhH0oHUgVWxikBgc9be78LCNgyqlWO

https://www.youtube.com/playlist?list=PLT0QhH0oHUgVWxikBgc9be78LCNgyqlWO
https://www.youtube.com/playlist?list=PLT0QhH0oHUgVWxikBgc9be78LCNgyqlWO


6.5 qualitative results 69

Figure 6.4: Robot Adaptation: ab-
stract state visitation
frequencies at the ini-
tial iteration of DPO.

Figure 6.5: Robot Adaptation: ab-
stract state visitation
frequencies at the fifth
iteration of DPO.

Figure 6.6: Robot Adaptation:
abstract state visita-
tion frequencies at
the eighth iteration of
DPO.

Figure 6.7: Robot Adaptation: ab-
stract state visitation
frequencies at the 99-
th (final) iteration of
DPO.

Figure 6.8: Minigolf: initial policy
for DPO.

Figure 6.9: Minigolf: policy after 33
iterations of DPO.



70 experiments

Figure 6.10: Minigolf: policy after
66 iterations of DPO.

Figure 6.11: Minigolf: policy after
99 iterations of DPO.

Figure 6.12: Minigolf: policy after
199 iterations of DPO.

Figure 6.13: Minigolf: policy after
299 iterations of DPO.

Figure 6.14: Minigolf: policy after
399 iterations of DPO.

Figure 6.15: Minigolf: final policy
after 499 iterations of
DPO.



7
C O N C L U S I O N S

We proposed a policy optimization algorithm (DPO) that is com-
pletely deterministic for the whole learning process and allows
to learn a satisfactory deterministic policy in tasks where the
environment meets some Lipschitz properties of regularity. We
tested the validity of the proposed approach on simulated control
tasks and we provided the results of the performed experiments
in Chapter 6. In Chapter 5, we also provided theoretical support
to this approach under these regularity assumptions on the envi-
ronment, which we deem realistic for continuous control problems
of practical interest [Kober, Bagnell, and Peters, 2013]. Indeed, in
many continuous problems from industrial robotics, for instance,
the effects of actions vary smoothly with the observed states and
with the actions themselves. Driven by the goal of finding a learning
approach able to ensure safe exploration, we proposed the con-
struction of an abstract MDP (δ-MDP) where the exploration usually
obtained with random actions is replaced with a passive exploration,
ensured by the regularity assumptions on the environment. The
support provided by the theory on δ-MDP combined with the
advantages provided by PS methods, such as the robustness to
noise or the possibility of encoding domain knowledge in the policy
definition, motivated us to follow the strategy presented in this work.

We have shown, empirically, that DPO is competitive with pol-
icy gradient methods, at least in the fine-tuning of parametric
controllers. We think that the latter experiment, that we discussed in
Section 6.3, is an important example for the deploying of lifelong-
learning agents in the real world, where changes in the environment
and in the goal can occur. This kind of setting may represent a natural
application for RL in the near future. In this setting, DPO can remove
the unnecessary source of risk deriving from random actions. As a
consequence, several problems related to the safety of the agent’s
hardware and of the environment are avoided. Random exploration
may still play an indispensable role in learning challenging tasks
from scratch, which should be done in a controlled environment.
Indeed, the limitation of the feasible actions for each abstract state of
the δ-MDP prevents, in many cases, to evaluate the optimal actions
and an excessive number of iterations may be necessary before that
these actions can be evaluated.

