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Abstract 

Polydimethylsiloxanes (PDMS) has found many applications in bioengineering, biotechnology 

and soft robotics. As part of a PhD wider project which aims at using SYLGARD® 184 to produce 

soft robots, this thesis develops a method to characterize it under biaxial deformation states 

on an available άƳƛŎǊƻ-ōƛŀȄƛŀƭ ǘŜǎǘƛƴƎ ƳŀŎƘƛƴŜέΦ With the ambition to develop a method which 

can be used for other similar άǎƻŦǘέ materials, two setups and two different geometries are 

designed to achieve an equibiaxial deformation state. The results show how the first geometry 

and a modification of the second can provide the desired state, the latter with good 

equibiaxiality but lower reliability (defined in this work as the statistic of samples giving the 

needed state over the number of tested samples) due to experimental limits in reaching 

deformation higher or at least comparable to these obtained with the first one. 

In the second part of this project, the data from uniaxial tensile tests and pure shear tests were 

used to identify the parameters of different hyperelastic models which are then used to 

simulate the biaxial experiment. The results, suggest that the Arruda-Boyce model is suitable 

to simulate the material as compressible in the whole deformation range considered in this 

work. Moreover, simpler models such as Yeoh and Neo-Hookean model can be used with a 

maximum strain up to 0.4. 

 

Riassunto 

I polidimetilsilossani (PDMS) trovano svariate applicazioni negli ambiti della bioingegneria, 

biotecnologia Ŝ ŘŜƭƭŀ ǊƻōƻǘƛŎŀ Řƛ άƳŀǘŜǊƛŀ ǎƻŦŦƛŎŜέ. Nell'ambito di un progetto di dottorato più 

ampio, che ha lo scopo di utilizzare il SYLGARD® 184 per produrre soft-robot, questa tesi 

sviluppa un metodo per caratterizzarlo in stati di deformazione biassiale su una particolare 

macchina detta άmicro-biassialeέ. Con l'ambizione di sviluppare un metodo che possa essere 

utilizzato anche per altri materiali cedevoli, due configurazioni e due diverse geometrie sono 

state progettate per ottenere uno stato di deformazione equibiassiale. I risultati mostrano 

come la prima geometria e una modificazione della seconda riescano a fornire lo stato voluto, 

quest'ultima con una buona equibiassialità ma una minore affidabilità (data dal rapporto tra i 

campioni che forniscono lo stato corretto e il numero totale di campioni testati) per via di limiti 

sperimentali nel raggiungere deformazioni più alte o almeno comparabili a quelle ottenute con 

la prima. 

Nella seconda parte del progetto, i dati delle prove di trazione uniassiali e delle prove di taglio 

puro sono stati usati per valutare i parametri di diversi modelli con cui simulare le geometrie 

biassiali. I risultati mostrano come Arruda-Boyce sia adatto a simulare il materiale come 

comprimibile per l'intero intervallo di deformazione utilizzato in questo lavoro. Altri modelli 

più semplici come Yeoh e Neo-Hooke possono essere utilizzati fino ad una deformazione 

massima di 0.4. 
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1.1. 

CǊƻƳ ǘƘŜ ǿƻǊŘ άǊƻōƻǘŀέ ƳŜŀƴƛƴƎ άŎƻǊǾŝŜέ ƛƴ /ȊŜŎƘ ŀƴŘ άƭŀōƻǳǊέ ƛƴ {ƭƻǾŀƪΣ ŀ ǎŀǘƛǊƛŎ ǘŜǊƳ 

indicating the one who will be born with the only purpose to accomplish those works 

unpleasant for humans, robots have gained the interest of the scientific community precisely 

for the possibility to relieve people form such jobs. [1] 

The process to invent a robot starts from observing which architecture is being exploited by 

the human or animal to complete a certain task (i. e. which bones, muscles, tissues are used), 

then mimic those functions and augment them in strength, speed and accuracy. 

The possibility to create more efficient and precise workers which do not suffer for the task 

and repetitiveness is the focal reason why robots have been developed during the years.  

To paraphrase G.M. Withesides, these sophisticated machines still hold many problematics 

ƛƴǾƻƭǾƛƴƎΥ ǘƘŜ ŜŦŦŜŎǘ ƻŦ άƧƻō-ǎǘŜŀƭƛƴƎέ ƻƴ ǘƘŜ ŜŎƻƴƻƳƛŎǎΣ ǘƘŜ ƭƛƳƛǘŜŘ ŎŀǇŀōƛƭƛǘƛŜǎ ƻŦ ƛƴŀƴƛƳŀǘŜ 

forms, the incompatibility related to the gentleness of hard and stiff architectures with the 

human body and soft tissues, and finally the potential hazard of AI and probable future 

combination of humans with machines.  

However, limiting to an analysis of the applicability, issues can be condensed to: low άǘŀǎƪ-

densityέ in the sense robots are usually heavier and more voluminous the harder is the task, 

low efficiency in energy employment, and the already mentioned incompatibility with soft 

tissues such as human skin, organs and blood vessels. 

Starting from the 1980s a new field of robotics developed in attempt to explore all the possible 

ways to create robots. This field is called Soft Robotics. 

The idea is to rely on materials that constitutionally mimic tissues and those architectures one 

wants to reproduce. [2] 

As the name says, the main constituent of these robots is a soft matter, which can sound 

confusing as a precise definition of it has not been given. Despite this, a common concept has 

developed during the last decades of the past century and this term in now well used in 

literature. aŀǘŜǊƛŀƭǎ ǘƘŀǘ ŀǊŜ ŎŀǘŜƎƻǊƛȊŜŘ ŀǎ άǎƻŦǘέ Ŏŀƴ ōŜ ŀƭƭ those ŎƻƴǎƛŘŜǊŜŘ άǎƻŦǘ ŜƴƻǳƎƘέ 

ōȅ ǘƘŜ ƛƴŘƛǾƛŘǳŀƭ ŜȄǇŜǊƛŜƴŎŜ ƻŦ ǘƘŜ ǊŜǎŜŀǊŎƘŜǊ ŀƴŘ ƳƻǊŜ ƛƴ ƎŜƴŜǊŀƭ Ƴƻǎǘ ƻŦ άƴƻƴ-ǘǊŀŘƛǘƛƻƴŀƭέ 

materials.[3] 

Examples of this category are: elastomers, flexible sheets, fabrics, granules ( containing a wide 

set of materials spreading from sand to coffee beans), foams, gels and liquid crystals.[2] 

By the beginning of the 21th century researches in the field of soft robotics have increased in 

numbers due to the large and growing interest into developing robots which can work in 

contact with delicate surfaces and materials such as biological tissues and membranes (to 

create, for example, new chirurgical supports), or robots capable of doing complex motion like 

insinuating in crevices and adapting themselves to external constraint and obstacles. 

Application fields are mostly biomedical, biomechanical and bioengineering in general but the 

theoretical adaptability of these systems sow the seeds for applications in search and rescue, 

disaster response and human assistance. 

Soft robots contain different components, mainly a soft structure (at times containing 

specifically oriented rigid parts), actuators and sometimes sensor. This last part is usually 
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characteristic of small soft robots of dimensions lower than 1mm and therefore not 

highlighted in this introduction.  

Among developed soft-robots is possible to make a classification according to the type of 

motion and the actuator mechanism that allows it.[2][3] 

 

Actuator mechanism Maximal Output Force (N) Maximal Stroke (mm) Mass (g) 

Electromagnetic 1 ς 30  3 ς 10  10 ς 1Ωллл 

Pneumatic 10 ς 200 6 ς 25  1 ς 30Ωллл 

Shape Memory Alloy 
(SMA) 

0.08 ς 100 3 ς 100 0.001 ς 100 

Biological muscles 5e3 ς 15e3 150 ς 600  N/A 

Electro Active 
Polymers (EAP) 

0.02 ς 200 0.01 ς 200  1e-5 ς 1 

Piezoelectric 0.08 ς 500 0.01 ς 1 0.1 ς 1000 
Table 1ς Actuator characteristics [3] 

Pneumatic and Shape-Memory Alloys are common actuator mechanisms used to achieve 

peristaltic, reaching and caterpillar locomotion. The first is hard to manufacture due to the 

needing of channels while the second is controlled by the temperature of the medium 

therefore of limited applicability. Moreover, SMAs consume most input energy to heat the 

filament itself leading to very low efficiency (ͯ1%). Nonetheless, compressed air and 

pressurized fluids provide relative high forces and displacements while SMAs guarantee similar 

forces with lower mass and higher displacements. Electro Active Polymers are used both as 

structural elements to create artificial muscles or in form of gels as active medium. An example 

are DEAs (dielectric elastomeric actuators) which provide high strain to stress ratio and mass 

specific power but require rigid frame to pre-strain the elastomers and high voltages, often 

undesirable. These polymers are competing against piezoelectric actuators having similar 

forces but smaller mass and (in some cases) much higher strain than their rivals.[4] 

Material selection for soft robotics is strictly related to the type of application and therefore to 

the actuation needed. It is possible, though, to give a general oversight on the materials used.  

Most diffused material is silicone rubber, in particular PDMS because it is easy to mould and 

seal and has properties good for both prototyping and production.[2] In general, among other 

soft materials excluding gels and granules, silicones presents the lowest modulus (ranging from 

few tens kPa to few MPa), the highest breaking strain (from 60% to 1000%) and can be used to 

produce any sort of actuators. 

Other materials are: polyurethanes, polyamides, EVA TPA, PEEK mesh, polyester, polyethylene, 

polytetrafluoroethylene, polymer gels (non EAP). 

For what concern the rigid parts implemented sometimes in the soft structure, they are tuned 

for the specific application and it is not in the interest of this project to undergo into such 

details. Generally: fibres are made of carbon or aluminium while among SMAs Nickel-Titanium 

alloys are the most used. 

 

Well-known achievements in soft robotics are [5]:  

- The soft matter worms (Fig. 1) which are stimuli responsive composite that can simulate 

the peristaltic άǿƻǊƳ-ƭƛƪŜέ locomotion by creating travelling waves of contraction and 

expansion. 
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Figure 1 ς "Worm-like" soft robot 

- The caterpillar soft robots capable to simulate the caterpillar locomotion which consists in 

adjusting the internal pressure of a single tubular chamber to control stiffness and stress 

distribution on the body. This type of soft robot is capable of fast ballistic locomotion (Fig. 

2) and widely used to grab of objects as for the case of άƘŀƴŘ-ƭƛƪŜέ ǎƻŦǘ Ǌƻōƻǘǎ  [6][7].  A 

simple example of application is that cited in [8] where it can be seen a combination of 

hard robot (arm) and the soft gripper (Fig.3).  

 

Figure 2 ς Ballistic locomotion 

 

Figure 3 ς Combination of hard and soft robots 

- The άoctopus-ƭƛƪŜέ ǎƻŦǘ Ǌƻōƻǘǎ which are the hardest to reproduce and the most 

interesting thanks to their ability to grab things at different forces, hence for the possibility 

of strong or gentle interactions (Fig. 4).  Real octopuses are also capable of rapid extension 

of the arms or intricated motions thanks to the complex muscle structure and the 

presence of peripheral neurons within the arms which allow an incredibly fine control. An 

attempt to mimic this complex structure was prototyped using silicone-gold EAPs. [9][10] 



 

 9 

 

Figure 4 ς Gentle interaction of a "tentacle-like" soft robot with a human wrist 

Concluding, principal problematics related to soft robots are the limited weight that can be 

ǎǳǎǘŀƛƴŜŘ ōȅ ŀ άǎƻŦǘ-ōƻŘȅέ ŀƴŘ ǘƘŜ ǘŜǘƘŜǊƛƴƎΦ 

The first is widely seen in nature where, in fact, all creatures living on terrain and lacking an 

exoskeleton are small and larger creatures, such as octopuses, can only be found in water 

where they can exploit the hydrostatic response to sustain their weight. 

The latter is a huge limitation to the creation of small, portable soft robots. To give a definition 

one can say that whenever the actuators are connected to an external power source (of 

ŎƻƳǇǊŜǎǎŜŘ ŀƛǊΣ ǾƻƭǘŀƎŜΣ ŜǘŎΧύ ƛǘ ƛǎ ŎŀƭƭŜŘ άǘŜǘƘŜǊŜŘέΣ ŀƴ ŜȄŀƳǇƭŜ ŀǊŜ ƘŀǊŘ Ǌƻōƻǘǎ ƛƳǇƭƛŜŘ ƛƴ ŀ 

production line. Nonetheless there are plenty hard robots which are instead non-tethered, 

examples given drones and floor cleaning robots. Creating such soft robots capable to sustain 

not only their own weight but also that of the untethered power supply is difficult. 

Many examples of non-tethered soft robots rely on stimuli responsive materials in 

combination with their tuned environments. 

 

1.2. 

This Master Thesis is part of a PhD project which aims to develop a composite material for soft 

sensors or actuators, composed by an elastomeric matrix and carbon or glass fibres or fabrics. 

This part focus on developing a methodology for biaxial testing of non-reinforced elastomers 

and use it to test the elastomeric material under equibiaxial and other complex deformation 

states.  

As a variety of matrices and fibres are of interest for the stated applications, the project is a 

collaboration with the Chair of Materials Science and Testing of Polymers of 

Montanuniversitaet Leaben and the Institute of Lightweight Design and Structural 

Biomechanics of Vienna University of Technology. Those Partners complete tasks concerning 

the fatigue and fracture testing and the FEM modelling of the fillers respectively. The 

Politecnico di Milano was identified as expert in fields of multiaxial loading of elastomeric 

materials, thus a valid partner to fulfil the data requirement for a complete modelling and 

achievement of deformation-coupling systems. 

The importance of biaxial tests is given by the fact that most rubbers and soft materials show a 

non-linear behaviour, therefore it is not possible to use parameters determined for a load 

state to foreseen the behaviour in a different state. To define parameters that allow to better 



 

 10 

simulate the behaviour under various load states it is needed to fit them using a higher 

number of data. 

The state of art of biaxial testing does not comprehend a standard therefore different 

techniques and specimen shapes are tuned per case. There are, in general, two methods for 

biaxial testing: the bubble tests and the cross-specimen biaxial test.[11] The first one consists 

of the inflation of a circular diaphragm, 2mm thick, through small steps of increasing pressure. 

[12] [13][14] The second relies on in-plane tension using dynamometers with four clamps and 

two loading axes perpendicular to each other. This second technique is particularly useful for 

thin soft materials such as biological tissues, hydrogels and thin elastomers, since they are 

often available as small pieces or impossible to clamp as needed for the bubble technique. [15]  

The Department of Chemistry, Materials and Chemical Engineering of the Politecnico di Milano 

has the possibility to operates biaxial tests on two different machines based on the in-plane 

technique. One is that presented in [16], the other has been developed by the professors P. 

Vena and D. Gastaldi and their master students D. Carriòn Ryabinin and M. Gallo [17] and 

designed  to perform both uniaxial and biaxial tests on soft biological tissues. This second 

machine was that selected to operate in this case since the moulds available to produce the 

samples are small. 

The biaxial technique of in-plane stretches require geometries that allow large and 

homogeneous strains. The equibiaxial strain can be achieved only in a small area near the 

centre and geometries are optimized to try to maximize this area of equibiaxiality. [18] The 

limits to consider a good equibiaxiality changes among different research depending on the 

purposes, the definition implied for this work can be found in paragraph 4.2.1 and appendix C. 

The geometries implied are either squared or cross-shaped and clamped either exploiting 

appropriate thicker areas developed ad-hoc on the sample, making use of needles or with 

mechanical clamps. The machine cited above was designed to be suitable to use mechanical 

clamping, gluing or needles. Due to the strong hourglass effect seen in rubbers upon cut, using 

the needles or creating the cuts used typically to increase homogeneity was not considered a 

possible solution, therefore the focus was oriented to cross-shaped specimens. Different 

studies on shapes have been carried out and provide a base for this work.[19][20][21] 

 

1.3. 

Soft robotics material must be soft and easy to produce and safe to work with humans 

depending on the applications, as seen before PDMS is a common choice. The material 

selected for this work is SYLGARD184 produced by Down Corning, a bi-component silicon 

rubber which offers good mechanical properties and stable chemistry at a competitive price. 

Moreover, it is widely used for soft robotics applications.[22][23][24]  

It is not bio-degradable and its components are not dangerous for human health.[25][26] Once 

cured the rubber it is not dissolved by chemical reagents, to etch it extreme solutions are 

needed such as 30 wt% KOH + 20 wt% IPA+50 wt% deionized water solution at 70 °C[27]. It 

shows low permeability to common solvent with maximum of swelling in presence of toluene. 

Even stronger mixtures of sulfuric acid and hydrogen peroxide lead to simple swell and micro 
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channels at surface without dissolving the rubber[28]. Therefore, it is considered bio-inert and 

safe to handle. 

 The producer highlight that this material was not specifically designed nor tested for medical 

or pharmaceutical applications, but studies on its biocompatibility have been carried out 

showing that limited hazardous substances were released in contact with biological tissues and 

blood vessels within the given period of time, hence no dangerous cytotoxicity was registered 

on the cells. These studies do not assess the complete biocompatibility of the material and 

further researches on the amount of released non-reacted cytotoxic chemicals are needed. 

[29][30] However SYLGARD184 is used as substrate for cell cultures.[23][31] 

Producer declared mechanical properties and curing conditions for 10:1 mix ratio are shown in 

the tables below.[32] 

Property Value Unit 

Viscosity (before curing) 3500 cP 

Specific gravity (cured) 1.03  

Tensile strength (cured) 6.7 MPa 
Table 2ς Properties of SYLGARD 184 

Cure temperature Cure time 

100°C 35 

125°C 20 

150°C 10 
Table 3 ς Curing condition of SYLGARD 184 

 

 

2.1. 

2.1.1. Effect of curing conditions 

The material has been previously tested to assess the difference in mechanical properties with 
uniaxial tests after different curing conditions. [33] 
Rheological tests were also cŀǊǊƛŜŘ ƻǳǘ ŀǎǎŜǎǎƛƴƎ ǘƘŜ ǾŀƭǳŜ ƻŦ DΩ ŦƻǊ ŘƛŦŦŜǊŜƴǘ ƘŜŀting ramps 
and different curing temperatures.  
DǊŀǇƘ м ǎƘƻǿǎ ǘƘŜ ǾŀƭǳŜǎ ƻŦ DΩ ǘŀƪŜƴ ŀǘ нрϲ/ ŀŦǘŜǊ keeping the material for four hours at 
100°C. The temperature reached through four different heating ramps: 1°C/min, 2°C/min, 
4°C/min and 8°C/min. The results show how the values is almost not influenced by the heating 
ramp. 
DǊŀǇƘ н ǎƘƻǿǎ ƛƴǎǘŜŀŘ ǘƘŜ ǾŀƭǳŜǎ ƻŦ DΩ ŀǘ нрϲ/ ŀŦǘŜǊ ŦƻǳǊ ƘƻǳǊǎ ŀǘ ǎƛȄ ŘƛŦŦŜǊŜƴǘ ǘŜƳǇŜǊŀǘǳǊŜǎΣ 
reached with a heating ramp of 8°C/min: 65°C, 75°C, 85°C, 100°C, 125°C and 150°C. 
These data are part of the unpublished PhD project of T. Bardelli of the Department of 
Chemistry, Materials and Chemical Engineering of the Politecnico di Milano and were first 
presented at the XV Convegno Nazionale AIMAT Ischia Porto, 21-24th  July 2019 for the poster 
ά9ffect of crosslinking process parameters on the rheological behaviour of a 
polydimethylsiloxaneέ ǿƛǘƘ ǘƘŜ collaboration of professors Briatico Vangosa F. and Marano C. . 
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Graph 1 ς DΩ ŀǘ нрϲ/ ŀŦǘŜǊ ƘŜŀǘƛƴƎ ŀǘ мллϲC, different heating ramps. 

