
A Case for Approximate Intermittent
Computing

Supervisor: Prof. Luca Mottola

Student: Fulvio Andrea Bambusi

POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria
Corso di Laurea Magistrale in

Computer Science and Engineering

1

Abstract

The Internet of Things is nowadays part of our daily lives: embedded devices
animate sensors, actuators and other tools that can collect or transmit informa-
tion about physical objects. At the same time, powerful data analysis techniques
are making it possible to make sense and control an amount of data never seen
before. Despite the opportunities the IoT is creating, there are important criti-
calities that still hinder the diffusion of this technology.
An increasingly pressing issue is how to make the massive deployment of billions
of devices sustainable: the vast majority of embedded devices is powered up by
disposable batteries. Not only do batteries have an important environmental
impact at the end of the lifecycle of the devices, but they are also hard and
costly to replace when devices are deployed in remote or inaccessible areas.
These characteristics of batteries make it necessary to find alternative solutions
to unlock a massive adoption of the IoT. As a consequence, a new paradigm
is gaining momentum: we are talking about Transiently Powered Computing
(TPC). The idea of TPC is to use energy harvesting techniques to extract from
the environment small and unreliable energy streams, which can be used to
power up embedded devices virtually independent from batteries.
However, applications deployed in TPC devices are subject to problems totally
different from traditional computing. The sources that are used for energy har-
vesting produce a highly unpredictable power throughput, and therefore TPC
devices can turn off unpredictably, losing their internal state and the partial
results of the computations they were performing.
As a consequence, even small energy savings can make the difference from pro-
ducing a result or nothing at all. The goal of this thesis is to address the domain
of TPC using the techniques of Approximate Computing (AC). AC aims to al-
ter the execution of arbitrary applications introducing some degree of error to
produce a higher degree of saving. Approximate Computing Techniques (ACTs)
make it possible to save computation time, memory and energy.
In this work, we will focus on the ACT of Iterative Refinement: it consists of
starting from an initially rough solution, and continuously invest computational
effort to improve it. By construction, Iterative Refinement (or Anytime) algo-
rithms can always yield a feasible result: as a consequence, whenever a power
failure occurs, it is possible to react by submitting the partial solution computed
so far.
We have applied this ACT to create an Anytime version of Support Vector Ma-
chines (ASVM). We applied ASVM to a Human Activity Recognition (HAR)
problem, and compared the performance of our method with a state-of-the-art
TPC solution.
ASVM saved up to 41% of the energy cost of executions while paying an ac-
curacy loss always below 20% also in the scenarios where we applied the most
aggressive approximations. Moreover, the results produced by ASVM were more
timely by up to 10s when the sampling rate is 50Hz.

2

Riassunto

L’Internet delle Cose è oggi parte della nostra vita quotidiana: i dispositivi
embedded animano sensori, attuatori e altri strumenti in grado di raccogliere
o trasmettere informazioni a proposito di oggetti fisici. Allo stesso tempo, po-
tenti tecniche di analisi dei dati stanno permettendo di dare un senso e di
controllare una quantità di dati mai vista prima. Nonostante le opportunità
che l’internet degli oggetti sta creando, ci sono importanti criticità che ancora
ostacolano la diffusione di questa tecnologia. Una questione sempre più pres-
sante è come rendere sostenibile il massiccio dispiegamento di miliardidi dis-
positivi: la stragrande maggioranza dei dispositivi embedded è alimentata da
batterie usa e getta. Non solo le batterie hanno un importante impatto ambi-
entale alla fine del ciclo di vita dei dispositivi, ma sono anche difficili e costosi
da sostituire quando i dispositivi sono installati in aree remote o inaccessibili.
Queste caratteristiche delle batterie rendono necessario trovare soluzioni alterna-
tive per sbloccare l’adozione massiccia dell’internet delle cose. Di conseguenza,
un il nuovo paradigma sta prendendo piede: il Transiently Powered Computing
(TPC). L’idea del TPC è di utilizzare tecniche di energy harvesting per estrarre
dall’ambiente piccoli e inaffidabili flussi di energia, che possono essere utiliz-
zati per alimentare dispositivi embedded praticamente indipendenti dalle bat-
terie. Tuttavia, le applicazioni implementate nei dispositivi TPC sono soggette
a problemi totalmente diversi dall’informatica tradizionale. Le fonti utilizzabili
tramite energy harvesting producono flussi inaffidabili e altamente imprevedibili,
e quindi i dispositivi TPC possono spegnersi in modo imprevedibile, perdendo il
loro stato interno e i risultati parziali dei calcoli che stavano eseguendo. Di con-
seguenza, anche piccoli risparmi di energia possono fare la differenza tra ottenere
un risultato, o nulla in assoluto. L’obiettivo di questa tesi è di affrontare i prob-
lemi del TPC utilizzando le tecniche di Approximate Computing (AC). Lo scopo
dell’AC è di modificare l’esecuzione di applicazioni arbitrarie introducendo un
certo grado di errore per produrre un maggior grado di risparmio. Tecniche di
calcolo approssimato (ACT) consentono di risparmiare tempo di calcolo, memo-
ria ed energia. In questo lavoro ci concentreremo sull’Iterative Refinement: esso
consiste nel partire da una soluzione inizialmente approssimata, e investire con-
tinuamente ulteriore sforzo computazionale per migliorarla. Per costruzione, gli
algoritmi che fanno uso di iterative Refinement (o Anytime) possono in ogni
istante restituire un risultato accettabile: di conseguenza, ogni volta che una
il dispositivo embedded si spegne per via della mancanza di energia è possibile
reagire presentando la soluzione parziale calcolata fino a quel momento. Abbi-
amo applicato questa ACT per creare una versione Anytime di Support Vector
Machines (ASVM). Abbiamo applicato ASVM al riconoscimento delle attività
umane (HAR), e confrontato le prestazioni del nostro metodo con una soluzione
stato dell’arte basata sulla tecnica del checkpointing. ASVM ha risparmiato
fino al 41% del costo energetico dell’esecuzione, perdendo al contempo sem-
pre meno del 20% di accuratezza anche negli scenari in cui abbiamo applicato
un’approssimazione più aggressiva. Inoltre, i risultati prodotti da ASVM hanno
un anticipo fino a 10s quando la frequenza di campionamento è di 50Hz.

3

Ringraziamenti

Un enorme abbraccio alla mia famiglia, che mi ha supportato e aiutato lungo
tutta la scrittura della tesi e il percorso universitario: senza di voi questo lavoro
non esisterebbe.
Grazie al mio relatore per la scrupolosa attenzione che ha dedicato a questo
lavoro. Grazie ai colleghi del NESLab che hanno dato un contributo enorme,
senza cui il capitolo 6 sarebbe molto diverso, e peggiore.
Grazie agli ADA: la PCA sarebbe ben più misteriosa senza le nostre discussioni.
Grazie ai wisecolleghi per il sostegno tecnologico (e non). Grazie a tutt* quell*
che hanno percorso un pezzo di questa bellissima strada al mio fianco.
Ad maiora!

4

Chapter 1

Introduction

The Internet of Things is becoming increasingly popular as embedded devices
become cheaper and more powerful, and data analysis techniques make it pos-
sible to process the ever-increasing flow of data produced by sensor networks.
While the Internet of Things is revolutionizing our lives, its dark sides and
disadvantages are starting to show up. One of the most prominent technical,
social and economic problems that hinder the diffusion of the IoT is that the
vast majority of embedded devices is powered up by disposable batteries. Bat-
teries have an important environmental impact at the end of the lifecycle of the
devices, they are hard and costly to replace when devices are deployed in remote
or inaccessible areas.
The characteristics of batteries make it unsustainable to continue to use them
when the IoT will be an even more pervasive aspect of our lives, so new alter-
natives are being explored.
Energy Harvesting (EH) is novel paradigm to solve the problem of powering
up tiny devices without major environmental or logistic consequences: while
battery-powered embedded devices are given a certain amount of energy at the
beginning of their lifecycle, and they use it until they permanently run out of
power, the idea of EH is to constantly replenish the energy storage of devices
by extracting energy from the environment.
As a matter of fact, there are plenty of such spare power sources whose through-
put is normally wasted: vibrations produced by vehicles, small temperature
gradients and oscillations caused by heavy industrial machinery, currents and
breezes or chemical gradients are only some examples [Bha+16].
EH has a positive impact on the sustainability and the cost of embedded de-
vices. Thanks also to the reduced maintenance effort, EH can be seen as the
enabler to deploy IoT devices on a larger scale than ever [Tal+15].
The design of EH-powered IoT devices is driven by the same goal: to foster the
massive and pervasive deployment of the devices. Such devices are very lean in
terms of memory, computational power and software. Typical microcontrollers
(MCUs) have a volatile memory (typically SRAM), and a nonvolatile portion of
the memory (NVM), and one or more processing units: however, they typically

5

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Intermittent execution of a program [Luc+17].

lack any kind of Operating System (OS) and have low performance compared
even to low-end laptops([Luc+17] [19o]).
EH has by definition one main problem: power streams gathered by harvesters
are unpredictable, unstable and unreliable, so it is normal for power failures to
occur during the normal execution of EH-powered devices ([Luc+17] [HSS14]).
Figure 1.1 shows the workflow of EH-powered devices: the harvester accumu-
lates energy up to a given threshold. When the threshold is met, the device
turns on and quickly consumes the accumulated energy.
This way of functioning gives name to the discipline of Transiently Powered
Computing (TPC), the branch of computer science that studies the peculiari-
ties of intermittent executions.
The main aspect of TPC is that power failures happen frequently and that they
have more serious consequences than in the context of continuous executions. As
we mentioned before, IoT devices are extremely simple to be cheap, unobtrusive
and massively deployable: however, their simplicity has one major drawback,
that is to say, it makes devices vulnerable to the consequences of power failures.
Due to the absence of the OS, when the power goes off the state of the volatile
part of the memory is immediately totally erased. So, if partial results have
not been committed to the nonvolatile part of the memory, there is no forward
progress in the computation.
This problem is summarized this way: the impossibility to obtain continuous
execution causes power failures, that hinder or block the progress of applica-
tions, that cannot advance unless they save partial results. In the literature,
it is possible to find several solutions to mitigate the effects of power failures.
In particular, two main paradigms encompass the majority of the existing solu-
tions.
The first paradigm consists in storing the state of volatile memory according
to a given trigger, such as low battery level or function calls/loop iterations
([Bal+15], [BM17] [VBM17]). These solutions are called checkpoint-based. The
state of volatile memory can be restored at the end of power shortages, whose
effects are made invisible to the application.
The second approach is to decompose programs in small tasks that are executed

7

atomically and whose result is committed to nonvolatile memory when they ter-
minate ([LR15],[HSS17],[MCL17]). Tasks can communicate by exchanging their
outputs, to create arbitrarily complex applications.
Both approaches have some limitation: writing to nonvolatile memory is an
energy-intensive task, so checkpoint-based solutions sacrifice a fraction of the
available energy to afford the overhead of storing the state. As for tasks, one
of the main difficulties of using tasks is how to split programs into tasks of the
correct size.
The problem of selecting the best boundaries to enclose tasks has been ad-
dressed, among others, by Colin et al. [CL18] and Ahmed et al. [Ahm+19].
This problem is not trivial, because both short tasks and long tasks have draw-
backs. Short tasks guarantees forward progress, because they require a small
amount of energy to execute, so it is enough that the harvester produces some
throughput for a short time to achieve a small step forward. Unfortunately,
when tasks terminate they spend energy to store their results to NVM, and this
overhead is more costly for programs composed by a multitude of short tasks.
On the other hand, long-lasting tasks have lower overhead but they need more
energy to execute: as a consequence, it is more likely for a long task to fail
wasting all the energy invested in the computation.

In this thesis, we propose a different approach to mitigate the consequences
of intermittent executions: we propose to adapt the energy cost of TPC execu-
tions to the actual availability of energy to guarantee at the same time forward
progress and low overhead.
We propose to use Approximate Computing Techniques (ACTs): ACTs are
software or hardware mechanisms that reduce the quality of the output of com-
putations and lower their cost. The advantages of our solution can be summa-
rized this way: adapting the behaviour of a program and hence its cost to the
power that is currently available in the environment allows us to optimize the
utilization of resources, and to obtain timely results.
In the best possible case, it can be the case that no access to NVM is necessary
because computations produce results before power failures occur. To show the
feasibility and the usefulness of this approach we have developed a proof of
concept application: our goal is to demonstrate our claim that ACTs have a
positive impact in the domain of TPC.
Our proof of concept application makes use of Iterative Refinement: the idea
of this technique is to refine initially rough solutions investing more and more
computational effort.
This approach has one immediate advantage: the computation can be inter-
rupted in every moment, and a partial solution is by construction available.
The effect of Iterative Refinement is shown in Figure 1.2. There are two inputs,
labelled as Sample 1 and Sample 2, that become available in two different time
intervals, and each one triggers the same computation. The computation trig-
gered by Sample 1 can be fully executed, and so it returns a result with full
accuracy. The computation triggered by Sample 2 is interrupted by a power
failure, so it returns a result before it is fully refined.
Also in the situation a power failure occurs, the result was returned in a very

8 CHAPTER 1. INTRODUCTION

TIME[S]

SAMPLE 1 SAMPLE 2

TIME ACTUALLY SPENT

TIME NECESSARY FOR COMPLETE CLASSIFICATION

100% accuracy x<100% accuracy

POWER
FAILURE

Figure 1.2: The effect of power failures on our Iterative-Refinement-based ap-
plication.

timely way, immediately before the power failure itself. In this situation, all the
available energy has been invested in the computation, which means that the
partial result that has been produced is the best result that could be achieved
with the available resources.
We applied an Iterative Refinement algorithm to solve a Human Activity Recog-
nition (HAR) problem: HAR consists of classifying the activity that is being
performed by a human being using accelerometer data [YWC08].
In particular, we designed an Anytime version of Support Vector Machines
(ASVM). The idea of ASVM is to use one feature at a time to continuously
refine initially inaccurate classifications, that become more and more precise as
more features are used. We measured the performance of our application and
compared it with a checkpoint-based solution: our solution is able to cut the
energy cost of classification up to 41% and is systematically more timely (up
to 400 sampling periods), while the reduction in the accuracy of classifications
remains below 20%.

1.1 Problem

TPC consists in using highly unreliable energy harvesters to sustain the needs
of embedded devices without making use of batteries. However, energy har-
vesters do not produce a stable, predictable or reliable throughput in terms of
energy, so the available energy could abruptly become insufficient to power up
the device.
Therefore frequent power failures take place, and their negative effects are in-

1.2. SOLUTION 9

creased by the essentiality of TPC devices. When power failures happen, the
state of volatile memory is immediately lost: as explained earlier, by default
TPC devices do not have any component that protects them from failures, for
example by saving the volatile state. First of all, any computational progress
done but not committed to nonvolatile memory is immediately lost.
Moreover, the duration of a power failure cannot be predicted: as a consequence
it may happen that devices resume old computations triggered by old inputs.
However, the validity of data is limited in time: in practice, data are useful for
a given period that depends on their source and on the target application, after
which they become useless ([HSS17],[Sch+08]).
These fundamental issues have three important consequences:

1. Power failures can hinder or totally block the forward progress of ap-
plications. If no mechanism is adopted to store the partial state of the
computation or to commit partial results, every time an application is
restarted after a power failure it will redo from scratch computations that
have already been carried out in the past.

2. At the same time, introducing mechanisms to cope with power failures may
introduce important overhead: writing variables to nonvolatile memory
is very costly in terms of energy consumption, and so saving too many
variables or too often would constitute a huge waste of resources.

3. Another problem is that it is basically impossible to forecast the duration
of a power failure: this means that it could take an arbitrary amount of
time to process an input. This could be particularly problematic because
some inputs are intrinsically short-lived, as they soon become worthless
[HSS17].

1.2 Solution

We can address the issues of TPC by investigating what is the best way to
allocate the scarce resource of energy on the computations to perform. In other
words, the problems illustrated earlier can be interpreted as resource planning
and optimization problems.
Under this hypothesis, the problem of TPC can be immediately translated into
the problem of understanding what are the operations that should be privileged
and how execution should be organized.
There are three main aspects of this planning problem that should be taken into
account: ideally, one would maximize the quality of the obtained result and its
timeliness while keeping its cost low. This work is based on the observation that
obtaining a timely result is key for an effective TPC application.
This observation is widely accepted in the literature. For example, Hester high-
lighted in [HSS17] that the input of TPC applications has a limited validity: for
example, old sensor data become useless with the characteristic changing time
of the associated phenomenon. If a sample is not used quickly, the produced

10 CHAPTER 1. INTRODUCTION

output is totally useless. InK [Yun+18] is a TPC kernel based on the same prin-
ciple, that some data have to be handled either urgently or never. Maeng et al.
[ML19] evaluated their checkpoint-based solution Samoyed using the execution
time as metric.
At the same time, another equally vital aspect of TPC is the energetic cost of
executions: as we have highlighted earlier, this is the first-order problem that
creates also the difficulty of producing timely outputs. As a consequence, the
primary focus of our solution will be the optimization in the usage of energy.
In particular, we will leverage on the balance between quality and cost to tune
the behaviour of TPC applications.
We will use Approximate Computing, a discipline based on the idea that small
performance degradation can bring huge savings in terms of cost.
Our proposal is the following: the power consumption of TPC applications
should be adapted to the amount of resources that are available when the ex-
ecution is taking place. While Approximate Computing Techniques (ACTs) in
the state of the art consider the quality of the result as a constraint and the
maximization of the savings as a goal ([Yeh+07], [Sid+11]), we propose to em-
brace the dual paradigm where the available resources are a constraint and the
goal is to maximize the quality of the output.
This approach guarantees two main benefits:

1. Resources are consumed optimally: the cost of computations is tuned to
consume all and only the available resources. Moreover, in the best case
it is possible to obtain a have a very low overhead: the only information
that has to be committed to NVM is the final result of a computation.

2. Computations are guaranteed to terminate quickly because their cost can
be tuned in such a way they produce results before the following power
failure.

We applied the ACT of Iterative Refinement, that consist in creating an initially
rough solution and step by step improve it by investing more computational ef-
fort. The advantage of this technique is that a feasible solution can be yielded
in every moment. This ACT is extremely apt for TPC contexts, because it can
be used to return results immediately before power failures thus consuming all
and only the available resources.
We applied this technique to create Anytime Support Vector Machines (ASVM),
and we used this ASVM to carry out a Human Activity Recognition (HAR) task.
HAR is the problem of understanding the activity that a human being is car-
rying out by processing heterogeneous data. We measured the performance of
ASVM in terms of timeliness, accuracy and energy consumption and we com-
pared these metrics with the ones scored by a checkpoint-based state-of-the-art
solution.
ASVM outperformed the checkpoint-based solution in terms of timeliness, an-
ticipating it up to 20s, while the sampling rate of the samples is 50Hz.
Our application saved up to 41% of the energy cost of the execution, while the
accuracy loss was always below 20% in the scenarios where we applied the most

1.3. ROADMAP 11

aggressive approximations.

1.3 Roadmap

The thesis is structured as follows: first of all, we will give a picture of the state
of the art then we will illustrate our contribution and finally we will present the
evaluation of our work. Here follows a summary of the chapters that compose
this work.

1.3.1 Transiently Powered Computing

In Chapter 2 we will present the main characteristic of the discipline of TPC.
The first part of the chapter is dedicated to the main problems that arise when
applications are executed in a TPC context, and the opportunities offered by
this novel discipline. Then, we will illustrate the most important techniques that
can be used to harvest energy from the environment. Finally, we will present the
solutions that can be found in the literature, by making use of a new taxonomy
to classify them.

1.3.2 Approximate Computing

Chapter 3 is focused on the field of Approximate Computing. The beginning of
the chapter will be dedicated to the advantages, the risks and the constraints to
trade performance and cost. Then, we will present the techniques that can be
found in the state of the art. This presentation is divided into two parts: then
we will describe ACTs as black boxes, classifying them according to the effect
they have on applications they are used on. Finally, we will open the box, and
we will show the different mechanisms that can be practically used to tune the
cost-performance tradeoff.

1.3.3 Approximate Intermittent Computing

In Chapter 4, we will discuss why the idea of using AC in the domain of TPC
is particularly promising.
The main benefit of AC is to reduce the cost of applications, and this can make
the difference in TPC. On the other hand, its main disadvantage is to reduce
the performance of applications, and we will argue that in TPC this is not a
particular problem.
Then, we will explain the principles that drive the application of Approximate
Computing in traditional, continuously powered scenarios: namely, AC is used
to lower the cost of executions while maintaining a decent quality of the output.
We will support this claim with several examples from the literature, and we
will propose a dual approach to maximize the efficacy of AC in TPC contexts:
in particular, the goal should be to maximize the quality of the result wile
upholding with a resource budget.

12 CHAPTER 1. INTRODUCTION

1.3.4 Making Things Happen

In Chapter 5 we will describe the functionalities of the concrete application that
we developed to demonstrate the feasibility and the usefulness of the principles
illustrated beforehand. We will discuss the precise ACT we want to use in the
application, that is to say, Iterative Refinement. This technique offers several
advantages, one of the most important being its low runtime overhead. Af-
terwards, we will present the precise algorithm that we want to approximate
using Iterative Refinement, Support Vector Machines: after a brief theoretical
overview, we will study the properties of the Anytime version of SVM we have
developed in terms of how this application handles the cost-performance trade-
off. Finally, we will present the use case that we will analyze, namely Human
Activity Recognition.

1.3.5 Prototyping

In Chapter 6 we will describe the implementation details of the application we
developed to measure on the field the performances of ASVM. The implementa-
tion has to uphold with strict constraints in terms of memory and computational
power, so we tested its correctness by comparing its results with the output of
a Python implementation. This comparison allows us to demonstrate that our
implementation is correct, and so its performance can be scientifically measured.

1.3.6 Evaluation

The goal of Chapter 7 is to measure the performance on the field of our appli-
cation, both in absolute terms and compared to a state-of-the-art solution.
First of all, we will measure the accuracy of the probabilistic description of
ASVM we provided in Chapter 5. After having measured that it is quite accu-
rate (the error is on average below 5%), we will describe the experimental setup
that we have used to measure the performance of our application. Finally, we
will present the metrics of our application, in terms of timeliness, accuracy and
energy saved with respect to a state-of-the-art solution.

1.3.7 Conclusion and Future Works

Chapter 8 is used to summarize the results obtained in our work: we have
demonstrated that it is feasible to apply ACT to improve the effectiveness of
TPC applications. We will also discuss the generality of our Proof of Concept
since the choices that we necessarily made to implement an application do not
narrow the scope of the work.
In the rest of the chapter, we will illustrate several research lines that opened
up during the work, and that we will further investigate in the future.

Chapter 2

Transiently Powered
Computing

2.1 Abstract

The goal of transiently powered computing is to overcome the usage of batter-
ies to power up embedded devices. The basic idea behind this paradigm is to
harvest energy from various sources naturally present in the environment, to
accumulate the energy in small storage devices and to spend it when needed.
Although the nominal power output of the sources can be very high, like in the
case of solar energy, the low efficiency of harvester makes only a low amount of
energy available for the devices to use [Bha+16]. Energy harvesting can be car-
ried out by exploiting a plethora of sources, with different characteristic times
and power intensity.
All these sources, however, do produce an energy throughput far lower than the
consumption of an even small device, which is therefore, victim of unpredictable
power failures. Those failures make execution of programs in transiently pow-
ered contexts radically different from traditional scenarios. In particular, their
main consequence is that devices are unpredictably turned off without notice
multiple times per second.
Therefore Transiently Powered Computing (TPC) is characterized by classes of
errors and inconsistencies that are totally unobserved in traditional scenarios:
for example, sudden shutdowns may hinder the termination or even the forward
progress of a program, as it is continuously restarted and all its progress is lost.
The main characteristics and consequences of these inconsistencies will be bet-
ter explained in Section 2.3.5.
This chapter is meant to be a gentle introduction to the domain of TPC. The
exposition will be a journey from the high-level, qualitative concepts behind this
domain to the concrete implementations of solutions developed for this domain.
The chapter is structured as follows: first of all, a section is dedicated to the de-
scription of the opportunities and the challenges of this field of computer science.

13

14 CHAPTER 2. TRANSIENTLY POWERED COMPUTING

Then, the goal of the second section is to display the types of scenarios where
it is concretely possible to apply energy harvesting techniques. It delves deep
into the topic of energy harvesting, describing the power sources from which
it is technologically feasible to extract power. The third section contains an
overview of the actual techniques that can be found in the literature to address
the challenges of Transiently Powered Computing, listed in Section 2.3. The
commonalities shared by different solutions are used to frame them in a simple
taxonomy. After the presentations of the state of the art, a brief conclusion is
used to highlight the main characteristics of existing works in a comparative
fashion.

2.2 Opportunities and Challenges of Transiently
Powered Computing

The adoption of transiently powered computing is fostered by some of its in-
trinsic features and by the inadequacy shown by traditional, battery powered
devices in specific application domains. Batteries do have a limited energy con-
tent, which sets a hard limit to the lifespan of any connected device. Such
predetermined duration can bear heavy consequences in situations when the
maintenance or the replacement of devices is either impractical or costly.
Moreover, disposing exhausted batteries has a huge impact both in economic
and environmental terms. Despite the disadvantages shown by traditional com-
puters, transiently powered computation opens up a series of technical, design
and operational challenges.
First of all, the unreliability of the energy sources used in the domain of energy
harvesting makes it impossible to guarantee hard boundaries on the reliability
or availability of transiently powered devices.
Moreover, sudden shutdowns can break the execution flow of normal programs,
as shown in Figure 1.1. This kind of behaviour is caused by the fact that
volatile memory is unable to maintain its state unless it is powered up. There-
fore, whenever a program is restarted after a shutdown, all the progress which
has not been stored to persistent memory is immediately lost, and, as a conse-
quence, the state of nonvolatile memory may become incoherent with volatile
memory.

2.3 Challenges

Several works in the literature explicitly list the most urgent open questions
in the domain of Transiently Powered Computing, while others do implicitly
stress specific problems by directly proposing related solutions. Below follows
an inventory of the problems that are most commonly met in the state of the
art. There are two broad categories of problems. The problems in the first class
are the technical difficulties specific to the very domain of Transiently Powered

2.3. CHALLENGES 15

Computing. The second class of problems contains the difficulties physiologi-
cally related to the fact that TPC is a very young domain, and therefore it still
lacks standards and canons. The first four points of the list are taken from a
position paper carried out by Hester and Sorber [HS17].

2.3.1 Constrained Resources

To work with the low amount of energy that is available in the environment,
the devices used in the domain of TPC have to consume a very low amount of
power [19a].
This implies that the chips built for this domain must be highly efficient [19l].
Sometimes this is not enough: complex sensing applications, which are becom-
ing increasingly popular [19c], are computationally intensive.
To give an idea of how hard it is to develop an application on a Transiently
Powered Computer, several techniques require dedicated hardware acceleration
to work flawlessly. For example, machine learning applications, which are being
used in the domain of edge computing [19j].
MSP430, a microcontroller commonly used in industrial and academic appli-
cations [Ahm+19], has less than 66kB of RAM, and at most 25 MHz clock
frequency [19o].
To give an idea of how low these parameters are, STM32H7, a high-end micro-
controller by ST Microelectronics, boasts 1MB RAM and up to 480MHz clock
frequency [19g].

2.3.2 Uncertain Environment

There are many possible sources where energy can be harvested. This variety
adds a level of complexity to the deployment of transiently powered applications:
the fact every source has his characteristic profile creates a range of possible be-
haviours of programs. As a consequence, developers have to take precautions
against all the possible execution paths, either manually or with the help of
automatic tools.
Another layer of complexity is added by the fact that even the harvesters which
make use of the same type of energy source are optimized for specific working
conditions: for example, each mechanical harvester is maximally efficient when
the vibrations that it exploits have a specific characteristic frequency. When
mechanical harvesters are used for vibrations at different frequencies, their effi-
ciency is greatly reduced Madankan et al. [MKS14].
The same holds for other types of harvesters: to summarize, the amount and
the shape in time of the energy that is made available by the environment have
a major impact on the efficiency the energy itself can be harvested and used by
computing devices.
Mechanical stress received from the environment can make energy harvesters,
especially the ones which make use of kinetic energy, shorter-lived than batteries
[19f].

16 CHAPTER 2. TRANSIENTLY POWERED COMPUTING

Ahmed et al. [Ahm+19] showed that the energetic cost of computations is highly
dependent on the voltage of the power supply of a device, and that this fact
can be used to enhance the quality of execution of transiently powered applica-
tions. Gomez et al. [Gom+17] stressed the variability of the characteristics of
embedded hardware, both in terms of supply voltage and power requirements.
Therefore, it is hard to design a solution whose performance generalizes well on
arbitrary systems.
Ahmed et al. [Ahm+19] investigated the relationship which binds the supply
voltage of a device with its efficiency, discovering that each voltage level has a
corresponding optimal operating frequency.
Compile-time settings have already been investigated with profit in the domain
of traditional computing [XMM03b], but such techniques are still unexplored in
TPC, whereas adaptation to the context in a transiently powered setting could
have a major impact, as suggested by Maeng and Lucia [ML18].

2.3.3 Timely Execution

Transiently powered applications cannot offer any guarantee about the time
when a given task will be executed. Hester et al. [HSS17] suggested that it
is the case that some computations become irrelevant after some time, and
therefore mechanisms must be designed to detect and address the problem of
time. Gawali and Deshmukh [GD19] remarked the fact that sensing devices
are one of the main application domain of energy harvesting, and that sensor
data are can be the first step of a pipeline which brings to real-time, critical
decisions.
Therefore, accessing and using old data can have catastrophic consequences.
The problem of timeliness is one of the hardest challenges in this domain, so it
will be further treated in Section 2.6.

2.3.4 Coordination and Sharing

Contrary to traditional networks, faults are the normality and not the exception
for TPC devices. The usual protocols must be adapted or dropped completely to
face this issue. Additionally, the transmission of data with traditional protocols
[19al] is an extremely power-consuming activity, therefore it must be handled
with extreme care. New protocols, such as LoRa and NBIoT, are increasingly
being adopted [19c] to reduce the pain of transmission.
However, these new technologies typically make use of constantly-powered gate-
ways [19e], which simply shifts the problem of energy harvesting to a higher level.
Many traditional protocols involve the election of a leading node, which is often
selected according to specific builtin characteristics such as its computational
power or serial number Al Nahas et al. [ADL17].
However, the type and amount of energy that is available for each node to use
has a major impact on the operational characteristics and effectiveness of the
node itself. As a consequence, a node may be perfectly fit to lead a network in
a continuously powered context, but may be deployed in a position where it is

2.3. CHALLENGES 17

unable to properly work due to the absence of free energy.
So, it is necessary to take into account the types and power intensities of energy
sources of the environment where a system will be deployed to effectively design
and operate the transmission of information.

2.3.5 State Inconsistencies

Lucia and Ransford [LR15] showed that TPC executions can produce results
that are incoherent with a traditional sequential execution. They did also pro-
duce two different models to describe and treat formally intermittent execution.
Nominally, they propose to consider TPC as an instance of concurrent execu-
tion, or to analyze it by altering the control flow graph to add all the possible
execution paths following a power failure. In another paper, Ransford and Lucia
[RL14] highlighted the danger of using at the same time volatile and nonvolatile
memory for a TPC program: while volatile memory is erased at every shut-
down, nonvolatile memory survives. Therefore, in two subsequent executions,
the same line of code can meet two different program states.
For example, Figure 2.1 shows a situation when a power failure makes an exe-
cution follow a path which is different from the one of a continuously powered
execution. A function is called, and so its return address is pushed on the stack.
Then, it is partially executed, modifying nonvolatile memory, but the state of
volatile memory is not saved by the runtime environment. When a shutdown
happens, the stack contains the return address of the caller but the memory has
already been modified by the callee.

Addr. Content
0xFFF0 ...

0xFFF1
f1 return
address

0xFFF2 ...S
t
a
c
k

G
r
o
w
t
h

Stack after f1() call

Addr. Content
0xFFF0 ...

0xFFF1
f2 return
address

0xFFF2 ...S
t
a
c
k

G
r
o
w
t
h

Stack after f2() call

6. f1();
1. ...

<CHECKPOINT>
2. ...
3. return x;

7. f2();
1. ...

Shutdown

2. return y;

8. ...

6. f1();
1. ...

<CHECKPOINT>
2. ...
3. return x;

7. f2();
1. ...
2. return y;

8. ...

Addr. Content
0xFFF0 ...

0xFFF1
f2 return
address

0xFFF2

Stack after restore

Jump due to a
wrong return ad-
dress in the stack.

R
eb

o
ot

Figure 2.1: Consequences of a power failure

Maioli et al. [Mai+19] did further investigate the nature of these inconsis-
tencies, classifying them in five different families and inventing an algorithm to
analyze them.
Maeng and Lucia [ML19] explored the consequences that checkpoints can have
on peripherals. In particular, they showed that it is possible to observe several
erroneous behaviours when a peripheral is activated by an embedded device
which later on fails due to lack of energy. For example, the peripheral may wait
indefinitely or produce an incorrect output. This issue is particularly sensitive

18 CHAPTER 2. TRANSIENTLY POWERED COMPUTING

because the vast majority of embedded devices incorporates some kind of sensor
or actuator [19m].

2.3.6 Security

In his PhD thesis, Ransford [19af] discussed the topics of security and storage
on transiently powered devices.
TPC devices do depend on external entities for working. This characteristic
can be problematic in case the transiently powered device has to communicate
with the source, as it will talk to anyone who gives it energy. Wouters [19p]
discussed the problems that are brought about by some of the most commonly
used technologies in the domain of Transiently Powered Computing, that is to
say, checkpoints (see Section 2.6.1). Specifically, checkpoints consist in storing
the volatile state of an embedded device into its persistent memory just before a
power failure, but there are several other techniques which are based on commit-
ting values to nonvolatile memory (see Section 2.6). In the same work, Wouters
discussed the opportunity to encrypt the state when saving it, to prevent theft
and tampering.
Krishnan et al. [Kri+19] explored the possibility to use power interruptions as
an attack vector, and designed a protection mechanism to shield Transiently
Powered Computers against this menace.

2.3.7 Storage

Gomez et al. [Gom+17] showed that it is necessary to use persistent memory
to log the data recorded by sensors, as power failures make RAM unsuitable
and transmission is too expensive. Moreover, nonvolatile memory is widely
used to persist state across power failure. However, nonvolatile memory is two
to three orders of magnitude more expensive to write than volatile memory
[Par+11] [19ah]. Even ignoring the logical problems which derive from blind
usage of persistent memory (see Section 2.3.5), its huge energy cost makes it
not feasible to rely systematically on it. Verykios et al. [VBM17] highlighted
the limits of using state retention techniques which are agnostic concerning the
underlying hardware and opened the research proposal to adopt both software
and hardware techniques to use persistent storage optimally.
As we said before, traditional volatile memory is not particularly fit for TPC,
as it is completely erased by power failures. Therefore, several scholars have
worked to design alternative technologies which can retain information even in
case of a sudden shutdown. For example, NonVolatile RAM NVRAM offers
performances similar to traditional RAM but it does not need to be powered
up to keep information [Sch+15].
NVRAM has been used by Aouda et al. [FMS14] to make transiently powered
executions less costly than a checkpoint-based tool that makes use of traditional
memory architecture.

2.4. OPPORTUNITIES 19

2.3.8 Low Technology Readyness Level

Technology Readiness Level is a scale to measure the maturity of a technology,
from basic research to complete market penetration [19q].
This scale ranges from 1, which means ”Basic principles observed and reported”,
to 9, meaning ”Actual system “flight-proven” through successful mission oper-
ations”.
Groen states that the TRL of Energy Harvesting is 7 [19n], hence that it is not
completely mature yet.
An important consequence of the immaturity of TPC is the lack of standardized
testbeds and benchmark suites to evaluate and compare different applications
developed in the domain of TPC [AMP16][HS17].
Balsamo et al. [Bal+19] suggested that Transiently Powered Computing-specific
solutions should be integrated within existing operating systems for the IoT in
order to make them more accessible to academia and industry.
The lack of standardization and large-scale adoption is a serious menace to
the broad-scale adoption of Transiently Powered Computing: Jackson et al.
[JAD18a] forecast a scenario where the pain of embracing this new paradigm
becomes too difficult for developers to use.

2.4 Opportunities

From a high-level point of view, TPC unlocks the large-scale adoption of a
variety of application, especially in the domain of sensing [HS17].
Sagentia [19d] suggest that energy harvesting should be conveniently applied in
scenarios ranging from industry to automotive, or environmental monitoring.
Moreover, energy harvesting solutions fit well wearable devices, which will be a
major driver in the market of IoT according to McKinsey [19k].
There are several characteristics of intermittent computing which can unlock
these benefits. Below follows a list of the main ones.

2.4.1 Cheapness of Power Source

Jackson et al. [JAD18b] highlighted the fact that batteries are not the dominant
cost in IoT devices. However, they show that batteries have a price which is
slightly higher with respect to harvesters, so the cost of the energy management
part of circuits can be halved by adopting the batteryless paradigm. An ad-
ditional saving can be obtained thanks to a specific class of energy harvesters,
that is to say antennas. Talla et al. [Tal+15] demonstrated that it is possible to
use the same antenna to transmit information over WiFi and to harvest energy
from radio waves. Therefore, if a device has to transmit using WiFi it can be
adapted to use the same hardware components to gather extra energy from the
environment.