Being the first algorithm of his kind, DPO leaves room for sev-



72 conclusions

eral improvements that we present here as open questions and
future research directions of this work. First of all, state aggregation
could be performed in a more informed way, in order to guarantee a
more efficient exploration. In this work, we analyzed some theoretical
aspects of state abstraction (Section 2.5) and we decided to consider
only partitions of the state space in which all the subsets have the
same size. However, we captured an important trade-off between
precision and exploration in the algorithm that can be addressed by
selecting a finer or coarser aggregation of states (Figure 6.2). Starting
from this trade-off, new solutions for the state aggregation can be
evaluated: partitions of the state space with finer subsets covering
the most visited regions and coarser subsets covering the less visited
ones, adaptive discretization through algorithm’s iterations or soft
aggregation [Singh, Jaakkola, and Jordan, 1995]. Moreover, we could
make a more efficient use of the collected data, by re-using samples
collected from previous policies once they are put in relationship
with the new policy. Establishing a relationship between consecutive
δ-MDPs may also prove necessary to provide convergence guarantees
for DPO. Since DPO only removes the risk deriving from action
stochasticity, a further extension of this work that would be of great
practical relevance is the combination of DPO with other safe RL

approaches. Removing the algorithm’s hyperparameters is also im-
portant, since a deployed agent cannot perform grid-search. Finally,
when available, prior knowledge on the controlled system should
be integrated with collected samples in order to better estimate the
abstract model of the δ-MDP.



B I B L I O G R A P H Y

Abbeel, Pieter, Adam Coates, and Andrew Ng (Nov. 2010). “Au-
tonomous Helicopter Aerobatics through Apprenticeship Learn-
ing.” In: I. J. Robotic Res. 29, pp. 1608–1639 (cit. on p. 30).

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John
Schulman, and Dan Mané (June 2016). “Concrete Problems in AI
Safety.” In: (cit. on p. 31).

Baek, Donghoon, Minho Hwang, Hansoul Kim, and Dong-Soo Kwon
(June 2018). “Path Planning for Automation of Surgery Robot
based on Probabilistic Roadmap and Reinforcement Learning.” In:
pp. 342–347 (cit. on p. 1).

Clouse, J. (1997). On Integrating Apprentice Learning and Reinforcement
Learning TITLE2: tech. rep. USA (cit. on p. 30).

Dean, Thomas, Robert Givan, and Sonia Leach (Feb. 2013). “Model
Reduction Techniques for Computing Approximately Optimal So-
lutions for Markov Decision Processes.” In: Proceedings of the 13th
Annual Conference on Uncertainty in Artificial Intelligence (UAI-97) (cit.
on p. 22).

Deisenroth, Marc, Gerhard Neumann, and Jan Peters (Aug. 2013). A
Survey on Policy Search for Robotics. Vol. 2 (cit. on p. 13).

D’Oro, Pierluca, Alberto Maria Metelli, Andrea Tirinzoni, Matteo Pa-
pini, and Marcello Restelli (2019). “Gradient-Aware Model-based
Policy Search.” In: CoRR abs/1909.04115 (cit. on p. 57).

Driessens, Kurt and Sašo Džeroski (Dec. 2004). “Integrating Guidance
into Relational Reinforcement Learning.” In: Machine Learning 57,
pp. 271–304 (cit. on p. 30).

Duan, Yan, Xi Chen, Rein Houthooft, John Schulman, and Pieter
Abbeel (2016). “Benchmarking Deep Reinforcement Learning for
Continuous Control.” In: ICML. Vol. 48. JMLR Workshop and Con-
ference Proceedings. JMLR.org, pp. 1329–1338 (cit. on p. 14).

Ferns, Norman, Prakash Panangaden, and Doina Precup (July 2012).
“Metrics for Finite Markov Decision Processes.” In: Proceedings of the
20th Conference on Uncertainty in Artificial Intelligence (cit. on pp. 20,
37).

García, J. and F. Fernández (Aug. 2015). “A comprehensive survey on
safe reinforcement learning.” In: 16, pp. 1437–1480 (cit. on pp. 2,
29).

Gehring, Clement and Doina Precup (May 2013). “Smart exploration
in reinforcement learning using absolute temporal difference er-
rors.” In: vol. 2, pp. 1037–1044 (cit. on p. 31).



74 bibliography

Geibel, Peter and Fritz Wysotzki (2005). “Risk-Sensitive Reinforce-
ment Learning Applied to Control under Constraints.” In: ArXiv
abs/1109.2147 (cit. on p. 30).

