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Abstract

While exponential growth in public genomics data can afford great insights
into biological processes underlying diseases, a lack of structured metadata
often impedes its timely discovery for analysis. In the Gene Expression
Omnibus, for example, descriptions of genomic samples lack structure, with
different terminology (such as “breast cancer”,“breast tumor”, and “malig-
nant neoplasm of breast”) used to express the same concept. To remedy
this, two models were learnt to extract salient information from this tex-
tual metadata. Rather than treating the problem as classification or named
entity recognition, it has been modeled as machine translation, leveraging
state-of-the-art sequence-to-sequence (seq2seq) models to directly map un-
structured input into a structured text format. The application of such
models greatly simplifies training and allows for imputation of output fields
that are implied but never explicitly mentioned in the input text. Two types
of seq2seq models have been experimented: an LSTM with attention and
a transformer (in particular GPT-2), noting that the latter out-performs
a multi-label classification approach, also using a transformer architecture
(RoBERTa). The GPT-2 model showed a surprising ability to predict at-
tributes with a large set of possible values, often inferring the correct value
for unmentioned attributes. The models were evaluated in both homoge-
neous and heterogeneous training/testing environments,indicating the effi-
cacy of the transformer-based seq2seq approach for real data integration
applications.
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Sommario

Nonostante la crescita esponenziale di archivi pubblici di dati genomici
possa facilitare il processo di scoperta di fattori genomici che determinano
malattie, la mancanza di una struttura nei metadati spesso impedisce agisce
da freno. Gene Expression Omnibus, per esempio, raccoglie descrizioni di
campioni genomici che mancano di struttura, presentando spesso diverse
terminologie per indicare lo stesso concetto (“Breast cancer”, “Breast tu-
mor”, “malignant neoplasm of breast” ecc.). Per far fronte a questo prob-
lema, questa tesi presenta la sperimentazione di modelli basati su reti neu-
rali che, attraverso il Machine Learning, estraggono l’informazione rilevante
dalla descrizione testuale di campioni. Invece di trattare il problema come
classificazione o Named Entity Recognition, questo é stato modellato come
Machine Translation, utilizzando lo stato dell’arte dei modelli Sequence-to-
Sequence (seq2seq) per mappare direttamente il testo d’ingresso - privo di
struttura - ad un formato di testo strutturato. L’uso dei suddetti modelli
semplifica enormemente la fase di training e permette l’identificazione di
campi d’uscita che erano deducibili, ma mai esplicitati nel testo d’ingresso.
Due tipi di modelli di traduzione sono stati sperimentati: una rete neurale
basata sulla struttura Encoder-Decoder che sfrutta LSTM e il meccanismo
di attenzione; e un modello basato sulle celle Transformer (nello specifico
il GPT-2); notando come quest’ultimo sia in grado di superare le perfor-
mances di un classificatore multi-label, anch’esso basato sui Transformers
(RoBERTa) . Il GPT-2 ha mostrato capacitá soprendenti nel predire at-
tributi con una vasta gamma di possibili valori, spesso inferendo il valore
corretto da altri attributi non specificati nel testo d’ingresso. I modelli sono
stati valutati in ambienti di allenamento/test sia omogenei che eterogenei,
denotando l’efficacia del modello seq2seq basato sui transformers in reali
applicazioni di integrazione di dati.
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Chapter 1

Introduction

1.1 Overview

Next generation sequencing (NGS) technologies are producing data with sig-
nificantly higher throughput and lower cost. As a result, recent years have
seen an exponential growth in publicly available gene expression datasets
such as NCBI’s GEO [1] or SRA [18]. These repositories hold great value
in terms of research possibilities, particularly when integrated with one an-
other. Data integration has become one of the biggest challenges for genomic
repositories, mostly due to the heterogeneity of databases structures. The
lack of standardization for metadata has brought each consortium to en-
force some rules autonomously, often proposing a poor conceptual model
which makes it impossible for researchers to perform adequate queries on
those repositories. The GeCo project has proposed a standard for genomic
metadata, the Genomic Conceptual Model (GCM)[4] to homogeneously de-
scribe semantically heterogeneous data and lay the groundwork for providing
data interoperability, which, coupled with the GenoMetric Query Language
(GMQL) [2], a high-level, declarative query language, used to query thou-
sands of samples of processed data, provides a useful tool for researchers
in the biological and bioengineering field. One of the main focuses of the
project consists in the integration of data from other sources, such as the
above-mentioned GEO, which collects millions of genomic samples and the
associated metadata, collected under few, generic fields which make the in-
tegration process very hard to execute without human intervention. While
the GCM contains very specific attributes for metadata (such as “Age”,
“Tissue”, “Cell Line”), allowing a large number of different types of queries,
GEO contains only some generic fields such as “Characteristics” or “De-
scription” filled with a long, plain text description of the genomic sample
of reference. The large number of samples collected into GEO database has
increased the weight of the problem, making it the curse of the repository



and pushing a lot of effort on finding a solution for this problem.
Different strategies for annotating and curating GEO database metadata

have been developed in the last years. They can be essentially divided into
three main categories: manual curation, extraction of metadata from the
gene expression profiles information and automated natural language pro-
cessing (NLP) techniques which extract information from the above men-
tioned generic fields of interest[35]. Manual metadata curation, despite be-
ing the most accurate method to infer knowledge, is time-consuming and
practically unfeasible, as the volume of biological data grows rapidly. The
extraction from gene expressions reduces the accuracy so much that some
information can’t be mined. Natural Language Processing techniques seem
to be the more promising way to solve the problem. The related work sec-
tion will show that the major contributions approached only small sub-tasks,
such as the identification of a single label. In addition, the chapter will high-
light the strengths and weaknesses of each methodology, pointing out the
need for a system which uses new techniques able to overcome the problems
of the state of the art and capable of handling the more tasks possible. This
thesis presents a novel approach to the metadata integration task through
NLP and it proves that the embraced methodology is superior to previous
literature from an accuracy and generalization point of view. The type of
models used in this thesis is Sequence-to-Sequence models; in particular,
two of them were trained and tested: an LSTM-based encoder/decoder [21]
and OpenAI GPT-2 [25].

The work is performed through 2 different experiments, both being a
comparison between the proposed models and a multi-label classification
approach; the first experiment was performed on Cistrome data [22], a col-
lection of more than 44.000 samples labeled with four attributes; the second
experiment was performed on ENCODE data [16], one of the major ge-
nomic archive which allowed downloading more than 16.000 samples with
the associated sixteen different labels. The two experiments aimed to prove
the effectiveness of seq-to-seq models highlighting the strengths of the pro-
posed approach with respect to the most standard classification. The results
showed that seq-to-seq models can reach higher performances with respect
to the state of the art and the baseline classifier, being able to extract correct
information even with a messy input text that could trick a human reader.
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1.2 Summary

The thesis is structured as follows:

• Chapter 2 lays the ground for the methods and the technologies used
in following chapters. In this chapter the task and the main research
questions are described.

• Chapter 3 exposes the related works for the given task.

• Chapter 4 describes the approach adopted to face the task, focusing
on data format and proposed models.

• Chapter 5 presents the details of the datasets used for the experiments

• Chapter 6 describes the experiments performed and an answer to the
research questions will be given.

• Chapter 7 resumes the work done and draws the conclusions
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Chapter 2

Background

In this chapter we present the background knowledge necessary for a full
understanding of the experiments and results exposed in this thesis. The
first Section 2.1 describes the GEO repository structure; the second Section
2.2 illustrates the target Genomic Conceptual Model. Then, Section 2.3
exposes the task and the main research questions for this work.

2.1 NCBI Gene Expression Omnibus

The NCBI Gene Expression Omnibus repository is an international pub-
lic archive which collects and distributes genomics data of high-throughput
microarray (A.1.1) and Next-Generation Sequence (A.1.3) techniques. Dif-
ferent research institutes and universities from all over the world upload
their experimental data on such platform and a huge amount of approaches
have been developed to reanalyze its dataset collections.

The core items of the archive are GSM (or GEO Sample), GSE (or GEO
Series) and GPL (or GEO Platform).

Each record corresponding to a single genomic sample is called GSM.
Each GSM is composed of a region file, containing the genomic information,
and a metadata file. Each GSM is associated to a unique identifier which
appears in the form of “GSM” + integer number (e.g. “GSM123151”).

Given that it’s likely that an experiment would produce more than one
genomic sample, the GSE groups GSM that belong to the same experiment.
So Series act as super-category for GSM.

Another type of record present in the GEO repository, is the GPL, which
collects information about the type of experiment, such as the technique
adopted, the instrumentation used, etc.

The three above-mentioned elements represent the core of the database;
on top of the GSM, GSE, GPL structure, GEO collects two other types of
data: Datasets and Profile, but they are not interest topic for this thesis.
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Figure 2.1: GEO records structure

In recent times, new generation gene sequencing platforms have been de-
veloped, they allow to execute experiments at a significantly lower cost with
respect to the previous years, this has allowed a growing number of insti-
tutes and organizations to perform such experiments enlarging the number
of available data on public repositories. At the time of writing GEO archive
alone can boast more than 3.000.000 samples and this makes the archive one
of the most targeted for research on gene expressions.

Figure 2.2: Sample upload growth through time [34]

Of the above-mentioned records, particular focus must be given to the
GSM in that they represent an actual genomic sample. Each GSM include a
“.bed” file which represents the processed genomic data (for example a DNA
or RNA), in addition a file containing the related metadata can be visualized.
Metadata file contains information about the cell on which the experiments
were performed on (such as the organism, the Sex of the organism etc.).

GEO provides a web interface to facilitate the visualization of metadata
1, an example of metadata file is shown in Figure 2.3.

1https://www.ncbi.nlm.nih.gov/geo/
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Figure 2.3: Excerpt of a GSM

Besides the web portal, GEO shares an SQLite B.5 file containing only
metadata present in the archive called GEOMetaDB [41]. There are different
tables in the DataBase, but, for the aim of this work, the GSM table will
be described.

The list of the GSM attributes is shown in Table 2.1:
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Key Description

GSM GEO accession ID for the sample

Title Title that describes the sample

Series ID ID corresponding to the GSE which the sample
belongs to

GPL GEO accession number for the platform

Submission date Date of submission of the experimental data

Last update date Date of the last update

Type Type of the sample e.g., RNA or DNA

Source Name Biological material and the experimental variable

Organism Organism from which the biological material was
derived

Characteristics List all available characteristics of the biological
source

Molecule Type of molecule extracted from the biological
material

Label Compound used to label the extract

Treatment Protocol Treatments applied to the biological material
prior to extract preparation

Extraction Protocol Protocol used to isolate the extract material

Label Protocol Protocols used to label the extract.

Hybridization Proto-
col

Protocols used for hybridization, blocking and
washing, and any post-processing steps

Description Any additional information not provided in the
other field

Data Processing Details of how data were generated and calculate.

Contact Details about the person to whom the data are
attributable

Supplementary File Additional material referred to the related exper-
iment

Table 2.1: List of main attributes for each GSM sample

Of the above fields, just 5 of them contain the only target informa-
tion ( GPL, Type, Organism, Molecule, Label), the remaining ones, which
represent the large majority, contains plain text without any constraint of
structure or terms, leaving to submitters the freedom to fill them with any
type of lyric, as shown in Figure 2.3.