 
Graph 2 ς DΩ ŀǘ нрϲ/ ŀŦǘŜǊ ƘŜŀǘƛƴƎ ŀǘ ŘƛŦŦŜǊŜƴǘ ŎǳǊƛƴƎ ǘŜƳǇŜǊŀǘǳǊŜǎΣ уϲ/κƳƛƴ ƘŜŀǘƛƴƎ ǊŀƳǇΦ 

 
It has been decided to stick to intermediate curing conditions among those suggested by the 
produces (125°C) to develop the model keeping in mind the possibility to extend such analysis 
to the limit curing conditions in the future. The heating ramp was 12.5°C/min obtained 
through a pre-heating of the mould in an oven at 250°C temperature. 
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2.1.2. Introduction to test methodology: DIC

Since this project mainly concerns the biaxial testing of silicone, the technique selected to 

measure the deformations is Digital Image Correlation through the software VIC2D-2009®, 

which is capable to provide a map of the deformations on a surface of the sample. 

This technique consists in following the displacement of a (random) speckle pattern applied on 

the surface of the sample throughout a sequence of images.[34] The software is capable of 

capturing the local displacements, calculating its derivative and create the displacement and 

the deformation matrix1 of any point of the surface if a correct series of images is provided. 

Regarding the test analysis a reference image is selected per each sample which corresponds 

to the situation of undeformed state, then the software recognizes the pattern in each 

sequent frame and comparing it with the reference one, it evaluates displacements and 

deformations. VIC2D-2009 also allows to set a calibration image to evaluate the ratio of 

millimetre per pixel. 

Considerations on the recording setup and the production on the samples, that will be 

discussed in the following paragraphs, where done referring to the Good Practise Guide of the 

International DIC society. [35] Since the production of the pattern on the sample heavily 

depends on the ability of the operator, this process was used for both uniaxial and bi-axial 

testing to gain experience.  

The sensitivity to the operator ability is strong on these surfaces, needless to say that if the 
amount of dispersed paint is too much, the small distance between the drops causes 
immediate coalescence and an imperfect pattern as it can be seen in figure 5. 

 

Figure 5 ς Comparison between coalesced black drops and flat black and silver drops at same zoom 

The sample preparation method was evaluated by comparison of the measurements taken 

through DIC with those obtained by video-extensometry, a technique which is considered well 

performing and largely applied within the research group. 

Distortion calibration were not done in this case due to the high-performance cameras 

implied.2  

 

 
1 For more details see Appendix A 
2 Further consideration on distortion and pattern quality can be found in Appendix B 
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2.2. 

2.2.1. Casting 

Cast procedure begins weighting the curing agent and the prepolymer to a ratio 1:10, the fluid 

is mixed for 15 minutes then poured into the mould and degassed in vacuum for 1 hour at 60 

cmHg. 

The mould is made in aluminium. It is shaped with sides 80mm long and round connector 

radius of 10mm. Given the thickness of 1 άά the total volume is 7256.63mm3. 

 

The weighted material is usually 10g of prepolymer and 1g of curing agent since a lot remains 

in the beaker after pouring due to high viscosity and a little excess remains in the cast. 

 

The cast is then closed with four screws limiting the screw torque to 1Nm and put into one 

oven at 250°C for 10 minutes (necessary to achieve 125°C inside the cast) then moved to 

another oven at 125°C for 75 minutes. 

The process is sketched in figure 6. 

 

Figure 6 ς Casting of PDMS 
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2.2.2. Die cutting and pattern deposition 

Silicone slabs are removed from the cast and cut to obtain the needed specimens.  

The material requires a pressure around 15 kg/cm2 to cut ōǳǘ ǎƘƻǿǎ ǎƻƳŜ άƘƻǳǊƎƭŀǎǎ ŜŦŦŜŎǘέ 
due to the expansion of the rubber under the die during cutting. The hourglass effect is so 
called in die cutting since due to the expansion, the blade cuts excessive material and once the 
rubber is free to recover the elastic deformation, the crossection of the specimen resemble an 
hourglass. The effect on this rubber has been controlled under microscope: it is not critical on 
the borders but it is sufficient to do not allow the cut of holes of diameter smaller than 4mm.  

Geometries of the dies are discussed in paragraph 2.4. 

To produce the pattern needed for subsequent DIC analysis, firstly the surface is cleaned with 
soap and water to eliminate possible grease residues coming from handling, then dried with 
some paper towel dabbing gently and minding not to lose visible paper particles at the surface. 
 
Then the sample is fixed with paper tape to a white, clean surface. 
The pattern is done using the airbrush FENGDA® BD-180 with water-based acrylic paint. Thin 
layers of black and silver paint are applied waiting for the previous layer to dry to avoid 
coalescence of the drops. Spraying of the paint is tested on the white surface to reach the 
desired pattern. The sample is then handled gently to avoid disrupting the thin pattern, stored 
carefully away from dust or other particles that can easily attach to the silicone surface. 
Main steps to prepare the samples are sketched in the infographic (figure 7). 
 

 

Figure 7 ς Sample preparation. 1)Slab obtained through casting process. 2)Die cutting 2.1)Example shape of cut 
specimen 3)Cleaning 4)Drying 5)Pattern deposition through air-brush. 
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2.3. 

As seen in paragraph 1.2, unlike uniaxial tests equibiaxial tensile tests cannot rely on a 

standard for the sample geometry. To characterize the performances of a sample, generally it 

is used a factor indexing the amount of equibiaxiality. The aim of a good geometry is than that 

to achieve the widest area at the centre of the specimens in which a certain condition of the 

factor is verified. In this paragraph observations on each tested geometry are reported. It is to 

highlight that choices which led to modifications in the geometry where taken after obtaining 

and interpreting the results with the previous one. Therefore, a more complete discussion 

about geometry may be found in chapter 4. 

 

2.3.1. Uniaxial geometry (G0) 

The geometry chosen for uniaxial testing follows the ISO37 on rubber testing. 

 

Figure 8 ς Dumbbell shape ISO 37 on rubber testing 

A cutting die was designed on purpose which allowed to cut two specimens from the same 

slab.  

 

2.3.2. Biaxial geometry -1 (G1) 

The first geometry (figure 9) developed for biaxial testing was inspired by ISO 37 and literature 
[36] by crossing shapes similar to two uniaxial dumbbells. This geometry was chosen after 
completing the uniaxial tests which showed it would have allowed to remain in the load 
limitations of the biaxial machine that will be described later in chapter 3. 
 
The fillet radius at centre was the smallest possible to achieve by the die cut manufacturer, 
that is 1mm. 
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Figure 9 ς First biaxial geometry, G1. 

Since the shape indicated in the standard is dimensioned to provide a uniform deformation 

state at the centre, the biaxial geometry is designed such that the length of the straight arms is 

the same and the intersection is obtained over 5 extra millimetres which account for the width 

of the perpendicular arms and for half the fillet radius. As for the uniaxial this geometry is 

designed to be clamped at 10 mm from the borders. In practise, due to a miscalculation in the 

available space, it is clamped at 25 mm from the borders. Further explanation on the mistake 

are presented in the next chapter (figure 24), while the effects on the stress concentration at 

clamping are not critical, as a matter of fact, specimens with larger fillet radius starting directly 

out of the clamping section are proven to perform better. [20] 

 

 

2.3.3. Biaxial geometry -2 (G2) 

After elaborating the results obtained from G1, a second geometry was designed to increase 
the Area of Equibiaxiality (see section 4.2) at centre and achieve higher biaxial deformations 
while remaining within the load limits the instrumentation. 
Moreover, this second geometry was designed to ease up the alignment of the specimen on 
the supports. (see section 3.2.2) 
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Figure 10 ς Second biaxial geometry. 

Analysis on the effectiveness of geometries like this to achieve large and uniform equibiaxial 

deformation areas can be found in literature[20]. The cited geometries can be characterized by 

the ὒȾὙ ratio where ὒ is the length between the clamps and Ὑ the fillet radius of the central 

zone. Table 4 sums up the values of the ratios for the geometries in literature and those 

designed here, where Type A is similar to G1 and Type D is similar to G2, geometries are shown 

in figure 11. 

 Type A Type D G1 G2 

ὒȾὙ 50 2.667 30 2.44 
Table 4 ς L/R ratio for geometries from the literature (Type A and D) and those proposed in this work (G1 and G2) 

  

Figure 11 ς Two of the geometries presented in  [20] : a) Type A , d) Type D 
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This chapter introduce and explain the different methodologies used in this thesis highlighting 

the encountered difficulties and suggested solutions. 

 

3.1. 

3.1.1. Recording setup 

To achieve a good image of the samples the ueye camera UI-5490SE was used mounting a 

NIKON 28-105 along with 2x magnifier. To a 105mm focal length corresponds an angle of 

about 25° and the smallest distortion3. The camera has a sensor dimension ƻŦ мκ нέ 

(6.41mm 4.59 mm) and the distance between the camera and the sample was 1500 mm. 

Therefore, the angle of view is reduced allowing a vertical field of view of 110 mm. Introducing 

a 2x multiplier the field of view halves to 55 mm. The horizontal field of view is always in 

ŜȄŎŜǎǎ ŀƴŘ ǘƘŜ ǊŜŘǳŎŜŘ ǿƛǘƘ ǘƘŜ ǊŜŎƻǊŘƛƴƎ ǎƻŦǘǿŀǊŜΦ άIƻǊƛȊƻƴǘŀƭέ ŀƴŘ άǾŜǊǘƛŎŀƭέ ǊŜŦŜǊ ǘƻ ǘƘŜ 

physical reference system of the machine, rotated images of the sample with and without the 

multiplier are reported in figures 14 and 15. The resolution in these cases is respectively 30 

m˃/px and 10 ˃m/px as the first setup with the multiplier was settled differently and closer to 

the dynamometer.  

In this case distortion correction was not done relying on the low level of distortion of the 

lenses. To achieve uniform light the sample was lighted with 2 led panels at low intensity (Fig. 

13): their main purpose was to avoid shadows and correct the light outside.  

Complications in this setup reside in the alignment of the camera with the sample. This was 

achieved with the help of a spirit level.  

 
3 See appendix B 
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Figure 12 ς Optical setup for uniaxial testing: lateral view 

Figure 13 ς Optical setup for uniaxial testing: top view with led panels 

 

Figure 14 ς Recorded image of uniaxial tension sample at the beginning of the test, without 2x multiplier 
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Figure 15 ς Recorded image of uniaxial tension sample at the beginning of the test, with 2x multiplier 

The software VIC2D-2009 is able to determine the deformations both with or without the 

multiplier. The records done without the multiplier were taken to take advantage of the 

possibility to observe the deformation at the clamp and verify that the clamping method was 

providing uniform deformations at the centre of the dog-bone samples, even if some slip is still 

present. Moreover, the presence of the multiplier will not allow to follow the centre of the 

sample at 60% strain as it would end up outside the frame, therefore for deformations higher 

than 40% strain the multiplier cannot be used with the stated setup. 

 

3.1.2. Testing setup 

Uniaxial tests are carried out on INSTRON 5967 with 2KN cell which allows measures with an 

uncertainty of 1 mN. The sample was held in place by two mechanical static plane clamps. The 

test was developed to reach the 60% of deformation: before strain hardening effects. This 

allowed to focus the attention on the behaviour of Sylgard before hardening, as observed from 

tests performed in another thesis. [33] A velocity of 5 mm/min (83 ˃ m/s) was used and a final 

displacement of 25mm was imposed to the mobile crosshead. 

Complications in this type of test reside in alignment of the sample and in efficient clamping. 

Regarding the alignment, the sample had signs draw with a marker indicating the centre of the 

area to clamp that had to visually coincide with points on the clamp, considerations on the 

efficiency of this method are left to the reader. In figure 14 one can see the two marks on the 

specimen, the corresponding marks on the clamps are not visible since they are perpendicular 

to the sample, on the edge of the clamp. Regarding the efficiency of clamping, slippage of the 

sample mainly arises from rubber thickness reduction while stretching (due to rubber low 

compressibility) which cannot be compensated by the clamps with an overall reduction of 

clamping force as the sample elongates. This behaviour can be observed in a rough way 

drawing a line on the specimen at the clamp, which then moves far from the clamp during 

tension, or when moving back the shaft to the initial position where a buckling of the specimen 

can be seen as if it was compressed. This is due to the increased amount of material between 

the clamp after the slip, with respect to the initial amount at initial position. 
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3.2. 

3.2.1. Recording setup 

For biaxial testing the recording was done again using a ueye, but the optic this time was the 

stereomicroscope Olympus SZ61TR (figure 16), specification of which are reported in table 5. 

This system allows a field of view ranging 13,5x19mm with 0,67 zoom up to 8,5x12mm with 

1,2 zoom. Further zoom was not interesting for the purposes of this thesis. The resolution 

obtained with this setup ranges from 0.00486 mm/px to 0.00263 mm/px depending on the 

zoom. 

 

Figure 16 ς Stereomicroscope SZ61TR , Olympus, Jp 

Optical System  Greenought Optical System  

Zoom Ration  6,7:1 
Magnification 0,67x-4,5x 
Observation tube  Binocular (Tube Inclination Angle 

45°/60°)/Trinocular Observation Tube (0.5x 
Photographic Lens Built-in)  

Table 5 ς  Optical setup specifications 

 

3.2.2. Testing setup 

The  dynamometer used for this test [17] is called micro-biaxial-testing machine (˃BTM) due to 

its capability to achieve slow small displacements and resolve low forces with a sensitivity of 

1 m˃ It is composed of two 50N cells and four independent micro-translation stages (PM 

M111-custom) to control the position of four arms. Figure 17 shows a stage highlighting the 

direction of movement and the threaded holes used to fix the arms on position. 
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Figure 17 ς PI M111-Custom. Red circles indicate the screw holes. Red arrow indicates the direction of movement 

Since the machine was designed to work with the possibility to immerse the sample in a tank, 

the mentioned arms are άarcέ shapeŘ ŀƴŘ ƘŀǾŜ ǘǿƻ ǎŜǘ ƻŦ ŘƛƳŜƴǎƛƻƴǎΥ ǘƘŜ άƭŀǊƎŜ ŀǊŎέ όŦƛƎΦ м8) 

is present on the two motors which do not carry load cell ǿƘƛƭŜ ǘƘŜ άǎƳŀƭƭ ŀǊŎέ όŦƛƎΦ м9) is 

mounted where the cells are mounted and designed with a lower mass in order to reduce the 

bending moment acting on the load cells. 

The large arms are attached to the motor with six screws on the blue plate of figure 17, the 

small arms are composed of two pieces connected by the cell: one is an anchor presenting the 

ƘƻƭŜǎ ǘƻ ŎƻƴƴŜŎǘ ǘƻ ǘƘŜ ƳƻǘƻǊΣ ǘƘŜ ƻǘƘŜǊ ƛǎ ǘƘŜ ǇǊƻǇŜǊ άŀǊŎέΦ 

This solution on one side allows to work with materials that need contact with a fluid or 

simulate conditions of fixed temperature controlling the temperature of the fluid in the tank. 

On the other side, when there is no need for a tank the characteristic shape introduces two 

bending moments that disrupt the measure of the force, moreover the offset of the cell is 

strongly influenced by: the screwing force used to fix the cell on the structure and the screwing 

force used to fix the sample support on the machine. 

To identify the four arms a number is associated to them, figure 20 sketches up the top view of 

the pieces assembled where the stages are hidden below the large arms and the anchors. Only 

the screw holes useful for clamping are represented for the sake of simplicity. 

The arms have two screw holes at a distance of 106mm to fix the clamping supports and can 

move for a maximum displacement of 15mm per arm allowing a maximum 30 mm along one 

direction. Table 6 sums up the characteristics of the B˃TM. 

 

Load Cell Load range 0-50 [N] 

 Static overload safe 100% capacity 

 Overload 200% capacity 

Displacement control Travel range 15 [mm] 

 Min. incremental motion 0.050 [ m˃] 

 Max velocity 1.5 [mm/s] 
 Table 6 ς ˃ .¢a ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ 
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Figure 18 ς Large aluminium arc 

 

Figure 19 ς Small aluminium arc and anchor 
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Figure 20 ς {ŎƘŜƳŀǘƛŎ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ƻŦ ǘƘŜ ˃.¢aΣ ǘƻǇ ǾƛŜǿΦ !ǊǊƻǿǎ ƛƴŘƛŎŀǘŜ ǘƘŜ ŀƭƭƻǿŜŘ ŘƛǎǇƭŀŎŜƳŜƴǘΦ The micro-
stages are not visible from above since are covered by either the anchor or the large arm. 

 

Tests were done at different displacement speed to verify if and how it affects the slippage of 

the sample. Results which are function of time (force versus time and deformation versus 

time) are comparable after an opportune time-shift while results function of each other (force 

versus deformation) are already comparable, therefore one can conclude that no viscoelastic 

effects are present in the material. Graph related to this will be presented in chapter 4. 

 

G1 samples Speed 
[˃Ƴκǎϐ 

G2 samples Speed 
[˃Ƴκǎϐ 

G3 samples Speed 
[˃Ƴκǎϐ 

1 100 1 15 1 25 

2 50 2 15 2 25 
3 50 3 15   
4 25 4 10   

5 25 5 25   
Table 7 ς Tests speed 
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3.2.3. Sample alignment issues and procedure 

The material cannot be directly clamped on the arms. In general, the tested materials are too 

soft and giving thin long arms in the specimen shape would not be able to support the weight, 

letting the sample centre bending downward. In this case the cast used to obtain the slab is 

only 80 mm wide while the min distance between the arcs is 59.5 mm, leaving about 10 mm of 

material to be clamped directly on the aluminium arc. This solution was not considered 

suitable for the stated bending of the sample, the alignment problems arising from clamping 

directly on the machine (also related to the small volume of maneuver) and the screw position 

that are way too far from the specimen and would not allow to correctly apply the clamping 

force. Figure 21 sketches up the wedge that would arise in the specimen at the clamping 

section due to the bad positioning of the screws. 

Therefore, the sample is first mounted on a set of PMMA supports (fig 22) which are then fixed 

on the arcs using the 2 fixing screws (fig. 23). This solution allowed to design the shorter 

geometry G2, clamped with longer supports. 

 

 

Figure 21 - Exaggerated sketch of the clamping of G1 done directly on the aluminium arms 

 

Figure 22 ς ά!ōƻǾŜέ ŀƴŘ άōŜƭƻǿέ taa! ǎǳǇǇƻǊǘǎ ŦƻǊ Dм and G2 
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Figure 23 ς Footage of one sample of geometry G3 clamped on the machine 

In case of Geometry-1 and its supports, even if the geometry was designed to have a dog-bone 

shape, the space to drill the holes on the sides of the wide section of the dog-bone was not 

sufficient and in the end the supports were designed to clamp the specimen 15 mm after the 

designed clamping position resulting in the system sketched in figure 24. 

 

 

Figure 24 ς ѻǘƘ ƻŦ ǘƘŜ ŎƭŀƳǇƛƴƎ ǎȅǎǘŜƳ ƻŦ DмΣ ǿƛǘƘ ŀƴŘ ǿƛǘƘƻǳǘ ǘƘŜ άŀōƻǾŜέ ǎƭŀōΦ The red circle represents the 
originally designed position of the holes. The red dashed line represents the originally designed clamping position 
exploiting the dog-bone shape. The blue dashed line represents the limit of the aluminium arm. 