20 CHAPTER 2. TRANSIENTLY POWERED COMPUTING

2.4.2 Form Factor Reduction

When a computer is powered up by a battery, its lifespan is proportional to
the energy content of the battery, which is proportional to the size of the bat-
tery itself. Energy harvesters decouple the duration of a device from its size.
Moreover, as explained in Section 2.4.1, it is possible to use the same antenna
to harvest energy and to transmit data. When this approach is adopted, the
power source occupies no extra space at all, allowing further miniaturization of
TPC devices. The weight of the battery in smartphones is more than 80% of
the total weight [19ai]. In the context of IoT, even small-size batteries weight
around 1/3 of the node [19aj] [19ak].

2.4.3 Sustainability

Hao et al. [Hao+17] estimated in 0.109 kg CO 2-eq/Wh the GHG (GreenHouse
Gas equivalent emission) of lithium-ion batteries during their life. On the other
hand, Gerbinet et al. [GBL14] measured that the equivalent emissions of pho-
tovoltaic panels are around 0.0039 kg CO 2-eq/Wh. This is an example of how
energy harvesters incorporate less carbon than batteries.
Benecke et al. [Ben+12] compared the environmental impact of energy har-
vesters with a conventional LiPo battery, and found out that 5 to 8 years of
operations in normal conditions are enough for harvesters to outperform bat-
teries.

2.4.4 Low Maintenance

Batteries cause constant operative costs, as they have to be periodically re-
placed. Apart from its financial cost, maintenance may be problematic in case
devices have been deployed in remote and hardly accessible areas, or in the case
of medical devices [Chou et al. 2010]. Enocean [19ag] estimated that the labor
cost for replacing batteries amounts to 10% of the total cost of ownership of an
IoT node. Quite plainly, this cost would be totally saved by the adoption of
batteryless solutions.

2.5 The Problem of Energy in TPC

Although the importance of energy is paramount in computation in general, in
the domain of TPC this aspect is even more vital.
While in traditional scenarios energy is a matter of efficiency, the efficacy of
transiently powered devices depends on the amount of energy they have at their
disposal. Due to this tight bond, an overview of TPC would not be complete
without talking about the actual energy harvesting techniques. This section
owes much to the work of Bhatti et al. [Bha+16].

2.5. THE PROBLEM OF ENERGY IN TPC 21

2.5.1 Kinetic Energy

Energy can be extracted from movement using various technologies. The energy
throughput does greatly vary according to the type of source which is used, from
uWs to tens of mWs. The characteristic time and the reliability of harvesters
which make use of this kind of energy also depend on the source.
The spectrum of possible scenarios ranges from situations where energy is pro-
vided in a continuous manner (such as vibrations from machinery) to extremely
intermittent and unpredictable sources (such as human movement). Sazonev et
al. [Saz+09] used this kind of technology to monitor the structural health of
bridges, extracting energy from the vibrations induced by vehicles passing by.

2.5.2 Radiant Sources

Electromagnetic radiation from different bands of the spectrum can be converted
to usable electric power. Both the energy density and the technology used to
scavenge power depend on the wavelength of the radiation, ranging from the
mWs of visible light to tens of nW for radio frequencies.
These factors do also affect the characteristics of the extracted energy profile in
terms of time. For example, solar energy is not available at night, while RFID
tags are only powered when they are put close to a reader. One of the most
widely used radiant sources is the sun, whose energy can be harvested through
photovoltaic panels [18]. The utilization of solar energy to power up embedded
devices has been pioneered by Gutierrez et al. [Gut+14], who built a system to
autonomously irrigate fields.

2.5.3 Thermal Sources

Thermal harvester use the difference between the temperature of two surfaces to
generate an electric potential. This kind of technology can produce up to hun-
dreds of uW. As far as reliability is concerned, it is one of the most dependable
ones, as there exist various heat sources which are almost continuously working.
For example, this kind of harvesting has been successfully applied to recover
waste heat from data centers or warm water pipes. Rizzon et al. [Riz+13] used
the heat dissipated by microprocessors to power up a Wireless Sensor Network
for environmental monitoring.

2.5.4 Bio-Chemical Sources

This last class of energy sources uses the fact that several metabolic processes
naturally emit electrons. These processes can be exploited by feeding living
microorganisms or by reproducing them in controlled conditions. In any case,
harvesters using this principle are incredibly reliable, as they just need some kind
of chemical substrate to work properly. Pietrelli et al. [Pie+14] exploited this
energy source to power up a Wireless Sensor Network for precision agriculture.

22 CHAPTER 2. TRANSIENTLY POWERED COMPUTING

TPC
APPLICATIONS

RELAXING
SOLUTIONS

DEMANDING
SOLUTIONS

ADAPTIVE
SOLUTIONS

TIME-KEEPING
SOLUTIONS

TIME IGNORING
SOLUTIONS

Figure 2.2: Taxonomy of System Solutions

2.6 Existing System Solutions

Some of the problems listed in Section2.3 have already been addressed in the
literature. The solutions are presented according to the following taxonomy,
sketched in Figure 2.2: first of all, we make a broad distinction between relax-
ing and demanding solutions. The former class represents all those techniques
and applications which aim at making the intermittence of computation trans-
parent to the developer, who can develop code as if he/she were in a traditional
scenario. The latter does instead contain all the solutions which consider em-
bedding mechanisms to cope with the effects of power failures and minimize
their consequences. Programmers must comprehend and appropriately incorpo-
rate such mechanisms in their code.
Demanding solutions are further split according to how they address the prob-
lem of time. Islam et al. [ILN19] highlighted that one of the main consequences
of the frequent power failures it is possible to observe in the domain of TPC is
the inability of devices to reliably measure the passing of time. They classified
state-of-the-art solutions based on how this problem is addressed, distinguishing
time-keeping solutions from adaptive solutions. Time-keeping solutions succeed
in measuring time by leveraging various physical properties of the board, while
adaptive solutions change their behaviour according to the profile and amount
of available energy.
A further dimension to frame a system solution is whether it guarantees or not
semantic equivalence in the execution of a program executed in a transiently
powered context to its traditional execution in a continuously powered environ-
ment.

2.6. EXISTING SYSTEM SOLUTIONS 23

2.6.1 Relaxing Solutions

Taking the point of view of the developer, the class of relaxing solutions com-
prises the techniques which want to make the code of an application in a TPC
scenario as similar as possible to the one that would take place if the device was
continuously powered.
In other words, these solutions do not contain any component which allows
programmers to modify the program’s behaviour according to possible failures
taking place.
Relaxing solutions typically consist of an additional layer which wraps the pro-
gram and protects it against the effects of power failures, making it possible for
programmers to use transiently powered devices without any kind of interven-
tion.

An example: Checkpoint-based Solutions

One way to address the problem of intermittence bugs is to store the state of
the computation when certain conditions are met. When the device turns on
after a power failure, the first operation it performs is to restore the last saved
state.
Possible conditions to trigger the storage of the state are function calls, entrance
to loops, timers or low energy level. Some of the main properties a system of
checkpoints should guarantee are a low amount of overhead and the certainty
not to get stuck between two checkpoints.

2.6.2 Demanding Solutions

Demanding solutions are characterized by the fact they require programmers to
adopt some kind of new paradigm to design their code.
Demanding solutions are typically frameworks which offer ways to describe both
computation and failure. Programmers must use them to describe both the code
that must be executed and its interaction with power failures.
In other words, executions adapt their behaviour to failures and modify their
flow according to guidelines that are suggested by the programmer.
The goal is to make failure causes no damage, and to consider it a somehow
physiological, acceptable event.
Several solutions in the literature address the problem of measuring time. This
aspect is particularly important in the domain of TPC because one of the most
popular applications of embedded devices are the deployments of sensor net-
works. By their own nature data come with an expiration date, which makes
their value decrease less punctual they are. Islam et al. [ILN19] considered
the way time is treated as the fundamental factor to classify TPC solutions.
They distinguished time-keeping solutions from solutions which modify their
behaviour according to the context (from now on, adaptive solutions). For the
sake of completeness, it is also necessary to consider also those systems that do
not take into account time but are anyway successful in providing some kind of

24 CHAPTER 2. TRANSIENTLY POWERED COMPUTING

Figure 2.3: An application written in Alpaca

consistency guarantee.
The way time is treated is meaningful only when speaking about demanding
solutions: relaxing solutions do not have any way to expose any aspect of power
failures, and so they do not expose any special mechanism for the user to inspect
the duration of shutdown periods, which are among the main consequence of
power failures.

Time-ignoring Solutions

Some works [RSF11], [Bal+15] do not take into account the problem of time,
but are designed in a way to minimize the impact of failures. Task-based so-
lutions, such as Alpaca [MCL17] are probably the most popular examples of
demanding solution. In task-based systems tasks are executed atomically, i.e.
either completely or not at all. The consequence of this policy is that when-
ever the device experiences a power failure, it dies after the effects of a precise
number of tasks have been applied. In other words, the board will always, by
definition, be observed in a state defined as meaningful by the programmer.

An example: Alpaca

Alpaca is a programming model developed by Maeng et al. [MCL17], which
consist in splitting programs into tasks, which are committed atomically at the
end of their execution. This way, programmers are given the guarantee that
the execution will go on and, moreover, that the device will always be in an
inherently coherent state. Figure 2.3 shows an application written using this
framework. The program gathers data from a sensor, computes a mean and
transmits the result.

Time-keeping Solutions

The idea behind time-keeping solutions is to exploit the regularity of phys-
ical phenomena with predictable characteristic times to have an idea of the
time elapsed between two instants. This high-level idea is quite difficult to ap-
ply in the domain of TPC because the device cannot sustain in any way the
phenomenon which is taking place, as it is totally deprived of energy during

2.6. EXISTING SYSTEM SOLUTIONS 25

shutdown periods. The solutions in the literature, such as Tardis [Hes+16] do
typically use the discharge of capacitors.

An example: Persistent Clocks

Hester et al. [Hes+16] developed two distinct systems to measure the duration
of a power failure. Namely, Tardis measures the amount of charge in SRAM
cells, while CusTARD relies on an external capacitor, which is left fully charged
in case of a power failure, and whose state is measured again at the end of the
power failure itself. These systems allow measuring time intervals lasting from
a few seconds to several hours.

Adaptive Solutions

Several scholars devised mechanisms to make devices change their execution
flow in order to maximize their results, following the available energy. One
of the most popular ways this concept is implemented in the literature is to
build energy-aware schedulers or runtimes, which tune the workload taking into
account time and energy constraints. Examples of this class of solutions are
Mayfly [HSS17] and InK [Yun+18].

An example: Mayfly

Hester et al. [HSS17] developed Mayfly, a task-based programming model in
which a full program is split into self-consistent, semantically coherent portions
of code which are executed atomically. Tasks are linked by data dependencies:
one task can ingest the output of a set of other tasks. Moreover, the programmer
can put a constraint on the degree of punctuality data must possess in order to
be considered valid.

2.6.3 Comparison

The two classes of solutions, i.e. fail-safe and demanding, have complementary
pros and cons, as each of the two does focus on different facets of the problem
of TPC. The primary goal of fail-safe solutions is to ease the adoption of TPC
making its difficulties transparent to the programmer. On the other hand, the
utilization of demanding solutions requires a higher implementation effort, as
developers have to design applications in a way faulty behaviours are tolerated.
The fact that the complexity due to TPC is completely hidden to the program-
mer may show a drawback. As a matter of fact, the programmer of a transiently
powered system could be tempted to code the same way he/she would do while
programming a continuously powered system.
This behaviour can hinder the quality of the result. For example, it can be the
case that an application queries a sensor, retrieves some data and then remains
offline for a long time interval, at the end of which data are processed and sent
to some sort of consumer. In this situation, the consumer would base its com-
putations and decisions on an old and possibly outdated piece of information.

26 CHAPTER 2. TRANSIENTLY POWERED COMPUTING

Demanding solutions have serious drawbacks, too. First of all, designing and
implementing them requires a huge cognitive effort on behalf of developers, who
must take into account the consequences brought by failures additionally to the
normal difficulties of writing code.
Moreover, it is not always trivial to find use cases where failure is acceptable: a
classic example is constituted by cryptography, where a single error or impreci-
sion can ruin completely encryption or decryption.
However, we think that TPC has so many advantages (see Section 2.4) that it
is worth exploring this domain and use it as much as possible.
However, using TPC is extremely difficult from various points of view (see Sec-
tion 2.3). Therefore, we think that the best way to create applications which
run effectively in the conditions enforced by intermittent executions is to tailor
them to address all the issues that derive from the aforementioned conditions.
As a consequence, we strongly believe in the potential of adaptive solutions.
The scope of this work is to investigate the feasibility of adaptive solutions for
this domain. To do so, we have developed a proof of concept application and
evaluated its effects on the field.
The algorithm is based on the idea of applying to the domain of TPC techniques
borrowed from the world of Approximate Computing, which will be introduced
in the next chapter.

Chapter 3

Approximate Computing

3.1 Abstract

The diffusion of resource-hungry applications is greatly increasing the need for
computational power while, on the other hand, the increase in the number of
processors will not keep up with the demand [Mit16].
Approximate Computing (AC) comes to the aid in bridging the demand-offer
gap. AC is the set of tools and techniques aiming to trade some degree of per-
formance in order to make the execution of a given program cheaper.
As summarized in Figure 3.1, the interest of academia in this topic is quickly
increasing (the number of yearly publications grew more than 3x from 2002 to
2019) [19ae]. As promising as it is, the practical application of Approximate
Computing has a set of obstacles that hinder its actual diffusion [MS11].
First of all, Approximate Computing cannot be blindly applied to arbitrary pro-
grams: there exist several scenarios in which it is totally unusable, and others
when it must be handled with much care because even small errors are intoler-
able.
Moreover, the literature offers several techniques meant to save different types
of resources, at the cost of degrading various types of metrics. However, not
all combinations are always available, so another issue is whether it exists a
technique which matches the requirements of a given application.
Finally, the technical availability of an Approximate Computing Technique
(ACT) is not enough to apply it: the usage of Approximate Computing can
be fostered by frameworks which help developers handle all the practical details
[Mit16].
The structure of this chapter follows this scheme: an initial section is dedicated
to presenting the intuitions behind Approximate Computing, its advantages and
disadvantages and the context which motivates these considerations.
Then, we will present a list of the most popular Approximate Computing tech-
niques that can currently be found in the literature. We will frame them in the
context of a taxonomy which extends a work by Moreau et al. [Mor+18].

27

28 CHAPTER 3. APPROXIMATE COMPUTING

Finally, we will present the existing Approximate Computing Control Frame-
works, that is to say, the software instruments that can be used to set up
and monitor an application which makes use of Approximate Computing. The
frameworks will be inserted into an original classification scheme.

Figure 3.1: Papers about Approximate Computing, 1992-2019. [19ae]

3.2 Context

A major problem affects modern computer science, that is to say how to find
suitable techniques to process and analyze every increasing amount of data.
Venkataramani et al. [VRR16] highlighted that the benefits brought by semi-
conductor technology scaling are becoming less effective as time goes by, and
at the same time the amount of data we produce is increasing: the World Eco-
nomic Forum expects a 150x increase in the data production rate by 2025 [19u].
Mittal [Mit16] highlighted the fact that the amount of information processed by
data centers will grow 50 times from 2016 to 2025, and meanwhile, the number
of processors worldly available will grow by just 10 times. McGaughey [19h]
noticed that the amount of data available in the world was increasing at a rate
faster than Moore’s law, i.e. twice every two years [19i] already back in 2011.
In light of these considerations, we can safely claim that the simple increase in
the computation power is not a scalable solution to effectively process informa-
tion. Approximate computing could be an effective instrument to ingest more
and more data without paying an overwhelming cost.

3.3 Opportunities and Challenges of Approxi-
mate Computing

The high-level idea approximate computing relies on is to reduce the quality
of computation in order to save resources. The advantages Approximate Com-
puting brings about in terms of savings span all the assets necessary to carry
out computation: from silicon area [Cho11], to memory accesses [OU19a], to
computation time and energy [RR15]. In general, developers can probably find
a technique to save whatever resource they need.
Moreover, it can be the case when an application requires nearly as many re-
sources as there are available. If the consumption of an application is imme-
diately above the threshold of availability of the resources, a small saving can

3.4. OPPORTUNITIES 29

make the difference between successfully executing it or failing to do so. This
situation is more common when the resources that are available are particularly
scarce, like in the case of embedded devices. This makes the utilization of ACTs
particularly promising in these domains.
The main drawback of AC is that some degree of performance has to be sac-
rificed. As Wyse et al. highlighted [19b], no unique definition of performance
exists: several scholars tackled this issue by delegating this definition to pro-
grammers, or by using default metrics [Rin+15].
Finally, it is particularly difficult to understand when approximate computing
can be applied. As a matter of fact, some classes of applications are intrinsically
more sensitive to approximation and errors, in the sense that small approxima-
tions do greatly affect the final output of a computation.
Furthermore, different techniques offer variable features in terms of tunability,
i.e. the degree of control developers can exercise on the level of approximation
of executions.
This huge range of possibilities may become confusing, so Wyse et al. [19b]
insisted on the importance of providing a general taxonomy which encompasses
in an extensive way all the possible characteristics that can be used to define
Approximate Computing techniques.

3.4 Opportunities

Approximate Computing trades performance for cost, and this characteristic
makes it particularly suitable in the contemporary IT world for two main rea-
sons.
The most popular techniques to process data are characterized by the fact that
the correctness of their output is not a binary concept, but it is a value on
an almost-continuous scale [19r]. In other words, modern workloads are not
about calculating one numerically precise result, but their correctness is based
on whether they can be functional to users [VRR16].
Therefore, data can be naturally processed in a fuzzy way without hindering
their usefulness: in this sense, Approximate Computer can help, as its very pur-
pose is to tune the precision of computation in order to further reduce its cost.
The second practical consideration to make stems from the nature of the data.
Data coming from the physical sensors are catching an increasing interest from
the world of industry: the market of IoT boasts a yearly growth greater than
15% and more than 70% of global executives forecast they will be a competitive
differentiator by 2021[19v]. IoT devices are either sensors or actuators which
interface with the physical world, and by their own nature they are not perfectly
precise [19w] due to the unavoidable presence of noise [19s] and to the fact that
the digital representation of a signal is not perfect [19t].
As a consequence, from a qualitative point of view, every application which
makes use of physical sensors is not exact. Approximate Computing implies
simply a quantitative change in the precision of the application.

30 CHAPTER 3. APPROXIMATE COMPUTING

Finally, another aspect of computer science that is gaining momentum is the
utilization of robots and actuators: the market of robots is expected to grow
with a rate of 21.5% up to 2026 [19x]. The utilization of robots and actuators in
general is similar to the usage of sensors: several actuators output continuous
measures, such as the temperature of a room. In these cases, the physical action
of machines on the world cannot be perfectly tuned, hence it is an intrinsically
inexact activity (Venkataramani at al. [VRR16]). Therefore, also this domain
is a promising field to use Approximate Computing.
In conclusion, some of the most promising disciplines in computer science do
not require to handle input or output in a perfectly precise way, and so there
are no reasons of principle not to apply Approximate Computing to boost their
cost/performance ratio.

3.5 Challenges

There are several application domains where it is impossible to apply Approx-
imate Computing techniques. For example, Mittal [Mit16] cites cryptography
and hard-real-time applications. Regazzoni et al. [RAP18] claim that Approxi-
mate Computing can be used only in situations where some degree of imprecision
is permitted, and that even in those cases the very nature of some techniques
in the world of AC opens up novel security threats, related to all the phases in
the lifecycle of a device.
Another important criticality that hinders te usage of Approximate Computing
is the fact that also applications that do theoretically allow some degree of ap-
proximation may be greatly damaged if ACTs are not applied correctly.
To be more specific, some ACTs can be applied to approximate specific types
of instructions of functions. This aspect will be better discussed in Section
3.6.2, but a simple concrete example is the technique called Skipping Memory
Accesses (see Section 3.6.2), which consists in guessing values instead of load-
ing them from the memory, which can affect only instructions which make use
of the memory. In particular, Esmaeilzadeh et al. [Esm+12] showed that one
Another major criticality that hinders the usage of Approximate Computing is
the fact that there are portions of the code which are intrinsically more apt for
approximation [Esm+12] [Sid+11]. The application of approximate computing
techniques to the wrong sections may have dangerous and unpredictable con-
sequences: as an example, the approximation of control flow can overturn the
correct functioning of a program.
Also in the case when the correct sections are approximated, the quality of the
output could become unacceptably low if the level of approximation is too high.
To prevent this issue, Approximate Computing techniques should offer some
kind of guarantee on the precision level of the execution. These guarantees can
also be probabilistic, like in the case of ApproxHadoop [Goi+15], a framework
where the error is bound statistically.
Another desirable feature of Approximate Computing techniques is tunability
[Ima+19], that is to say, the capability to choose the degree of approximation.

3.6. TAXONOMY OF METHODS 31

A further step of complexity would be to dynamically change the degree of ap-
proximation online, dynamically adapting to the current context [Khu+15].
Both situations are affected by some kind of overhead: in the first case the
developer of the technique must carefully analyze its properties, while in the
second one the device itself pays an extra price for the approximation.
In conclusion, Approximate Computing cannot be applied in every context.
Even when it can be applied, it is rarely the case that all the parts of an appli-
cation can be approximated. Even when these hard requirements are met, there
are some useful properties that should be guaranteed to approximate programs.

3.6 Taxonomy of Methods

Moreau et al. [Mor+18] developed a taxonomy to classify Approximate Com-
puting techniques trying to assess their properties in terms of three main di-
mensions, namely Visibility, Testability and Flexibility.
As regards Visibility, some techniques can introduce errors at any time, while
others only when specific instructions are executed: the first techniques are
called Data techniques, while the latter ones are Compute techniques. Testa-
bility is the degree to which error can be measured during development and
generalized to production. It is used between ACTs that introduce faults in
a deterministic fashion opposed to the ones that do so in a nondeterministic
fashion. Flexibility represents the minimum size of the code portions where it
makes sense to apply a specific ACT. For example, some techniques affect single
instructions, while others act at the level of entire functions.
Mittal [Mit16] completed an influential survey of the domain of Approximate
Computing. In his work, he described the main methods that have been applied
in this field, and he did also produce an overview of the systems to find the ap-
proximable portions of the code and to monitor the quality of the execution.
Venkataramani et al. [VRR16] wrote an extensive survey in which they face all
the problems that can be met in the domain of Approximate Computing, from
the hardware at the physical level to software and algorithmic issues.
This section is structured as follows: first of all, we will present a taxonomy to
classify the existing techniques, obtained by distilling the main criteria that can
be found in the literature. Afterwards, we will do a similar job for the methods
to monitor and tune performance.

3.6.1 How to Implement AC: Dimensions of Classification

This section owes much to the work by Moreau et al. [Mor+18]. We did simply
integrate it with some extra dimension: the original dimensions will be clearly
distinguished in the following sections.

32 CHAPTER 3. APPROXIMATE COMPUTING

Hardware or Software

One fundamental distinction to make when speaking about a particular AC
technique is whether it involves customized hardware or it acts only on the
software. Mixed techniques are theoretically possible, but we could not find
any in the literature. This distinction is implicitly made by Moreau et al.
[Mor+18], who does separate hardware and software techniques but does not
list this dimension among the fundamental ones. Mittal [Mit16] treats this
distinction in an implicit way, too, by specifying which methods do require
specific hardware.
We think that the distinction between purely software or hardware techniques
cannot be neglected: the usage of customized chips greatly lowers production
costs and improves the reliability of a device[19y], therefore, it is necessary to
make designers aware that hardware techniques are more powerful but more
costly to test.

Saved Resources

The main purpose of Approximate Computing is to reduce the quality of the
result of a program in order to reduce the consumption of certain resources.
When describing a particular technique, it is very important to make it clear
what advantages it can bring, as they can range in a notable spectrum [Agr+16].
In particular, in the literature it is possible to find techniques to save memory
[YAK18], computation time and hence energy [Sid+11] or transmission time
[Zor+14].
It can be the case that the scarce resource varies according to the peculiar
constraints in the deployment of specific applications running on fixed devices
in determined scenarios, so this aspect of an Approximate Computing technique
cannot be ignored.

Determinism

This dimension has been established by Moreau et al. [Mor+18]. It is used to
distinguish whether the error produced by a given technique can vary given the
same initial state of computation or not. It may sound unusual to speak about
nondeterminism in a branch of computer science, as the behaviour of computers
is in general deterministic. However, some ACT is intrinsically nondeterministic,
i.e. it can cause different effects when executed many times. Nondeterministic
techniques do typically involve a tight interaction with the physical world: for
example, Voltage Scaling [Pop+07] consists in lowering the voltage of a power
supply. Therefore, the impredictability is introduced by the physical phenom-
ena themselves, which modify the behaviour of the very hardware components.
Moreauet al. [Mor+18] stress the fact that nondeterministic methods are par-
ticularly challenging to test, because it is necessary to analyze the results of
multiple executions to have an idea of their behaviour.
We think that another issue that can be produced by their unpredictability is
their unforeseeable performance during actual operations.

3.6. TAXONOMY OF METHODS 33

Flexibility

This dimension has been defined by Moreau et al. [Mor+18]. Approximate
Computing techniques can act at different levels of granularity, that is to say
they can be used to approximate portions of code with various sizes.
For example, precision scaling is used at the level of a single number, the size
of whose representation can be reduced to save resources [Rah+15a]. On the
contrary, entire programs can be substituted with software which performs the
same task at a lower cost, for example by means of a Neural Network [Esm+12].
Moreover, several possibilities exist in the middle of these extremes.
This dimension of classification can be useful to understand how tunable is a
given technique, viz. how many levels of cost and performance it is possible to
choose among.

Visible or Invisible

This dimension has been introduced by Moreau [Mor+18]. It is used to measure
the observability of the effects of a given technique, that is to say whether and
when it can introduce variations in the state of a computation.
In particular, there is one main distinction to make: while some technique can
act in any arbitrary moment [AS18], while others take effect only in specific
parts of the code [OU19a].
Like in standard dynamic systems, unobservability adds an extra layer of com-
plexity to the analysis of a process. As a matter of fact, techniques that can
affect the state of computation in any moment make it impossible to rely on the
correctness of a program, so their effects are impossible to detect and correct.

3.6.2 How to Implement AC: Techniques

In this section, we will list the most important techniques that can be found
in the literature in the domain of Approximate Computing. We included this
section because we think it is necessary to concretely see the actual applications
of Approximate Computing both to knowingly use them and to develop new
ideas.
Each technique will be commented and framed in the taxonomy defined in the
previous paragraphs (see Section 3.6). This list is not exhaustive: on the con-
trary, it is meant to show concretely some of the potentialities of Approximate
Computing.

• Precision scaling: precision scaling consists in reducing the number of bits
used to represent variables. This technique has been effectively used, to
give an example, by Yeh et al [Yeh+07] in the domain of physics simula-
tions. Their work involves the utilization of ad-hoc hierarchical floating
point units, in the context of multi-core systems. The tuning parameter
is the number of bits used in each level of the HFPU.

• Code perforation: this technique consists in skipping parts of the code.
In principle, every instruction could be skipped, but some parts are more

34 CHAPTER 3. APPROXIMATE COMPUTING

promising than others. This is the case of loops: skipping loop iterations
is particularly effective in case they are independent from one another
[Sid+11].

• Skipping memory accesses: access to memory is one of the most expensive
tasks [19z]. Several techniques have been designed to bypass this cost,
for example by predicting it [MBJ14], by neglecting the access with low
influence [Thw+14], or by interpolating similar values [SSE15].

• Memoization: the idea of memoization is to store the results of function
calls and reuse them instead of rerunning the function with similar inputs
[OU19a]. A similar idea is followed by Keramidas et al. [19aa], who focus
on approximating arithmetic operations in the domain of graphics.

• Using Multiple Inexact Programs: Samadi et al. [Sam+14] developed
Paraprox, a system which creates multiple versions of a given program
by leveraging the approximability of known software patterns. A runtime
component selects the most suitable one during the execution.
A similar idea has been followed by Baek and Chilimbi [19ac], who pro-
posed Green. It is a framework which learns the relation between the level
of approximation and the quality of the output, and tunes the approxi-
mation providing statistical bounds on the error.

• Using Inexact or Faulty Hardware: various scholars applied the princi-
ples of Approximate Computing at the lowest possible level. Khang and
Kang [KK12] created approximate, low-latency adders, while Kulkarni et
al. [KGE11] designed an approximate multiplier. Venkataramani et al.
[Ven+12] invented a method to synthesize approximate circuits adding
extra ”Don’t Care”s in non-sensitive points. Ganapathy et al. [Gan+15]
developed a mechanism to concentrate bit errors in storage towards lower-
order bits, reducing the magnitude of errors.

• Voltage Scaling: when the power supply of a circuit is lowered, its con-
sumption decreases at the cost of possible failures [Mit14]. This applies
both to memories [Den+19] and to computing units. About the latter,
Ahmed et al. [Ahm+19] noted that it is possible to find the optimal point
of work for every voltage value. Rahimi et al. [Rah+15b] proposed a
GPU architecture which reuses results of FPUs, whose power supply can
be tuned to reduce its consumption while controlling the error rate.

• Iterative refinement: anytime algorithms consist in continuously refin-
ing an initially rough solution, improving its quality. San Miguel et al.
[San+16] proposed a framework to process data streams with multiple
computation steps. Each step yields partial outputs while ingesting more
and more data, and partial solutions are fed to subsequent steps. Mang-
haram and Saba proposed to use anytime contract algorithms1for real-time

1Anytime contract algorithms are algorithms which can tune the quality of their execution
according to a budget given before the execution itself.

3.6. TAXONOMY OF METHODS 35

applications on GPUs [MS11].

3.6.3 Control of AC: Dimensions of Classification

As anticipated in Section 3.5, Approximate Computing is hard to use. The first
difficulty is to understand whether a certain application has any approximable
part, and what portions of it can be approximated, making sure that the quality
of the execution adheres to determined standards.
The techniques in Section 3.6 give an idea of the potentialities of Approximate
Computing, but it can be useful to design systems to orchestrate their utilization
to maximize their efficacy.
In the literature, it is possible to find several examples of such mechanisms. We
designed an original taxonomy to classify them by considering three dimensions:
whether they operate online or offline, their tunability, and the amount of human
effort which has to be spent to use them.
In the next paragraphs, we will describe these dimensions, and finally, we will
frame some popular method into the context of this taxonomy.

Online, Offline

In the literature, it is possible to find two broad classes of techniques to make
use of Approximate Computing: some of them [Che+19] [Yaz+15] works by
creating an approximate version of an application. The way these approximate
applications are used are planned offline, without adapting any aspect of their
behaviour during the execution itself.
On the other hand, other methods [GR14] [Khu+15] consist in monitoring the
execution of an approximate program, adjusting parameters online.
These paradigms are not mutually exclusive: they can be applied in sequence
without any problem.

Manual, Automatic

Vassiliadis et al. [Vas+16] note that current approaches to identify approximable
portions of code do typically require programmers to manually help with this
task. This is the case, for example, in [Sam+11] or [CMR13].
However, this process is tedious and prone to errors. Therefore, several works
[Roy+14] [Rin+12] pursue the idea to analyze the code to understand which
parts can be approximated without damaging the quality of the result.

Degree of Approximation

The third and last dimension which we use in this taxonomy is how tunable is
an approximation, viz. whether it can choose how approximate an execution
should be.
To give an example EnerJ, a tool by Sampson et al [Sam+11] allows to annotate
variables as approximate, in a yes-no fashion. The assumption behind the paper
is that annotating more variables as approximate the overall degree of error does

36 CHAPTER 3. APPROXIMATE COMPUTING

typically increase. Under this assumption, it is possible to control how much a
program is approximated leveraging on the number of annotated variables.
On the other hand, Rely by Carbin et al. [CMR13] allows to directly indicate
the amount of precision that can be lost by each function, in terms of metrics
programmers can specify.

3.6.4 Control of AC: State of the Art

This section is used to list some of the techniques that can be found in the liter-
ature to tackle the issue of how to successfully apply Approximate Computing.
The intuition behind each idea is explained, and the technique is then framed
in the context of the taxonomy defined in Section 3.6.3.

State of the Art: Automatic, Manual

There are several ways to identify approximable portions of the code. In this
paragraph we will go through two of them, the first one fully manual and the
second one highly automated.
The first one is EnerJ, by Sampson et al [Sam+11]. It is an extension for the Java
language which allows programmers to manually tag variables as approximate.
The system where the execution takes place is fully responsible for the practical
handling of approximate variables: the authors of the paper created a Proof
of Concept where approximate computation makes use of approximate memory
and imprecise functional units, but in principle the framework can make use of
arbitrary Approximate Computing techniques.
The second work is dco/scorpio, by Vassiliadis et al. [Vas+16]. It is a framework
to analyze arbitrary C/C++ code in order to compute which portions have the
highest influence on the final result.
Given an interval of possible values of a function, the framework computes the
range of the values in the output: in case the output range is much bigger than
the input range, the input is considered as highly influential and treated in a
precise way. This allows the framework to restructure the code, splitting it in
tasks which are approximated to various degrees.

State of the Art: Online vs Offline

The execution of an Approximate program can take place following a static pre-
defined control flow, or its behaviour can be adapted to the context where it is
taking place.
Both techniques have advantages. Namely, dynamically adapting the level of
error to the instant needs of users or the availability of resources allows to main-
tain the best possible quality/cost balance [GR14]. On the other hand, stating a
fixed schedule frees the execution from any kind of overhead due to monitoring
and tuning [Sam+11].
One perfect example of a fully static technique is Axilog, a work by Yazdan-
bakhsh et al. [Yaz+15]. It is an extension to the Verilog language to enable the

3.6. TAXONOMY OF METHODS 37

design and the synthesis of approximated hardware components.
On the opposite side of the spectrum, we can find a framework created by Rin-
genburg et al. [Rin+15]. It consists in a technique to monitor the quality of an
execution, improving it when it falls behind a threshold.
The first proposal of the work by Ringenburg et al. can be used on applications
which produce a high number of distinct outputs: they suggest to perform both
exact and approximate execution for a subset of these outputs, and to use the
difference between their qualities as a proxy of the quality of the execution.
This difference can be computed either by means of a default distance or by
using functions provided by the programmer.

State of the Art: Degree of Approximation

As noted in Section 3.6.1, approximate computing techniques may act on chunks
of code with different sizes. This concept is related to the precision with which
it is possible to control the quality of the execution, i.e., the minimum size of
the precision step.
The tunability of Approximate Computing is a desirable property to follow a
dynamic workload [XS18].
This necessity is satisfied by several Approximate Computing control frame-
works. For example, Carbin et al. [CMR13] developed Rely, a framework where
developers can specify the precision requirements of each function, which is then
transformed according to these requirements.
However, not every Approximate Computing technique offers good tunability
properties. As seen in Section 3.6.1, the tunability of ACT is a characteristic
feature which can be used to classify them and distinguish them. Therefore,
other works insist on the fact that tuning the degree of approximation does
not allow to fully separate the definition of the approximate execution from its
implementation [Sam+11], as it restricts the scope of the framework to a subset
of the available techniques.
Other works are intrinsically more narrow, as they focus on specific applications
or techniques, and so they do naturally offer a low degree of tunability and flex-
ibility: as a matter of fact, they can only be applied to target applications. This
is the case of Rumba [Khu+16], a system to control the utilization approximate
hardware accelerators.
It consists in predicting the quality of the output of an approximate hardware
accelerator based on its input, and using this information to decide whether
to use it or not. In other words, its output is a binary decision, without an
associated indication of the precision of the execution.

38 CHAPTER 3. APPROXIMATE COMPUTING

Chapter 4

Approximate Intermittent
Computing

4.1 Abstract

In this chapter we will introduce the very topic of the thesis, that is to say,
the application of Approximate Computing Techniques in the domain of Tran-
siently Powered Computing, obtaining Approximate Intermittent Computing.
In the first part of the chapter, we will highlight the synergies between the
two domains that make it particularly promising to combine these two worlds,
and in the second one we will propose a framework to study and optimize the
application of Approximate Computing techniques, highlighting the differences
between traditional scenarios and Transiently Powered scenarios.
It looks very promising to apply Approximate Computing in the domain of
Transiently Powered Computing for two main reasons. First of all, Transiently
Powered Devices are often deployed to have a tight bond with the physical
world, which introduces an inevitable amount of noise to corrupt the input.
Moreover, several Transiently Powered Computing applications make use of ma-
chine learning techniques to extract knowledge from data. These techniques are
typically probabilistic, and so they naturally contain some degree of impreci-
sion. Therefore, ACTs do only quantitatively increase this imprecision, but do
not radically alter their functioning. .
After we will have introduced the reasons why it is promising to combine these
techniques, we will propose a method to make this combination more effective:
in particular, our focus will be on how ACTs can be tuned in a clever way to
produce the best result possible according to the available resources.
We will argue the fact that in traditional computing scenarios ACTs are con-
trolled in a way that is not optimal for TPC. To support this claim, first of all
we will show that in traditional computing the objective pursued in the litera-
ture is to maximize the savings while maintaining the execution above a certain
threshold in terms of quality.

39

40 CHAPTER 4. APPROXIMATE INTERMITTENT COMPUTING

QUALITY

CHEAPNESS

QUALITY

CHEAPNESS

quality too low

cost too
high

Figure 4.1: Criteria to use AC: traditional approach (left), TPC approach
(right).

On the other hand, we will propose to apply the dual of this reasoning in TPC,
that is to say, to maximize the quality of the result while not consuming more
resources than the amount that is physically available. Both analyses will be
complemented by concrete examples of how these concepts can be applied.