The result of this choice is that each Metadata file associated to GSM is
easily human readable, but very hard to be processed by algorithms.

This leads to the problem of the GEO repository: The conceptual model
allows to perform queries only on those structured fields, restricting the types
of possible queries.
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To understand the issue let’s suppose that a certain institute is perform-
ing studies on human DNA and, to accomplish that, it needs to collect the
largest number of samples of DNA belonging to male humans 50 years
older. Those two attributes are not explicit in any of the fields described
above, they are often wrapped under “Characteristics” or “Description” to-
gether with a lot of other noisy information. Usually submitters try to
provide some structure in the “Characteristics” field, however there’s no
agreement about neither the type of structure, nor other important proper-
ties such as the units of measure, making it impossible to perform this kind
of queries, which are often the most useful.

2.2 Genomic Conceptual Model

GEO is not an isolated case, genomic repositories lack of a unified standard
for metadata, thus each consortium enforces some rules autonomously. The
lack of a unified structured conceptual model has pushed the birth of the
GCM [2][4] proposed by GeCo laboratory at Politecnico of Milan. As shown
in Figure 2.4, the schema is way more complex and detailed with respect to
the one proposed by GEO.

Figure 2.4: GCM schema [3]

It’s centered around the resource “Item”, typically a file containing ge-
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nomic regions. There are four main views through which the Item is de-
scribed:

• Management: Information about the organizational process for the
production of the item

• Extraction: Information about the extraction process

• Technology: Information about the experiment

• Biological: Information about the biosample

Aside from the mere proposition of a structured Conceptual Model,
GeCo Lab aims to collect data and metadata from different sources.

The curators then provide GenoSurf 2 [5] a web portal for attribute based
and keyword-based searches through well-defined interfaces.

At the time of writing, GenoSurf collected more than 40 million meta-
data files, but only 7 million of them found a correspondence of attributes
that allowed the integration of metadata from the original source, into the
integrated database.

The integration process is thwarted by the lack of structure in the sourced
metadata files, such as the ones from GEO.

Two of the major sources for data and metadata for GenoSurf are TCGA
[37] and ENCODE [28]. The conceptual model of the two main sources
allows to algorithmically realize the integration process through Schema
Matching (A.2.1) [26]. Another target source of processed genomic data is
NCBI’s GEO archive, but given the structure of the repository, metadata
are the main source of challenges for the laboratory. While some of the
attributes of the GCM find a correspondence in the GEO schema (such as
GEO:Organism with GCM:Species) and a simple schema matching rule can
overcome the problem, others - often of major importance - don’t.

A manual curation of the process is practically unfeasible given the large
amount of samples to be analyzed, hence the need for an automatic integra-
tion process is glaring.

The creation of a standard conceptual model for genomic metadata, is
thus held back by the Problem of the GEO repository. The following
Section will describe the task and the challenges that the proposed system
will need to face; then, the main research questions of the thesis will be
exposed.

2http://geco.deib.polimi.it/genosurf/
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2.3 The Task

The previous Section highlighted the reasons for the need of the creation of a
system which automatically extracts relevant information from unstructured
metadata files in GEO repository. For the purpose of this thesis, the target
files will only be GSMs in that they represents the core of the GEO archive
and contain information that could be integrated in GenoSurf repository.

The proposed task is hence the following: Extract all the information
available in GSM metadata file in a structured form.

To accomplish the task, it is necessary to develop a system able to process
Natural Language and provide an output structure that allows to integrate
the extracted information to the attributes of the GCM in a simple way.

Figure 2.5: Example of an integration process between GEO and GCM

The Figure 2.5 shows an example of the target process. On the left -
the plain text description of a GSM3 is provided, and, on the right, a corre-
spondence for some terms which can be found in the GSM description. As
can be noticed, the integration process of this sample requires the extraction
of sub-strings from the larger textual description, there are many cases for
which this simple matching can’t be done and information must be inferred
from text.

3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1565792
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The lack of structure in metadata leaves to the submitters a lot of free-
dom in the process of description of Samples. This, generates several prob-
lems that the proposed system has to face dealing with Natural Language,
as shown in Table 2.2:

Adoption of synonyms: In the field of biology, many words (or set of
words) can refer to the same entity, think of “Breast Cancer”, “Breast
adenocarcinoma”, “Breast Carcinoma”, “Mammary tumor” etc. The
system must be able to recognize when synonyms refer to the same
entity.

Abbreviations: For example “Stem Cells” which can be subject to
numerous different acronyms ( hES, HES, ES cells, ESC, ESCs, HESC
etc.), or - referring to breast cancer - “Br. Can.”, “Br. Cancer”, “Breast
c.” etc. The system must be able to recognize the entities that some
abbreviations may refer to.

Words scattered in paragraphs: For example a simple match for
“Breast adenocarcinoma” would fail with the following cases “Breast
cells subject of adenocarcinoma”, or “Adenocarcinoma cells, belonging
to a patient of [...] extracted from breast”. The system must be able to
locate the target information across the entire sentence.

Hidden information: Often, a lot of information is not explicit, but
it is inferable from text - at least for a human reader with an high level
biology background - for example, the Cell Line “K562” implies that
the cell was immortalized and was labelled with that acronym, but that
simple sequence of characters implies that the cell belongs to a woman,
53 years old with Cronic Myelogenous Leukemia. The system must be
able to deduce information from the description provided by the GSM.

New knowledge: The field of genomic research is seeing a rapid evo-
lution, new discoveries are made and new methodologies are constantly
being developed. This also means that a list of target values for each
attribute can’t always be available. Thus the proposed system should
be capable of handling cases of samples with new, unseen values and be
able to extract the correct values, generalizing from previous knowledge.

Table 2.2: Problems in free-text metadata description

An analysis of the Related Work and of the State of the art in NLP
models, have pushed the proposal of a new approach to the given task.

In this work, the information retrieval from unstructured text is faced
trough the use of Sequence-to-Sequence models, using a Machine Translation
approach.

The job of solving the given Task, facing the above-mentioned problems
with a Machine Translation approach, brings to light the following research
questions:
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• Can Sequence-to-Sequence models provide structured information from
unstructured plain text?

• Can Sequence-to-Sequence models extract correct biological informa-
tion from plain text overcoming the problems in Table 2.2?

• How do Sequence-to-Sequence models perform, in relation with other
approaches?

Given the relevance - in the biology community - of the GEO repository,
the task embraced in this thesis is well known. Many have been the attempts
to accomplish it, always with partial, bad or simply poor results.

The Related Work Chapter 3 will show what is the state of the art for the
task of extraction of metadata from GEO repository, with particular focus
to the above-mentioned problems and how the proposed work approaches
them.

It will be highlighted the need for a new method and - in the follow-
ing chapter - will be outlined the structure of the proposed approach, i.e.
Sequence-to-Sequence models.

2.4 Summary

This Chapter describes the structure of the NCBI’s GEO repository, ex-
posing the structure of the conceptual model proposed by the consortium.
The structure of the metadata files associated to GEO samples and the re-
lated Problem has been showed. Then, the Section 2.2 explains how the
GeCo laboratory aims to solve the issue by proposing a structured con-
ceptual model (GCM); the data integration process is held back by the
lack of structure in the GEO conceptual model. Being manual curation of
the integration practically unfeasible, Section 2.3 describes the need for an
automated way to extract relevant information from plain text metadata
description in a structured fashion facing the NLP issues described in Ta-
ble 2.2. Last paragraphs mention the proposed approach for solving the
task, i.e. Sequence-to-Sequence models, and the main research questions
are exposed. The following Chapter will describe the Related Works for the
problem of extraction of structured information from unstructured metadata
files in the GEO archive.
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Chapter 3

Related works

To understand in deep the reasons and the need for the work exposed in this
thesis, it is necessary to explore techniques and results of previous works that
addressed the GEO task.

In this chapter we summarise all the works which have faced the prob-
lem of extraction of metadata from samples stored in the Gene Expression
Omnibus archive. Many different techniques have been adopted, they can
be essentially grouped into three categories:

• Manual curation

• Natural Language Processing

• Extraction from gene expression profiles information.

Each section is followed by a summary which recaps what are the pros
and cons of the related category. At the end of the chapter, the reader will
understand that the approaches adopted so far do not satisfy the needs for
a complete fulfilment of the task.



3.1 Manual curation

Given the difficulty of the task, many studies have opted for a manual an-
notation of samples, preferring a higher accuracy, but lower practicality.

3.1.1 STARGEO

STARGEO [13] aims to speed up the process of annotation through crowd-
sourcing, providing an interface to facilitate the procedure of annotation of
samples with disease phenotypes. The annotation is done by selecting a cer-
tain GSE, retrieve the textual “Characteristics” field of each GSM and let
the annotator build an appropriate Regular Expression (A.2.2) to extract
the desired tags of the sample belonging to the desired GSE. This procedure
is based on the assumption that the submitter of a certain GSE will adopt
the same textual structure for each GSM of the series so a unique RE applied
to the description of every sample of a certain series, will match for multiple
items, speeding up the process. As a downside, Regular Expressions can’t
extract most of the useful information hidden in text because suffer of a lot
of weaknesses which will be described in details in Section 3.2.2.

The annotators were recruited through social media, with the only re-
quirement of “some graduate level training in the biomedical sciences”. The
recruitment approach can provide an easy way to build a crowd sourcing
team, but is a strategy which presents low reliability.

To overcome the problem, the curators proposed a validation procedure,
each sample received multiple annotation by different curators, but in order
to make a blind curation and stimulate the individual work, the annotation
of other curators were hidden.

STARGEO seems - as the related paper [13] highlights several times -
primarily - a study of feasibility for crowd-curation of repositories rather
than a method to provide a unified and structured database for biomedical
research which is indeed not provided.

3.1.2 SFMetaDB

The first version of the database was published as RNASeqMetaDB [12], a
manually curated repository which collected structured labels about “Gene
symbol”, “Genotype”, “Reference” (including title, authors, abstract, Pub
Med ID), “Disease”, “Tissue Type”, “Author” and author’s website link
extracted from different archives (including GEO), however that version of
the database is not available nowadays.

The evolution of RNASeqMetaDB is SFMetaDB [19], a public database
containing only 75 manually annotated GSE extracted from GEO. In par-
ticular the collected GSE refers only to RNA-sequencing experiments per-
formed on Mouses. The curators provide two labels, an “RNA splicing

32



factor” and a “Perturbation” information.
Despite the type of labels extracted for this repository can certainly

provide useful information for specific biological research, the annotation of
a limited case of experiments at Series level and the low number of collected
entries make this archive hardly helpful.

3.1.3 CREEDS

CREEDS [36] is a crowd sourcing project (simlar to STARGEO 3.1.1 born
with the aim of annotating the various information regarding the disease,
drug and gene perturbation expression signatures present on the Gene Ex-
pression Omnibus Database (GEO).

All these features were obtained thanks to the work of 70 participants
from over 25 different countries. Participants were asked to identify samples
that concerned the comparison of normal versus diseased tissues or gene
perturbation experiments. Subsequently, metadata were extracted with the
GEO2Enrich [11] tool - a Google Chrome extension which explores data to
extract gene signatures - and stored in a local database. Finally, follow-
ing a further manual inspection process to improve accuracy and quality,
the human-extracted signatures were used as a gold standard for training
machine learning classifiers for automated signature extraction, but this ap-
proach will be described in Section 3.2.4

3.1.4 Considerations

Manual curation - despite providing often high-quality data - does not scale
up; Crowd validation techniques can overcome the problem for now, but will
suffer of the same issue in the future, as the number of samples grows expo-
nentially. In addition, crowd validation presents the problem of reliability of
the annotations; some projects - such as STARGEO - increase the reliability
through a double-blinded review process, but increasing the burden on the
curation task many folds [35].