The arcs are designed such that the load axes of the cells are 2.5 mm above the fixing planes 

(fig25), since the tested samples are 1 mm thick the PMMA supports have a thickness of 2 mm 

so that the load axis falls in the middle of the sample. It is to note that supports for G1 (fig 22) 

have a thickness of 2,5 mm due to material availability at the time. 
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Figure 25 ς Position of the load axis of a cell 

This connection system shows important complications related to the three different 

coordinate systems implied. Figure 26 is a schematic representation of this issue. 

As a matter of fact, the first reference system is that of the machine, which was assumed to be 

self-aligned (axes of arcs 1 and 3 are aligned and perpendicular to axes of arcs 2 and 4) even if 

it is to note that some misalignments due to deformation of the aluminium under repetitive 

loadings was observed. The second reference system is that of the supports which are 

connected to the fixing plane of the arcs in two points, the absence of a third connection point 

allows some misalignments with respect to the arc, mainly due to the screw force applied. In 

this case the system has small misalignments that can be neglected such that the plates can be 

considered aligned with the machine. 

Finally, the third reference system is that of the sample, its misalignment with respect to the 

machine is the sum of the small misalignments between the plate and the machine and 

between the sample and the plate. Due to the previous assumption, all the misalignment is 

assumed to be due the unperfect clamping of the sample within the plates. 

 

 

Figure 26 ς Implied reference systems in plane 
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To minimize these misalignments, an alignment device was built (fig. 27) in which grooves 

were milled ǘƻ ǎƛƳǳƭŀǘŜ ǘƘŜ άл Ǉƻǎƛǘƛƻƴέ ƻŦ ǘƘŜ ŀǊƳǎ ƻŦ ǘƘŜ ƳŀŎƘƛƴŜΦ ¢ƘŜ άōŜƭƻǿέ ǎǳǇǇƻǊǘǎ Ŏŀƴ 

be inserted in the grooves and fixed with tape then the sample is positioned above and 

ŀƭƛƎƴŜŘΦ ¢ƘŜ άŀōƻǾŜέ ǇƭŀǘŜǎ ŀǊŜ ǇƻǎƛǘƛƻƴŜŘ ŀǎ ǿŜƭƭ ŀǎ ǘƘŜ ōƻƭǘǎ ǿƘƛŎƘ ŀǊŜ ǘƘŜƴ ŎƭƻǎŜŘΦ   

 

Figure 27 ς Alignment setup for G2 

 

It is to note that it is impossible to mount the sample directly on the machine due to the 

reduced space of manoeuvre.  

Differences between G1 and the other geometries are mainly related to the fact that the 

alignment is by-sight exploiting lines correctly drew on the sample and on the PMMA supports. 

For G2 instead, the alignment is assured by locking the sample at its largest section in the 

supports. Drawbacks of the latter setup are related to the Poisson effect in fact, as the screws 

are closed one at time, this causes the rubber to expand first in one direction generating 

misalignments. In G1, due to the miscalculation cited previously (figure 24) the section of 

material clamped between the plates is far from the screws, as it will be se in chapter 4 this is 

considered one of the possible causes for these samples to show lower misalignments. 

Moreover, the long thin arms and generally less stiff geometry allow to compensate some 

displacements instead of rigidly transferring it to the centre. 

As it will be discussed in section 4.2.2, the machine has a defect on arc 4 which involves and 

offset at the 0 position of about 0.5 mm. This means that when the operator commands the 

machine to move all arms to position 0, arm 4 is actually shifted of about 0.5mm. The value of 

this error has not been evaluated precisely yet and the presence of this defect was hypnotized 

while testing G1. To go around the problem, for G2 a PMMA cross (fig.28) was designed 

together with an elongated hole for the screws to connect the support with the arcs. 

With this method, after the sample is clamped on the alignment board, it can be moved to the 

arcs positioned at 0.7 despite 4 being 0.2 , then the supports are lightly screwed to the arcs, 

ǘƘŜ ŎǊƻǎǎ ƛǎ ǇƻǎƛǘƛƻƴŜŘ ŀƴŘ ǘƘŜ άōŜƭƻǿέ ǇƭŀǘŜǎ ŀǊŜ ƳƻǾŜŘΣ ŀōƭŜ ǘƻ ǎƭƛŘŜ ŀƭƻƴƎ ǘƘŜ ƘƻƭŜ ǳƴǘƛƭ ŀ 

relaxed position of the sample is achieved. This method does not allow a perfect alignment 

between the arcs and the supports but make sure that there are no initial strains and stresses 

despite those of compression at the clamps. 
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Figure 28 ς Alignment cross, top view.  
Dark blue indicates the aluminium arms of the machine at position 0. The blue parts are the PMMA supports, to note 
ǘƘŜ ŜƭƻƴƎŀǘŜŘ ƘƻƭŜǎΦ ¢ƘŜ ƭƛƎƘǘ ōƭǳŜ ǇŀǊǘΣ ōŀǊŜƭȅ ǾƛǎƛōƭŜΣ ƛǎ ǘƘŜ Dн ǎǇŜŎƛƳŜƴΦ ¢ƘŜ ƎǊŜȅ ŎǊƻǎǎ ƛǎ ǘƘŜ άŀƭƛƎƴƳŜƴǘ ŎǊƻǎǎέΣ 
the grey circles are the screws. 

Finally, it is important to highlight the cruciality of slippage in this clamping system. Since the 

rubber compresses while the screws fixing the clamps remain at a constant position, the 

sample is able to slip off the clamp. This behaviour lead to uncontrolled errors in the 

measurements. Since the support are made of PMMA but commercial acrylic glue does not 

glue this PDMS, a primal solution was to glue sand paper to PMMA (both above and below) to 

increase friction, then to introduce a silicone glue (Saratoga®) between the sample and the 

sand paper. This second glue is not able to adhere to PMMA but performs better against sand 

paper. 

Tensile tests to verify the effectiveness of this glue were done gluing a sample of the 

dimension of the uniaxial samples to a PMMA rectangular piece on which sand paper was 

glued. The sample and the PMMA piece where clamped such that the glued interface was 

aligned with the loading axis. This system does not reproduce perfectly the biaxial cases since 

no upper boundary was present. The tests showed that the slip is reduced up to 18N and even 

more since over that value the PMMA slab would slip from the clamps of the testing machine. 

!ƭƭ ǘƘŜ άǊŜŘέ ǾŀƭǳŜǎ ǊƻǳƎƘƭȅ ǇǊŜǎŜƴǘŜŘ ƛƴ ƎǊŀǇƘ 3 are done up to slip of the support from the 

clamping and not due to slip of PDMS from the support. Due to the different focus of this the 

setup for testing the glue was not optimized and it was decided that the preliminary result 

obtained was sufficient to introduce the glue in the biaxial tests. The possibility to use the 

same PDMS, letting it curing at ambient temperature was discarded since the objective is to 

obtain a setup which is cheap in terms of cost and time. Further research on possible 

adhesives should be of interest to optimize the biaxial setup for this PDMS and other soft 

materials. 
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Graph 3 ς Slip test with silicone glue 

The procedure to clamp the specimen and to fix the supports on the machine are sketched up 

in the infographics below. 

 

Figure 29 ς Clamping of the sample outside the machine.  
(1)  "below" plates are fixed on the assembly base (fig. 25).  (2)Sand paper is glued to the plates and a thin layer of 
silicone glus put above the sand paper.  (3) The sample is positioned  (4)Sand paper and a thin layer of silicone glue 
ŀǊŜ Ǉǳǘ ƻƴ ǘƘŜ άŀōƻǾŜέ ǇƭŀǘŜǎ.  (5) The plates are positioned on the sample and 2 hours are waited for the glue to 
dry.  6)The plates are fixed with M2x12 screws adding 2 slipt washer. 
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The addition of the split washer was done to try to compensate the lowering of the clamping 

force due to thinning of the rubber. This solution did not show any particular improvement 

and can be avoided to accelerate the clamping process which requires about 1 hour plus one 

evening for the glue to dry.  

The ǇǊŜǎŜƴŎŜ ƻŦ ŜƭƻƴƎŀǘŜŘ ƘƻƭŜǎ ƛƴ ǘƘŜ άōŜƭƻǿέ taa! ǎǳǇǇƻǊǘǎ ƻŦ Dн ƛǎ ŘǳŜ ǘƻ ǘƘŜ 

compressive state the screwing produces in the sample which bends upwards, when moved 

from the alignment setup this state is relaxed. If the machine is set at position 0 the 

compressive state is obtained again but due to the unknown offset of arm 4, the arms are 

never in such position. Therefore, the arms are shifted of a certain amount, then the sample is 

mounted leaving the fixing screws (red cylinders in fig. 30) weakly closed. The alignment cross 

is positioned such that the plates are perpendicular with respect to each other (and the sample 

as well if clamped properly), the fixing screws are tighten and finally the cross is removed. 

 
Figure 30 ς Sample with geometry G2 clamped on the machine. The grey cylinders represent the clamping screws, 
while the red ones represent the fixing screws. 
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4.1. 

Due to the sample production process, according to which the material was given the proper 

time to settle and no orientation was induced by the flow, the slab and therefore the samples 

are considered isotropic. The software for Digital Image Correlation evaluates the 

deformations over the area of interest (fig.31-a). A preliminary test at lower deformation was 

done to assess strain uniformity at the centre of the specimen. The red line indicates the 

hundred equispaced points that were taken to verify strain uniformity along the centre of the 

sample (fig. 31 -b), where strains range, at the considered crosshead displacement, between 

0.2749 and 0.2786. The data, represented as a function of point number in graph 4 confirm a 

good uniformity. Given this observation, the strain of the sample during the test was 

determined as the average in the central region represented by the black square in figure 31-c. 

 
a 

 
     

‐  0.224 0.249 0.264 0.278 

Simplified scale of ‐  contour plot 
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Simplified scale of ‐  contour plot 
c 

Figure 31 ς !ǊŜŀ ƻŦ ƛƴǘŜǊŜǎǘ ŀƴŘ ǊŜŦŜǊŜƴŎŜ ǎȅǎǘŜƳ όŀύΣ ʶψмŘƛǎǘǊƛōǳǘƛƻƴ ŀǘ ол҈ ƳŀȄƛƳǳƳ ǎǘǊŀƛƴ όōύΣ ʶψм distribution at 
70% maximum strain (c) 
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Graph 4 ς Strain uniformity of uniaxial samples at 30% maximum strain. 

Results of the uniaxial tests, developed as defined in section 3.1, are shown in graph 5. The 

black lines indicating the average value of ‐ over the stated area while the blue dashed line 

indicates the average of the data of the four sample, the blue striped area indicating the 

standard deviation of the average.  

 

Graph 5 ς Uniaxial tensile test results 

For the present results case, the strain ‐, is measured by DIC while for the previous results, ‐ is 

measured by video extensometry. 
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The red line indicates the curve from tests done measuring the deformation through a video-

extensometer. In this technique, lines are drawn on the sample with a pen of a contrast colour 

and then the test is recorded. The obtained images are analysed and the displacement 

between two lines is determined. The deformation is then calculated simply as the ratio 

between displacement and the initial distance of the lines. 

DIC introduces information on the deformation along the secondary direction in the plane of 

view, which was not detectable with the method adopted for videoextensometry. This 

information allowed to assess the incompressibility of the rubber. 

Calling ρ the direction of the major displacement and loading axis, ς the perpendicular 

direction in the plane of view and σ the third perpendicular direction along the depth of the 

sample, the respective stretches along the three directions are ‗ȟ‗ȟ‗which assuming the 

isotropy hypothesis. 

‗ ‗ 

1  

TƘŜ CƛƴƎŜǊΩǎ ǘŜƴǎƻǊ4 for this deformation state is. 

ὄ ‗֞

‗ π π

π ‗ π

π π ‗

 

2  

For an incompressible material the Jacobian of ὄ, ὐὄ  is expected to be equal to one during 

the test. As a consequence, ‗dependence on ‗ is 

‗
ρ

‗
 

 3  

The experimental trend of ὐὄ  for the maximal tensile tests performed on Sylgard 184 are 

reported in graph 6 

 
4 For theoretical background refer to appendix A 
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Graph 6 ς WŀŎƻōƛŀƴ ƻŦ ǘƘŜ CƛƴƎŜǊΩǎ ǘŜƴǎƻǊ 

This result clearly shows a departure from incompressibility. This may be true, or due to the 

isotropy assumption (‗ was assumed to be equal to ‗, but no test was available to check this 

hypothesis). Obviously, both the isotropy hypothesis may be invalid and the material may be 

compressible. Since no possible causes for anisotropy were identified, the material was 

considered compressible. The Jacobian shows an increase of about 15% in volume at 65% 

deformation.  

¢ƘŜ tƻƛǎǎƻƴΩǎ ratio is calculated as the ratio between transversal and longitudinal deformation 

(eq.4) throughout the. The values obtained with different tests are then averaged. 

’
‐

‐
 

4 

Results for ˂ ғ мΦлф ǇǊŜǎŜƴǘ ǘƻ ǘƻƻ ƘƛƎƘ ƴƻƛǎŜΣ ǘƘŜǊŜŦƻǊŜ ǘƘŜ tƻƛǎǎƻƴΩǎ ŎƻŜŦŦƛŎƛŜƴǘ Ŏŀƴƴƻǘ ōŜ 

evaluated as the intercept of the average. Instead, it is evaluated as the intercept of a 

polynomial fitting the values for higher stretches. In graph 7 the black line represents the 

behaviour of an ideally incompressible material, the red line the average of the experimental 

results, the red-ish area is the standard deviation and the blue dashed line the fitting. 
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Graph 7 ς Poisson coefficient. The red-ish area around the experimental result represents the standard deviation due 
to the average of the 4 samples data. 

As reported in table 8, the degree of polynomial does not significantly affect the extrapolated 

Poisson result value which is close to 0.45. sums up different polynomial fittings. 

 

 

 

Table 8 ς 9ŦŦŜŎǘ ƻŦ ǘƘŜ ǇƻƭȅƴƻƳƛŀƭ ƻǊŘŜǊ ƻƴ ǘƘŜ ŜǎǘƛƳŀǘƛƻƴ ƻŦ tƻƛǎǎƻƴΩǎ ŎƻŜŦŦƛŎƛŜƴǘΦ Ὑ  is the adjusted mean square 
error 

This result is in agreement with literature ǿƘƛŎƘ ǊŜǇƻǊǘǎ ǾŀƭǳŜǎ ƻŦ tƻƛǎǎƻƴΩǎ ŎƻŜŦŦƛŎƛŜƴǘ ranging 

from 0,45 to 0,4999 for SYLGARD 184. [37][38][39] The behaviour is probably related to the 

way and ratio of mixing and curing conditions since, for example, it may be due to the 

presence of small bubbles, non-detectable by eye-sight, which expands upon stretching. 
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4.2. 

4.2.1. System of reference and notation 

The reference system used to define all the variables in this chapter is represented in figure 32 

(G2 is represented here just for explanatory purpose but the same applies to G1) and recalls 

what has been said in section 3.2.3 in figure 25. Direction ρ is that of the sample clamped 

between arcs 1 and 3 of the machine, direction ς is that between portions clamped on arcs 2 

and 4, direction σ  is that along the thickness of the sample, parallel to the axis of the camera. 

The notation used implies ‐ as the strain along direction ρ  and ‐ as the strain along direction 

ς.    Then, reminding that directions Ƕ may not be aligned to directions ά of the machine, the 

forces F1 and F2 are those measured along directions ρά and ςά respectively. 

From now on outputs measured along direction ρ and  ρά will be represented by a continuum 

line while those measured along ς and ςά will be indicated by a dashed line. 

 

Figure 32 ς Biaxial clamping name system and reference system. For sake of simplicity the ideal case in which Ƕ and 

ά are aligned is depicted. 

The output extracted from the DIC software is the principal strains, which directions should, in 

theory, be aligned with the Ƕ directions of the samples. These outputs are indicated as  ‐, the 

major principal strain, and  ‐ the minor principal strain. Under ideal alignment it is expected 

that the major principal direction is either ρ or ς, randomly for different tests. 

 

4.2.2. Considerations on geometries 

This paragraph focuses on the performance of the different geometries, the encountered 

difficulties and anticipates qualitatively the results which details are presented in paragraph 

4.2.4. To characterize the performance of a sample geometry a series of parameters to define 

ǘƘŜ άquality of the equbiaxialityέ ŀǊŜ ǳǎŜŘ.  The defined quality together with the maximum 

strain achievable and the maximum displacement are used to give the overall performance. 

1 

2 

3

3 
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The first tested geometry is G1, advantages of which are the possibility to exploit 10mm out of 

the 15mm available per arm and the small difference between the values of the principal 

strains at the centre (rough indication of equibiaixiality). On the downsides the samples do not 

break and therefore a higher displacement could be applied obtaining a higher strain at the 

centre of the specimen.  

With the aim to increase the exploited displacement, a shorter geometry (G2) with longer 

supports was designed. Unluckily, the reproducibility of the test is lower than the previous 

case and the samples break way before completing the displacement thus ending the test with 

a lower exploited range. The achieved equibiaxial area is the square of that achievable with G1 

at the reached deformations which are about one third of those obtained with G1. From the 

results it will be clear how G2 is not suitable to characterize any material since only one sample 

ƻǳǘ ƻŦ ŜƛƎƘǘ ǎƘƻǿǎ ŀ άǎǳŦŦƛŎƛŜƴǘέ ǇŜǊŦƻǊƳŀƴŎŜ ŦƻǊ ǘƘŜ ŀǊōƛǘǊŀǊȅ ƭƛƳƛǘǎ ŘŜŦƛƴŜŘ ōȅ ǘƘŜ ŀǳǘƘƻǊΦ 

From the data analysis it will also be clear the effect of misalignments highlighting another 

problem: the rigidity of the arm. The absence of the long arms in G2 produces a stiffer reaction 

to misalignments. As a matter of fact, clamping the compliant PDMS causes it to be extruded 

out of the clamps and generally to expand underneath the above PMMA slab. As the screws 

ǳǎŜŘ ƛƴ ŎƭŀƳǇƛƴƎ Ŏŀƴƴƻǘ ōŜ ǘƛƎƘǘŜƴŜŘ ŀƭƭ ŀǘ ǘƘŜ ǎŀƳŜ ǘƛƳŜΣ ǘƘƛǎ άŜȄǘǊǳǎƛƻƴέ ƎŜƴŜǊŀǘŜǎ ŀ 

misalignment with respect to the ρά and ςά directions. The generated misalignments are 

ǘƘŜƴ άǊƛƎƛŘƭȅέ ǇǊƻǇŀƎŀǘŜŘ ǘƻǿŀǊŘ ǘƘŜ ŎŜƴǘǊŜ ƻŦ ǘƘŜ geometry. 

A possible parameter influencing this behaviour was assumed to be the distance of the screws 

(see figure 33). For sake of clarity, in figure 33 the specimen was divided in 3 crucial zones: the 

άǿƛŘŜ ǎŜŎǘƛƻƴέ ŘŜǇƛŎǘŜŘ ǿƛǘƘ ŀ ƭƛƎƘǘ ōƭǳŜ ŀǊŜŀΣ ǘƘŜ άōƻŘȅ ƻŦ ǘƘŜ ǎǇŜŎƛƳŜƴέ ŘŜǇƛŎǘŜŘ ǿƛǘƘ ƭƛƎƘǘ 

red area and the fillet radius, depicted as a sharp red line. The hypothesis is that for the 

geometry G2, the screws are too close to the wide section and the fillet radius and closing the 

screws the expansion of the rubber moves the fillet radius that may bend leading to highly 

unpredictable displacement at the centre of the specimen raising misalignments. In the case of 

G2.1 even if the screw happens to be closer to the body of the specimen, the distance from 

the fillet radius is sufficient to reduce the misalignments. 

a b  c          
Figure 33 ς Minimum distances of the specimen from the inward screws for G2 (a) and G2.1(c) and sketch of 
exaggerated behaviour of the fillet radius of G2 during screwing (b). 
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Acknowledged what above, improvements to G2 where done without the needing of create a 

new die but simply clamping the system closer to the centre by 1,5 mm (fig. 33-c). This new 

clamping method is referred to as a modification of G2, hence G2.1. Figure 34 shows with a 

red dashed line the position of the four clamps in G2 while with a blue dashed line the new 

positions in G2.1. The geometry resulting from this clamping is stiffer, closer to a fully squared 

geometry and allows increased maximum displacement. 