Givan, Robert, Thomas L. Dean, and Matthew Greig (2003). “Equiv-
alence notions and model minimization in Markov decision pro-
cesses.” In: Artif. Intell. 147.1-2, pp. 163–223 (cit. on p. 37).

Givan, Robert, Sonia M. Leach, and Thomas L. Dean (2000).
“Bounded-parameter Markov decision processes.” In: Artif. Intell.
122.1-2, pp. 71–109 (cit. on pp. 15–17, 42, 46).

Heger, Matthias (1994). “Consideration of Risk in Reinforcement
Learning.” In: ICML (cit. on p. 29).

Kakade, Sham M. and John Langford (2002). “Approximately Op-
timal Approximate Reinforcement Learning.” In: ICML. Morgan
Kaufmann, pp. 267–274 (cit. on p. 52).

Kober, Jens, J. Andrew Bagnell, and Jan Peters (2013). “Reinforcement
learning in robotics: A survey.” In: I. J. Robotics Res. 32.11, pp. 1238–
1274 (cit. on p. 71).

Li, Lihong, Thomas J. Walsh, and Michael L. Littman (2006). “Towards
a Unified Theory of State Abstraction for MDPs.” In: ISAIM (cit. on
pp. 19, 21, 22, 38).

Li, Yuxi (Aug. 2019). Reinforcement Learning Applications (cit. on p. 1).
Moldovan, Teodor and Pieter Abbeel (May 2012). “Safe Exploration in

Markov Decision Processes.” In: Proceedings of the 29th International
Conference on Machine Learning, ICML 2012 2 (cit. on p. 30).

Papini, Matteo, Matteo Pirotta, and Marcello Restelli (May 2019).
Smoothing Policies and Safe Policy Gradients (cit. on p. 32).

Peters, Jan (2002). Policy gradient methods for control applications. Tech.
rep. (cit. on p. 59).

– (Jan. 2010). “Policy gradient methods.” In: Scholarpedia 5, p. 3698

(cit. on p. 23).
Peters, Jan and Stefan Schaal (2008). “Reinforcement learning of mo-

tor skills with policy gradients.” In: Neural networks : the official jour-
nal of the International Neural Network Society 21 4, pp. 682–97 (cit. on
pp. 13, 26).

Pirotta, Matteo, Marcello Restelli, and Luca Bascetta (2015). “Pol-
icy gradient in Lipschitz Markov Decision Processes.” In: Machine
Learning 100.2-3, pp. 255–283 (cit. on pp. 17–19).

Puterman, Martin L (2014). Markov Decision Processes.: Discrete Stochas-
tic Dynamic Programming. John Wiley & Sons (cit. on p. 6).

Rachelson, Emmanuel and Michail G. Lagoudakis (2010). “On the
locality of action domination in sequential decision making.” In:
ISAIM (cit. on p. 19).

Ray, Alex, Joshua Achiam, and Dario Amodei (2019). “Benchmark-
ing Safe Exploration in Deep Reinforcement Learning.” In: (cit. on
pp. 61, 62).



bibliography 75

Recht, Benjamin (2018). “A Tour of Reinforcement Learning: The View
from Continuous Control.” In: CoRR abs/1806.09460 (cit. on p. 59).

Sehnke, Frank, Christian Osendorfer, Thomas Rückstieß, Alex Graves,
Jan Peters, and Jürgen Schmidhuber (2008). “Policy Gradients with
Parameter-Based Exploration for Control.” In: ICANN (1). Vol. 5163.
Lecture Notes in Computer Science. Springer, pp. 387–396 (cit. on
pp. 2, 26, 60, 64).

Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wier-
stra, and Martin Riedmiller (June 2014). “Deterministic Policy Gra-
dient Algorithms.” In: 31st International Conference on Machine Learn-
ing, ICML 2014 1 (cit. on pp. 2, 27, 28).

Singh, Satinder P., Tommi Jaakkola, and Michael I. Jordan (1995). “Re-
inforcement Learning with Soft State Aggregation.” In: Advances
in Neural Information Processing Systems 7. Ed. by G. Tesauro, D. S.
Touretzky, and T. K. Leen. MIT Press, pp. 361–368 (cit. on p. 72).

