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Abstract 

Machine Learning (ML) methods have been increasingly employed for time series 

forecasting. Recent studies have asserted the dependency of the obtained performance 

on the amount of training data. Cross-sectional forecasting is a technique that employs 

data from different time series to train the ML model. Also defined as cross-sectional 

training, it was recently developed to cope with the insufficient data given by short time 

series. This thesis will investigate the application of cross-sectional forecasting on 

supply chain demand. The work will be divided in three sections which will concern the 

following topics: (i) application of cross-sectional forecasting to the whole dataset by  

means of several ML methods; (ii) experimentation of four clustering approaches to 

cross-sectional forecasting; and (iii) inclusion of exogenous variables besides the 

historical demand data for the creation of the forecasts employing cross-sectional 

training. The experiments, performed on two datasets related to food distribution, 

resulted in the ML methods outperforming the statistical benchmarks. It was also 

shown that ML methods’ performance could be sensibly improved applying the right 

clustering approach, and that they were able to consider the influence of additional 

variables influencing demand reducing the forecasting error.  

 

Key words: Cross-sectional forecasting, demand forecasting, Machine Learning, 

clustering 
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Sommario 

Nonostante l’applicazione dei metodi di Machine Learning (ML) per la previsione di 

serie temporali sia sempre più diffusa, sono state individuate delle problematiche 

legate alla quantità di dati disponibili per la fase di training. Per ovviare a questo 

problema è stata ideata la pratica del cross-sectional forecasting, che consiste 

nell’utilizzare dati provenienti da molteplici serie temporali. Questa tesi tratterà 

l’applicazione del cross-sectional forecasting per la previsione della domanda. I dati 

utilizzati, forniti da una società di consulenza francese, provengono da due aziende 

attive nel settore alimentare. Nel lavoro, diviso in tre sezioni, vengono affrontati i 

seguenti argomenti: (i) confronto tra metodi statistici e di Machine Learning mediante 

full cross-sectional forecasting; (ii) sperimentazione di quattro approcci al clustering 

delle serie temporali a supporto del cross-sectional forecasting; (iii) e inclusione di 

variabili esogene per la generazione delle previsioni tramite cross-sectional 

forecasting. I risultati degli esperimenti condotti testimoniano una superiorità dei 

metodi di Machine Learning rispetto ai benchmark statistici utilizzati. Si è inoltre 

verificato che l’applicazione di una corretta tecnica di clustering permette di migliorare 

sostanzialmente la qualità delle previsioni e, inoltre, che l’inclusione di variabili 

esogene è facilmente ottenibile tramite i metodi di ML e può portare ad un 

miglioramento delle loro prestazioni.  

 

Parole chiave: cross-sectional forecasting, previsione della domanda, Machine 

Learning, clustering 
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Chapter 1: Introduction 

The scope of this chapter is to introduce the reader to the research environment, 

providing the essential knowledge that will allow the proper understanding of 

the thesis. Furthermore, the research goals will be defined, and the structure of 

the work will be delineated. 

 

1.1 What is demand forecasting 

“A forecast is a statement of what is expected to happen in the future, especially 

in relation to a particular event or situation.” (Collins dictionary) 

Thus, forecasting is a discipline which finds its applications in a high number of 

different fields. It can be used to predict from weather to volume of phone calls, 

from road traffic to products’ demand. The best practice in each of these fields is 

specific and, depending on its characteristics, can be extremely straight forward 

or more complex. The sunrise time tomorrow can be precisely forecasted by an 

analytical model, on the other hand environments with high uncertainty features, 

like stock exchange, will have the need of more statistically based approaches. 

The predictability of a certain event will be influenced by several characteristics 

of the forecasting environment (Hyndman and Athanasopoulos, 2018): 

• How precisely we understand the factors which influence the variable we 

want to forecast (also referred to as “target variable”). 

• How much data is available. 

• Whether the forecast can affect the value of the target variable itself. 

Given the great extension, variety and complexity of forecasting, this study will 

solely focus on its application to supply chain demand.   

We define supply chain demand forecasting as the action of estimating the values 

of future demand in the supply chain context. Supply chain demand forecasting 

is an important part of a field that has undergone a great expansion in recent 

years: supply chain analytics. Souza (2014) and Wang et al. (2016) define supply 
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chain analytics as the ability to gain insights from data to make better decisions. 

Literature divides analytics into three categories: 

Descriptive analytics: which employs data to gain insights on what happened 

and/or what is happening. 

Predictive analytics: which extracts information from the data available in order 

to describe what will happen in future. 

Prescriptive analytics: which aims at identifying the best course of action 

according to the scenario highlighted by the data.  

Clearly, demand forecasting belongs to the second category. It is nonetheless of 

structural importance to understand the connections between these three 

categories in this field of application. Descriptive analytics will provide help 

identifying patterns and relationships between demand and different variables 

which may influence it. Thus, it is of valuable contribution to decide what to base 

the forecasting procedure on. Prescriptive analytics on the contrary, may use the 

prediction output with the objective to improve decision making by the means of 

optimization and simulation.  

Given this introduction, it is clear how demand forecasting represents a key 

activity in supply chain operations planning and management (Hyndman, 2019), 

by the means of helping managers to make well informed business decisions. Bad 

forecasts lead to poor planning and can be harmful for the well-being of supply 

chains. Forecasts can be classified based on the forecasting horizon considered, 

which is strictly connected to their scope: (a) short-term forecasts are needed for 

the scheduling of personnel, production and transportation; (b)medium-term 

forecasts are needed to determine future resource requirements, in order to 

purchase raw materials, hire personnel, or buy machinery and equipment; (c) 

long-term forecasts are used in strategic planning. Such decisions must take into 

account market opportunities, environmental factors and internal resources. 

Investigation on long term forecasting will be beyond the scope of this study. 
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1.2 Quantitative and qualitative forecasting 

Let us pose a forecasting problem: in a defined task, we are interested in 

forecasting demand in the future, where the demand in time unit t is denoted by 

𝐷𝑡. The time unit (or time bucket) selected can be the hour, the day, the month, 

etc. Assume that the present is defined as time unit t. The future time intervals 

will then be described as 𝑡 + 1, 𝑡 + 2, …, and the past as 𝑡 − 1, 𝑡 − 2, … . 

Given the statements above, the scope of the forecasting task can be delineated as 

the computation of 𝐷̂𝑡+1, 𝐷̂𝑡+2, … , 𝐷̂𝑡+ℎ  (where ℎ stands for the time horizon 

selected) that better approximate the future value of demand 𝐷𝑡+1, 𝐷𝑡+2, … , 𝐷𝑡+ℎ, 

unknown at time 𝑡. In order to reach this goal several are the methodologies 

available. These can be divided in two main families: quantitative and qualitative 

methods. 

Quantitative methods are applicable only when data is available. This data can be 

of various nature. Time series data (collected at regular intervals in time) is the 

most common input, but cross-sectional data (collected at a single point in time) 

can be used as well. The second “sine qua non” for applying quantitative methods 

is the reasonable assumptions that patterns and relationships observed in the 

past will repeat similarly in the future. Thus, demand can be forecasted by 

observing the past regularities (patterns) and causal relationships (e.g., 

advertising campaigns and demand increase) and projecting them into the future. 

Judgmental (or qualitative) methods are generally used when the data is either 

not available or not relevant in order to predict the target variable. The accuracy 

of such methods will be highly dependent on (I) the forecaster’s domain 

knowledge and (II) the information he bases the judgement on (Lawrence et Al., 

2006). This typology of forecasting is not pure guesswork. Several well-structured 

and systematic approaches have been studied to aid judgment and to limit the 

biases coming from its nature. 

A common approach to produce forecasts in practice, is the application of 

adjustments to the result produced by quantitative methods in order to consider 
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some aspects which would be otherwise neglected. The use of the so called 

“judgmental adjustments” has been vastly discussed in literature showing 

controversial results. Refer to Syntetos et al. (2016) for a comprehensive review 

on the topic. 

Due to the high uncertainty present in the demand forecasting environment and 

to demand’s extreme dependency on several factors predictions are never 

completely accurate. The focus of this study will be oriented towards the use and 

experimentation of quantitative methods applied to short/medium-term 

forecasts. Improvements in performance of demand prediction methods would 

in fact lead to several beneficial effects in inventory management like reduction 

in excess inventory and stock outs, thus reducing costs and waste of resources. 

 

1.3 Forecasting approaches 

Among quantitative methods, three different forecasting approaches can be 

identified based on the data used to produce the forecast (Hyndman and 

Athanasopoulos, 2018): 

Time series approaches: the forecast is produced using as input the past 

recorded demand. 

𝐷̂𝑡+1, 𝐷̂𝑡+2, … , 𝐷̂𝑡+ℎ = 𝑓(𝐷𝑡−1, 𝐷𝑡−2, … ) 

Most of the widely used classical methods belong to this category. 

Causal (or explanatory) approaches: in this category predictor variables 

such as promotions, advertising campaigns, and product attributes can be used 

to forecast future demand. In other words, demand is correlated to the variables 

given as input. These correlations can be either rooted or not in causality 

relationships. Predictor variables can be either dynamic (they depend on time) or 

static. 

𝐷̂𝑡+1, 𝐷̂𝑡+2, … , 𝐷̂𝑡+ℎ = 𝑓(𝑅(𝑡), 𝐿, 𝐾, … ) 
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where 𝑅(𝑡), 𝐿, 𝐾,... are the predictor variables. Examples of predictor variable that 

could be used to forecasts future values of demand are strength of economy, 

temperature, day of the week, holidays, promotions and so on. 

Mixed approaches: the forecasting method exploits both the information 

coming from recorded past demand and the predictor variables available. This 

methodology consists in nothing more than the mix between the previous 

approaches: 

𝐷̂𝑡+1, 𝐷̂𝑡+2, … , 𝐷̂𝑡+ℎ = 𝑓(𝐷𝑡−1, 𝐷𝑡−2, … , 𝑇, 𝐿, 𝐾) 

 

1.4 The structure of time series 

Before tackling forecasting tasks in the next paragraphs, it is necessary to spend 

some words describing time series. In demand time series several patterns can be 

identified. The following patterns are not necessarily present but, when they are, 

they can be formalized and projected by apposite methods in order to predict 

future sales. 

Trend: which consists in a long-term increase or decrease in the data. It can be 

linear or present a more complex behavior.  

Seasonal: which consist of a periodic variation in demand given by seasonal 

influencing factors. The pattern shows fixed frequency. 

Cyclic: a cycle occurs when rises and falls in demand show a non-perfectly 

periodic behavior. This usually rises from economic cycles. 

The effect of these patterns can be isolated, and time series decomposed. The 

equations reported underneath stand for the additive and multiplicative way to 

describe time series 

D(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝑅(𝑡) 

D(𝑡) = 𝑇(𝑡) ∗ 𝑆(𝑡) ∗ 𝑅(𝑡) 
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Where T(t), S(t) and R(t) are respectively the Trend, Seasonality and Noise (or 

Remnant) components. Given the long-term effect of the cycle, its influence is in 

fact generally considered constant and represented by the trend. The 

multiplicative approach to the decomposition is more appropriate when all the 

components increase due to an increase in the trend.  

 

1.5 Supply chains’ operational dimensions 

When facing a demand forecasting problem, it is necessary to keep an eye of 

regard for the supply chain physiology in order to approach the problem with the 

best performing tools and methods. The supply chain forecasting environment 

can be described by three main operational dimensions (Syntetos et al., 2016): 

length, depth and time.  

Length: forecasting is needed at different locations in the supply chain. The 

demand at a retailing level will generate a demand at the next upstream link 

(distributer), which will subsequently respond placing an order to the next link 

(manufacturer) and so on. Length can be defined as the dimension constituted by 

all links in the supply chain. The characteristics of the demand will vary based on 

the location in the supply chain.   

Depth: forecasting is used for various levels of decision making, from inventory 

control to strategic planning. Depth is defined as the level of detail at which the 

information is needed. This level of detail develops around several key features: 

products, suppliers, customers and locations.  

Time: this dimension involves both operational choices (for example time buckets 

and forecast horizon) and data characteristics (history of the data, frequency of 

the demand, etc.).  

As described in Chapter 1.1, forecasts are needed for various decisions in different 

contexts along the supply chain. These decisions will be based on forecasts with 

different characteristics. For example, inventory management for a retailer will 

require levels of detail different to those required by the manufacturer.  Given 
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these necessities, it is common practice to hierarchically aggregate (or 

disaggregate) the demand recorded in order to adapt it to the necessity of the 

practitioner. This procedure can concern all three dimensions, since it is mainly 

operated on products, locations and time buckets.  

Different levels of aggregation will entail time series characterized by different 

traits. A higher level of aggregation would generally result in the stabilization of 

demand through noise reduction. When aggregating in fact, the random 

component of demand from the products aggregated, averages towards zero. 

Thus, it will be easier for forecasting methods to identify underlying patterns and 

module the expected demand accordingly.  

Sometimes forecasts are needed at granular level but, due to the noisiness of 

demand, conducting direct forecasting can be challenging and result in low 

accuracy. In order to exploit the advantages given by this practice, cross-sectional 

aggregation could be an option. This practice is conducted aggregating demand 

from products of which I want to forecast sales individually. The forecasted 

cumulative demand can then be reassigned to the single products following 

alternative practices (Dalhart, 1974; Withycombe, 1989) 

Aggregation concerns many alternative approaches which have been vastly 

discussed in literature. Even if employed in the study (see Chapter 3.1), its 

analysis will be beyond the scope of the study. For more  information on the topic 

refer to the overview given by Syntetos et al. (2016). 

 

1.6 Statistical methods for forecasting 

Also referred to as classical methods, they represent the historical and still 

dominant tools for supply chain demand forecasting (Syntetos et al., 2016). 

Regression-based and smoothing based forecasting represent two of the most 

commonly employed families of statistical methods (Hyndman and 

Athanasopoulos, 2018). 
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Regression-based forecasting methods make use of relationships between 

dependent and independent variables. According to the independent variables 

used as input, these methods can be employed either through causal, mixed or 

time series approaches. Given the use in the study, the focus will be placed on 

their application through time series approaches. Several are the methods which 

stick to this classification. Naïve and Simple Moving Average represent the 

simplest methods part of this category. Expanding the horizon to less exceptional 

cases, linear autoregressive models produce the forecast as the linear 

combination of the variable’s past value. These methods developed and increased 

in complexity during the second half of last century: in his 1951 thesis, Whittle 

(1951) developed the Autoregressive-moving-average (ARMA) model which 

integrated the concepts of autoregression and moving average in one single 

model. Successively, Arima model was developed with the aim to add an 

integration procedure in order to allow forecasting of time series presenting a 

trend component (Box et al., 1970). Furthermore, Seasonal Arima was developed 

in order to consider seasonality. 

Smoothing-based forecasting: exponential smoothing forecasting methodologies 

are based on the assumption that the most recent points in the time series will 

have a greater influence than older ones. Whereas Simple moving Average 

methods considered past sales equally weighted, Simple (or single) exponential 

smoothing introduced exponentially decreasing weights going back in time. The 

main smoothing methods were developed by three authors during the late fifties. 