 
Figure 34 ς Third biaxial geometry (G2.1) indicated by the light blue line, the red dashed line indicates G2. The 
clamping sections are 8.4 mm2 in G2 and 9.4 mm2in G2.1 

The increase of maximum displacement is not trivial. Even if the sample is mounted on an 

ŀƭƛƎƴƳŜƴǘ ǎȅǎǘŜƳ ǿƘƛŎƘ ǎƛƳǳƭŀǘŜǎ ǘƘŜ Ǉƻǎƛǘƛƻƴ άлέ ƻŦ ǘƘŜ ƳŀŎƘƛƴŜΣ Ŏompressive state is 

produced due screwing. This is then relaxed when fixing the supports on the machine in order 

to start the test from an undeformed condition of the sample. This process pushes the 

supports further from the centre and the arms need to be ƳƻǾŜŘ ŦǊƻƳ Ǉƻǎƛǘƛƻƴ άлέ ǘƻ ŦŜǿ 

mm, reducing the maximum displacement. With G2.1, the sample is clamped on a system 

ǿƘƛŎƘ ǎƛƳǳƭŀǘŜǎ Ǉƻǎƛǘƛƻƴ ά-мΦр ƳƳέ ŦƻǊ ŀƭƭ ŀǊƳǎ. Therefore, relaxing the compressive state the 

arms of the machine can be positioned almost aǘ άлέ ŀƭƭƻǿƛƴƎ ǘƻ ŜȄǇƭƻƛǘ almost completely the 

absolute maximum displacement of 15 mm per arm. 

Due to the Covid-19 pandemic only 2 samples were tested hence it was not possible to derive 

a complete statistic for the behaviour of this geometry. From the obtained results the 

reproducibility is low as each sample broke at a different strain. None of them was capable to 

exploit fully the available displacement but both satisfied the equibiaxiality arbitrary 

conditions. 

During the tests of geometry G1 it was noted that moving the sample from the alignment 

system to the machine, a stretch along direction ς developed. Not knowing the cause of this, 

as a rough solution it was decided to untighten a little the clamping screws and move the 

specimen. The alignment was then done visually. The presence of this error can be seen in the 

results of geometry G1 (graph 8-a) since the major principal strain direction coincides to 

direction ς most of the times. Sample 2 and 3 were tested changing also the initial position of 

the arms but only sample 3 shows the major principal strain direction aligned with ρ. This 
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means that the pre-stretch along ς was removed but there is the possibility that one along ρ 

instead was introduced. The occurrence of such stretch could be inspected only visually, due to 

the cell offset. Even removing the offset before clamping, clamping operation and the sample 

weight (imposing a bending moment to the load cell) would re-introduce an offset difficult to 

be interpreted. During the tests of G2, an error on arm 4 was found. The position of the arm 

resulted shifted by a positive offset ranging from 0,5 to 1 mm. The precise value of the offset 

was not quantified but the alignment cross (recall paragraph 3.2.3 for details) allowed to 

control the problem as sketched in figure 35. As a matter of fact, positioning the cross, the 

alignment of the supports with respect to each other was guaranteed while the elongated 

holes allowed to fix the support on arm 4 at the distance needed. Nevertheless, the position of 

arm 4 was always shifted of at least 0,5 mm inward with respect to all other arms.  

 

a                                                                                                                              b 

 

c                                                                                                                             d 

Figure 35 ς Sketch of the positioning of the G2 samples using the alignment cross. The red dots represent the fixing 
screws, the grey squares represent the aluminium supports, the black cross represents the axis of the specimen and 
the black segments on the grey squares represent the elongated holes of the supports which are not showed to 
lighten up the drawing. (a) LŘŜŀƭ άлΦ7έ Ǉƻǎƛǘƛƻƴ ŦƻǊ ǿƘƛŎƘ ŜƭƻƴƎŀǘŜŘ ƘƻƭŜǎ ǿƻǳƭŘƴΩǘ ōŜ ƴŜŜŘŜŘΦ όōύ wŜŀƭ άл.7έ 

position, arm 4 is actually at 1-1.5 mm and a pre-stretch along ς ŘŜǾŜƭƻǇǎΦ όŎύ !ǊƳ п ƛǎ ǎƘƛŦǘŜŘ ǘƻ Ǉƻǎƛǘƛƻƴ άлέ ǿƘƛƭŜ 
all other arms are kept at 0.7 mm. (d) The alignment cross is positioned, the screws are untightened and the support 
on arm 4 shifts inward. Finally, the screws are tightened. The red rectangle highlight that the screws are now on the 
other side of the elongated hole. 
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A common set of initial positions is 0.7, 0.7, 0.7, 0 for arms 1, 2, 3 and 4 respectively (recall to 

figure 32 of the previous paragraph for the indexing of the arms). The example sketched is not 

a real situation as often the screws are positioned midway the length of the elongated holes.  

 

 

4.2.3. Results of equibiaxial tensile tests  

Deformations measured at centre5 using the DIC software Vic-2D 2009 and averaged over a 

small central area of few tents of ˃ m radius instead of a single point in order to reduce the 

noise. Forces are measured with the cells as previously described. Recalling paragraph 3.2.3 

and 4.2.1, the strains along ρ and ς are represented with a continuum and dashed line 

respectively, similarly are the forces along ρά and ςά. Graph 8 reports the measured 

deformations for the three geometries against the displacement while graph 9 reports the 

measured forces for the three geometries against the displacement. Recalling paragraph 4.2.2, 

all tests done on geometry G1 ended because the maximum span of the stages was reached 

while all tests done on geometries G2 and G2.1 ended because the specimen broke. Finally, it 

is to remember that data of G1 and G2.1 are those of all tested samples while the total 

number of samples tested for G2 is 8 but 3 of them show slippage too early in the test and the 

DIC is not able to follow the displacements. 

 

a  

 
5 Refer to Appendix C for measurement clarification and definitions 
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b  

 

c  

Graph 8 ς Deformation measured in direction ρ (continuous lines) and ς (dashed lines) in the centre of 5 samples 
with geometry G1 (a), G2 (b) and G2.1 (c) tested equibiaxially. 
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 a  

b  

c  
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Graph 9 ς Forces measured in directions ρά (continuous lines) and ςά (dashed lines) in the centre of 5 samples with 
geometry G1 (a), G2 (b) and G2.1 (c)  tested equibiaxially. 

Vertical shifts in the deformation plot indicate slippage while vertical shifts in the force plot 

may be caused by motions in the fixing screws anchoring the supports to the arcs. Since with 

G2 the elongated holes were introduced, the supports have the possibility of sliding if the 

screws are not closed properly. This effect is small in terms of deformations at the sample, 

especially for samples of the dimensions of G2, but result in a sharp perturbation of the force. 

Relations between ‐ and ‐  measured with Vic 2D and the strains along the reference system 

directions,‐ and ‐ȟ for the three geometries are summed up in table 9 as well as the different 

maximum displacement at end of test. 

 

 

 

 

 

a                                                                                   b 

 

 

 

c 

Table 9 ς wŜƭŀǘƛƻƴ ōŜǘǿŜŜƴ Ŝ ŀƴŘ ʶ ŦƻǊ G1(a), G2(b) and G2.1(c) and the displacement exploited starting from 
different initial position. 

Limiting to these data, as anticipated in the previous paragraph G1 shows the best 

reproducibility as all samples, besides 2, behave similarly both in terms of strain and forces. G2 

shows the worst reproducibility with almost each sample behaving differently in terms of 

displacement. G2.1 shows bad reproducibility as well, but in this case the curves are much 

closer to each other also at higher deformations. In general, it can be seen how forces 

measured on the two cells have similar values even if deformations show wider gaps between 

the two directions, see the behaviour of sample 2 of G1 and sample 1 of G2. This behaviour is 

probably due to unknown pre-stretches or gradual slippage.  

On this regard, G2.1 allows to recognize slippage and perturbation in an easier way thanks to 

its stiffer reaction to such inputs. 

Aiming to reach the highest possible strain at centre and the highest reproducibility, from 

these results it is possible to derive that G2 appears to be the worst performing while G2.1 

appears to perform almost as well as G1 half of the times.  

 

 

Sample Ⱡ╘ Ⱡ╘╘ dmax [mm] 

1 ‐ ‐ 10 
2 ‐ ‐ 10.8 
3 ‐ ‐ 10.8 
4 ‐ ‐ 10 
5 ‐ ‐ 10 

Sample Ⱡ╘ Ⱡ╘╘ dmax [mm] 

1 ‐ ‐ 6.9 
2 ‐ ‐ 1.8 
3 ‐ ‐ 3.6 
4 ‐ ‐ 5.2 
5 ‐ ‐ 2.6 

Sample Ⱡ╘ Ⱡ╘╘ dmax [mm] 

1 ‐ ‐ 1.8 
2 ‐ ‐ 3.1 
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4.2.4. Equibiaxiality 

Since the aim of the thesis is not only to characterize the material but also to develop an 

effective ƳŜǘƘƻŘƻƭƻƎȅ ǘƻ ǘŜǎǘ άǎƻŦǘέ ƳŀǘŜǊƛŀƭǎΣ ǘƻ ƎƛǾŜ ŀ ŎƘŀǊŀŎǘŜǊƛȊŀǘƛƻƴ ƻŦ ǘƘŜ effectiveness 

of the test the quality of the equibiaxiality was considered as the representative parameter. 

The first step to determine the quality is to quantify the equibiaxiality, one definition of this 

quantity is the relative error between the local minor principal strain and the local major 

principal strain. For the sake of clarification this parameter, referred to as ά9ǉǳƛōƛŀȄƛŀƭ CŀŎǘƻǊ 

ǇŜǊŎŜƴǘέ ό9ǉC҈ύΣ ǿŀǎ ŘŜŦƛƴŜŘ ǎƻ ǘƘŀǘ ǘƻ ŀ млл҈ ǾŀƭǳŜ ŎƻǊǊŜǎǇƻƴŘ ǇŜǊŦŜŎǘ ŜǉǳƛōƛŀȄƛŀƭƛǘȅΦ The 

software VIC 2D-2009® has the possibility to output the principal deformations. Calling ‐the 

major principal and ‐ the minor principal, thus the equibiaxial factor can be defined as 

ὉήὊϷ ρ
‐ ‐

‐
ρzππ 

 5 

Graph 10 plots the behaviour of EqF% measured at centre against the displacement for the 

samples of the three geometries. 
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b  

c  

Graph 10 ς Equibiaxial Factor % for G1(a), G2(b) and G2.1(c) 

In this regard it is to note how, throughout the test, sample 2 of G1 άƭƻǎŜǎ ŜǉǳƛōƛŀȄƛŀƭƛǘȅέΦ 

Another thing that should be noted is how sample 4 of G1, even though it reaches the end of 

the test with a good value of EqF% shows a decreasing behaviour just like the sample 2. Is this 

an indication of strong misalignments? To answer this question, the second step to define the 

quality of the equibiaxiality introduces geometrical parameters such as the Area of 

Equibiaxiality (AoE) and the roundness factor. 

Perfect equibiaxiality would lead to a circular shape of e1 for the iso-e1 contour plot (as 

explained in appendix C), with the circumference centre at the centre of symmetry of the 

system which should coincides with the sample centre. When representing the equibiaxial 

factor, its contour plot would also have a circular shape. It is worth note that in this case the 

factor is defined as a function of the major and minor principal strains, if one describes the 

factor as function of ‐ and ‐ , the strains defined in the sample reference system 
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(introducing the absolute value to the difference),  ƛƴǎǘŜŀŘ ŀ άŎǊƻǎǎ-ƭƛƪŜέ ǎƘŀǇŜ ǿƻǳƭŘ be 

observed.  [20]  

Since, due to misalignments, the shape of the distribution of EqF% resembles an ellipse, a 

geometric characterization of the equibiaxiality is proposed based on two main factors: the 

area of the ellipse and ǘƘŜ άǊƻǳƴŘƴŜǎǎ ƻŦ ǘƘŜ ŜƭƭƛǇǎŜέΦ To do so, first the viewport of Vic 

software was set to show only the values below 90%, and divided in 16 colours such that the 

darker red portion represent the area in which EqF% is higher than 85%, such that the area of 

the ellipse corresponds to the AoE. The threshold values chosen are arbitrary as a first trial. 

Then using Fiji-ImageJ an ellipse was drawn to approximate the darker red area as shown in 

figure 36 and the software returned the measure of the area and the dimension of the major 

and minor axis. 

 

Figure 36 ς Sample 1 of G1 at its maximum deformation and its reference system. Black-contoured ellipse identifies 
the area where EqF% is higher than 85%. 

After a scaling operation, the area of this ellipse (given in mm2) gives an estimate of the zone 

ǿƘŜǊŜ ǘƘŜ ǎǘǊŀƛƴ ŦƛŜƭŘ ƛǎ ǊŜŀǎƻƴŀōƭȅ ŜǉǳƛōƛŀȄƛŀƭ όŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ŀǳǘƘƻǊΩǎ ŀǊōƛǘǊŀǊȅ ŘŜŦƛƴƛǘƛƻƴύΦ 

Roundness instead, is interpreted through a parameter called Roundness factor (ὙὪ) 

expressed in equation 6 as the ratio between the major axis and the diameter of a 

circumference that would show the same area of the ellipse. This definition of ὙὪ is given with 

the purpose to maintain the geometrical meaning that has been associated with equibiaxiality 

so far. Therefore, as an expression of how much the system moves away from the ideal 

equivalent case. ὙὪ value is equal to 1 when the system is perfectly centred thus symmetric 

with respect to the two principal axes of the specimen, while its value is equal to 1.41 when 

the major axis of the ellipse doubles the minor, which is the worst-case scenario. 

ὙὪ
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One could define Rf as the ratio between the major and minor axis of the ellipse as also in that 

case the ideal situation would be represented by value 1 of the factor and the worst scenario 

would be represented by value 2 of the factor. But the importance of the equibiaxial area 

would be lost. 

Figure 38, 39 and 40 show the contour plot of EqF% from which AoE and ὙὪ are extracted for 

all the samples discussed previously. Images of samples 1,4 and 5 of G1 have undergone 

postprocessing operations during the preliminary phase of the thesis and show samples with 

axes aligned with the page. This does not influence the results, as the software is capable to 

determine the principal directions, therefore the analysis was run on the images as they were 

without re-processing themΦ !ƭƭ ƻǘƘŜǊ ƛƳŀƎŜǎ ǇǊŜǎŜƴǘ ǘƘŜ ǎŀƳǇƭŜΩǎ ǊŜŦŜǊŜƴŎŜ ǎȅǎǘŜƳ ǊƻǘŀǘŜŘ 

of about 40° clockwise with respect to the page as shown in figure 37, which is the original 

orientation of the record of the test. Moreover, the zoom is not the same in all pictures, as it 

was adapted for each test depending on the result of the previous and the dimension of the 

contour plot of interest.  

          
Figure 37 Reference system of sample 1,4,5 of G1 (left) and of all other samples (right) 

     

EqF% 10% 40% 70% >85% 

Simplified scale of the EqF% contour plot 

 

 
Figure 38 ς EqF% contour plot of G1 samples (1,2,3,4,5) at the end of test. Dark red area corresponds to Eqf%>85% 
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Figure 39 ς EqF% contour plot of G2 samples (1,2,3,4,5) at the end of test. Dark red area corresponds to Eqf%>85% 

 

 

 

 

 

Figure 40 ς EqF% contour plot of G3 samples (1,2) at the end of test. Dark red area corresponds to Eqf%>85 

Tables 8, 9 and 10 sum up the different parameters for all samples. Empty cells present only a 

slash bar and are due to missing of the elliptical shape in the contour plot. 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

AoE [□□ ] 3.95 /  4,55 2,90 4,11 

Rf 1,4 /  1,27 1,38 1,19 

Ⱡ ς Ⱡ at end 0,25-0,28 0,36-0,26 0,30-0,27 0,24-0,27 0,25-0,27 

EqF [%] 91,5 72,7 90,2 90,0 95,1 
Table 10 ς Final values of the G1 samples 

Table 11 ς Final values of the G2 samples 

 

Table 12 ς Final values of the G3 samples 

 
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

AoE [□□ ] /  /  16.77 /  /  

Rf /  /  1.30 /  /  

 ς  at end 0,32-0,27 0,06-0,07 0,14-0,13 0,21-0,25 0,10-0,13 

EqF [%] 83,2 79,1 92,17 82,41 78,6 

 
Sample 1 Sample 2 

AoE [□□ ] 16.96 17.93 

Rf 1.34 1.34 

 ς  at end 0.11-0.12 0.21-0.23 

EqF [%] 92.5 90.1 
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From the results showed in table 10, it can be said that an Area of Equibiaxiality of at least 4 

mm2 can be achieved with geometry G1. This highlights how sample 4, even if showing a 90% 

equibiaxiality, provides an AoE which is way smaller than the other and smaller roundness 

(indicated by higher roundness factor) therefore is considered invalid for the standard of this 

project. This result suggests ǘƘŀǘ ǘƘŜ ǊƻǳƴŘƴŜǎǎ ŦŀŎǘƻǊ ǘƘǊŜǎƘƻƭŘ ǘƻ ǉǳŀƭƛŦȅ ŀ άƎƻƻŘέ ƻǊ άōŀŘέ 

equibiaxiality, is comprehended between 1.30 and 1.37. 

Sample 2 does not present an area or a roundness factor because at the set threshold (85%) 

the red area considered for the evaluations is split in two separated circles thus no ellipse can 

be recognized as showed in figure 38, second sample. 

To derive the conclusions on this geometry, table 13 sums up the samples which showed the 

ellipse and a sufficient area of equibiaxiality 

Table 13 ς Equibiaxiality among the three geometries 

Geometry G1 is overall fair as allows 30% deformations on almost all samples but the 

alignment set-up is difficult and way too sensitive to the ability of the operator. The statistic is 

that of 3 samples out of 5 capable to produce the desired state. 

Geometry G2 is to be considered and not be used for any characterization unless a 20% error is 

ŎƻƴǎƛŘŜǊŜŘ άƎƻƻŘ ŜƴƻǳƎƘέ ŦƻǊ ǘƘŜ ǇǳǊǇƻǎŜǎΦ Lǘ ƛǎ ǘƻ ǎŀȅ ǘƘŀǘ ǘƘŜ р ǎŀƳǇƭŜǎ showed are not all 

the tested sample (which are 8) but only the ones which did not show such a level of slippage 

that impaired the DIC analysis due to image blurring. The fact that sample 3 is the only one to 

ǎŀǘƛǎŦȅ ǘƘŜ ƳƛƴƛƳǳƳ ǊŜǉǳƛǊŜƳŜƴǘǎ ǘƻ ōŜ ŎƻƴǎƛŘŜǊŜŘ άǎǳŦŦƛŎƛŜƴǘƭȅ ŜǉǳƛōƛŀȄƛŀƭέ suggests that G2 

has to be discarded as it is unreliable.  