The need for automated techniques is straightforward if the number of
manually annotated samples is compared to the - continuously growing -
number of publicly available genomic samples 2.2. The choice for a manual
curation seems, however, to be the most accurate. The annotation resulting
from a human check often represents ground truth data, very useful for train-
ing and testing automatic techniques. In the following chapter we analyse
the contributions which opted for an automatic approach, exploiting Natu-
ral Language Processing techniques applied to textual description of GSM
or GSE (which are described in a fashion similar to the one described for
GSM).
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3.2 Natural Language Processing approaches

In this section will be showed the major contributions of the work that
exploited both “classical” Text Mining techniques (such as Regular Expres-
sions or Hierarchical Clustering) and “modern” NLP approaches (such as
Named Entity Recognition) to extract information from GEO archive.

3.2.1 Predicting structured metadata from unstructured text

In this section we describe the approach to extract metadata from GEO
samples adopted by Posch et al. [24]. The theoretical purpose of the work
is to classify GSM extracted from GEO using both as input and output the
fields present in the related metadata file.

To accomplish the task, two Support Vector Machines (SVM A.2.19)
were trained and tested on all the GEO samples available at the time (2015).

The two classifiers predict classes using term frequency - inverse doc-
ument frequency (TF-IDF - A.2.18) features a Latent Dirichlet Allocation
model (LDA - A.2.20), to reduce the dimensionality of the unstructured
data. In addition, a majority voting of the prediction of the two SVM clas-
sifiers was tested.

The authors split metadata fields into structured and unstructured cat-
egories, as shown in Table 3.1, which were used as target labels and input
text, respectively.

Structured Unstructured

GPL Title
Type Source Name

Organism Treatment Protocol
Molecule Extraction Protocol

Label Label Protocol
Hybridization Protocol

Description
Data Processing

Table 3.1: Classification of fields for Labels and Input Text

This means that the output of the system is be composed of a collection
of labels which were already available in a structured form in the GEO
archive. Consequently, the aim of the work is to test the effectiveness of the
three models, rather than provide a useful tool for the problem of metadata
extraction from GEO.

Performances were evaluated using F-1 score, Precision and Recall. Re-
sults showed that only the SVM which uses TF-IDF is able to reach high
performances and it is able to do that only on the sub-task of classifying
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Molecule, Organism and Type, while for Label and - particularly - GPL
low performances were reached, as shown in Figure 3.1.

Figure 3.1: Performances of the three classifiers for each class [24]

3.2.2 ALE

Automatic Label Extraction from GEO’ [10] presents another approach
which makes use of two different techniques to extract information from
plain text metadata of GEO samples: Regular Expressions and Machine
Learning.

In this chapter will be described the extraction of ’Age’, ’Tissue’ and
’Sex’ with the use of Regular Expressions, while the Machine Learning ap-
proach will be described in Section 3.3.

Regular Expressions (RE) are sequences of symbols identifying a group
of characters; in other words, they describe symbols patterns to be found in
an input text [17].

An example could be the simple *.txt, which is a RE that looks for any
sequence of characters terminating with a ”.txt” string. This will obviously
extract all txt filenames in a given text.

The approach is quite simple: apply some regular expressions to extract
the ’Age’ and ’Sex’ attribute, while for ’Tissue’ the extraction is performed
through a matching (which can be considered a Regular Expression) between
words of the metadata description and words taken from the BRENDA tissue
ontology [29]. However, the regular expressions applied are not provided in
the paper, but results of the method are presented. Regular expressions were
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able to find a match for ’Age’ only in 34.8% of the samples and 51.2% was
the percentage of samples with a match for ’Sex’, while for ’Tissue’ 100%
of the samples were identified with a match. The metrics for performance
evaluations adopted are Precision and Recall and were calculated thanks to
a manual annotation of more than 38.000 GEO samples collected in what is
called the ’Gold Standard Dataset’. Results are resumed in Figure 3.2:

Figure 3.2: Precision and Recall for ALE [10] using RE

The results show that recall is usually lower than precision, this is prob-
ably due to the fact that only a small amount of sample could match the
provided RE.

Regular Expressions are a really powerful tool for certain tasks, but
there are some downsides that make them usable only for specific limited
cases, in particular their use is limited to patterns that are:

1. Expressible: There are some values which follow a certain pattern
(e.g. sequence of characters starting with ’www’ are probably URLs),
however the majority of the interesting attributes of biological samples
(Figure 2.4) are not expressible through any kind of patterns, thus the
extraction through RE is possible only when the submitter of a certain
sample adopted fixed rules to describe it (e.g. ’sex: female’ which have
been proven to work well for this task).

2. Explicit in text: A lot of GEO samples leave the information implicit
because - at least for a human reader - they can be inferred from the
explicit information. RE cannot overcome this problem.

3. Unique: Whenever REs find multiple matches in text, it’s impossible
to automatically disambiguate the correct one from the wrong one.
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This means that the approach does not successfully interface with the
problems described in Table 2.2.

The Automatic Label Extraction from GEO presents interesting results
for a limited subset of attributes, but certainly showed that the approach
can’t cover the majority of the problems related to the GEO archive. How-
ever, the ’Gold Standard Dataset’ could have been adopted to test other
approaches, however, a manual check of the correctness of the annotations
have noticed the lack of numerous values which were easily identifiable with
a human check making it non suitable for experimentation and revealing an
error in the performance evaluation of the ALE.

3.2.3 GEOracle

GEOracle is an R Shiny package which performs Text Mining and Machine
Learning techniques classify Series of samples extracted from GEO that
contain perturbation (A.1.9) data. This type of classification is useful in the
biology research in that “they allow to identify the set of genes that are
causally downstream of the perturbation agent” [8].

There are two key concept for this work, which are Perturbation (A.1.9)
and Control (A.1.10)

First, a Support Vector Machine is trained on a manually curated dataset
to classify “Perturbation” GSE; besides that Performance was maximised by
the radial basis function kernel, no additional information is provided. As a
result, the paper shows that the model was able to reach an Area Under The
following process aims to pair each perturbed GSM with the corresponding
control sample. A hierarchical clustering approach is used, based on Gower
distance A.2.21 between tokenised GSM titles with a cut at height 0 (in
other words it’s probable that the approach simply couples titles in order
of distance). Then, the same hierarchical clustering is performed on the
“Characteristics” field and the method with the highest confidence (not
specified what type of metric is utilized) is selected.

This approach leads to a sensitivity measure of 93.2%.

As an additional step, users which utilize the software can manually
check for correctness of the predictions providing a very accurate tool.

The downside of the work stands in a very complex analysis for a very
specific case of analysis. The work is limited to the classification of a single
type of experiment, thus provides useful data only for particular analysis.

3.2.4 CREEDS

As said in section 3.1.3, the major contribution of the study [36] is the
manual crowd sourced annotation of samples, however, the work presents
an interesting analysis of different Text Mining approaches to automatically
classify text, using the result of the manual curation as dataset.
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There are two different classification tasks embraced by the work, one is
the binary classification of Series containing gene, drug or disease signatures
(A.1.6) - which can contain both perturbation and control samples - the
other is the classification of GSMs as perturbation (A.1.9) or control (A.1.10)
samples inside a Series.

Classification of gene, drug and disease signatures:

Three binary classifiers were built, they used as input three different matri-
ces which represented an embedding of the Title, Summary and Keywords
sections of the GSE metadata. The embedding matrices were a result of a
Wordnet Lemmatizer and Porter Stemming algorithm, followed by a TF-
IDF representation and, subsequently, a Singular Value Decomposition to
reduce dimensionality.

Models adopted included random forest, extra trees, support vector clas-
sifier and the XGBoost implementation of gradient boosting machines.

To measure the performance of the classification, three-fold cross-validation
was applied to calculate the area under the ROC (A.2.14) curve, area under
the Precision and Recall curve (A.2.15), Matthew’s correlation coefficient
(A.2.17) and F1 (A.2.16) score, with results showed in Table 3.2 results:

Class AUROC AUPRC MCC F1

Gene 0.9 0.9 0.70 0.80
Drug 0.87 0.87 0.60 0.74

Disease 0.81 0.79 0.5 0.64

Table 3.2: CREEDS performances in the classification of Series with gene, drug and diseases
signatures

Classification of perturbation and control samples:

Another binary classifier was experimented in the task of classifying pertur-
bation and control GSM - similarly to GEOracle 3.2.3.

The GEO fields used as input text were Title, Description, Characteris-
tics and Source Name. The input text was represented as a vector in the
vocabulary space representing the presence or absence of words in the given
sentence. The classifier used for solving the problem was a Bagging of 20
multinomial Bernoulli Naive Bayesian classifiers after probability calibration
with isotonic regression.

To measure the performance of the classification the same metrics adopted
for the first classification task, with results showed in Table 3.3 results:
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Metric Value

AUROC 0.85
AUPRC 0.84

MCC 0.58
F-1 0.71

Table 3.3: CREEDS performances in the classification of perturbation and control Samples

Given that both tasks were trained and tested on human curated data,
models for automated techniques should be expected to perform very well,
with performances that almost reach the human ability. The machine learn-
ing models, do not seem to provide annotation with a quality comparable
to the crowd-sourcing approach, this is why the work proposes the adoption
- for future works - of active learning to improve the performances of the
classifiers.

3.2.5 Onassis

Ontology Annotations and Semantic Similarity Sofware [9]. It is an R
package which exploits NLP techniques, biomedical ontologies (from Open
Biomedical Ontologies [30]) and R statistical frameworks to identify and
relate biological entities in public repositories metadata files.

Onassis works on textual input data retrieved mainly from GEO or SRA.
In the case of GEO data is taken through queries to GEOMetaDB, the
fields for GSM that worked as input data are: title, summary, source name
organism, characteristics and description.

The NLP technique adopted for the extraction of entities is Named En-
tity Recognition consisting of identifying text spans that mention named
entities, and classifying them into predefined categories (e.g, “Cell Line”,
“Tissue”, “Sex”, etc.).

After the named entities are extracted, the pipeline follows a semantic
similarity measurement between distinct samples, to identify whether they
express the same experiment. Specifically, the ontology, represented as a
graph, can be traversed to calculate the semantic similarity between pairs
(pairwise similarity) or groups (group-wise similarity) of concepts.

After that, Onassis exploits the semantic information extracted in pre-
vious steps to performs a semantically-driven statistical analysis directly on
genomic data.

Let’s bring the attention to the NLP step, namely NER. Typically, the
extraction of named entities aims to identify classes such as “Person” or
“Position”:

Example of NER
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Barack Obama was the President of the US for 8 years from ...

In the case of extraction of information from GEO samples, the entities
would belong to classes such as “Tissue” or “Organism”. The tool used to
extract entities is the Conceptmapper, a dictionary lookup tool.

Results show an accuracy of 0.8 in identification of Tissues and 0.9 in
the identification of Diseases (no more information about the evaluation is
given).