This approach was proposed in 1957 by Brown (1957)  and was later expanded by 

Holt (1957) and Winters (1960). The expansions, known as Double and Triple 

Exponential Smoothing (or simply Holt-Winters method), allowed the 

application of exponential smoothing methodologies to time series which could 

present both trend and seasonal components. Holt-Winters is one of the most 

widely diffused methods in industry due to its reliability, adaptability and velocity 

in producing the forecasts.  

Performance of statistical methods is of key interest for their application in 

industry and in this study. While it can be assessed some methods are more 
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powerful than others (e.g. Holt-Winters compared to Simple Exponential 

Smoothing), it is difficult to file a ranking based on their performance. Depending 

on the Dataset characteristics, methods have different performances. A previous 

study (Petropoulos et al., 2014), aimed at evaluating and underlining the 

potential of eight statistical methods according to several time series features. 

The seven features considered were seasonality, trend, cycle, randomness, 

number of observations, average inter-demand interval (IDI) and coefficient of 

variation (𝐶𝑉2). The first four features represent the components of time series 

and can be obtained through one of the decomposition approaches. The number 

of observations is descriptive of the amount of historical data employed in the 

forecast generation. 

 

1.7 Machine Learning methods for forecasting 

The term machine learning was popularized by Samuel (1959) and has been later 

formally defined: “A computer program is said to learn from experience E with 

respect to some class of tasks T and performance measure P if its performance 

at tasks in T, as measured by P, improves with experience E.” (Mitchell, 1997). 

Even if conceived many years ago, ML has been gaining increasing importance in 

many fields of application recently and its use in forecasting has been frequent 

object of studies for the latest decades.  

 Part of Artificial Intelligence (AI), ML in turns contains Deep Learning (DL) as 

its subcategory (Abiodun et al., 2018). ML methods trespass in the DL category 

when they increase in complexity. For example, ANNs can be considered DL 

methods when they present a high number of layers and a complex structure 

given by the multiple ways the layers interact with each other. As a result of the 

higher DL method’s complexity, they generally require a greater computational 

capacity compared to simple ML methods. In the following paragraphs, all 

methods appertaining to ML field will be addressed as ML methods with no 

distinction between ML and DL (unless underlined). 
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ML methods are divided into supervised and unsupervised learning methods. 

These two categories are delimited by the need of a target variable (also referred 

to as “dependent variable”) during the training phase. An example of 

unsupervised learning can be found in clustering algorithms, which automatically 

group the records based on their features. When considering a forecasting task, 

the target variable is represented by the unknown future demand. In order to 

train the algorithm, a time series is fed as input and the following time point as 

output. Thus, the methods needed to produce the forecast belong to the 

supervised family. Unsupervised learning can be used in the forecasting process 

(see Chapter 5.1), but it does not actively produce forecasts.  

In turn, supervised learning forecasting methods are divided into two families: 

regression and classification methods. The distinction between the two is based 

on the typology of dependent variables. 

Classification methods are used to predict a categorical target variable (e.g., a 

variable with 2 categories: belong to a customer class, or not). These methods are 

employed in many fields of application, from image recognition to fraud 

detection.  

Regression methods are used to predict a numerical value. The output can either 

be continuous or discrete. Since the desired output in forecasting corresponds to 

a discrete numerical value representing product demand, these are the methods 

of concern for the study.  

 

1.8 Statistical vs ML methods: the difference 

The difference between ML and statistical methods is not clearly defined in 

literature. The boundaries between the two fields are blurred to the point that the 

same method can be found both in statistics and in ML. Exemplary is the case of 

linear regression which as described before can be attributed to regression-based 

statistical methods or alternatively to ANN with no hidden layer and linear 

activation function. According to Stewart (2019), “The major difference between 
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machine learning and statistics is their purpose. Machine learning models are 

designed to make the most accurate predictions possible. Statistical models are 

designed for inference about the relationships between variables”. And again 

following the same line, “Statistics draws population inferences from a sample, 

and machine learning finds generalizable predictive patterns” (Bzdok et al., 

2018). 

These assessments, even if central to the topic, are not exhaustive. Considering a 

less philosophical and more methodological difference, it can be underlined that 

statistical methods try to adapt the model to the patterns contained in the data 

and subsequently use the structure obtained to predict demand. Machine 

learning methods, on the other hand, do not impose a strict structure, allowing it 

to be shaped by the data through more complex nonlinear relationships between 

the input and the output. The deeper the method is, the more complex 

relationships are allowed. Due to this complexity, it is generally impossible to 

understand the connections between inputs and outputs. Thus, ML methods 

sacrifice interpretability for predictive power (Stewart, 2019). The deeper the 

method, the lower the interpretability. For most of the cases, ML methods act like 

“black boxes”. 

Regarding their application, ML methods benefit from the employment of large 

datasets. The larger the dataset used the more generalized the relationship and 

the lower is the risk to incur into an overfitting situation. Overfitting occurs when 

the model is too closely fit to the training set, which results in highly specific 

predictive patterns not suitable for future demand due to the loss of 

generalization. Given that the structure is imposed and only a few parameters 

must be trained, statistical methods require less data to conduct their predictive 

task (Shmueli et al., 2017). 

 

1.9 The potential of Machine Learning 

As anticipated in Chapter 1.7, Machine Learning has been around for over half a 

century but has only recently seen great expansion and development. Given its 
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versatility and its adaptable structure, Machine Learning is radically redefining 

many fields of employment up to the point of disruption (Yallop, 2019). ML 

market is increasing with outstanding speed: the compound annual growth rate 

(CARS) of ML is assessed to be around 23% (Forbes); 28.5 billion dollars were 

allocated worldwide to ML practices in the single first quarter of 2019 (Statista, 

2019); McKinsey estimates that the potential economic given by AI will reach 9 

to 13 trillion dollars by 2030.  

In supply chain demand forecasting, Machine Learning methods still have not 

reached maturity and their employment is not widely used. Statistical methods 

are in fact still preferred by practitioners (Syntetos et al., 2016). The reason for 

this fact is said to be the interpretability of ML methods, seen as the main 

drawback of such techniques. Furthermore, scarce evidence is provided in 

literature about the objective superiority of ML methods compared to statistical 

ones.  

While the analysis of the many studies conducted in literature will be object of 

the following chapter, it is opportune to immediately tackle the interpretability 

issue in order to allow the reader to approach the findings of the study with the 

optimal mindset. 

We are living in decades of radical change for what regards technologies, customs 

and businesses. The increased capacity to store and process data, allows 

managers to collect and use more and more information. Considering retailers, a 

huge quantity of data about customers’ behaviors during online and/or offline 

purchases is available. What products were visualized, how people navigated 

through the website, how much time they spent looking at products and so on. 

New technologies are able even to recognize customers entering in physical stores 

and to create “personas” analyzing how people behave (Hofmann and 

Rutschmann, 2018). This contemporary phenomenon has been  given the name 

of “Big Data Revolution” (McAfee and Brynjolfsson, 2012). Professional figures 

able to process and manage this amount and variety of data have never been more 

requested (Davenport and Patil, 2012). In order to embrace and exploit the 
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opportunities coming from this data, it is necessary, as suggested by Mayer-

Schönberger and Cukier (2013), a radical change in mindset: “Society will need 

to shed some of its obsession for causality in exchange for simple correlations: 

not knowing why but only what. This overturns centuries of established 

practices and challenges our most basic understanding of how to make decisions 

and comprehend reality.” Once this change in mentality reached, data-driven 

companies can flourish and reach higher efficiency. It has been in fact proven that 

data-driven companies result 5% more productive and 6% more profitable than 

competitors (McAfee and Brynjolfsson, 2012).  

Thus, practitioners in supply chain forecasting should drop their “obsession for 

causality” and base the choice of forecasting methods mainly on the predictive 

performances achievable.  

 

1.10 Scope of the study  

ML methods have been widely investigated in literature (see Chapter 2.3). As 

highlighted by Makridakis et al. (2018), these studies are mainly functional to a 

specific application and often interest a method created ad hoc for the forecasting 

environment considered. According to the authors, this characteristic tends to 

result in an upwards bias on the performance of ML, thus creating hype on their 

application which does not reflect their actual performance.  Other criticalities 

they identified were: (i) employment of small datasets, (ii) consideration of short-

term forecasting horizons and (iii) lack of an objective and unbiased evaluation 

technique. Furthermore, they underlined the need of a defined and constant 

benchmark. Their valuable contribution was to produce the first large-scale study 

which compared several ML methods to the top performing statistical ones 

relatively to the topic of single time series forecasting. The outcome of the study, 

which involved forecasts for 1045 time series from different fields, resulted in the 

net superiority of statistical methods.  

Following in the footstep of Makridakis et al. (2018), this study aims at achieving 

a large-scale comparison of several ML and statistical methods. Differently from 
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the previous investigation, it employs only data on historical demand coming 

from a couple of companies in the food distribution industry, thus appropriate 

for an investigation oriented to the field of supply chain forecasting. These 

companies’ datasets present extremely heterogeneous characteristics, therefore 

showing particular suitability to test methods’ predictive power according to 

diverse forecasting environments.  

The key variation from the aforementioned analysis and originality of this study 

stands in the attempt to generalize the historical sales’ patterns among several 

products. The assumption that justifies the different approach is that several 

products sold by a company can potentially present the same behavior and 

therefore be associated to the same patterns. Given the generalization power of 

ML methods, this behavior is “learned” if the model is properly trained with 

historical demand from all products belonging to the group of interest. The ML 

models trained will therefore be as many as the number of product groups 

identified in the dataset and not one for each product as in the case of the previous 

study from Makridakis et al. (2018). 

The use of multiple product’s historical time series for the training phase (cross-

sectional forecasting) could be the key approach which allows ML methods to 

significantly improve performance. The dimension of the training set was in fact 

identified by Shmueli et al. (2017) and Cerqueira et al. (2019) as of central 

importance to the predictive power of a ML method. 

The contribution of this investigation to the scientific community can be 

delineated among three points which reflect in three different section of the 

study: 

1. The first section concerns the analysis of performances achieved through 

“full cross-sectional forecasting” (meaning cross-sectional forecasting 

applied to the whole dataset) approach to ML methods compared to 

statistical benchmarks. For this section of the study several machine 

learning methods are employed (see Chapter 2.4) using different 

methodologies to tackle multistep forecasting. 
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2. The second section aims at identifying the appropriate choices 

concerning the criteria for the creation of the subgroups to conduct cross-

sectional forecasting on. Here, only one of the methods previously 

applied is selected to conduct the analysis. The choice is based on 

computational requirements and performances. This topic has not been 

object of interest in previous studies; thus, the analysis aims at filling the 

gap in literature described in Chapter 2.1.  

3. Furthermore, the implementation of mixed approaches through ML 

models is briefly considered. Demand forecasting is traditionally based 

on time series approaches. Meaning, the demand is predicted using 

exclusively historical sales. Other factors influencing demand (for 

example temperature or marketing campaigns) are generally taken into 

account through judgmental adjustments or separate predictions of their 

effects on demand. ML, thanks to the complex relationship between 

input and output variables, can potentially include these factors in the 

inputs and learn their effect on demand. This approach is not original 

(see Chapter 2.2), but its potential to exploit Big Data information make 

it either way worth of further attention. 

The study will develop around several Chapters. Chapter 2 will introduce the 

reader to the state of the art of cross-sectional forecasting and will provide the 

essential knowledge to fully understand the rest of the thesis. Chapter 3 will 

address the data preparation and preprocessing phase which is of central 

importance to all of the three contribution of this study previously overviewed. 

These three contributions will be treated in Chapter 4, 5 and 6 respectively. 

Finally, in Chapter 7, conclusions are drawn and possibilities for further studies 

are suggested. 

It is necessary to underline that the study does not claim to evaluate the 

performance of optimized methods. The use and optimization of these 

methodologies in fact require ad hoc data treatment and time/computing power 

consuming procedures. The focus is on an easy to implement approach to 

forecasting which may be used by practitioners. The methods applied are 
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retrieved from open source packages available for python and preprocessing is 

limited to the traditional essential steps usually applied. 
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Chapter 2: Overview of ML techniques 

The scope of this chapter is to introduce the reader to the ML techniques which 

were used along the thesis. The first section will focus on the state of the art of 

cross-sectional forecasting, highlighting the literature gap this study aims to 

address. Successively the framework for time series clustering which will be 

used in Chapter 5 is presented. Furthermore, sections 2.3 and 2.4 are intended 

to provide knowledge regarding the use of ML methods in demand forecasting 

and the principles governing the methods selected for the study. 

 

2.1 Cross-sectional forecasting 

The study of Makridakis et al. (2018) was focused on single time series 

forecasting, meaning, time series were individually considered. It assessed lower 

performance of ML methods compared to statistical methods. The complexity of 

ML accounts in fact for the possibility to approximate up to an infinity of diverse 

functions (Hornik, 1991), but can incur in the fallback of overfitting. This could 

happen when few data are fed as training set to a complex method, which could 

fit the error instead of the generalizable patterns useful to produce the forecasts 

(Bandara et al., 2020). Thus, the results achieved by ML methods in the 

aforementioned study, perfectly reflected the thesis of Hyndman (2016) and Yan 

(2012)  which highlighted the limitation of complex ML models when producing 

forecasts based only on the limited amount of data coming from single time 

series. 

Nonetheless several fields of application present a multitude of time series to be 

forecasted. This is for example the case of our field of interest, where the 

estimation of future demand values is required for all time series considered, each 

one standing for a product. The time series from this kind of dataset often present 

common traits and patterns which could be generalized among them. For 

example, groceries retailers could sell different brands of the same good (e.g. 

water or milk), which will approximately follow the same demand patterns. 
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These forecasting environments provide a competitive advantage for ML 

methods compared to statistical methods. ML methods are indeed able to exploit 

the shared patterns and train the models across multiple products.  

Hartmann et al. (2015) recently proposed this approach, which they defined 

“cross-sectional forecasting”, in order to deal with incomplete sales histories and 

missing values. The authors proposed a single model which, trained with data 

from the whole dataset, would have been able to incorporate knowledge from all 

time series considered. Smyl and Kuber (2016) proposed cross-sectional 

forecasting as one of the two alternatives to address the lack of data problem for 

complex methods. Bandara et al. (2020) welcomed the proposal and further 

investigated cross-sectional forecasting. They underlined its potential to 

fundamentally improve ML methods performances by exploiting similarities in 

behavior across time series. Furthermore, they identified a criticality of the 

approach standing in the training across potentially disparate time series, which 

may reduce forecasting accuracy. To face this risk, the authors proposed a 

clustering phase based on time series attributes to group those time series which 

supposedly presented similar traits. Cluster specific training was then employed 

for Long Short Term Memory NN (LSTM) and these utilized to make predictions. 

Their proposed model, applied to the datasets from the CIF2016 and the NN5 

forecasting competitions, managed to outperform most of the other participating 

methods. The outcome of their experimental study highlighted that, depending 

on the dataset’s time series homogeneity, the approach could improve 

performance with statistical significance (high homogeneity) or not (low 

homogeneity) compared to the “single time series” approach to LSTM. 

The previous study from Bandara et al. (2020) focused on the general concept of 

applying the clustering procedure to cross-sectional forecasting, but did not place 

particular attention on how to create the clusters and what is the appropriate 

clustering approach allowing to optimize predictive performance. The authors 

performed this procedure selecting arbitrary numbers of clusters for several 

clustering methods. Concluding the paper, they emphasized the importance of 
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the cluster selection methodology and highlighted the need of a study concerning 

the topic. 