Overall geometry 2.1 performed better than G2 with a striking statistic of 100% acceptable 

samples at least based on the criteria set in the present analysis. Nevertheless, he exploited 

displacements are still low and premature break of the specimen is present. As a matter of 

fact, the reached deformations are still lower than those of G1. 

Future improvements on the system concern the possibility to use a single screw clamp and 

the research of a suitable glue. The first approach requires the design of a new clamping 

system but it will allow to eliminate the misalignment related to subsequent screw tightening. 

The second approach requires extensive research on suitable adhesives aiming to avoid the 

clamping at all and simply glue the samples on disposable supports. The ideal case would that 

to find a glue which can sustain the loads required for the tests but that could be easily 

removed from the supports allowing to re-use them. 

 

 

Sample G1_1 G1_3 G1_5 G2_3 G2.1_1 G2.1_2 

AoE [□□ ] 3.95 4,55 4,11 16.77 16.96 17.93 

Rf 1,4 1,27 1,19 1.30 1.34 1.34 

Ⱡ ς Ⱡ at end 0,25-0,28 0,30-0,27 0,25-0,27 0,14-0,13 0.11-0.12 0.21-0.23 

EqF [%] 91,5 90,2 95,1 92,17 92.5 90.1 

dmax [mm] 10 10.8 10 3.6 1.8 3.1 
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The decision to perform finite element modelling arises from the need to verify if it is possible 

to obtain models able to simulate the biaxial behaviour starting from uniaxial and pure shear 

data and then use those models to investigate the cause of non equibiaxiality. 

 

5.1. 

The software chosen to simulate the material with Finite Element Method is ABQUS®2019. 

This software also allows to perform a material evaluation after given few input data. The term 

άevaluationέ ƛǎ ǳǎŜŘ ŀǎ ƛǘ ƛǎ ǘƘŜ ǎŀƳŜ ƻƴŜ Ŏŀƴ ŦƛƴŘ ƛƴ ǘƘŜ software and refers to the fitting 

procedure to find the constitutive model parameters and the subsequent calculation of the 

stability range of the parameters defined through the Drucker stability condition (details of 

both step can be found in appendix D). 

This procedure contemplates up to four set of data for four test configurations (uniaxial, 

planar, biaxial and volumetric) given as stress vs. strain either in tension or compression, from 

which the software derives the displacement gradient tensor6 assuming the material isotropic 

and incompressibleΦ /ƻƳǇǊŜǎǎƛōƛƭƛǘȅ Ŏŀƴ ōŜ ǘŀƪŜƴ ƛƴǘƻ ŀŎŎƻǳƴǘ ƛŦ ǘƘŜ tƻƛǎǎƻƴΩǎ ŎƻŜŦŦƛŎƛŜƴǘ ƛǎ 

known. The documentation suggests to provide at least three test configurations to get a 

reliable characterization of the hyperplastic material behaviour. Since volumetric test were not 

available and biaxial tests were still to be verified, it was decided to first complete the 

parameter identification using the available uniaxial and pure shear test data. 

Calling Ὗ the strain energy potential and invoking the principle of virtual work, it follows that: 

- Uniaxial test 

ЋὟ „ Ћ‗   ,  „ ςρ ‗ ‗  

7 

- Pure shear test 

ЋὟ „ Ћ‗  ȟ„ ς‗ ‗    

8 

- Equibiaxial test 

ЋὟ ς„ Ћ‗  ȟ„ ς‗ ‗ ‗    

9 

Provided with uniaxial and planar data, ABAQUS® substitute the energy function with that of 

the selected model7 and evaluates the constitutive model parameters for the material. 

The evaluation is performed for ten ŘƛŦŦŜǊŜƴǘ ƳƻŘŜƭǎΣ ƛƳǇƻǎƛƴƎ ǘƘŜ tƻƛǎǎƻƴΩǎ ŎƻŜŦŦƛŎƛŜƴǘ ǘƻ 

0,45. The models of interest are: Arruda-Boyce, Van der Waals, Ogden from the first to the 

 
6 See Appendix A 
7 See Appendix D for details on the hyperelastic models in ABAQUS® and the fitting procedures. 



 

 53 

fourth order, the first (Mooney-Rivlin) and second order polynomials and the first and third 

order reduced polynomial (Neo-Hookean and Yeoh respectively). Generally, the model 

parameters are related to the initial shear modulus is ‘ and the initial bulk modulus ὑ. 

Ogden model (10) defines Ὗ as a series of real powers of the generalized strains in which 

N, ‘, ‌  are material constants.  ‘ В ‘, ὑ  

Ὗ
‘

‌
 ‗ ‗ ‗ σ

ρ

Ὀ
ὐ ρ  

10 

Neo-Hookean model (11) is the first order reduced polynomial in which ‘ ςὅ , ὑ . 

Ὗ
ρ

ς
ὅ Ὅ σ

ρ

Ὀ
ὐ ρ  

11 

The Yeoh model (12) is a third order reduced polynomial, thus ‘ ςὅ , ὑ  . 

Ὗ ὅ Ὅ σ ὅ Ὅ σ ὅ Ὅ σ
ρ

Ὀ
ὐ ρ

ρ

Ὀ
ὐ ρ

ρ

Ὀ
ὐ ρ  

12 

Where ὅ  ὲὯὝ , in which ὲ is the chain density per unit volume, Ὧ is the Boltzmann 

constant and Ὕ is the absolute temperature. 

Arruda and Boyce model (13) considers ‘ a function of  ‘ and of the strain and ὑ  . 

Ὗ ‘
ρ

ς
Ὅ σ

ρ

ςπ‗
Ὅ ω

ρρ

ρπυπ‗
Ὅ σ

ρω

χπππ‗
Ὅ σ

υρω

φχσχυπ‗
Ὅ σ

ρ

Ὀ

ὐ ρ

ς
ὰὲὐ  

13 

Van der Waals model (14), even if was derived from physical consideration, presents the 

parameter ‍ has no physical meaning. ‘  ‘, ὑ  

Ὗ ‘ ‗ σ ὰὲρ – –
ς

σ
ὥ
Ὅ σ

ς

ρ

Ὀ
 
ὐ ρ

ς
ὰὲὐ  

Ὅ ρ ‍Ὅ ‍Ὅ      –
Ὅ σ

‗ σ
    

14 

Table 14 contains the fitting error for the uniaxial and planar data and the strain stability limit. 

If the strain limit is overcome in experimental tests the cell is coloured in red. If at least two 

cells are red the model is discarded. The models used for the simulations are then the 

remaining: Arruda-Boyce, Van der Waals, Ogden for N= 1,3 and 4, the first and third order 

reduced polynomial (Neo-Hookean and Yeoh respectively). 
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The evaluation of Ogden-3 is unstable, therefore the data obtained by E. Piccoli [33] were used 

as a try to make Ogden-3 work as it is the model suggested in her thesis. The main difference is 

that in [33] the material was assumed to be incompressible. The model is identified with an 

asterisk in table 14 and 15. Table 15 shows the values of the parameters for the considered 

models.  

 

 

MODEL MACHANICAL TEST  INSTABILITY CONDITION FITTING ERROR 

Arruda-Boyce U. T.  4.132 

B. T. STABLE FOR ALL  

P.S.  2.530 

Van der Waals U. T. ‐ ρȢπρ 2.829 

B. T. ‐ πȢυφ 

P.S. ‐ πȢωτ 0.735 

Ogden-1 U. T.  2.401 

B. T. STABLE FOR ALL  

P.S.  2.618 

gden-2 U. T. ‐ πȢσσ 0.918

B. T. ‐ πȢρχ 

P.S. ‐ πȢςω 2.041

Ogden-3 U. T. ‐ πȢτρ 0.902 

B. T. ‐ πȢρω  

P.S. ‐ πȢσυ 1.54 

Ogden-3 * U.T. ‐ πȢφτ 0.374 

B.T. ‐ πȢςχ  

P.S. ‐ πȢυσ 1.306 

Ogden-4 U. T. ‐ πȢςτ 0.533 

B. T. stable  

P.S. stable 0.932 

Mooney-Rivlin (pol. 
1) 

U. T. ‐ πȢςψ 0.830 

B. T. ‐ πȢρτ  

P.S. ‐ πȢςυ 2.912 

Polynomial 2 U. T. ‐ πȢρχ 0.660 

B. T. ‐ πȢρω  

P.S. ‐ πȢσω 2.009 

Neo-Hookean (red. 
pol. 1) 

U. T.  6.243 

B. T. STABLE FOR ALL  

P.S.  3.329 

Yeoh (red. pol. 3) U. T.  2.893 

B. T. STABLE FOR ALL  

P.S.  1.163 

* Uniaxial data are those up to break instead of those up to 0.64 strain. 
Table 14 ς Stability conditions and fitting errors for the evaluated models. Red-ish areas indicates the strain limits 
which are overcome in the experimetnal tests. If at least two conditions are red, the model is discarded. 
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Table 15 ς Values of the parameters of the models satisfying the stability condition. Equations of the strain energy in 
which these parameters appear are presented in Appendix D for sake of simplicity. 
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5.2. 

All geometries for uniaxial, planar and biaxial simulations are meshed with linear hexahedrons:  

8-node linear bricks. The mesh size is 0,3 mm. The simulation is run with reduced integration 

and default hourglass control. Except the pure shear simulations, all samples are represented 

making use of symmetry conditions and running the simulation on ¼ th of the real sample. The 

stresses (S*) and the deformations (NE*) presented in the results are the nominal components 

taken at the element closer to the centre of the specimen. In the biaxial simulations, since the 

model works under equibiaxial condition, the two components are equal at the selected 

element and only one curve will show. Moreover, instead of the stresses at centre, the 

variable to compare is the forces at clamping. In the software these are exported as the total 

forces at surface (SOF*) noticing that, since the model present only ½ of the clamping surface 

per arm, it is needed to double the value obtained. Figure 41 represent the position of the 

element from which the stress-strain data are extracted for uniaxial and planar geometries. 

Figure 42 represents the position of the central element and the clamping surfaces on G1 for 

sake of simplicity, but the same method is applied to all biaxial geometries. 

 

 
Figure 41 ς Element for nominal stress-strain pair extraction for uniaxial geometry (above) and planar geometry 
(below) 

 

Figure 42 ς Element for nominal strain data extraction (left) and surfaces of force extraction (right) in the biaxial 
case. 

 
* ABAQUS output variable 
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For all geometries except the pure shear one, boundary conditons consist in a displacement at 

the clamping section and in symmetry conditions on the faces perpendicular to the ρ and ς 

axes. The pure shear geometry is extremely simple and therefore was simulated entirely, 

applying the displacement on the upper surface and an encastre at the bottom. 

The different displacement applied are the same of the experimental set of data to which the 

simulations are compared. The boundary conditions are summed up in table 16 and 

represented in figure 43. In the table d stands for the displacement (represented in figure 43 

with orange arrows), NP for Not Present and Other BCs for all the Boundary Conditions which 

are not displacements (represented in figure 43 by combinations of short orange and blue 

arrows). 

Geometry d along  [mm] d along  [mm] Other BCs 

Uniaxial 12.5 NP Symmetry 

Pure shear 9.46 0 Encastre 

G1 10.8 10.8 Symmetry 

G2 6 6 Symmetry 

G3 3.07 3.07 Symmetry 
Table 16 ς Displacement boundary conditions applied to the different geometries 

a b   

c d  e  

Figure 43-Graphical representation of the applied boundary conditions. The orange arrows are the displacement 
conditions while the sets of blue and orange cones are the symmetry or encastre conditions. The reference system 
associated with a geometry is that present on the same height of the geometry in the page.  a) Uniaxial simulations 
b) Pure shear simulations c) Equibiaxial simulations on G1 d) Equibiaxial simulations on G2 e) Equibiaxial simulations 
on G2.1 

ς 

ρ 

ς 

ρ 
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5.3. 

5.3.1. Uniaxial and pure shear validation 

Uniaxial and pure shear samples are modelled on inventor and their behaviour is simulated in 
ABAQUS® for the models satisfying the stability limits of table 14. Uniaxial and pure shear data 
are those used to evaluate the models so a nice agreement between data and simulation is 
expected.  
The strain energy is directly function of the stretches and the constitutive equation of 
hyperplastic materials describes the relation between the Cauchy-Green stress tensor and the 
deformation gradient. Therefore, even if nominal stresses and nominal deformation are 
extracted from the software, data are represented as stresses vs stretches, where the latter is 
calculated adding 1 to the deformations. 
The reason behind the needing to simulate these tests is that the constitutive model 
parameters are found from a fitting done on stress-strain pairs of a single ideal element and 
their fitting error does not provide any information on how the real geometry with BC can be 
previsioned. 
 

5.3.1.1. Simulation of uniaxial tensile tests 

For uniaxial tests, data on stress-strain relationship are available and the results for all models 
are presented in graph 11. 

                             
Graph 11 ς Uniaxial tensile resultsΦ aƻŘŜƭǎΩ abbreviations:,                 Figure 44 ς Uniaxial, comparison of the shape 
AB=Arruda-Boyce NH=NeoHookean, On=nth  order Ogden,                                                before and after deformation. 
VDW=Van der Waals, Y=Yeoh.                                                                                               Example reported: Arruda-Boyce.                                                 

It results that Ogden-1 follows well the data for stretches higher than 1.3. Arruda-Boyce and 
Yeoh follow well the behaviour and fairly the values. Ogden-3 follows well both the behaviour 
and the values up to 0.5 strain. 
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Neo-Hookean model fits well up to deformations of around 0.4 (as expected), as it allows to 
describe only the first concavity. Finally, Ogden-4 can describe the two concavity, generating 
some errors around stretch of 1.2 as predicted by the stability condition. 

Critical this model is the simulation of the dog-bone shape, this is handled fairly by all models. 
Figure 45 shows the undeformed and deformed results of the Yeoh-model as a representative 
case. 

       
Figure 45  ς Comparison before and after deformation of a specimen and the prediction of the Yeoh model. 

 

5.3.1.2. Simulation of pure shear tests 

  
Figure 46 ς Pure shear, comparison of the shape before and after deformation. Example reported: Arruda-Boyce. 

For pure shear tests, stress vs strain data are available and the results for all models are 

presented in graph 12. The strain in this case was measured relying on the displacement of the 

dynamometer, without using any measuring technique, and calculated as showed in equation 

15 where Ὠ is the displacement and Ὤ is the height (length along ρ) of the part of sample 

outside the clamps, hence that of the undeformed model showed by the rectangle in figure 46. 
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Graph 12 ς Pure shear resultsΦ aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, On=nth order Ogden, 
VDW=Van der Waals, Y=Yeoh

Except for the Neo-Hookean model, all the models try to reproduce to some extent the second 

curvature. As in the case of uniaxial tensile tests, Ogden-4 is suited to reproduce the flex point 

but at that point numerical issues cause the analysis to abort. 

Due to its bad performance in both simulations, Ogden-4 is discarded as a possible model, 

reminding that implementation might be possible with a more accurate evaluation of the 

parameter for example using also the biaxial data. 

5.3.2. Simualtions of equibiaxial tensile tests 

Plotted experimental values per geometry, are those of the sample which reaches the highest 

deformation, among these (since in case of G1 high deformations are reached by more than 

one sample) the best performing (defined as in the previous chapter) is taken. Therefore, data 

of geometry G1 are those of sample 3, of G2 are those of sample 1 and of G3 are those of 

sample 2. 

5.3.2.1. Simulations of geometry G1 

 

Figure 47 ς G1, comparison of the shape before and after deformation. Example reported: Arruda-Boyce. 
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Results of this simulation are represented in figure 47 where the deformed shape (green) is 

compared to the undeformed (translucent grey). The comparison between experimental data 

and simulation prediction are in graphs 13,14 and 15 reporting: ‗(=‗) vs. boundary 

displacement, Ὂ(=Ὂ) vs boundary displacement and Ὂ vs ‗ respectively. 

  
Graph 13 ς G1 stretch vs time. Experimental data along ρ and ς are represented with a continuum and dashes line 
respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, O1=1st order Ogden, VDW=Van der 
Waals, Y=Yeoh

 
Graph 14 ς G1 force vs time. Experimental data along ρ and ς are represented with a continuum and dashes line 
respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, O1=1st order Ogden, VDW=Van der 
Waals, Y=Yeoh
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Graph 15 ς G1 force vs stretch. Experimental data along ρ and ς are represented with a continuum and dashes line 
respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, O1=1st order Ogden, VDW=Van der 
Waals, Y=Yeoh

Except Ogden-3 which aborts due instability, all other models predict the experimental trend 

fairly. Strain in the centre of the sample is systematically overestimated. The most suitable 

ƳƻŘŜƭǎ ǎŜŜƳ ǘƻ ōŜ ǘƘŜ ¸ŜƻƘΩǎ ƳƻŘŜƭΣ ǘƘŜ !ǊǊǳŘŀ-Boyce model and the Van der Waals model. 

 

5.3.2.2. Simulations of geometry G2 

Results of this simulation are in figure 48 where the deformed shape (green) is compared to 

the undeformed (translucent grey). The comparison between experimental data and 

simulation prediction are in graphs 16,17 and 18 reporting: ‗(=‗) vs. boundary displacement, 

Ὂ(=Ὂ) vs boundary displacement and Ὂ vs ‗ respectively. 

 

  

Figure 48 ς G2, comparison of the shape before and after deformation. Example reported: Arruda-Boyce. 
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Graph 16 ς G2 stretch vs time. Experimental data along ρ and ς are represented with a continuum and dashes line 
respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, O1=1st order Ogden, VDW=Van der 
Waals, Y=Yeoh 

 

Graph 17 ς G2 force vs time. Experimental data along ρ and ς are represented with a continuum and dashes line 
respectively.  aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, O1=1st order Ogden, VDW=Van der 
Waals, Y=Yeoh
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Graph 18 ς G2 force vs stretch. Experimental data along ρ and ς are represented with a continuum and dashes line 
respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, O1=1st order Ogden, VDW=Van der 
Waals, Y=Yeoh 

As the showed in the analysis of the deformation (chapter 4), clamping of G2 is not reliable as 

introduces many misalignments and if one tries to reduce the clamping force to avoid them 

then a lot of slippage occurs. This translates into a lower equibiaxiality, in particular most of 

the samples of this geometry do not show an ellipse in the contour plot of their Equibiaxial 

factor. Sample 1 reported in the graph above is an example of this behaviour, but it is selected 

for the comparison due to the high (with respect to the other samples) stretches reached. 

Therefore, a probable cause of the overestimation of the values of both stretches and forces 

may be due to the sample slippage. Arruda-Boyce is the model which better simulates the 

behaviour, Neo-Hookean model is the only one providing stretches close to those achieved 

experimentally but the predicted curvature in the forse-stretch plot (graph 18) is not 

consistent with experimental findings. Yeoh and Van der Waals follow the concavity but then 

highly overestimate the forces, nevertheless seem applicable for stretches below 1.3. 

 

5.3.2.3. Simulations of geometry G2.1 

Results of this simulation are in figure 49 where the deformed shape (green) is compared to 

the undeformed (black dashed line). The comparison between experimental data and 

simulation prediction are in graphs 19,20 and 21 reporting: ‗(=‗) vs. boundary displacement, 

Ὂ(=Ὂ) vs boundary displacement and Ὂ vs ‗ respectively. 
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Figure 49  ς G2.1, imposed boundary conditions (left) and comparison of the shape before and after deformation 
(right). Example reported: Arruda-Boyce. 