4.2 Opportunities

There are three main reasons why Approximate Computing techniques combine
well with Transiently Powered applications. First of all, Transiently Powered
devices are typically deployed in order to support the execution of applications
in the domain of sensing, which process inputs coming directly from the physical
world.
This kind of input that is physiologically processed by this kind of applications is
intrinsically noisy, so Transiently Powered applications are typically not meant
to guarantee a fully precise output. Therefore, it is theoretically possible to
increase the magnitude of the error changing the behaviour of the application
only quantitatively and not qualitatively, to avoid tearing it apart.

Second, Transiently Powered applications are also affected by another source
of imprecision: as a matter of fact, Transiently Powered nodes are often deployed
at the edge of networks due to their own unreliable nature: it would be risky to
deploy in a TPC way a central hub or server, responsible for the traffic or the
services towards a multitude of other hosts.
On the other hand, it more than makes sense to use TPC devices as peripheral

4.2. OPPORTUNITIES 41

nodes, with the goal either to receive or transmit information to central hubs. As
transmission is a very costly operation, TPC nodes have to extract knowledge
from the data and cannot send all they sense. Typically, data are processed
using machine learning techniques, that in general produce fuzzy or probabilistic
outputs, which are not fully precise.
Using ACTs does only increase this imprecision, but does not introduce new
sources of errors.
Finally, ACTs can make it possible to carry out more executions by cutting down
their cost. This can produce a qualitative difference with respect to the scenario
when applications are executed in a precise way, paying their full cost. As a
matter of fact, it can be the case that there are simply not enough resources to
run an exact program, but cutting down the cost it becomes possible to obtain
some result.

4.2.1 Low Damage: Bonds with the Physical World

TPC applications have a tight bond with the physical world: they need to ex-
tract energy from the environment to work, and so they do necessarily have
some kind of mechanical or electromagnetic interface with the environment for
the energy to flow in.
Therefore, TPC devices are physically very close to the physical world, and so
it is natural to use them to deploy applications that make use of sensors or
actuators, which must be close to the physical entity they need to measure or
influence. This claim is supported by experimental evidence: a survey by Elec-
tronicDesign [20b] shows that the interest of industry and institutions towards
applying energy harvesting in industrial contexts has created a market worth
250M EUR (2017).
As a consequence, TPC applications are normally used to process data that
come from electronic sensors, and to send the result via wireless transmission
[Sen+17].
Electronic sensors are always affected by some kind of noise [20d], which limits
their accuracy. The error in input measures is by definition propagated all along
the data flow of a program, hence impacting the quality of the output [20e].
So, TPC applications are physiologically imprecise due to their very nature.
When one applies an AC technique to this kind of program, he/she can typi-
cally select the quantities that are being influenced: if the developer limits the
approximation to the variables that are already affected by the noise in input,
he/she is quantitatively increasing the amount of noise, but it is not a necessary
consequence that the application breaks.

4.2.2 Low Damage: Imprecision in Data Processing

As we proved in the previous Section 4.2.1, TPC nodes are typically embedded
devices that are used to sense data, deployed at the edge of networks.
In modern computer science, novel algorithms and hardware resources made it

42 CHAPTER 4. APPROXIMATE INTERMITTENT COMPUTING

possible to apply machine learning on embedded devices [20f].
This choice is particularly convenient for many reasons, which follow from the
fact that the data remain closer to the place where they are produced. For
example, privacy and security can easily be managed when data are physically
present on a local machine. Moreover, another indirect advantage for the in-
frastructure is that when the global amount of information flowing through a
network decreases the network itself is under less stress, reducing the probability
of potential faults.
There is another advantage of transmitting less data, which is particularly im-
portant in TPC applications. Since the transmission is very costly in terms
of energy, the application of machine learning techniques can be very useful in
TPC contexts to extract meaningful information from raw data, and send or
store just the final result of the processing.
However, machine learning algorithms do typically output values that can be
interpreted as probabilities [20g]. In other words, they are not deterministic.
Moreover, in real-world applications input data are often noisy, and do several
techniques have been developed to deal with errors in the input [KM99].
Therefore, it theoretically possible to increase the severity or the number of
errors in machine learning applications without damaging the way they work.
AC is meant exactly to introduce arbitrary errors in programs, so we can safely
conclude that it can be applied to machine learning techniques, also to the ones
in TPC deployment scenarios.

4.2.3 Advantages: Unlocking More Executions

AC has been invented to save resources on machines which are continuously
powered, and it is typically used to reduce the cost of applications that need to
be executed and can be executed even in their exact version. This is possible
because continuously powered machines can execute also the exact version of
most applications, so it is feasible to select any arbitrary degree of approximation
without running the risk to run out of computational resources because the
application has not been approximated enough.
In the context of TPC, it can happen that the available resources are simply not
sufficient to run a task, and so reducing its cost becomes mandatory to obtain
a result. This is particularly true when considering the energy that is available
for computers to use, which is a variable out of the control of the developer, who
cannot, therefore, make any kind of assumption on its availability over time.
The availability of energy has a direct impact on the possibility to execute a
program: a program can be executed if and only if the amount of energy that
is available is higher than its cost.
Therefore, programs cannot be executed even in the situation when the available
energy is immediately lower than their cost. In this case, ACTs can make a huge
qualitative difference: they make it possible to tune the cost of a program and
to unlock executions that would have been impossible otherwise.
This effect makes it promising to use ACTs in TPC contexts. We will spend
the rest of the chapter to investigate how ACTs can be used in TPC in the

4.3. AN OPTIMIZATION PERSPECTIVE 43

most effective way: in particular, we will formalize the qualitative idea that the
goal should be to maximize the quality of the output of TPC applications while
maintaining their cost below the resources that are physically available.

4.3 An Optimization Perspective

In general, ACTs can be controlled to pick the best combination of cost and
quality when executing an application.
This tuning operation can be performed by leveraging on parameters that are
specific for every technique, as explained in Section 3.6.2. Some technique can
be tuned offline, while others can be adjusted at runtime, but in both cases it
is necessary to choose the optimal value of the tuning parameter to maximize
the efficacy of AC in terms of cost-performance trade-off.
The way AC is tuned has a major impact on the usefulness of the results that
are produced by approximate applications: it can be the case that they are too
precise and so they were produced wasting resources, or they can be so erroneous
they are useless, and so it is necessary to design clever methods to carry out
this crucial operation.
It is possible to interpret the choice of the value of the tuning parameters as
an optimization problem, where the objective function to maximize depends on
the needs of the user, i.e., on his/her requirements in terms of quality of result
and budget to obtain it.
We will formally discuss how to design optimization problems that represent
how to tune ACTs in the next sections.

4.3.1 Tuning Approximate Computing: an Optimization
Problem

Optimization is the selection of a best element (with regard to some criterion)
from some set of available alternatives [19ad].
Optimization problems can be formalized as

maximize f(x), x ∈ X, subject to g(x) ≤ 0, h(x) = 0 (4.1)

where X is a subset of Rn, f, g and h are scalar functions. f is called the objective
function, while g and h are the constraints.
In the case of Approximate Computing Techniques, the elements to pick will be
the parameters to tune the techniques themselves. As for the objective function,
the criterion will vary case by case: since it is not trivial to find an optimality
criterion that is provably the best for ACTs, we will extensively discuss this
issue in the rest of the chapter.
However, it is possible to make an empirical observation: the vast majority of
existing ACTs is being used in traditional, continuously powered computing
pursuing the goal of minimizing the cost of computations, while maintaining
the quality of their output above a given threshold.
In other words, the inverse of the cost plays the role of f(x) in Equation 4.1,

44 CHAPTER 4. APPROXIMATE INTERMITTENT COMPUTING

Figure 4.2: An example of image with decreasing quality, from [Sam+13]

while the inverse of the quality of the output plays the role of g(x) in the same
equation.
We will support this claim in the next sections, showing examples taken from
the literature.
Our goal is to show how ACTs are being used right now, in order to convincingly
argue that the principles that guide their utilization cannot be used in TPC
contexts: we propose to adopt a dual paradigm, that is to say to maximize the
quality of a computation given a constraint in terms of resources.

4.3.2 State of the Art

Approximate Computing enables to obtain arbitrary cost-performance blends
while executing programs. Several works in the literature [Sam+14] [Goi+15]
[Sam+13] tune the cost-performance trade-off following the same philosophy,
viz. reducing costs as much as possible while maintaining the quality of the
result above a given threshold. Our explanation, supported by different papers
([Yeh+07], [Sid+11]), for the popularity of this kind of approach is that Ap-
proximate Computing is successfully applied in domains where it is useless to
push the improvement of the quality of a result above a certain point.
Let us take the example of imaging: Figure 4.2 shows different versions of an
image, each one encoded with a different quality. All the images above a given
quality threshold, namely around 90%, are indistinguishable. The qualitative
consideration that all the performance above a threshold is basically useless has
been formalized by Yeh et al. [Yeh+07]. The idea of their work was to reduce
the number of bits used to encode numbers in physics simulations for the enter-
tainment industry. The primary goal of this kind of application is to produce
simulations that are realistic when seen by a spectator or a player, but it is not
mandatory to create results that mirror perfectly the reality.

4.3. AN OPTIMIZATION PERSPECTIVE 45

Physics simulations should follow the law of conservation of energy: the overall
energy possessed by the simulated objects should remain constant over time.
This property does not necessarily hold when simulations are approximated: it
can be the case that the overall amount of energy increases or decreases over
time.
Yeh et al. [Yeh+07] noticed that the non-conservation of energy is not a prob-
lem until the point this difference becomes bigger than a threshold around 10%,
after which people start noticing the incorrectness of the simulation.
Therefore, they proposed to continuously lower the precision of the program,
until the threshold of imprecision is met, following exactly the principle of lower-
ing the cost as much as possible while maintaining the quality above a threshold.
A further motivation to consider performance as a constraint is that excessive
approximation may cause unexpected behaviours or crashes [Sid+11], which can
be avoided by imposing quality of result to be high enough.

4.3.3 Mapping ACTs to Optimization Problems

In the previous paragraphs, we have argued that Approximate Computing makes
it possible to reduce at the same time the cost and the accuracy of certain classes
of applications.
Afterwards, we have shown a framework to select in the best possible way the
cost and the accuracy of executions.
Finally, we have claimed that several works in the domain of Approximate Com-
puting can be encased in this framework.
In the following paragraph, we will concretely show how the tuning of several
ACTs in the literature can be expressed as optimization problems. In each ex-
ample, we will explain the choices made by the developer that demonstrate the
technique has been designed with the idea of considering quality as a constraint
and savings as a goal. As mentioned in Section 4.3.1, optimization problems are
characterized by a set X of possible choices, an objective function which maps
every point in X to a scalar value, and one or more constraints. Constraints are
composed by functions which map points in X to scalar values: they are used to
determine whether a point P is feasible or not, by checking the sign of the image
of P. The value of all constraints for a given point must belong to determined
intervals for the point to be a feasible solution.

Domain

Optimization consists in picking the one in several alternatives that is the best
according to a fixed criterion. Therefore, the first step to map an Approxi-
mate Computing Technique to a mathematical program consists in defining the
possible choices that can be made thanks to the technique itself. The set of
possible alternatives is called X in Equation 4.1. Every x ∈ X is a tuple of
values, which can be continuous or discrete independently on one another. For
example, continuous choices can be physical quantities such as voltage values
or time intervals, while discrete choices can be yes-no decisions. This dimension

46 CHAPTER 4. APPROXIMATE INTERMITTENT COMPUTING

is strictly related to the physical implementation of Approximate Computing
Techniques: Section 3.6.2 gives an idea of the possible choices that can be taken
when using specific techniques.

Objective Function

Intuitively, the objective function of an optimization problem describes a char-
acteristic that it is desirable to maximize or minimize. When using ACTs, the
usual approach is to minimize the consumption of a given resource.
Therefore, it is possible to obtain an objective function from an ACT by com-
puting the amount of a given resource that will be consumed as a consequence
of a given decision. The result of this operation is a mapping from X (viz. de-
cisions to take) to real values (viz. resource consumed as a consequence of the
choice).
The taxonomy presented in the previous chapter contains the dimension ”saved
resource” (see Section 3.6.1), which can be used to precisely define the quantity
that must be measured to assess the performance of individual ACTs. As a
consequence, there is no theoretical difficulty in performing this operation: to
give an even more concrete example, we will explicitly show some mapping in
the following paragraphs.

Constraints

The constraints of optimization problems represent restrictions of the domain
of possible choices, which make points in set X unavailable. In the existing
literature, the vast majority of ACTs considers as unavailable the decisions
that lead to a huge loss in terms of quality. As we have explained in Section
4.3.2 Precision Scaling [Yeh+09] and Loop Perforation [Sid+11] are examples
of this paradigm because both are based on the idea of minimizing the cost
of executions while maintaining quality above a threshold, that represents a
constraint. Further instances will be provided in the next section.
It is necessary to clarify the concept of performance to create a formally valid
definition of the constraints that bind ACTs: this issue has been addressed in
the literature, as several authors needed precise metrics to assess the correctness
of their work.
A popular approach is to measure the distance between the output of an exact
execution and the output of an approximate execution by means of various
metrics: the higher the distance, the lower the performance. As highlighted
by Siridoglu et al. [Sid+11], this process is logically composed by two distinct
steps: first of all, it is necessary to select the variables which are for some reason
significant and representative of an execution. Then, it is necessary to choose a
metric which maps pairs of point in the chosen space to a single scalar value.
In the following section, we will provide several examples of methods that have
been used to measure the degradation of performance.

4.3. AN OPTIMIZATION PERSPECTIVE 47

4.3.4 Some Examples

This section contains some examples of Approximate Computing techniques
mapped to correspondent optimization problem. For each of them we will list
the domain of the variables, the range of the objective function and the structure
of the constraints.

Precision Scaling

Precision scaling [Yeh+07] consists in reducing the number of bits used to repre-
sent numbers. This technique can be used to carry out approximate operations
on ad-hoc processing units.
The domain X of the tuning parameter is the set {1..N}, where N is the maxi-
mum number of bits that are occupied by a number in exact programs.
Using this technique has a positive impact in increasing the throughput of a
program in terms of latency of the instructions: it can turn several operations
into trivial operations, such as multiplication or division by one. Moreover, it
allows to efficiently cache the results of complex operations.
As a consequence, it allows to directly reduce the number of cycles that are
required to execute a program, hence its energetic cost.
According to the needs of the developer, the objective function can be either
the time necessary to run a program, or the energy necessary to run it: in both
cases, the goal is to minimize the chosen quantity.
As for the constraint, they are application-specific. Yeh et al. [Yeh+09] used
it in the domain of physics simulations for the entertainment industry. They
found out that a simulation remains plausible to the eyes of the spectator if
certain physical properties hold: in particular, they found out that if the overall
energy possessed by the objects in the simulation remains constant in time the
simulation remains plausible.
Therefore, they imposed the constraint that the difference of the overall energy
of the simulated objects in two consecutive instants of time must not vary more
than 10%.

Code Perforation

Code perforation consists in skipping certain instructions to make executions
cheaper and faster. A popular way to practically implement it is loop perfora-
tion [Sid+11], that is to say, skip some iterations of loops. In the original paper
by Siridoglu et al. [Sid+11] the decision to take is the fraction of iterations to
skip in every loop present in the code.
Let N be the overall number of loops in the code. Then, the domain X of the
decisions to take is [0, 1]N , meaning that for each loop it is necessary to choose
the fraction of the iterations that will be skipped, so it is necessary one number
between 0 and 1 for each loop in the code to represent all the choices that are
taken.
This technique has a direct impact on the number of instructions that are exe-
cuted by an application. Therefore, it can reduce the time and the energy used

48 CHAPTER 4. APPROXIMATE INTERMITTENT COMPUTING

by a program. So, the objective function is to reduce as much as possible either
the time or the energy consumed.
The constraints that this technique has to meet are application-specific: in the
original work that introduced this technique, Siridoglu et al. [Sid+11] tested it
on the benchmark suite PARSEC1.0 [19ab], composed by several tasks spanning
from image recognition to portfolio pricing. For every algorithm, the idea was
to measure the distance between the output of an exact program and the output
of a program approximated by the application of loop perforation.
Developers could set a threshold for the maximum distance that they could
accept between the exact and the approximated outputs. This threshold was
manually tuned by the developers, and then an automatic exploration algo-
rithm searched for the best combination of perforations that could produce an
acceptable result while maximizing the number of skipped instructions.

Skipping Memory Accesses

The idea of Load Value Approximation is to skip access to memory. This result
can be achieved using different techniques, some of which are listed in Section
3.6.2. For the sake of brevity we will delve deep in just one, that is to say, Load
value Approximation [MBJ14].
The goal of this technique is to mitigate the effect of cache misses: in case a
cache miss happens, the program obtains immediately a value without waiting
for the lower levels of the cache to load the exact result.
The result is just a guess on the real value that would have been obtained by
the exact program, obtained using a custom hardware component conceptually
similar to a lookup table.
The domain X of the decisions to take is ideally a tuple {0, 1}N , where N is
the number of accesses to memory that take place during the execution of a
program. As a matter of fact, for each memory access it is necessary to choose
whether it can be skipped or not.
In practice, San Miguel et al. [MBJ14] used a preliminary training phase to
understand the instructions that could be safely skipped without affecting the
quality of the result.
The objective function to minimize is the time or - equivalently - the energy used
to execute a program. The effect of reducing the time and energy consumption
can be obtained by skipping as many memory accesses as possible.
As for the quality of the output of an approximated program, it is applica-
tion specific: San Miguel et al. tested this technique on the benchmark suite
PARSEC 3.0 [20t], that consists of 13 different multithreaded algorithms. The
algorithms are very different from one another in terms of domain and scope,
so it is necessary to use different metrics for every problem.
The paper defines such metrics to measure the distance from an approximated
output and its exact version, and states that the metrics are built in such a way
that errors in the order of 10% are generally acceptable.
Therefore, also in this situation we find a work where the authors aim at maxi-
mizing the savings while keeping the quality of the output good enough.

4.3. AN OPTIMIZATION PERSPECTIVE 49

Memoization

Several classes of functions are stable, in the sense that small perturbations on
their input do not provoke huge changes in the output. This characteristic can
be exploited to store their results to reduce the number of times they are exe-
cuted [OU19b].
The decision to take is whether a specific input should trigger the execution of
a function, or it is possible to reuse an old result. Formally, it is a tuple {0, 1}N ,
where N is the number of function calls in the program. If the i-th number is 1,
then the corresponding function call should be approximated. Ono and Usami
[OU19b] developed a technique that uses the degree of similarity between a new
input and an input that has been used in the past. In particular, if a new input
is similar to an old input, the corresponding result that has been computed
using the old input is reused.
The goal of this technique is to save energy and computation time: this re-
sult can be obtained by maximizing the overall number of instruction that are
skipped. Formally, the metric to maximize is the number of clock cycles that
are not executed in the approximated program.
As for the constraint function g, it is application-specific like in the previous ex-
amples. Ono and Usami tested this technique by approximating the application
of a filter on an image, and they compared the image produced by the approxi-
mated program with the one produced by an exact version of the program. The
distance between the outputs is computed by using Peak Signal-to-Noise Ratio
and Structural Similarity. The technique developed by Ono and Usami allows
to manually select the threshold, selecting the tolerance in a span from ±1dB
to ±30dB. This tolerance is used to select the minimum degree of similarity
that must exist between two inputs to allow a function call to be skipped. Also
in this situation, we have a technique that aims at saving as much as possible,
focusing on the number of clock cycles, while maintaining the quality of the
output above a threshold selected by the developer.

Using Multiple Inexact Program Versions

The idea of using multiple version of a program has been investigated by Samadi
et al. [Sam+13]. Three main factors impact the performance of GPUs: the num-
ber of atomic operations that must be executed at the same time, the limited
amount of bandwidth that is available and the number of threads that can run
at the same time.
Starting from this consideration, they developed a static compiler that approxi-
mates CUDA code, by leveraging on the three parameters above. The compiler
creates different versions of the program, and a runtime environment is used
during the execution of the program to select the version that is the most ap-
propriate one.
The choices to take using this technique are divided in three main classes: the
first decision is whether to skip an atomic operation or not, to reduce the num-
ber of conflicts. The second decision is whether to pack various input elements

50 CHAPTER 4. APPROXIMATE INTERMITTENT COMPUTING

for the transmission using lossy compression techniques to reduce the consump-
tion of bandwidth. Finally, the last decision to make is whether to skip the
computations that should be carried out by inactive threads.
Formally, the domain is the cartesian product of three sets: the first one is
{0, 1}N , where N is the number of atomic operations in the code. If the i-th
number is 1, the corresponding operation must be skipped. The second set is
{0, 1}M , where M is the number of transmissions to perform: again, if the j-th
number is 1, the content j-th transmission must be compressed. Finally, the
third set is {0, 1}P , where P is the number of threads. If the k-th number is 1,
the k-th thread can be skipped.
The goal of this technique is to minimize the time required to execute a pro-
gram. Formally, the quantity to minimize is the number of clock cycles from
the beginning to the end of the execution.
The quality constraint g is again application-specific: programmers must feed
the approximator with a metric that quantifies the distance from the approx-
imate version of a program and the exact output. Programmers must also
provide a threshold for the metric.
Also in the case of Using Multiple Program Versions we have a technique where
the goal is to optimize the savings, in particular reducing the execution time,
while upholding with a quality threshold set by the user.

Using Inexact or Faulty Hardware

Inexact hardware has fewer design constraints than exact chips, so it can achieve
better performances in terms of speed, power consumption and silicon area. In
the literature, it is possible to find this principle applied to various classes of
hardware components (see Section 3.6.2). We will analyze in detail the case
of undersigned multipliers architecture. Kulkarni et al. [KGE11] designed a
hardware component to perform approximate multiplications, composed by 2x2
building blocks.
The decision to take is how many of the building blocks of the multiplier have
to be substituted with approximate multipliers: formally, the domain X of the
decision to take is the set {0, 1}N , where N is the overall number of blocks in
the multiplier. If the i-th number is 1, the i-th block must be approximated.
The primary goal of undersigned multipliers architecture is to save power: ex-
perimental results show that savings between 30% and 50% are possible.
In particular, the objective function is the amount of energy that must be spent
to execute a series of benchmark programs.
This goal can be obtained by approximating all the building blocks. However,
the authors set a quality constraint to prevent the design of circuits that are
too imprecise.
In particular, they measured the distance from the output of an exact circuit
and the output of a circuit designed using inexact hardware, quantifying it using
Signal to Noise Ratio (SNR), and they enforced the constraint that SNR must
remain below 3%.

4.3. AN OPTIMIZATION PERSPECTIVE 51

Voltage Scaling

The voltage level of their power supply has a major impact on the power con-
sumption of integrated circuits [Ion18]. Therefore, reducing it can create serious
advantages in terms of energy consumption.
This technique has been pioneered by Xie et al. [XMM03a], and extensively
used May et al. [MS16].
The idea of the technique is that when the voltage of the power supply of a cir-
cuit is lowered, both the clock speed and the power consumption of the circuit
decrease. Tuning the value of the voltage, it is possible to obtain major savings
in terms of energy.
The decision to take in every moment is the value of the voltage. Formally, it is
a tuple [0, Vmax]T , where Vmax is the maximum value of the power supply and
T is the number of discrete moments in the execution. The value of the i-th
element represents the value of the power supply during that moment.
The goal of this technique is to minimize the energy consumption of the execu-
tion.
The constraint to meet is the timeliness of the execution: in the work by Xie
et al. [XMM03a], they developed an explicit optimization problem where some
instructions are bound to terminate within a given point in time.
May et al. [MS16] followed a similar approach but relaxing the constraint: his
work allows the developer to set a threshold to indicate the fraction of tasks
that can take longer to execute than stated by their formal deadline.
Voltage scaling has also been applied by Rahimi et al. [Rah+15b] to reduce
the consumption of GPUs. The domain is the same as in the previous case: in
every instant, one must decide the value of the power supply. Also the goal is
equivalent to the previous case: the energy consumed by an execution must be
minimized.
However, the constraint to meet is different: as a matter of fact, Rahimi and his
colleagues proposed to scale the voltage at levels so low that faults and errors
can arise at the level of the hardware, corrupting computations and producing
imprecise outputs. They proposed to measure the Hamming distance between
the exact and the approximate output, and to maintain it below a threshold
that depends on the number of bits of the output.
In both the situations, we can observe that the scholars designed techniques
that aim at reducing the power consumption of programs while keeping their
outputs accurate enough.

Iterative Refinement

Anytime algorithms work by continuously improving a solution by executing
more and more steps of a computation.
The decision to make is when to interrupt the computation: the number of steps
to run can be planned prior to the execution [MS11], or the application can be
interrupted without notice.
When using an iterative algorithm, the decision to take is the number of steps to

52 CHAPTER 4. APPROXIMATE INTERMITTENT COMPUTING

execute: formally, it is an integer number n ∈ [0..N], where N is the maximum
number of steps in the algorithm.
The objective of this technique is to minimize the number of steps that are exe-
cuted, to save computation time and energy. This technique has been explored
by San Miguel et al. [San+16], who investigated the effectiveness of Iterative
Refinement in different scenarios. Their goal was exactly to minimize the overall
number of clock cycles spent by an algorithm.
Like in some of the previous examples, they put a constraint on the quality of
the execution: they measured the distance between an exact algorithm and an
anytime algorithm interrupted before its final step.
In particular, they use a threshold on Signal to Noise Ratio to assess whether
execution is good enough.

4.4 Merging Two Worlds

In this section we will plunge into the very topic of this work, that is to say
the application of Approximate Computing Techniques to the domain of Tran-
siently Powered Computing.
In the previous chapter, we have provided an introduction to the domains of
Transiently Powered Computing (see Chapter 2) and Approximate Computing
(see Chapter 3). Then, we have shown that the application of Approximate
Computing techniques can be seen as an instance of peculiar optimization prob-
lems, which aim at minimizing the cost of a program while maintaining an
acceptable quality.
This paradigm has not been designed with TPC in mind, so we will propose
a small modification to adapt ACTs to the domain of TPC: in particular, we
will suggest to use available resources as a constraint and quality as a goal. We
have shown that in the current literature the predominant approach is to save
as many resources as possible as long as the quality of the computation remains
above a given threshold.
Our interpretation is that in traditional computing it is feasible to impose a
hard constraint on the quality of the result, because normally it is physically
possible to obtain even an exact result. Several papers ([Sid+11], [Rah+15b])
compare approximate executions with their exact version, showing that at least
in simplified cases it is possible to perform exact computations.
This is not the case in TPC scenarios: in case the environment does not make
energy available for a certain amount of time, no computation at all can be
carried out. Consequently, any hard constraint on the quality of the result that
would be produced in the given time interval would be violated, so it is not
meaningful trying to enforce unachievable results.
As a consequence, we suggest that this paradigm should be abandoned to max-
imize the efficacy of ACTs when applied in TPC scenarios. In particular, we
think that the quality of a computation should be considered as the objective
function to maximize while upholding with the resource consumption that is

4.4. MERGING TWO WORLDS 53

physically possible given the conditions of the environment, especially the avail-
able energy. As a matter of fact, energy is one of the most fundamental resources
and, at the same time, the one over which developers have the lowest control.
This is extremely problematic because energy is indispensable for every execu-
tion: if it runs out, no result at all can be produced.
The formulation in Equation 4.1 can still be used to frame the problem of opti-
mizing the behaviour of Transiently Powered applications. However, the map-
ping method presented in Section 4.3.3 must be altered to take into account the
proposed perspective shift. In particular, the functions that represented con-
straints in traditional scenarios become goals in Transiently Powered situations
and vice versa.

4.4.1 Mapping ACTs to Optimization Problems in TPC

In this section we will propose a list of optimization problems that express how
ACTs can be applied in TPC contexts to be maximally useful. We will follow
again the framework shown in Equation 4.1. In particular, we will specify the
domain, the constraint and the objective function of each optimization problem.
Our idea is that constraints and objective should be swapped when passing from
a traditional scenario to a TPC scenario. We will exactly do so, and we will need
almost no extra step compared to the reasoning in Section 4.3.3 and following.
We recall that the domain X is the set of the decisions to take, the objective
function maps each point in X to a real number. As for the constraints, each
constraint is composed by a function which maps each point in X to a real num-
ber: the image of a point X must lie in a specific interval for the point to be
admissible.
So, given an optimization problem, both the objective function and every func-
tion included in a constraint have the same structure in terms of domain and
codomain.
Therefore, from a formal point of view, they can be swapped without creating
problems from the syntactic point of view.
Let us take a look at the semantic consequences of this operation. Let

maximize f(x), x ∈ X, subject to g(x) ≤ 0 (4.2)

be the original optimization problem. For the sake of simplicity we ignored h(x).
When we swap f(x) and g(x) we obtain

maximize g(x), x ∈ X, subject to f(x) ≤ 0 (4.3)

recalling that g(x) represents the imprecision of the execution, and -f(x) repre-
sents a resource consumption, we need to alter Equation 4.3 to make it mean-
ingful: in particular, it is sufficient to turn it into

maximize − g(x), x ∈ X, subject to f(x) ≤ 0 (4.4)

Equation 4.4 means that the goal of the optimization problem is to minimize
the imprecision of a result, while maintaining the resource consumption below

54 CHAPTER 4. APPROXIMATE INTERMITTENT COMPUTING

a threshold.
Equation 4.4 is coherent with the needs of TPC, and it has also another ad-
ditional advantage. Since it makes use of the same functions of the original
optimization problem, it is extremely simple to formulate an optimization prob-
lem suitable for TPC if the original problem is available.
In the next section we will show concrete examples of problems that follow this
formulation, explaining in detail how to design optimization problems for the
domain of TPC. The structure of the section will mirror the one of Section 4.3.3.
We will initially detail how to delineate the domain X, the objective function
-g(x) and the constraint function f(x).

Domain

Optimization consists in selecting the element in a pool of possibilities which is
best according to a set of arbitrary criteria. In this discipline, the domain of an
optimization problem is the global pool of available possibilities to pick.
In the case of Approximate Computing techniques, the choices that can be taken
are the values of the parameters that are used to tune them, independently from
the application domain or the context where they are applied. Therefore, there
is no difference with respect to the framework presented in Section 4.3.3.

Objective Function

The objective function is used to quantify the utility brought by every single
element of the domain. In light of the fact that computational resources are ex-
tremely scarce in Transiently Powered Computing, the objective of a developer
designing a TPC application is to squeeze every single drop of performance out
of the limited assets at his/her disposal.
As a consequence, the objective function is an application-specific metric which
measures the quality of the output of a program. In traditional scenarios, this
metric is treated as a constraint, i.e. executions are bound to keep it above a
given threshold.

Constraints

The constraints of optimization problems are restrictions on the global set of
possible choices to take, which make some of them unavailable. Constraints are
typically used to take into account the limitedness of resources [20c]. Every ele-
ment of the domain is associated with a cost in terms of arbitrary resources, and
elements are feasible if their associated cost is compliant with a given budget.
This line of reasoning can be immediately applied to the case of Transiently
Powered Computing: the cost of executions can be quantified by the energy
they consume, and by the computational and memory effort that are necessary
to complete them.

Chapter 5

Making Things Happen

5.1 Abstract

In the previous chapter we explained the main reasons why Approximate Com-
puting Techniques (ACTs) can be effectively applied to boost the performance
of Transiently Powered Computing (TPC) applications, and we have pointed
out a provably convenient guideline to follow.
In particular, we have shown that one should aim at maximizing the perfor-
mance of the application without consuming more resources than it is possible.
The way performance and resource consumption are quantified is a function of
the specific application.
A concrete case study is necessary to prove empirically that the combination is
effective not only potentially but also actually. We have designed, coded and
tested an application that implements the concepts that we have spoken about
so far: the application consists in a classifier that recognizes the kind of activ-
ity performed by a human being, using accelerometer data. This task is called
Human Activity Recognition (HAR) [Ang+12a].
We made this choice for several reasons. First of all, we have selected the ACT
to apply according to the requirements of the domain of TPC. First and most
important, we want the chosen technique to guarantee consistent savings when it
is applied. Therefore, it must provide high savings and low overhead at runtime.
Then, we are interested in techniques that have broad scope and applicability,
to achieve a general and useful result. Finally, we want the technique to be eas-
ily applicable, to ease and spread the implementation of applications that make
use of it. For all these reasons we have decided to go for Iterative Refinement.
Then, we have chosen a problem to address applying an algorithm that can
be approximated using Iterative Refinement. At the same time, the problem
must be a task that can be realistically tackled using TPC applications. Human
Activity recognition meets both these requirements. This problem consists in
understanding the kind of activity that is being performed by a human being by
processing data that come from accelerometers that he/she is wearing. When

55

56 CHAPTER 5. MAKING THINGS HAPPEN

we move, we produce enough energy to power up small computers, as proven
by Haroun et al. [HYW16], and therefore it is perfectly reasonable to think of a
TPC device that uses the energy produced by the human movement to classify
the kind of movement that is taking place, without having access to external
power supplies.
Moreover, it is possible to approximate Support Vector Machines (SVM), a pop-
ular and powerful algorithm that has been used by Anguita et al. [Ang+12a]
to perform HAR, using Iterative Refinement.
Our contribution is a study on how SVM can be interpreted as an anytime
algorithm: in particular, we have modelled how the accuracy of a SVM-based
classification varies according to the number of operations that are performed.
We called this version of SVM Anytime SVM (ASVM).
Incidentally, the probabilistic analysis that we use to quantify the cost/performance
curve of ASVM can be used to study all linear classification models. The results
of this analysis are two metrics that quantify the performance and the resource
consumption of the application, according to the optimization formulation that
we have given in Equation 4.4.
Finally, we have coded an implementation of the application for MSP430 boards
[19o], to test experimentally how the application performs on the field.
This chapter contains both the results of the probabilistic analysis, that is in
appendix, and the high-level requirements of the MSP430 implementation.

5.2 Applied Technique

The primary goal of this work is to develop a proof of concept to assess the
feasibility and usefulness of applying Approximate Computing to programs de-
ployed on Transiently Powered platforms.
To reach this goal, the first decision it is necessary to take is what technique to
use.
In this section, we will carry out an evaluation of various ACTs in order to
choose the most apt one.
First of all, we will list the desirable properties that Approximate Computing
techniques should exhibit to fit well into the domain of Transiently Powered
Computing. We will use these properties to formulate evaluation criteria to
quantitatively compare the available techniques.
After this preliminary analysis, we will focus on the technique which will emerge
from the evaluation as best according to the aforementioned criteria, that is to
say Anytime Algorithms.
The second step is to find a suitable case study where it makes sense to use
an Anytime Algorithm on a Transiently Powered Computer. We suggest that
an interesting application is Human Activity Recognition, i.e. the classification
of the activity being carried out by human beings starting from accelerometer
data.
We have implemented an application to carry out this task in an anytime fash-
ion. In the appropriate section, we will explain the idea from an intuitive point

5.2. APPLIED TECHNIQUE 57

of view, and then we will analyze it from a formal point of view.
The analysis of the application becomes simpler when some additional hypoth-
esis is added, and the scope of the application is restricted. To make the pre-
sentation clearer, we will initially analyze the most simplified versions of the
application, and we will gradually generalize the work in the subsequent sec-
tions.
We will test and evaluate of the application on the field in the next chapter.

The goal of this section is to choose the best ACT(s) which are apt for
applications in TPC.
We will perform a multicriteria analysis to make this choice in a way that is, if
not logical, at least reasonable. First of all, we will enunciate the properties of
an ACT that can be useful in a TPC context.
To derive these properties, we will start from the dimensions that we used to
classify ACTs in Section 3.6.1. We will go through each dimension, translating
it in a feature that ACTs should have to be maximally useful when applied in
TPC contexts.
Then, we will quantify the relative importance of each criterion, in qualitative
terms of absolute impact on the efficacy of the application of a general ACT in
a TPC context.
Finally, we will give a numeric score to ACTs in each dimension, and we will sum
their scores in the various dimensions weighting them by the relative importance
of the dimension itself, to obtain a single synthetic number that can give an
indication of the fitness of an ACT for the domain of TPC.

5.2.1 Desired Properties

In this section, we will analyze the dimensions that we used in Section 3.6.1
to provide a taxonomy of ACTs. In the taxonomy we provided, ACTs can be
framed by considering some relevant dimensions: in this section, we will use
these dimensions to describe what are the main properties of an ACT that can
improve the performance of applications executed in a TPC context.

Hardware or Software

This dimension is used to describe the point of an application where a given
ACT operates. As a matter of fact, some ACT affects physical elements of
computers such as the power supply of RAM, or the utilization of approximate
hardware multipliers (see Section 3.6.1 for the details).
From this consideration, we propose the following criteria to express the fitness
of an ACT to a TPC context: it should not require particular hardware elements
or physical modifications to the machine to work.
If an ACT can be applied on standard devices, then it can be applied in a wider
range of contexts because it is subject to fewer design constraints. In conclusion,
we will rank Software Techniques better than Hardware Techniques.

58 CHAPTER 5. MAKING THINGS HAPPEN

Saved Resource

This dimension summarizes the advantages that are created by an ACT. We
gave some example of such advantage in Section 3.6.1: ACTs can involve, among
others, savings in terms of energy, memory, computation or transmission time.
Energy is the only resource whose availability changes dynamically during the
execution of applications.
As a consequence, we are interested in techniques that allow to save energy, be-
cause these techniques are the ones that allow applications to adapt to changing
environments, hence performing well in many different contexts.
Therefore, we will rank energy-saving techniques higher than the other ones.