This thesis embraces the suggestion for future work of Bandara et al. (2020) and 

underlines the importance of such investigation. Of central significance is the 

necessity to find a tradeoff between the advantages given by an increase in 

training data availability and the disadvantages coming from considering 

disparate time series, both effect of clusters’ increasing dimension. Thus, in the 

following investigation, the approach of Bandara et al. (2020) is proposed again 

focusing on the empirical evaluation of performance as a function of the number 

of clusters the dataset is divided in. The dependency between these two variables 

is shown and results are critically analyzed. This study wants to improve the 

comprehension of the clustering phase implications on cross-sectional 

forecasting, therefore representing the first step towards the achievement of a 

more sophisticated methodology. 

 

2.2 Clustering time series 

As introduced in the previous paragraph, the second section of this study evolves 

around the need to select the appropriate clustering dimension in order to 

optimize performance in a cross-sectional forecasting task. This operation results 

extremely complex for several reasons: 

• since the best solution to the clustering problem is strictly related to the 

ML algorithm performance and ML methods work as black boxes, it 

results extremely difficult to set a precise objecting function to base the 

clustering on. 

• Dependence on the Characteristics of the dataset, thus the optimal 

dimension of cluster is specific to the considered application. 

• Variation of ML method complexity, which affects the clustering optimal 

solution and does not only depend on the ML method employed but also 

on the parameters selected as input. 
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Furthermore, the sole procedure of clustering time series is not to be considered 

an easy task. It has been, in fact, a challenge which many researchers have 

addressed in recent years due to the vast application in several fields like Biology, 

Medicine, Finance, Supply chain management and many more (Aghabozorgi et 

al., 2015). The criticality in the task stands in grouping time series which usually 

are characterized by high dimensionality, could show different lengths, present 

missing values, and be subjected to noise and irregularities. 

 

2.2.1 Time series clustering framework 

The scope of this paragraph is to provide the reader with the framework necessary 

to understand the models developed and described in Chapter 5.1, and not to give 

a complete overview of the literature on time series clustering. For an in-depth 

literature review on the topic, refer to the work of Aghabozorgi et al. (2015). 

 

 

Figure 1: Time series clustering framework 

 

When clustering time series, numerous alternatives are available adopting a 

combination of operational decisions. This decisions give structure to the 

framework presented in Fig. 1 and concern the following five aspects of the task 

(Aghabozorgi et al., 2015): 

1. Taxonomy of time series clustering (Keogh and Lin, 2005): 

• Whole time series clustering: the whole length of the time series is 

used as input for clustering.  



Clustering time series 

32 
 

• Subsequence time series clustering: a set of subsequences is employed 

to define the similarity between time series. 

• Time point clustering: the value of one (or a few) points defined in 

time is used as similarity measure. 

Since the concern of the study is grouping products which present similar 

patterns, all historical sales from a certain product should be considered 

when assessing similarity. Thus, the sole approach considered in the study 

is whole time series clustering. 

2. Approaches to whole time series clustering (Warren Liao, 2005): 

• Distance-based: algorithms work directly with time series’ raw data 

and group them based on a distance measure. 

• Feature-based: algorithms work indirectly with features extracted 

from raw data. 

• Model-based: time series are indirectly grouped based on the model 

extracted from raw data. 

Distance-based approaches seem as the most straight forward: most of them 

consist in applying an unsupervised ML algorithm to group N  points 

defined in M dimensions, where N is the number of time series and M the 

number of time points in each time series. When applying this procedure to 

real world time series the approach present some criticalities (Wang et al., 

2006):  

i. When time series are very long, some clustering algorithm become 

intractable due to the high dimensionality. 

ii. When time series present different lengths or missing values, 

distance measures fail to evaluate similarity. 

iii. When the environment is characterized by high uncertainty, 

distance measures performance could be heavily penalized by the 

presence of noise. 
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Many methods have been devised to cope with these problematics. One 

among all, the diffused methodology of applying Dynamic Time Warping 

(DTW), an elastic distance measure which can deal with different time series 

lengths.  

Model-based approaches would require to assign a model for each time 

series of interest, which is not suggested for irregular demand patterns and 

could involve high computational requirements (Wang et al., 2006).  

Feature-based approaches have the characteristic not to be subjected to the 

same problematics (Räsänen and Kolehmainen, 2009). Thus, given the 

characteristics of the data available for this study, feature-based approaches 

represented the most investigated choice for this study (see Chapter 4). 

3. Clustering algorithms 

Clustering algorithms can be divided in two main families: hierarchical and 

partitional (or commonly referred as K-means) clustering techniques 

(Karypis et al., 2000).  

• Hierarchical Clustering: production of a nested sequence of 

partitions which at the highest level presents a single cluster 

comprehensive of all N time series and, at the lowest level, singleton 

clusters (formed by a single time series). Each of the intermediate 

level is formed either splitting clusters from higher levels (divisive 

approach) or agglomerating clusters from lower levels (agglomerative 

approach). The nested partitions can be graphically represented by a 

dendrogram, which can be then employed by the user to decide how 

to conduct the necessary action of selecting the preferred clustering 

level. The dendrogram (of which an example is reported in Fig. 2), in 

fact, qualitatively shows the number and the enclosed dissimilarity 

related to each clustering level, thus being a key tool to select the 

appropriate level for the application considered. 
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Figure 2: Example of a dendrogram (retrieved from www.mathworks.com) 

 

•  Partitional (or K-mean) Clustering: K clusters are iteratively formed 

based on the similarity between the time series and the K centroids. 

The K centroids (where K must be fixed a priori by the user) are 

initially randomly picked in the M-dimensional space (defined by the 

time series’ features of concern). In each iteration, all points 

(representative of the time series) in the space are assigned to a 

centroid’s cluster. For the following iteration, the centroid is moved 

to the barycenter defined by the points included in its cluster. The 

iterative process stops when the centroids stop moving. 

 

4. Distance measure: 

This choice concerns the quantitative assessment regarding the distance 

between two points in the clustering space. Depending on the necessity of 

the study, diverse functions can be selected to compute the distance. Here 

are described three of the most used distance measures: 

• Euclidean distance: representing the “straight line” distance between 

two points (p and q) in a M-dimensional Euclidean space. 

 

http://www.mathworks.com/
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𝑑(𝑝, 𝑞) = √∑(𝑞𝑖 − 𝑝𝑖)

𝑀

𝑖=1

 

 

• Chebyshev distance: defined as the maximum difference between 

couples of coordinates of the two points considered.  

 

𝑑(𝑝, 𝑞) = 𝑚𝑎𝑥𝑖(𝑞𝑖 − 𝑝𝑖) 

 

• Manhattan distance: or also “block distance” is defined as the sum of 

the absolute difference of coordinates. 

 

𝑑(𝑝, 𝑞) = ∑ |𝑞𝑖 − 𝑝𝑖|

𝑀

𝑖=1

 

 

5. Linkage method: 

When applying hierarchical clustering algorithms, it is necessary to define 

the linkage method, that is the principle governing the agglomeration of two 

clusters (or division in two clusters for the divisive variant). Here are 

reported some of the most commonly used: 

• Complete linkage: the distance between clusters is given by the 

distance of the two furthest points (one in each cluster) which they 

contain (Fig. 3). 

• Single linkage: the distance between two clusters is computed as the 

distance of the closest points (one in each cluster) which they contain 

(Fig. 4). 

• Average linkage: the distance between two clusters is equal to the 

average distance from any member of one cluster to any member of 

the other cluster (Fig. 5). 

• Ward method: while in the previous cases listed, the parameter 

governing the agglomeration/division of clusters was a distance, 
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Ward method aims at the minimization of variance inside the 

clusters. Thus, the agglomeration is practiced between those two 

cluster that, when merging, produce the lowest increase in the sum of 

squares. When selecting Ward’s method, no choice regarding the 

distance measure is needed, since it is naturally based on Euclidean 

distance. 

 

Figure 3: Complete Linkage 

 

 

Figure 4: Single Linkage 

 

 

Figure 5: Average Linkage 

(figures retrieved from: www.datavedas.com) 

 

https://www.datavedas.com/hierarchical-clustering/
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2.2.2 Feature-based clustering 

Two of the clustering techniques employed in this study (which will be further 

discussed in Chapter 4.1) were inspired from the work of Wang et al. (2006) and 

concern whole sequence time series clustering by means of a feature-based 

approach. The authors proposed to base the selection of the feature on their 

significance and interpretability. The nine features selected have indeed been 

identified in literature (Armstrong, 2001) as able to capture the “global picture” 

of time series. The outcome of their approach resulted in a clustering 

performance comparable to the distance-based approaches used as benchmark, 

but, differently to these last ones, showed low computational requirements (due 

to the low dimensionality) and lower sensitivity to missing values. Previa 

additional experiments, they also concluded that high accuracy could be achieved 

limiting the number of features to just a subset of the nine ‘global’ features, and 

that this subset should be selected according to the dataset characteristics and the 

clustering needs. Furthermore, they highlighted that the selection of 

interpretable features could favor the collection of relevant insights regarding the 

clusters’ characteristics. The same approach has been employed also in the 

previously described model proposed by Bandara et al. (2020), who used a 

slightly enlarged set of feature automatically extracted from the data. 

 

2.3 Machine Learning performance 

The performance of machine learning methods in demand forecasting has been 

object of study since the end of the last century. From the nineties, several studies 

were conducted on the ANNs applications in demand forecasting. Their usage 

was investigated on time series approaches by Tang et al. (1991). The authors 

compared the performances of various feedforward, back-propagation ANNs 

with the Box-Jenkins method. Findings revealed that, depending on the time 

series’ characteristics, ANNs could achieve similar results or even outperform the 

statistical method.  
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Later in the same decade, Thiesing and Vornberger (1997) proposed the 

application of ANNs through a mixed approach. Time series (from past recorded 

demand) and other predictor variables were exploited in order to produce real 

data forecasts for a German supermarket. The mixed approach proved to be more 

effective than the statistical techniques which were used at the time by the 

company. 

Aburto and Weber (2007) more recently proposed the use of neural networks as 

a constituent part of a hybrid methodology, which employed both Arima and 

ANNs in order to forecast demand for a Chilean supermarket.  

An extensive analysis of various ML techniques was conducted by Carbonneau et 

al. (2008): forecasts based both on simulated and real-world data, were produced 

employing ANN, Recurrent ANN (RNN), Support Vector Regression (SVR) and 

various statistical methods. The outcome asserted a slight superiority of the ML 

methods but without statistical significance.  

Ali et al. (2009) applied Regression Trees and SVR to grocery retailer’s data. 

These data manifested periods with and without promotions. The outcome of the 

experimental studies showed that, in periods without promotions, the techniques' 

performances were comparable. However, the ML methods managed to greatly 

outperform the benchmark (exponential smoothing with promotional 

adjustments) where the influence of promotion was relevant.  

Given the continuous development of ML methods in recent years, the need of an 

extensive analysis study was met by Makridakis et al. (2018). They compared ten 

popular ML methods to eight traditional statistical ones focusing on accuracy and 

computational requirements. The dataset comprehended 1045 time series 

retrieved from the M3 forecasting competition. The investigated ML methods 

comprehended SVR, K-nearest neighbor regression (KNN), gaussian processes, 

Regression Trees and six variants of ANN algorithms. All these methods were 

outperformed by the statistical ones in terms of both accuracy and computational 

complexity. 
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In the aforementioned paper by Makridakis et al. (2018), the authors explained 

the contradictory results in literature with the employment of small datasets (i), 

with the consideration of short-term forecasting horizons (ii) and with the lack of 

an objective and unbiased evaluation technique (iii). On the matter they 

underlined the need of a defined and constant benchmark.  

In addition to the issues highlighted, this study wants to underline the existence 

of further problematics in finding benchmarks in order to have a better 

assessment of a certain methodology’s performance. 

The first challenge is conveyed with the support of the paper “‘Horses for Courses’ 

in demand forecasting”  (Petropoulos et al., 2014). The authors express the need 

of approaching the forecast of the time series with the most appropriate tool for 

the job. The authors affirmed that the right question to address a forecasting 

problem with, is not “What is the best method?” but more correctly “What is the 

best method for my data?”. Since the best method will depend on the data 

characteristics, it will result difficult to identify a well-defined and constant 

benchmark to compare ML methods’ and statistical methods’ performances. A 

second challenge this study will have to dwell on, is that employing ML methods 

require setting many parameters. For example, Multi-Layer Perceptron (MLP) 

(one of the simplest ANNs) requires to initially set the number of hidden layers, 

the number of nodes (in the input, output and hidden layers), the activation 

functions, and the learning rate. On the other side, simple statistical methods can 

be used without any parameter such as the Naïve method or with small number 

of parameters such as exponential smoothing. Another challenge is characterized 

by the different needs of data pre-processing phases whether it concerns ML or 

statistical methods.  

Given the last two challenges (methods parameters and pre-processing), the 

performance of ML methods will greatly depend on the user’s capacity to optimize 

the parameters and to pre-process the data. Thus, the evaluation would lose part 

of its objectivity. 
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Compared to the previous study, this work does not aim at providing a 

comparison which pretends to be objective and all-encompassing. The limitations 

are therefore taken into account and when possible tackled. When not, the issue 

is considered in order to define the boundaries and scope of the study itself. 

 

2.4 Machine Learning Methods 

As introduced in Chapter 1.7, ML methods are divided into supervised and 

unsupervised ML methods. Furthermore, a supervised learning method is labeled 

as classification or regression method respectively based on the categorical or 

numerical form of the output variable. The estimation of the future amount of 

sales places demand forecasting in the regression category. 

The scope of this paragraph is to give a brief overview of the methods that are 

used for demand forecasting and, subsequently, explain the reasons for the 

selection of the methodologies considered in this study. Furthermore, it aims at 

providing the reader with the knowledge necessary to understand the differences 

between the employed methods in order to provide the tools for the 

comprehension of the following chapters. 

Several machine learning methods exist for regression tasks. The most diffused 

typologies are Artificial Neural Networks (ANNs) and Decision Trees (DTs) (Seif, 

2019). Additionally, other methods have been developed and applied to 

forecasting. Support Vector Regression (SVR) (Smola and Schölkopf, 2004), a 

variant of Support Vector Machines, has for example proved to be a quite 

performing method for financial time series forecasting (Tay and Cao, 2001). Also 

simpler methods like K-nearest neighborhood (KNN) have been employed 

(Makridakis et al., 2018).  New variants of methods are often investigated in order 

to improve predictive performance. In the last decade, thanks to an increase in 

computational capabilities, the interest in the more complex Deep Learning 

methods has grown (Abiodun et al., 2018). Artificial Neural Network have in fact 

evolved to highly nonlinear configurations which, as a result of the many degrees 

of freedom in the model, are able to “learn” underlying relationships between 
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input and output. Due to this renewed potential in ANN methods, many studies 

have been recently conducted on the topic (Kong et al., 2019; Smyl and Kuber, 

2016; Bandara et al., 2020). 

Although some DL algorithms, like RNN, Convolutional Neural Networks (CNN) 

and LSTM have proved to be valuable forecasting methods, they were not taken 

into consideration for this study due to the limited computational power 

available. 