Stulp, Freek and Olivier Sigaud (Oct. 2012). “Policy Improvement
Methods: Between Black-Box Optimization and Episodic Reinforce-
ment Learning.” In: (cit. on p. 27).

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning:
An introduction. MIT press (cit. on pp. 1, 5, 11, 25).

Sutton, Richard S., David A. McAllester, Satinder P. Singh, and
Yishay Mansour (1999). “Policy Gradient Methods for Reinforce-
ment Learning with Function Approximation.” In: NIPS (cit. on
pp. 13, 24).

Thomas, Philip, Bruno da Silva, Andrew Barto, Stephen Giguere,
Yuriy Brun, and Emma Brunskill (Nov. 2019). “Preventing undesir-
able behavior of intelligent machines.” In: Science (New York, N.Y.)
366, pp. 999–1004 (cit. on p. 31).

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “MuJoCo: A
physics engine for model-based control.” In: IROS. IEEE, pp. 5026–
5033 (cit. on pp. 61, 62).

Turchetta, Matteo, Felix Berkenkamp, and Andreas Krause (2016).
“Safe Exploration in Finite Markov Decision Processes with Gaus-
sian Processes.” In: Proceedings of the 30th International Conference
on Neural Information Processing Systems. NIPS’16. Barcelona, Spain:
Curran Associates Inc., 4312–4320. isbn: 9781510838819 (cit. on
p. 32).

Williams, Ronald J. (1992a). “Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning.” In: Machine
Learning 8, pp. 229–256 (cit. on pp. 23, 64).

– (1992b). “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning.” In: Machine Learning 8,
pp. 229–256 (cit. on p. 25).

Zhang, Chuheng, Yuanqi Li, and Jian Li (2019). “Policy Search by
Target Distribution Learning for Continuous Control.” In: CoRR
abs/1905.11041. arXiv: 1905.11041 (cit. on p. 33).

http://arxiv.org/abs/1905.11041


76 bibliography

Zhao, Tingting, Hirotaka Hachiya, Voot Tangkaratt, Jun Morimoto,
and Masashi Sugiyama (Mar. 2013). “Efficient Sample Reuse in Pol-
icy Gradients with Parameter-Based Exploration.” In: Neural com-
putation 25 (cit. on p. 27).



A
A P P E N D I X

a.1 maximum likelihood problem in double integrator

In this section we present the maximum likelihood problem consid-
ered in the Double Integrator task to estimate the abstract transition
function of the δ-MDP. Starting from the convex program defined in
subsection 4.4.3 and motivated by the nature of noise in the task, de-
scribed in Section 6.2, we solve the following problem:

min
P̃∈R|X|×|A|×|X|

−
∑

X,X ′∈XD,a∈AX

log P̃(X ′|X, a)

subject to P̃(X ′|X, a) > 0 ∀X,X ′ ∈ XD, a ∈ AX∑
X ′∈XD

P̃(X ′|X, a) = 1 ∀X ∈ XD, a ∈ AX∣∣∣∣∣∣
∑
j∈J

P̃(X ′ij|X, a) −
∑
j∈J

P̃(X ′ij|X, ã)

∣∣∣∣∣∣
6 L

P̃i
|a− ã| ∀i ∈ I, X ′ ∈ XD, a ∈ AX

(A.1)∣∣∣∣∣∑
i∈I

P̃(X ′ij|X, a) −
∑
i∈I

P̃(X ′ij|X, ã)

∣∣∣∣∣
6 L

P̃j
|a− ã| ∀j ∈ J, X ′ ∈ XD, a ∈ AX.

(A.2)

In the Double Integrator task, the state is two-dimensional and
the state abstraction is performed by considering an I× J grid. We
represent the single dimensions with the indexes i ∈ I and j ∈ J,
Xij ∈ X is the abstract state corresponding to the combination of i-th
(w.r.t. I) and j-th (w.r.t. J) dimensions. The action is one-dimensional,
hence we consider the absolute value |a− ã| as measure of the action
distance. In the problem we can use two (possibly) different Lipschitz
constants L

P̃i
and L

P̃j
, one for each dimension.