This lookup approach does not approaches well some of the problems
cited in Table 2.2. In particular, its ability to handle the problems of Adop-
tion of synonyms, Abbreviations and New Information mostly relies on the
quality of the ontologies, but, most importantly, the approach totally lacks
of the ability extract sequence of Words scattered in paragraphs and Implicit
information, making any kind of evaluation biased to a dataset where the
information is explicit in the input text.

State of the art in NER makes use of large pre-trained neural networks
that have shown great performances in NLP tasks. Those new approaches
would exploit the information hidden in entire sentences, being able to clas-
sify words based on context analysis and, thus, being able to extract entities
which are not collected under pre-defined dictionaries. However a NER
modeling of the problem is bonded to search for explicit information in text,
without possibilities of inference.
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Figure 3.3: ALE performance for the classification based on gene expressions

3.3 Extraction from gene expressions

Besides the approaches that lead with metadata annotations, a totally dif-
ferent method has been adopted by a relevant number of studies, which is
the extraction of metadata directly from gene expression data.

However, the approach presents low performances determined by the fact
that data itself presents large data records, with high levels of noise.

ALE offers a good comparison between an NLP approach and the ex-
traction from genomic data in that the authors developed both methods and
tested them using the same test set. Results of the text-mining approach
(which made use of Regular Expressions) are showed in Figure 3.2, while
Figure 3.3 shows the results obtained through one-vs-rest (OVR - A.2.3)
Logistic Regression classification approach, based on gene expressions.

Despite the naive approach of the text mining method, the performances
showed by the classifier do not reach the ones obtained with Regular Ex-
pressions. In addition, the label “Age” could not be predicted, this is due
to the difficulty to extract that label directly from the gene expressions.

Surely, a lot of attention is paid to this type of studies in the field of
biology research. For example, many works ([39], [32]) aim to diagnose
diseases from genomic samples; however they represents the arrival point of
the research, while the proposed task is upstream of the problems faced by
this type of approach.

It is straightforward that the models that the research aim to build for
diseases diagnosis using gene expressions, can’t be trained and evaluated on
the labelled data produced by themselves.
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3.4 Summary

In this chapter has been described the related work for the given task.
It has been showed that the major contributions to the problem can be
grouped in 3 categories: Manual curation, Extraction from gene expressions
and Natural Language Processing techniques. The first appears practically
unfeasible for a large scale application, but provides high quality data to
build and test automatic techniques. The second seems to be the class
of approaches that leads to the most promising results. Different classical
NLP approaches were studied in the attempt of extracting information from
GEO repository, from classical data mining approaches, to Named Entity
Recognition. This chapter has shown that NLP techniques adopted so far
don’t overcome all of the problems related to a free-text metadata annotation
and results showed that the performances were not comparable with human
annotation. Moreover, most published studies cover few regulatory factors or
genetic marks, often adopting very simple approaches and never leveraging
the state of the art.

The third shows lack of applicability, given that the approach represents
the goal of the biology research field. The majority of the target information
is not deducible from gene expressions and the field of biology research needs
more labelled data to understand gene patterns that represents certain types
of traits.

This chapter has shown the need for a new approach and that NLP
represents the best category of methodology to face the given task.
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Chapter 4

Approach

This section is dedicated to describing in detail the new approach proposed
in this work.

To the best of knowledge, no previous work has made use of seq-to-seq
models for automating the process of integrating experiment metadata. The
previous section suggests the need for a novel approach able to overcome
all highlighted problems. Our idea is to treat the problem of extracting
metadata from unstructured text as a machine translation task. Instead
of actually translating input sentences into another language, an original
output format was chosen, i.e. a well structured list of attributes extracted
from input text. The output format assumes considerable importance in that
must be both human and machine readable in order to solve the problem.
A dash-separated list of “key: value” pair was arbitrarily selected as output
format:

Example of data format

Input: [Textual description of a sample]

Output: Cell Line: HeLa-s3 - Cell Type: Epithelium

- Tissue Type: Cervix - Factor: BTAF1

The work is done leveraging the state of the art of Sequence-to-Sequence
(seq-to-seq) models, comparing an LSTM + attention [15, 21] Neural Net-
work (which represented the SOTA a few years ago) and a Transformers [33]
based Language Model (A.2.8), i.e. OpenAI GPT-2 [25] (which has been
proved to reach the top scores in most of the famous NLP tasks).

By approaching the task in this fashion, all the problems described in
Table 2.2 could be overcome:

• The adoption of synonyms does not present an issue in that trans-
lation models do not search for specific textual patter in the input
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text.

• Neural Networks can exploit context information to understand the
meaning of abbreviations, which do not represent an obstacle to the
task.

• The ability to extract information based on the textual context, al-
lows the proposed models to locate sequence of target words that are
scattered in paragraphs.

• The analysis of the context, allows Neural Networks to extract infor-
mation even if it is hidden and not explicit in the input text.

• Neural Networks do not perform any kind of lookup in pre-defined on-
tologies, thus the presence of new terms does not present a particular
issue, whenever the context provides a sufficient amount of informa-
tion.

Moreover, the training phase of this kind of model is highly simplified, by
treating each target value as a string, many pre-processing steps are avoided
and different types of values can be considered all at once.

In addition to the two seq-to-seq models, a Multi-Label Text Clas-
sifier was trained and tested to offer a comparison for the first two exper-
iments: one of the models which represents the state of the art for text
classification tasks, RoBERTa [20], which is based on the powerful BERT
Language Model [20].

4.1 Sequence to Sequence

Each training sample is composed of input-output pairs, where input cor-
responds to the textual description of a biological sample and output is a
list of attribute-value pairs. Fig. 4.1 shows an example translation task: on
the left, a metadata record from GEO repository (coming from a specific
endpoint of GEO1), describing a human biological sample derived from den-
dritic cells infected with a particular type of tuberculosis; in the middle the
GCM schema, where targeted attributes are squared in red; on the right the
resulting output pairs (keys are underlined).

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1565792
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…

INPUT

Donor.species:

Homo Sapiens

Biosample.type:

cell line

Biosample.cell:

Peripheral blood 

mononuclear cells

Biosample.disease:

Mycobacterium 

tuberculosis

Dataset.assembly: 

hg19

ExperimentType.technique:

Chip-Seq

ExperimentType.feature:

histone mark

ExperimentType.target: 

H3K9me3

GCM SCHEMA OUTPUT

…

Figure 4.1: Example mapping task from input text into GCM, producing output pairs.

4.1.1 Input format

Input textual descriptions are from the most updated version, to date, of
the SQLite database GEOmetaDB [41], extracting only the “Title”, “Char-
acteristics”, and “Description” fields, which include information about the
biological sample from the gsm table. The query performed to the database
is:

SELECT * FROM gsm WHERE gsm in """ + str(tuple(ids))

Where the “ids” are the GSM corresponding to the samples for which the
labels were available. Input was formatted by alternating a field name with
its content and separating each pair with the dash “-” character:

Example of input format

Title: ... - Characteristics: ... - Description: ...

In this way, the model is allowed to learn possible information patterns, for
example, information regarding “Cell Line” is often included in the “Ti-
tle” section. Input underwent a text cleaning process which was done by
executing the following steps:
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• !@#$&̂*[]?\—‘˜ +” with spaces

• “\n” and “\t” removed

4.1.2 Output format

The output texts are dashed-separated sequences of “key: value” pairs:

Example of output format

Cell line: HeLa-S3 - Cell Type: Epithelium -

Tissue Type: Cervix - Factor: DNase

The aim is to produce, as a result of the translation, well structured sen-
tences, easily interpretable by humans and algorithms; the chosen structure
allows to extract the desired attributes using simple, pre-defined, Regular
Expressions; results show that both seq-to-seq models were able to learn the
output shape after a few epochs of training.

In order to make the text readable by our models, both input and output
text was tokenized with different methodologies, depending on the type of
model they were fed into.

4.2 Multi Label Classification

Multi-label classification is a variant of the classification problem where
multiple labels may be assigned to each instance.

Each distinct value of a given attribute, was considered to be an output
class; thus, the output of a sample is an array of a one-hot-encoding of the
target values, 1 for the correct ones, 0 for the others. Despite resolving
a number of issues related to RE and NER, this approach has a strong
requirement: each attribute must contain a finite number of values and
each value must be previously known to be considered as a class. This
makes it suitable for some attributes, for example: “Organism” (it only has
a restricted set of declared possibilities in GEO database, such as Homo
Sapiens, Mus Musculus, Drosophilae etc.) or “Age units” (it can range
from “year” to “hours”). However, the approach is totally unfit for other
attributes such as: “Age” (it can range from 0 to any positive number,
e.g. 140 weeks, 2 years, 400 days) or “Sex”—intuitively it may represents
a binary classification example, but GEO samples present a more complex
scenario. Each GEO sample can be extracted from human cells or from
other species; thus, possible values are not only “Male” and “Female”, but
include “Unknown”, “Hermaphrodite”, “Mixed”, “None”, moreover samples
can include more than one cell, this brings the “Sex” attribute to have a
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infinite range of possible values (e.g. “Male, Female”, “Male, Male”, “Male,
Male, Male ...”). This last problem can be attached to any of the target
attributes.

For these reasons, Multi-Label Classifier offers an interesting comparison
for the proposed seq-to-seq approach, while it is impossible to consider it as
an acceptable solution for the given task.

4.3 Models

First, we present RoBERTa, which is used for Multi Label Classification as
a comparison model. Then, LSTM and OpenAI GPT-2 are described in
details. The two models represents the core of the work, being the chosen
models for the Sequence-to-Sequence approach. Results are reported in the
experiments in Chapter 6.

4.3.1 RoBERTa

RoBERTa [20] is an updated version of BERT [7] a pre-trained Language
Model based on Transformer Encoder cells [33]. RoBERTa presents a few
modifications both in the architecture and training sides, but the core of the
model remains the same. The model is a stacking of Transformer Encoder
cells [33], which exploits Self Attention (A.2.9). The model was pre-trained
as a Masked Language Model (A.2.11) and have been proved to perform
very well in numerous NLP tasks, as shown in Figure 4.2

Figure 4.2: Performance of different size variations of RoBERTa on SQuAD [27] corpus, MNLI
[38] corpus and SST-2 [31] corpus

For the classification task, the model presents a Dense layer on top of
the Transformer stack. Tokenization exploits BytePair Encoding and was
done using the default tokenizer provided by Rajapakse’s Simpletransform-
ers repository2.

The BERT section of the model is the actual pre-trained Language
Model, which acts as an embedding of the input sentence, while the last

2https://github.com/ThilinaRajapakse/simpletransformers
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layer gives the model the task-specific structure, being a dense layer with
softmax activation function. The last layer presents, indeed, a number of
neurons equal to the number of target classes. Given that each output node
represents a single value, the toal number of target classes corresponds to
the total number of distinct output values (E.G. for Cistrome dataset, the
total number of distinct values is 2005)

Training is performed as a Multi Label classification with CrossEntropy
(A.2.4) as loss function, each sample presented a number of target values
equal to the number of classes that composed the dataset (4 for Cistrome, 15
for ENCODE). Each target array was a concatenation of one-hot-encoding
of the different attributes.

E.G.