Most of the ML methods considered in this thesis are part of the Decision Trees 

family. Decision Trees (DTs), are non-parametric supervised learning methods 

used for classification and regression. The goal, when a regression task is 

concerned, is to create a model that predicts the numerical value of a target 

variable by learning decision rules inferred from the data features. In the 

application considered, features correspond to the past value of demand of the 

involved product (which is associated to a time series). Models are achieved by 

recursively dividing the data space and fitting a simple model on the partition. 

The operation is concluded when all features have been considered. The outcome 

of the recursive operation can be graphically represented by a Decision Tree. Fig. 

6 shows an example of the Regression Tree and space partition. 

 



Machine Learning Methods 

42 
 

 

The procedure described is the basis for multiple ML methods which have been 

developed and refined along the years. These developments are all based on the 

combination of various simple models in order to create a more performing one 

(Dietterich, 2000) increasing stability, reducing variance and avoiding 

overfitting.  The combinations, which are also called “ensembles” can be 

constructed employing different methodologies: Bagging, Boosting and Stacking. 

Bagging: which stands for “Bootstrap aggregating” (Breiman, 1996), consists in 

running the learning algorithm several times in order to train various DT models 

(“weak learners”) and subsequently averaging the forecasting result. Each time a 

weak learner is trained, a different subset of the training set is employed in order 

to produce n different results, where n is the number of weak learners trained. 

The n subsets considered are of the same dimension of the original training set, 

but contain 1 − 1
𝑒⁄  of  its samples (≈ 63,2%), while the remaining spots are filled 

with duplicates (Dietterich, 2000). Once the n weak learners have been trained, 

forecasts are produced and averaged in order to get a final forecast which shows 

less variance. In Fig. 7 the bagging process is schematically reported.  

Figure 6: example of RT’s generation process (retrieved from www.datacamp.com) 
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Figure 7: Ensemble methods; boosting procedure 

 

Boosting: similarly to bagging, boosting makes use of several heterogeneous 

subset of the original training set in order to train weak learners which provide 

results. These results are then averaged to obtain the final forecast. The difference 

stays in the mutual independence between these subsets. While in bagging the 

subsets are created simultaneously through the bootstrapping process and result 

independent, in boosting, trees are grown sequentially based on the information 

from previously grown trees (Elith et al., 2008). This sequential optimization 

process (graphically represented in Fig. 8) can concern different techniques and 

is based on the performance of each tree on the “holdout set”, which is a fraction 

of the dataset not employed in the training phase. 
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Figure 8: Ensemble methods; boosting procedure 

 

Stacking: differently to the previous embedding methods, stacking employs the 

forecasts of the n weak learners as input for a meta-model which is trained and 

used to produce the final forecast (Fig. 9). Given the need to “save” part of the 

data for the meta-model training, stacking is advisable only when the original 

dataset is of considerable dimensions (Rocca, 2019).  

 



Chapter 2: Overview of ML techniques 
  

45 
 

 

Figure 9: Ensemble methods; stacking procedure 

 

The three methodologies described can be used independently or combined, 

giving birth to several well-known methods like Random Forests, AdaBoost, 

Extremely Randomized Trees and many more. The methods employed for this 

study will be introduced in Chapter 3.2. 

 

2.5 Multistep forecasting  

As already introduced in the previous chapter, forecasting tasks can involve 

different horizons of interest: sometimes it is necessary to know the demand one 

day ahead and sometimes much before. When considering a task which requires 

a forecasting horizon different from 1 time step ahead, we can relate to the term 

“multistep forecasting”. Meaning, forecasts are required at time 𝑡 + 1, 𝑡 +

2, … , 𝑡 + ℎ where h is the number of time steps in the horizon considered and t is 

representative of the time when the forecast is produced. 

Statistical and ML methods work differently in such circumstances. Statistical 

methods, as explained in Chapter 1.8, are concerned with the inference of the 

global structure of the population starting from a sample of it. Applying an 

imposed structure and bending it to fit the training data, they are able to extract 

the fitted patterns and provide a forecast which is valid, theoretically speaking, 
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for infinite steps ahead. On the other hand, ML methods can be viewed as black 

boxes which receive a number of inputs and return a predefined number of 

outputs. Thus, since they do not infer anything about the data population, the 

usefulness of the forecast is limited to the outputs provided. Different approaches 

have been develop to tackle a multistep forecasting task with a ML method 

(Hamzaçebi et al., 2009): 

Direct approach: the forecasts for all the time steps considered in the forecasting 

horizon are produced at the same time by the same model. Thus, the model will 

provide h outputs where h is the number of steps in the horizon considered (Fig. 

10). 

 

Figure 10: Direct multistep forecasting approach 

 

Indirect approach: the model produces the output only for 1 time step ahead. The 

forecast produced is then inserted as an input with a sliding window procedure 

in the same model in order to predict the expected value for the following time 

step. This process continues iteratively until all h forecasts have been generated 

(Fig. 11). 

 

Figure 11: Indirect multistep forecasting approach 
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 Multi-model approach: as many models as the number of time steps in the 

forecasts are trained (h). Each model produces exclusively the forecast related to 

one of the h time steps (Fig. 12). 

 

Figure 12: Multi-model multistep forecasting approach 

 

The characteristic traits of the presented approaches are summed up in Table 1. 

 

Approach N. of models N. of inputs N. of outputs N. of iterations 

Direct 1 n h 1 

Indirect 1 n 1 h 

Multi-model h n 1 1 

 

Table 1: Approaches to Multistep demand forecasting with ML methods 

 

None of the approaches has proved in literature to consistently outperform the 

alternatives (Hamzaçebi et al., 2009). This thesis wants to investigate the 

behavior of multistep approaches when applied to the specific case of cross-

sectional forecasting. Due to the high computational requirements required to 

train several models, only the direct and the indirect approaches were considered. 
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Chapter 3: Preprocessing 

The scope of this chapter is to introduce to the reader to the work which was 

necessary before the beginning of the experiments treated in the next chapters.  

The preprocessing was conducted following the guidelines provided by Shmueli 

et al. (2017). In their book the authors identified the poor understanding of task 

and experimental environment as the greatest threat to data analytics projects. 

They described several steps (Fig. 13) which were not only used as guidelines 

during the unfolding of the study but will also serve in the following text as the 

structure to describe the preprocessing phase. 

 

 

The first six of the nine steps will account for the rest of Chapter 3.1 which will 

describe the preprocessing phase. Steps 7 and 8 will be treated independently in 

Chapter 3.2. Finally, the clean data is employed through the algorithm selected 

and step 9 will take the form of Chapter 4, 5 or 6 depending on the analysis 

involved. 

 

3.1 The preprocessing phase 

1. Develop an understanding of the purpose of the data mining project. 

The first scope of the study was identified as the need to evaluate the 

 

Figure 13: steps of a data mining task 
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potential of cross-sectional forecasting applied to supply chain demand. 

To do so, it was decided to conduct two experiments: the first concerned 

comparing full cross-sectional forecasting to other forecasting tools and 

methodologies employing a time series approach; the second wanted to 

verify cross-sectional forecasting adaptability to mixed approaches. A 

further contribution of this study was set to be an investigation on the 

appropriate way to apply a clustering approach to demand forecasting. 

 

2. Obtain the dataset to be used in the analysis. 

The datasets employed in the study where provided by a French 

consulting company specialized in supply chain demand forecasting. 

From the several datasets available, two were selected due to their 

heterogenous characteristics.  

• “Dataset A” contained data about sales, product attributes and 

promotions of a B2B company providing food to canteens and 

cafeterias distributed among France. Specifically, the data 

available interested 401 products belonging to the “yogurt and 

fresh cheeses” product family. Due to the business’ characteristics, 

the historical sales records presented extremely noisy and 

intermittent demand which would have consisted in a challenge 

for the forecasting methods. 

• “Dataset B” came from a French company specialized in retail 

having multiple stores all around France. The data available 

concerned past sales from 834 products, product and site 

attributes but, differently from Dataset A, no information about 

promotions or marketing campaigns effectuated during the 

concerned time span was available. Compared to the previous 

dataset, the demand time series presented on average a more 

regular demand. 
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• Information about holidays were retrieved from an open platform 

for French public data. The dataset reported the state of holiday (0 

or 1) as a function of the “zone scolaire” and of the date. 

The contents and characteristics of both datasets are schematically 

reported in Table 2. 

 

 Dataset A Dataset B 

Historical Sales yes yes 

Product Attributes yes yes 

Store Attributes yes yes 

Promotions yes no 

Number of products 401 834 

Company 

B2B, food provider for 

canteens and company 

restaurants 

B2C, BIO products 

retailer 

Details Extremely noisy demand More regular demand 

 

Table 2: Datasets characteristics 

 

 Both Dataset A and B contained information about past sales reported 

accordingly to different criteria: not only plain and simple records of past 

sales but also a “corrected” time series in order to account for the 

influence of exceptional sales and promotions.  

The data provider suggested to adopt a forecasting horizon 

corresponding to two months ahead. This horizon was based on the 

interests of the involved companies.  
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3. Explore, clean, and preprocess the data. 

Data preprocessing represented a consistent part of the project. 

According to literature (Shmueli et al., 2017), this practice can represent 

around 80% of the total work in a data mining task. In this case study, 

given the high number of methods compared and the relevance of the 

post processing phase, the preprocessing accounted for broadly one 

fourth of the total work.  

 

An initial qualitative analysis was necessary to understand the datasets, 

the meaning of each information contained and to have an initial idea of 

the future work needed. After this initial data evaluation practice, the 

central section of the preprocessing phase took different forms 

depending on the data involved: 

• Historical sales preprocessing: requesting a major 

contribution, this procedure aimed at transforming raw sales 

recorded from Point of Sales (POS) into ready-to-forecast time 

series. It involved several steps and data manipulations which 

were conducted following the process flowchart (Fig. 14) reported 

underneath. 
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User inputs and algorithmic necessity were selected in order to 

comply to the research scope conditions and to respect algorithmic 

constrains. The dotted line contains the part of the process which is 

operated recursively. Hypothetically, if all data manipulation 

practices needed were known from start, historical sales 

preprocessing would have been a straightforward process. However, 

since some of the input choices entail decision which were aided by 

data visualization, the process resulted recursive and not 

automatable. In the following list reports the main data manipulation 

practices conducted in Python. 

 

Figure 14: Data preparation process flowchart 
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a. Dates management and daily aggregation: dates were processed 

in order to be interpretable by Python. Then, single sales records 

were aggregated by daily time buckets. 

b. Null sales adjustments: POS records present only information 

about sales happening, but nothing is recorded when a certain 

product does not sell at all. It is therefore necessary to integrate 

daily historical sales in a structure which presents all time 

intervals from the beginning until the end date of the records. 

c. Aggregation: sales were aggregated on both location and time 

dimension. Weekly time buckets were selected based on the study 

necessities. Indeed, daily time buckets proved to be too small to be 

applied to the extremely noisy and intermittent demand of Dataset 

A. On the other end, monthly time buckets would have decreased 

the difference between the various products and would have 

decreased the significance of holidays and promotions, thus 

departing from the study’s third mentioned goal. The granularity 

level chosen for the location dimension involved the aggregation of 

all sales recorded for a certain product in all stores. 

d. Treatment of NPI (new product introductions): several new 

products were introduced during the time span of interest for both 

datasets. Since their inclusion’s effect in the study would have 

produced unknown outcomes, they were eliminated from the study 

in order not to bias the result. 

e.  Treatment of interrupted historical sales: a few products 

presented a long-lasting halt in sales. Since information about the 

reason of their behavior was not available, they were deleted in 

order to avoid biases. 

Points d and e accounted for the elimination of several products from 

both datasets. Dataset A’s dimensions were reduced from 401 to 179 

products, while Dataset B’s from 834 to 411. 
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• Holidays preprocessing (both datasets): holidays are dependent 

on the “zone scolaire”, meaning a French classification of holiday 

systems for schools. For Dataset A every sale reported the “zone 

scolaire” of destination, therefore it was possible to estimate the 

influence of holidays on demand in each zone. The weights were 

computed based on the percentage of sales of the specific product on 

the zone of interest weighted over the total sales in the three zones. 

For Dataset B information was not available about the zone scolaire, 

therefore an arbitrary weight of one third was given to each zone.  

The format of the holidays was therefore left as a number included 

between 0 and 7, where 0 meant that none of the days in the 

considered week was holiday and 7 that all of them were. 

• Promotions: as previously anticipated, information about 

promotions was available exclusively for Dataset A and was limited to 

beginning and ending date, product of concern and name of the 

promotion. One between the many limitations penalizing the mixed 

approaches investigation is the lack of data on the typology of 

promotion, which is known to be an important variable in 

characterizing the sales. Thus, the promotions were processed in 

order to have a table which, for each combination of product and 

time point, presented a Boolean variable. 

 

 

4. Reduce the data dimension, if necessary. 

No data reduction was considered necessary thanks to the manageable 

dimension of the cleaned dataset and the need for a vast amount of time 

series. 

 

5. Determine the data mining task. 

The precise data mining task is defined along the Chapters 4, 5, and 6 
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depending on the analysis considered. 

 

6. Partition of the data. 

Long sales history was available for both datasets. They contained 

approximately 4 years of records, from 2015 to 2019. Thus, the 

employment of cross-validation was considered unnecessary and a 

simple train and test set split was effectuated. The proportions for the 

subsets creation was chosen to be around 80-70% for the train set and 

20-30% for the test set according to guidelines in literature (Liu and 

Cocea, 2017; Shmueli et al., 2017). For both datasets, the test set was set 

to comprehend the last 40 weekly sales recorded. Considering the 

forecasting horizon (set to 8 weeks) the partition allowed to produce 33 

forecasts for each product. Given the total amount of products contained 

in both Datasets after preprocessing (equal to 580), 19140 individual 

predictions were produced with each of the methods included in the 

analysis.  

Different algorithms require different inputs. Thus, once train and test 

sets were defined, they were modeled in order to adapt to each of the 

methods applied in the study. Three different families of methods created 

the need for three diverse formats in order to meet the input 

requirements (Table 3): 

Direct multistep forecasting ML methods: the number of predictor 

variables was defined as equal to 52, with the intention of including an 

whole year of historical sales as input in order to allow the recognition of 

annual seasonality. The train set was then reorganized, following the 

instructions found in literature (Vandeput, 2018), to assume the form of 

more than 80000 records made by 52 points time-sequences. To each 

record of predictor variables, 8 labels (or dependent variables) were 

associated consisting in the 8 weekly sales following the time sequence. 

Indirect multistep forecasting ML methods: similarly to the previous 

case, the records were set to contain 52 points time-sequences. Due to the 
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recursive approach to multistep forecasting, only one dependent variable 

was associated with the record. 

Statistical methods: differently from ML methods, the statistical 

methods don’t require an independent training phase. The parameters 

which need tuning are fitted on the time series when the forecast is 

needed. The formatting of the algorithmic input aimed at keeping the 

comparison between the different families of methods consistent. The 

dataset was rearranged in order to have time sequences comprehending 

all historical sales of the concerned product until the point of forecast. 

The points of forecast were selected in order to mirror the 19140 

predictions in the test set of ML methods. 