Determinism

This dimension is used to distinguish whether different errors can be produced
by different executions that consume the same input.
In general, deterministic techniques are easier to use and to debug, because
faults and unexpected behaviours can be reproduced and studied. This reason-
ing holds in TPC contexts as well, so we will follow the guideline to give higher
scores to deterministic techniques with respect to nondeterministic ones.
We think that the dimension of determinism is particularly relevant in the do-
main of TPC because this domain is very young and not so standardized yet.
As we demonstrated in Section 2.3.8, TPC is a young discipline, still lacking
standardized testbeds and established benchmarking procedures. Deterministic
techniques are easier to test and debug, and so they can be easily included in
benchmarks thanks to their predictable and therefore comparable behaviour.
As a consequence, the adoption of deterministic techniques does indirectly help
the entire discipline of TPC in shifting towards a more mature state.

Flexibility

This dimension is used to quantify the amount of control developers have on
ACTs (see Section 3.6.1). In other words, the flexibility of an ACT indicates
how finely developers can tune the error that executions produce. Some tech-
niques offer very few possibilities for the execution of a program: for example,
when Using Multiple Inexact Programs (see Section 3.6.2) there are only as
many possibilities as the number of versions of the program that are available.
The problem of having few possibilities is that it can easily be the case that an
application is unable to consume a huge amount of resources that are temporar-
ily available because the accessible resources are just below the threshold that
would unlock an expensive possibility of execution.
Let us have a look at Figure 5.1. It represents a scenario when there is an ACT
with two operative modes, D1 and D2. D1 produces less precise results, and it
is cheaper in terms of power consumption. The lowest horizontal line, labeled
as Consumption of Decision D1, represents the power consumption of an ap-
proximate application that is operating in the conditions enforced by decision

5.2. APPLIED TECHNIQUE 59

Figure 5.1: Energy wasted by techniques with low flexibility

D1. The highest horizontal line, labelled as Consumption of Decision D2, rep-
resents the power consumption of an approximate application that is operating
in the conditions enforced by decision D2. In case there is a power availability
between the two requirements, it is impossible to go for decision D2, so decision
D1 is the only viable option. As a consequence, a given amount of power is
wasted at every instant: the maximum amount of power wasted is bound by
the difference between the power consumptions of D1 and D2. In conclusion,
techniques with fine-grained power consumption levels waste less energy than
coarse-grained techniques.
As a consequence, higher scores will be assigned to ACTs that guarantee more
decisions levels.
The other aspect that is encompassed by flexibility is the minimum size of the
smallest portion of code where it makes sense to apply a given ACT. If this size
is small, for example, a single instruction, it is quite general and easily appli-
cable. On the other hand, some techniques can be used on huge functions, and
possibly quite specific in terms of behaviour. Therefore, we will assign higher
scores to techniques that can be applied on smaller portions of code.

Visible or Invisible

Invisible Techniques can affect the performance of an application also when no
instruction is being executed: for example, underpowered volatile memory does
naturally deteriorate over time, losing information even if the application does
not interact with it. On the other hand, Visible Techniques deteriorate perfor-
mance only when certain instructions are executed: for example, approximate
multipliers/adders produce errors only when they are actually used to carry out

60 CHAPTER 5. MAKING THINGS HAPPEN

multiplications/additions.
Formally, the (In)Visibility dimension indicates whether a given ACT may pro-
duce errors even when applied to an empty sequence of instructions. Invisible
techniques are able to do so, i.e., they can produce damage at any arbitrary
moment in time. On the other hand, visible techniques can create errors only
when some specific instructions are executed.
Visible techniques have a more predictable effect on executions, and they can
be debugged more easily than the invisible ones.
As a matter of fact, one can simply execute an application one instruction at a
time to evaluate the effect of Visible Techniques: this approach would not work
with Invisible Techniques, because they can create problems also during time
intervals when no instruction is being executed.
Therefore, Visible ACTs are easier to debug and have an intrinsically more
deterministic behaviour. We will then prefer Visible Techniques over Invisible
ones.

Relative Importance of the Properties

The desired properties listed so far are not equally important: the impact they
have on the fitness of an AC to the domain of TPC does greatly vary. In
this paragraph we will provide a qualitative ranking of the usefulness of the
properties, explaining the reasons why we consider one property more or less
important. The properties will be listed in non-decreasing order of importance.
We will turn this qualitative distinction into a numeric ranking in the following
section, where we will concretely present our multicriteria analysis.

• Visible or Invisible: this property does not impact the usefulness or the
efficacy of an application or an application. Although the utilization of
visible techniques helps with the development and the testing of TPC
applications, its contribution ends at a super-program level: it helps the
discipline and the developers because it makes it easier to detect flaws and
implementation bugs, but it does not affect the quality of applications as
long as the implementation is correct.

• Determinism: Deterministic ACTs produce the same effect when applied
twice in the same conditions, while Nondeterministic ACTs can produce
different outcomes even starting from the same context.
In other words, Nondeterministic techniques show some degree of inde-
pendence from the input of the application: this makes it harder to test
them, because test cases cannot be defined as given-input-expected-output
pairs.
Thanks to their predictability, we will rank Deterministic ACTs higher
than Nondeterministic ACTs.
Visibility and Determinism have a similar impact on the design and the
deployment of Approximate, TPC applications, so they will have a similar
weights.

5.2. APPLIED TECHNIQUE 61

• Hardware or Software: this property is more important than determinism
because it can create serious difficulties or even block totally the deploy-
ment of a TPC application. Some techniques require hardware modifica-
tions that are so complex and specific that it is basically impossible for
developers to make use of them in real-world scenarios.
Customizing hardware is, in general, more complex than customizing soft-
ware. Therefore, ACTs that make use of custom hardware can be more
difficult to deploy in practice, because they require to design and produce
physical components as well as software components.
In case special hardware components are needed but unavailable or hard
to produce, it can become impossible for developers to use a given ACT.
So, the need for special hardware can be a substantial obstacle towards
the actual utilization of ACTs, and the distinction Hardware/Software
techniques will have a high weight in the analysis.

• Flexibility: the flexibility of an ACT does affect its impact on a TPC
application even more than the previous ones.
All the previous properties make it more difficult to practically implement
the application of an AC in a TPC context, but the flexibility of an ACT
poses questions on the very usefulness of using the technique itself.
Therefore, the flexibility of an ACT is a proxy of how good the technique
is at using the energy available. Since energy is a very important resource
in TPC, flexibility will have a high weight in the analysis.

• Saved Resource: this property is by far the most important one. As a
matter of fact, the main reason to apply ACTs to TPC applications is
to make them more apt to their context, making them consume less in
terms of the resources that are scarce in the place and time where they
are deployed. In the vast majority of cases, the single most important
scarce resource is energy, and in case an ACT cannot help in reducing
the power consumption of a program they do not help in improving its
efficacy.

5.2.2 Choice of the Technique

In Figure 5.2 it is possible to find the multicriteria analysis we have carried out
taking into account the design criteria that we listed in the previous section.
It is necessary to make a preliminary consideration before commenting on the
analysis itself. We had to condense in a single table the scientific results of
dozens of papers, and this simple fact that we needed such an extreme synthesis
makes it impossible to demonstrate the formal correctness of the procedure we
followed. Moreover, we assigned a single numeric weight to the importance of
the properties we identified, and to the score of each ACT along each property.
It is inevitable to introduce some degree of subjectivity when assigning these
scores. As a consequence of these caveats, the multicriteria analysis should not
be considered as a perfect oracle whose judgement must be followed blindly.
On the contrary, this tool should be used to obtain hints and suggestions about

62 CHAPTER 5. MAKING THINGS HAPPEN

the decisions that one should take: when two choices have similar scores, one
should reflect on the reasons why one or the other should be preferred, instead
of picking the one that is slightly superior to the other.

Visible/Invisible Determinism Hardware/Software Flexibility Saved Resource Overall
Precision Scaling 5 5 5 2 2 23.5
Code Perforation 5 5 5 4 4 30.5
Skipping Memory Accesses 5 5 1 3 3 22.2
Memoization 5 5 1 3 2 20.3
Using Multiple Inexact Programs 5 5 5 2 4 27.3
Using Inexact or Faulty HW 1 1 1 1 3 10.6
Voltage Scaling 1 1 1 4 5 19.2
Iterative Refinement 5 5 5 5 5 34

Figure 5.2: Multicriteria Analysis

Observing the overall score of the various techniques, it is possible to distin-
guish three main clusters: the best one is composed of techniques which score
around 30, the second one contains the techniques worth around 20 and the last
one is composed of a single technique far inferior to the others.
We can interpret this subdivision by inspecting the clusters to find similarities
that bring together the techniques in the clusters themselves.
The best cluster is composed of two techniques (Code Perforation and Iterative
Refinement) that are excellent in the most important dimensions, and the third
one (Using Multiple Programs) is in general good in all the dimensions but the
flexibility.
The second cluster is composed of techniques that are either less flexible or less
useful in terms of resource saved than the ones in the best cluster.
Finally, the last technique is somehow the most complex to apply, and this ap-
pears in its generally low scores.
In light of these considerations, the main candidates for the proof of concept are
the three members of the first cluster. We will not consider the possibility of
going for Using Multiple Inexact Programs. Even though this ACT has a high
score, it is extremely costly in terms of human effort and memory to keep many
different versions of a program on a microcontroller.
So, the choice is between Code Perforation and Iterative Refinement: we will
go for Iterative Refinement.
Iterative Refinement algorithms refine results step by step, so they can be used
to improve a result as long as there is enough energy to carry out an extra step.
As a matter of fact, Iterative Refinement algorithms are by definition compliant
with the goal of maximizing the quality of a solution while keeping its cost below
a threshold, which is the goal stated in Section 4.4.1.
Moreover, we are interested in using a technique with low runtime overhead,
and anytime algorithms can be designed to have almost no runtime overhead at
all. On the other hand, it is not always possible to plan a code perforation to
consume exactly the resources that are available in the environment.
We will now present an anytime algorithm suitable for the domain of TPC.

5.3. ANYTIME VARIATION OF SVM 63

5.3 Anytime Variation of SVM

In the previous section, we have decided to go for Iterative Refinement algo-
rithms, and in this section we will describe the precise anytime application that
we have implemented.
Iterative Refinement algorithms work by performing a given number of compu-
tational steps to refine a solution. Some algorithm requires that the number of
steps is planned before the execution: if this policy is applied in TPC contexts,
it can be the case that some extra energy becomes available during the compu-
tation and it cannot be used, because the number of steps and, consequently,
the energy consumption of the algorithm have been decided in advance.
On the other hand, we are interested in algorithms where additional steps can
be planned in every moment. This class of algorithm takes the name of Anytime
Algorithms.
We have decided to use a known algorithm and to turn it into an Anytime al-
gorithm. To select the algorithm, we followed one main principle: the original
algorithm should solve a problem that could be addressed in a TPC context.
In particular, we selected Human Activity Recognition (HAR) as a use case,
and Support Vector machines (SVM) as an algorithm. An overview of HAR
and SMV is given in the next section.
SVM are a machine learning technique to perform classification: a metric to
measure their performance is accuracy, a score that can range from 0 (worst) to
1 (best).
An important reason to start from SVM is that this algorithm works well in
Human Activity Recognition (HAR), a task that fits well the requirements of
the domain of TPC. Therefore, Approximate SVM to solve HAR are a realistic
case study to demonstrate the viability of combining ACTs and TPC.
We need to quantify the accuracy of ASVM as a function of the computational
effort that is invested in the execution of the algorithm: this is necessary be-
cause it is often the case that applications with low accuracy are useless, and
knowing in advance a boundary on the accuracy is necessary for developers to
choose whether to use ACT or not.
In other words, knowing in advance the accuracy of am ACT is kay to make the
first design decision of a project, that is to say, if that specific technique fits the
requirements of the project.
This analysis will be the next part of the chapter. Afterwards, we will present
a concrete use case where this algorithm can be used: in particular, Human
Activity Recognition (HAR). In this specific domain the combination of TPC
and AC can be extremely fruitful, thanks to a series of factor we will highlight
along the text.
The next sections are structured as follows: first of all, we will introduce SVM,
and explain how this algorithm can be turned into an Anytime algorithm. Then,
we will analyse the properties of this Anytime version of SVM, that we have
baptised as Anytime Support Vector Machines (ASVM).
The section about HAR will mark the conclusion of the chapter. In the next
chapter, we will provide our implementation of ASVM, that we have deployed

64 CHAPTER 5. MAKING THINGS HAPPEN

A

T

D

C B

(a) A linear classification model

A
B

C

V

(b) An OvR classifier: vector V is classified
as C, as it it is the furthest hyperplane

Figure 5.3: Linear classification models

in a TPC context. The implementation will be the concrete proof that ACT
can be applied in TPC contexts.

5.3.1 Design of the Algorithm: State of the Art

In this section, we will present an anytime version of Support Vector Machines
(SVM), and we will study how the accuracy of the algorithm varies as a function
of the computational effort spent.
This analysis is necessary because it makes it possible for developers to know
in advance the performance of applications that make use of ACTs, and this
knowledge allows them to decide whether it is a good idea to adopt that specific
approach, without running the risk to obtain bogus results after the application
has been deployed.
Moreover, the goal of the thesis is to demonstrate that using ACTs in TPC
applications it is possible to obtain reasonably good results for a fraction of
their original computational cost: the analysis of the application is necessary to
prove this claim in a theoretically solid way.
This section is structured as follows: first of all, we will provide a theoretical
background on linear classification models. This is necessary because SVM are
a particular instance of a linear model. Then we will explain the peculiarities
of SVM. After this introduction, we will illustrate our anytime version of SVM,
and we will study its properties.

Linear Classification Techniques

The goal in classification is to take an input vector x and to assign it to one of K
discrete classes Ck where k=1,...,K [Bis06]. Classification is a task that belongs
to the domain of supervised learning: this means that an algorithm must be
produced based on a set of pairs (xi, yi), where xi is the i-th input vector, and
yi is its class. This means that classification algorithms learn to classify points
starting from a set of examples.

Typically, classification is performed by finding a function y(x)=f(x,w) that

5.3. ANYTIME VARIATION OF SVM 65

outputs the probability that an input x belongs to a class c. In case f is a linear
function, the classification model will be called a linear model.
In the case of linear models, decision surfaces y=constant are linear functions of
x. An example of linear model is shown in Figure 5.3a. It is possible to observe
that y(x) is above a given threshold T for the points in the superior halfplane,
for example A and D, and it is below the threshold for the points in the inferior
halfplane, such as B and C.
In case of linear model, it is extremely cheap from a computational point of view
to obtain the probability that a given input x belongs to a given class: one has
to compute the inner product xTw, w being the coefficients of the hyperplane.
While classifying points (equivalently, performing inference) given a model is
very simple, the real difficulty lies in the identification of the function f. In the
literature, it is possible to find various approaches, such as Logistic Regression
[PLI02] or Perceptron [Ros58].
Support Vector Machines (SVM) are another popular linear model. Since it is
a technique that has been proven to be useful in the domain of HAR, we will
give an overview of SVM in the next section.

Multiclass Classification with Linear Models

Linear models can be used to classify vectors also in the situation when multiple
classes are available. There are two main methods to carry out this task: One-
versus-Rest (OvR) [20k] and One-versus-One (OvO) [20l].
OvR classification consists in using one hyperplane for each class, to distinguish
among samples that belong to the class and the ones that do not belong to the
class.
New samples are classified as belonging to the class from whose hyperplane they
are the furthest away. This situation is drawn in Figure 5.3b: the distance from
vector V to hyperplane C is greater than the distance from A and B, so V is
classified as a member of class C.
The alternative approach is to use one classifier for each pair of classes (Ci, Cj):
when a new sample must be classified, every hyperplane Ci, Cj is used to check
whether a point belongs more to class Ci or to class Cj , and the class Cm that
won the greatest number of direct confrontations is the class the point belongs
to.
The former approach is generally preferred thanks to its greater scalability, as
it requires O(number of classes) hyperplanes instead of O(number of classes2).
As a matter of fact, OVR classification needs only one hyperplane for each
class, while OVO classification needs one hyperplane for each pair of classes. As
a consequence, classification is slower in OVO and OVO models require more
memory to be stored.
Finally, OVR has higher interpretability. Let us imagine a situation when the
hyperplane used to distinguish between class i and the other elements is

wi = [wi1, wi2...win]

66 CHAPTER 5. MAKING THINGS HAPPEN

in case the k-th coefficient has a greater absolute value than the l-th coefficient,
the k-th feature of a sample will have a greater impact on the classification than
the l-th, and so we can understand what are the features that characterize every
single class (See Figure5.3b).

Support Vector Machines

SVM are a classification technique, invented by Vapnik et al. [BGV92]: this
means that a SMV model is created starting from a set of pairs (xi, yi), xi being
the i-th input vector, and yi being the class if the i-th input vector. For the sake
of simplicity, we will restrict our example to the case of binary classification,
i.e., when only two classes C1 and C2 are present.
An example is shown in Figure 5.4a: each element represents a 2D vector, and
the shape of the element represents the class it belongs to. Let red circles be
class C1, and blue squares be class C2.

(a) A set of labelled
input vectors

(b) A linearly separa-
ble dataset

(c) A hyperplane
with a small margin

(d) A dataset that is
not linearly separable

(e) A hyperplane
with a wide margin

(f) Highlighted
points are the
support vectors

Figure 5.4: Linear separability

SVM rely on the assumption that the dataset is linearly separable: i.e., it
must exist at least one hyperplane H such that all the points in C1 are on one
side of H, and all the points in C2 are on the other side. The dataset in Fig-
ure 5.4b is linearly separable, while the one in Figure 5.4d is not. The idea of
SVM is to identify a hyperplane that gives the best distinction between the two
classes: in particular, the one which is maximally distant from the closest input
vector.
This means that the hyperplane will have the maximum possible margin around
it, where the margin is a zone where no input points are present. Figure 5.4c
shows one situation when the margin is very small, and Figure 5.4e shows a
situation when the separating hyperplane has a wide margin. The hyperplane
with maximum margin can be obtained by solving a Quadratic Programming

5.3. ANYTIME VARIATION OF SVM 67

1.0
0.5

0.0
0.5

1.0 1.0

0.5

0.0

0.5

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Figure 5.5: Projection in high dimensionality spaces eases linear separability

problem [20h], so it is computationally feasible to train this algorithm: in par-
ticular, the computational complexity of training is O(n3), where n is the size of
the training set. The output of the training phase is the separating hyperplane
itself. In practice, it is a tuple of coefficients with the same dimensionality of
the inputs, and so it is very cheap to store.
The separating hyperplane with maximum margin can be obtained by consid-
ering a subset of the input vectors in the training set, that are called ”support
vectors”: this situation is shown in Figure 5.4f. As exemplified in Figure 5.4d,
some datasets are not linearly separable, so it is necessary to project them in
spaces where this property holds to use SVM.
A popular way to achieve this result is to project points in spaces with high
dimensionality, by means of mapping functions called kernels.
Figure 5.5 shows the effect of such a projection on a dataset that is not linearly
separable in the original space, and becomes linearly separable in the projection
space. The classification of a point P is sgn

∑
K(P)K(Si), where Si are the

support vectors and K is the kernel.
This technique makes it more expensive to classify new points: instead of a
single inner product, one must compute as many inner products as the number
of support vectors. Moreover, it is necessary to store all the coordinates of the
support vectors to use the model.
Several techniques have been developed to mitigate this problem. For example,
Zhang et al. [Lan+19] developed an approximated version of SVM, based on
the idea of computing an explicit, approximated version of the PSD matrix that
identifies the kernel.
Hsieh et al. [HSD13] created a divide-and-conquer solver to train the model in
a more efficient way. In the literature it is possible to find iterative refinement
algorithms to perform inference on SVM models. We will delve deep into this
topic in the next section.

68 CHAPTER 5. MAKING THINGS HAPPEN

Iterative Refinement in SVM

Iterative Refinement algorithms have interesting properties both in TPC and
in traditional computing scenarios. We have discussed the fact that Iterative
Refinement algorithms look promising in the domain of TPC in Section 5.2.
As for traditional continuously powered computing, iterative refinement can be
used to stop a computation in the very moment a given precision threshold is
met, possibly saving a huge amount of resources.
Due to this interesting property, it is no surprise that the idea of applying Itera-
tive Refinement to SVM has been successfully pursued in the past. In particular,
two different algorithms have been developed. Decoste [Dec02] developed Inter-
val Valued Support Vector Machines. The fact that a sample point x belongs to
a class C1 or to a class C2 can be computed by checking the sign of the quantity

Q =
∑
p∈C1

d2xp −
∑
q∈C2

d2xq

where d2xp is the squared distance between the vectors x and p.
Instead of computing directly Q, Decoste proposed an algorithm to compute
bounds on Q, that are continuously narrowed until the sign of Q is determined.
Another interesting algorithm has been invented by Wagstaff et al. [Wag+09].
The principle of the work is to train two different models, one extremely accu-
rate but expensive to use and the other less precise but extremely fast, as it is
based on a subset of the support vectors.
The idea of the algorithm is to classify all the available samples using the fastest
model and to assess the probability that the classification is wrong. Then, the
points for which the uncertainty is higher are analyzed again by using the pre-
cise model.
This algorithm implements Iterative Refinement at the granularity of the dataset:
the average accuracy gradually grows while more and more computational effort
is invested.
Both algorithms are very powerful, but they have some drawback that could
make it problematic to apply them in a TPC context. Interval-Valued SVM
are, in the worst case, slower than the traditional version of SVM: this is a
serious issue in the domain of TPC, where it is necessary to optimize the con-
sumption of even the smallest crumb of resources.
As for Wagstaff’s algorithm, the main problem is the fact that this technique
does exhibit a low tunability. As a matter of fact, there are only two possi-
bilities for tuning the precision for every single sample: one can either use the
approximate model or the accurate one.
In case a high amount of samples is immediately available this is not a huge
trouble. As a matter of fact, one may find a good blend of the approximate
and the accurate model to consume all and only the resources that are avail-
able. However, this is not the case for TPC applications: the hardware of TPC
devices is very limited, and their memory is no exception. As a consequence,
it is basically impossible for a TPC device to have access to a huge amount of
samples to classify at the same time.

5.4. ASVM: DESCRIPTION AND PROPERTIES 69

The goal of this work is to develop a novel application able to overcome the lim-
itations of the existing solutions, and in particular fit for the domain of TPC.

5.4 ASVM: Description and Properties

In this section we will present an anytime algorithm, ASVM, that can be applied
to all the linear models for classification, and that does overcome the limitations
of the existing iterative algorithms for SVM, that is to say, low performance in
the worst case for Decoste’s algorithm, and low flexibility for Wagstaff’s.
In the rest of the thesis, we will apply ASVM to implement a HAR application,
to demonstrate that it is feasible and useful to combine ACTs and TPC. We
developed this variation of SVM to implement an application that uses an ACT
to obtain better performance than an exact algorithm in a TPC context.
So far, we have shown why we decided to use iterative refinement, mainly for
its low runtime overhead, and why we have decided to study the case of Human
Activity Recognition, that is to say because it is a scenario that fulfils the
requirements of TPC applications.
We will present some variations of the application, starting from the ones that
have the narrowest scope, i.e. that require the strongest assumptions in order
to work, and we will move towards the most general ones.
This order has the advantage of showing the easiest things first, so as to facilitate
the explanation of the most complex models.
Let us consider a set {x1,x2,x3...xm} of samples to classify, where xi is a
t-dimensional vector xi = [c1, c2c3...ct].
Each vector xi can belong to one of NC classes {C1, C2...CNC}.
We will initially analyze the case when NC is equal to 2, and all the distribution
of the coordinates ci of the input vectors are independent from one another.
Then, we will cover the case when NC is greater than 2, but the distribution of
the coefficients remain mutually independent.
Finally, we will drop also this assumption, and we will cover the case when the
coordinates of the input vectors may be correlated, and when multiple different
classes exist.

5.4.1 Description of ASVM

SVM is a linear classification technique: it is based on a set of hyperplanes that
split the space of the features in distinct regions. Points are classified according
to the region they belong to.
Let w1,w3,w3...wc the hyperplanes corresponding to c classes. So, a window
sample x can be classified by computing the inner productsw1x,w2x,w3x...wcx
and taking the class with the biggest inner product. Our idea is to approximate

wax =

n∑
i=1

waixi ≈
p∑

i=1

waixi

70 CHAPTER 5. MAKING THINGS HAPPEN

Figure 5.6: Inference in ASVM

with p≤n. In other words, we will use only a part of the features to compute
the classification. The way classification is carried out in ASVM is shown in
Figure 6.1. The idea of the anytime application is to compute the features one
by one and to use the features to adjust the classification as soon as they are
available. This kind of approach has the advantage that it becomes easy to cope
with power failures: as a matter of fact, whenever a power failure happens there
is already a partial result is available. Moreover, the partial result has made
use of the highest possible amount of features that could be computed with the
power available so far. This technique allows to arbitrarily cut down the costs
of classification: however, since less information is included in the classification,
the result will be less precise. In the following sections, we will estimate the
precision loss due to this approximation.

5.4.2 Binary Classification, Independent Coefficients

Let {x1,x2,x3...xm} be a dataset composed by m vectors.
Let each sample

xi = [c1i, c2i, c3i...cti]

be a t-dimensional vector.
Let us assume that each coordinate ci is drawn from a Gaussian distribution Ci

Ci ∼ N(0, σ2
i)

Let us assume that all the Ci are mutually independent.
Let

w = [k1, k2, k3...kt]

be the hyperplane that is used by the linear model to classify the samples: for
the sake of simplicity, let us assume that

kj = 1 ∀j ∈ {1..t}

5.4. ASVM: DESCRIPTION AND PROPERTIES 71

We will demonstrate that this assumption does not affect the generality of the
analysis.
In linear models, the classification of a sample xi is determined by the quantity

Si = wTxi

where wTxi is a normal inner product. Let us indicate as cji the j-th coefficient
of the i-th sample which can be written as

Si =
∑

j∈{1...t}

cjiwj

Let

Spi =
∑

j∈{1...p}

cjiwj

when p=t, Spi = Si. In the other cases, Spi is cheaper to compute than Si.
This consideration is particularly interesting when the features cji of point i are
not immediately available, and involve extra computations to be extracted. We
will come back to this point in the next chapter.
An approximate version of the classification of point P can be computed as

classpi = sgn(
∑

j∈{1...p}

cjiwj)

that is to say using only the first p coordinates of the vector. We will call classpi
the p-partial classification of the i-th vector. We are interested in computing
the probability that a p-partial classification is coherent with its corresponding
t-partial classification, i.e., with the exact classification, as a function of p.

P (p− coherence) = P (classpi = classi)

To compute P (p− coherence), we will introduce an auxiliary variable, to easily
represent the influence of the coordinates that are excluded from the p-partial
classification.

Rpi =
∑

j∈{p+1...t}

cjiwj

p-coherence is enforced if the following event takes place

Spi ≥ −Rpi

After a few steps, listed in Chapter 9, we obtain

P (p− coherence) = 2

∫ +∞

d=0

fSpi
(d)(1− FRpi

(d))dd

The distribution of fSpi
and FRpi

is computed in Chapter 9.

72 CHAPTER 5. MAKING THINGS HAPPEN

5.4.3 Multiclass Classification, Independent Coefficients

We will analyze the case of multiclass classification using the technique of One-
versus-Rest (see Section 5.3.1). We recall that using this technique one can
classify a vector x by measuring its signed distance from each of the hyperplances
that correspond to each class, and assign it to the class whose hyperplane it is
the furthest away.
Formally, let

{C1..Cc}

be the classes and
Hl = [hl1, hl2, hl3...hlt]

the hyperplane corresponding to class l. To simplify the notation with respect
to the previous case, let

x = [c1, c2...ct]

a sample, whose coordinates
ci ∼ N(0, µi)

We are interested in the probability that a partial classification, performed using
the first p coordinates, is coherent with the full classification performed using
all the t coordinates.
Let Cp the class to which the point to classify belongs according to the evaluation
done with the first p coordinates. Let Cf the final classification of the vector,
performed using all the t coordinates.
In conclusion, we have that

P (Cp = Ci ∧ Cf = Ci) =

∫
adv>0

P (Adip = adv)P (Acep >= −adv)dadv

(5.1)
Where Adip and Acep are random variables whose distribution is computed
in Chapter 9, and varies as a function of p. This integral can be computed
numerically.

5.4.4 Binary Classification, Correlated Coefficients

We will not analyze this case in detail: the analysis of this variant is so similar
to the one in the next Section 9.2.1 that it would not add any theoretical value
nor ease the introduction of the most general case.
Although this case is not so interesting from a theoretical point of view, it is
a nice opportunity to visualize the practical effects of the equations derived
so far. In particular, Figure 5.7 shows the probability of obtaining a coherent
classification as a function of the number of features that are considered, for a
random dataset. This probability has been computed using the model illustrated
in the next Section 9.2.1. It is possible to notice the following aspects:

1. When zero features are used, the probability to obtain a coherent classi-
fication in 0.5. This makes sense because it is impossible to predict the

5.4. ASVM: DESCRIPTION AND PROPERTIES 73

0 10 20 30 40 50 60 70 80
Features used for classification

0.0

0.2

0.4

0.6

0.8

1.0

Expected coherency

Figure 5.7: Expected coherency of binary classification of points with correlated
features. An oscillation is highlighted.

outcome of a classification without any information better than a random
guess.

2. The accuracy reaches one when more and more features are considered.
At the end of the process, it becomes more difficult for the few remaining
features that have not been considered yet to overcome the contribution
of a high number of features.

3. The curve is increasing but for small random oscillations. When more
and more features are considered, it becomes less likely for the remaining
features to have an impact high enough to invert the sign of the partial
classification. We will explain the random oscillations in Section 7.2.2.

5.4.5 Multiclass Classification, Correlated Coefficients

The last and most general case we are going to analyze is the situation when the
coordinates of the samples to classify are correlated, and more than two classes
are present.

74 CHAPTER 5. MAKING THINGS HAPPEN

The scheme of the demonstration is very similar to the one of the previous case,
that is to say Section 9.2.
First of all, we are going to model the probability distribution of the signed
distance of a sample x from the separating hyperplanes. Then, we will compute
the probability distribution of the differences between the partial distances.
Finally, we will use these last probability distributions to model the probability
that a classification remains coherent when more coordinates are used. Let x
be the vector to classify.

x = [c1, c2...ct]

Let us assume that
x ∼ N(µx,Σx)

Where
µx = 0t

And the entry of Σx on the i-th row and j-th column is indicated with Σij
x .

Let
{C1, C2..Cc}

be the classes among which vectors can be classified. We need to compute the
probability that a partial classification remains coherent when all the coordi-
nates are used. Let

PCp

be the partial classification computed using the first p coordinates. A partial
classification is coherent if PCp = PCt. The probability of this event can be
computed: the steps are explained in Chapter 9.

P (PCp = PCt) =
∑

Ci∈{C1..Cc}

∫
ve>0c

∫
vc>−ve

pdfV i([ve|vc])dvedvc

Where pdfV i is a probability density function, which is known given the number
p of features that are being used.

5.5 Use Case: Human Activity Recognition

Once we have decided that we want to apply ASVM, and we have studied their
properties, we need to find a reasonable use case to apply this algorithm. In
particular, we need to find a scenario with the following characteristics:

1. The problem can be solved using low-end devices such as microcontrollers:
this is necessary because we want to build a TPC application, and TPC
applications cannot afford powerful, power-hungry devices

2. The scenario must offer the possibility to harvest energy from the envi-
ronment: this is a basic assumption to apply TPC techniques

5.5. USE CASE: HUMAN ACTIVITY RECOGNITION 75

3. The problem in the scenario can be solved using SVM: this is necessary
because we have decided to use ASVM for our use case.

In this section, we will prove that Human Activity Recognition (HAR) meets
all these requirements. Human Activity Recognition is the ability to recognize
a human’s current activity based on information from various sensors such as
physiological sensors, cameras, and RFID sensors [YLC11].
As for property 1, several works, such as Anguita’s influential 2012 paper
[Ang+12b], have demonstrated that it is possible to perform HAR on low-end
devices. As for property 2, different scholars have successfully harvested energy
from human movement using wearable kinetic harvesters. For example, Haroun
et al. [HYW16] managed to extract 445 uW by using micro-electromagnetic
vibration energy harvesters, while Romero et al. [RNW09] obtained a similar
result, extracting 117 uW from a 2 cm2 device worn by walking volunteers.
Therefore, it is possible to apply energy harvesting techniques in HAR appli-
cations. Property 3 can be easily verified by considering that SVM perform
well on HAR, as demonstrated by Anguita et al. [Ang+12b]. The work consist
in classifying samples from six different activities, namely Walking, Walking
Upstairs, Walking Downstairs, Standing, Sitting, Laying. Anguita’s algorithm
obtained an average precision of 0.909, while the average recall was 0.897. In
conclusion, HAR is a case study that meets all the requirements we need for our
proof of concept, and SVM are an algorithm that performs well for this problem.
We have created an Anytime version of SVM: we will show its functioning and
its properties in the next section, along with a brief overview of the existing
Anytime solutions for SVM.

5.5.1 Data Processing

The raw input of HAR applications is typically constituted by a 6-dimensional
trace of acceleration/angular velocity data.
These raw data have to be processed before they can be classified, and this
processing phase constitutes the most relevant part of SVM-based HAR appli-
cations in terms of computational effort.
In this section we will describe how data have to be processed to obtain relevant
features: we need to introduce the processing phase for two reasons:

1. The cost of the processing phase in terms of clock cycles is more than 90%
of the total execution cost. In light of this consideration, we will conclude
that our proposal to use only the affordable features and neglecting the
others without even computing them has a major impact on the cost of
executions.

2. The way the processing phase takes place made it necessary to apply some
trick to the C code we have developed: the biggest practical consequence
is that it made it necessary to use fixed point numbers. The fact that
we use fixed point numbers made it necessary to check the correctness
of the implementation and the precision loss during the evaluation of our
solution.

76 CHAPTER 5. MAKING THINGS HAPPEN

In this section, we will describe how raw data have to be processed to extract
the features, using the procedure introduced by Anguita et al. [Ang+12b].

Dataset Description

HAR consists in processing arbitrary data gathered from sensors that track the
state of a person to understand what activity the person is performing.
We will focus our attention on data coming from accelerometer data.
Let us retrace the reasons why accelerometer data are a promising raw material
to process using a combination of TPC and ACTs. First of all, the fact that an
acceleration is being measured implies that something is moving, and so that
it is possible to extract mechanical energy from his/her movement, using the
energy harvesting techniques that we have listed in Section 2.5.1.
Moreover, Anguita et al. [Ang+12a] used SVM to process accelerometer data,
with the objective of performing HAR. The original dataset that we have used
has been gathered by Anguita et al. [Ang+13]. The entries of the dataset are
composed by some data sensor, that we will describe in detail later, and a single
label for each entry that describes the activity that was being carried out when
the corresponding data were measured.
This dataset has been obtained using the sensors included in Samsung Galaxy S
II smartphones. A group of 30 people aged from 19 to 48 were ordered to carry
out specific activities, while a smartphone was monitoring them and gathering
data.
In particular, the volunteers were asked to Stand up, Sit, Lay down, Walk, Walk
upstairs and Walk downstairs. Meanwhile, an inertial accelerometer did mea-
sure six different physical quantities, i.e., the linear acceleration in the three
dimensions and the angular velocity in the three dimensions.
More than 99% of the energy of the signal obtained by the accelerometer is
below 20 Hz. Therefore, a good sampling rate should be more than twice this
frequency.
As a consequence, Anguita’s team chose a sampling frequency of 50 Hz, and
used a 3rd order low-pass Butterworth filter with a cutoff frequency of 20 Hz to
remove the noise.
The data measured by the accelerometers contain a component due to the accel-
eration of the body and a component due to gravity acceleration. To distinguish
between these components, in the original work it is assumed that the compo-
nents related to gravity are characterized by lower frequencies than the ones
due to body acceleration. Therefore, they used a second lowpass filter to divide
these components.
Single accelerometer samples are very difficult to interpret, and so the schol-
ars grouped them in sliding windows to obtain better insights from the data in
longer time intervals. The length of the time interval has been chosen by taking
into account several factors, such as the average walking cadence of healthy,
elderly or disabled people, and constraints related to the domain of signal pro-
cessing. In particular, data need to represent a full walking cycle to be more
representative, and Anguita et al. proved that it is useful to transform them in

5.6. CLASSIFICATION OF PROOF OF CONCEPT 77

the domain of frequency using FFT.
FFT can process data in groups with a cardinality that is a power of 2, so
Anguita and his colleagues chose the shortest interval that contained enough
samples to cover a full walking cycle, and composed by a number of samples
that is a power of 2: in particular, 128 samples.

Feature Extraction

For the reasons explained above in Section 5.5.1, the raw data measured by the
accelerometer have been grouped in sliding windows composed by 128 samples
each.
These raw data have been enriched by extracting various features from the
signal, to gain better insights about its properties hence making HAR easier.
In particular, the authors extracted 17 measures from the signals in the domain
of time and in the domain of frequency.
Anguita’s team started from the work by Jhun-Ying et al. [YWC08], that
designed an algorithm based on artificial neural networks to perform HAR.
Jhun-Ying et al. used a set of basic metrics such as mean, standard deviation,
minimum and maximum. Moreover, they computed Signal Magnitude Area and
Average Energy of accelerometer signals in the domain of time or in the domain
of frequency, and fed the result to a neural classifier.
Anguita et al. did further develop the idea by Jhun-Ying et al., computing other
features of the signal. In particular, their contribution consisted in adding the
energy distribution of the signal in the domain of frequency, the skewness of the
signal and the angles between its components.
The final result of the signal processing was a 561-dimensional dataset, that is
publicly available [20u].

5.6 Classification of Proof of Concept

In this section, we will classify the application that we are proposing using the
criteria that we have shown in the previous parts of the work. In particular, we
will discuss what are the challenges that we are tackling in TPC and AC, we will
classify our solution according to the taxonomies for AC and TPC applications,
and we will describe how we implemented the optimization principles to combine
AC and TPC.