The Lipschitz constant L
P̃i

for a generic dimension can be de-
rived starting from the Assumption 3. We use the Pinsker’s inequality
to bound the TV distance:

TV (P(·|si, a), P(·|si, ã)) 6
√
1

2
DKL (P(·|si, a), P(·|si, ã)), (A.3)



78 appendix

where DKL is the Kullback–Leibler divergence. In the case of two Gaus-
sian distributions N1 and N2 with the same standard deviation σ and
different means µ1 and µ2, we have:

DKL (N1,N2) =
σ2 + (µ1 − µ2)

2

2σ2
−
1

2

=
(µ1 − µ2)

2

2σ2
. (A.4)

In the Double Integrator task, a Gaussian noise N(0, σi) is added to
each dimension i of the arriving state. If we consider each dimension
separately, as we did in the maximum likelihood problem, P(·|si, a)
is a Gaussian distribution N(s ′i, σi), where s ′i is the i-th dimension of
the arriving state in absence of noise and σi is the standard deviation
of the Gaussian zero-mean noise added to s ′i. In the Double Integrator
task, s ′ = As+Ba. Hence, going back to (A.3) we write:

TV (P(·|si, a), P(·|si, ã)) 6
∣∣∣Bi(a− ã)

2σi

∣∣∣, (A.5)

where
∣∣∣ Bi2σi ∣∣∣ = LTV , with Bi the i-th row of matrix B (Bi is a scalar

in this task). Since L
P̃i

= 2LTV , the Lipschitz constant of the problem,

for the i-th dimension, is L
P̃i

=
∣∣∣Biσi ∣∣∣.


	Dedication
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Abstract
	Abstract
	Estratto
	Estratto
	1 Introduction


	2 Preliminaries on Reinforcement Learning
	2.1 Markov Decision Processes
	2.1.1 Policy and Value Functions
	2.1.2 Performance Measure
	2.1.3 Properties of RL techniques

	2.2 Tabular Solution Methods
	2.2.1 Dynamic Programming
	2.2.2 Uncomplete Knowledge of MDPs

	2.3 Policy Search
	2.3.1 Policy Representations

	2.4 Special Markov Decision Processes
	2.4.1 Bounded MDPs
	2.4.2 Lipschitz MDPs

	2.5 State abstraction
	2.5.1 Irrelevance Abstractions


	3 State of the Art
	3.1 Policy Gradient Methods
	3.1.1 Policy Gradient Theorem
	3.1.2 Policy Gradient Algorithms

	3.2 Safe Reinforcement Learning
	3.2.1 Safe Exploration


	4 Deterministic Policy Optimization
	4.1 Passive Exploration via -MDPs
	4.1.1 -MDPs

	4.2 Deterministic Policy Optimization
	4.3 Algorithmic Details
	4.3.1 State aggregation
	4.3.2 Abstract MDP estimation
	4.3.3 Solving the abstract MDP
	4.3.4 Projection

	4.4 Abstract Transition Function construction
	4.4.1 Deterministic linear environments
	4.4.2 Deterministic non-linear environments
	4.4.3 Stochastic environments


	5 Theoretical Proofs
	5.1 Theorems
	5.2 Proofs

	6 Experiments
	6.1 Minigolf
	6.2 Double Integrator
	6.3 Robot Adaptation
	6.4 Experimental Details
	6.4.1 Hyper-parameter tuning
	6.4.2 Final Experiments

	6.5 Qualitative Results
	6.5.1 Abstract state-space visualization in Robot Adaptation
	6.5.2 Abstract policy visualization in Minigolf
	6.5.3 Agent behavior visualization in Robot Adaptation


	7 Conclusions
	 Bibliography
	A Appendix
	A.1 Maximum Likelihood Problem in Double Integrator