 

Family of methods Independent Training  N. of inputs N. of outputs 

Indirect ML yes 52 1 

Direct ML yes 52 8 

Statistical no 

All demand history 

before the forecast 

 

8 

 

Table 3: Data partition driving factors 

 

3.2 Algorithms employed and settings 

7. Choose the data mining techniques to be used. 

As anticipated in Chapter 2, the selection of the methods to test was quite 

restricted by the limitation of the computational power available. In fact, 

due to the high power required for their optimization, DL methods were 

excluded from the analysis. This study should in future be extended to such 

techniques, which have proved to be valuable tools for forecasting (Kong 

et al., 2019; Zhao et al., 2017). The methods selected for the study were a 

set of Decision Trees (DTs) based ensembles chosen to test different 

ensembling techniques and growing complexities. 
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Regression Trees (RT): also called Classification and Regression Trees 

(CART) are the simplest method of the Decision Tree’s family and 

represent a single DT with as many nodes as the number of inputs. 

 

Random Forest (RF): is an ensemble ML method which is based on the 

bagging technique (see Chapter 2.4) but operates a further randomization 

in order to reduce similarities between the trees. It involves in fact, not 

only the use of bootstrapping to train multiple trees, but also the use at 

each node split of one feature selected based on the “most discriminative” 

principle from a limited set of features (Liaw and Wiener, 2002). 

 

Extremely Randomized Trees (ETR): makes use of bagging applying a 

principle extremely similar to the one used for RF. In fact the methods 

work essentially in the same way, but while in RF the feature is selected 

from the subset using the “most discriminative” principle, in ERT the 

features are selected completely randomly (Geurts et al., 2006). 

 

Extreme Gradient Boosting (XGBoost): is a typology of Boosting 

ensemble method which employs  a gradient descent optimization 

technique on a differentiable, arbitrary loss function (Friedman, 2002). It 

has proved to be a valuable method in the competitions where it was 

proposed (Sandulescu and Chiru, 2016; Volkovs et al., 2017) . 

 

As reported in Table 4, all methods apart from XGBoost were employed 

both considering a direct and indirect approach to multistep forecasting. 

The open source python package employed for XGBoost did not allow 

multiple outputs. The direct approach was therefore not feasible. 
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Method Direct Indirect 

RT yes yes 

RF yes yes 

ETR yes yes 

XGBoost no yes 

 

Table 4: Multistep forecasting approaches 

 

8. Use algorithms to perform the task. 

One of the ML challenges which were introduced in Chapter 2.3, is the 

complexity of parameters selection in order to have the best performing 

method possible. For what concerns most of the ML methods, it is in fact 

required for the user to set several constraints which define the boundaries 

of the structure then customized by the data. For example, the parameters 

in input could be the maximum depth of the DTs, the number of leaves on 

each node, the number of features considered for each node (e.g. for RF).  

 

Each of the methods employed was optimized through a function which 

allows a Random Search (RS) of the optimal hyper-parameters to be given 

as input to a ML method. This function, compared to the alternatives, 

allows a good quality optimization with low computational expenses 

(Bergstra and Bengio, 2012). Thus, it was not necessary to manually select 

the best parameters for the regression task, but only to define a range of 

possible values they could take.  The range of values employed for the 

methods in this study are reported in Table 5 and 6, and they were set 

based on the guidelines given by Vandeput (2018). 
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Parameters RT RF ETR 

max_depth 5-15 6-11 8-15 

min_samples_leafs 5-20 5-15 2-10 

max_features / 3-8 6-11 

max_samples_split / 5-15 2-10 

 

Table 5:Parameters’ range for RT, RF and ETR 

 

Parameters XGBoost 

max_depth 4-12 

colsample_bylevel [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 

learning_rate [0.001, 0.005, 0.01, 0.025, 0.05, 0.1] 

n_estimators 1000 

subsample [0.2, 0.3, 0.4, 0.5, 0.6, 0.7] 

 

Table 6: Parameters' range for XGBoost 



 

60 
 

Chapter 4: Full cross-sectional forecasting 

The preprocessing procedure described in Chapter 3 allowed to have clean data 

ready to apply the methods on. The scope of this chapter is, on the first place, to 

introduce the reader to the requirements and challenges of evaluating the 

performance of several different methods while forecasting on a large and 

diverse dataset. On this matter, the benchmarks, accuracy measures and 

evaluation system employed are explained. In the second section of this chapter, 

cross-sectional approach to forecasting with ML methods is applied to both 

datasets and results are shown and critically analyzed. 

 

4.1 Statistical benchmarks 

In order to evaluate the performance of the ML methods, several statistical 

methods were selected in order to have reliable benchmarks. The benchmark 

methods selected were of various entity. On one hand simple methods, classically 

used as benchmarks were chosen. These methods rely on really simple logics in 

order to produce the forecasts. Here listed the methods employed: 

Naïve: is the simplest way to produce a forecast. It is based on the belief that what 

happened today (or this week) will also happen tomorrow (or next week) in the 

same way. Thus, 𝑦𝑡+1=𝑦𝑡.  In the experimental setting considered where a 

multistep forecast is needed, the method can be described by the following 

formula: 

𝑦𝑡+𝑖 = 𝑦𝑡   for  𝑖 = 1, … , ℎ 

Moving Average (MA): it is a simple methodology which was extremely diffused 

in the past and even know represents the starting basis for many of the most 

advanced methods (Hyndman and Athanasopoulos, 2018). Moving averages 

methods are used for many application (Hyndman, 2011) but, when a forecasting 

task is involved, they consist in estimating the future value of time series 

averaging the k most recent values. These averages can be arithmetic or weighted 



Chapter 4: Full cross-sectional forecasting 
  

61 
 

depending on the practitioner’s preferences. The choice for this study was to 

generate the forecast through the arithmetic average of the demand during the 

latest 3, 5, 12 and 52 weeks and along all the product lifetime. In the future 

chapters, these methods will be addressed as MA3, MA5, MA12, MA52 and 

MA_all respectively. For a multistep setting the forecast will be created as 

follows: 

𝑦𝑡+𝑖 =
1

𝑘
∑ 𝑦𝑡−𝑗

𝑘−1
𝑗=0     for  𝑖 = 1, … , ℎ 

Seasonal Naïve (SNaïve): the forecasts, instead of assuming the values of the 

latest time step, refer to the time step one seasonal cycle past. Since in the 

concerned case, the seasonal cycle is a yearly cycle made of 52 weeks, the 

associated formula will be the following one: 

𝑦𝑡+𝑖 = 𝑦𝑡+𝑖−52   for  𝑖 = 1, … , ℎ 

Seasonal Moving Average (SMA): similarly to Seasonal Naïve, it refers to the 

values one seasonal cycle past, but operates a centered moving average to obtain 

the forecast desired. This method was not previously used in literature and can 

be considered an originality trait of this study. The only way of application 

considered was the setting where 𝑘 = 3, therefore: 

𝑦𝑡+𝑖 =
1

3
∑ 𝑦𝑡+𝑖−52+𝑗

1
𝑗=−1     for  𝑖 = 1, … , ℎ 

Linear Regression (LR): the last simple benchmark method employed in the 

analysis is Linear Regression. This tool has the characteristic trait to be claimed 

both from the statistical and the ML field (Hastie et al., 2009). It is in fact the 

method which establishes the basis for the autoregressive statistical methods 

category but, can also be reconducted to the specific case of a feedforward NN 

with a linear activation function. 

On the other hand, also other more sophisticated methods were employed. This 

was done in order to provide a term of comparison to assess the performance of 

ML methods compared to those statistical methods which are most commonly 

employed in industry. Only two methods have been employed as they can be 
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considered representative of their categories (which have been introduced in 

Chapter 1.6). 

Seasonal Autoregressive Integrated Moving Average (SArima): described in 

Chapter 1, it is able to consider level, trend and seasonality in the generation of 

the forecasts. It was implemented through the function available in R (Hyndman 

and Khandakar, 2007) which automatically fits the 6 parameters needed without 

the need for user intervention. 

Holt-Winters (HW): also known as triple exponential smoothing, it is equally 

capable to handle both trend and seasonality. For this method was chosen a 

multiplicative setting for modelling seasonality. This choice was determined by 

the high dependency between the level and the seasonality qualitatively examined 

in the preprocessing phase. 

 

4.2 Comparing results 

As introduced in Chapter 3 while describing the train and test set creation, many 

forecasts were produced for each product. Considering 33 forecast (each of 8 time 

points) for each product, 5907 and 13563 predictions were made with each 

method for Dataset A and Dataset B respectively. It was therefore necessary to 

find a way to evaluate the accuracy not only of one prediction, but across all 

predictions of all products in the dataset.  

This awareness dictated some of the boundaries for the choice of the accuracy 

measure to employ in the study.  It had in fact not only to be resilient to null 

historical sales in the forecasting horizon (frequent mainly in Dataset A), but also 

to be comparable across products which would have presented different average 

values of demand. Thus, the accuracy measure was set to be dimensionless.  

Of the accuracy measures commonly used in practice (Vandeput, 2018), Mean 

Absolute Percentage Error (MAPE) was not chosen because of the problems 

handling zero-demand, while MAE and RMSE where discarded due to their 

dimensionality characteristics. 
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𝑀𝐴𝑃𝐸 =  
1

ℎ
∑

|𝑒𝑡+𝑖|

𝑦𝑡+𝑖

ℎ

𝑖=1

 

𝑀𝐴𝐸 =
1

ℎ
∑ |𝑒𝑡+𝑖|

ℎ

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

ℎ
∑ 𝑒𝑡+𝑖

2

ℎ

𝑖=1

 

To cope with the dimensionality problem of MAE and RMSE it is possible to apply 

a variation to the formula, which, dividing by the average real value in the 

forecasting horizon, normalizes the result, making it comparable across different 

products: 

𝑀𝐴𝐸% =

1
ℎ

∑ |𝑒𝑡+𝑖|
ℎ
𝑖=1

∑ 𝑦𝑡+𝑖
ℎ
𝑖=1

ℎ

∗ 100 =
∑ |𝑒𝑡+𝑖|

ℎ
𝑖=1

∑ 𝑦𝑡+𝑖
ℎ
𝑖=1

∗ 100 

𝑅𝑀𝑆𝐸% =
√1

ℎ
∑ 𝑒𝑡+𝑖

2ℎ
𝑖=1

∑ 𝑦𝑡+𝑖
ℎ
𝑖=1

ℎ

∗ 100 

MAE% and RMSE% where both chosen to evaluate the results.  

Each of the methods performs the optimization on a specific objective function. 

This function is generally pre-selected and optimized for the algorithm of 

concern, but in some cases, it can also be modified by the user changing the 

preferences of the python package. Even considering this possibility, in this study 

it was decided to employ the pre-selected objective function. Since in most of the 

cases it was either the MAE or the RMSE, a third criticality was identified: the 

fictious improvement in performance according to an accuracy measure for those 

method which use it also as objective function. This issue was tackled with the 

decision to consider both indicators at the same time, averaging the MAE% and 

the RMSE%: 
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𝐾𝑃𝐼% =

∑ |𝑒𝑡+𝑖|
ℎ
𝑖=1

∑ 𝑦𝑡+𝑖
ℎ
𝑖=1

+
√1

ℎ
∑ 𝑒𝑡+𝑖

2ℎ
𝑖=1

∑ 𝑦𝑡+𝑖
ℎ
𝑖=1

ℎ
2

∗ 100 

 

4.3 Results  

The forecasts were finally generated, evaluated and ranked as previously 

discussed. As expected, due to the great diversity between Dataset A and Dataset 

B, the results are considerably different depending on the dataset involved.  

 

4.3.1 Dataset A 

 

Table 7 shows the results obtained for Dataset A. The acronym “1SA” stands for 

“1 step ahead” and refers to the indirect multistep forecasting approach. In order 

to interpret these results, it is essential to keep in mind the characteristics of the 

Rank Method KPI% MAE% RMSE% Rank Method KPI% MAE% RMSE% 

1 SNaïve 30.6 25.1 36.0 11 LR 76.3 71.4 81.2 

2 SMA 33.1 27.9 38.3 12 MA3 77.4 73.6 81.2 

3 Naïve 33.7 27.9 38.3 13 LR_1SA 79.9 73.3 86.6 

4 MA_all 35.9 29.6 42.3 14 XGBoost_1SA 97.8 94.2 101.4 

5 ETR 48.0 45.1 50.8 15 SArima 106.2 100.5 111.9 

6 MA52 51.7 48.6 54.8 16 MA5 116.2 114.4 119.4 

7 SES 68.8 64.8 72.7 17 RT_1SA 121.8 112.7 131.0 

8 MA12 72.4 68.4 76.5 18 RT 135.1 128.4 141.8 

9 RF 73.5 71.3 75.8 19 RF_1SA 178.6 173.2 184.1 

10 HW 74.5 72.4 76.6 20 ETR_1SA 181.0 177.9 184.1 

 

Table 7: Dataset A; Methods' ranking by performance 



Chapter 4: Full cross-sectional forecasting 
  

65 
 

datasets which strongly influence the performance of every method considered. 

Dataset A contains product which, due to the nature of the company, present a 

time history of sales with an extremely high random component. Furthermore, it 

is characterized by high lumpiness and a significantly intermittent demand. 

These characteristics make up for a really complex forecasting environment, 

where patterns in historical sales are hidden and difficult for methods to 

understand. It is for this reason that methods which rely on seasonality and trend 

patterns do not perform well (see Holt-Winters and SArima) compared to 

methods which rely on simple logics. The predominance of simple methods when 

forecasting on complex datasets is not a new concept in literature (Hyndman and 

Athanasopoulos, 2018). ML methods show unsatisfyingly low accuracy, with the 

only exception of ETR when applied with a direct forecasting approach. More in 

general, almost every method considered in the analysis scores a lower KPI% 

when applying a direct multistep methodology.  

Any attempted assessment on the comparison among the ML methods employed 

results out of place. It is in fact necessary to state that Dataset A with these 

characteristics strongly limits the outcome of the analysis due to the high random 

component of the time series the forecasts are based on. 

 

4.3.2 Dataset B 

Dataset B, on the other hand, thanks to the highly aggregated demand, presents 

more stable and regular time series. It can be noticed from the results reported 

in Table 8, that with these settings Holt-Winters and SArima which are 

supposed to perform well, actually show unsatisfying performances. The 

comparison in fact, places Holt-Winters and Arima, past the second half of the 

ranking, losing position even to methods as simple as SNaïve, MA_all or SMA. 

These unconventional results, can be justified by both statistical methods’ issues 

in handling seasonality for weekly data on an yearly seasonality (Hyndman and 

Athanasopoulos, 2018). Such conditions, which were set by the consulting 

company, highlight a strong limitation of the statistical methods compared to 
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the ML ones. Some methodologies have been designed to cope with this 

problem: for example, instead of applying Holt-Winters directly, it is suggested 

a deseasonalization with the subsequent application of Holt’s Methods. 

Nonetheless, the application of a further preprocessing step would have gone 

beyond the scope of the study to evaluate methods performances applied to 

rough time series data. 

A second observation to be done on the results concerns the good performance of 

ML methods applied with the indirect multistep forecasting approach (1SA). 

Apparently, the more complex the method is, the better it performs. The only 

exception to the trend is RT_1SA which managed to outperform both ETR_1SA 

and RF_1SA. It must be underlined as a limitation of the comparison that all of 

these methods show variance in the results. In order to reduce this variance, 

multiple experiments would be recommended. Due to the limited computational 

capacity available for the study, running the test many times was not achievable. 