Cell Line: HeLa => [0,1,0, ...,0,0,0] (vec_1)

Cell Type: Epithelium => [0,0,0 ... 1,0,0] (vec_2)

Tissue Type: Cervix => [0,0,0,0,1,0,0 ...] (vec_3)

Factor: BTAF1 => [0,0 ... 0,1,0,0,0] (vec_4)

Target vector = vec_1 + vec_2 + vec_3 + vec_4

’+’ is the vector concatenation

Evaluation for RoBERTa is done taking into account that the number
of target values is fixed for each of the two datasets. The process of concate-
nation is inverted to get the predictions, so each output vector is split into
sub-vectors. Each sub-vector is a representation of the model prediction for
each of the Dataset attributes (such as Cell Line or Cell Type). Hence, each
sub-vector undergo an argmax function to get the predicted value.

E.G.

pred_vec => [0.213, 0.051, ..., 0.5]

vec_1 = pred_vec[:len(attr_1)]

vec_2 = pred_vec[len(attr_1):len(attr_2)]

vec_3 = pred_vec[len(attr_2):len(attr_3)]

vec_4 = pred_vec[len(attr_3):]

pred_cell_line = np.argmax(vec_1)

pred_cell_type = np.argmax(vec_2)

pred_tissue_type = np.argmax(vec_3)

pred_factor = np.argmax(vec_4)
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4.3.2 LSTM with Attention

The model was composed of 2 Feed Forward Neural Networks the encoder
and the decoder and exploits Luong Attention [21] mechanism.

The encoder is composed of an embedding layer plus an LSTM one,
which provides hidden states to feed the attention mechanism for the de-
coding phase. The decoder is composed of an embedding layer, an LSTM
one and 2 dense layers. Layer sizing for the two models are shown in Ta-
ble 4.1 and Table 4.2. The reason behind the 2 dense layers is due to the
Luong Attention mechanism. The output of the LSTM layer is concate-
nated with the Context vector, thus doubling the size of the vectors coming
from the LSTM layer, hence, the first Dense layer (which exploits a “tanh”
activation funtion) re-shapes the LSTM output to the LSTM size, while the
second one (which uses no activation function, thus a linear function is ap-
plied) maps the output of the first dense layer to the size of the vocabulary,
outputting the logits. Once the decoder has output the logits, an “argmax”
of the last layer provides the predicted token for the output at each time
step.

Layer % Size

Embedding 256
LSTM 512

Table 4.1: Number of neurons per layer in the Encoder network

Layer % Size

Embedding 256
LSTM 512
Tan h 512
Dense Vocab size

Table 4.2: Number of neurons per layer in the Decoder network

The embedding layer of the Encoder is fed with a tokenized version
of the input text and is executed once for each sample (batch of items).
The decoding phase takes place iteratively, thus the output is generated
token-by-token. At each “i” time step (which corresponds to each token),
the embedding layer of the Decoder is fed with a tokenized version of the
Output text starting from the “start” token (“<start>”) reaching the “i”-th
token. The Decoder is trained to generate the “i+1”-th token until the entire
sequence has been generated, producing a termination token (“<end>”).
The Decoder exploits the attention mechanism.
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Figure 4.3: Encoder-Decoder structure with Luong Attention mechanism

The tokenization process for LSTM model was done using the default
keras tokenizer (B.2) with the following parameter setting:

Parameter Value
lower True
split ’ ’
char level False

Table 4.3: Parameter settings for Keras tokenizer

For LSTM model only, a few additional text cleaning procedures pre-
ceded the tokenization process:

• ’(’ and ’)’ with ’ ( ’ and ’ ) ’

• ’-’ and ’ ’ with ’ - ’ and ’ ’

• ’=’ with ”

This choice was determined by the different tokenization technique which
identifies a token with each sequence of characters separated by a space,
so, without performing those substitutions, each sequence of dash separated
words would be otherwise identified as a single token (e.g. “RH RRE2 14028 ”
would have been tokenized as a single word, but adopting substitutions it’s
possible to find instead “RH RRE2 14028 ” becoming 6 different tokens),
the same would have occurred for every word preceded by an open (or fol-
lowed by a closed) bracket. Without those steps, the LSTM model wouldn’t
have the chance to look for specific tokens which could be the target ones,
if they are dash separated or are adjacent to a bracket.

Training

The training phase is performed by learning conditioned probabilities of the
“Next” token over the entire vocabulary, given the encoded input sequence,
and the sequence of previous tokens, all exploiting a Luong Attention mech-
anism. So p( ~Xn+1|~xn, ~xn−1, ...~x<start>, ~xinput), where p( ~Xn+1) is the pre-
diction, ~xn is the n-th token of the output sequence which starts with the
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“<start>” token (~x<start>) and ~xinput is the vector of the hidden states of
the LSTM layer for the input sequence. Training is performed through min-
imization of the CrossEntropy (A.2.4) loss function, typically adopted for
multi-class classification tasks, which perfectly fits the problem of prediction
of tokens over the vocabulary space.

Evaluation

The evaluation phase is performed as follows, the model encodes the input se-
quence, the decoder generates the first prediction starting from the ”¡start¿”
token: p( ~X1|~x<start>, ~xinput), where ~X1 represents the 1st vocabulary vec-
tor, ~xinput is the encoded input vector and ~x<start> is the first input token of
the decoder. The n+1-th vector is arg-maximized and the result will be the
first generated token (~x1) , then the probabilities p( ~X2|~x1, ~x<start>, ~xinput)
will be computed and the same process will be executed iteratively until the
termination token which corresponds to the string ”¡end¿” is generated. In
the unlikely case of a generation that doesn’t end (because the termination
character is never generated), the generation is stopped after the output
sequence reaches the maximum output length available in the dataset; how-
ever this case never happened. After the entire sequence is generated, the
tokenized output sequence is turned back into text. After that, a simple
search for Regular Expressions in the form ”Key: .* [-—<end>]” will re-
turn a match for the given ”key”. If the predicted word (or group of words)
corresponds to the target one, it is counted as a correct prediction, wrong
otherwise.

4.3.3 OpenAI GPT-2

The second sequence-to-sequence model considered in this work is the more
powerful OpenAI GPT-2 [25] model. It is a pre-trained Language Model
which structure is based on Transformer Decoders [33].

The presentation paper defines it as a Unsupervised Multi-Task
Learner, in that it has been proved to perform very well - overcoming the
State of the Art in the majority of the cases - for a lot of NLP tasks with
a zero-shot learning (A.2.12), as shown in Figure 4.4 (where LAMBADA
[23] and WikiText-2 are datasets for prediction of the next word; CBT
[14] is the “Childrenś Book Text”, a dataset to examine the performance
of LMs on different categories of words: named entities, nouns, verbs, and
prepositions; PPL (A.2.5) is the Perplexity, while ACC is the accuracy).
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Figure 4.4: Performance of different GPT-2 model sizes on some of the major NLP datasets [25]

The model structure is quite simple, it is a stack of multiple Transformer
Decoders [33] cells, which exploit the Masked Self-Attention (A.2.10)
mechanism.

Text generation is done in a similar fashion as Encoder-Decoder, a gener-
ation token-by-token, but, unlike LSTM model, text generation phase is not
preceded by an encoding phase. This means that the model is not trained
on input-output pairs, instead, it is trained on single sequences.

Given that, each sequence must include both the Input and the Output,
thus, the model was trained on sentences composed of Input and Output
pairs separated with the ”=” character.

Example of GPT-2 training sentence:

[Input sentence] = Cell line: HeLa-S3 - Cell Type: Epithelium

- Tissue Type: Cervix - Factor: DNase $

Despite the model has been proven to perform well in NLP problems, the
GEO task does not present a standard output structure, such as a simple
prediction for the ’next token’ or a summarization. The output format
requires a precise structure, this is why a finetuning process is necessary
to accomplish the task.

Finetuning

Finetuning is performed by learning conditioned probabilities of the “Next”
token over the entire vocabulary, given the sequence of previous tokens.

Let’s suppose that a certain “input = output” text is the following se-
quence of tokens: 13,51,23,555,123,1412,15. The model will be trained
to predict the probability p(51|13), and then, at the next iteration the model
will be trained to predict p(23|51&13) and so on.

Let’s suppose that the token “555” corresponds to the “=” character
which is used as a separator between input and output. This means that
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the model will learn that after the token “555” will be highly probable that
the following sequence of tokens will be the target one.

The cleaning process of the input sequence didn’t include the removal of
“=” characters because they are often used to denote some useful equality
(e.g. “Cell Line = HeLa”), but given that in the vast majority of cases it
is a separator between input and output, the conditioned probabilities will
be built accordingly, so it will not be (and has been proved that it is not) a
problem. Like in the case of LSTM, the loss function is the CrossEntropy
(A.2.4), with Adam Optimizer and a learning rate of 0.001, which is the
default setting for GPT-2 in HuggingFace’s 3 repository.

Evaluation

Evaluation is performed similarly to the LSTM model, GPT-2 outputs
the probabilities over the entire vocabulary for a given input sequence,
p(~xn+1|~xn, ~xn−1...~x1), where the list of tokens until ’n’ is the input, the
n-th token will correspond to the ”=” character and the n+1-th vector will
be a list of probabilities, one for each token in the vocabulary. The n+1-
th vector is arg-maximized and the result will be the first generated token,
then the probabilities p(~xn+2|~xn+1, ~xn...~x1) will be computed and the same
process will be executed iteratively until the termination character (“$”)
is generated. As for LSTM, if the termination character is not generated,
the process is stopped after the total length reaches 800 tokens. Similarly
to LSTM, the tokenized output sequence is turned back into text. After
that, a simple search for Regular Expressions in the form “Key: .* [-—$]”
will return a match for the given “key”. If the predicted word (or group of
words) corresponds to the target one, it is counted as a correct prediction,
wrong otherwise.

3https://github.com/huggingface/transformers
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4.4 Summary

This chapter exposes the modeling of the approach chosen. In the first
Section the general Machine Translation methodology in the GEO task is
described focusing on how the proposed models would be able to face the
list of given problems described in Table 2.2.

The second Section describes in details the textual input and output
format chosen for the experiments, highlighting how the proposed output
format enables to easily retrieve the values extracted by the models through
Regular Expressions.

The third Section describes in details the models proposed, first the
classifier used (RoBERTa), then the two Sequence-to-Sequence models, i.e.
LSTM + attention and GPT-2, also explaining the training and evaluation
mechanism for each of the tested models.

In the next Chapter there will be a detailed description of the Datasets
that enabled the two experiments.
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Chapter 5

Data

This chapter is dedicated to the description of the dataset used in this work,
CISTROME and ENCODE.

They are two rich datasets which were selected - among all the others
cited in Chapter 3 - for number of samples, reliability of the annotations
and number of labels associated to samples.

5.1 Cistrome

Cistrome [40] is a project which collects a large number of genomic sam-
ples and place them in a structured, publicly available database. Collected
samples are of three types of genomic experiments: DNA-seq, Chip-Seq and
ATAC-seq; the characteristic that they share is the presence of the “Tran-
scription Factors” (TF).