5.6.1 Addressed TPC Challenges

In Section 2.3 we have listed the most prominent challenges in TPC: our solution
addresses a subset of the aforementioned problems. In particular:

1. Constrained resource: our application allows to use in a more efficient way
the energy that is available.

78 CHAPTER 5. MAKING THINGS HAPPEN

2. Uncertain environment: our application is built to deal by design with
the uncertainty of the environment, as it adapts its behaviour to energy
availability.

3. Timely execution: the application is built to provide timely results. As
power failures trigger the emission of outputs, it is impossible that a com-
putation remains pending during a shutdown.

5.6.2 Classification as TPC solution

In Section 2.6, we have presented a simple taxonomy to classify TPC solutions.
We will now apply that taxonomy to ASVM. Dimension by dimension, we have:

1. Demanding: implementing our solution implied a serious reasoning to
find a clever way to mitigate the effect of power failures, that had a heavy
impact on the code.

2. Adaptive: our application changes its behaviour according to the amount
of energy that is available, and deals with the problem of emitting timely
results without explicitly mentioning the problem of time.

5.6.3 Classification as ACT

In Section 3.6, we have presented a taxonomy to classify ACTs, that we will use
now to classify our application.

1. Hardware or Software: our solution is a pure software technique, that does
not require any kind of hardware customization.

2. Saved Resource: our application allows reduce the amount of energy con-
sumed by a program.

3. Determinism: our solution is deterministic.

4. Flexibility: the minimum level of granularity at which ASVM work is the
entire program.

5. Visible or Invisible: our solution is visible, because all the modifications
that are applied to the normal workflow consist in instruction that are
skipped. In other words, modifications happen by definition during in-
structions.

5.6.4 Control of ACT

In Section 3.6.3 we have presented a taxonomy for the type of control it is
possible to perform on ACTs. Our application can be classified using that
taxonomy:

1. Online, Offline: our technique works online. The behaviour of the applica-
tion is not scheduled in advance but is determined by runtime conditions.

5.7. CONCLUSION 79

2. Manual, Automatic: our application is manual. We designed and coded
it so support a specific ACT.

3. Degree of Approximation: our technique supports as many degrees of
approximation as the number of features of te data. In this specific case,
we are speaking of several hundreds of features.

5.7 Conclusion

In this chapter, we have described all the ingredients to implement an applica-
tion that uses ACT in TPC context. In particular, we have

1. The ACT we want to use: Iterative Refinement, mainly because it has a
very low runtime overhead.

2. The application to which we want to apply Iterative Refinement: the
application is a novel version of SVM.

3. An estimate of the performance of the application as a function of the
computational effort spent. This is very important because it allows us to
estimate the performance of the application in a general way, independent
from the randomness of the experiments carried out on specific datasets.
In other words, it supports the claim that our technique is general and
that it is not by chance that it produces the results we will see in the
Evalutation part.

4. A concrete use case to apply the application: in particular, Human Ac-
tivity Recognition.

In the next chapter, we will illustrate the C implementation we have developed
to make these concepts concrete, and to measure on the field their behaviour.

80 CHAPTER 5. MAKING THINGS HAPPEN

Chapter 6

Prototyping

6.1 Abstract

In the previous Chapter 5, we have described the functional requirements of the
Approximate Intermittent application we developed to demonstrate that it is
fruitful to combine the domains of TPC and AC.
Our final goal is to prove on the field that our idea produces better results than
a state-of-the-art solution. To do so, we need a functioning implementation of
the concept we are proposing: the goal of this chapter is to describe how we
carried out such implementation and how we tested its correctness. The deploy-
ment of our application in a realistic scenario works this way: first of all, it is
necessary to train a model to classify accelerometer data. The training phase
can take place on arbitrary machines.
Then, it is necessary to put the firmware on an embedded device, physically
connected to the accelerometer that measures the data.
The need to use an embedded device to execute the application does seriously
impact the details of the implementation: in particular, we had to represent
numbers using fixed point to speed up the computation (>10x speedup with re-
spect to floating point representation), and we had to use a simple linear model
without kernel projection to reduce the memory consumption of the algorithm.
As we have highlighted in Section 5.5.1, raw accelerometer data have to be pro-
cessed before being fed to the classifier. Also, this processing phase must take
place on the embedded device because it is the only computer that can access
the accelerometer.
After having processed raw data, the microcontroller can classify them using
the classifier trained beforehand.
The training phase is not particularly interesting for the scope of this work,
because we did not provide any contribution in this sense, as we have trained
a model using a standard SVM Python library from the ”scipy” package[20m].
Therefore, we will focus on the way we implemented and tested the firmware.
In this section, we will describe the main aspects of the implementation: the

81

82 CHAPTER 6. PROTOTYPING

requirements in terms of memory and computational power, the commented
pseudocode, and how we tested the firmware, that is to say comparing it to a
Python program to perform the same task.
We compared the intermediate variables in the Python program and in the C
program and we proved that the Mean Absolute Percentage Error (MAPE) be-
tween the corresponding variables is always less than 15%, and less than 1% for
all the intermediate variables that impact the classification. Moreover, we have
demonstrated that the approximation is Gaussian and its expected value is 0
for 3 classes of variables out of 5.
This chapter is organized this way: first of all, we will list the nonfunctional re-
quirements of the implementation (Section 6.2), then we will display the details
of the implementation (Section 6.3), and finally we will show how we tested the
correctness of the implementation (Section6.4).

6.2 Nonfunctional Requirements

Figure 6.1 shows a high-level description of ASVM. We will now delve deep in
the features that the algorithm must exhibit to correctly adhere to the behaviour
that is shown.

• Memory consumption: the application must be deployed in a TPC context.
As explained in Section 2.3.1, TPC devices are very poor performances in
terms of computational power and memory availability. In this scenario,
memory is the most problematic limit.
Machine learning models, in general, can have remarkable sizes, and if the
size of the model is bigger than the amount of storage that is available in
the target device there is no way to implement it.
SVM-based models can have huge sizes in case the classifier makes use
of the kernel trick (see Section 5.3.1). In this case, the model is com-
posed of one set of support vectors for each class. Therefore, the memory
consumption is

O(ncnsvcnd)

Where nc is the number of classes, nsvc is the number of support vectors
that hold the hyperplane of class c, and nd is the number of dimensions
of the samples.
In the present case, nd is over 500, so the model could easily be composed of
thousands of parameters. This is a problem because the novolatile memory
available in microcontrollers that are typically used for TPC applications is
in the order of kiloBytes [19o]. Therefore, it is a primary concern that one
must design mechanisms for ASVM classification models to be compact.

• Computational cost: another important aspect that must be considered
is the time needed to carry out the classification. The classification of
samples cannot take an excessively long time, for two main reasons. First

6.3. IMPLEMENTATION 83

of all, accelerometer data do continuously arrive in the microcontroller to
be processed. As a consequence, the processing of a sample cannot take
longer than the interval between the arrival of two consecutive samples.
Moreover, every millisecond that passes when the microcontroller is turned
on has a cost in terms of energy, that is the single scarce resource that
must be saved during the operative life of the application.
In conclusion, there are both a hard constraint and a soft constraint on the
maximum amount of time that can be spent by the algorithm to complete
the computations triggered by the arrival of a new sample. This time
cannot be longer than the inverse of the sampling rate, and should, in
general, be maintained as low as possible to save energy.

6.3 Implementation

The goal of the work is to deploy a Human Activity Recognition (HAR) appli-
cation in a TPC context, overcoming the limitations and the difficulties of TPC.
Therefore, the application must be extremely light in terms of memory consump-
tion and computational power needs, otherwise it may not fit the specifications
of devices normally used in TPC.
This hard requirement concerns only the software that will be deployed on TPC
devices: other preliminary procedures do not have any kind of constraint.
Starting from this consideration, we have split the algorithm into two parts: the
training of the classification model and the inference.
The training phase can be carried out using arbitrary resources and machines,
to it is not particularly problematic. On the other hand, the inference phase
will take place on TPC devices, so it must fit their memory and it must satisfy
other requirements in terms of timeliness, that we will analyze in the rest of the
chapter.
This section is structured as follows: first of all, we will provide a high-level
view of the algorithm, in the form of commented pseudocode. Then, we will
show the most critical implementation choices that we have made to cope with
the context where the application must be deployed.
Finally, we will delve deep in the sections of the algorithm, highlighting the
ones that are the most problematic in terms of requirements and technical chal-
lenges, and we will present the solutions for their specific problems. Our goal
is to deploy a HAR application on a TPC device. In particular, the application
is an implementation of a novel algorithm, Anytime Support Vector Machines
(ASVM), that is an anytime algorithm based on Support Vector Machines.
This algorithm needs a preliminary training phase to work properly: the goal
of this phase is to find the optimal values for a set of parameters that will be
used in the inference phase.
The training phase of ASVM is not different from the training of a normal SVM
model: for further technical details about it, see Section 5.3.1. On the other
hand, the inference phase is dissimilar from the inference on traditional SVM.
We will analyzed the theoretical properties of the inference we are proposing in

84 CHAPTER 6. PROTOTYPING

Chapter 9.
The way classification is carried out in ASVM is shown in Figure 6.1. The idea
of the algorithm is to compute the features one by one and to use the features
to adjust the classification as soon as they are available. This kind of approach
has the advantage that it becomes easy to cope with power failures: as a mat-
ter of fact, whenever a power failure happens there is already a partial result
is available. Moreover, the partial result has made use of the highest possible
amount of features that could be computed with the power available so far.

Figure 6.1: Inference in ASVM

6.3.1 Pseudocode

In this section we will show the pseudocode of the algorithm (Algorithm 1), to
explain in further details how it works.
First of all, the device waits for the accelerometer to produce enough samples
to fill an entire window, let ut say M.
Each raw sample contains N measures, that are the acceleration and optionally
the angular velocities along the three axes.
The algorithm maintains a data structure to store NM numbers, that is to say
the last M samples it received.
We will refer to this data structure as a window. When the first window has
been filled, the very classification begins.
The algorithm iterates over the N dimensions of the raw data, and for each di-
mension it does extract a number of features. Each time a feature is extracted,
it is immediately used to update the partial classification that is being com-
puted. Let us have a look at the main functionalities of the algorithm. In rows
1 to 9, we declare the variables that will be used in the rest of the code.
The while loop from line 10 to line 13 is necessary to pile up enough samples
when the algorithm starts: as a matter of fact, it is necessary to have at least
one full window to extract the features from the raw samples measured during

6.3. IMPLEMENTATION 85

Algorithm 1 Human Activity Recognition with ASVM

1: numberOfSamplesReceived← 0
2: windowWithSamplesToProcess← initializeWindowOfSamples()
3: currentWindow ← NULL
4: currentBodyWindow ← NULL
5: feature← NULL
6: classification← NULL
7: gradientOfBodyA← NULL
8: bodyMagnitude← NULL
9: gradientMagnitude← NULL

10: while numberOfSamplesReceived < SIZE OF WINDOW do
11: numberOfSamplesReceived← numberOfSamplesReceived+ 1
12: receiveAndEnqueueSample(windowWithSamplesToProcess)
13: end while
14: while true do
15: while ¬ newSampleAvailable() do
16: wait()
17: end while
18: receiveAndEnqueueSample(windowWithSamplesToProcess)
19: for all dimension in DimensionsOfRawSample do
20: currentWindow ← windowWithSamplesToProcess[dimension]
21: currentWindow ← applyMedianFilter(currentWindow)
22: currentWindow ← applyLowPassFilter(currentWindow)
23: currentBodyWindow ←separateBodyFromGravity(currentWindow)
24: for all procedureToExtractFeature do
25: feature←procedureToExtractFeature(currentBodyWindow)
26: classification← updateClassification(classification, feature)
27: end for
28: gradientOfBodyA←deriveWindow(currentBodyWindow)
29: for all procedureToExtractFeature do
30: feature←procedureToExtractFeature(gradientOfBodyA)
31: classification← updateClassification(classification, feature)
32: end for
33: end for
34: bodyMagnitude←computeMagnitude(currentBodyWindow)
35: for all procedureToExtractFeature do
36: feature←procedureToExtractFeature(bodyMagnitude)
37: classification← updateClassification(classification, feature)
38: end for
39: gradientMagnitude←computeMagnitude(currentBodyWindow)
40: for all procedureToExtractFeature do
41: feature←procedureToExtractFeature(gradientMagnitude)
42: classification← updateClassification(classification, feature)
43: end for
44: end while

86 CHAPTER 6. PROTOTYPING

a meaningful time interval.
Each iteration of the while loop from line 14 to line 44 is used to process a new
data window when a new sample arrives.
raw samples are multidimensional, as they are composed by acceleration on
three axes. Loop at lie 19 is used to iterate over all the dimensions of raw sam-
ples.
Rows 20 to 23 are used to preprocess raw samples, by applying digital filters to
remove noise and to separate the gravity acceleration from the body accelera-
tion.
Loop at line 24 iterates over all the procedures to extract the features from a
window (eg. min, max, average): for each procedure, the corresponding feature
is extracted and immediately included in the classification. At row 28, the signal
is derived, and in rows 29 to 31 the features of the derivative are computed.
At rows 34 to 38, the application extracts the features from the L2 norm of
the multidimensional raw signal and uses them in the classification. At rows 39
to 43, the L2 norm is derived and the features of its derivative are extracted
and used. The most important observation is that the goal of almost all the
instructions is to extract new features and to use them. The fixed cost to pay
independently from the number of features used is very low, so using ASVM
potentially affects the majority of the instructions: in other words, ASVM is
effective at its maximum in this code.

6.3.2 Implementation Details

In this section we will show the technical solutions that we have developed to
address the requirements listed in Section 6.2. Each solution will be presented
in detail, and we will discuss why it is useful to mitigate the effects of the
corresponding problem.

• Fixed point representation of numbers: embedded devices do not always
have a Floating Point Unit (FPU). Therefore, operations that involve
numbers represented using a floating point notations take much longer to
execute because they need to be emulated in software [20n]. Therefore, it is
better to represent numbers using a fixed point notation. In the evaluation
section we will present our experimental results, that demonstrate that
using fixed point numbers it is possible to obtain a speedup greater than
8x. This optimization impacts the computation time needed to run the
application, and it does take place in all the points of the code.

• No kernel trick: TPC devices have poor performances in terms of com-
putational power and memory availability. As a consequence, it is nec-
essary to cut down the memory consumption of the application as much
as possible. Using a simple linear model, without projecting vectors in
a higher-dimensional space using the kernel trick can greatly help in this
sense.

6.4. CORRECTNESS ASSESSMENT 87

As a matter of fact, the memory consumption of a linear model is

O(ncnd)

where nc is the number of classes and nd is the number of dimensions of
the space of the samples. This is a major improvement with respect to
the memory consumption of a model that makes use of the kernel trick,
that is

O(nsvncnd)

where nsv is the number of support vectors related to a specific class.
Using a linear model does without projection does also help speeding up
the inference phase: the time necessary to classify a sample is

O(ncnd)

compared to

O(nsvncnd)

when the kernel trick is used. In conclusion, not using the kernel trick
helps solving both the problem of time and the problem of memory.

• Computation of features: when a new measure is gathered from the ac-
celerometer, it becomes necessary to extract a set of features from the
window composed by the last N samples (see Algorithm 1). The compu-
tation of the features may be very expensive, and scale with the dimension
of the window. For example, the time T needed to compute the mean value
of the window scales with the size N of the window as

T = O(N)

This behaviour can be problematic especially for some features to extract:
for example, the standard deviation is more costly to extract than the
mean. In particular, our tests, documented in the next chapters, show
that trivial implementations may make impossible for the application to
meet the time constraint declared in Section 6.2. Therefore, the algorithm
carries out the computation of some features in an iterative way. Viz., the
feature of the window defined by the arrival of sample T is computed
starting from the same feature at time T-1. This feature helps in reducing
the computation time of the application. For reasons of efficiency, we
selected 140 features for the implementation among the 561 available.

6.4 Correctness Assessment

Some of the details of the implementation, listed in the previous Section 6.3.2,
could hinder the correctness or the performance of the application. In par-
ticular, implementing from scratch digital filters and SVM is an error-prone

88 CHAPTER 6. PROTOTYPING

process. The same consideration is true for the utilization of fixed point num-
bers. Moreover, fixed point numbers could create a source of error other than
the physiological approximation introduced by ASVM.
As a consequence, it is very important to

1. Test the correctness of the implementation

2. Measure the inaccuracy introduced by fixed point representation of num-
bers.

To carry out these tasks we created a Python program, functionally equivalent
to the C firmware, and we compared the outputs of the two programs using
different error metrics. In particular, we fed them with the same input and we
measured the distance from their outputs.
We can safely assume that the Python implementation is correct because it was
implemented using libraries from the widely used scipy package [20m]. Our im-
plementation can be freely accessed [20p]. We wanted to discover how far are
the results produced by our algorithm from the ones produced by the reference
implementation.
To carry out this comparison, we have measured the distance between the vari-
ables in our algorithm with their corresponding doppelganger in the reference
implementation. We wanted to discover two things: the maximum error that
that the C implementation of our algorithm can make, and whether it produces
results that are coherent with the Python implementation or not.
To understand the requirements of a meaningful distance we need to take into
account the values of the variables themselves. Figure 6.2 shows the mean ab-
solute value of some of the main intermediate variables of the algorithm.
The mean absolute values are distributed along more than three orders of mag-

Figure 6.2: Variables and associated metrics

nitude, so we cannot choose an absolute distance: the metric that we choose has
to be scaled according to the order of magnitude of the variables themselves.
Moreover, the sign of the variables is not constant, so we cannot use some class
of metrics that rely on the assumption that the quantities to measure are con-
cordant, such as Mean Percentage Error [Hil03].
We have used Mean Absolute Percentage Error [20r], a metric that is scaled and
works independently from the sign of the points to measure.

6.4. CORRECTNESS ASSESSMENT 89

Given a set of vectors
xi = [xi1, xi2..xin]

MAPE is defined as

MAPE(xi,xj) =
1

n

n∑
k=1

|xik − xjk|
|xik|

We used this metric to detect the situations where the actual variable is far
from the expected value.
However, pure MAPE can create errors when numbers are represented using
fixed point notation. As a matter of fact, representing a number x using fixed
point notation with I integer bits and D decimal bits can create an error ε bound
by

|ε| < 2−D if |x| < 2I

let us consider the situation when we have two numbers xi and xj , whose rep-
resentations with fixed point notation are xi ± εi and xj ± εj . Let us compute
the error on the MAPE. MAPE is obtained from the original numbers by per-
forming an addition and a division. Absolute errors sum up for additions, so
the absolute error εij of xi + xj is

εij = εi + εj

for divisions and multiplications, relative errors sum up. So the relative error
εrMAPE is

εrMAPE =
εij

xi − xj
+
εi
xi

εrMAPE can become huge, for example, when εi is comparable to xi, that is to
say when

|xi| ≈ εi < 2−D

In this situation MAPE becomes useless. So, we took into account this situation
by ignoring all the quantities whose absolute value is below a threshold that we
set to 2−D+3 after some experimental tuning.
Once we made this distinction, we can freely and consistently use MAPE to
detect in our code the situations when a variable is too far away from its expected
value.
Column ”MAPE” of Figure 6.2 shows adjusted MAPE of the main variables
in the code after the correction we have explained in the previous paragraph.
After having shown that the maximum error done by the C implementation
compared with the Python implementation is small in absolute terms, we are
also interested in discovering whether it is random or the values of C variables
are consistently below or above their Python twins.
We carried out this test using the following steps.
First of all, we have computed the differences between the C value and the
Pyehon value of the variables listed in Figure 6.2.
Let ait be the actual value (the value in the C implementation) of variable i at the

90 CHAPTER 6. PROTOTYPING

time step t in our algorithm. Let eit be its value in the Python implementation,
that is to say its expected value in the algorithm. Let

dit = ait − eit

be the difference between the actual value and the expected value. Let

di = [di1, di2..diT]

be the vector of the values of the difference. Our thesis is that

di ← N(0, σ2)

We have carried out this investigation in two steps: first of all we performed a
Pearson test on all the di, rejecting the null hypothesis of normally distributed
samples when the p-value was below 0.01.
Then, we discarded the variables whose di is not normally distributed, and we
applied a t-test in the remaining ones, testing the null hypothesis that the mean
of the population is zero.
Column ”p-value” of Figure 6.2 shows the p-values of this test, when applicable.
For ”bodymag” and ”lowpassed” there is strong evidence to say that the mean
of di is zero. This is not true in the case of ”body”. In conclusion, we can say
that the results produced by our implementation are extremely close to the ones
produced by the reference implementation. Moreover, we can say that for most
variables the results of our implementation are consistently not below or above
the corresponding number in the reference implementation.

6.4.1 Enforcing correctness

We have enforced the correctness of the code by running tests during the exe-
cution of the application.
In particular, we included a test stage during the pipeline to compile the firmware
for MSP430: the stage consisted in generating and executing a special firmware,
that included assertions to prevent us from testing bugged firmwares.
The tests were structured as follows: we included in the code the expected
values of several intermediate variables extracted from the Python implemen-
tation. The firmware tested for each of these values that the corresponding
variable computed by the C program was close enough (MAPE <15%).
These tests were removed in the version of the firmware we used to measure the
performance of the application.

Chapter 7

Evaluation

7.1 Abstract

In this chapter, we will present how we measured on the field the performance of
ASVM, our proof of concept application, shown in Chapter 6. We have demon-
strated that it is correct, so we can now gather scientifically sound measures on
its performance.
Our goal is to carry out a simulation of how ASVM behaves in realistic scenar-
ios, in terms of timeliness, energy consumption and accuracy of the result. To
simulate realistic energy conditions, we will use as input the voltage traces used
for the evaluation of EPIC [Ahm+19].
The logical tools that we need to set up an experimental procedure are summa-
rized in 7.1. They are:

1. A mapping from the energy that is available in the environment to the
number of clock cycles that can be afforded consuming that energy. This
mapping has been widely investigated in the literature, for example in
EPIC [Ahm+19], so we will use an existing solution for this step.

2. A mapping from the number of clock cycles that can be invested in a
computation to the number of features that can be used without exceeding
that number. We constructed this mapping by emulating our application
on an MSP430 board, using MSPSim [20o]. The details of this step are
given in Section 7.3.2.

3. A mapping from the number of features used to the accuracy of the clas-
sifications that are emitted. We have computed analytically this mapping
in the previous Chapter 5.

Each tool will enable one step towards the quantification of the performance of
our application. We have measured the accuracy, the timeliness and the energy
cost to pay, both on ASVM and, using the same experimental procedure, on an
application that makes use of a state-of-the-art technique, namely checkpoints,

91

92 CHAPTER 7. EVALUATION

STEP 1: emulator

ENERGY

ACTUAL ACCURACY

STEP 2: MSPSim

STEP 3: probabilistic model

NUMBER OF CLOCK CYCLES

NUMBER OF
 FEATURES

Figure 7.1: Experimental setup

to address the problems of TPC.
ASVM obtained energy savings of up to 41%, with accuracy losses always lower
than 20%. This comparison allows us to understand that our solution emits
results consistently in advance with respect to the checkpoint-based solution,
up to 10s. Further details about this dimension are given in the rest of the
section.
Operatively, the chapter is structured as follows. Step 1 requires a mapping
from the energy available to the number of clock cycles that can be afforded. We
computed this mapping by using a simulator developed by Bertani: the details
of this first step are given in Section 7.3.2. Step 2 requires an implementation of
our application for a microcontroller. We have developed such implementation
in the form of a C program. This implementation introduces potential sources
of error, both due to human errors and to several implementation details that
are necessary to fit the application on a microcontroller. Therefore, we have
thoroughly tested the program, as explained in the first part of Chapter 6.
We have also measured empirically the accuracy of the analysis of the algorithm

presented in Section 9. At this point, we will have all the building blocks of the
evaluation procedure. So, we will apply the evaluation procedure to understand
the behaviour of our solution both in absolute terms and compared to a state-
of-the-art solution. In the last part of the chapter, we will present the metrics
obtained by our application and by the state-of-the-art application.

7.2. ACCURACY OF THE ANALYSIS OF THE ALGORITHM 93

7.2 Accuracy of the Analysis of the Algorithm

In this section, we will explain how we measured the accuracy of the analysis
of the algorithm that we carried out in Section 9. We will present different
classification problems that we will solve using Anytime Support Vector Ma-
chines (ASVM). For each classification problem, we will compare the expected
performance computed using the probabilistic model of the algorithm with the
actual, experimentally measured performance.
We computed these experiments using two different datasets to make the test
more sound from a scientific point of view. Had we used a single dataset, one
could have objected that it is by chance or lucky guess that our prediction for
the accuracy matches the real measured value: using two different datasets, this
objection becomes much weaker.

7.2.1 Datasets

The first dataset that we have used is Human Activity Recognition Using Smart-
phones Data Set [Ang+13], from now on Dataset D1. For an accurate descrip-
tion of the features of the dataset, see Section 5.5.1: in this paragraph, we will
summarize the main aspects of the dataset.
The dataset is the result of an important preprocessing operation performed on
raw data gathered using smartphone accelerometers. Raw data have 6 dimen-
sions, while the final dataset has 561. This is important because it means there
are 561 precision levels in the algorithm. To have an idea of what it means,
precision scaling has as many precision levels as the number of bits used to
represent numbers, that is to say 16 or 32, on microcontrollers, while function
perforation has as many precision levels as the number of function calls in an
application (in the case of our algorithm, more than 5000). So, ASVM is a
technique quite flexible, and this feature is very useful, as we have shown in
Figure 5.1.
We have also used another dataset, from now on D2, namely WISDMActv1.1
[20s]. This dataset has been analyzed by Kwapisz et al. [KWM11], who used
Long-Short Term Memory Recurrent Neural Networks to perform human activ-
ity recognition.
This dataset is composed by 46 features, that are computed from 6-dimensional
data points sampled at a frequency of 20 Hz.
To obtain results that are comparable to the ones of the first dataset, we have
used the raw data of the second dataset and applied the same preprocessing
steps, obtaining again a dataset composed by 561 features.
As we mentioned in Chapter 6, we selected 140 features for the implementation.

7.2.2 Four Cases

In the following four sections, we will present the result of tests on the field of
the accuracy of the analysis of ASVM that we will detail in Chapter 9. Each
section is dedicated to one of the four variations of the analysis. All the sections

94 CHAPTER 7. EVALUATION

Figure 7.2: Covariance matrix of processed dataset N1.

are structured in a similar way. First of all, we have cleaned the data: in case
of binary classification, we selected only samples from two classes, and excluded
the other ones, while in the case of independent coefficients we projected the
points using PCA, to prevent correlation from different features.
The results of the analyses are presented in the same way, by means of graphs.
One such graph is shown in Figure 7.4. Each point on the graph represents a
classification. Let P=(x,y) be a point on the curve. Its coordinate x represents
the number of features used for the corresponding classification, while y repre-
sents the accuracy of the classification itself.
There are two curves, one labelled as ”expected” and the other labelled as ”mea-
sured”. The former represents the accuracy expected by the probabilistic model
of the algorithm, while the latter represents the accuracy of the model measured
experimentally on a dataset, either D1 or D2 according to the situation.
The closer are the curves, the better is our probabilistic explanation. We have
also computed the Mean Square Error between the curves, to summarize in a
single number the goodness of our forecast.

Binary Classification, Independent Coefficients

The first test we carried out was the scenario when the data samples have to be
classified in just two classes, and the coefficients of a sample are independent
from one another.

Figure 7.2 shows that these hypotheses do not hold true for the datasets in
question. The figure displays the covariance matrix of N1. The precise numeric
values are not important in this context: it is enough to observe that the co-
variance between the features of the dataset is not zero even outside the main
diagonal. Moreover, the dataset contains samples that are labelled in six differ-
ent ways.
Therefore, we projected the points in the dataset using Principal Components
Ananlysis (PCA) to uphold with the hypotheses of this version of the algorithm.

7.2. ACCURACY OF THE ANALYSIS OF THE ALGORITHM 95

To obtain a binary classification problem, we compared the classes pairwise.
As for the independence of the coefficients, we have projected data using PCA
[FRS01]. This technique allows adjusting the coordinate system of an arbitrary
dataset into a coordinate system that offers interesting guarantees.
The most important property is that the variance of the points is maximized
along the new dimensions, and the covariance between the dimensions becomes
zero [20q]. Figure 7.3 shows graphically the effect of PCA on a simple dataset.
We have applied our algorithm on the projected dataset N1, keeping only the

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

3

Figure 7.3: PCA applied to a simple dataset

samples labelled as running or walking, the two most numerous classes, obtain-
ing the result in Figure 7.4 The Mean Square Error is 0.0017. From Figure 7.4
one can observe a very steep increase in the accuracy when the first features
are used. As a matter of fact, walking and running can be easily distinguished.
Therefore, we repeated the test classifying the activities WALKING UPSTAIRS
and WALKING DOWNSTAIRS, that is the single pair where it is easier to make
confusion [Moh16]. We carried out another test, using dataset D2. As we have
explained before, using two distinct datasets makes our tests more solid. The
output of the second test is shown in Figure 7.5. It is possible to observe that
both the predicted accuracy and the actual accuracy struggle to reach a satis-
fying performance level.
Looking at the curves, we can observe that they are close to one another. To
quantify their proximity, we computed the MSE between the corresponding
point in the curves: MSE is 0.0022. This means that the RMSE is around
0.04, which is an estimate of the error of our forecast with respect to the actual
behaviour.

Multiclass Classification, Independent Coefficients

In this section, we will present the outputs of the tests of the second version of
the algorithm. It is different from the first one that we have tested in Section

96 CHAPTER 7. EVALUATION

0 20 40 60 80

Principal components used for classification
0.0

0.2

0.4

0.6

0.8

1.0

Expected validation accuracy
Measured validation accuracy

Figure 7.4: Accuracy of classification WALKING/RUNNING

7.2.2 because the data points have again independent coordinates, but they are
classified along multiple classes.
One consequence of this aspect is that our model is more costly to compute. In
particular, the expected accuracy can be computed using Equation 9.1, that is
an N-dimensional integral, where N is the number of classes. Multidimensional
integration is a hard problem, where it is extremely challenging to reach triple-
digit accuracy when the number of dimensions is above 7, and where even the
integration with 3 to 7 dimensions is very costly [Coo02].

As a consequence, we did not compute the expected accuracy for all the
principal components, but only for 20 equally spaced points. We have observed
that this number is representative of the shape and the value of the function.
Figure 7.6 shows the expected accuracy and the observed accuracy for the 6-
class classification of the samples of Dataset D1. It is possible to notice that the
prediction is less accurate than the previous case. This happens because of the
numerical approximation of the integration that is involved in the computation,
that we decided to perform using the trapezium rule on a sparse grid of points.
This perception is confirmed by the MSE, that is higher than the previous case:
in this case, it is 0.0026. In absolute terms the prediction remains good, as
RMSE is 0.051, that is to say around 5% of the value to predict.

7.2. ACCURACY OF THE ANALYSIS OF THE ALGORITHM 97

0 20 40 60 80 10
0

Principal components used for classification

0.0

0.2

0.4

0.6

0.8

1.0

Expected validation accuracy
Measured validation accuracy

Figure 7.5: Accuracy of classification WALKING UPSTAIRS/WALKING
DOWNSTAIRS

Binary Classification, Correlated Coefficients

As anticipated in Section 5.4.1, this specific version of the algorithm has not
been analyzed from a theoretical point of view. The reason is that it is a less
general version of the algorithm commented in Section 9.2.1 the situation when
there are multiple classes, and the features are correlated.
Although the situation in question is not thrilling from a theoretical point of
view, this scenario is a nice opportunity to visualize and explain some curious
behaviours that we can observe experimentally.
In particular, we will plot the curve of the accuracy as a function of the number
of features used, and explain some interesting details in the shape of the curve.
We do not need a real dataset for this analysis: we generated a random covari-
ance matrix to have control on its shape. The matrix is shown in Figure 7.8:
the precise values of the covariance matrix are not important, it is sufficient to
observe that it is not diagonal, and so the features of the dataset are correlated.
We have used this covariance matrix in Figure 7.8to compute the expected ac-
curacy as a function of the number of features used for the classification. This
quantity is showed in Figure 7.9.

Figure 7.9 shows the probability that a partial classification is coherent with
the final classification when the number of features used for the classification
increases. It is possible to notice three interesting features of the function:

98 CHAPTER 7. EVALUATION

0 20 40 60 80

Principal components used for classification
0.0

0.2

0.4

0.6

0.8

1.0

Expected validation accuracy
Measured validation accuracy

Figure 7.6: Accuracy of multiclass classification on D1

• The function’s value is 0.5 when no feature is used: this makes sense
because if a point is classified using no features it is necessary to purely
guess at the class it belongs to. As there are only to classes, the probability
of being right is 0.5

• The function’s value is 1 when all the features are used: similarly, when a
partial classification is computed using all the features it is by definition
identical to the final classification. Therefore, the probability that these
two numbers are identical is 1 as well.

• The function is generally increasing: when a feature is included in the
computation of the partial classification, two things happen. First of all,
it gives its contribution to the partial classification, either increasing or
decreasing it. Second, the variability of the set of features that have not
been used yet decreases. Intuitively, the information contained in the fea-
ture is moved from the possible future corrections to the deterministic
present classification.

As a consequence of the third point, the probability that a partial classification
remains coherent with the final one does increase as more and more features are
used, apart for some random oscillation like the one highlighted by the circle.
We will now provide an explanation for this kind of apparently incoherent be-
haviour: we will also provide a toy example to confirm our explanation. The

7.2. ACCURACY OF THE ANALYSIS OF THE ALGORITHM 99

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Number of features used for the classification

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775 Expected coherency

Figure 7.7: Expected coherency of classification in a peculiar case. The graph
is zoomed from clarity

intuitive description of the situation is this one: there is a certain number N of
features, where the first and the last N

3 ones contribute positively to the classifi-

cation and the N
3 in the middle contribute negatively. Under these conditions, a

typical sample will have its distance from the classification hyperplane initially
increased, then decreased and finally increased again. Therefore, it will be more
likely to have a positive distance from the hyperplane when the features in the
middle have not given their contribution yet.
This situation can be quantified using the following covariance matrix.

 10 −10 10
−10 15 −10
10 −10 20

this matrix is symmetric and Positive Semidefinite, so it is a valid covariance
matrix. In this situation, the probability of obtaining a coherent classification
is shown in Figure 7.7 In conclusion, it is possible that the inclusion of an addi-
tional feature lowers the probability of obtaining a coherent classification. We
have this way provided an explanation for the only counterintuitive phenomenon
that it is possible to observe empirically in our experimental setup.

100 CHAPTER 7. EVALUATION

Figure 7.8: Random covariance matrix

Multiclass Classification, Correlated Coefficients

The testing of the version of the algorithm that tackles the situation of mul-
ticlass classification when the features are correlated will be carried out in a
future work.
The scope of this work is to develop an application that makes use of AC tech-
niques in a TPC context. We want to reach this goal in the leanest possible way:
our objective is to demonstrate the feasibility of our project, without necessarily
developing a complete and perfect system.
In the next section, we will measure on the field the performance of the algo-
rithm.

7.3 Experimental Setup

In the previous Section 7.2, we have measured the accuracy with which our
probabilistic description of ASVM provided in Section 9 describes the actual
behaviour that can be observed with a real dataset.
Now, we can measure the performance of the entire application, to finally prove
that ACTs can be applied fruitfully in TPC contexts.
The goal of this section is to describe what are the metrics that we have decided
to measure, and the procedure we followed to measure them. In particular,

7.3. EXPERIMENTAL SETUP 101

0 10 20 30 40 50 60 70 80

Features used for classification
0.0

0.2

0.4

0.6

0.8

1.0

Expected coherency

Figure 7.9: Copy of Figure 5.7. Expected coherency of binary classification of
points with correlated features. Highlighted an oscillation.

we are interested in quantifying the timeliness, the power consumption and the
accuracy of ASVM, and to compare ASVM’s metrics with the metrics scored
by a state-of-the-art application, based on checkpoints.
In Section 7.3.1, we will present the metrics that quantify the inputs and the
outputs of the experiment, while in Section 7.3.2 we will describe the procedure
that we used to measure these metrics. The procedure is composed by three
steps: obtaining a mapping from the energy that is available to the affordable
clock cycles, then a mapping from the available clock cycles to the number of
features that can be used, and finally a mapping from the number of features
to the expected accuracy of classifications.

102 CHAPTER 7. EVALUATION

7.3.1 Metrics

Our experiment consists in feeding an emulated MSP430 microcontroller with
a voltage trace, to measure the number of clock cycles that are available for
each classification, and from the number of clock cycles computing the accuracy
of the classifications emitted using that particular voltage trace. We will also
measure the timeliness of the classifications, compared to the timeliness of a
checkpoint-based solution.
At the beginning of this Chapter 7, we have described the logical steps that
compose the evaluation procedure. Now, we will describe the inputs and the
outputs of this procedure, and then we will show the results that we have ob-
tained when we have fed these inputs in the experiment.
The primary goal of Approximate Computing Techniques (ACTs) is to give de-
velopers the possibility to reduce the quality of the result produced by programs
to lower the cost necessary to produce them.
In Chapter 4 we have discussed why the way approximate computing is tradi-
tionally applied does not meet the requirements of TPC contexts, and we have
proposed a new paradigm. The goal of AC, when applied in TPC scenarios,
must be to maximize the quality of the result produced by applications with
the resources they can consume.
We have also highlighted that the key to follow this process is to formalize two
functions, that is to say, an objective function that encompasses what is qual-
ity for the program that is being approximated, and a constraint function that
represents the resources that can be consumed to obtain the result.
In this section we will propose the functions that represent cost and quality in
the specific case of our algorithm ASVM.