Thus, the results must be carefully evaluated: for example, RT_1SA can 

apparently perform better than the two ensemble methods, but its results should 

be considered less reliable because of the higher variance. As explained in 

Chapter 3 in fact, ensemble methods, being the average of several RTs (weak 

learners), should provide a more reliable result. 

Furthermore, it is reasonable to affirm that ML methods, applied employing 

cross-sectional training, perform better than statistical ones. The validity of this 

statement must be anyway weighted over a couple of factors: 

1. As mentioned above, the results are the outcome of one single experiment. 

More should be performed in order to prove ML methods’ superiority with 

statistical significance. 

2. The experiments are performed in a forecasting environment where the 

statistical methods cannot show their potential. Thus, the stated 

superiority should be only considered circumstantial. 
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Noteworthy is the difference in value between the MAE% and RMSE% 

considered separately. The MAE% results consistently lower thanks to its higher 

resistance to the outliers (Vandeput, 2018). In order to verify the suitability of 

the KPI%, defined as the average of the two aforementioned indicators, it was 

decided to understand how these two were linked. Fig. 15 and Fig. 16 represent 

the performances computed with the two accuracy measures for Dataset A and 

Dataset B respectively. Since in both of the cases is observable a linear 

relationship (standing for a similar behavior), it was concluded that the KPI% 

was indeed appropriate to rank the methodologies. 

Rank Method KPI% MAE% RMSE% Rank Method KPI% MAE% RMSE% 

1 XGBoost_1SA 18.9 16.1 21.7 11 SArima 48.6 45.0 52.2 

2 RT_1SA 19.2 16.4 22.0 12 LR 49.3 42.6 56.0 

3 ETR_1SA 19.7 17.3 22.1 13 RT 50.6 44.7 56.5 

4 RF_1SA 21.9 19.6 24.2 14 MA52 51.4 46.2 56.6 

5 LR_1SA 26.7 24.9 28.5 15 HW 52.5 47.0 58.0 

6 RF 38.8 34.2 43.4 16 MA3 53.0 47.9 58,.1 

7 ETR 40.8 34.3 47.3 17 MA5 53.8 48.7 58.9 

8 SNaïve  43.8 40.3 47.3 18 Naïve  57.3 52.1 62.5 

9 MA_all 47.7 44.1 51.3 19 SES 64.7 60.1 69.3 

10 SMA 48.5 44.1 52.9 20 MA12 82.5 77.9 87.1 

 

Table 8: Dataset B; Methods' ranking by performance 
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Figure 15: Dataset A; Relationship MAE%-RMSE% 

 

Figure 16: Dataset A; Relationship MAE%-RMSE% 

 

4.4 Critical analysis 

The results coming from Dataset A are not perfect to understand the real 

potential of forecasting methods due to the high random component. They can 

nonetheless be of great use to understand, through the comparison with Dataset 

B, some underlying phenomena which affect ML performance. 
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The first remark is about the difference in the findings regarding the approach to 

conduct multistep forecasting. It is clear, looking at the result from Dataset B, 

that the indirect approach greatly outperforms the direct one. This is due to the 

higher specificity of the ML methods in predicting 1 output instead of 8 at the 

same time (Hamzaçebi et al., 2009). This principle is not as effective for dataset 

A, where supposedly the high randomness causes a high error which is reinserted 

in the model, making it diverge from the correct forecasts. 

While the randomness of the time series is for sure a reason for the bad 

performances related to Dataset A, it could be not the only one. Following the 

observation of Bandara et al. (2020) (see Chapter 2.1), a second reason for the 

disappointing performance of ML methods could be the diversity of time series 

used to train the cross-sectional forecasting model. In order to test this 

hypothesis, the correlation between randomness, quantified by the Coefficient of 

Variation (CV) and the Average Inter-Demand Interval (IDI) (see Chapter 1.6), 

and the product-specific performance was computed across both the datasets. 

Analyzing the following results, it is obvious that, while for IDI the correlation 

results dubious, there is a relationship between the CV and the performance of 

the ML method considered for the analysis. Figure 17 and 18 report the 

scatterplots CV-KPI% and IDI-KPI% respectively for Dataset A and Dataset B, 

together with the numerical value of the Pearson Correlation Coefficient (PCC) 

associated to the plot. 
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Figure 17: Dataset A; Scatterplots KPI%-CV (on the left) and KPI%-IDI (on the right) 

 

 

Figure 18: Dataset B; Scatterplots KPI%-CV (on the left) and KPI%-IDI (on the right) 

 

Now that the correlation between performance and CV has been proved, it is 

necessary to show that it is not the only factor determining the difference in 

accuracy between Dataset A and Dataset B. To do so, it was decided to consider 

only the products of Dataset A which showed less noise, meaning the products 

having a CV lower than 1 (around 50% of Dataset A). For these items, the average 

KPI% was computed from the same forecasts of the previous experiment. In Table 

8 the results are reported, listing in order of performance the forecasting 

accuracies achieved. 
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Rank Method KPI% 

1 XGBoost_1SA 45.9 

2 RF_1SA 57.4 

3 RT_1SA 60.0 

4 ETR_1SA 64.0 

5 RF 66.8 

6 RT 67.3 

7 ETR 40.8 

 

Table 9: Dataset A (subset with CV<1), Methods' ranking by accuracy 

 

Two different observation can be made regarding the results showed in Table 9: 

1. Considering the most regular group of products (CV<1) from Dataset 

A, the indirect multistep approach seems again to consistently 

outperform the direct one, thus strengthening the thesis previously 

stated. 

2. The evaluation of the previous experiment’s forecasts over the subset 

restricted to the most regular time series, resulted in lower KPI% 

compared to the KPI% obtained over the whole dataset (see Table 7). 

3. Even for this selection of more regular items from Dataset A, the 

forecasts result extremely less accurate than for Dataset B.  

The second statement can be explained by the higher heterogeneity of the 

products contained in Dataset A compared to Dataset B. This characteristic is 

graphically represented by the boxplot showed in Fig. 19. Considering these 

hypotheses, the importance of a clustering procedure in order to group similar 

products before applying cross sectional forecasting becomes clear. This 

procedure will indeed be the topic of the following Chapter. 



Critical analysis 

72 
 

 

Figure 19: CV values distribution for the two datasets 
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Chapter 5: Cluster influence on cross-sectional 

forecasting 

As mentioned previously, the scope of this Chapter is to investigate the best 

approach to cluster time series for cross-sectional forecasting. Given the lack of 

literature on the topic, several options were tested, and the results compared 

among them.  

This chapter will be divided in two sections. The first one will treat the 

description of the clustering approaches tested. In the second one, results will be 

shown and the differences between the approaches analyzed. 

 

5.1 Clustering approaches 

The problem of clustering time series was already discussed in Chapter 2.2. As 

anticipated, in this section the reader will be introduced to the four clustering 

approaches which were chosen to partition the dataset.  

 

5.1.1 PCA-based clustering 

The first approach examined, adopted the same time series clustering 

methodology used by Bandara et al. (2020), Wang et al. (2006) and Räsänen and 

Kolehmainen (2009), namely whole sequence time series clustering by means of 

a feature-based approach. Similarly to the model proposed by Bandara et al. 

(2020), the features considered for the clustering (see Table 10) where extracted 

through the tsmeasures function from the anomalous_ACM package tool 

available on R. 
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Feature Description 

lumpiness Variance of remainder 

entropy Spectral entropy from ForeCA package 

ACF1 First order of autocorrelation 

lshift Level shift on a rolling window 

vchange Variance change 

cpoints Number of crossing points 

fspots Flat points using discretization 

trend Strength of trend 

linearity Strength of linearity 

curvature Strength of curvature 

spikiness Strength of spikiness 

KLscore Kullback-Leibler score 

change.idx Index of the maximum KL score 

CV Coefficient of variation 

 

Table 10:List of features extracted from the time series 

 

Wang et al. (2006) suggested a better clustering performance was achievable 

employing only a limited set of features. Embracing their observation, for this 

clustering approach it was decided to select only those features which showed the 

most variation in the dataset. To perform this dimensionality reduction task, 

Principal Component Analysis (PCA) (Wold et al., 1987) was selected with an eye 

of regard for its ulterior application, namely the possibility to visualize the data 

along the principal components and graphically identify the clusters (if any was 

present).  The inevitable interdependency between the feature employed was not 

considered as an issue for the applicability of the PCA because of the descriptive 

and not inferential scope of the analysis (Jolliffe, 2002). 
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Due to the different units of measure and scales of the various features, it was 

necessary to conduct a process of normalization before feeding them as input to 

the PCA. The normalization was operated with the function StandardScaler from 

the Scikit-learn package available on Python. According to this function, the 

input value x is subjected to the following transformation: 

𝑧 =
𝑥 − 𝜇

𝜎
 

 Where μ is equal to the mean of the input vector, 𝜎 to its standard deviation and 

z is the output value. 

The PCA was conducted on the features extracted from both the datasets. For 

Dataset B, the procedure unveiled the existence of three PCs which alone could 

explain almost 70% of the variance contained among the products’ features (Fig. 

20). These PCs are given by a weighted combination of all the features previously 

listed (Table 10), where the weight of each feature (factor loading) is reported in 

Fig. 21.  Fig. 22 shows a 3D scatterplot where each point represents a time series 

and the axis correspond to the three main PCs identified by the PCA. A graphical 

analysis of the plot was sufficient to notice the presence of one single cluster, 

where most of the products reside. This could be one of the reasons why ML 

methods, applied through cross sectional forecasting on the entire dataset, show 

really good performances even without a clustering approach beforehand (see 

Chapter 4.3). 
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Figure 20: Dataset B; Percentage of explained variance related to each PC 

 

 

Figure 21: Dataset B; Factor loadings 
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Figure 22: Dataset B; Distribution of the time series in a 3D space defined by PC1, PC2 and PC3 

 

The process for Dataset A followed the same procedure as for Dataset B. In this 

case only two are the PCs which stand out from the group and they account for 

approximately 60% of the total variance. Fig. 23 shows the percentage of 

explained variance for each PC. For the two explaining the most variance, their 

composition is portrayed by the factor loadings (Fig. 24) and the 2D related 

scatterplot plotted (Fig. 25). While for Dataset B it was possible to identify a 

cluster, this second dataset’s time series seem to take on a sparse distribution 

from which no insights can be drawn. 
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Figure 23: Dataset A; Percentage of explained variance related to each PC 

 

 

 

Figure 24: Dataset A; Factor loadings 
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Figure 25: Dataset A; Distribution of the time series in a 2D space defined by PC1 and PC2 

 

 The creation of a clustering model is a complex process comprehensive of the 

multiple steps depicted in Chapter 2.2. While the choices regarding the taxonomy 

and the approach to time series clustering have been already defined, it is still 

necessary to select the appropriate algorithm, distance measure and linkage 

method to utilize. 

Hierarchical clustering, compared to K-means clustering, does not require the a 

priori selection of the number of clusters and provides an interpretable graphical 

representation of the clustering process. Thus, it seemed more appropriate for an 

investigation on the relation between ML methods performance and 

dimension/homogeneity of the clusters. The “agglomerative” variant of the 

algorithm was selected. 

Given the necessity to keep the homogeneity inside each cluster as high as 

possible, Ward’s method, which minimizes the increase in variance for each 

agglomerative step, was chosen as linkage method. Consequence of the principle 

governing Ward’s method, Euclidean distance was the obligated choice for the 

distance measure. 
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The combination of Hierarchical clustering with Ward linkage method and 

Euclidean distance was adopted for this clustering approach as for the following 

ones. 

In Fig. 26, the dendrograms related to the clusters’ formation are reported for 

both datasets. In order to define the clusters, the structures can be cut to a certain 

height. According to the height selected, a precise number of clusters with the 

associated number of products is defined. For example, cutting the dendrogram 

produced for Dataset B at a height corresponding to a Euclidean distance equal 

to 30, four clusters would be obtained and one of them would be composed only 

by a few products.  

 

Figure 26: PCA-based clustering dendrograms  

 

5.1.2 Correlation-based clustering 

This second clustering approach is based on the same features listed on the 

previous paragraph (Table 10) but, differently from the last approach described, 

PCA is not employed.  

The selection of the subset of features was conducted under the assumption that 

the most relevant features would have been those which have the greatest impact 

on ML methods’ performance. Thus, the results from the large-scale analysis 

conducted in the first section of this study where employed in order to evaluate 

the relationship between performance of ML methods and each of the features in 
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Table 10. Pearson’s correlation coefficients (PCC) were computed in order to 

roughly quantify the effect of each feature on ML methods performance. The 

results for the two datasets are shown in Table 11 and 12. 

Since the reported coefficients were computed based on the accuracy achieved 

on one single experiment, they are subjected to the same problematics which 

characterize the results previously shown (Table 7 and 8), namely the 

randomness in the results. In this case, the goal of the analysis is to roughly 

quantify the influence of each of the features on the performance in order to 

select the most influencing ones. Thus, it is reasonable to assume that the 

randomness of the results would have not greatly affected the feature selection 

process.  

 

 

Method PCC Method PCC 

CV 0,364 trend -0,157 

KLscore 0,311 entropy 0,132 

cpoints -0,283 fspots 0,128 

vchange -0,261 linearity -0,082 

lshift -0,259 ACF1 -0,069 

lumpiness 0,226 change.idx 0,019 

spikiness 0,222 curvature -0,010 

 

Table 11: Dataset A; PCC KPI%-Feature 
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Method PCC Method PCC 

lumpiness 0,565 ACF1 -0,226 

spikiness 0,496 fspots 0,133 

CV 0,430 curvature -0,073 

linearity -0,351 lshift 0,070 

KLscore 0,342 vchange 0,066 

trend -0,289 change.idx 0,034 

entropy 0,263 cpoints 0,028 

 

Table 12: Dataset B; PCC KPI%-Feature 

 

The next step consisted in the arbitrary choice of the correlation coefficients’ 

thresholds to establish the employment of the related features in the Clustering 

procedure. All features were discarded if they presented a Pearson’s coefficient 

lower than 0.2 for Dataset A or 0.25 for Dataset B, leaving with the following list 

(Table 13): 

 

Dataset A Dataset B 

CV lumpiness 

KLscore spikiness 

cpoints CV 

vchange linearity 

lshift KLscore 

lumpiness trend 

spikiness entropy 

 

Table 13: List of the selected features 



Chapter 5: Cluster influence on cross-sectional forecasting 
  

83 
 

Clustering is a procedure which is generally performed on M-dimensions, each 

one presenting the same scale. This is for example verified when applying 

distance-based approaches to time series clustering and all M-dimensions stand 

for the M values assumed by the time series in different time points. In the case 

of concern, where the M-dimensions are related to the M features selected, the 

axis scales would not be the same, thus the clustering procedure would result 

biased.  

To cope with this problematic all features must undergo a process of 

normalization, which saw again the employment of the StandardScaler function. 

The feature selected, once normalized, were used to define the M-dimensional 

clustering space where the same clustering algorithm described in the previous 

paragraph was applied. The resulting dendrograms are shown in Fig. 27. 

 

 

Figure 27: Correlation-based clustering dendrograms 

 

5.1.3 SI-based clustering  

The third and last feature-based approach examined in this study is built on the 

extraction of the Seasonality Indexes (SI).  