Samples were manually labeled with the corresponding TF examined
in the experiment. The experiments were collected from three different
source projects: GEO, ENDODE and Epigenomic Roadmap Project [1, 28,
6]. The project focuses on two sides of the collection of data, one being
the data side and one being the Metadata side. The collection of data
is followed by quality control pipelines which provide a good marker for
research which focuses on Transcription Factors. However, for the purposes
of this thesis, the metadata annotation will be the focus of this chapter.
As mentioned before, the sources of data for the project are three, but
the focus will be directed only on samples extracted from GEO archive.
The data was collected exploiting two of the fields in GSM metadata files
available in the web application (but not in the DB version), which contain
structured information: “Library Strategy” and “Organism”. The searched
values were, “ChIP-Seq” and “DNase-seq” for Library Strategy and “Homo
sapiens” and “Mus Musculus” for Organism. Since ATAC-Seq data is usually
labeled as “OTHER” in Library Strategy, the identification of ATAC-seq
data was done by matching the keywords in the GEO sample “Description”
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field.

Each retrieved GSM was subject to manual annotation in order to pro-
vide 6 accurate labels: Species, Cell Line, Cell Type, Tissue Type and Factor.
The resulting metadata collection is structured as a list of GSM identifier
and the associated labels. From Cistrome DB we downloaded a total of
44.843 labeled samples. An input text for each of the samples was re-
trieved by querying the GEOMetaDB selecting all the tuples with a GSM
that matched one of the Cistrome entries:

"SELECT * FROM gsm where gsm in (...)"

Where the first “gsm” represents the table to perform the query on (the
others being “gse”, “gpl” and many others not interesting for this work),
the second “gsm” is the column which contains the ID and “(...)” is the
list of GSM extracted from Cistrome. However, only 42.569 samples - of the
Cistrome downloaded - had a correspondence in GEOMetaDB, so 2.274 sam-
ples were excluded from dataset. The analysis of missing values (annotated
as ’None’) shows percentages resumed in Table 5.1:

Attribute MV Percentage

Cell Line 53%
Cell Type 19%

Tissue Type 30%
Factor 0%

Table 5.1: Per class Missing Values percentage

A manual inspection of the samples, showed that the “None” values, do
not correspond to actual missing values, but instead can be interpreted as
a valid attribute value. As an example, let’s suppose that a certain GSM
presents the label “Cell Line” = “None”, the item hence represents a sample
which does not belong to any particular Cell Line. The same is valid for
Cell Type or Tissue Type. Another example is a “None” Tissue Type, which
usually refers to Stem Cells, cells that do not belong to any particular tissue.
This suggests that the type of missing values is hence Missing At Random
(MAR - A.2.13) and, consequently, for this particular problem, they are
considered to be a correct target value, interpreted as the string “None”.

As can be noticed, the column Factor does not present “None” values,
in fact, the Cistrome database collects only data for which a certain Tran-
scription Factor is present. From this analysis it is possible to claim that
the Cistrome database does not contain any missing values. An analysis of
the values count for each attribute is shown in Table 5.2:
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Attribute Values count

Cell Line 1045
Cell Type 380

Tissue Type 249
Factor 1565

Table 5.2: Per class values count

The large number of “None” values for the Cell Line attribute, suggests
that an analysis of Mean and Standard Deviation of the values count per
class could be helpful to better understand the distribution of the values 5.3.

Attribute Mean Standard Deviation

Cell Line 40.73 697
Cell Type 112 614

Tissue Type 170 918
Factor 27 203

Table 5.3: Mean and Std. for values count per each attribute

The high Standard Deviation suggests that per class there must be some
values that occur far more times than the others, an analysis of the mode
values shown in Figure 5.4, highlights this trait.

Attribute Mode value % of occurrence

Cell Line None 53%
Cell Type None 19%

Tissue Type None 30%
Factor H3K27ac 11%

Table 5.4: Mode for each Cistrome attribute

As expected, for the first three classes, the mode is represented by
“None” values, which - given the total number of distinct values - represent
the large majority. While for Factor - which contains 1565 distinct values
5.2 - a the mode is represented by “H3K27ac”. This suggests that good met-
rics for performance evaluation on this dataset will certainly be Accuracy,
Precision and Recall. Given that the values for each attribute are unbal-
anced in number, Precision and Recall will be weighted according to total
number of occurrences of each attribute value, in this way, the Precision for
the “None” Cell Line - given that it represents 53% of the occurrences - will
count for 0.53 of the total Precision for Cell Line.
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5.2 ENCODE

The Encyclopedia of DNA Elements [28] is a consortium which - since 2007
- has collected a rich dataset of genomic data publicly available. Similarly
to Cistrome, ENCODE collects data focusing on two sides, high-throughput
genomic data and related metadata annotations. For this work, the focus is
centered on the metadata section.

Metadata was collected exploiting many different techniques, including
manual curation, making the repository one of the few genomic archives
that is complete and accurate from a metadata point of view. Many different
schemas are collected in the ENCODE repository, but only few of them were
selected to extract metadata which had a correspondence with the GCM
2.2. (A list of the schemas is available at https://www.encodeproject.

org/profiles/).

For example, biological information relative to a certain sample is avail-
able in the biosample ENCODE schema and many of its fields find a corre-
spondence to the Biological view of the GCM 2.4. (Data related to experi-
ments was downloaded through this 1 url-encoded query)

Resulting data was a collection of tuples with the following list of at-
tributes 5.5:

1https://www.encodeproject.org/report.tsv?type=Experiment&field=

accession&field=dbxrefs&field=assay_term_name&field=assay_slims&field=

target.label&field=assembly&field=biosample_ontology.term_name&field=lab.

title&field=award.project&field=replicates.library.biosample.organism.

scientific_name&field=replicates.library.biosample.life_stage&field=

replicates.library.biosample.age&field=replicates.library.biosample.age_

units&field=replicates.library.biosample.sex&field=replicates.library.

biosample.donor.ethnicity&field=replicates.library.biosample.donor.health_

status&field=replicates.library.biosample.biosample_ontology.classification&

field=target.investigated_as&field=biosample_summary&field=description&

field=replicates.library.biosample.description&field=replicates.antibody.

antigen_description%20&limit=all
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Attribute Description

External resources Information about ID used by other
repositories (including GEO)

Assay Name Type of experiment (Chip seq, rna
seq, dna seq....)

Assay Type Super-category of experiment type

Target of Assay For assays, such as ChIP-seq or
RIP-seq, the name of the gene whose
expression or product is under inves-
tigation for the experiment

Genome assembly Genome assembly of reference

Biosample term name Name of the biosample

Lab Name of the labotory which per-
formed the experiment

Project Name of the project the biosample
belongs to (including ENCODE)

Organism Species of the biosample

Life stage Such as “adult” or “embryonic”

Age A string identifying the age

Age units Unit measure of the age (“month”,
“year” etc.)

replicates.library. biosam-
ple.sex

Sex of the organism

library.biosample.
donor.ethnicity

Ethnicity of the donor

replicates.library.biosample.
donor.health status

Brief description of the health status

replicates.library .biosam-
ple.biosample ontology.
classification

Classification of the biosample on-
tology

target.investigated as What the target was being investi-
gated as within an assay

Biosample summary A description of the biosample

Description Another general description, not
strictly related to the biosample

Submitter comment Comment left by the submitter

replicates.library.biosample.
description

Another description of the biosam-
ple

Table 5.5: Description of downloaded ENCODE attributes

The resulting file was a collection of 16.732 entries.

The majority of the attributes present in the file, contained values repre-

59



sented by a brief string, so it’s plausible to suppose that they were filled only
with the target relevant information, without textual noise. While Descrip-
tion, Biosample summary and replicates.library.biosample.description
were a long plain text field, similar to the one found in GEO metadata files.
These three attributes, were merged into one column named Input and were
hence used as input text. A manual inspection of the Submitter comment
column suggested that it could be dropped, because it did not contain infor-
mation useful for the aim of this work. The column External Resources
contained references to the same sample in a different archive and often a
reference to the relative GSM was found.

Of the 16.732 samples, 6.233 had a reference to the GSM, for those
values, as input text, was used the concatenation of the GEO fields “Title”
“Characteristics” and “Description”, instead of the three ENCODE input
fields. The analysis of missing values brought to the following results 5.6:

Attribute MV percentage

Assay Name 0%

Assay Type 0%

Target of Assay 48%

Genome assembly 16%

Biosample term name 0%

Lab 0%

Project 0%

Organism 1%

Life stage 1%

Age 1%

Age units 32%

Sex 1%

Ethnicity 74%

Health status 53%

Classification 1%

Investigated as 48%

Table 5.6: Missing Values percentage for each ENCODE output class

The great variety of types of cells, makes the missing values count ir-
relevant in that, the related sample could be missing certain attributes for
biological or experimental reasons. A manual inspection of a subset of en-
tries with missing values suggested that they are Missing At Random (MAR
- A.2.13) and, as happened for Cistrome, each of the target missing value
was considered to be a correct target value, interpreted as the string “None”.

However, some of the classes present a dominant occurrence of missing
values, so this suggests to adopt the same performance evaluation metrics
used for Cistrome: Accuracy, Weighted Precision and Weighted Re-
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call (A.2.6).

5.3 Summary

This Chapter have described in detail the two dataset used for experiments:
Cistrome and ENCODE. The first was a collection of 44.843 labeled samples
taken from GEO. The samples belong to three different types of genomic
experiments, Chip-Seq, ATAC-Seq and DNA-Seq. The second represents a
collection of 16.732 samples taken from the ENCODE archive. The resulting
dataset is a rich list of 15 attributes. Thanks to a reference to GEO identifier,
it was possible to retrieve the GEO metadata description for 6.233 entries.
For the remaining ones, a concatenation of three ENCODE attributes (which
contained a plain text description similar to the one used in GEO) was
used. A manual inspection of missing values suggested that they can be
classified as Not Missing At Random in that they represents an actual lack
of information for the given sample. An analysis of the mode for each
attribute suggested that good performance measures to be considered for
the experiments are: Accuracy, Weighted Precision and Weighted Recall.
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Chapter 6

Experiments

In this section we will describe the sequence of experiments performed to
investigate the research questions and, possibly, answer them. The mod-
els used for Machine Translation were Encoder-Decoder LSTM and OpenAI
GPT-2. The baseline performances were obtained using a classification ap-
proach with RoBERTa model. Table 6.1 shows systems setup configurations.

Three different experiments were designed to validate the proposal. Ex-
periment 1 and 2 allow to compare performances of the three analyzed mod-
els on different datasets (respectively, Cistrome with input from GEO and
ENCODE with input both from GEO and ENCODE itself).

RoBERTa and GPT-2 were trained using a Tesla P100-PCIE-16GB GPU,
while the LSTM model was trained on Google Colaboratory1 B.3 with GPU
accelerator.

Model Batch size Loss function Tokenizer Optimizer LR beta 1 beta 2 epsilon

RoBERTa 10 Cross Entropy BPE Adam 2e-4 0.9 0.999 1e-6
LSTM 64 Sparse Cross Entropy keras Adam 1e-3 0.9 0.999 1e-7
GPT-2 5 Cross Entropy BPE Adam 1e-3 0.9 0.999 1e-6

Table 6.1: Setup of the three different models for each experiment. BPE = Byte Pair Encoding;
LR = learning rate

6.1 Experiment 1

In this experiment we evaluate the performances of the two sequence-to-
sequence models (LSTM and GPT-2), comparing them to the standard
Multi Label Classifier (RoBERTa) using samples taken from Cistrome dataset.
The three models were subject to an Early Stopping method to avoid overfit-
ting. Training was stopped if the loss computed for predictions on validation
set stopped decreasing from one epoch to the next.