Output 1: Accuracy

The primary goal of HAR is to correctly recognize the human activity that is
being performed. In several influential papers in the field [YWC08][Ang+12a]
accuracy is preferred to recall because in this domain the consequences of false
negatives are not serious. We will follow this line of reasoning, using accuracy
as well.
The goal of the application is to maximize the accuracy of the classification it
produces. In Chapter 5 we have proven that the accuracy of the results produced
by our algorithm is connected to the degree the computation is carried out, and
we have quantified this bond. So, we have a precise method to map each state
of the algorithm to the accuracy of the classification it is expected to produce:
in other words, we can precisely measure this metric.

Output 2: Timeliness

An important aspect of TPC applications is that the concept of time works
differently than in traditional, continuously powered scenarios. This problem
has been highlighted for example in Mayfly [HSS17] and InK [Yun+18].

7.3. EXPERIMENTAL SETUP 103

The risk of TPC application is that they may process old data without knowing
that they have been gathered a long time ago, and so they may have become
outdated and useless.
Therefore, it is important to understand how does a TPC application deal with
the problem of time. Our algorithm tackles this issue in a very straightforward
manner: it yields classifications as soon as they are ready, or when the device
is going to shut down.
As a consequence, by definition, it does not process samples that have been
gathered long ago in time. However, this qualitative description is not satisfying:
we need to quantify it somehow.
This property is the key benefit of our work: our contribution is a technique
to use the scarce resources available in TPC in a smart way, avoiding that
computation batches pile up because producing accurate results is too costly.
On the contrary, quickly emitting reasonable results allows our application to
run smoothly.

Output 3: Consumed Energy

One of the primary goals of our work is to exploit all the available energy in an
efficient way. Therefore, we are interested in discovering how much energy has
been consumed by the application. However, in this context, we do not really
need the amount in Joule, because this number would be highly dependent on
the underlying hardware. To give a more precise and meaningful indication
we will measure the number of clock cycles that are necessary to complete the
execution of the application. This number is a proxy of the amount of energy
consumed, but at the same time, it can be compared with other boards that
need to share only the same instruction set and not the entire hardware setting.

Input: Available Energy

given that there are enough memory and computational power, in TPC con-
texts, the single scarce resource that limits the execution of applications is the
amount of energy that is made available by the environment.
Therefore, the constraint our application is subject to is that is must not con-
sume more energy than the one actually available.
We have enforced this constraint using a simulator that mimics the physical
behaviour of msp430-x boards, including their energy consumption. So, we can
make sure our algorithm does not exceed the consumption it can afford.
To simulate realistic behaviour, we have used real voltage traces measured by
physical energy harvesters to power up the emulated device. The traces are
taken from EPIC [Ahm+19].
Each trace represents the power produced by a different energy harvester: the
traces have different variability and characteristic frequencies according to the
power source they are gathered from.

104 CHAPTER 7. EVALUATION

7.3.2 Procedure

To measure the metrics listed in the previous Section 7.3, we have set up an
experimental procedure to guarantees accuracy and repeatability. The experi-
mental setup is shown in Figure 7.1. The steps are the ones that we introduced
at the beginning of this Chapter 7: the first step consists in measuring the num-
ber of clock cycles that can be invested in a classification when a given voltage
trace is available. The second one is mapping the number of clock cycles to the
number of features that are available. The third and last step is mapping the
number of available features to the accuracy of classifications. The next three
sections are dedicated to these steps.

Step 1: Simulator

Our colleague Francesco Bertani developed a simulator that is able to compute
the time intervals during which a MCU remains turned on when a given volt-
age trace is available. Moreover, it returns the number of clock cycles that are
available during each time interval. So, we fed the voltage traces described in
Section 7.3.1, and we measured the corresponding on intervals and clock cycles
availability.
The Simulator models the MCU using a capacitor that stores energy, connected
to a voltage generator that represents the energy harvester and to a current
generator that drains current from the capacitor, which represents the micro-
controller.
The microcontroller drains away current when there is some workload to per-
form. In particular, accelerometer samples arrive at a constant rate, and each
one adds a constant amount of clock cycles to handle.
In our approximate and ASVM based simulation, the workload is brought to
zero every time the device experiences a power failure: this behaviour represents
the fact that computation is interrupted by power failures and classification are
immediately emitted, coherently with the behaviour illustrated in Figure 6.1.
Figure 7.10 (also in the introduction, copied here for clarity) shows how the
simulation works. Sample 1 arrives to the application, and the device can spend
all the time necessary to compute and use all the features of the sample. On
the contrary, a power failure takes place while sample 2 is being processed. As
a consequence, the application cannot invest in the classification of Sample 2 all
the clock cycles that would be necessary to compute and use all its features.
We have decided to compare our solution with a solution based on checkpoints.

For a technical description of checkpoint based solution see Section 2.6.1: the
general idea is to store the state of the computation is case a power failure oc-
curs. In these cases, a fixed amount of clock cycles is added to the workload:
this represents the clock cycles spent to save the state of the computation to
persistent memory.
This different behaviour has three main effects on the evaluation metrics. First
of all, every sample is classified in the best possible way, computing and using
all its feature: in other words, checkpoint-based solution reach the best possible

7.3. EXPERIMENTAL SETUP 105

TIME[S]

SAMPLE 1 SAMPLE 2

TIME ACTUALLY SPENT

TIME NECESSARY FOR COMPLETE CLASSIFICATION

100% accuracy x<100% accuracy

POWER
FAILURE

Figure 7.10: A complete classification and an incomplete classification

accuracy. Second, a certain amount of clock cycles is spent in saving and restor-
ing the checkpoint, so this kind of solution has an overhead in terms of energy
cost. Finally, the moment when classifications are emitted can be far away in
time in case the board remains off for a long time interval.
We have measured the extra consumption and the delay paid by a checkpoint
based solution by executing it in the same scenarios of our algorithm. These
metrics will be shown in the following Section 7.3.3.

Step 2: MSPSim

The goal of the second step of the experiment is to understand how many fea-
tures can be used when a given number of clock cycles is available. We have
decided to perform this measurement using a simulation, for one main reason.
The goal of this work is to demonstrate the feasibility and the usefulness of
applying ACTs in a TPC context. To reach this objective, we do not need to
craft a physical prototype: a simulated environment allows us to measure all
the metrics we need, more precisely and with less interference than a physical
experiment, and in a replicable way.
The simulation make it easy to measure arbitrary metrics about what is hap-
pening without interfering with the phenomena we are interested in. We carried
out the simulation using MSPSim [20o]. MSPSim is a Java-based instruction
level emulator of the MSP430 series microcontroller (MCU).
There are two motivations that make MSPSim particularly suited to our needs.
First of all, MSP430 MCU are extremely low power [19o], and so they are often
used in TPC applications. As a consequence, this simulator reproduces the be-
haviour of our algorithm on a device that could realistically be used for actual

106 CHAPTER 7. EVALUATION

deployment.
Moreover, MSPSim is open source and widely contributed. The fact it is open
source makes it possible to detect its flaws and to objectively assess the cor-
rectness of our simulation, and this would be impossible with a proprietary
simulator. The fact it is a participated project makes it real that people con-
tribute and correct its bugs.
To use MSPSim, one must compile normal C programs using MSP430 toolchain,
and feed the compiled program to the emulator. MSPSim runs it, and provides
several metrics about the execution.
In particular, it measures the number of clock cycles spent by the application
in each function and for the overall execution.
To obtain the map from the number of cycles to the number of features that can
be used, we used the following procedure. Let us consider the situation when we
need to discover the number N of features that can be used when C clock cycles
are available. Initially, we make a guess on N, let us say N1. Then, we run a
modified version of the algorithm that is forced to terminate after it has used
N1 features, and we measure the number C1 it took to execute this computa-
tion. We repeat this procedure for all the values Ni of the number of features to
use, and we obtain the function that maps the number of features used into the
cost in clock cycles to obtain them. At this point, we can invert this function
to obtain the map from the number of clock cycles to the number of features.
Figure 7.12 shows in a graphical way the procedure we have described here.
Now we have the tools to complete step 2 (see the beginning of this Chapter
7), that is to say, a mapping from the number of clock cycles to the number of
features that are available.

Step 3: Probabilistic Model

The final goal of the experiment is to measure the accuracy of the classifications
that can be produced by our algorithm in the situation when a certain amount
of energy is available over time.
So far we have obtained a map that allows us to understand how many features
will the algorithm be able to use given that a certain number of clock cycles
can be invested. This map has been obtained experimentally, following the
procedure described in the previous Section 7.3.2. Previously, we have obtained
a map from the number of features to the accuracy: we have computed it
theoretically in Section 5.4.1, and we have tested its correctness in Section 7.2.
Now, we can stack the maps to obtain a function from the number of clock cycles
invested to the expected accuracy of the classification that will be produced. The
accuracy of a classification is computed every time classifications are emitted:
when a classification is emitted because the algorithm has completely processed
it. In particular, the emulator checks the number of clock cycles that have
been spent for the classification, and infers the expected accuracy using the
function that maps the number of clock cycles invested in a classification to
the expected accuracy of the classification itself. The way we computed this

7.3. EXPERIMENTAL SETUP 107

function has been explained in the previous Section 7.3.2. Therefore, the emitted
classification will be based on the subset of features that have been computed:
the number of features that can be computed can be inferred from the first
step of the experimental environment explained in Section 7.3.2. The fact that
the classification is based on a subset of the features does negatively affect the
accuracy of the classification: in particular, the accuracy as a function of the
number of features used has been computed in Section 5.4.1.
The behaviour of this solution is shown in Figure 7.11 When a sample arrives,

TIME[S]

TIME SPENT FOR CLASSIFICATION OF ONE SAMPLE

TIME NECESSARY FOR COMPLETE CLASSIFICATION

DEVICE OFF

WORKLOAD FOR CHECKPOINT SAVING AND RESTORING

Figure 7.11: A checkpoint based solution

the algorithm starts to process it. When the energy available is too low, the
algorithm is interrupted and the device stores the state of the computation into
a checkpoint. After the checkpoint, the board remains off for a certain amount
of time. When the device resurrects, it restores the state of the computation
and then continues the classification. In the next section, we will illustrate the
results of the experiments whose setup we have described in this section and in
the previous three Sections.

7.3.3 Results

In this section, we will comment on the metrics that we measured executing our
algorithm in different scenarios characterized by different energy availability.
As explained in the previous Section 7.3.2, we have designed a simulation envi-
ronment where our application is executed in a way that is coherent with the
energy conditions that we describe by means of a voltage trace, that has been
measured once by a physical harvester and that we can arbitrarily replay.
This experimental setup allows us to measure the metrics listed in Section 7.3
relative to realistic executions.

108 CHAPTER 7. EVALUATION

0 20 40 60 80 10
0

12
0

14
0

Number of features

0

1

2

3

4

5

6

7

Nu
m

be
r o

f c
lo

ck
 c

yc
le

s [
1e

7]

1e7 Number of features/Number of cycles

Number of clock cycles necessary to use X features

Figure 7.12: Clock cycles necessary to use a given number of features

Clock cycles to Accuracy

As explained in Section 7.3.2, a fundamental part of the experiment consisted
in executing our algorithm using MSPSim, an emulator to reproduce the be-
haviour of embedded devices belonging to the MSP430 family [19o]. We used
the simulator to compute the cost of computing and using a given number of
features, for every number of features. The result we have measured is shown in
Figure 7.12. It is possible to notice several steps in the function: this happens
because one step of the algorithm is a Fast Fourier Transform (FFT) of the
window, that is a very costly operation that makes available a great number of
features immediately.
When it is necessary to compute the FFT of the window to obtain the subse-
quent feature, a huge number of clock cycles must be invested without immediate
return. We can invert the function shown in Figure 7.12 to obtain the number
of features that can be used for a classification as a function of the number of
clock cycles that are invested in the classification. This function is shown in
Figure 7.13. It is the function we called f in Section 7.3.2. This function can be
combined with the map from the number of features used for a classification to
the expected accuracy of the classification.
However, there is an implementation detail that is interesting to point out. As
we have highlighted in Section 7.2.2, there are situations when including an

7.3. EXPERIMENTAL SETUP 109

1 2 3 4 5 6 7

Number of clock cycles [1e7] 1e7

0

20

40

60

80

100

120

140

Nu
m

be
r o

f f
ea

tu
re

s
Number of cycles/Number of features

Number of features available
 when X clock cycles are invested

Figure 7.13: Features available as a function of the clock cycles invested

additional feature does not immediately improve the accuracy of a classifica-
tion. In these cases we can mitigate the effect of counterproductive features
by ignoring them. The practical effect of this choice is a transformation of the
function from the number of features used to the expected accuracy. We have
applied this correction in the test, as shown in Figure 7.14. This function and
the function from the number of clock cycles to the number of features can be
combined, to obtain the function from the number of clock cycles invested in a
classification to the expected accuracy of the classification itself. This function
is shown in Figure 7.15, for the case of a binary classification between points
labeled as running and points labeled as walking. This function is the final
output of the first step of the simulation: we can now use it to measure the
performance of our algorithm in the second step of the simulation.

Performance Metrics

In this section we will combine the results obtained so far to measure in a realistic
scenario the behaviour of our algorithm. As we have explained in Section 7.3.2,
the experimental procedure consists in simulating the execution of the algorithm
powering up the device used for the computation with a voltage trace measured
by a physical harvester.

Figure 7.16 shows the results of the final step of the evaluation. Each point
in the graph represents the result of an execution with a different voltage trace.
Let E=(x,y) be a point in the graph: x represents the cost of the execution,

110 CHAPTER 7. EVALUATION

0 20 40 60 80 10
0

12
0

14
0

Number of features

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

Number of Features/Accuracy

Adjusted Function
Unadjusted Function

Figure 7.14: Expected accuracy as a function of the number of features used

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Clock Cycles[1e6] 1e6

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Clock Cycles/Accuracy
Adjusted Function

Figure 7.15: Expected accuracy as a function of the number of clock cycles
invested

7.3. EXPERIMENTAL SETUP 111

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fraction of clock cycles

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy
Fraction of Clock Cycles/Accuracy

Figure 7.16: Cost/performance of ASVM

while y is the performance of the application during the execution.
The unit of measure of y is the average accuracy of the classifications it emitted
during the execution. The cost of the execution x is computed in the following
way:

x =
CA

CE

where CA is the number of clock cycles spent by the approximate version of the
application and CE is the number of clock cycles that would be spent by the
application in case no power failure occurred at all, i.e., in the situation when
all the classifications can be performed using all the features.
The interpretation of this graph is that the points on the top right of the graph
describe executions where on average the classifications that were emitted were
accurate and costly: when we move to the left, we meet cheaper classification,
that have lower accuracy. We can observe that our algorithm can produce sav-
ings up to 41%, while the performance degradation remains below 20%.
Another important observation is that we can observe points in the entire region
where x ∈ (0.5, 1). This means that independently from the context the appli-
cation was able to adapt to the amount of energy available, reaching the goal
of consuming the available resources in an optimal way. This is very important
because the very beginning of the work was to obtain a program that manages
resources in an optimal way (Section 1.2).
After having analysed the accuracy and the cost of the executions of our ap-

112 CHAPTER 7. EVALUATION

TIME[S]
DEVICE OFFDEVICE OFF

TIME[S]
DEVICE OFFDEVICE OFF

C1 C2

C1 C2

S1 S2

S1 S2

Checkpoints

ASVM

DELAY

Figure 7.17: Delay in classification

plication, let us focus on its timeliness. Let us have a look at Figure 7.17: the
two timelines show how our solution, labelled as ASVM, and the checkpoint-
based solution react to the same voltage trace. ASVM emits C1 immediately
before a power failure, and so it can immediately start processing S2 when it
arrives. On the other hand, when S2 arrives the checkpoint-based solution is
still processing S1. The fact that workloads propagate over power failures makes
the checkpoint-based solution systematically late with respect to ASVM. Each
classification emitted by the checkpoint-based solution has a certain delay (at
least 0) with respect to the corresponding classification emitted by ASVM. We
are interested in the distribution of the delays according to the voltage trace.
The second graph that summarizes the results of our work is shown in Figure
7.18. Each subplot shows the distribution of the delays during an execution,
associated to a specific voltage trace.
We measured the delay using the inverse of the sampling frequency as a unit of
measure: in Figure 7.17, the delay would be slightly above 1.
Each graph is a histogram, that represents the distribution of the On the x
axis there is the delay of classifications, while on y axis there is the number of
classifications that suffered from that delay: for example, in trace 0 there are
around 150 samples with a delay less than 100 units of measure.
There are two main observations that can be made: first of all, let us have a
look at the absolute value of the delays: it ranges from tens to hundreds of
samples, which means that ASVM is consistently and systematically far more
timely than checkpoint-based solution.
The second observation we can make is that a long-lasting power failure can
have a tremendous impact on all the subsequent classification. The most em-
blematic example is trace 2: a long power failure occurs at the beginning of the

7.3. EXPERIMENTAL SETUP 113

0 100 200 300 400 500 600 700
delay[sampling intervals]

0

50

100

150

200

250

300

co
un

t

Distribution of Delays - Trace 0

0 25 50 75 100 125 150 175
delay[sampling intervals]

0

20

40

60

80

co
un

t

Distribution of Delays - Trace 1

0 5 10 15 20
delay[sampling intervals]

0

100

200

300

400

500

co
un

t

Distribution of Delays - Trace 2

0 20 40 60 80 100
delay[sampling intervals]

0

50

100

150

200

co
un

t

Distribution of Delays - Trace 3

0 100 200 300 400
delay[sampling intervals]

0

20

40

60

co
un

t

Distribution of Delays - Trace 4

Figure 7.18: Distribution of delays

execution, causing a huge delay for all the samples. Figure 7.17 does also show
that delay accumulates over time, and in case of numerous power failures, like
in trace 4, the delay of the checkpoint-based solution increases more and more
over time. The description of the results comes to its end. In the next chapter,
we will describe the conclusions of our efforts and the future lines of research
that we have opened up in this work.

114 CHAPTER 7. EVALUATION

Chapter 8

Conclusions and Future
Works

The thesis we are defending in this work is that applying Approximate Com-
puting (AC) in the domain of Transiently Powered Computing (TPC) brings
huge advantages in terms of energy saved, quality and timeliness of the results
produced by TPC applications.
To demonstrate this claim we have designed and implemented a complete ap-
plication that uses ACT to perform Human Activity Recognition. We have
simulated the deployment of the application in a TPC environment, and we
have measured that our algorithm does consistently outperform a solution that
makes use of a technique in the state of the art to address the problems related
to the execution of the application in a TPC context in terms of timeliness in
the production of results.
Moreover, we have measured that our solution can cut the computation time
and energy necessary to execute the algorithm up to 50%, while lowering the
accuracy of the classifications that are produced by 20%.
These advantages are key because the problem of saving energy and the prob-
lem of obtaining timely results are arguably the key issues of TPC ([RL14],
[MCL17], [HSS17], [Yun+18]).
In Chapter 2 we have shown some of the reasons why Transiently Powered Com-
puting can be a key instrument to enable a pervasive and sustainable adoption
of the Internet of Things, and we have presented some of the most prominent
challenges of this field.
In Chapter 3 we have argued how Approximate Computing can help to solve
some of the most urgent issues of TPC.
In Chapter 4 we have formalized the characteristics that a fruitful combination
of these domains should have: in particular, AC should be used to maximize
the affordable performance of TPC applications.
In Chapter 5 we have described the characteristics of a proof of concept appli-
cation that we used to prove our claim: the application uses the technique of

115

116 CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

Iterative Refinement to address the problem of Human Activity Recognition.
In Chapter 7 we have measured the performance of the application, proving
that it outperformed a state-of-the art solution in terms of timeliness and en-
ergy consumption.
In this chapter, we will show that the proof of concept application that we
designed represents well the behaviour of all intermittent approximate applica-
tions. Moreover, we will highlight the most interesting and challenging research
questions that opened up during the work but are too peripheral in the scope
of the work itself to be extensively investigated here, and that should as a con-
sequence be explored in future works.

8.1 Threats to Validity

The primary, broad objective from which we started was to demonstrate the
feasibility and the usefulness of applying ACTs in the domain of TPC.
We have chosen to explore a single highly representative scenario that is general
enough to prove that ACT and TPC go well together. We will now explain why
the choices that we have made in this sense do not hinder the generality and
the broadness of scope of the work.

8.1.1 Iterative Refinement

As for the technique to use, our decision to focus on Iterative Refinement has
been the result of an analysis that considered several factors to assess the fit-
ness of an ACT to the domain of TPC. As explained in Section 5.2, the metrics
that we used to classify ACTS are meant to maximize the flexibility of ACT,
intended as the variety of contexts when it can be used, to minimize the imple-
mentation and testing effort and to maximize the advantage it can provide in a
TPC context, i.e., the executions it can unlock.
Iterative Refinement turned out to be one of the best techniques in all the met-
rics that we have used to quantify the fitness of ACTs, and absolutely the best
when we considered the relative importance of the metrics themselves.
The only bias we have introduced is the numeric evaluation we gave to the sin-
gle ACTs: one could argue about some of the scores we have assigned, but the
process that we have followed is scientific and sound.

8.1.2 Energy Harvesting from Human Motion

The second decision we made was to focus on Human Activity Recognition.
There are several reasons why HAR is a use case with a very broad scope, that
does strongly suggest that AC and TPC work well together. Let us consider the
very first constraint, that is to say, the power source that we used: Human Ac-
tivity Recognition is typically performed using accelerometer data, which means

8.2. RESULTS 117

that where there is HAR there is also the possibility to harvest kinetic energy
from human movement. Energy harvesting from human movement has been
achieved in several works in the literature ([HYW16], [RNW09]), so we can
qualitatively infer that HAR applications can be naturally deployed in TPC
contexts without even investing the effort to find a power source.
Energy harvesting from human movement is not a particularly energy-intensive
technique. Quantitatively, the throughput of a human-motion-based energy
harvester is two orders of magnitude less than a solar harvester, and one order
of magnitude less than vibrational harvesters [Bha+16]: the fact that we have
been able to use this energy source implies that more power-intensive harvesting
techniques can be used as well.

8.1.3 Machine Learning

Finally, the last consideration to make stems from the fact that we have ad-
dressed HAR using a machine learning algorithm. The point is that machine
learning algorithms show many features that are necessary for algorithms to
work well both in AC and TPC, so the evaluation of a TPC, AC machine learn-
ing application is representative of a majority of TPC and AC applications.
The main constraint of AC applications is that their output must be intrinsically
fuzzy and this is true for machine learning applications (this is not the case for
other applications like cryptography).
TPC applications must address some of the main problems of this field (listed
in Section 2.3) to be useful. Machine learning algorithms do also address one of
the most important issues, the need to save resources: they allow to compress
data extracting relevant information, thus saving resources in terms of memory,
computation and transmission time (a primary issue of TPC: see Section 2.3.1).
In conclusion, our algorithms has many characteristics of all approximate inter-
mittent applications, and so it is a good example of their behaviour.

8.2 Results

We have shown that the behaviour of ASVM, our application, is a proxy of the
behaviour of general AC and TPC applications. Let us summarize these be-
haviour using the performance metrics that we have measures, comparing our
application with a state-of-the-art solution.
In terms of accuracy, ASVM has obtained a reduction below 20% with respect
to a checkpoint-based solution for all the scenarios where we tested it, and often
the reduction in terms of accuracy has remained below 10%.
This performance loss has been compensated by two key advantages: our ap-
plication has saved up to 50% of the energetic cost with respect to an exact
algorithm, and the results produced by ASVM are systematically more timely
than the ones by the state-of-the-art application.
In particular, the absolute delay accumulated by the checkpoint-based applica-

118 CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

tion solution accounted for up to 400 sampling periods.
In conclusion, we have proven that combining AC and TPC makes it possible
to obtain cheap and timely results, at the cost of a moderate performance loss.

8.3 Future Works

In this section, we will explicitly list the open questions that we have briefly
touched or mentioned during the previous chapters, and that we did not answer
in this work. Some questions are related to making the results in this specific
work more concrete and to improve the performance of this very algorithm,
delving deep in the specific vertical scope of this thesis. Other questions take a
cue from this work and range broader and more general fields.

8.3.1 Physical Implementation

It would be interesting to deploy the algorithm that we have designed and an-
alyzed in this work into a physical device, able to perform HAR in the real
world relying solely on energy harvested from human movement. This opera-
tion would create two distinct kinds of benefits: first of all it would be the final
demonstration that the combination of AC and TPC is feasible, practical and
useful.
Moreover, it would contribute to spreading the discipline of TPC in the general
public, that is not yet fully aware of the huge potentialities of batteryless com-
puting. In other words, implementing a physical product that makes use of the
ideas that we have enunciated in this work will have both direct and indirect
scientific and social consequences.

8.3.2 Improving the Algorithm

Although the metrics that measure the performance of the algorithm are already
superior to the state of the art, there is still the possibility of speeding up the
algorithm and further improving its effectiveness.
In particular, one major opportunity to make it better would be to change the
shape of the map from the number of clock cycles invested to the number of
features available, showed in Figure 7.15.

In the current implementation this function has several steps, which means
that there are moments in which investing some extra clock cycle in the classi-
fication does not bring an immediate benefit, and to the energy spent may be
lost. The reason why the function has this shape is the fact that one major
step to process the data is to perform a Fast Fourier Transform of the window:
therefore, every clock cycle invested in the FFT does not bring an immediate
gain, but a huge number of features is unlocked when the computation of the
FFT terminates.
his behaviour can be changed thanks to the Sliding Fast Fourier Transform [20a].
SFFT is a version of FFT especially fit for signals with a long duration in time.

8.3. FUTURE WORKS 119

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Number of clock cycles [1e7] 1e6

0

20

40

60

80

100

120

140

Nu
m

be
r o

f f
ea

tu
re

s
Comparison normal FFT/Sliding FFT
Normal FFT
Sliding FFT

Figure 8.1: Features available as a function of the number of clock cycles invested

It has the property that the SFFT of the window from St to St+T can be cheaply
computed from the SFFT of the window from St−1 to St+T−1. Moreover, SFFT
yields one coefficient at a time: this behaviour would impact the shape of the
map from the number of clock cycles to the available number of features in the
way showed in Figure 8.1. It is possible to observe that the number of features
available using SFFT is always above the number of features that are available
with a conventional FFT when the same number of clock cycles is invested.
As a consequence, the classifications emitted by the algorithm would be more
accurate while maintaining the same cost.
While in principle sliding FFT could provide huge benefits, in practice it would
require a substantial implementation effort.
In this work, we had the technical constraint to represent numbers using re-
duced precision (see Section 5.5): as a consequence, the computation of the vast
majority of FFT coefficients becomes unstable.
Therefore, it is necessary to periodically retune the computation or to adapt
the algorithm for a fixed-point utilization.

8.3.3 General-Purpose Performance Prediction

The theoretical analysis of the algorithm that we have carried out before the
implementation is the crucial point of this work for one main reason, that is to
say it provides probabilistic guarantees on the quality of the result that is pro-
duced by an approximated version of an algorithm. This is extremely important

120 CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

because it makes it possible to deploy an application based on the algorithm
being sure that it will not underperform and that it will produce results that
are consistently good and predictable.
In other words, it is the only theoretical guarantee on the performance of the
application. As a consequence, it would be extremely interesting to extend this
kind of technique to other classes of algorithms.
This operation can be arbitrarily complex and general: while it is probably fea-
sible to predict the accuracy of SVM that use the kernel trick, it would be far
more complex to extend the analysis to nonlinear classifiers.
It would also be interesting to further extend the scope of the analysis by aban-
doning the field of machine learning algorithms no matter how general it is, and
design a methodology to analyze the output of arbitrary applications from a
probabilistic point of view.

Chapter 9

Appendix 1

In this Appendix we will provide the derivation of the mapping from number of
used features to expected accuracy shown in Section . The derivations will be
exposed in the same order as Section .

9.1 Binary Classification, Independent Coeffi-
cients

Let {x1,x2,x3...xm} be a dataset composed by m vectors.
Let each sample

xi = [c1i, c2i, c3i...cti]

be a t-dimensional vector.
Let us assume that each coordinate ci is drawn from a Gaussian distribution Ci

Ci ∼ N(0, σ2
i)

Let us assume that all the Ci are mutually independent.
Let

w = [k1, k2, k3...kt]

be the hyperplane that is used by the linear model to classify the samples: for
the sake of simplicity, let us assume that

kj = 1 ∀j ∈ {1..t}

We will demonstrate that this assumption does not affect the generality of the
analysis.
In linear models, the classification of a sample xi is determined by the quantity

Si = wTxi

121

122 CHAPTER 9. APPENDIX 1

where wTxi is a normal inner product. Let us indicate as cji the j-th coefficient
of the i-th sample which can be written as

Si =
∑

j∈{1...t}

cjiwj

Si is distributed as a Gaussian, because it is the sum of independent random
normal variables.

Si ∼ N(a, b)

The parameters a and b of the distribution can be easily obtained by applying
standard probability rules [20i]. In particular

a =
∑

i∈{1..t}}

0 = 0

and
b =

∑
j∈{1..t}

σ2
jkj

This equality is the first reason why the value of the coefficients kj is not im-
portant: as a matter of fact, they only appear multiplying C2

j . Therefore, every

coefficient kj can be normalized to 1 if the variance of the corresponding C2
j is

appropriately scaled.
Now that we know the distribution of Si, we will produce an approximate ver-
sion of this quantity, which is less costly to compute than the exact one, and we
will study the probabilistic bound between the two quantities.
In particular, the approximate version of Si is

Spi =
∑

j∈{1...p}

cjiwj

when p=t, Spi = Si. In the other cases, Spi is cheaper to compute than Si.
This consideration is particularly interesting when the features cji of point i are
not immediately available, and involve extra computations to be extracted. We
will come back to this point in the next chapter.
The classification of the i-th vector can be computed as

classi = sgn(
∑

j∈{1...t}

cjiwj)

an approximate version of this classification can be computed as

classpi = sgn(
∑

j∈{1...p}

cjiwj)

that is to say using only the first p coordinates of the vector. We will call classpi
the p-partial classification of the i-th vector. We are interested in computing

9.1. BINARY CLASSIFICATION, INDEPENDENT COEFFICIENTS 123

the probability that a p-partial classification is coherent with its corresponding
t-partial classification, i.e., with the exact classification, as a function of p.

P (p− coherence) = P (classpi = classi)

To compute P (p− coherence), we will introduce an auxiliary variable, to easily
represent the influence of the coordinates that are excluded from the p-partial
classification.

Rpi =
∑

j∈{p+1...t}

cjiwj

p-coherence is enforced if the following event takes place

Spi ≥ −Rpi

Let
FSpi(z) = P (Spi ≤ z)

fSpi
(z) =

d

dz
P (Spi ≤ z)

FRpi
(z) = P (Rpi ≤ z)

fRpi
(z) =

d

dz
R(Spi ≤ z)

the probability of p-coherence can be written as

P (p−coherence) =

∫ 0

d=−∞
P (Spi = d∧Rpi ≥ −d)dd+

∫ +∞

d=0

P (Spi = d∧Rpi ≤ −d)dd

this formulation is quite general, and it does not need any assumption on the
shapes of Spi or Rpi in order to work. However, under the assumption that cij
are normally distributed, and independent it is possible to find a more explicit
expression. Starting from the fact that the Normal distribution is symmetric,
we have that

P (Spi = d ∧Rpi ≥ −d) = P (Spi = d ∧Rpi ≤ −d)

and so

P (p− coherence) = 2

∫ +∞

d=0

P (Spi = d)P (Rpi ≥ −d|Spi = d)dd

Thanks to the independence of Spi and Rpi

P (Rpi ≤ d|Spi = d) = P (Rpi ≤ d)

so

P (p− coherence) = 2

∫ +∞

d=0

P (Spi = d)P (Rpi ≥ −d)dd =

124 CHAPTER 9. APPENDIX 1

= 2

∫ +∞

d=0

fSpi(d)(1− FRpi(d))dd

This integral can be computed numerically, and it is very cheap to obtain: as
a matter of fact, it is the integral along one single dimension of the product of
two simple, unrelated functions.
We will test the correctness of this computation in the next chapter. In the
next sections we will drop some of the assumptions we used, in order to obtain
a more general result.

9.2 Multiclass Classification, Independent Coef-
ficients

We will analyze the case of multiclass classification using the technique of One-
versus-Rest 5.3.1. We recall that using this technique one can classify a vector x
by measuring its signed distance from each of the hyperplances that correspond
to each class, and assign it to the class whose hyperplane it is the furthest away.
Formally, let

{C1..Cc}

be the classes and

Hl = [hl1, hl2, hl3...hlt]

the hyperplane corresponding to class l. To simplify the notation with respect
to the previous case, let

x = [c1, c2...ct]

a sample, whose coordinates

ci ∼ N(0, µi)

Therefore, the distance of xi from hyperplane Hl is

Fdl =
∑

j∈{1..t}

hljcj

The index of the class to which the xi belong is

classi = argmax l Fdl

We will follow an idea similar to the one developed in Section 9.1: we will use
the first p terms of the sum Fdl instead of the full sum. Let

Dlp =
∑

j∈{1..p}

hljcj

the partial distance from vector x and hyperplane Hl using the first p coordi-
nates.

9.2. MULTICLASS CLASSIFICATION, INDEPENDENT COEFFICIENTS125

Since it is the sum of independent gaussians, Dlp is gaussian as well. In partic-
ular,

Dlp ∼ N(µlp, σ
2
lp)

µlp = 0

σ2
lp =

p∑
i=1

h2ljV ar[ci]

So, the vector
Dp = [D1p, D2p, D3p..Dcp]

of the distances from xi to hyperplanes 1 to c is a Gaussian vector.

Dp ∼ N(µdp,Σdp)

it is possible to easily compute that

µdp = 0

As for Σdp, the computation of the covariance matrix needs some extra step.
We will compute the entries Σdijp of the covariance matrix using the definition
of covariance [20j].

Σdijp =

p∑
k=1

hikhjkV ar[ck]

At this point, we know the distribution of the distances of a vector from each
hyperplane, and the probabilistic relation that links the distances. Starting
from this result, we will model the partial advantage of a classifier e, that is to
say the difference from its distance and the distance of the other classifiers.

Adep = [Dep −D1p, Dep −D2p..Dep −Dcp]

Every entry of Adep is gaussian because it is the difference of two gaussians. It
holds true that

Adep ∼ N(µap,Σap)

as the mean of both the two gaussians Dep and Dip is 0,

µap = 0

It is possible to compute the entries Σaijp of the covariance matrix by using the
definition of covariance.

Σaijep = V ar[Dep] + Cov[Dip, Djp]− Cov[Dep, Djp]− Cov[Dip, Dep]

So, we now know everything about the probability that any classifier e is further
from a sample with respect to other classifiers when only p coordinates are used.
We are interested in the probability that a partial classification, performed using
the first p coordinates, is coherent with the full classification performed using

126 CHAPTER 9. APPENDIX 1

all the t coordinates.
To compute this quantity, we need to compute the probability distribution of
the correction, i.e, the partial distance computed using the last t-p coordinates.
The steps to compute its distribution are similar to the steps to compute the
partial advantage. Let Clp the correction of the distance from classifier l, thanks
to the last t-p coordinates

Clp =
∑

j∈{p+1..t}

hljcj

Clp is the sum of independent gaussians, so it is gaussian as well.

Clp ∼ N(µclp, σc
2
lp)

µclp = 0

σc2lp =

t∑
i=p+1

h2ljV ar[ci]

Let Cp be the vector of the corrections created by the last t-p coordinates.

Cp = [C1p, C2p, C3p..Ccp]

Cp is a Gaussian vector.
Cp ∼ N(µcp,Σcp)

where
µcp = 0

And the entries Σcijp can be computed using the definition of covariance.

Σcijp =

t∑
k=p+1

hikhjkV ar[ck]

Now, we know the properties of the corrections. We need to compute the prob-
ability distribution of the difference between the corrections to understand the
probability that a specific classifier becomes the furthest away from the sample
thanks to the corrections.

Acep = [Cep − C1p, Cep − C2p..Cep − Ccp]

Acep ∼ N(µAcep,ΣAcep)

where
µAcep = 0

the computations to perform to find the entries of ΣAcep are similar to the ones
of Σaep. The result is

Σij
Acep

= V ar[Cep] + Cov[Cip, Cjp]− Cov[Cep, Cjp]− Cov[Cip, Cep]

9.2. MULTICLASS CLASSIFICATION, INDEPENDENT COEFFICIENTS127

Now we know all the elements that are necessary to compute the probability
that a classification carried out using the first p coordinates is coherent with
the classification that will derive using all the t coordinates.
Let Cp the class to which the point to classify belongs according to the evaluation
done with the first p coordinates. Let Cf the final classification of the vector,
performed using all the t coordinates.
We have that

P (Cp = Cf) =

c∑
i=1

P (Cp = Ci ∧ Cf = Ci)

Let us focus on one single term of the sum. The other ones can be computed
by symmetry.

P (Cp = Ci ∧ Cf = Ci) = P (Cp = Ci)P (Cf = Ci|Cp = Ci)

We can compute this probability by considering the fact that a classification
is maintained if and only if the partial advantage of the winning classifier is
greater than the correction due to the last coordinates. Formally

P (Cp = Ci)P (Cf = Ci|Cp = Ci) =

=

∫
adv>0

P (Adip = adv)P (Acep >= −adv|Adip = adv)dadv

but Acep and Adip are independent, so

P (Acep >= −adv|Adip = adv) = P (Acep >= −adv)

In conclusion, we have that

P (Cp = Ci ∧ Cf = Ci) =

∫
adv>0

P (Adip = adv)P (Acep >= −adv)dadv

(9.1)
This integral can be computed numerically, because the probability density

function of Adip and the cumulative density function of Acep are known.