As introduced in Chapter 1.4, time series can be decomposed in the Trend, 

Seasonality and Remainder components. The seasonality component, being the 

expression of how demand cyclically varies along the year, has a great influence 
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in forecasting methods performances. Thus, it was devised a way to group the 

products based on their historical sales seasonality patterns.  

The seasonal_decompose function from the statsmodels package on Python was 

employed to extract the 52 SI which quantitatively describe the influence of the 

seasonality component in each of the 52 weeks of a seasonal cycle (1 year). 

The clustering procedure was then performed in a 52-Dimensional space with a 

hierarchical methodology, ward linkage function and Euclidean distance 

measure. Represented in Fig. 28 the dendrograms for the two datasets related to 

this clustering approach. 

 

 

Figure 28: SI-based clustering dendrograms 

 

5.1.4 Distance-based clustering 

The last approach tested relied on a whole time series, distance-based 

methodology. Meaning, all historical demand values were employed as 

coordinates in a M-Dimensional space, where M is equal to the length of the time 

history considered in the training set.  

This procedure is probably the most diffused way to apply time series clustering, 

but it presents several disadvantages which were examined in Chapter 2.2. The 

process is quite straight forward, since no normalization was needed, and the 
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clustering algorithm employed was the same as the previous cases. Fig. 29 shows 

the dendrograms related to this approach. 

 

 

Figure 29: Distance-based clustering dendrograms 

 

5.2 Results analysis 

Since the behavior of ML methods is sealed in a black box and can not be easily 

interpreted, it is also difficult to establish the optimal clusters’ dimension and the 

most effective way to form them. Lacking therefore a way to establish the optimal 

procedure, it was decided to extensively run the experiments over all the 

clustering approaches listed in the previous paragraph.  

The dendrograms achieved with the hierarchical clustering approaches 

previously described, were iteratively cut in order to form i clusters, where i 

varied from 2 to 70. For each value assumed by i, i ML models were trained with 

the time series related to the products attributed to the associated cluster. The 

overall accuracy of the dataset was given by the weighted average of the cluster’s 

related accuracy over the number of products in the cluster considered. The 

iterative procedure is described in Fig. 30. 

The iterative computation described, allowed to plot the overall accuracy on the 

dataset as a function of the number of clusters. From a theoretical point of view, 

when i assumes a small value, a great number of products compose each cluster 
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and therefore it will be more likely to incur in what was defined as specification 

error (see Chapter 2.1). On the other hand, when the number of clusters becomes 

too high, only a little data is available for training, thus the models run the risk of 

incurring in the overfitting error. The theoretical model described is graphically 

supported by Fig. 31. 

 

Figure 30: Iterative procedure for the evaluation of the clustering approaches 

 

 

 

Figure 31: ML accuracy as a function of the number of clusters 
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The problem given by the lack of an objective function to assess the quality of the 

clusters’ formation process was therefore addressed with the evaluation of the 

coherence between the expected behavior and what the clustering procedure was 

actually able to generate. 

A further issue related to this section of the study is the high processing power 

required. In fact, in order to extract the results from the iterative procedure 

described, it was necessary to train a number of models equal to ∑ 𝑖 =70
𝑖=2 2484 . 

Thus, these experimental settings were applicable only to the methods which 

required less training time, namely Regression Trees and Random Forests. 

Between the two alternatives the choice fell on the employment of RF over RT. 

This decision was based on the lower variance which theoretically should 

characterize ensemble methods (see Chapter 2.4). Since, due to the 

computational requirements of the experiments, multiple runs where not 

feasible, RTs’ results randomness would have risked undermining the outcome of 

the study. RF were applied through the indirect approach to forecasting, which, 

when conditions get more stable, has shown more promising results than the 

direct variant.  

 

5.2.1 Dataset B 

Starting from Dataset B, the results obtained applying PCA-based, Correlation-

based, SI-based and Distance-based clustering approaches are reported in Fig. 

32, Fig. 33, Fig. 34 and Fig. 35 respectively. The KPI% obtained through full cross-

sectional forecasting with the considered ML method is also graphically 

represented. 
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Figure 32: Average performance of RF on Dataset B as a function of the number of clusters formed used 
the PCA-based clustering methodology 

 

 

Figure 33:Average performance of RF on Dataset B as a function of the number of clusters formed used 
the Correlation-based clustering methodology 
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Figure 34: Average performance of RF on Dataset B as a function of the number of clusters formed used 
the SI-based clustering methodology 

 

 

Figure 35: Average performance of RF on Dataset B as a function of the number of clusters formed used 
the Distance-based clustering methodology 
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In order to give a realistic and unbiased interpretation of the results shown it is 

necessary to further stress a couple of this Dataset’s characteristics already 

mentioned. Firstly, Dataset B includes 411 products meaning that the average 

cluster dimension will be equal to 411/𝑖. It is important to underline that it is only 

the average cluster dimension and that the clusters’ number of attributed 

products will vary based on the Ward’s linkage measure computation in the 

defined clustering space. The second noteworthy observation previously made 

comes from the results of the PCA (see Chapter 5.1.1) and consists in the detection 

of one single cluster which comprehends all of the products.  

Other than these reminders, it is important to state that the randomness of the 

results varies along the plot. The random component can in fact be imagined as a 

positive or negative factor which provokes a displacement of the computed 

accuracy from the “real” one. When the cluster is only one (like in the previous 

analysis), this randomness heavily affects the accuracy. When the clusters grow 

in number on the other hand, the cumulated random component given by each 

model employed tends to average towards zero. Here explained why, in all of the 

graphs shown, the closer i is to 2, the spikier the graph gets. 

The increase in error that for each clustering approach verifies when the number 

of clusters is in the proximity 0f 5 can be justified with the observation on the 

PCA analysis mentioned above. Possibly, the division of the dataset in a limited 

number of clusters would still comport heterogeneous products to be attributed 

to the same group. On the other hand, this group can rely on less products’ 

historical demand available in the training phase. Since for a higher number of 

clusters the average accuracy seems to improve, it is possible that smaller clusters 

in the dataset involved can determine more homogeneous products. These 

products, even if limited in number, can provide an amount of training data which 

is enough to train a model in a more homogeneous forecasting environment.  

Thus, this behavior would justify the existence of the two minimums identifiable 

along all of the plots for Dataset B, the first close to the condition of full cross-
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sectional forecasting, the second for higher values of i. This second one, seems to 

be the global minimum of the function, reflecting the expected theoretical model.  

The trend for an increasing value of i seems in fact to be characterized by the 

foreseen worsening in performance. The trend is expected to further penalize 

forecasting accuracy for 𝑖 > 70 but it was impossible to continue all experiments 

due to the computational time. 

When it comes to comparing the different clustering approaches, SI-based appear 

to be the best performing one. This assessment is rooted on the following key 

points: 

• The plot related to the SI-based clustering approach reports a regular 

behavior. This stands for a better clustering logic when it comes to decide 

how to form the groups. If the aggregation of two clusters (decreasing the 

number of clusters by 1) heavily affects the average error, it means that 

that Ward’s linkage method (see Chapter 2.2) on the clustering space 

defined, does not reflect the optimal aggregation strategy. Since Ward’s 

method has been already evaluated to be a good approach for the 

formation of the clusters, the problem stands in the definition of the 

clustering space connected to the clustering approach employed. When 

comparing the outcomes of the different clustering approaches it is also 

necessary to take into account the natural randomness given by the RF and 

its influence’s indirect proportionality to i (as underlined above). Thus, the 

evaluation of the irregularities given by the alternative clustering 

approaches is better when done on a high number of clusters in order to 

diminish the influence of randomness given by other factors. Both 

Correlation-based and SI-based clustering methodologies seem to behave 

better than the alternatives under this point of view.  

• The two aforementioned methodologies manage to outperform the 

alternative options scoring comparable average errors, with SI-based 

clustering allowing RF to score a minimum KPI% equal to 16.5% against 

the 16.2% manageable employing the Correlation-based approach. On one 
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hand SI-based, compared to the other best performing clustering 

approach (Correlation-based), does slightly worse. On the other, the 

superiority of the Correlation-based variant is verified only on the 

minimum point (which can be biased due to the random component). 

Differently, SI-based approach manages to keep a stable good 

performance in the surrounding of the global minima. 

• The KPI% behavior along the graph produced with the SI-based clustering 

approach better resembles the expectations coming from the theoretical 

model describes before. It shows in fact a noisy but constant decrease in error 

until the global minimum, followed by a net inversion of the behavior. In order 

to test this assertion and verify the continuity of the increasing trend, it was 

decided to run, at least for this configuration, a second experiment. The 

iterative procedure was set to stop when i assumed a value equal to 140. From 

the outcomes of this second run (Fig. 36), it is possible to observe that the 

prolongation of such slow increase in error happens linearly until the end of 

the plot. Thus, strengthening the claim of SI-based approach on the coherence 

with the foreseen theoretical model. 

 

Figure 36: Average performance of RF on Dataset B as a function of the number of clusters formed used 
the SI-based clustering methodology (second run) 
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Nonetheless, the characteristics of Dataset B, which account for quite regular 

time series and similar products, make these observations a weak proof of this 

methodology superiority compared to the others. The plots show in fact several 

similar traits, which are a sign that, for such homogeneous datasets, how clusters 

are formed could have less influence than how big the clusters are. Thus, Dataset 

B could not be the best testing ground if the scope stands in understanding the 

validity of a clustering approach.  

 

5.2.2 Dataset A 

Extremely different is the situation for the more heterogeneous Dataset A. The 

results, reported in Fig.  37, Fig. 38, Fig. 39 and Fig. 40 show different behaviors. 

The approach based on the PCA analysis is the best when it comes to an 

evaluation based in the minimum error obtained, scoring a KPI% equal to 71.2%. 

It is nonetheless due to mere “luck”, since along the rest of the plot consistently 

shows a lower performance compared to the alternatives. Distance-based 

clustering approach shows an extremely erratic behavior (Fig. 40), thus proving 

its inadequacy to the task discussed in Chapter 2.2. The correlation-based 

clustering approach, even if reaching good performances, shows irregular 

behavior with a sudden increase in the error for 𝑖 ≈ 20. It would be nonetheless 

interesting to proceed with the experiment for an higher number of clusters in 

order to establish how the improving trend continues and if a lower minimum 

can be found. Similarly to the case of Dataset B, the approach based on the 

extraction of the Seasonality Indexes (SI) performs apparently better. Fig. 34 

shows in fact a more regular pattern and a resemblance to what was expected in 

the theoretical model.  
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Figure 37:Average performance of RF on Dataset A as a function of the number of clusters formed used 
the PCA-based clustering methodology 

 

 

Figure 38:Average performance of RF on Dataset A as a function of the number of clusters formed used 
the Correlation-based clustering methodology 
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Figure 39: Average performance of RF on Dataset A as a function of the number of clusters formed used 
the SI-based clustering methodology 

 

 

Figure 40: Average performance of RF on Dataset A as a function of the number of clusters formed used 
the Distance-based clustering methodology 
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5.2.3 Findings 

Considering the observations which have been discussed in the previous two 

chapters, it is possible to conclude that the clustering approach can add 

considerable value to the cross-sectional forecasting procedure. The global 

minimum in the KPI% achieved with the clustering approach was indeed found 

to be consistently lower than the KPI% obtained through full cross-sectional 

forecasting. The decrease in KPI% obtained reached 26% for Dataset B and up to 

52 % for Dataset A, where full cross-sectional forecasting was penalized by the 

high heterogeneity of the dataset. 

The second (unexpected) finding consists in the possible existence of one or 

several local minima other than the global one. This presumably finds root in the 

complexity of the tradeoff between specification error and overfitting error. 

Furthermore, a considerable outcome of this section is the better performance of 

SI-based and Correlation-based (on a smaller scale) clustering approaches 

compared to the alternatives examined. The interpretation of this outcome finds 

basis in the different focus of the approaches considered. The two best performing 

methodologies trespass from the clustering problem to the forecasting one. In the 

case of SI-based approach for example, the clusters are not formed uniquely to 

maximize the similarity of time series, but to maximize the similarity in a trait 

which heavily affects the forecasting accuracy (seasonal component). 
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Chapter 6: Mixed approaches 

The difference between time series, causal (or explanatory) and mixed 

approaches to time series forecasting has been previously introduced (see 

Chapter 1.3). While until this point the study has been focused exclusively on 

time series approaches, this chapter will be focused on the experimentation of 

mixed approaches in order to improve ML methods accuracy. This analysis 

aims at evaluating the potential increase in performance which could be 

reachable through the consideration of the multitude of information coming 

available with the Big Data Revolution (McAfee and Brynjolfsson, 2012). 

This chapter will be divided in three sections. The first one will present the 

approach employed, the difference between statistical and ML methods and the 

selection of the exogenous variables which were used to produce the forecasts. 

The second section will address the implementation and the modeling decision 

taken for the integration of the exogenous variables as inputs. Finally, the result 

will be presented and examined in the last section. 

 

6.1 Considering exogenous variables 

The difference between time series approaches and mixed approaches stands in 

the nature of the data the forecast is based on. While time series approaches 

employ exclusively past historical demand data as input to the algorithms, mixed 

approaches integrate historical demand information with data from exogenous 

variables that have an effect on demand. 

Both statistical and ML methods can potentially consider the influence of 

exogenous variables, but they can do it in fundamentally different ways. 

Statistical methods are built in order to receive as input only data from time 

series. The influence of further variables, for example of marketing campaigns, is 

generally separately considered and successively integrated in the forecast 

(Syntetos et al., 2016). This approach works as far as only a few variables are 
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considered but fails in an environment where Big Data provides information in a 

variety of different forms which require to be integrated in the forecasts. For 

statistical methods the integration of the variables in the forecast generally 

requires ad hoc modeling which is hardly scalable. The external modeling of 

exogenous variables is beyond the scope of the study. Thus, statistical methods 

will not be taken into account for the investigation on mixed approaches. 

ML methods, on the other hand, are characterized by a malleable structure which 

gets automatically adapted to the inputs. This difference with statistical methods 

allows ML methods to receive data as input from various origins and the influence 

of that input can be automatically learned during the training phase. Since no 

additional model is needed, the integration of extra variables results straight 

forward, therefore making ML easy to adapt to the Big Data environment. 

Considering this difference, even if this analysis selected only a limited number 

of variables which influence could have been modeled by statistical methods, it 

was decided to focus uniquely on mixed approaches to ML methods. The results 

will then be evaluated using, as term of comparison, those from the previous 

section of the study (see Chapter 4.3). 

Regarding the selection of the exogenous variables, as described in Chapter 3.1, 

Datasets A and B had available, other than the historical sales, also information 

about the products and the stores. Additionally, For Dataset A, also knowledge 

about promotions was available. In order to apply the mixed approaches, it was 

previously necessary to analyze what factors influenced demand, how they 

influenced it and why. Of the information available it was decided that data on 

the product attributes were of little use. Different products attributed to the same 

category were proved to present extremely different sales behavior. Thus, the 

inclusion of the category could have been essentially harmful for the forecasting 

performance. The only piece of information provided of use for this approach was 

about the promotions related to the products in Dataset A. 