1https://colab.research.google.com/
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6.1.1 Data processing

Data was split into a training set (80%), Validation set (10%) and Test set
(10%). In addition to cleaning procedures, a different padding process was
executed for the two sequence-to-sequence models. The Encoder-Decoder
required Input-Output pairs which were respectively padded to the length
of the maximum Input and Output. GPT-2 required single sentences which
were padded to a maximum length of 500 characters, 222 sentences exceeded
the maximum length and were excluded from datasets.

6.1.2 Results and comments

Model # Epochs Accuracy Precision Recall

RoBERTa 69 0.90 0.89 0.91
LSTM + Attention 15 0.62 0.65 0.62

GPT-2 47 0.93 0.93 0.93

Table 6.2: Precision and Recall were weighted for the number of occurrences of each attribute
value

Figure 6.1: Per class accuracy of the three models for Experiment 1

Figure 6.1 and Table 6.2 show the performances of the three models. The
overall performances obtained by GPT-2 is higher than LSTM and RoBERTa.
As shown in Figure 6.1, the classifier seems to perform better for classes
which contain a low number of distinct values i.e. Cell Type and Tissue
Type (which contain 380 and 249 possible values), while for Cell Line and
Factor (which contain 1045 and 1565 possible values) even the simple LSTM
model can beat RoBERTa.
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Another interesting observation emerges if the number of “None” values
is taken in consideration (Table 5.1), the classes Cell Line, Cell Type and
Tissue Type present a relevant percentage of “None”, the weighted Preci-
sion and Recall analysis, however, shows high scores, despite the unbalance
of values count; this implies that the models were able to correctly classify
samples which lack of labels for certain classes. It is interesting to mention a
comparison with related works that embraced similar types of informa-
tion extraction from GEO samples: ALE 3.2.2 and Onassis 3.2.5. The first
used a matching score between the input text and an ontology for Tissues
reaching about 0.85 Micro Precision and 0.75 Micro Recall (A.2.7); results
showed that the extraction of Tissue for GPT-2 reached 0.93 Weighted
Precision and 0.92 Weighted Recall (weighted average brings to the same
results as micro average for this task). The second used NER with a lookup
approach, reaching an Accuracy of about 0.8; results showed that the Ac-
curacy reached by GPT-2 is equal to 0.91. It’s important to mention that
also the baseline RoBERTa classifier beat the ALE and Onassis approach.
An additional fact - mentioned in Chapter 3 - gives even more strength to
the results obtained, it must be highlighted indeed that scores reached by
ALE in the Tissue extraction are obtained only on the 25 most frequent
tissues and that Onassis approach is limited to cases where the information
is present in the input text. Table 6.3 shows few predictions made by GPT-2
were the model was able to handle cases of inference, thus, cases which none
of the previous works would have been able to classify.
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Input Sentence Output Sentence

Title: JC2379 T47D PR 3hr E2
r3 - Description: Cells were
treated with progesterone
(100nM) or R5020 (10nM) for
3hr and immunoprecipitated,
and DNA extracted. - Charac-
teristics: cell line: T47D; cell
type: ER+ breast cancer cell
line; condition: E2; chip anti-
body: PR Antibody (H-190);
chip antibody vendor: Santa
Cruz; chip antibody cat. #:
sc-7208; chip antibody lot #:
H2312

Cell Line: T47D - Cell Type: Ep-
ithelium - Tissue Type: Mam-
mary gland - Factor: PR

Title: GM12878-H3K27ac-Rep2-
Manual-SL45089 - Description:
chip-antibody: mouse mono-
clonal H3K27ac, Wako 306-34849
- Characteristics: Homo sapiens

Cell Line: GM12878 - Cell Type:
B Lymphocyte - Tissue Type:
Blood - Factor: H3K27ac

Title: Nanog-ChIP - Descrip-
tion: cell line: Sim2-expressing
cells; clone: A6; antibody: anti-
Nanog (D2A3) XP (Cell Sig-
naling #8822) - Characteristics:
Mus musculus

Cell Line: None - Cell Type: Em-
bryonic Stem Cell - Tissue Type:
Embryo - Factor: NANOG

Table 6.3: Examples of GPT-2 translations for Cistrome. Bold labels are not explicit in the input
text

The last case is particularly meaningful. Despite the presence of “cell
line: Sim2-expressing cells”, the target value for “Cell Line” is “None”. Sim2
represents indeed a protein and not a cell line. This is a clear example where
standard Regular Expressions would certainly have produced an erroneous
prediction, but GPT-2 was able to output the correct value, which is indeed
missing.

During the training of the sequence to sequence models it is possible
to observe that GPT-2 is able to learn the output structure after the first
epoch of training, while the LSTM model takes 2-3 epochs.

66



6.2 Experiment 2

This experiment mirrors the first one, but was performed on the ENCODE
dataset. As for Experiment 1 6.1 the three models were subject to an Early
Stopping method to avoid overfitting, training was stopped if the loss com-
puted for predictions on validation set stopped decreasing.

6.2.1 Data processing

Data was split into Trainset (80%), Validation set (10%) and Test set (10%).
Same text cleaning and padding processes as Experiment 1 6.1 were adopted.
1174 items were excluded from dataset because they exceeded the maximum
length imposed for the experiment.

6.2.2 Results and comments

Figure 6.2: Per class accuracy of the three models for Experiment 2
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Model # Epochs Accuracy Precision Recall

RoBERTa 71 0.90 0.89 0.90
LSTM + Attention 22 0.19 0.19 0.19

GPT-2 48 0.96 0.96 0.96

Table 6.4: Precision and Recall were weighted for the number of occurrences of each attribute
value

Figure 6.2 and Table 6.4 show the performances of the three models. As for
Experiment 1 6.1 the GPT-2 model seems to perform better than LSTM
and RoBERTa.

The same behaviour of better performance for Translation models for
attributes with larger number of distinct values seems to present even for
this experiment. The attributes Target of Assay and Biosample term name
are the ones that present the highest number of distinct values and GPT-2
far exceeded RoBERTa in terms of accuracy.

This experiments highlights how the simple LSTM + attention model is
not able to perform well for a larger number of target attributes, at least
with the tested model size.

The labels Health Status and Ethnicity presented several “None” values
(74% and 53%), but both RoBERTa and GPT-2 were able to predict cor-
rectly almost the totality of samples, producing results with high Weighted
Precision and Weighted Recall.

It is interesting - again - to mention a comparison with ALE 3.2.2 that
embraced similar types of information extraction from GEO samples. ALE
aimed to extract Age and Sex with poor results, often limiting the target
age unit to Years or Months and the target Sex to only Male and Female;
in particular, the work adopted Regular Expressions reaching about 0.95
Precision and Recall for the extraction of Sex and about 0.98 Precision, but
0.4 Recall on the extraction of Age, due to difficulties in matching the target
age in the input text.

GPT-2 model reached 0.96 Precision and Recall in the extraction of
Sex and 0.97 in the extraction of Age.

This experiment demonstrates that a translation approach can outper-
form the State Of The Art and it’s able to handle a different number of
non-standard cases as shown in Table 6.5.
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Input Sentence Output Sentence

DNase-seq on 91 day old male fe-
tal human kidney tissue left kidney
female embryo (59 days) and male
embryo (91 day)

Assay name: DNase-seq - Assay type: DNA ac-
cessibility - Target of assay: None - Genome as-
sembly: GRCh38 - Biosample term name: left
kidney - Project: ENCODE - Organism: Homo
sapiens - Life stage: embryonic - Age: 91,59 -
Age units: day - Sex: male,female - Ethnicity:
None - Health status: None - Classification: tis-
sue - Investigated as: None

RNA Bind-n-Seq (RBNS) pulldown
experiment against PUM1

Assay name: RNA Bind-n-Seq - Assay type:
RNA binding - Target of assay: PUM1 - Genome
assembly: hg19 - Biosample term name: cell-free
sample - Project: ENCODE - Organism: None -
Life stage: None - Age: None - Age units: None
- Sex: None - Ethnicity: None - Health status:
None - Classification: None - Investigated as:
RNA binding protein

ChIP-seq against eGFP-efl-1 in L1
larva worms. strain YL418 (unc-
119(ed3)III; vrIs65 [ pGES-1::EFL-
1::GFP FLAG:EFL-1 3’UTR, unc-
119 (+) ] ) whole organism L1 larva
genetically modified using bombard-
ment

Assay name: ChIP-seq - Assay type: DNA bind-
ing - Target of assay: efl-1 - Genome assem-
bly: ce11,ce10 - Biosample term name: whole
organism - Project: modENCODE - Organism:
Caenorhabditis elegans - Life stage: L1 larva -
Age: unknown - Age units: None - Sex: mixed -
Ethnicity: None - Health status: None - Classi-
fication: whole organisms - Investigated as: co-
factor,transcription factor

datatype: DnaseSeq; datatype de-
scription: DNaseI HS Sequenc-
ing; labversion: baseAlignCounts.pl
v 1,fseq v 1.84, iff generic male,p-
value cutoff: 0.05; replicate: 1,2;
cell: Colo829; cell organism: hu-
man; cell description: malignant
melanoma; cell karyotype: can-
cer; cell sex: M; labversion:
baseAlignCounts.pl v 1 Duke hu-
man Colo829 DNase-seq COLO829
malignant melanoma

Assay name: DNase-seq - Assay type: DNA ac-
cessibility - Target of assay: None - Genome as-
sembly: GRCh38,hg19 - Biosample term name:
COLO829 - Project: ENCODE - Organism:
Homo sapiens - Life stage: adult - Age: 45 -
Age units: year - Sex: male - Ethnicity: Cau-
casian - Health status: metastatic melanoma -
Classification: cell line - Investigated as: None

Table 6.5: Examples of GPT-2 translations for ENCODE

The first example is a case in which the model handles a double pa-
rameter prediction, two cells were present in the sample and the prediction
for Age presents the two values, 91 and 59. The second example is a case
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for which the majority of the attributes were neither present, nor deducible
from the input text. The model is able to tell correctly whenever the text
lacks of information. The third and fourth example are cases of imputing
from a messy input text. In the third it is possible to observe how the model
can infer - from previous knowledge - that L1 cells belong to a ’Caenorhab-
ditis elegans’ and can tell the multiple Genome Assembly of reference, plus
it’s able to filter the relevant Target Of Assay from a noisy sequence of
dash-separated characters. In the fourth case it is possible to observe the
capability of the model to deduce the age from the COLO829 cell line.

Of note, with the prediction of the Health Status, the output is not a
simple transcription of a portion of the input - otherwise the output would
have been simply “malignant melanoma” - but GPT-2 adds the detail of
“metastatic”. During the training of the sequence to sequence models it’s
possible to observe that GPT-2 is able to learn the output structure after
the first epoch of training, while the LSTM model takes 4 epochs.
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6.3 Summary

Results showed that in the case of extraction of a limited number of out-
put labels, both sequence to sequence models reach high performances. As
expected, GPT-2 outperforms the LSTM model significantly, but it’s re-
markable how good are the performances of the LSTM model if compared
with previous work especially given the simplicity of the model. The ma-
chine translation approach has been shown to beat both state-of-the-art and
the baseline classifier - which represents one of the best performing Language
Models for NLP tasks - for the given task, in particular when the target
attribute contains a large number of possible values. Both translation mod-
els have shown the ability to understand the output structure after a few
epochs of training. GPT-2 has shown some remarkable abilities in deduc-
tion from previous knowledge, whenever the information was hidden in the
input text; understanding cases of double cell experiments, handling cases of
a misleading input text.