9.2.1 Multiclass Classification, Correlated Coefficients

The last and most general case we are going to analyze is the situation when the
coordinates of the samples to classify are correlated, and more than two classes
are present.
The scheme of the demonstration is very similar to the one of the previous case,
that is to say Section 9.2.
First of all, we are going to model the probability distribution of the signed
distance of a sample x from the separating hyperplanes. Then, we will compute
the probability distribution of the differences between the partial distances.
Finally, we will use these last probability distributions to model the probability
that a classification remains coherent when more coordinates are used. Let x

128 CHAPTER 9. APPENDIX 1

be the vector to classify.

x = [c1, c2...ct]

Let us assume that
x ∼ N(µx,Σx)

Where
µx = 0t

And the entry of Σx on the i-th row and j-th column is indicated with Σij
x .

Let
{C1, C2..Cc}

be the classes among which vectors can be classified. Let

Hl = [hl1, hl2..hlt]

be the classifier corresponding to the l-th class. Let

Dlp =

p∑
j=1

hljcj

be the partial distance of x from the l-th hyperplane, computed using the first
p coordinates. Dlp is a scalar, and it is the sum of gaussians. Therefore, it is
gaussian as well.

Dlp ∼ N(µlp, σ
2
lp)

where
µlp = 0

because µx = 0t. The variance σ2
lp can be computed using the definition of

variance for a random variable with 0 mean

σ2
lp = E[(

p∑
i=1

hlici)(

p∑
j=1

hljcj)] =

= E[

p∑
i=1

p∑
j=1

hlicihljcj]

the expected value is a linear operator. Therefore, the expression above can be
rewritten as

p∑
i=1

p∑
j=1

hljhliE[cicj]

but
E[cicj] = Cov[ci, cj] = Σij

x

in conclusion,

σ2
lp =

p∑
i=1

p∑
j=1

hljhliΣ
ij
x

9.2. MULTICLASS CLASSIFICATION, INDEPENDENT COEFFICIENTS129

that can be explicitly computed.
Let

Dp = [D1p, D2p..Dcp]

be the vector of the partial distances of the sample x from the hyperplanes.

Dp ∼ N(µp,Σp)

where
µp = 0t

and the entries Σij
p of th i-th row and j-th column of the covariance matrix

can be computed using the definition of covariance for random variables with 0
mean.

Σij
p = Cov[Dip, Djp] = E[DipDjp] =

= E[(

p∑
l=1

hilcl)(

p∑
m=1

hjmcm)] =

= E[

p∑
m=1

p∑
l=1

hilclhjmcm] =

=

p∑
m=1

p∑
l=1

hilhjmE[clcm] =

=

p∑
m=1

p∑
l=1

hilhjmΣlm
x

Now, we know the joint probability distribution of the partial distances from
all the classifiers, computed using the first p coordinates. From this probability
we can obtain the probability distribution of the partial advantage of classifier
e, that is to say the difference between the distance from classifier e and the
others. Formally,

Adep = [Dep −D1p, Dep −D2p..Dep −Dcp]

Adep is a gaussian vector,

Adep ∼ N(µAdep,ΣAdep)

where
µAdep = 0c

and the entries of ΣAdep can be computed using the definition of covariance for
random variables with 0 mean

Σij
Adep = Cov[Dep −Djp, Dep −Dip] =

= E[(Dep −Djp)(Dep −Dip)] =

130 CHAPTER 9. APPENDIX 1

= E[DjpDip]− E[DjpDep]− E[DepDip] + E[DepDep] =

= Cov[Djp, Dip]− Cov[Djp, Dep]− Cov[Dep, Dip] + V ar[Dep] =

= Σij
p − Σej

p − Σie
p + Σee

p

Now we need to compute the probability distribution of the partial distances
computed using the last t-p coordinates of the vector. Let us call Flp the distance
from the l-th classifier, computed using the last t-p coordinates. We have that

Flp =

t∑
i=p+1

hlici

let
Fp = [F1p, F2p..Fct]

be the vector of all the partial distances.

Fp ∼ N(µFp,ΣFp)

where
µFp = 0c

and
Σij

Fp = Cov[Fip, Fjp] =

= E[Fip, Fjp] = E[(

t∑
l=p+1

hjlcl)(

t∑
m=p+1

himcm)] =

= E[

t∑
l=p+1

t∑
m=p+1

hjlhimcmcl] =

=

t∑
l=p+1

t∑
m=p+1

hjlhimE[cmcl] =

=

t∑
l=p+1

t∑
m=p+1

hjlhimΣlm
x

we have to compute the probability distribution of the advantage gained by
classifiers thanks to the last t-p coordinates. Let

Acep

be the vector that represents the advantage of classifier e. Formally:

Acep = [Fep − F1p, Fep − F2p..Fep − Fcp] = [Acep1, Acep2..Acepc]

it is a gaussian vector:
Acep ∼ N(µAcep,ΣAcep)

9.2. MULTICLASS CLASSIFICATION, INDEPENDENT COEFFICIENTS131

where
µAcep = 0c

and the entries of ΣAcep can be computed as follows:

Σij
Acep = Cov[Acepi, Acepj] =

= Cov[Fep − Fip, Fep − Fjp] =

= E[(Fep − Fip)(Fep − Fjp)] =

= E[FepFep]− E[FepFjp]− E[FepFip] + E[FipFjp] =

= Cov[Fep, Fep]− Cov[Fep, Fjp]− Cov[Fep, Fip] + Cov[Fip, Fjp] =

Σee
Fp − Σej

Fp − Σei
Fp + Σij

Fp

At this point we have the distribution of the partial distance from an arbitrary
classifier in two cases: when it is computed using the first p components, and
the last t-p components.
We will now focus on the link between them to understand how likely is it that
a classification computed using the first p coordinates remains coherent when
all the other coordinates are included as well.
To compute this computation, we will concatenate the initial partial advantages
and the final partial advantages.

Vep = [Adep,Acep] =

= [Adep1, Adep2..Adepc, Acep1, Acep2..Acepc]

this vector is gaussian.
Vep ∼ N(µV ep,ΣV ep)

where
µV ep = 02c

and the entries Σij
V ep of the covariance matrix are either quantities that we have

already computed, or that we can compute from scratch. As a matter of fact,
it holds that

Σij
V ep = Σij

Adep when i ≤ c, j ≤ c

because these entries represent the covariances between two partial initial dis-
tances, that we have computed above.
Similarly,

Σij
V fp = Σij

Acfp when i > c, j > c

because the entries with these indexes are the covariances between partial final
distances.
We are now interested in computing the mixed entries, i.e., the correlations
between Adepi and Acfpj . We will once again use the definition of covariance
for random variables with zero mean.

Cov[Adepi, Acfpj] = E[AdepiAcfpj] =

132 CHAPTER 9. APPENDIX 1

= E[(Fep − Fip)(Dfp −Djp)] =

= E[FepDfp]− E[FepDjp]− E[FipDfp] + E[FipDjp] =

= Cov[Fep, Dfp]− Cov[Fep, Djp]− Cov[Fip, Dfp] + Cov[Fip, Djp]

the four terms of the sum are in the form Cov[Fap, Dbp]. We will now compute
this general term using the definition of covariance for random variables with 0
mean.

Cov[Fap, Dbp] = E[FapDbp] =

= E[

t∑
i=p+i

haici

p∑
j=1

hbjcj] =

t∑
i=p+i

p∑
j=1

haihbjE[cjci] =

=

t∑
i=p+i

p∑
j=1

haihbjΣ
ij
x

this computation allows us to compute all the missing values of Σij
V fp In partic-

ular, we have that

Cov[Fep, Dfp] =

t∑
i=p+i

p∑
j=1

heihfjΣ
ij
x

Cov[Fep, Djp] =

t∑
i=p+i

p∑
k=1

heihjkΣik
x

Cov[Fip, Dfp] =

t∑
k=p+i

p∑
j=1

hikhfjΣ
kj
x

Cov[Fip, Djp] =

t∑
k=p+i

p∑
l=1

hikhjlΣ
kl
x

In conclusion, we have the complete joint distribution of the partial initial dis-
tances and the partial final distances.
We need to compute the probability that a partial classification remains coher-
ent when all the coordinates are used. Let

PCp

the partial classification computed using the first p coordinates. The probability
that a partial classification remains coherent can be computed as:∑

Ci∈{C1..Cc}

P (PCp = Ci ∧ PCt = Ci)

9.2. MULTICLASS CLASSIFICATION, INDEPENDENT COEFFICIENTS133

Let us compute one single term of the sum: the other ones are similar, and we
will derive them using the same steps.
Let

adep = [adep1, adep2..adepc]

be a c-dimensional vector, that represents the values of the partial initial ad-
vantages of classifier e computed using the first p coordinates. Let

acep = [acep1, acep2..acepc]

be a c-dimensional vector, that represents the values of the partial final distances
from classifier e, computed using the last t-p coordinates.
The event PCp = Ce is equivalent to

adepi > 0 ∀i ∈ 1..c

because it means that classifier e is further away than all the other ones. Simi-
larly, PCt = Ce holds true when the partial final distances are not big enough
to take over the advantage gained using the first p coordinates. Formally, the
final classification remains coherent if:

adepi > −acep1 ∀i ∈ 1..c

this inequality defines the region where the event of a coherent classification
is verified. To compute the probability of this event we need to integrate the
probability density function of the joint distribution of the partial initial and
final distances over the region. Let pdfV i(x) be the probability density function
of Vi evaluated in x. We have that

P (PCp = Ci ∧ PCt = Ci) =

∫
ve>0c

∫
vc>−ve

pdfV i([ve|vc])dvedvc

we can use this result to compute the overall probability that a partial classifi-
cation is coherent

P (PCp = PCt) =
∑

Ci∈{C1..Cc}

∫
ve>0c

∫
vc>−ve

pdfV i([ve|vc])dvedvc

Since pdfV i is known, this expression can be computed. We have computed the
probability to obtain a coherent classification using only a part of the coordinates
of a vector.

134 CHAPTER 9. APPENDIX 1

Bibliography

[FRS01] Karl Pearson F.R.S. “LIII. On lines and planes of closest fit to sys-
tems of points in space”. In: The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 2.11 (1901), pp. 559–
572. doi: 10.1080/14786440109462720. eprint: https://doi.
org/10.1080/14786440109462720. url: https://doi.org/10.
1080/14786440109462720.

[Ros58] F. Rosenblatt. “The perceptron: A probabilistic model for infor-
mation storage and organization in the brain.” In: Psychological
Review 65.6 (1958), pp. 386–408. issn: 0033-295X. doi: 10.1037/
h0042519. url: http://dx.doi.org/10.1037/h0042519.

[BGV92] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik.
“A Training Algorithm for Optimal Margin Classifiers”. In: Pro-
ceedings of the Fifth Annual Workshop on Computational Learning
Theory. COLT ’92. Pittsburgh, Pennsylvania, USA: Association for
Computing Machinery, 1992, pp. 144–152. isbn: 089791497X. doi:
10.1145/130385.130401. url: https://doi.org/10.1145/

130385.130401.

[KM99] Kenneth A. Kaufman and Ryszard S. Michalski. “Learning from
Inconsistent and Noisy Data: The AQ18 Approach”. In: ISMIS.
1999.

[Coo02] Ronald Cools. “Advances in multidimensional integration”. In: Jour-
nal of Computational and Applied Mathematics 149.1 (2002). Sci-
entific and Engineering Computations for the 21st Century - Me
thodologies and Applications Proceedings of the 15th Toyota Con-
ference, pp. 1–12. issn: 0377-0427. doi: https://doi.org/10.
1016/S0377-0427(02)00517-4. url: http://www.sciencedirect.
com/science/article/pii/S0377042702005174.

[Dec02] Dennis Decoste. “Anytime Interval-Valued Outputs for Kernel Ma-
chines: Fast Support Vector Machine Classification via Distance
Geometry”. In: (May 2002).

135

https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/https://doi.org/10.1016/S0377-0427(02)00517-4
https://doi.org/https://doi.org/10.1016/S0377-0427(02)00517-4
http://www.sciencedirect.com/science/article/pii/S0377042702005174
http://www.sciencedirect.com/science/article/pii/S0377042702005174

136 BIBLIOGRAPHY

[PLI02] Joanne Peng, Kuk Lee, and Gary Ingersoll. “An Introduction to
Logistic Regression Analysis and Reporting”. In: Journal of Edu-
cational Research - J EDUC RES 96 (Sept. 2002), pp. 3–14. doi:
10.1080/00220670209598786.

[Hil03] W. Hildreth. Case Studies in Public Budgeting and Financial Man-
agement. Jan. 2003. isbn: 0-8247-0888-1.

[XMM03a] Fen Xie, Margaret Martonosi, and Sharad Malik. “Compile-Time
Dynamic Voltage Scaling Settings: Opportunities and Limits”. In:
SIGPLAN Not. 38.5 (May 2003), pp. 49–62. issn: 0362-1340. doi:
10.1145/780822.781138. url: https://doi.org/10.1145/

780822.781138.

[XMM03b] Fen Xie, Margaret Martonosi, and Sharad Malik. “Compile-time
Dynamic Voltage Scaling Settings: Opportunities and Limits”. In:
SIGPLAN Not. 38.5 (May 2003), pp. 49–62. issn: 0362-1340. doi:
10.1145/780822.781138. url: http://doi.acm.org/10.1145/
780822.781138.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Berlin, Heidelberg: Springer-
Verlag, 2006. isbn: 0387310738.

[Pop+07] P. Pop et al. “Scheduling and voltage scaling for energy/reliability
trade-offs in fault-tolerant time-triggered embedded systems”. In:
2007 5th IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS). Sept. 2007, pp. 233–
238. doi: 10.1145/1289816.1289873.

[Yeh+07] T. Yeh et al. “The Art of Deception: Adaptive Precision Reduction
for Area Efficient Physics Acceleration”. In: 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007). Dec.
2007, pp. 394–406. doi: 10.1109/MICRO.2007.9.

[Sch+08] Fabio Schreiber et al. “PERLA: a Data Language for Pervasive Sys-
tems”. In: Apr. 2008, pp. 282–287. isbn: 978-0-7695-3113-7. doi:
10.1109/PERCOM.2008.30.

[YWC08] Jhun-Ying Yang, Jeen-Shing Wang, and Yen-Ping Chen. “Using
acceleration measurements for activity recognition: An effective
learning algorithm for constructing neural classifiers”. In: Pattern
Recognition Letters 29.16 (2008), pp. 2213–2220. issn: 0167-8655.
doi: https://doi.org/10.1016/j.patrec.2008.08.002.
url: http://www.sciencedirect.com/science/article/pii/
S0167865508002560.

[RNW09] Edwar Romero, MR Neuman, and RO Warrington. “Kinetic energy
harvester for body motion”. In: Jan. 2009.

[Saz+09] E. Sazonov et al. “Self-Powered Sensors for Monitoring of Highway
Bridges”. In: IEEE Sensors Journal 9.11 (Nov. 2009), pp. 1422–
1429. issn: 2379-9153. doi: 10.1109/JSEN.2009.2019333.

https://doi.org/10.1080/00220670209598786
https://doi.org/10.1145/780822.781138
https://doi.org/10.1145/780822.781138
https://doi.org/10.1145/780822.781138
https://doi.org/10.1145/780822.781138
http://doi.acm.org/10.1145/780822.781138
http://doi.acm.org/10.1145/780822.781138
https://doi.org/10.1145/1289816.1289873
https://doi.org/10.1109/MICRO.2007.9
https://doi.org/10.1109/PERCOM.2008.30
https://doi.org/https://doi.org/10.1016/j.patrec.2008.08.002
http://www.sciencedirect.com/science/article/pii/S0167865508002560
http://www.sciencedirect.com/science/article/pii/S0167865508002560
https://doi.org/10.1109/JSEN.2009.2019333

BIBLIOGRAPHY 137

[Wag+09] Kiri L. Wagstaff et al. “Progressive refinement for support vector
machines”. In: Data Mining and Knowledge Discovery 20.1 (Oct.
2009), p. 53. issn: 1573-756X. doi: 10.1007/s10618-009-0149-y.
url: https://doi.org/10.1007/s10618-009-0149-y.

[Yeh+09] Thomas Yeh et al. “Fool Me Twice: Exploring and Exploiting Error
Tolerance in Physics-Based Animation”. In: ACM Trans. Graph.
29 (Jan. 2009).

[Cho11] Mihir Choudhury. “Approximate Logic Circuits: Theory and Ap-
plications”. PhD thesis. USA, 2011. isbn: 9781124801759.

[KGE11] P. Kulkarni, P. Gupta, and M. Ercegovac. “Trading Accuracy for
Power with an Underdesigned Multiplier Architecture”. In: 2011
24th Internatioal Conference on VLSI Design. Jan. 2011, pp. 346–
351. doi: 10.1109/VLSID.2011.51.

[KWM11] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. “Ac-
tivity Recognition Using Cell Phone Accelerometers”. In: SIGKDD
Explor. Newsl. 12.2 (Mar. 2011), pp. 74–82. issn: 1931-0145. doi:
10.1145/1964897.1964918. url: https://doi.org/10.1145/
1964897.1964918.

[MS11] R. Mangharam and A. A. Saba. “Anytime Algorithms for GPU Ar-
chitectures”. In: 2011 IEEE 32nd Real-Time Systems Symposium.
Nov. 2011, pp. 47–56. doi: 10.1109/RTSS.2011.41.

[Par+11] Seonyeong Park et al. “A comprehensive study of energy efficiency
and performance of flash-based SSD”. In: Journal of Systems Ar-
chitecture 57.4 (2011), pp. 354–365. issn: 1383-7621. doi: https:
//doi.org/10.1016/j.sysarc.2011.01.005. url: http://www.
sciencedirect.com/science/article/pii/S1383762111000178.

[RSF11] Benjamin Ransford, Jacob Sorber, and Kevin Fu. “Mementos: Sys-
tem Support for Long-running Computation on RFID-scale De-
vices”. In: Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems. ASPLOS XVI. Newport Beach, California, USA:
ACM, 2011, pp. 159–170. isbn: 978-1-4503-0266-1. doi: 10.1145/
1950365.1950386. url: http://doi.acm.org/10.1145/1950365.
1950386.

[Sam+11] Adrian Sampson et al. “EnerJ: Approximate Data Types for Safe
and General Low-power Computation”. In: Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’11. San Jose, California, USA: ACM,
2011, pp. 164–174. isbn: 978-1-4503-0663-8. doi: 10.1145/1993498.
1993518. url: http://doi.acm.org/10.1145/1993498.1993518.

https://doi.org/10.1007/s10618-009-0149-y
https://doi.org/10.1007/s10618-009-0149-y
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1109/RTSS.2011.41
https://doi.org/https://doi.org/10.1016/j.sysarc.2011.01.005
https://doi.org/https://doi.org/10.1016/j.sysarc.2011.01.005
http://www.sciencedirect.com/science/article/pii/S1383762111000178
http://www.sciencedirect.com/science/article/pii/S1383762111000178
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/1950365.1950386
http://doi.acm.org/10.1145/1950365.1950386
http://doi.acm.org/10.1145/1950365.1950386
https://doi.org/10.1145/1993498.1993518
https://doi.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/1993498.1993518

138 BIBLIOGRAPHY

[Sid+11] Stelios Sidiroglou-Douskos et al. “Managing Performance vs. Accu-
racy Trade-offs with Loop Perforation”. In: Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering. ESEC/FSE 11. Szeged,
Hungary: ACM, 2011, pp. 124–134. isbn: 978-1-4503-0443-6. doi:
10.1145/2025113.2025133. url: http://doi.acm.org/10.

1145/2025113.2025133.

[YLC11] Jaeyoung Yang, Joonwhan Lee, and Joongmin Choi. “Activity
Recognition Based on RFID Object Usage for Smart Mobile De-
vices”. In: Journal of Computer Science and Technology 26 (Mar.
2011), pp. 239–246. doi: 10.1007/s11390-011-9430-9.

[Ang+12a] Davide Anguita et al. “Human Activity Recognition on Smart-
phones Using a Multiclass Hardware-Friendly Support Vector Ma-
chine”. In: vol. 7657. Dec. 2012, pp. 216–223. doi: 10.1007/978-
3-642-35395-6_30.

[Ang+12b] Davide Anguita et al. “Human Activity Recognition on Smart-
phones Using a Multiclass Hardware-Friendly Support Vector Ma-
chine”. In: Ambient Assisted Living and Home Care. Ed. by José
Bravo, Ramón Hervás, and Marcela Rodŕıguez. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 216–223. isbn: 978-3-642-
35395-6.

[Ben+12] S. Benecke et al. “Energy harvesting on its way to a reliable and
green micro energy source”. In: 2012 Electronics Goes Green 2012+.
Sept. 2012, pp. 1–8.

[Esm+12] H. Esmaeilzadeh et al. “Neural Acceleration for General-Purpose
Approximate Programs”. In: 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. Dec. 2012, pp. 449–460.
doi: 10.1109/MICRO.2012.48.

[KK12] A. B. Kahng and S. Kang. “Accuracy-configurable adder for ap-
proximate arithmetic designs”. In: DAC Design Automation Con-
ference 2012. June 2012, pp. 820–825. doi: 10.1145/2228360.
2228509.

[Rin+12] Michael F. Ringenburg et al. “Quality of Service Profiling and Au-
totuning for Energy-Aware Approximate Programming”. In: 2012.

[Ven+12] S. Venkataramani et al. “SALSA: Systematic logic synthesis of ap-
proximate circuits”. In: DAC Design Automation Conference 2012.
June 2012, pp. 796–801. doi: 10.1145/2228360.2228504.

[Ang+13] Davide Anguita et al. “A Public Domain Dataset for Human Ac-
tivity Recognition using Smartphones”. In: Jan. 2013.

https://doi.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
https://doi.org/10.1007/s11390-011-9430-9
https://doi.org/10.1007/978-3-642-35395-6_30
https://doi.org/10.1007/978-3-642-35395-6_30
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1145/2228360.2228509
https://doi.org/10.1145/2228360.2228509
https://doi.org/10.1145/2228360.2228504

BIBLIOGRAPHY 139

[CMR13] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. “Verify-
ing Quantitative Reliability for Programs That Execute on Unre-
liable Hardware”. In: Proceedings of the 2013 ACM SIGPLAN In-
ternational Conference on Object Oriented Programming Systems
Languages & Applications. OOPSLA ’13. Indianapolis, Indi-
ana, USA: ACM, 2013, pp. 33–52. isbn: 978-1-4503-2374-1. doi:
10.1145/2509136.2509546. url: http://doi.acm.org/10.

1145/2509136.2509546.

[HSD13] Cho-Jui Hsieh, Si Si, and Inderjit Dhillon. “A Divide-and-Conquer
Solver for Kernel Support Vector Machines”. In: 31st International
Conference on Machine Learning, ICML 2014 1 (Nov. 2013).

[Riz+13] Luca Rizzon et al. “Wireless Sensor Networks for Environmen-
tal Monitoring Powered by Microprocessors Heat Dissipation”. In:
Nov. 2013, 8:1–8:6. isbn: 9781450324328. doi: 10.1145/2534208.
2534216.

[Sam+13] M. Samadi et al. “SAGE: Self-tuning approximation for graphics
engines”. In: 2013 46th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). Dec. 2013, pp. 13–24.

[FMS14] Fayçal Ait Aouda, K. Marquet, and G. Salagnac. “Incremental
checkpointing of program state to NVRAM for transiently-powered
systems”. In: 2014 9th International Symposium on Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC). May 2014,
pp. 1–4. doi: 10.1109/ReCoSoC.2014.6861359.

[GR14] B. Grigorian and G. Reinman. “Dynamically adaptive and reli-
able approximate computing using light-weight error analysis”. In:
2014 NASA/ESA Conference on Adaptive Hardware and Systems
(AHS). July 2014, pp. 248–255. doi: 10.1109/AHS.2014.6880184.

[Gut+14] Joaquin Gutierrez et al. “Automated Irrigation System Using a
Wireless Sensor Network and GPRS Module”. In: Instrumentation
and Measurement, IEEE Transactions on 63 (Jan. 2014), pp. 166–
176. doi: 10.1109/TIM.2013.2276487.

[HSS14] Josiah Hester, Timothy Scott, and Jacob Sorber. “Ekho: Realistic
and Repeatable Experimentation for Tiny Energy-Harvesting Sen-
sors”. In: Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems. SenSys ’14. Memphis, Tennessee: Associ-
ation for Computing Machinery, 2014, pp. 1–15. isbn: 9781450331432.
doi: 10.1145/2668332.2668336. url: https://doi.org/10.
1145/2668332.2668336.

[MKS14] Reza Madankan, M. Amin Karami, and Puneet Singla. “Uncer-
tainty Analysis of Energy Harvesting Systems”. In: Aug. 2014,
V006T10A066. doi: 10.1115/DETC2014-35480.

https://doi.org/10.1145/2509136.2509546
http://doi.acm.org/10.1145/2509136.2509546
http://doi.acm.org/10.1145/2509136.2509546
https://doi.org/10.1145/2534208.2534216
https://doi.org/10.1145/2534208.2534216
https://doi.org/10.1109/ReCoSoC.2014.6861359
https://doi.org/10.1109/AHS.2014.6880184
https://doi.org/10.1109/TIM.2013.2276487
https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1115/DETC2014-35480

140 BIBLIOGRAPHY

[MBJ14] J. S. Miguel, M. Badr, and N. E. Jerger. “Load Value Approxi-
mation”. In: 2014 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. Dec. 2014, pp. 127–139. doi: 10.1109/
MICRO.2014.22.

[Mit14] Sparsh Mittal. “A survey of architectural techniques for improving
cache power efficiency”. In: Sustainable Computing: Informatics
and Systems 4.1 (2014), pp. 33–43. issn: 2210-5379. doi: https:
//doi.org/10.1016/j.suscom.2013.11.001. url: http://www.
sciencedirect.com/science/article/pii/S2210537913000516.

[Pie+14] Andrea Pietrelli et al. “Wireless Sensor Network Powered by a
Terrestrial Microbial Fuel Cell as a Sustainable Land Monitoring
Energy System”. In: Sustainability 6 (Oct. 2014), pp. 7263–7275.
doi: 10.3390/su6107263.

[RL14] Benjamin Ransford and Brandon Lucia. “Nonvolatile Memory is a
Broken Time Machine”. In: Proceedings of the Workshop on Mem-
ory Systems Performance and Correctness. MSPC ’14. Edinburgh,
United Kingdom: ACM, 2014, 5:1–5:3. isbn: 978-1-4503-2917-0.
doi: 10.1145/2618128.2618136. url: http://doi.acm.org/10.
1145/2618128.2618136.

[Roy+14] Pooja Roy et al. “ASAC: Automatic Sensitivity Analysis for Ap-
proximate Computing”. In: Proceedings of the 2014 SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Sys-
tems. LCTES ’14. Edinburgh, United Kingdom: ACM, 2014, pp. 95–
104. isbn: 978-1-4503-2877-7. doi: 10.1145/2597809.2597812.
url: http://doi.acm.org/10.1145/2597809.2597812.

[Sam+14] Mehrzad Samadi et al. “Paraprox: Pattern-based Approximation
for Data Parallel Applications”. In: SIGPLAN Not. 49.4 (Feb.
2014), pp. 35–50. issn: 0362-1340. doi: 10.1145/2644865.2541948.
url: http://doi.acm.org/10.1145/2644865.2541948.

[Thw+14] B. Thwaites et al. “Rollback-free value prediction with approx-
imate loads”. In: 2014 23rd International Conference on Paral-
lel Architecture and Compilation Techniques (PACT). Aug. 2014,
pp. 493–494. doi: 10.1145/2628071.2628110.

[Zor+14] Davide Zordan et al. “On the Performance of Lossy Compression
Schemes for Energy Constrained Sensor Networking”. In: ACM
Trans. Sen. Netw. 11.1 (Aug. 2014), 15:1–15:34. issn: 1550-4859.
doi: 10.1145/2629660. url: http://doi.acm.org/10.1145/
2629660.

[Bal+15] D. Balsamo et al. “Hibernus: Sustaining Computation During In-
termittent Supply for Energy-Harvesting Systems”. In: IEEE Em-
bedded Systems Letters 7.1 (Mar. 2015), pp. 15–18. issn: 1943-0671.
doi: 10.1109/LES.2014.2371494.

https://doi.org/10.1109/MICRO.2014.22
https://doi.org/10.1109/MICRO.2014.22
https://doi.org/https://doi.org/10.1016/j.suscom.2013.11.001
https://doi.org/https://doi.org/10.1016/j.suscom.2013.11.001
http://www.sciencedirect.com/science/article/pii/S2210537913000516
http://www.sciencedirect.com/science/article/pii/S2210537913000516
https://doi.org/10.3390/su6107263
https://doi.org/10.1145/2618128.2618136
http://doi.acm.org/10.1145/2618128.2618136
http://doi.acm.org/10.1145/2618128.2618136
https://doi.org/10.1145/2597809.2597812
http://doi.acm.org/10.1145/2597809.2597812
https://doi.org/10.1145/2644865.2541948
http://doi.acm.org/10.1145/2644865.2541948
https://doi.org/10.1145/2628071.2628110
https://doi.org/10.1145/2629660
http://doi.acm.org/10.1145/2629660
http://doi.acm.org/10.1145/2629660
https://doi.org/10.1109/LES.2014.2371494

BIBLIOGRAPHY 141

[Gan+15] S. Ganapathy et al. “Mitigating the impact of faults in unreliable
memories for error-resilient applications”. In: 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC). June 2015, pp. 1–6. doi:
10.1145/2744769.2744871.

[Goi+15] Ínhigo Goiri et al. “ApproxHadoop: Bringing Approximations to
MapReduce Frameworks”. In: Proceedings of the ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). Mar. 2015. url: https:
//www.microsoft.com/en-us/research/publication/approxhadoop-

bringing-approximations-to-mapreduce-frameworks/.

[Khu+15] D. S. Khudia et al. “Rumba: An online quality management system
for approximate computing”. In: 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA). June
2015, pp. 554–566. doi: 10.1145/2749469.2750371.

[LR15] Brandon Lucia and Benjamin Ransford. “A Simpler, Safer Pro-
gramming and Execution Model for Intermittent Systems”. In:
SIGPLAN Not. 50.6 (June 2015), pp. 575–585. issn: 0362-1340.
doi: 10.1145/2813885.2737978. url: http://doi.acm.org/10.
1145/2813885.2737978.

[Rah+15a] A. Raha et al. “Quality configurable reduce-and-rank for energy
efficient approximate computing”. In: 2015 Design, Automation
Test in Europe Conference Exhibition (DATE). Mar. 2015, pp. 665–
670. doi: 10.7873/DATE.2015.0569.

[Rah+15b] A. Rahimi et al. “Approximate associative memristive memory for
energy-efficient GPUs”. In: 2015 Design, Automation Test in Eu-
rope Conference Exhibition (DATE). Mar. 2015, pp. 1497–1502.
doi: 10.7873/DATE.2015.0579.

[Rin+15] Michael Ringenburg et al. “Monitoring and Debugging the Qual-
ity of Results in Approximate Programs”. In: SIGPLAN Not. 50.4
(Mar. 2015), pp. 399–411. issn: 0362-1340. doi: 10.1145/2775054.
2694365. url: http://doi.acm.org/10.1145/2775054.2694365.

[RR15] K. Roy and A. Raghunathan. “Approximate Computing: An Energy-
Efficient Computing Technique for Error Resilient Applications”.
In: 2015 IEEE Computer Society Annual Symposium on VLSI.
July 2015, pp. 473–475. doi: 10.1109/ISVLSI.2015.130.

[Sch+15] David Schwalb et al. “nvm malloc: Memory Allocation for NVRAM”.
In: ADMS@VLDB. 2015.

[SSE15] Mark Sutherland, Joshua San Miguel, and Natalie Enright Jerger.
“Texture Cache Approximation on GPUs”. In: June 2015.

[Tal+15] Vamsi Talla et al. “Powering the Next Billion Devices with Wi-
Fi”. In: CoRR abs/1505.06815 (2015). arXiv: 1505.06815. url:
http://arxiv.org/abs/1505.06815.

https://doi.org/10.1145/2744769.2744871
https://www.microsoft.com/en-us/research/publication/approxhadoop-bringing-approximations-to-mapreduce-frameworks/
https://www.microsoft.com/en-us/research/publication/approxhadoop-bringing-approximations-to-mapreduce-frameworks/
https://www.microsoft.com/en-us/research/publication/approxhadoop-bringing-approximations-to-mapreduce-frameworks/
https://doi.org/10.1145/2749469.2750371
https://doi.org/10.1145/2813885.2737978
http://doi.acm.org/10.1145/2813885.2737978
http://doi.acm.org/10.1145/2813885.2737978
https://doi.org/10.7873/DATE.2015.0569
https://doi.org/10.7873/DATE.2015.0579
https://doi.org/10.1145/2775054.2694365
https://doi.org/10.1145/2775054.2694365
http://doi.acm.org/10.1145/2775054.2694365
https://doi.org/10.1109/ISVLSI.2015.130
http://arxiv.org/abs/1505.06815
http://arxiv.org/abs/1505.06815

142 BIBLIOGRAPHY

[Yaz+15] A. Yazdanbakhsh et al. “Axilog: Language support for approximate
hardware design”. In: 2015 Design, Automation Test in Europe
Conference Exhibition (DATE). Mar. 2015, pp. 812–817. doi: 10.
7873/DATE.2015.0513.

[AMP16] Henko Aantjes, Amjad Y. Majid, and Przemys law Pawe lczak. A
Testbed for Transiently Powered Computers. 2016. arXiv: 1606.
07623 [cs.ET].

[Agr+16] A. Agrawal et al. “Approximate computing: Challenges and op-
portunities”. In: 2016 IEEE International Conference on Reboot-
ing Computing (ICRC). Oct. 2016, pp. 1–8. doi: 10.1109/ICRC.
2016.7738674.

[Bha+16] Naveed Anwar Bhatti et al. “Energy Harvesting and Wireless Trans-
fer in Sensor Network Applications: Concepts and Experiences”.
In: ACM Trans. Sen. Netw. 12.3 (Aug. 2016), 24:1–24:40. issn:
1550-4859. doi: 10.1145/2915918. url: http://doi.acm.org/
10.1145/2915918.

[HYW16] Ahmed Haroun, Ichiro Yamada, and S. Warisawa. “Investigation
of Kinetic Energy Harvesting from Human Body Motion Activities
using Free/Impact Based Micro Electromagnetic Generator”. In:
Journal of Diabetes and Cholesterol Metabolism (DCM) 1 (Nov.
2016), pp. 12–16.

[Hes+16] Josiah Hester et al. “Persistent Clocks for Batteryless Sensing De-
vices”. In: ACM Trans. Embed. Comput. Syst. 15.4 (Aug. 2016),
77:1–77:28. issn: 1539-9087. doi: 10.1145/2903140. url: http:
//doi.acm.org/10.1145/2903140.

[Khu+16] D. S. Khudia et al. “Quality Control for Approximate Accelera-
tors by Error Prediction”. In: IEEE Design Test 33.1 (Feb. 2016),
pp. 43–50. issn: 2168-2364. doi: 10.1109/MDAT.2015.2501306.

[MS16] D. May and W. Stechele. “Voltage over-scaling in sequential cir-
cuits for approximate computing”. In: 2016 International Confer-
ence on Design and Technology of Integrated Systems in Nanoscale
Era (DTIS). Apr. 2016, pp. 1–6. doi: 10 . 1109 / DTIS . 2016 .

7483887.

[Mit16] Sparsh Mittal. “A Survey of Techniques for Approximate Comput-
ing”. In: ACM Comput. Surv. 48.4 (Mar. 2016), 62:1–62:33. issn:
0360-0300. doi: 10.1145/2893356. url: http://doi.acm.org/
10.1145/2893356.

[Moh16] Muhammad Sufyian Mohd Azmi. “Accelerator-Based Human Ac-
tivity Recognition Using Voting Technique with NBTree and MLP
Classifiers”. In: vol. 7. Sept. 2016. doi: 10.18517/ijaseit.7.1.
1790.

[San+16] Joshua San Miguel et al. A Systolic Approach to Deriving Anytime
Algorithms for Approximate Computing. Apr. 2016.

https://doi.org/10.7873/DATE.2015.0513
https://doi.org/10.7873/DATE.2015.0513
http://arxiv.org/abs/1606.07623
http://arxiv.org/abs/1606.07623
https://doi.org/10.1109/ICRC.2016.7738674
https://doi.org/10.1109/ICRC.2016.7738674
https://doi.org/10.1145/2915918
http://doi.acm.org/10.1145/2915918
http://doi.acm.org/10.1145/2915918
https://doi.org/10.1145/2903140
http://doi.acm.org/10.1145/2903140
http://doi.acm.org/10.1145/2903140
https://doi.org/10.1109/MDAT.2015.2501306
https://doi.org/10.1109/DTIS.2016.7483887
https://doi.org/10.1109/DTIS.2016.7483887
https://doi.org/10.1145/2893356
http://doi.acm.org/10.1145/2893356
http://doi.acm.org/10.1145/2893356
https://doi.org/10.18517/ijaseit.7.1.1790
https://doi.org/10.18517/ijaseit.7.1.1790

BIBLIOGRAPHY 143

[Vas+16] V. Vassiliadis et al. “Towards automatic significance analysis for
approximate computing”. In: 2016 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO). Mar. 2016,
pp. 182–193.