Previa an analysis on the sales’ behavior in the datasets, it was established that 

the presence of holidays was of fundamental importance for Dataset A. This 
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phenomenon becomes clear when considering the nature of the company. The 

demand of a B2B company which provides food to canteens can only be extremely 

dependent on the holidays calendar.  It was in fact observed that, approaching 

the holidays (near to Christmast for example), the demand experiences a decrease 

in value followed by a peak after them. This behavior can be explained 

considering the canteens’ needs to finish the perishable goods and to refill the 

stocks when the schools or companies are back to work. 

 This was not equally true for the company which provided Dataset B. This second 

one, being a supermarket chain and therefore staying open for business also 

during the holidays, presented sales which showed non observable direct 

relationships to holidays. This, nonetheless, does not preclude the possibility of 

the existence of an underlying relationship.  

Of the other variables that could have had an influence on the recorded demand, 

for example the weather, none were taken into account. This choice was made in 

order to help ML methods to rightly understand the relationships between the 

sales and the exogenous variables considered. Adding other variables, where the 

relationships to demand are not as clear as for the considered ones, could 

influence the learning phase and negatively affect the performance due to 

spurious correlations. 

Given these conditions, the following analysis will be focused mainly on Dataset 

A. The analysis is nonetheless conducted also for dataset B, in order to verify if 

the performance would benefit from the use of exogenous variables also in the 

case of a possible (meaning not as evident as for Dataset A) relationship to 

demand.  

The data regarding the holidays, as anticipated in Chapter 3.1, are publicly 

available and were downloaded from an official French data repository. 
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6.2 Experimental setting  

Once the problem regarding what variables to consider was tackled, it was time 

to define how to manage them in order to have input-ready information.  

As briefly described in the previous paragraph, ML methods are able to receive 

any kind of numerical input and potentially learn the relationships with the 

outputs. Practically speaking the input vector will not be formed by only the 52 

numerical values related to the previous year’s historical sales but also by other 

𝑠 + 𝑝 numerical values related to holidays (s) and promotions (p). s and p are the 

outcome of some arbitrary decision made according to the following 

considerations: 

• Holidays: the influence of holidays on the historical demand recorded in 

Dataset A has been explained and justified in the previous paragraph. In 

order to allow ML methods to understand the underlying relationships, 

the inputs have to be selected and appropriately treated. The treatment of 

the holiday data has been already discussed in the chapter concerning the 

preprocessing phase (see Chapter 3.1). The outcome of such treatment was 

a numerical value, addressed as “holiday factor”, between 0 and 7, where 

0 meant that none of the days in the considered week was holiday and 7 

that all of them were. The inclusion of these values in the input vector must 

be limited to those features that can have an influence on the demand to 

be forecasted. The holiday factors which have been considered relevant are 

attributable to three categories: 

1. Present holidays: comprehend those holiday factors which are 

related to the weeks included in the forecasting horizon. 

2. Future holidays: comprehend the holiday factors related to the 

weeks coming after the forecasting horizon. These factors were 

considered useful for the influence of the coming weeks on the 

decision of canteens to purchase a defined quantity of products. For 

example, if Christmas is coming in 1 week, the purchase will be 

influenced by the need to empty the stocks. It was arbitrarily 
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decided to take into account the influence of 4 weeks after the time 

the forecast is needed.  

3. Past holidays: comprehend the holiday factors related to the weeks 

coming before the forecasting horizon. Similarly to future holidays, 

they were considered in order to take into account canteen’s 

purchase behavior. After a holiday period they need in fact to totally 

replenish the stocks of the involved perishable products. Again, 1 

month (4 weeks) was the past horizon selected for this category.  

Recapping, to consider the influence of the holidays, a set of holiday 

factors, meaning numerical value between 0 and 7, was included in the 

input vector of the ML methods. This set was composed by 4 factors related 

to future holidays, 4 factors related to past holidays and h factors related 

to the holidays in the forecasting horizon. h assumes a different value 

according to the approach to multistep forecasting adopted: when the 

direct approach is applied, 8 future values of demand are forecasted 

simultaneously, therefore h=8. When instead the indirect approach is 

used, only 1 holiday factor is sufficient to cover the forecasting horizon. 

• Promotions: only a few information were available regarding 

promotions, namely the day and the product of concern. Since the 

promotions’ periods were found to be of a modular length of 1 week, a 

dummy variable (which assumes values equal to 0 or 1 alternatively) was 

sufficient to embody all data available on the matter. Similarly to the 

approach adopted for the holidays, it was not only considered the influence 

of promotions at the time of the forecasting horizon but also of those which 

happened near it. The dummy variables which were defined as “promotion 

factors” can be therefore grouped in two categories: 

o Present Promotions: comprehend those promotion factors which 

are related to the weeks included in the forecasting horizon. 

o Past Promotions: comprehend the promotion factors related to the 

weeks coming before the forecasting horizon. These factors were 
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included in the input vectors due to the belief that promotions affect 

demand not only during the time they are active but also in the 

future. To make a simple example applicable to the case study, it is 

possible that canteens would buy in excess to take advantage of the 

current promotions and successively reduce the orders to reduce 

the excess stock. In this case as well, a horizon of 4 weeks in the past 

was considered. 

 Future promotions were established not to influence the demand and 

therefore were not included in the input vectors.  

Table 14 sums up the content of the input vector, while Fig. 41 provides a 

graphical representation of how the vector was assembled. For the correct 

interpretation of both, it is important to remind that h assumes different values 

whether a direct (h=8) or indirect (h=1) approach to demand forecasting is 

considered.  

Content Form Past Present Future 

 Demand Amount of sales per week 52 weeks / / 

Holidays Holiday Factor (from 0 to 7) 4 weeks h weeks 4 weeks 

Promotions Promotion Factor (0 or 1) 4 weeks h weeks / 

 

Table 14: Content of the ML methods’ input vector 

 

 

Figure 41: Structure of the ML methods’ input vector 
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6.3 Results analysis 

The vector introduced in the previous paragraph was used to produce the 

forecast in the same way adopted for the time series approaches (see Chapters 3 

and 4). Since the mixed approaches to statistical methods were beyond the 

scope of the thesis, the forecasts were produced employing exclusively the ML 

methods. 

6.3.1 Dataset A 

Both indirect and direct multistep forecasting were investigated for every 

method. For each configuration, 5907 forecasts related to Dataset A were 

produced. The accuracy indexes (KPI%) obtained are presented and compared to 

those achieved for the time series approaches in Table 15. 

 

 

The results presented for Dataset A show promising results. The additional 

variables included as input seem in fact to bring to a significant increase of 

performance for almost all the methods tested. The only exception is ETR which 

Rank Method 
KPI%  

(mixed approaches) 

 KPI% 

(time series approaches) 

Change in 

KPI% 

1 XGBoost_1SA 34.0  97.8 -55.8 

2 RT_1SA 42.0  121.8 -79.8 

3 ETR_1SA 43.2  181.0 -137.8 

4 ETR 49.4  48.0 +1.4 

5 RF_1SA 49.8  178.6 -128.8 

6 RF 61.3  73.5 -12.2 

7 RT 86.8  135.1 -48.3 

 

Table 15: Dataset A; Mixed approach to ML methods performances and comparison with time series 
approach 
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apparently didn’t manage to further improve the forecasts’ quality. Nonetheless, 

given the randomness of the forecasts, such slight variation of performance can 

be considered not significant.  

A noteworthy observation to discuss is the behavior of the methods when 

employed with the two different multistep forecasting approaches. In the 

previous investigation, meaning the application of time series approaches to 

Dataset A (see Chapter 4.3), the performance of the ML methods when forecasts 

were produced with the direct multistep approaches resulted in most of the cases 

higher than their indirect counterparts. This behavior is no longer verified when 

considering the mixed approaches. The situation is in fact reversed, since in all of 

the cases depicted in Table 13, indirect approaches manage to outperform the 

direct approaches. As commented in Chapter 4, the indirect approach has proved 

to perform scarcely in extremely complex environment probably due to the higher 

error which is reinserted in the method at each iteration. In this case apparently, 

thanks to the addition of holiday and promotion factors as input, ML manage to 

better learn the pattern and minimize the error which is reinserted at each 

iteration.  

 

6.3.2 Dataset B 

Despite the lack of relevant information discussed in Chapter 6.1, it was decided 

to expand the investigation of mixed approached also to Dataset B. As 

anticipated, this was done in order to examine the effects of the inclusion of 

variables with weaker influence on demand in the input vector employed to 

predict its future value. The structure and content of the input vector is the same 

as for Dataset A when promotions are excluded. Differently from what observed 

for Dataset A, from the values reported in Table 16, no increase or decrease in 

accuracy is clearly visible along the whole set of methods. Worth mentioning 

again, the differences in behavior shown by the alternative multistep forecasting 

approaches. While in fact for the indirect approaches a weak increase in error is 
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on average verified, the direct approaches apparently perform significantly better 

than when they are given as input exclusively historical demand data.  

  

Rank Method 
KPI%  

(mixed approaches) 

 KPI% 

(time series approaches) 

Change in 

KPI% 

1 RF_1SA 16.9  21.9 -5.0 

2 XGBoost_1SA 19.0  18.9 +0.1 

3 RT 19.0  50.6 -31.6 

4 RT_1SA 22.4  19.2 +3.2 

5 ETR_1SA 23.4  19.7 +3.7 

6 ETR 25.0  40.8 -15.8 

7 RF 25.1  38.8 -13.7 

 

Table 16: Dataset B; Mixed approach to ML methods performances and comparison with time series 
approach 



 

106 
 

Chapter 7: Conclusions 

This chapter will present the conclusions drawn from each of the analysis 

discussed in the previous chapters. It will be divided in four sections: the first 

three paragraphs will discuss the outcomes of Chapter 4, 5 and 6 respectively. 

Here the findings will be schematically summed up and the limitations 

underlined. The fourth and last section of the Chapter will concern some of the 

possible research topics which can be identified from the outcomes of this thesis. 

 

7.1 Full cross-sectional forecasting 

The investigation treated in Chapter 4 brings to several conclusions connected 

to the previously shown results:  

1. The indirect multistep forecasting approach has proved to allow ML 

methods to reach, in case of a regular forecasting environment, a better 

performance compared to the direct variant. This was verified for each of 

the methods tested on Dataset B. When more chaotic forecasting 

environments are involved (Dataset A), indirect approaches suffer from 

the error injection mechanism happening due to the iterative procedure, 

thus being outperformed by the direct ones. 

2. ML methods prove to perform better than statistical methods when 

applied to the conditions which defined the boundaries for the study, 

namely, time series characterized by (i) weekly time buckets, (ii) yearly 

seasonality and (iii) minimum preprocessing performed. This conclusion 

is based uniquely on the results achieved on Dataset B. Dataset A is in 

fact not appropriate to reach such conclusion. Its high level of irregularity 

affects in fact all kind of methods but the simplest ones (which in fact 

outperform the competitors). Supporting this statement, stands the 

decision by the consulting company providing the data (specialized in 

demand forecasting) to rely on a higher level of aggregation to produce 

the forecasts for Dataset A. 
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3. The performance of ML methods when applied in a cross-sectional 

forecasting form, do not depend only on the products’ historical demand 

predictability but also on its homogeneity among the products in the 

dataset. This outcome poses the basis for the employment of the 

clustering procedures treated in Chapter 5. 

Regarding this section of the study, it is important to underline a couple of 

limitations which affected the extent of the outcomes. The restricted processing 

power available undermined the possibility to run the algorithms multiple times 

in order to strengthen the results. Due to the randomness of the ML algorithms 

outputs, it was impossible to make any solid assessment on the comparison 

between the ML methods employed. A second limitation is the lack of a 

competitive benchmark method. This does not allow to prove how the ML 

methods really perform. The knowledge about the good performance of the 

methods for Dataset B comes from the comparison with the forecasts produced 

by the consulting company with its own forecasting package. The accuracy of the 

ML methods was said to be aligned with the results the package produced.   

 

7.2 Clustering approach to cross-sectional forecasting 

Chapter 5 treated the employment of a clustering approach to aid cross-sectional 

forecasting. Several methods to form the clustering space were investigated and 

a critical analysis of the results was given in Chapter 5.2. Before coming to the 

conclusions that can be drawn from this analysis it is necessary to point out the 

challenges met. The plots extracted from the results resulted in fact in many cases 

erratic. The unavailability of a higher computing power precluded the possibility 

to run the experiments multiple times in order to reduce the random component 

characterizing the results of ML methods. The resulting plots were therefore hard 

to read, and the observations made on them leave space for uncertainty. 

Furthermore, always due to the lack of computing power, the experiments were 

cut once the number of clusters reached the value of 70, thus limiting the extent 
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of the curve analyzable. That being said, the following conclusions can be drawn 

from Chapter 5: 

1. A clustering approach can sensibly improve the accuracy of the forecast. 

Indeed, every clustering approach proposed managed to score a 

minimum KPI% lower than the one achieved with full cross-sectional 

forecasting. 

2. The KPI% plotted as a function of the number of clusters can present 

several local minima other than the foreseen global minimum.  

3. The clustering approaches that perform best are based, the first, on the 

Seasonality Indexes extracted from the time series and, the second, on 

the correlation coefficients between the features and the performance 

achieved in Chapter 4. Meaning, by those clustering approaches which 

focus not on grouping the most similar time series, but on grouping time 

series based on a logic which could help ML methods to better learn time 

series’ patterns. Thus, the contribution of this study in filling the 

literature gap described in Chapter 2.1, stands in the definition of a more 

performing clustering logic to base the procedure on. Between those 

examined in this thesis, the best performing one results to be based on 

the Seasonality Indexes, that are features extracted from the time series, 

directly attributable to the patterns ML should learn. 

 

7.3 Mixed approaches to cross-sectional forecasting 

The outcomes of this section (Chapter 6) were limited by the scarce availability of 

suitable data for the task and by the same issues concerning the time series 

approaches (see Chapter 7.1). It was nonetheless possible to extract some valid 

outcomes from the analysis: 

1. Mixed approaches can provide key information that allows ML method to 

understand the underlying patterns. This statement is rooted on the 

significant decrease in error that characterized all of the methods 

employed through the mixed approaches application to Dataset A. The 
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ML methods aided with the additional variables as input, manage in fact 

to understand the relationship between demand and 

holidays/promotions reducing the error of up to three times the value 

obtained with time series approaches. 

2. The analysis of externals variables’ influence assumes a central 

importance in the case of mixed approaches. The results related to 

Dataset B showed in fact that the inclusion of variables that have a 

dubious relationship with demand could also have detrimental effects on 

forecasting accuracy. 

 

7.4 Future topics of research 

Mixed approaches applied through the simplicity allowed by ML methods 

represent an interesting course of evolution forecasting should undertake. The 

reason which has prevented for it to be widely diffused at present time is that 

forecasting software providers are struggling to access and combine relevant data 

from external sources (Syntetos et al., 2016). An interesting topic of research 

would be the development of an automatic way to evaluate the relevance of the 

external variables to consider in order to improve demand forecasting. 

The second topic suggested for further investigation concerns the conclusions 

reached by this study regarding clustering approaches. This thesis managed to 

assess the best logic to address the clustering approaches with, namely the 

creation of the clusters focusing on the forecasting procedure and not just on the 

similarity between the time series. It didn’t however pretend to devise the best 

way to do it. Better approaches following the same logic could and should be 

developed. Given the promising results of the SI-based clustering approach, 

further attention should be especially placed on it.
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