 

Graph 19 ς G2.1 stretch against time. Experimental data along ρ and ς are represented with a continuum and 
dashes line respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, O1=1st order Ogden, 
VDW=Van der Waals, Y=Yeoh 
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Graph 20 ς G2.13 force against time. Experimental data along ρ and ς are represented with a continuum and dashes 
line respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, O1=1st order Ogden, VDW=Van der 
Waals, Y=Yeoh

 
Graph 21 ς G2.1 force against stretch. Experimental data along ρ and ς are represented with a continuum and 
dashes line respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, O1=1st order Ogden, 
VDW=Van der Waals, Y=Yeoh 

At deformations lower than 0.2 all models despite Ogden-1 work well, therefore this 

simulation further reduces the number of models of interest down to four. The remaining 

models are Arruda-Boyce, Van der Waals, Yeoh and the Neo-Hookean model.  

To quantify the comparison between the experimental data and the values obtained from the 

simulations an error will be introduced in the discussion of the results (equation 16) and the 

values of this error for the different models and different geometry are reported in table 18. 
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5.4. 

Considering the comparison of simulation and experimental findings for all the testing 

configurations, three models seem the most appropriate: Arruda-Boyce, Neo-Hookean and 

Yeoh. 

The Van der Waals model is excluded because its formulation is similar to that of Arruda-Boyce 

but with more parameters and it has be seen overestimating the forces for stretches higher 

than 1.2 under equibiaxial strain condition. 

Two important features to be observed are: a linear model, such as Neo-Hookean is adequate 

the biaxial behaviour at least up to the experimentally reached stretches. Consistently the 

parameters identified resorting to tensile and pure shear test are adequate to predict the 

behaviour in a different stress state. 

Moreover, the agreement with experiments is good with respect to geometries G1and G2.1. 

As for geometry G2, the problems reported in the experiments chapter suggest that the 

differencies observed arise form the difference between the boundary conditions which are 

unknown for the experimental case. 

It is to note that in Arruda-Boyce model ‗ is the locking stretch, after which the model 

expects the stress-strain curve to increase the upturn significantly. This value is way below the 

actual upturn of the material, this wrong evaluation is due to the input data which do not 

provide the upturn. 
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5.4.1. Non-equibiaxial tension test 

To further verify the reliability between these three models, another test was carried out. This 

consists in a non-equibiaxial displacement test, history of which is showed in graphs 22 and 23.  

  

 

Graph 22, Graph 23 ς Displacement history for non-equibiaxial tests. Ὀ and Ὀ  are calculated as Ὠρ Ὠσ and Ὠς

Ὠτ , where Ὠὲ is the displacement of the nth arm, and represent the total displacement along direction ρ and ς 
respectively. The two dashed lines indicate the begin and end of the time interval needed by the operator to start the 
displacement along direction two. 

This test was done using G1 and in ABAQUS® it is simulated applying the boundary conditions 

in three steps summed up in table 17. ¢ƘŜ ǎǘŜǇǎΩ time period was imposed to be equal to the 

times of application of the displacements. In particular, step 3 takes into account the time 

between the end of the ramp of displacement along ρ and the begin of the ramp of 

displacement along ς, which is the time needed to operate the dynamometer which is not 

programmable.  

In table 17, d represents the displacement while S1 and S2 represent the surfaces 

perpendicular to direction ρ and ς respectively, which are showed in figure 50 for clarity. The rest 

of the terminology used in the table is that of the software. As for the previous tests, the value of 

the displacement is set equal to that of the machine, noticing that the displacement along one 

direction is on a single arm and therefore half the total displacement of the machine in that 

direction. 
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Figure 50-Notation used in table 14 for the clamping surfaces of G1. 

 Step 1 Step 2 Step 3 

S1, d along ρ 10 Propagated Propagated 

S1, d along ς ND ND 0 

S2, d along ρ Encastre on S2 Propagated 0 

S2, d along ς Encastre on S2 Propagated 10 

Time period 400.2 33.8 400.2 
Table 17 ς Steps applied in ABAQUS® to simulate sequential displacements application. 

 

Results of both tests and simulations are in graphs 24,25 and 26 where stretch vs time, force vs 

time and force vs stretch are reported respectively. 

 
Graph 24 ς G1 non-equibiaxial stretch vs time. Experimental data along ρ and ς are represented with a black and 
blue line respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, Y=Yeoh 
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Graph 25 ς G1 non-equibiaxial force vs time. Experimental data along ρ and ς are represented with a black and blue 
line respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, Y=Yeoh 

 
Graph 26 ς G1 non-equibiaxial force vs stretch. Experimental data along ρ and ς are represented with a black and 
blue line respectively. aƻŘŜƭǎΩ ŀōōǊŜǾƛŀǘƛƻƴǎΥ  !.Ґ!ǊǊǳŘŀ-Boyce, NH=NeoHookean, Y=Yeoh 

Table 18 sums up the error between the data of the models and the experimental data as ɲΣ 

where n is the number of points. [41] Equation 16 is the percentage distance between the data 

of the models and the experimental data. 
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 ɲ Arruda-Boyce ɲ Neo-Hookean ɲ Yeoh 

Uniaxial tension 0.5195 2.60876 0.34765 
Pure shear 33.739 28.622 28.862 
G1 equibiaxial tension 0.59174 2.30069 0.32649 
G2 equibiaxial tension 1.38624 1.13434 4.19536 
G2.1 equibiaxial tension 1.13697 0.99536 1.49137 
G1 biaxial tension 6.861 5.793 23.087 

Table 18- percentage distance between the data of the models and the experimental data. 

The results show that Arruda-Boyce model better predicts the behaviour of SYLGARD® 184. 

The overestimation of the stretches may be again due to slip from the clamps during test. 

Suppressing slippage, it is probable that the true value would coincide with the simulations.  

Sequential tests using G2.1 three should be carried out to validate these conclusions. 

Another result to compare is the equi-biaxial area. This is calculated extracting the data at the 

end of the deformation from a path along one principal axis, from the middle of the specimen 

towards the clamp, long few centimetres. The major and minor principal stresses ‐ and ‐ 

were extracted, then the EqF% was calculated as defined in equation 5. Finally, the area is 

calculated as that of a circle with a radius equal to the distance from the centre to the point at 

which the factor is equal to 85% thanks to the shape of EqF% (which can be seen in figure 51).  

 

 

Figure 51 - Contour plot of the EqF% (Fieldτ1)on the simulation of G1 with Arruda-Boyce model, its shape is circular 
up to 85% (interface between orange and light red zones). 

Table 19 presents the results of the AoE measured on the samples and those calculated from 

the simulations done with the Arruda-Boyce, Neo-Hookean and Yeoh models. The presented 

experimental values refer to the samples used previously in the simulation plots. Therefore, 

for G1 sample 1 is presented while for G2.1 sample 2 is presented. G2 is not reported since the 

samples which reach the highest deformation do not present the ellipse. 
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 Experimental Arruda-Boyce Neo-Hookean Yeoh 

G1 equibiaxial tension 4.55 3.654 3.004 3.966 
G2.1 equibiaxial 
tension 

17.93 16.105 14.165 19.037 

G1 biaxial tension N.A. 3.565 2.802 4.631 
Table 19 ς AoE for the different models and experiments. 

Again, Arruda-Boyce performs well in this comparison. The data on non-equibiaxial 

experimental result is not available since a picture of the EqF% contour plot was not taken 

before the lockdown due to the Covid-19 pandemic. The data for the sequential displacement 

history are still reported for the models as they expected to be similar to those found in the 

equibiaxial simulations of G1 (since the final displacements are the same in the two cases) , in 

this regard the difference between the the equi- and non-equi- biaxial simulations is the lowest 

for the Arruda-Boyce model with a difference of 0.089  from the first, second is the Neo-

Hookean model with a difference of 0.202 and finally ̧ ŜƻƘΩǎ ƳƻŘŜƭ ǿƛǘƘ ŀ ŘƛŦŦŜǊŜƴŎŜ ƻŦ -0.668. 

Nevertheless, the Yeoh model seems to be that which best predict the AoE measured 

experimentally, this is not trivial and finds an explanation in the effect of the misalignments.  

 

5.4.2. Effect of the misalignments 

To understand the effect of misalignments a series of simulations is carried out on G1 using the 

Arruda-Boyce model. In these test, controlled misalignments are introduced which can be 

categorized either as tilted displacement or offset. The first category keeps the magnitude of 

the original displacement but split it into two components along the two principal directions 

such that the total vector results tilted of a certain angle. Misalignments of this kind, in this 

work, are applied either on both arms 1 and 3 (with the same sign of the angle) or only on 3. 

The second category introduces an asymmetry by imposing a displacement of 4 different from 

that applied to the boundaries of 1,2 and 3mtrying to represent the effects due to the offset 

on the dynamometer. At present, the testing conditions were not changed according to a 

Design of Experiment strategy, and just a rough estimation of the possible effects of the 

controlled misalignments is considered. Out of the preliminary results reported here, the 

interest of a deeper study simulating mixed misalignments on different arms as a method to 

identify the cause of non-ideal behaviours can be assessed. 

Figure 52 ǊŜŎŀƭƭǎ ǘƘŜ ŀǊƳǎΩ ƴŀƳŜǎΣ ǘƘŜ ǊŜŦŜǊŜƴŎŜ ǎȅǎǘŜƳ ŀƴŘ ƛƴǘǊƻŘǳŎŜǎ ǘƘŜ ǎƛƎƴ ƴƻǘŀǘƛƻƴ ǳǎŜŘ 

for this paragraph to refer to the angles to which the displacements are oriented to simulate 

the misalignments. The notation implies the angles to be positive when anti-clockwise 
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Figure 52 ς Reference system, arm names (1,2,3,4) and sign notation: clockwise is negative. 

From the simulations, 3 parameters are extracted which are the AoE, the tilt angle of the major 

axis of the ellipse with respect to the horizontal axis (‌), expressed positive if anti-clockwise, 

and the roundness factor Rf (equation 6, paragraph 4.2.4). Except for the angle, these 

parameters are used in chapter 4 in the discussion of the equibiaxiality achieved in the 

experimental tests. The ideal AoE has already been used in this chapter as a further parameter 

to compare the prediction ability of different models, in these simulations instead a non-ideal 

contour plot is obtained showing an ellipse, therefore Rf and the angle can be used. The results 

for four sets of simulations are presented in graphs 27, 28 and29. The first set of simulations 

tilts both displacements on arms 1 and 3 of a certain angle and in the result is represented 

with a black line, the second set applies the same tilt angles but only on arm 3 and is 

represented with a blue line, the third set applies the tilt of the first and an offset of 0.5mm to 

arm 4 such that the total magnitude of the displacement is 10.5mm and it is represented by a 

red line, finally the fourth set is similar to the third but the applied offset is of 0,7mm and it is 

represented with a green line. Table 20 sums up the conditions of the different sets and the 

colour associated to the lines in the graphs. 

 Set 1 Set 2 Set 3 Set 4 

Displacement tilt d1 and d3 d3 d1 and d3 d1 and d3 

Offset 0 0 d4 + 0.5 d4 + 0.7 
Table 20 ς Legend of the sets of simulations under controlled misalignments. 

The values for the datum of set 4 at 13° of displacement tilt angle are reported only in graph 

29 because no ellipse can be identified in the contour plot for the threshold of EqF%>85%, 

what presents are instead two separated circles. Therefore, the AoE and the Rf cannot be 

extracted but the line between the centre of the circles can be traced and its tilt angle 

reported. (figure 53) 

ς 

ρ + 
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Figure 53 - Contour plot of EqF% for set 4, 13° displacement tilt angle. EqF%=85% is represented by the interface 
between the light orange and the dark orange contours. ‌ is the angle reported in graph 29. 

All simulations are carried out applying positive displacement tilt angles, few simulations were 

done to verify that negative angles for same conditions provide an ellipse which is tilted by an 

angle equal to 180° minus the tilt angle of the major axis of the ellipse obtained with positive 

angles. 

 
Graph 27 ς Area of Equibiaxiality vs displacement tilt angle. Colours of the lines are associated to those presented in 
ǘƘŜ άƭŜƎŜƴŘέ ό¢ŀōƭŜ нлύ 
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Graph 28 ς Roundness factor vs displacement tilt angle. Colours of the lines are associated to those presented in the 
άƭŜƎŜƴŘέ ό¢ŀōƭŜ нлύ 

 
Graph 29 ς Tilt angle of the major axis of the ellipse vs the displacement tilt angle. Colours of the lines are associated 
to those presented in thŜ άƭŜƎŜƴŘέ ό¢ŀōƭŜ нлύ 

The results in graph 27 show that the AoE rapidly falls with the introduction of the offset while 

the bare presence of the misalignments on the horizontal arms produces a limited 12% loss in 

the area passing from 2° to 13° of tilt. Figure 54 is reported here to give the idea of how much 

a 13° tilt is visible on G1 which is characterized by long thin arms. The AoE is mainly influenced 

by the presence of the offset which reduces the ellipse minor axis. 
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Figure 54 ς Contour plot of EqF% (Field-1) of set 1, tilt angle of displacement=13° 

The effect on the roundness factor showed in graph 28 seems simple since the lower the 

misalignment the closer is the contour plot of the equibiaxial area to a circle thus to Rf=1. It is 

interesting how for increasing offset on arm 4, the values of sets 3 and 4 tend to values lower 

than their limit condition resulting from the application of the offset only. This behaviour is 

seen in graph 27 only for set 4, in which higher values of AoE are obtained with 2° 

misalignment with respect to the limit condition of offset only. 

Finally, the tilt angle of the ellipse is strongly influenced by the presence of the offset which 

reduces the ellipseΩǎ ƳƛƴƻǊ ŀȄƛǎ orienting the major axis along ρ while the presence of tilts only 

in arms 1 and 3 seems to tend to 90° axis angles for small tilt angles. 

Table 21 reports the values of the parameters considered in these simulations for samples 1 

and 3 of geometry G1. The angles are calculated assuming a constant 40° rotation of the 

reference system of the machine with respect to the reference system of the recording setup. 

 G1_1 G1_3 

AoE [mm2] 3.94 4.54 

‌ [°] 28.3 86.6 

Rf 1.4 1.27 
Table 21  ς  Parameters for samples 1 and 3 of G1. 
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Then the sample 1 of G1, even if showing an AoE which is underestimated by Arruda-Boyce, 

present values of Rf and ‌ which resemble the set 3 of the simulations, with a tilt angle of 

about 8° on the displacement. This result highlights the non-negligible presence of an offset 

thus a pre-stretch along one direction. In the case of sample 3, instead, the parameters 

suggest a behaviour closer to set 1, with low tilt of the displacement and almost no offset, a 

situation intermediate between set 1 and 3. Nevertheless, extracting the forces from the 

camping surfaces from the worst acceptable (in the sense the ellipse forms) case which is set 4 

at 13°, these are still not comparable with the experimental one. Graph 30 reports the 

experimental values of sample 1 of geometry G1 representing the force along ρ with a 

continuous black line and the force along ς with a red dashed line; the black and red points 

represent the result of the misaligned simulation of set 4 at 13°, referring to F1 and F2 

respectively; the blue points represent the Equibiaxial results of Arruda-Boyce. 

 

Graph 30 ς Force against displacement for G1. The experimental values of sample 1 are represented with a black 
continuous line along 1 ȸ and with a red dashed line along 2 ȸ; the black and red connected points represent the result 
of the misaligned simulation of set 4 at 13°, referring to F1 and F2 respectively; the blue points represent the 
Equibiaxial results of Arruda-Boyce. 

Simulating the same sets of misalignments on G2.1, the ellipse is lost (and two separated circle 

form as in figure 53) at set 3, 10° and for set 4 at 7°, therefore a set of tests at more numerous 

and smaller angles should be performed. From this it can be concluded that the tilt of 

displacement due to bad clamping procedure is not particularly effective on causing 

misalignments in G1 while it is strongly affecting G2.1. The presence of an offset strongly 

affects the first geometry, this suggest that a further investigation on the effect of different 

offsets should be done, for example simulating slippage as negative offsets to the final 

displacement. 
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Polydimethylsiloxanes has found many applications in bioengineering and soft robotics. As part 
of a PhD wider project which aims to use SYLGARD® 184 to produce soft robots, this thesis 
proposes ŀ ƳŜǘƘƻŘ ǘƻ ŎƘŀǊŀŎǘŜǊƛȊŜ ƛǘ ǳƴŘŜǊ ōƛŀȄƛŀƭ ŘŜŦƻǊƳŀǘƛƻƴ ǎǘŀǘŜǎ ƻƴ ŀ ǇŀǊǘƛŎǳƭŀǊ άƳƛŎǊƻ-
ōƛŀȄƛŀƭ ǘŜǎǘƛƴƎ ƳŀŎƘƛƴŜέΦ ²ƛǘƘ ǘƘŜ ŀƳōƛǘƛƻƴ ǘƻ develop a method which can be used for other 
ǎƛƳƛƭŀǊ άǎƻŦǘέ ƳŀǘŜǊƛŀƭǎΣ ǘǿƻ ǎŜǘǳǇǎ ŀƴŘ ǘǿƻ ŘƛŦŦŜǊŜƴǘ ƎŜƻƳŜǘǊƛŜǎ ŀǊŜ ŘŜǎƛƎƴŜŘ ǘƻ ŀŎƘƛŜǾŜ ŀƴ 
equibiaxial deformation state. The results show how both the first geometry and a 
modification of the second can provide the required deformation state, the latter with same 
equibiaxiality (given as EqF%) but lower reliability and maximum equibiaxial deformation 
achieved. 
In this work the concept of reliability of the geometry is strictly related to the arbitrary 
threshold of EqF%, changing that value the ellipse might not show. Sample 1 of G1 is reported 
below in figure 55 for explanatory purposes as the ellipse shows for 85% threshold while it is 
substituted by two separated circles for threshold set at 90%. 

 

Figure 55 Contour plot of EqF%: on the left the dark red area represents values >85%, on the right the threshold is 
set to 90% 

Then among the samples which contour plot show the ellipse, a minimum area of the ellipse is 

required for the saƳǇƭŜ ǘƻ ōŜ ŎƻƴǎƛŘŜǊŜŘ άǎǳŦŦƛŎƛŜƴǘƭȅ ŜǉǳƛōƛŀȄƛŀƭέΦ ¢ƘŜƴ ǘƘŜ ǊŜƭƛŀōƛƭƛǘȅ ƻŦ ǘƘŜ 

geometry is given as the statistic of sufficiently equibiaxial samples over the toal number of 

tested samples. Further works to completely assess the reliability of the biaxial setup should 

consist in: the study of curing conditions which allow to obtain the least compressible material, 

since analysis of the equibiaxial data under incompressibility assumption would be much easier 

as the behaviour of the material would lies in the plane of invariants (deeper discussion on the 

topic can be found in appendix E); the acquisition of a wider set of data regarding G2.1 to 

complete its statistic; the design of a single-screw clamping system to reduce the misalignment 

due sequential screwing. 

In the second part of this project, the data from uniaxial tensile tests and pure shear tests were 
used to evaluate the parameters of different hyperelastic models which are then used to 
simulate the mechanical response of the biaxial geometries. The results show that Arruda-
Boyce is suitable to simulate the material taking into account its compressibility ό˄ҐлΦпрύΦ -
simulation agree with experiments up to the maximum strain achieved. Simpler models, such 
as Yeoh and Neo-Hooke, can be used with a maximum strain up to 0.4. 
CƛƴŀƭƭȅΣ ŦǳǊǘƘŜǊ ǿƻǊƪǎ ǎƘƻǳƭŘ ƛƳǇƭȅΥ ǘƘŜ ŜǾŀƭǳŀǘƛƻƴ ƻŦ ǘƘŜ ƳƻŘŜƭǎΩ ǇŀǊŀƳŜǘŜǊǎ ƛƳǇƭŜƳŜƴǘƛƴƎ 
biaxial results, considered reliable, to obtain a better fitting of those models which do not 
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neglect the second invariant term and achieve a better description of the material; the deeper 
development of the misalignment simulations to obtain a method which allows to determine 
the source of non equibiaxial behaviour of the principal strains. On this regard, another 
verification on the reliability of the model which can be done consists in simulate a geometry 
representing a square in the centre of the sample such that each node corresponds to a point 
of data extraction on the DIC software. Then applying the measured deformation at each 
node, the resulting force should be equal to the measured in its components but the total 
vector should show the misalignments. 
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This appendix sums up the background knowledge needed to understand the nature of the 

Cauchy green tensor and other considerations present in this thesis. 