The answers to the Research questions would then be:

• Sequence-to-Sequence models can provide structured information from
unstructured text, in particular, the LSTM model was able to output
structured text after 3-4 epochs of training, while GPT-2 needed only
one epoch.

• Sequence-to-Sequence models can extract correct information from
plain text overcoming the problems cited in Table 2.2; indeed, GPT-2
reached 0.93 and 0.96 of accuracy on Experiment 1 and 2, respec-
tively.

• Sequence-to-Sequence models can beat approaches tried in previous
work.

Experiment 1 showed that in the extraction of Tissue, Precision and
Recall for GPT-2 were 0.93 and 0.92; while for ALE were 0.85 and
0.7. Accuracy reached by Onassis in the same task was about 0.8,
while GPT-2 reached 0.91.

Experiment 2 showed that GPT-2 reached Precision and Recall both
equal to 0.96 for the extraction of Sex and 0.97 for Age; while ALE
reached about 0.95 Precision and Recall for Sex and 0.98 Precision,
but 0.4 Recall on Age.

• Sequence-to-Sequence Language Models beat other types of approaches.
Specifically GPT-2 beat RoBERTa classifier in terms of Accuracy,
Weighted Precision and Weighted Recall:

0.93 VS 0.90 - 0.93 VS 0.89 - 0.93 VS 0.91 for Experiment 1;

0.96 VS 0.90 - 0.96 VS 0.89 - 0.96 VS 0.90 for Experiment 2.
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Chapter 7

Conclusions

This thesis evaluates the performances of Sequence to Sequence models in
the task of extraction of structured metadata from plain text have been
evaluated.

The task proposed at the beginning was to extract all the information
available in GSM metadata file in a structured form. Chapter 2 of this work
first describes the GEO repository, then the target GCM and, subsequently,
it exposes the given task.

The following sections expose the main problems that emerge from a
plain text description of biological samples, which are: adoption of syn-
onyms, abbreviations, scattering of words in paragraphs, presence of hidden
information and the rapid development of new knowledge in the biology
field.

Given the problems mentioned above, the main research questions posed
were Can Sequence-to-Sequence models provide structured information from
unstructured plain text? Can Sequence-to-Sequence models extract correct bi-
ological information from plain text overcoming the problems in Table 2.2?
How do Sequence-to-Sequence models perform, in relation with other ap-
proaches?.

Chapter 3 describes important previous contributions to the task. It has
been showed that the three main existing categories of approaches deal with
the extraction of a few factors or genetic marks, providing poor results and
showed structural inabilities when tackling the problems cited above. The
need for a new methodology was clarified, hence the Sequence-to-Sequence
approach was presented.

The following Chapter reports the methodologies adopted to deal with
the given task. In particular it describes that the approach reported in
this work is the training of two Sequence-to-Sequence models, an LSTM +
Attention layer and the GPT-2, with input-output pairs, where the input
was an unstructured description of samples, while the output presents a
fixed structure of “key: value” pairs, in order to learn the model to generate
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sentences easily accepted by Regular Expressions. The output sentences
were built from a list of target labels taken from two repositories: Cistrome
and ENCODE. From the first archive we collected 44.843 annotations of
four labels for GEO samples, from the second 23 downloaded 16.732 entries
with a total of 15 labels.

The two datasets allows the setting of two experiments, which aimed
to compare the seq-to-seq approach with a Multi-Label Classifier chosen as
baseline i.e. RoBERTa, an evolution of the BERT language model.

Results showed that:

• Sequence-to-Sequence models can provide structured information from
unstructured text.

• Sequence-to-Sequence models can extract correct information from
plain text overcoming the problems cited in Table 2.2.

• Sequence-to-Sequence models can beat approaches tried in previous
work.

• Sequence-to-Sequence Language Models beat other types of approaches.
Specifically GPT-2 beat RoBERTa classifier in terms of Accuracy,
Weighted Precision and Weighted Recall.
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Appendix A

Glossary

A.1 Biology

A.1.1 Micro array

Set of microscopic DNA probes attached to a solid surface such as glass,
plastic, or silicon chips forming an array. These arrays allow to compare the
gene expression profile of individual patient having a disease with that of a
healthy one (also known as Case–control study) to identify which genes are
involved in the disease.

A.1.2 Sequencing

Process for determining the exact primary structure of a biopolymer, i.e.
the order of the bases in the case of a Nucleic acid(DNA or RNA). Several
strategies have been developed in the last decades. One of the mostly used
is the chain termination method or Sanger method. In the last few years,
however, due to the reduction of costs and the time of the overall process,
the next generation sequencing methods are the mostly used currently.

A.1.3 Next-generation-sequencing

Set of technologies that allow the parallel sequencing of millions of DNA
fragments. Thereby performing analysis of multiple genes simultaneously,
with a diagnostic yield higher than traditional sequencing, with drastically
short time of genetic analysis.

A.1.4 Phenotype and Genotype

The complex of the visible characteristics of an individual and which are the
result of the interaction between the genetic heritage and external factors
is called fenotype. Is is the opposite concept to the genotype which is the



totality of the genes present in the genome or the genes involved in the
determination of a single phenotypic trait.

A.1.5 Gene Expression

Series of events that since the activation of the transcription of a gene, lead
to production of the corresponding protein.

A.1.6 Gene signature

Gene expression pattern associated with a particular cellular phenotype or
with a precise prognosis in medicine.

A.1.7 ChIPSeq

Chromatin immunoprecipitation followed by sequencing. Experimental tech-
nique used in the analysis of interactions between DNA and proteins and
for the study of epigenetic alterations of histones or basic proteins (i.e. pro-
moters or enhancers ) that model the structural component of chromatin.
This step is then followed by sequencing to identify the order of nucleotides
or aminoacids

A.1.8 Genome Assembly

Nucleic acid sequences of DNA, assembled by scientists as a representative
example of a species’ group of genes.

A.1.9 Perturbation

Functional investigation of the mammalian genome able to reveal how ge-
netic alterations lead to changes in phenotype.

A.1.10 Case-Control study

A case-control study compares two groups retrospectively. Generally, indi-
viduals who have developed a disease (treatment or case) could be compared
to a group of individuals who have not developed it (control). The researcher
will observe if there are differences between the two groups in their previous
exposure to possible risk factors.
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A.2 Machine Learning

A.2.1 Schema Matching

Basic problem in many database application domains, such as data integra-
tion, which takes two schemas as input and produces a mapping between
elements of the two schemas that correspond semantically to each other.

A.2.2 Regular Expressions

A regular expression (regex or regexp for short) is a special text string for
describing a search pattern.

A.2.3 One Versus Rest

Classification strategy for multi class tasks. A binary classifier for each out-
put class is built each of which is trained to identify the elements belonging
to the target class and the elements belonging to any of all the remaining
classes.

A.2.4 CrossEntropy

Formula to compute loss for multi class classification tasks for each obser-
vation:

−
∑M

c=1 yi,clog(pi,c).

Where:

• i is the observation

• yi,c binary indicator (0 or 1) if class label c is the correct classification
for observation i

• M is the total number of classes

• p is the predicted probability observation i is of class c

A.2.5 Perplexity

Metric to measure how well a probability distribution predicts a sample.

A.2.6 Weighted Precision and Recall

Used in the case of a multi-class classification task. The Precision and Recall
values are computed for each possible label and then, each resulting value
is weighted for the number of occurrences of each label.
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A.2.7 Micro Precision and Recall

Used in the case of a multi-class classification task. First, the number of
TP, FP and FN is computed per each class, then the results are summed up
and Precision and Recall values are computed on the overall number of TP,
FP and FN.

A.2.8 Language Model

Model able to estimate a probability distribution over sequence of words,
i.e. p(x1, x2, [...], xN ) where x1, x2[...] represents words.

A.2.9 Self Attention

Technique used in Neural Networks whether a certain layer exploits the
mechanism of the attention [33] applied on the same input sequence that
the network is working on.

A.2.10 Masked Self-Attention

Technique used in modern Language Models to make them exploit the mech-
anism of Self Attention, but placing to 0 some of the values of the attention
vector.

A.2.11 Masked Language Model

Language Model trained by hiding to the model some of the words of an
input sequence and let the model estimate the probability of the hidden
word.

A.2.12 Zero shot learning

Task where the outcome of the models is evaluated without providing any
label to the model in the training phase.

A.2.13 Missing at Random

Type of missing values which distribution depends on other variable. This is
the case of the missing values for Cistrome and ENCODE: e.g. “Ethnicity”
label can’t exist for all the Species different from “Human”. e.g. “Cell
Type” label can’t exist for Embrionic Stem Cells

A.2.14 ROC curve

Type of graph used for classification tasks that plots the True Positive Rate
against the False Positive Rate. The more the value of the Area Under
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Curve is near 1 (or 0), the more the classifier is able to perform. A random
classifier will have an AUC of 0.5.

A.2.15 Precision and Recall Curve

Plot used - in classification tasks - to plot the precision (y-axis) and the
recall (x-axis) for different thresholds. Same analysis of the AUC as for the
ROC curve is applied here, the closest the AUC is to 0.5, the worse the
classifier is.

A.2.16 F1-score

Formula to compute the harmonic mean between Precision and Recall:
2 precision·recall
precision+recall highest values for F-1 implies good balancing and high values

for precision and recall.

A.2.17 Matthew’s correlation coefficient

Binary classifications quality measure. TP ·TN−FP ·FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

A.2.18 TF-IDF

Term frequency–inverse document frequency. TF-IDF is a function of a word
which aims to weight the searched term for its relevance. It’s the product
of two terms, TF and IDF. TF is the frequency of a certain word in a docu-
ment, the more a word is present in a certain document, the more it will be
frequent, thus the more it will be important. IDF is the natural logarithm of
the fraction of the total number of documents and the documents containing
a certain word, if a word appears in several documents, this means that it
will have less importance. E.G. the word “the” will be less relevant than
the word “stochastic”.

A.2.19 SVM

Support Vector Machine. One of the most used supervised classifiers which
works by finding an hyperplane that better separates data points in the input
feature space. Points that are closest to the hyperplane are called Support
Vectors, the objective of the SVM is to maximize the distance between the
hyperplane and the Support Vectors.

A.2.20 LDA

Linear Discriminant Analysis. It’s a dimensionality reduction technique used
in classification tasks. LDA does it by projecting the data into an hyperplane
with smaller dimension w.r.t. the original input feature space. The objective
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is to minimize the variance and maximize the distance between the means
of the different classes.

A.2.21 Gower Distance

Distance measure that can be used to calculate distance between two entity
whose attribute has a mixed of categorical and numerical values.

86



Appendix B

Tools and platforms

B.1 Python 3.7

Language used for the entire research process, including data analysis, data
processing, model building, experiment settings, results.

B.2 Tensorflow 2.1

Machine learning framework used for building the LSTM + attention mod-
els, in particular Keras package was used.

B.3 Google Colaboratory

Free online platform that allows the development of jupyter notebooks;
moreover it allows the free use (for a limited time) of GPUs. Used to run
experiments for the LSTM + attention model.

B.4 Pytorch

Machine learning framework used for the usage of RoBERTa and GPT-2
models.

B.5 SQLite

Software for Relational Database Management Systems used to perform
queries on the GEOMetaDB database.
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