[VRR16] S. Venkataramani, K. Roy, and A. Raghunathan. “Approximate
Computing”. In: 2016 29th International Conference on VLSI De-
sign and 2016 15th International Conference on Embedded Systems
(VLSID). Jan. 2016, pp. 3–4. doi: 10.1109/VLSID.2016.128.

[ADL17] Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. “Network
Bootstrapping and Leader Election Utilizing the Capture Effect
in Low-power Wireless Networks”. In: Nov. 2017, pp. 1–2. doi:
10.1145/3131672.3137002.

[BM17] Naveed Anwar Bhatti and Luca Mottola. “HarvOS: Efficient Code
Instrumentation for Transiently-Powered Embedded Sensing”. In:
Proceedings of the 16th ACM/IEEE International Conference on
Information Processing in Sensor Networks. IPSN ’17. Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2017, pp. 209–
219. isbn: 9781450348904. doi: 10.1145/3055031.3055082. url:
https://doi.org/10.1145/3055031.3055082.

[Gom+17] Andres Gomez et al. “Efficient, Long-Term Logging of Rich Data
Sensors Using Transient Sensor Nodes”. In: ACM Trans. Embed.
Comput. Syst. 17.1 (Sept. 2017), 4:1–4:23. issn: 1539-9087. doi:
10.1145/3047499. url: http://doi.acm.org/10.1145/3047499.

[Hao+17] Han Hao et al. “GHG Emissions from the Production of Lithium-
Ion Batteries for Electric Vehicles in China”. In: Sustainability 9.4
(2017). issn: 2071-1050. doi: 10.3390/su9040504. url: https:
//www.mdpi.com/2071-1050/9/4/504.

[HS17] Josiah Hester and Jacob Sorber. “The Future of Sensing is Bat-
teryless, Intermittent, and Awesome”. In: Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems. SenSys
’17. Delft, Netherlands: ACM, 2017, 21:1–21:6. isbn: 978-1-4503-
5459-2. doi: 10.1145/3131672.3131699. url: http://doi.acm.
org/10.1145/3131672.3131699.

[HSS17] Josiah Hester, Kevin Storer, and Jacob Sorber. “Timely Execution
on Intermittently Powered Batteryless Sensors”. In: Proceedings of
the 15th ACM Conference on Embedded Network Sensor Systems.
SenSys ’17. Delft, Netherlands: ACM, 2017, 17:1–17:13. isbn: 978-
1-4503-5459-2. doi: 10.1145/3131672.3131673. url: http://
doi.acm.org/10.1145/3131672.3131673.

[Luc+17] Brandon Lucia et al. “Intermittent Computing: Challenges and
Opportunities”. In: SNAPL. 2017.

https://doi.org/10.1109/VLSID.2016.128
https://doi.org/10.1145/3131672.3137002
https://doi.org/10.1145/3055031.3055082
https://doi.org/10.1145/3055031.3055082
https://doi.org/10.1145/3047499
http://doi.acm.org/10.1145/3047499
https://doi.org/10.3390/su9040504
https://www.mdpi.com/2071-1050/9/4/504
https://www.mdpi.com/2071-1050/9/4/504
https://doi.org/10.1145/3131672.3131699
http://doi.acm.org/10.1145/3131672.3131699
http://doi.acm.org/10.1145/3131672.3131699
https://doi.org/10.1145/3131672.3131673
http://doi.acm.org/10.1145/3131672.3131673
http://doi.acm.org/10.1145/3131672.3131673

144 BIBLIOGRAPHY

[MCL17] Kiwan Maeng, Alexei Colin, and Brandon Lucia. “Alpaca: Inter-
mittent Execution Without Checkpoints”. In: Proc. ACM Pro-
gram. Lang. 1.OOPSLA (Oct. 2017), 96:1–96:30. issn: 2475-1421.
doi: 10.1145/3133920. url: http://doi.acm.org/10.1145/
3133920.

[Sen+17] Uvis Senkans et al. “Applications of Energy-Driven Computing:
A Transiently-Powered Wireless Cycle Computer”. In: Nov. 2017.
doi: 10.1145/3142992.3142993.

[VBM17] Theodoros D. Verykios, Domenico Balsamo, and Geoff V. Merrett.
“Exploring energy efficient state retention in transiently-powered
computing systems”. In: IDEA League Doctoral School on Tran-
siently Powered Computing (10/11/17). 2017. url: https://eprints.
soton.ac.uk/414786/.

[AS18] Samira Ataei and James E. Stine. “A 64 kB Approximate SRAM
Architecture for Low-Power Video Applications”. In: IEEE Embed.
Syst. Lett. 10.1 (Mar. 2018), pp. 10–13. issn: 1943-0663. doi: 10.
1109/LES.2017.2750140. url: https://doi.org/10.1109/LES.
2017.2750140.

[CL18] Alexei Colin and Brandon Lucia. “Termination Checking and Task
Decomposition for Task-Based Intermittent Programs”. In: Pro-
ceedings of the 27th International Conference on Compiler Con-
struction. CC 2018. Vienna, Austria: Association for Computing
Machinery, 2018, pp. 116–127. isbn: 9781450356442. doi: 10.1145/
3178372.3179525. url: https://doi.org/10.1145/3178372.
3179525.

[18] “Diffusion of solar photovoltaic systems and electric vehicles among
Dutch consumers: Implications for the energy transition”. In: En-
ergy Research & Social Science 46 (2018), pp. 68–85. issn: 2214-
6296. doi: https://doi.org/10.1016/j.erss.2018.06.003.
url: http://www.sciencedirect.com/science/article/pii/
S2214629618305875%22, %20author%20=%20%22M.J.%20van%

20der%20Kam%20and%20A.A.H.%20Meelen%20and%20W.G.J.H.M.

%20van%20Sark%20and%20F.%20Alkemade.

[Ion18] Adrian Ionescu. “Chapter 8 - Beyond CMOS: Steep-Slope Devices
and Energy Efficient Nanoelectronics”. In: High Mobility Materials
for CMOS Applications. Ed. by Nadine Collaert. Woodhead Pub-
lishing Series in Electronic and Optical Materials. Woodhead Pub-
lishing, 2018, pp. 281–305. isbn: 978-0-08-102061-6. doi: https:
//doi.org/10.1016/B978- 0- 08- 102061- 6.00008- 2. url:
http : / / www . sciencedirect . com / science / article / pii /

B9780081020616000082.

https://doi.org/10.1145/3133920
http://doi.acm.org/10.1145/3133920
http://doi.acm.org/10.1145/3133920
https://doi.org/10.1145/3142992.3142993
https://eprints.soton.ac.uk/414786/
https://eprints.soton.ac.uk/414786/
https://doi.org/10.1109/LES.2017.2750140
https://doi.org/10.1109/LES.2017.2750140
https://doi.org/10.1109/LES.2017.2750140
https://doi.org/10.1109/LES.2017.2750140
https://doi.org/10.1145/3178372.3179525
https://doi.org/10.1145/3178372.3179525
https://doi.org/10.1145/3178372.3179525
https://doi.org/10.1145/3178372.3179525
https://doi.org/https://doi.org/10.1016/j.erss.2018.06.003
http://www.sciencedirect.com/science/article/pii/S2214629618305875%22,%20author%20=%20%22M.J.%20van%20der%20Kam%20and%20A.A.H.%20Meelen%20and%20W.G.J.H.M.%20van%20Sark%20and%20F.%20Alkemade
http://www.sciencedirect.com/science/article/pii/S2214629618305875%22,%20author%20=%20%22M.J.%20van%20der%20Kam%20and%20A.A.H.%20Meelen%20and%20W.G.J.H.M.%20van%20Sark%20and%20F.%20Alkemade
http://www.sciencedirect.com/science/article/pii/S2214629618305875%22,%20author%20=%20%22M.J.%20van%20der%20Kam%20and%20A.A.H.%20Meelen%20and%20W.G.J.H.M.%20van%20Sark%20and%20F.%20Alkemade
http://www.sciencedirect.com/science/article/pii/S2214629618305875%22,%20author%20=%20%22M.J.%20van%20der%20Kam%20and%20A.A.H.%20Meelen%20and%20W.G.J.H.M.%20van%20Sark%20and%20F.%20Alkemade
https://doi.org/https://doi.org/10.1016/B978-0-08-102061-6.00008-2
https://doi.org/https://doi.org/10.1016/B978-0-08-102061-6.00008-2
http://www.sciencedirect.com/science/article/pii/B9780081020616000082
http://www.sciencedirect.com/science/article/pii/B9780081020616000082

BIBLIOGRAPHY 145

[JAD18a] Neal Jackson, Joshua Adkins, and Prabal Dutta. “Reconsidering
Batteries in Energy Harvesting Sensing”. In: Proceedings of the 6th
International Workshop on Energy Harvesting & Energy-Neutral
Sensing Systems. ENSsys ’18. Shenzhen, China: ACM, 2018, pp. 14–
18. isbn: 978-1-4503-6047-0. doi: 10 . 1145 / 3279755 . 3279757.
url: http://doi.acm.org/10.1145/3279755.3279757.

[JAD18b] Neal Jackson, Joshua Adkins, and Prabal Dutta. “Reconsidering
Batteries in Energy Harvesting Sensing”. In: Proceedings of the 6th
International Workshop on Energy Harvesting & Energy-Neutral
Sensing Systems. ENSsys ’18. Shenzhen, China: ACM, 2018, pp. 14–
18. isbn: 978-1-4503-6047-0. doi: 10 . 1145 / 3279755 . 3279757.
url: http://doi.acm.org/10.1145/3279755.3279757.

[ML18] Kiwan Maeng and Brandon Lucia. “Adaptive Dynamic Check-
pointing for Safe Efficient Intermittent Computing”. In: Proceed-
ings of the 12th USENIX Conference on Operating Systems Design
and Implementation. OSDI’18. Carlsbad, CA, USA: USENIX As-
sociation, 2018, pp. 129–144. isbn: 978-1-931971-47-8. url: http:
//dl.acm.org/citation.cfm?id=3291168.3291178.

[Mor+18] T. Moreau et al. “A Taxonomy of General Purpose Approximate
Computing Techniques”. In: IEEE Embedded Systems Letters 10.1
(Mar. 2018), pp. 2–5. issn: 1943-0671. doi: 10.1109/LES.2017.
2758679.

[RAP18] Francesco Regazzoni, Cesare Alippi, and Ilia Polian. “Security:
The Dark Side of Approximate Computing?” In: Proceedings of
the International Conference on Computer-Aided Design. ICCAD
’18. San Diego, California: Association for Computing Machinery,
2018. isbn: 9781450359504. doi: 10.1145/3240765.3243497. url:
https://doi.org/10.1145/3240765.3243497.

[XS18] Siyuan Xu and Benjamin Schäfer. “Toward Self-Tunable Approx-
imate Computing”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems PP (Dec. 2018), pp. 1–12. doi: 10.
1109/TVLSI.2018.2884848.

[YAK18] S. Yesil, I. Akturk, and U. R. Karpuzcu. “Toward Dynamic Pre-
cision Scaling”. In: IEEE Micro 38.4 (July 2018), pp. 30–39. issn:
1937-4143. doi: 10.1109/MM.2018.043191123.

[Yun+18] Kasundefinedm Sinan Yundefinedldundefinedrundefinedm et al. “InK:
Reactive Kernel for Tiny Batteryless Sensors”. In: Proceedings of
the 16th ACM Conference on Embedded Networked Sensor Sys-
tems. SenSys ’18. Shenzhen, China: Association for Computing
Machinery, 2018, pp. 41–53. isbn: 9781450359528. doi: 10.1145/
3274783.3274837. url: https://doi.org/10.1145/3274783.
3274837.

https://doi.org/10.1145/3279755.3279757
http://doi.acm.org/10.1145/3279755.3279757
https://doi.org/10.1145/3279755.3279757
http://doi.acm.org/10.1145/3279755.3279757
http://dl.acm.org/citation.cfm?id=3291168.3291178
http://dl.acm.org/citation.cfm?id=3291168.3291178
https://doi.org/10.1109/LES.2017.2758679
https://doi.org/10.1109/LES.2017.2758679
https://doi.org/10.1145/3240765.3243497
https://doi.org/10.1145/3240765.3243497
https://doi.org/10.1109/TVLSI.2018.2884848
https://doi.org/10.1109/TVLSI.2018.2884848
https://doi.org/10.1109/MM.2018.043191123
https://doi.org/10.1145/3274783.3274837
https://doi.org/10.1145/3274783.3274837
https://doi.org/10.1145/3274783.3274837
https://doi.org/10.1145/3274783.3274837

146 BIBLIOGRAPHY

[Ahm+19] Saad Ahmed et al. “The Betrayal of Constant Power x Time: Find-
ing the Missing Joules of Transiently-powered Computers”. In:
Proceedings of the 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Sys-
tems. LCTES 2019. Phoenix, AZ, USA: ACM, 2019, pp. 97–109.
isbn: 978-1-4503-6724-0. doi: 10.1145/3316482.3326348. url:
http://doi.acm.org/10.1145/3316482.3326348.

[Bal+19] D. Balsamo et al. “Energy Harvesting Meets IoT: Fuelling Adop-
tion of Transient Computing in Embedded Systems”. In: 2019
IEEE 5th World Forum on Internet of Things (WF-IoT). Apr.
2019, pp. 413–417. doi: 10.1109/WF-IoT.2019.8767302.

[Che+19] S. Cherubin et al. “TAFFO: Tuning Assistant for Floating to Fixed
point Optimization”. In: IEEE Embedded Systems Letters (2019),
pp. 1–1. issn: 1943-0671. doi: 10.1109/LES.2019.2913774.

[Den+19] B. W. Denkinger et al. “Impact of Memory Voltage Scaling on
Accuracy and Resilience of Deep Learning Based Edge Devices”.
In: IEEE Design Test (2019), pp. 1–1. issn: 2168-2364. doi: 10.
1109/MDAT.2019.2947282.

[GD19] Shubhangi K. Gawali and Mukund K. Deshmukh. “Energy Au-
tonomy in IoT Technologies”. In: Energy Procedia 156 (2019). 5th
International Conference on Power and Energy Systems Engineer-
ing (CPESE 2018), pp. 222–226. issn: 1876-6102. doi: https://
doi.org/10.1016/j.egypro.2018.11.132. url: http://www.
sciencedirect.com/science/article/pii/S1876610218310920.

[Ima+19] M. Imani et al. “Resistive CAM Acceleration for Tunable Approx-
imate Computing”. In: IEEE Transactions on Emerging Topics
in Computing 7.2 (Apr. 2019), pp. 271–280. issn: 2376-4562. doi:
10.1109/TETC.2016.2642057.

[ILN19] Bashima Islam, Yubo Luo, and Shahriar Nirjon. Zygarde: Time-
Sensitive On-Device Deep Intelligence on Intermittently-Powered
Systems. May 2019.

[Kri+19] A. S. Krishnan et al. “Secure Intermittent Computing Protocol:
Protecting State Across Power Loss”. In: 2019 Design, Automation
Test in Europe Conference Exhibition (DATE). Mar. 2019, pp. 734–
739. doi: 10.23919/DATE.2019.8714997.

[Lan+19] L. Lan et al. “Scaling Up Kernel SVM on Limited Resources:
A Low-Rank Linearization Approach”. In: IEEE Transactions on
Neural Networks and Learning Systems 30.2 (Feb. 2019), pp. 369–
378. issn: 2162-2388. doi: 10.1109/TNNLS.2018.2838140.

https://doi.org/10.1145/3316482.3326348
http://doi.acm.org/10.1145/3316482.3326348
https://doi.org/10.1109/WF-IoT.2019.8767302
https://doi.org/10.1109/LES.2019.2913774
https://doi.org/10.1109/MDAT.2019.2947282
https://doi.org/10.1109/MDAT.2019.2947282
https://doi.org/https://doi.org/10.1016/j.egypro.2018.11.132
https://doi.org/https://doi.org/10.1016/j.egypro.2018.11.132
http://www.sciencedirect.com/science/article/pii/S1876610218310920
http://www.sciencedirect.com/science/article/pii/S1876610218310920
https://doi.org/10.1109/TETC.2016.2642057
https://doi.org/10.23919/DATE.2019.8714997
https://doi.org/10.1109/TNNLS.2018.2838140

BIBLIOGRAPHY 147

[ML19] Kiwan Maeng and Brandon Lucia. “Supporting Peripherals in In-
termittent Systems with Just-in-time Checkpoints”. In: Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI 2019. Phoenix, AZ, USA:
ACM, 2019, pp. 1101–1116. isbn: 978-1-4503-6712-7. doi: 10 .

1145/3314221.3314613. url: http://doi.acm.org/10.1145/
3314221.3314613.

[Mai+19] Andrea Maioli et al. “On Intermittence Bugs in the Battery-less
Internet of Things (WIP Paper)”. In: Proceedings of the 20th ACM
SIGPLAN/SIGBED International Conference on Languages, Com-
pilers, and Tools for Embedded Systems. LCTES 2019. Phoenix,
AZ, USA: ACM, 2019, pp. 203–207. isbn: 978-1-4503-6724-0. doi:
10.1145/3316482.3326346. url: http://doi.acm.org/10.

1145/3316482.3326346.

[OU19a] Y. Ono and K. Usami. “Approximate Computing Technique Us-
ing Memoization and Simplified Multiplication”. In: 2019 34th In-
ternational Technical Conference on Circuits/Systems, Computers
and Communications (ITC-CSCC). June 2019, pp. 1–4. doi: 10.
1109/ITC-CSCC.2019.8793369.

[OU19b] Y. Ono and K. Usami. “Approximate Computing Technique Us-
ing Memoization and Simplified Multiplication”. In: 2019 34th In-
ternational Technical Conference on Circuits/Systems, Computers
and Communications (ITC-CSCC). June 2019, pp. 1–4. doi: 10.
1109/ITC-CSCC.2019.8793369.

[20a] https://www.comm.utoronto.ca/~dimitris/ece431/slidingdft.

pdf. 2005 (accessed March 6, 2020).

[20b] https : / / www . electronicdesign . com / power - management /

article/21796369/energy-harvesting-and-wireless-sensor-

networks-drive-industrial-applications. 2013 (accessed jan-
uary 6, 2020).

[20c] https://web.stanford.edu/group/sisl/k12/optimization/

MO- unit3- pdfs/3.1introandgraphical.pdf. 2013 (accessed
january 6, 2020).

[20d] https://www.machinedesign.com/mechanical-motion-systems/

article/21829396/sensor-noise-limits-resolution-when-

monitoring-motion. 2009 (accessed january 6, 2020).

[20e] http://ipl.physics.harvard.edu/wp-uploads/2013/03/PS3_

Error_Propagation_sp13.pdf. 2009 (accessed january 6, 2020).

[19a] https://eu.mouser.com/applications/energy-harvesting-

new-applications/. 2015 (accessed October 12, 2019).

[19b] https://homes.cs.washington.edu/~wysem/publications/

react-wax15.pdf. 2015 (accessed October 12, 2019).

https://doi.org/10.1145/3314221.3314613
https://doi.org/10.1145/3314221.3314613
http://doi.acm.org/10.1145/3314221.3314613
http://doi.acm.org/10.1145/3314221.3314613
https://doi.org/10.1145/3316482.3326346
http://doi.acm.org/10.1145/3316482.3326346
http://doi.acm.org/10.1145/3316482.3326346
https://doi.org/10.1109/ITC-CSCC.2019.8793369
https://doi.org/10.1109/ITC-CSCC.2019.8793369
https://doi.org/10.1109/ITC-CSCC.2019.8793369
https://doi.org/10.1109/ITC-CSCC.2019.8793369
 https://www.comm.utoronto.ca/~dimitris/ece431/slidingdft.pdf
 https://www.comm.utoronto.ca/~dimitris/ece431/slidingdft.pdf
 https://www.electronicdesign.com/power-management/article/21796369/energy-harvesting-and-wireless-sensor-networks-drive-industrial-applications
 https://www.electronicdesign.com/power-management/article/21796369/energy-harvesting-and-wireless-sensor-networks-drive-industrial-applications
 https://www.electronicdesign.com/power-management/article/21796369/energy-harvesting-and-wireless-sensor-networks-drive-industrial-applications
 https://web.stanford.edu/group/sisl/k12/optimization/MO-unit3-pdfs/3.1introandgraphical.pdf
 https://web.stanford.edu/group/sisl/k12/optimization/MO-unit3-pdfs/3.1introandgraphical.pdf
 https://www.machinedesign.com/mechanical-motion-systems/article/21829396/sensor-noise-limits-resolution-when-monitoring-motion
 https://www.machinedesign.com/mechanical-motion-systems/article/21829396/sensor-noise-limits-resolution-when-monitoring-motion
 https://www.machinedesign.com/mechanical-motion-systems/article/21829396/sensor-noise-limits-resolution-when-monitoring-motion
 http://ipl.physics.harvard.edu/wp-uploads/2013/03/PS3_Error_Propagation_sp13.pdf
 http://ipl.physics.harvard.edu/wp-uploads/2013/03/PS3_Error_Propagation_sp13.pdf
https://eu.mouser.com/applications/energy-harvesting-new-applications/
https://eu.mouser.com/applications/energy-harvesting-new-applications/
https://homes.cs.washington.edu/~wysem/publications/react-wax15.pdf
https://homes.cs.washington.edu/~wysem/publications/react-wax15.pdf

148 BIBLIOGRAPHY

[19c] https://www.mckinsey.it/file/7259/download?token=B-

JxyzW7. 2017 (accessed October 12, 2019).

[19d] https://www.sagentia.com/files/2015/12/Energy-Harvesting.

pdf. 2011 (accessed December 4, 2019).

[19e] https://lora-alliance.org/about-lorawan. 2015 (accessed
December 1, 2019).

[19f] http://www.mit.edu/~turitsyn/assets/pubs/Hosseinloo2016hf.

pdf. 2016 (accessed December 1, 2019).

[19g] https://www.st.com/en/microcontrollers-microprocessors/

stm32h7-series.html. 2016 (accessed December 2, 2019).

[19h] https://corporate.delltechnologies.com/en-us/newsroom/

announcements/2011/06/20110628-01.htm. 2011 (accessed De-
cember 7, 2019).

[19i] https://www.britannica.com/technology/Moores-law. 2011
(accessed December 7, 2019).

[19j] https://www.mckinsey.com/industries/technology-media-

and- telecommunications/our- insights/new- demand- new-

markets-what-edge-computing-means-for-hardware-companies.
2017 (accessed December 2, 2019).

[19k] https://www.mckinsey.com/industries/semiconductors/

our- insights/the- internet- of- things- sizing- up- the-

opportunity. 2015 (accessed December 4, 2019).

[19l] https://www.digikey.com/en/articles/techzone/2012/aug/

powering- microcontrollers- with- scavenged- energy. 2018
(accessed December 2, 2019).

[19m] https://www.ey.com/Publication/vwLUAssets/EY_-_Future_

of_IoT/$FILE/EY-future-of-lot.pdf. 2017 (accessed December
3, 2019).

[19n] https://www.tudelft.nl/en/technology-transfer/development-

innovation/research-exhibition-projects/energy-harvesting/.
2017 (accessed December 3, 2019).

[19o] http://www.ti.com/microcontrollers/msp430-ultra-low-

power-mcus/overview.html. 2019 (accessed December 2, 2019).

[19p] http://www.diva-portal.org/smash/get/diva2:1333932/

FULLTEXT01.pdf. 2019 (accessed December 3, 2019).

[19q] https://sci.esa.int/web/sci- ft/- /50124- technology-

readiness-level. 2019 (accessed December 3, 2019).

[19r] https://www.mckinsey.com/featured-insights/artificial-

intelligence/notes-from-the-ai-frontier-applications-

and - value - of - deep - learning. 2018 (accessed December 7,
2019).

https://www.mckinsey.it/file/7259/download?token=B-JxyzW7
https://www.mckinsey.it/file/7259/download?token=B-JxyzW7
https://www.sagentia.com/files/2015/12/Energy-Harvesting.pdf
https://www.sagentia.com/files/2015/12/Energy-Harvesting.pdf
https://lora-alliance.org/about-lorawan
http://www.mit.edu/~turitsyn/assets/pubs/Hosseinloo2016hf.pdf
http://www.mit.edu/~turitsyn/assets/pubs/Hosseinloo2016hf.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
https://corporate.delltechnologies.com/en-us/newsroom/announcements/2011/06/20110628-01.htm
https://corporate.delltechnologies.com/en-us/newsroom/announcements/2011/06/20110628-01.htm
https://www.britannica.com/technology/Moores-law
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/new-demand-new-markets-what-edge-computing-means-for-hardware-companies
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/new-demand-new-markets-what-edge-computing-means-for-hardware-companies
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/new-demand-new-markets-what-edge-computing-means-for-hardware-companies
https://www.mckinsey.com/industries/semiconductors/our-insights/the-internet-of-things-sizing-up-the-opportunity
https://www.mckinsey.com/industries/semiconductors/our-insights/the-internet-of-things-sizing-up-the-opportunity
https://www.mckinsey.com/industries/semiconductors/our-insights/the-internet-of-things-sizing-up-the-opportunity
https://www.digikey.com/en/articles/techzone/2012/aug/powering-microcontrollers-with-scavenged-energy
https://www.digikey.com/en/articles/techzone/2012/aug/powering-microcontrollers-with-scavenged-energy
https://www.ey.com/Publication/vwLUAssets/EY_-_Future_of_IoT/$FILE/EY-future-of-lot.pdf
https://www.ey.com/Publication/vwLUAssets/EY_-_Future_of_IoT/$FILE/EY-future-of-lot.pdf
https://www.tudelft.nl/en/technology-transfer/development-innovation/research-exhibition-projects/energy-harvesting/
https://www.tudelft.nl/en/technology-transfer/development-innovation/research-exhibition-projects/energy-harvesting/
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
http://www.diva-portal.org/smash/get/diva2:1333932/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1333932/FULLTEXT01.pdf
https://sci.esa.int/web/sci-ft/-/50124-technology-readiness-level
https://sci.esa.int/web/sci-ft/-/50124-technology-readiness-level
https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning
https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning
https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning

BIBLIOGRAPHY 149

[19s] https://www.fisica.uniroma2.it/~solare/en/wp-content/

uploads/2018/12/Lez_12_Noises.pdf. 2018 (accessed December
7, 2019).

[19t] https://www.tutorialspoint.com/digital_communication/

digital_communication_quantization.htm. 2018 (accessed De-
cember 7, 2019).

[19u] https://www.weforum.org/agenda/2019/04/how-much-data-

is-generated-each-day-cf4bddf29f/. 2019 (accessed December
7, 2019).

[19v] https://hbr.org/resources/pdfs/comm/siemens/Acceleratingtheiot.

pdf. 2019 (accessed December 7, 2019).

[19w] https : / / www . fierceelectronics . com / sensors / what - a -

sensor. 2019 (accessed December 7, 2019).

[19x] https : / / www . bloomberg . com / press - releases / 2019 - 06 -

28/mobile-robotics-market-expected-to-attain-39-58-

billion-globally-by-2026-at-21-5-cagr-allied-market-

research. 2019 (accessed December 7, 2019).

[19y] https://www.arm.com/why-arm/custom-socs. 2019 (accessed
December 8, 2019).

[20f] https://www.iis.fraunhofer.de/en/ff/kom/iot/embedded-

ml.html. 2020 (accessed january 24, 2020).

[20g] https://www.quora.com/What-is-the-relationship-between-

machine- learning- and- probability- theory. 2015 (accessed
january 24, 2020).

[19z] https://stackoverflow.com/questions/3038999/what-is-

the - cost - of - memory - access. 2014 (accessed December 12,
2019).

[19aa] https://wapco.e-ce.uth.gr/2015/papers/SESSION3/WAPCO_

3_3.pdf. 2014 (accessed December 12, 2019).

[19ab] https://parsec.cs.princeton.edu/. 2010 (accessed December
26, 2019).

[19ac] https://www.microsoft.com/en-us/research/wp-content/

uploads/2016/12/green.pdf. 2016 (accessed December 12, 2019).

[19ad] https://web.archive.org/web/20140305080324/http://

glossary.computing.society.informs.org/index.php?page=

nature.html. 2006 (accessed December 25, 2019).

[20h] https://www.projectrhea.org/rhea/index.php/Lecture_

12_-_Support_Vector_Machine_and_Quadratic_Optimization_

Problem_OldKiwi. 2011 (accessed february 2, 2020).

[20i] https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.

pdf. 2012 (accessed february 4, 2020).

https://www.fisica.uniroma2.it/~solare/en/wp-content/uploads/2018/12/Lez_12_Noises.pdf
https://www.fisica.uniroma2.it/~solare/en/wp-content/uploads/2018/12/Lez_12_Noises.pdf
https://www.tutorialspoint.com/digital_communication/digital_communication_quantization.htm
https://www.tutorialspoint.com/digital_communication/digital_communication_quantization.htm
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://hbr.org/resources/pdfs/comm/siemens/Acceleratingtheiot.pdf
https://hbr.org/resources/pdfs/comm/siemens/Acceleratingtheiot.pdf
https://www.fierceelectronics.com/sensors/what-a-sensor
https://www.fierceelectronics.com/sensors/what-a-sensor
https://www.bloomberg.com/press-releases/2019-06-28/mobile-robotics-market-expected-to-attain-39-58-billion-globally-by-2026-at-21-5-cagr-allied-market-research
https://www.bloomberg.com/press-releases/2019-06-28/mobile-robotics-market-expected-to-attain-39-58-billion-globally-by-2026-at-21-5-cagr-allied-market-research
https://www.bloomberg.com/press-releases/2019-06-28/mobile-robotics-market-expected-to-attain-39-58-billion-globally-by-2026-at-21-5-cagr-allied-market-research
https://www.bloomberg.com/press-releases/2019-06-28/mobile-robotics-market-expected-to-attain-39-58-billion-globally-by-2026-at-21-5-cagr-allied-market-research
https://www.arm.com/why-arm/custom-socs
 https://www.iis.fraunhofer.de/en/ff/kom/iot/embedded-ml.html
 https://www.iis.fraunhofer.de/en/ff/kom/iot/embedded-ml.html
 https://www.quora.com/What-is-the-relationship-between-machine-learning-and-probability-theory
 https://www.quora.com/What-is-the-relationship-between-machine-learning-and-probability-theory
https://stackoverflow.com/questions/3038999/what-is-the-cost-of-memory-access
https://stackoverflow.com/questions/3038999/what-is-the-cost-of-memory-access
https://wapco.e-ce.uth.gr/2015/papers/SESSION3/WAPCO_3_3.pdf
https://wapco.e-ce.uth.gr/2015/papers/SESSION3/WAPCO_3_3.pdf
 https://parsec.cs.princeton.edu/
 https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/green.pdf
 https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/green.pdf
 https://web.archive.org/web/20140305080324/http://glossary.computing.society.informs.org/index.php?page=nature.html
 https://web.archive.org/web/20140305080324/http://glossary.computing.society.informs.org/index.php?page=nature.html
 https://web.archive.org/web/20140305080324/http://glossary.computing.society.informs.org/index.php?page=nature.html
 https://www.projectrhea.org/rhea/index.php/Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem_OldKiwi
 https://www.projectrhea.org/rhea/index.php/Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem_OldKiwi
 https://www.projectrhea.org/rhea/index.php/Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem_OldKiwi
 https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
 https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

150 BIBLIOGRAPHY

[20j] http://mathworld.wolfram.com/Covariance.html. 2020 (ac-
cessed february 8, 2020).

[20k] https : / / scikit - learn . org / stable / modules / generated /

sklearn . multiclass . OneVsRestClassifier . html. 2017 (ac-
cessed february 8, 2020).

[20l] https : / / scikit - learn . org / stable / modules / generated /

sklearn.multiclass.OneVsOneClassifier.html. 2017 (accessed
february 8, 2020).

[20m] https://www.scipy.org/. 2020 (accessed February 23, 2020).

[20n] https://processors.wiki.ti.com/index.php/Floating_

Point_Optimization. 2018 (accessed February 20, 2020).

[19ae] http://apps.webofknowledge.com/RAMore.do?product=WOS&

search_mode=GeneralSearch&SID=D6SkDp21hSVXAGAIBBq&qid=

1&ra_mode=more&ra_name=PublicationYear&colName=WOS&

viewType=raMore. 2010 (accessed November 15, 2019).

[20o] https://github.com/contiki-ng/mspsim. 2017 (accessed Febru-
ary 24, 2020).

[19af] https://spqr.eecs.umich.edu/papers/ransford-thesis.pdf.
2013 (accessed November 15, 2019).

[20p] https://github.com/fbambusi/thesis. 2019 (accessed February
24, 2020).

[20q] https://stats.stackexchange.com/questions/81715/prove-

that-covariance-matrix-is-diagonal-after-pca-transformation.
2014 (accessed February 29, 2020).

[19ag] https://www.enocean.com/fileadmin/redaktion/pdf/white_

paper/White_Paper_EnOcean_Cost_of_Batteries.pdf. 2015
(accessed November 14, 2019).

[20r] https://arxiv.org/pdf/1605.02541.pdf. 2017 (accessed Febru-
ary 28, 2020).

[20s] https://www.kaggle.com/machinoai/datasets- hra- lstm.
2017 (accessed February 29, 2020).

[19ah] https://my.eng.utah.edu/~cs7810/pres/14-7810-02.pdf.
2016 (accessed November 16, 2019).

[19ai] https://www.samsung.com/it/smartphones/galaxy- s10/

specs/. 2016 (accessed November 16, 2019).

[19aj] https://www.ineltro.ch/media/downloads/SAAItem/45/

45958/36e3e7f3- 2049- 4adb- a2a7- 79c654d92915.pdf. 2016
(accessed November 16, 2019).

[19ak] https://eu.mouser.com/ProductDetail/Texas-Instruments/

MSP-EXP430G2. 2016 (accessed November 16, 2019).

 http://mathworld.wolfram.com/Covariance.html
 https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
 https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
 https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsOneClassifier.html
 https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsOneClassifier.html
 https://www.scipy.org/
 https://processors.wiki.ti.com/index.php/Floating_Point_Optimization
 https://processors.wiki.ti.com/index.php/Floating_Point_Optimization
http://apps.webofknowledge.com/RAMore.do?product=WOS&search_mode=GeneralSearch&SID=D6SkDp21hSVXAGAIBBq&qid=1&ra_mode=more&ra_name=PublicationYear&colName=WOS&viewType=raMore
http://apps.webofknowledge.com/RAMore.do?product=WOS&search_mode=GeneralSearch&SID=D6SkDp21hSVXAGAIBBq&qid=1&ra_mode=more&ra_name=PublicationYear&colName=WOS&viewType=raMore
http://apps.webofknowledge.com/RAMore.do?product=WOS&search_mode=GeneralSearch&SID=D6SkDp21hSVXAGAIBBq&qid=1&ra_mode=more&ra_name=PublicationYear&colName=WOS&viewType=raMore
http://apps.webofknowledge.com/RAMore.do?product=WOS&search_mode=GeneralSearch&SID=D6SkDp21hSVXAGAIBBq&qid=1&ra_mode=more&ra_name=PublicationYear&colName=WOS&viewType=raMore
 https://github.com/contiki-ng/mspsim
https://spqr.eecs.umich.edu/papers/ransford-thesis.pdf
 https://github.com/fbambusi/thesis
 https://stats.stackexchange.com/questions/81715/prove-that-covariance-matrix-is-diagonal-after-pca-transformation
 https://stats.stackexchange.com/questions/81715/prove-that-covariance-matrix-is-diagonal-after-pca-transformation
https://www.enocean.com/fileadmin/redaktion/pdf/white_paper/White_Paper_EnOcean_Cost_of_Batteries.pdf
https://www.enocean.com/fileadmin/redaktion/pdf/white_paper/White_Paper_EnOcean_Cost_of_Batteries.pdf
 https://arxiv.org/pdf/1605.02541.pdf
 https://www.kaggle.com/machinoai/datasets-hra-lstm
https://my.eng.utah.edu/~cs7810/pres/14-7810-02.pdf
https://www.samsung.com/it/smartphones/galaxy-s10/specs/
https://www.samsung.com/it/smartphones/galaxy-s10/specs/
https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf
https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf
https://eu.mouser.com/ProductDetail/Texas-Instruments/MSP-EXP430G2
https://eu.mouser.com/ProductDetail/Texas-Instruments/MSP-EXP430G2

BIBLIOGRAPHY 151

[19al] https://www.espressif.com/sites/default/files/documentation/

esp32_datasheet_en.pdf. 2018 (accessed November 24, 2019).

[20t] https://parsec.cs.princeton.edu/download.htm. 2020 (ac-
cessed february 13, 2020).

[20u] archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+

Using+Smartphones. 2013 (accessed September 10, 2020).

[GBL14] ”Säıcha Gerbinet, Sandra Belboom, and Angélique Léonard”. “”Life
Cycle Analysis (LCA) of photovoltaic panels: A review””. In: ”Re-
newable and Sustainable Energy Reviews” ”38” (”2014”), ”747–
753”. issn: ”1364-0321”. doi: "https://doi.org/10.1016/j.
rser.2014.07.043". url: http://www.sciencedirect.com/
science/article/pii/S136403211400495X.

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
 https://parsec.cs.princeton.edu/download.htm
 archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
 archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://doi.org/"https://doi.org/10.1016/j.rser.2014.07.043"
https://doi.org/"https://doi.org/10.1016/j.rser.2014.07.043"
http://www.sciencedirect.com/science/article/pii/S136403211400495X
http://www.sciencedirect.com/science/article/pii/S136403211400495X