Considering a body in a ᴙǎǇŀŎŜ ƻŎŎǳǇȅƛƴƎ ǘƘŜ Ǉƻǎƛǘƛƻƴ ҠΦ !ŦǘŜǊ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ƻŦ ŀ 

generic external action, the body is deforƳŜŘ ŀƴŘ ƻŎŎǳǇƛŜǎ ŀ ƴŜǿ Ǉƻǎƛǘƛƻƴ ҠϝΦ 

Then considering the generic point ὖᶰЏ  : 

ὖ ὼȟὼȟὼ  

A1 

The image of ὖ characterized by its rigid translation vector ίӶὖ , is ὖᶻ. (Fig. A1) 

ίӶὖ

ί ὖ

ί ὖ

ί ὖ

                         ὖᶻ
ὼ ίὖ
ὼ ί ὖ
ὼ ί ὖ

 

A2 and A3 

If one looks at a point ὖ belonging to the neighbourhood of ὖ at distance Ὠὼ . (Fig. A2) 

Ὠὼ

Ὠὼ
Ὠὼ
Ὠὼ

     ὖ ὼ Ὠὼ ȟὼ Ὠὼ ȟὼ Ὠὼ 

 A4 and A5 

It is possible to derive the total displacement vector for point ὖ through the Taylor 

expansion of each of its components. 

ίӶὖ

ί ὖ
ί ὖ
ί ὖ

     ίὖ ίὖ
‬ί

‬ὼ
ϽὨὼ

‬ί

‬ὼ
ϽὨὼ

‬ί

‬ὼ
ϽὨὼ 

 A6 and A7 

Therefore, the total displacement vector can be written as the sum of two contributions: 

the rigid translation vector of ὖ and the associated displacement vector Ὠί (eq. A9) 

derived from the Displacement Gradient Tensor Ὂὖ  which is defined as the Jacobian 

matrix of the total displacement vector ίӶ. (eq. A11). (Fig. A3) 
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 A8 

 

ίӶὖ ίӶὖ Ὂὖ Ͻ Ὠὼ 

 A9 

Ὂὖ Ͻ Ὠὼ Ὠί 

A10 

Ὂὖ ίɳӶ

ίȟ ίȟ ίȟ
ίȟ ίȟ ίȟ
ίȟ ίȟ ίȟ

 

 A11 

Neglecting the rigid translation, the displacement gradient then describes de displacement 

Ὠί of any fibre of the body of length Ὠὼ with origin in ὖ. (Fig. A4) 

Once the gradient has been defined, as any tensor it can be separated in two parts: one 

symmetric (eq. A12) and one skew symmetric (eq. A13). 

‐֞
ρ

ς
Ὂ Ὂ  

 A12 

—֞
ρ

ς
Ὂ Ὂ  

 A13 

‐֞ is called Strain Tensor and accounts for the deformations of any fibres whereas —֞ is 

called Rigid Body Rotation Tensor and accounts, as the name says, for the rigid body 

rotations. Therefore, the displacement vector can be decomposed in two components as 

well. (eq. A14) (Fig. A5) 

Ὠί Ὂ Ὠὼ ‐֞ Ὠὼ —֞ Ὠὼ 

 A14 
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But if one wants to account for strains being sure to neglect pure rotations it is convenient 

to use rotation-independent deformation tensors rather than forcibly align the reference 

system. 

Property of pure rotation is that if followed by the same inverse rotation it returns the 

body to its original state (eq. A15) 

ὙὙ ὙὙ Ὅ֞ 

A15  

Then one can exclude rotations by multiplying Ὂ by its transpose. These multiplications 

lead to two notorious deformation tensors: the right Cauchy-Green def. tensor (eq. A16) 

and the left Cauchy-Green def. tensor, also called Finger def. tensor (eq. A17). 

ὅ֞ ὊὊ 

A16  

ὄ ὊὊ  

 A17  

If one assumes to be aligned along the principal strain directions:  ‐ π  and  

ὄ ‗֞

‗ π π

π ‗ π

π π ‗

 

 A18 

It is to note that the notation used implies i=j always since no coupled deformations are 

expected. 

The choice of using one over the other relies in the third invariant that in the case of 

CƛƴƎŜǊΩǎ ǘŜƴǎƻǊ ƛǎ ǎƛƳǇƭȅ ǘƘŜ ǎǉǳŀǊŜ ƻŦ ǘƘŜ WŀŎƻōƛŀƴ ƻŦ Ὂ (eq. A21,22) 

Ὅ ὸὶὄ ‗ ‗ ‗ 

Ὅ
ρ

ς
ὸὶὄ ὸὶὄ ‗‗ ‗‗ ‗‗ 

Ὅ ὨὩὸὄ ὐ ‗  ‗  ‗ 

 A19, A20 and A21 ς ¢ƘŜ ǘƘǊŜŜ ƛƴǾŀǊƛŀƴǘǎ ƻŦ CƛƴƎŜǊΩǎ ŘŜŦƻǊƳŀǘƛƻƴ ǘŜƴǎƻǊ 

ὐ  ὨὩὸὊ  

A22- Definition of the Jacobian of the deformation gradient tensor 

Finally, it is to note that for incompressible materials such as rubbers, equation A25 is true. 

ὠ ὰ ὰ ὰ ὠ ὰ ὰ ὰ  

Eq. A23 ς Incompressibility condition expressed as volumes 
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‗
ὰ

ὰ
 

Eq. A24 ς Stretch definition along i- principal direction 

ὐ ‗‗‗
ὰὪ

ὰ

ὰ

ὰ

ὰ

ὰ

ὠ

ὠ
ρ 

Eq. A25 ς Jacobian of the deformation gradient tensor for an incompressible material 

 

 

 

 

A 1 - Deformation after the application of a generic external action                                      A 2 - Neighbour point 

  

A 3 ς Geometrical meaning of the implied vectors 
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A 4 ς Geometrical meaning of the deformation gradient for 3 generic fibres A,B and C. 

 

A 5 ς Geometrical meaning of the strain tensor and the rigid body rotation tensor. 

LƳŀƎŜǎ ŦǊƻƳ ǘƘƛǎ ŀǇǇŜƴŘƛȄ ŀǊŜ ǘŀƪŜƴ ŦǊƻƳ ǘƘŜ ƭŜǎǎƻƴǎ ƻŦ tǊƻŦΦ ¢ƻƳƳŀǎƻ 5Ω!ƴǘƛƴƻΣ ŦǊƻƳ ƛǘǎ ŎƻǳǊǎŜ ƻƴ /ƻƳǇƻǎƛǘŜ 
Materials For Structural Applications. 
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The focal length (F) of a lens, giving a raw definition, is the distance between the lens and the 
sensor of the camera when the subject is on focus. It is the major feature of a lens and it 
strongly influences the output image, the field of view and the distance of best focus. 
Depending on the value of F, lenses are classified as: extreme wide angle (up to 20mm), wide 
angle (20-35mm), normal (35-70mm), medium telephoto (70-100 mm), telephoto (100-300 
mm) and super telephoto (300-600 mm). [44] 
The two main effects of increasing focal length is that of compressing the background and 
reducing the angle of view therefore increasing the magnification of the subject. 

 

 
Figure B2 ςLens classification (above) and effect of the focal length on the image (below)  
©2019 TheDarkroomϰ ŀƭƭ ǊƛƎƘǘǎ ǊŜǎŜǊǾŜŘ  
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The lens used in this project is versatile, with a variable focal length raging from 28mm to 
105mm, as telephoto lenses are the less distorted the maximum value of F was used. 
The field of view (FoV) is the dimension of the frame that covers the entire sensor, as sensors 
are rectangular one can divide the vertical and horizontal field of view. The second indication is 
ǘƘŜ Ƴƻǎǘ ǳǎŜŘ ŀǎ ǎŜƴǎƻǊǎΩ ŘƛƳŜƴǎƛƻƴǎ ŀǊŜ ǳǎǳŀƭƭȅ ƎƛǾŜƴ ŀǎ ƘƻǊƛȊƻƴǘŀƭ ŘƛƳŜƴǎƛƻƴ (H) either in 
mm or fraction of inches. 
A note on the latter way of expressing sensor dimension is that the fractions of inches are not 
the real dimension ƻŦ ǘƘŜ ŦǊŀƳŜΣ ƛƴ ŦŀŎǘ ŀ мέ ǎŜƴǎƻǊ ƛǎ Ƨǳǎǘ моΦо ƳƳ 8.86 mm not even close 
25.4 mm, which is instead the dimension of sensors on standard digital single-lens reflex 
cameras, called APS-C which dimensions are around 24 16 mm and changes depending on the 
brand.  
Knowing the dimension of the sensor of the camera one is using and the magnification, it is 
possible to derive the horizontal field of view as: 

Ὂέὠ άά
Ὄ άά

ὓὥὫὲὭὪὭὧὥὸὭέὲ
 

Magnification is not a trivial quantity as it depends on the focal length and the sensor dimension. 
The following equation show the relation between the cited parameters. It is useful to 
determine the distance at which position the object for it to occupy a fixed portion of the 
horizontal dimension of the sensor indicated as a length in mm. 

ὡέὶὯὭὲὫ ὨὭίὸὥὲὧὩ άά
Ὂ Ὂzέὠ

ὖέὶὸὭέὲ έὪ ίὩὲίέὶ 
 

The focal ratio indicates the ratio between the focal length (F) of a lens and the diameter of 
the diaphragm (D) from which the light enters 

Ὢ
Ὂ

Ὀ
 

It is generally expressed aǎ άŦκέ ŦƻƭƭƻǿŜŘ ōȅ ŀ number. 
Lenses of small focal ratio such as f/2 or f/2.8 are highly luminous, high focal ratios determine 
low luminosity. 
Moreover, this factor directly effects the depth of focus as  

ὈέὊτz ‗z Ὢ 
Where ˂  is the wavelength of the light.  
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Figure B2 - Geometric Representation of DOF for High and Low f/# lenses 
All rights reserved to:  https://www.edmundoptics.com/knowledge-center 

This parameter is particularly important for Stereo-DIC in which the uncertainty along the 
depth is smaller the higher the depth of focus.  
 
Finally, distortion effects are a problem that still affects all the digital cameras. The distortion 
can be defined as the lens defect that produces an imperfect image. Distortion effects can 
appear when the lens is zoomed. Zoom lenses at their maximum wide-angle (28 mm) or 
telephoto (> 80 mm) setting can be affected by barrel or pincushion distortions, 
respectively (see figure B3).  

  
Figure B3ς Barrel (left) and pincushion (right) distortion 

Evaluating distortion is strictly practical and must be adapted case by case, luckily the Nikon 
28-105 is a known lenses , versatile and  evaluations on its distortion can be found. [45] 
Highlighting the effort put into this work, the data presented in table B1 are the factors to 
ŀǇǇƭȅ ƛƴ ǘƘŜ tƘƻǘƻǎƘƻǇΩǎ ƭŜƴǎ ŘƛǎǘƻǊǘƛƻƴ ŦƛƭǘŜǊ ǘƻ ŎƻǊǊŜŎǘ ƛǘΦ ¢ƘŜ ŎƻƳƳŜƴǘ ƻƴ ǘƘƛǎ ƭŜƴǎ ƛǎ ǘƘŀǘ ƛǘ 
is the one of lowest distortion in its category and that this distortion is invisible at all but the 
28mm setting at infinity. 
 
 
 
 
 

https://www.edmundoptics.com/knowledge-center
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  FX at 3m (10')  FX at Ð 
28mm  +1.2* +2.2* 

35mm  0.0* +0.2* 

50mm  -0.7* -0.4 

70mm  -1.0 -0.5 

85mm  -1.0 -0.5 

105mm  -1.0 -0.5 

 
* Some waviness remains 
Table B1 ς CŀŎǘƻǊǎ ŦƻǊ tƘƻǘƻǎƘƻǇΩǎ ƭŜƴǎ ŘƛǎǘƻǊǘƛƻƴ ŦƛƭǘŜǊ ŦƻǊ bLYhb ну-105 AF  
© 2010 KenRockwell.com. All rights reserved. 

In the practise of this project uniaxial tests images were not corrected as to avoid distortion 
effects is sufficient for the images to be centred since not the full sensor was occupied.[46] A 
simple verification on the distortion on the images were done overlapping straight lines to 
known straight pieces such as the edges of the clamp and verify the straightness of those. 
For what concern biaxial tests distortion was verified using graph paper, focusing the piece at 
the distance used for the tests. Importing the image in any software that allow manipulation it 
is easy to see how the lines are not distorted by overlapping them with a drawn straight line, 
therefore also in this case no correction was considered needed. 
 
 

 

Understanding how DIC works and what are the observed outputs is not trivial and some work 

had to be done on the topic. 

The general theory behind Digital Image Correlation is well explained in literature [47] and this 

appendix will focus on the outputs and their meaning. 

VIC-2D 2009 allows to evaluate the local value of different kinematic quantities and to do 

further calculations on them. [48] For what concern the strain it was decided to evaluate the 

Lagrangian strain tensor which is the most suitable for large strains. [49] The equations of the 

ǘŜƴǎƻǊΩǎ ŎƻƳǇƻƴŜƴǘǎ ŀǊŜ ǊŜǇƻǊǘŜŘ ōŜƭƻǿΦ 
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Equation C1 ς Lagrangian strain tŜƴǎƻǊΩǎ ŎƻƳǇƻƴŜǘƴǎ 
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The directions ὼ and  ώ are the horizontal and vertical axes of the screen, therefore is crucial to 

correctly align the sample. ό and ὺ are the displacements along the horizontal and vertical 

direction respectively. Nevertheless, the software is capable to calculate the principal strains 

therefore solving the eigenvalue problem of the developed tensor. The outputs of this 

operation are called ‐ and ‐ which are the major and minor principal strains respectively. 

¢ƻ Ǝŀƛƴ ŎƻƳǇǊŜƘŜƴǎƛƻƴ ƻŦ ǘƘŜ ǇǊƻŎŜŘǳǊŜ ƭŜǘΩǎ ŦƛǊǎǘ ƭƻƻƪ ŀǘ ǘƘŜ ǳƴƛŀȄƛŀƭ ŎŀǎŜΦ ¢Ƙƛǎ ƛǎ ŦŀƛǊƭȅ 

simple: where the strains are uniform, the principal strain direction is that of loading and since 

the reordered image is horizontal, if correctly aligned ‐ ‐ ‐   where ‐   is the strain 

along ρ of the reference system used in this thesis, recalled in figure C1. 

  

Figure C1 ς Reference system of uniaxial tensile tests  

Consequently ‐ ‐ ‐  and ‐ π ‐ . Since the difference between the strains 

and the principal strains is of the order of the fourth decimal, the misalignment is neglected, ‐ 

and ‐are considered valid output and the shear is neglected.  

Moving to the biaxial case things start complicating. First of all, the dynamometer axes and 

those of the optical setup are not aligned. Further, the dynamometer base can me move to 

operate under different optical systems but it is not attached in any way and there are no 

physical grips to align it always in the same position. This setup introduces an unknown 

rotation of the reference system of the machine with respect to that of recording. Considering 

the defined reference systems (see figure C2) to align ρ to ὼ usually the clamping system 

should be rotated of about 39° to 41° clockwise. But since the software is capable of 

determining the principal strains there is no need to previously rotate the images as the two 

principal strain directions coincide with the loading ones. 

 
Figure C2 ς Sketch of the view form the optical system; the numbered squares represent the clamps connected to the 
respective numbered stage. 

ρ 

ς 
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Therefore: ‐ ‐ and ‐ ‐. This is the strongest assumption used in this thesis. Since 

there is no physical reference to measure the sample relative rotation with respect to the 

machine, there is no way to understand if the assumption is true and how much the principal 

strains are rotated with respect to ‐. As a matter of fact, the orientation of the principal strain 

direction depends on the orientation of the displacement (and loading) axes of the machine 

which, due to the misalignment arising from asymmetrical clamping, may not be aligned with 

the axes of the sample.  

For this reason, it was decided to concentrate the analysis on qualifying the error from the 

ideal (aligned) case in a way sufficient to understand which samples can be considered aligned, 

which not and which technique gives the highest reproducibility and chance to obtain a good 

sample.   

To implement the strategy, the first step is to understand what is the ideal condition 

corresponding to ‐ ‐ , ‐ ‐ and ‐ ‐ 

The reason resides in the way the diagonalization is done: for explanatory purposes aƻƘǊΩǎ 

circle is used as it is considered easier to perceive than matrices. Moreover, for the sake of 

simplicity the following explanation is done imaging a sample aligned with the camera 

coordinates. Assume to be at the highest experimental deformation (0.3), in a small element at 

the centre. Then here both ‐ and ‐  are the same because the element is in equibiaxial 

condition, ‐   is л ōŜŎŀǳǎŜ ǳƴŘŜǊ ǇŜǊŦŜŎǘ ŜǉǳƛōƛŀȄƛŀƭ ŎƻƴŘƛǘƛƻƴ ǘƘŜ aƻƘǊΩǎ ŎƛǊŎƭŜ ŎƻƭƭŀǇǎŜ 

under a single point as ‐ ‐. 

Now consider the same situation but looking at a small element situated along direction ρ a 

few mm from the centre. Out of the centre the shear is still zero and ‐ =‐ , ‐ =‐. As one 

move along ρ, ‐  will always be greater than ‐  and the radius of the circle will increase with 

distance from the centre. 

 

Figure C3 ς Mohr case 2, different radius moving far away from the centre of the sample. 
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If the direction of the small element is rotated by a certain angle with respect to 0° between  

45°, a shear contribution exists. On ǘƘŜ aƻƘǊΩǎ Ǉƭƻǘ ǘƘƛǎ ǎƛǘǳŀǘƛƻƴ ƛǎ ǊŜǇǊŜǎŜƴted by a circle 

centred in C (0.3,0) of radius given by half the distance between two points: A (‐ , ‐ ) and 

B(‐ ,  ‐ ). Then ‐ and ‐ are the intercepts of the circumference with the axis ‐ =0 and 

the rotation angle is given by half the angle between AC and the horizontal axis.  

 

Figure C4 ς Mohr case 3, along generic axes different from 0° and 45° 

If, instead of moving along ρ, one decides to move along an axis tilted of 45° with respect to ρ 

the values of ‐  and ‐  are equal and equal to the value at centre but a shear contribution is 

present. Plotting this ƛƴ ǘƘŜ aƻƘǊΩǎ ǇƭŀƴŜ a single point is found which does not belong to the 

horizontal axis. The other point, needed to derive a circumference, is at 180° with respect to 

the first point in the plane therefore 90° in the sample. In fact, if one moves by the same 

amount as before but along an axis inclined of -45° with respect to  ρ it would find another 

point where the values of ‐  and ‐  are the same but ‐  is opposite to the first one. 
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Figure C5 ς Mohr case 4, along 45° axes 

Then, in the assumption of perfect equibiaxiality, moving from the centre along one of the axis 

the maximum eii (either ‐  or ‐ ) will have the same value at the same distance from the 

centre meaning ‐ and ‐ will be different with respect to each other but equal in points 

equally distant from the centre (along the loading axes). Therefore, the behaviour is 

symmetrical in four quadrants divided by the axes at 45° and the contour plot of ‐ and ‐ 

should be a circle where the shear contribution is close to zero, then moving outside from the 

centre the shape becomes that of a square with rounded edges. 

This contour plot can be seen perfectly with FEM simulations (figure C8), where NE max. and 

mid. principal are ‐ and ‐ respectively, and reached approximately with the tests of this 

project (Figures C6-7). Since the principal strain directions are independent on the rigid 

rotation of the image, the same values for ‐ and ‐ are expected also evaluating the 

acquisitions done under the biaxial setup. 

Is not trivial the VIC 2D plot of ‐  and ‐  for images rotated of 40° clockwise, the comparison 

of the two plots for both components and for ‐  is reported below, as well as the plots of ‐ 

and ‐. 
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Figure C6 ς In order from left to right: ‐ , ‐ , ‐ , ‐ and ‐ evaluated from the original images of G1, sample 3. 

Scales:  

    

exx,eyy 0.02 0.3 0.6 

exy 0.12 0 -0.12 

e1 0.3 0.45 0.6 

e2 0 0.15 0.3 

 

 

Figure C7 ς In order from left to right: ‐ , ‐ , ‐ , ‐ and ‐ evaluated from the rotated images of G1, sample 3. 

Scales:  

    

exx,eyy 0.23 0.3 0.38 

exy 0.15 0 -0.15 

e1 0.3 0.36 0.45 

e2 0.12 0.20 0.3 

 

 

Figure C8 ς G1 Arruda-Boyce ‐ and ‐ plot 
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The major feature of elastomeric materials, is that they can sustain large deformation without 

dissipating internal energy. These materials are called Hyperelastic or Green Elastic and are 

capable to return to their initial state once the external stimulus is removed.  

Since for this project the effect of temperature was not assessed, this appendix sums up the 

purely mechanical aspects. 

The theory is based on the assumption that an energy function exists ( Ὗ ) called Helmholtz 

free energy, or strain energy function or elastic potential, which is only function of the 

displacement gradient and can be further approximated in terms of principal stretches.[50] 

Ὗ ὟὊ Ὗ‗ȟ‗ȟ‗   

Calling ὄ the left-Cauchy Green strain tensor8, the relation between the Cauchy stress tensor ( 

„ ) and the strain energy function for isotropic incompressible materials is equation D1, which 

simplifies to D2 in terms of principal stretches. 

„ ς
Ћ5

ЋὍ

Ћ5

ЋὍ
Ὅz ὄ

‬Ὗ

‬Ὅ
ὄ ὴρ 

D1 

„ ὴ ‗
Ћ5

Ћ‗
     ȟ    Ὥ ρȟςȟσ 

D2 

Where ὴ is the pressure producing an hydrostatic stress state, if present, all other term 

definitions can be found in Appendix A and invariants are referred to the Left-Cauchy green 

tensor. 

For compressible materials instead, both the isochoric and volumetric components are 

present. Ὗ Ὗ ὍȟὍ Ὗ  (Marlow model) and  „ „ „ , where the volumetric 

part is due to the hydrostatic pressure while the isochoric coincides to the deviatoric 

component of the stress tensor (D3). 

„
Ћ5 *

Ћ*
ρ ὴρ    ȟ    „ Ὅ

ρ

σ
ρ ρȡ„ „  

D3 

In this case, the constitutive equation is easier given as function of the second Piola-Kirchhoff 

stress tensor Ὓ֞ ὐὊ Ͻ„ϽὊ  =Ὓ֞ Ὓ֞  and the right-Cauchy Green strain tensor ὅ֞. 

Ὓ֞ ὐ
Ћ5 *

Ћ*
ὅ֞ ὐὴὅ֞     ȟ    Ὓ֞ ς

Ћ5

ЋὍ

Ћ5

ЋὍ
Ὅz ρ

‬Ὗ

‬Ὅ
ὅ֞  

D4 

 
8 See appendix A 
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Even if Ὓ֞ is defined on the basis of the right Cauchy-Green tensor, the invariants of the 

isochoric components are equal to those of the left one, therefore the notation still refers to 

the invŀǊƛŀƴǘǎ ǎŜŜƴ ƛƴ !ǇǇŜƴŘƛȄ !Φ ¢ƘŜ ŀǇŜȄ άƛǎƻέ ǊŜŦŜǊǎ ǘƻ ǘƘŜ ƛƴǾŀǊƛŀƴǘ ƻŦ ǘƘŜ ŘŜǾƛŀǘƻǊƛŎ 

component of ὄ. Nevertheless, is to note that the third invariant of ὅ֞ is equal to the square of 

the Jacobian and different from 1. 

ὅ֞ ὅ֞    ȟ   Ὗ Ὗ      

Ὗ
‖

τ
ὐ ρ ςÌÏÇ ὐ   

D5 

ˁҐ ōǳƭƪ ƳƻŘǳƭǳǎ=  

Then to derive the constitutive equations, Ὗ must be defined and this is where models play the 

role. Different models give different definitions of Ὗ. Below is presented a list of the models 

present in ABAQUS® [40] and their typical applications. [43] 

- Phenomenological models. 

Are issued from mathematical developments of Ὗ. 

Common problem: lead to error if used outside the range used to identify the parameter. 

Á Mooney-Rivlin model and polynomials 

Ὗ ὅ 

ȟ

Ὅ σ Ὅ σ
ρ

Ὥ
ὐ ρ  

Ὗ ὅ Ὅ σ ὅ Ὅ σ
ρ

Ὀ
ὐ ρ  

D6 

Classically used for very large strain problems, is truncated at second or third order 

as the latter already requires 9 parameters.  

It was originally developed for rubber-like material but nowadays is applied also to 

simulate biological tissue-like materials. 

!.!v¦{ϯ Ŏŀƭƭǎ άaƻƻƴŜȅ-wƛǾƭƛƴέ ƳƻŘŜƭ ǘƘŜ ǇƻƭȅƴƻƳƛŀƭ ǳǇ ǘƻ ǘƘŜ ŦƛǊǎǘ ƻǊŘŜǊΣ ŀƴŘ 

allow polynomial evaluations up to the 2nd. 

ABAQUS® stability condition:  Ὠ„ Ὠ‐ Ὠ„ Ὠ‐ π  

 

Á Ogden model  

Ὗ
‘

‌
 ‗ ‗ ‗ σ 

D7 

Defines Ὗ  as a series of real powers of the generalized strains. Needs a high 

number of parameters therefore is rarely used with values of ὔ>3 (ὔ=3 requires 6 

parameters). 

Is the most widely used for large strain problems. 

ABAQUS® allows Ogden evaluations up to N=6 

ABAQUS® stability condition: ‘‌ π   ᶅὲ ρȟὔ 

For ὔ=1 and ‌=2 this model is equal to Neo-Hookean model 
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- Experimental models. 

Definition: determine directly the derivative of the energy function and not the energy 

functions. 

Common problem: work well only for incompressible materials 

Á Yeoh model (third order reduced polynomial) 

Ὗ ὅ Ὅ σ ὅ Ὅ σ ὅ Ὅ σ
ρ

Ὀ
ὐ ρ

ρ

Ὀ
ὐ ρ

ρ

Ὀ
ὐ ρ  

D8 

As a difference with respect the other models of this class, here   is considered 

to be much lower than  , thus neglected.  

Stability condition: ὅ π  ,but since typically ὅ π, then reaching min ȿὅ ȿ , 

max ȿὅ ȿ help stabilizing. 

 

- Physical models. 

Definition: issued from physics of polymer chain network and statistical methods. 

All these models neglect the contribution of . 

Á Neo-Hookean model (first order reduced polynomial) 

Ὗ
ρ

ς
ὅ Ὅ σ

ρ

Ὀ
ὐ ρ  

D9 

Where ὅ  ὲὯὝ , in which ὲ is the chain density per unit volume, Ὧ is the 

Boltzmann constant and Ὕ is the absolute temperature. 

The model is just like Mooney-Rivlin with ὅ π but was derived from molecular 

chain statistics considerations. It is the simplest of this category. 

Works well with tensile, simple shear and biaxial tests for deformations lower than 

50%. 

Stability condition: ὅ π   

 

Á Arruda and Boyce model (8-chain model)  

Ὗ ‘
ρ

ς
Ὅ σ

ρ

ςπ‗
Ὅ ω

ρρ

ρπυπ‗
Ὅ σ

ρω

χπππ‗
Ὅ σ

υρω

φχσχυπ‗
Ὅ σ

ρ

Ὀ

ὐ ρ

ς
ὰὲὐ  

D10 

Its peculiarity is to consider that the shear modulus ‘, depends on the strain, 

which is a behaviour of some polymers but does not fit quite well with all 

materials. 

Stability condition: ‘ȟ‗ π   
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Á Van der Waals model 

Ὗ ‘ ‗ σ ὰὲρ – –
ς

σ
ὥ
Ὅ σ

ς

ρ

Ὀ
 
ὐ ρ

ς
ὰὲὐ  

D11 

Ὅ ρ ‍Ὅ ‍Ὅ      –
Ὅ σ

‗ σ
    

D12 

Even if was derived from physical consideration, the parameter ‍ has no physical 

meaning. 

Stability condition: ‘ȟ‗ π   

In their paper, G. Marckmann and E.Verron list many more models and then rank them 

considering the number of required parameters, the fitting error and the width of the strain 

interval that can be covered. 

To derive the coefficients ABAQUS® uses two different fitting procedures: a linear least 

squares procedure, for the polynomial and reduced polynomial models, and a nonlinear least 

squares procedure, for Arruda-Boyce, Ogden and Van der Waals. 

The linear procedure strats from (10) which represents the set of ὔ equation (where ὔ is the 

degree of the polynomial) ,„  is a stress value from the test data and „  the calculated one 

as showed in equation D14, ὅ  is the ij coefficient and ὲ the number of nominal stress- 

nominal strain data pairs. Then the relative error in stress (D15) is calculated, since it provides 

a better fitting at lower strains, and the fitting is done minimizing the error as in equation D16. 

„ ὅὢ ‗     ȟ Ὧ ρȣὲ 

D13 

Ὁ ρ
„

„
 

D14 

‬Ὁ

‬ὅὭὮ
π 

D15 

From (11) a set of ὓ ὔὔ σ equations for the deviatoric (D16) and volumetric (D17) 

coefficients. In the reduced polynomial the equations is the same for the volumetric coefficient 

while the deviatoric coefficients changes as they depend only on Ὥ, are called ὅ   instead of ὅ  

and their set of equations is equation D20. 
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ὢ ‗ ὢ ‗

„  
ὅ

ὢ ‗

„
      ȟ      ὰ ά ρȣὔ 

D16 

ὢ ‗ Ὦὐ

ὖ  

ρ

Ὀ

ὢ ὐ

ὖ
      ȟ      Ὦ ρȣὔ 

D17 

ὢ ὐ ςὭὐ ρ  

D18 

ὐ
ὠ

ὠ
 

D19 

ὢὭ‗ὯὢὮ‗Ὧ

„
Ὧ
ὸὩίὸ 

ς
ὅ

ὢὮ‗Ὧ
„Ὧ
ὸὩίὸ      ȟ      Ὦ ρȣὔ 

D20 

Following the nonlinear procedure instead, coefficient are found iterating equation D21, 

where D22 is the vector of relative errors and D23 its derivative. ά is the number of deviatoric 

coefficients. 

ὥ ὥ ὖ ὖ ‎‏ ὖ Ὁ   

D21 

ὉὯ
„ „

„
 

D22 

ὖὭὯ
‬Ὁ

‬ὥ

ρ

„

‬„

‬ὥὭ
  

D23 

Completed the fitting the software proceed to the calculation of the stability range of the 

parameters defined through the Drucker stability condition. The condition implies that the 

Kirchoff stress due to an infinitesimal change in the logarithmic strain satisfies the inequality 

D24. 

ὨίḊὨ‐ π 

D24 
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As it has be seen in the previous chapter and in appendix D, invariants play a crucial role in the 

characterization of a hyperelastic material as they enter directly into the definition of the 

strain energy function and indirectly in the constitutive equation of the material.  

An interesting representation of these quantities is the plane of invariants. To enter this topic 

though, it is important to comment the hypothesis of incompressibility. It makes sense to 

speak about a plane of the invariants once the value of the third invariant of the Left Cauchy-

Green tensor can be fixed. By definition an incompressible material shows Ὅ ρ and the 

deformation state can be analysed in terms of iso- Ὅ. 

For the PDMS described in this project  Ὅ ‗‗‗ ρ, but it is possible that this stems from 

the crosslinking conditions. With the idea that, changing the curing conditions it will be 

possible to obtain incompressible SYLGARD®184, this appendix discuss the possibility to use 

the invariants to quantify how much a test is close to the ideal case or, as in this case, to 

highlight the non-ideal behaviour of a rubber. 

Considering equibiaxial and uniaxial configurations and writing the displacement gradient 

tensor under the assumption of incompressibility for both tensile and compressive states, it is 

then possible to derive the left Cauchy-Green tensor and the invariants of equation 11. 

Ὅ ‗
ς

‗
 

Ὅ
ρ

‗
ς‗ 

Ὅ Ὅ ς‗
ρ

‗
Ὅ  

Ὅ Ὅ ‗
ς

‗
Ὅ  

E1 

As presented in [41], it can be easily demonstrated that under the incompressibility condition 

is true that: in pure shear and plane stress tests Ὅ= Ὅ; the dependence of  Ὅover Ὅis the same 

for equibiaxial tension and uniaxial compression; the dependence of  Ὅover Ὅ is similar for 

equibiaxial compression and uniaxial tension but the latter produces lower values of the 

invariants for the same stretch. Graph 27 shows the behaviour of the invariants for stretches 

ranging from 0.5 to 1 and from 1 to 2 
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Graph E1  ς Variants for different loading states for incompressible materials. 

ⱦ Uniaxial Tensile Equibiaxial 
Tensile 

Uniaxial Comp. Equibiaxial Comp. 

 ╘ ╘ ╘ ╘ ╘ ╘ ╘ ╘ 

0.5     6.76 11.71 8.06 123.64 
0.7     3.35 3.44 3.59 5.15 
1.3 3.23 3.19 3.73 4.04     
2 5 4.25 8.06 16.50     

Table E1 ς Comparison of the invariant for different loading states and stretch levels for incompressible materials. 

It can be seen how equibiaxial tests require smaller stretches to reach higher values of the 

invariants with respect to the uniaxial tensile test and the same holds, with a reduced 

magnitude, for compressive tests. This correlation comes in aid when testing through one 

technique results easier than another. One factor to consider is the ease in the realization of 

the sample: depending on the material cutting a thin slab to obtain biaxial specimens might be 

easier than cutting cylinders needed for the compressive tests. The other factor is the fact that 

compressive tests, if done correctly, provide only equibiaxial states while, as in this case, 

biaxial dynamometer with independent arms can provide different biaxial states. On the other 

side if the compression tests are available is much easier to cover the plane of invariants since 

to a stretch of 0.7 in uniaxial compression, correspond a set of points equal to those obtained 

with a tensile stretch of 1.45 in uniaxial state. An example of such application is that of [41] in 

which the upper curve was derived using compression tests with stretches from 1 to 0.3 and 

the lower curve from uniaxial tensile tests with stretches ranging from 1 to 5.5. (The material 

ǳǎŜŘ ƛƴ ǘƘƛǎ ǿƻǊƪ ƛǎ ŀ {ƳŀŎǘŀƴŜϰ ǿƘƛŎƘ Ƙŀǎ ŀƴ ŜƭƻƴƎŀǘƛƻƴ ŀǘ ōǊŜŀƪ ƻŦ  улл҈ύΦ 

Under uniaxial tensile stress state, it has been proved how the derivative of Ὗ with respect to 

the first invariant is higher than the derivative with respect to the second. Therefore, many 

hyperelastic models are formulated under the assumption that the derivative of component of 

the strain energy function with respect to the second invariant can be considered negligible. 
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Arruda-Boyce is one of these models as its description of Ὗ does not imply the second 

invariant and therefore its derivative is null. Nevertheless, studies show the importance on the 

second invariant [42] expecially for equibiaxial states in which the derivative with respect to 

the second invariant is harder to neglect. Provided a suitable setup for biaxial testing and using 

the experimental data to evaluate the hyperelastic models, it is expected that unstable models 

containing the derivative with respect to the second invariant will become stable in the stretch 

range used for the experiments. Moreover they should provide more reliable prediction of the 

material. [43] 

Considering the non-incompressible case, things are a little more complicated as we need to 

move in the space of invariants as the third invariants changes in value for increasing ‗. 

Equation 12 represent the stretch along the minor principal stretch direction as function of the 

tƻƛǎǎƻƴΩǎ ǊŀǘƛƻΦ 

‗ ρ ‗ ρ ’z‗      Ὦ ς᷉ σ 

E2 

Then for the uniaxial case, under the isotropy assumption ‗ ‗ ‗ while for the biaxial 

state ‗ ‗ ‗ . Equation 13 represents the invariants for a compressible material under 

uniaxial tensile state. The in-plane stretches are sufficient to derive the three invariants and 

they can be measured with bidimensional DIC. Equation 14 instead, represents the invariant 

for a compressible material under equibiaxial tensile state. The in-plane stretches are equal 

under perfect equibiaxiality assumption but the out-of-plane stretch is different and therefore 

needed. This can be measured with stereo-DIC which was not available for this work. Another 

ǇƻǎǎƛōƭŜ ǎƻƭǳǘƛƻƴ ƛǎ ǘƻ ŎŀƭŎǳƭŀǘŜ ǘƘƛǎ ǎǘǊŜǘŎƘ ǳǎƛƴƎ Ŝǉǳŀǘƛƻƴ мн ƛŦ ǘƘŜ ōŜƘŀǾƛƻǳǊ ƻŦ ǘƘŜ tƻƛǎǎƻƴΩǎ 

ratio ’‗  is known. 

Ὅ ‗ ς‗   ȟ   Ὅ ς‗‗ ‗    ȟ   Ὅ ‗‗ 

E3 

Ὅ ς‗ ‗   ȟ   Ὅ ‗ ς‗‗    ȟ   Ὅ ‗‗ 

E4 

Invariants can also be used to give the quality of the test in case of incompressible materials by 

evaluating the extent of the pure shear contribution. 

The main problem with defining this contribution is that for high values of stretches, since the 

slope of the equibiaxial second invariant increases rapidly (and vice versa the slope of the 

uniaxial second invariant decreases as fast) the relative difference between the experimental 

results and the theoretical results becomes smaller and smaller and may get lost.  
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Graph 312  ς Red line is experimental result, blue line with squared dot is the Arruda-Boyce model, black and blue 
thin continuous lines are the equibiaxial and uniaxial ideal tensile behaviours respectively.  

Graph E2 shows the values for the first and second invariant of the uniaxial tensile 

experimental results and the Arruda-Boyce model, compared to the ideal cases of uniaxial 

tensile test and equibiaxial tensile test for an incompressible material. 

Knowing that the red line and the connected dots are the projection of lines in the space of the 

invariants to the plane Ὅ ρ , the plot highlights the compressibility of the material since the 

experimental uniaxial results are far away from the incompressible uniaxial curve (blue 

continuous line). Moreover, this representation enhances the differences between the model 

and the experiment, which were not so clear from graph 11, thus it is suitable to help in 

determine the best model in case one has to choose between models giving similar 

predictions.  
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