

Politecnico di Milano

Facoltà di Ingegneria
Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea in
Computer Science

Binary Function Vulnerability
Discover through LLVM IR

Relatore:
Stefano Zanero
Co-Relatori:
Mario Polino

Tesi di Laurea di:
Daniele Marsella

matr. 10482136

Anno Accademico 2019/2020

Abstract

The existence of security vulnerabilities in programs is one of the problems
that mostly defines modern computer era; as a consequence, nowadays, soft-
ware analysis has become one of the most relevant fields in computer security
and an increasing number of researchers is currently working on the develop-
ment of tools that could discover security vulnerabilities in the shortest time
possible. In particular, there is a type of software analysis based on the anal-
ysis of program executables in binary format, which is binary analysis, that
is quite useful because it can be employed to find vulnerabilities in softwares
that have already been released.
Recently, the usage of intermediate representation languages, which are de-
signed to simplify and enhance the analysis of program executables, has
acquired an increasing interest in binary analyses researches. We decided to
employ one of such languages also in our project in order to cover different
machine architectures and also to make our tool easily extendable.

In our thesis we focus on a specific type of binary analysis, static binary
analysis, which analyzes the executable without actually executing or emu-
lating it, building an intermediate representation of it. We chose to use this
approach because it ensures the coverage of the whole binary code inside the
executable.

Our project’s goal is to design a security tool that is capable of detecting
a particular type of vulnerability, known as buffer overflow, in compiled soft-
wares (binary executables). In particular, we are interested in a specific type
of buffer overflow, the loop-based buffer overflow: this type of vulnerability
happens when the program contains a loop that at each iteration stores an
element of a source buffer into a destination buffer without checking the desti-
nation size. This loop is typically controlled by an user input, hence allowing
the attacker to overwrite variables stored in program memory next to the
destination buffer and, in the worse case, to execute malicious injected code.
Moreover, this type of vulnerability is very common in strcpy-like functions.

In order to identify such vulnerabilities in binaries from different archi-
tectures, our tool translates the binary input into an intermediate language
designed for program analyses and scans this intermediate representation to
find any vulnerability. This solution allows also to produce a modular tool
that can be easily extended and enhanced. After that, the tool scans the
functions call chain of the program executable and tracks user input propa-
gation from specific source functions to all the other functions, implementing

2

a simple taint analysis. This approach allows to filter out functions that
contain buffer overflows but are not controlled by user input.

We designed three experiments to demonstrate the abilities of our tool
in detecting buffer overflow vulnerabilities in different types of binaries. The
first experiment tests tools abilities against both dynamically and statically
linked binaries taken from public CVE lists of vulnerable programs. The
second experiment tests tools abilities against binaries extracted from an
ARM-based router’s embedded firmware that had never been analyzed be-
fore. The last experiment tests our tools abilities against DARPA Cyber
Grand Challenges example binaries, built on top of a custom operating sys-
tem.

Our tests show that tool is able to identify 11 of the 15 vulnerabilities cho-
sen in the first experiment, as well as a not yet discovered vulnerability inside
one of the binaries of the firmware for the second experiment. The results
of the third experiment show that the tool marks as vulnerable at least one
function in all the binaries that are known to contain a buffer overflow vul-
nerability. Overall results demonstrate that our tool can be efficiently used to
simplify vulnerability detection in binaries, but it still requires improvements
on the detection precision.

Sommario

L’esistenza di vulnerabilità di sicurezza nei programmi è una delle problem-
atiche che maggiormente caratterizzano la moderna era informatica, tanto
che ormai l’analisi del software è divenuta uno degli argomenti più discussi
e un sempre crescente numero di ricercatori in una corsa contro il tempo
alla ricerca di una soluzione efficace che permetta di individuare le vulnera-
bilità nei programmi il più velocemente possibile. In particolare, esiste una
specifica tipologia di analisi dei programmi basata sull’analisi degli eseguibili
dei programmi in formato binario, chiamata binary analysis, la quale risulta
particolarmente utile perché può essere utilizzata per trovare vulnerabilità in
software che sono già stati rilasciati.
Di recente l’utilizzo di intermediate representation languages, che sono lin-
guaggi ideati per semplificare e migliorare le analisi di software eseguibili,
ha ricevuto una particolare attenzione nelle ricerche di binary analysis. Per
questo motivo, anche noi abbiamo deciso di adottare uno di questi linguaggi
all’interno del nostro software, in modo da poter gestire facilmente diverse
architetture e rendere il nostro tool modulare.

Nel nostro progetto ci soffermiamo principalmente sulla static binary anal-
ysis poiché essa garantisce la copertura completa del codice all’interno del
binario, mentre la dynamic binary analysis non può testare tutti gli input
del programma per via delle dimensioni in genere troppo grandi del dominio
degli input.

In questo progetto presentiamo un tool di sicurezza informatica in grado
di trovare un particolare tipo di vulnerabilità software, chiamato buffer over-
flow, all’interno di programmi già compilati. In particolare, il nostro progetto
si sofferma su un particoalare tipo di buffer overflow, i loop-based buffer over-
flow: questo tipo di vulnerabilità è presente nei programmi che contengono
loop che ad ogni iterazione copiano un elemento da un buffer sorgente a
un buffer destinazione, senza controllare le dimensioni della destinazione.
Generalmente, la condizione di tali loop è controllata dall’input dell’utente
e questo permette a un possibile attacker di poter sovrascrivere varibili in
memoria adiacenti al buffer di destinazione, permettondogli inoltre, nel caso
peggiore, di eseguire del codice malevolo.

Il nostro tool traduce i binary in input in una rappresentazione intermedia
utilizzando un intermediate representation language, dopodiché analizza tale
rappresentazione in cerca di vulnerabilità. Questa soluzione ci ha permesso
di creare un tool modulare che può essere facilmente esteso e migliorato.
Inoltre, il tool è in grado di tracciare la propagazione dell’input dell’utente,

2

attraverso le chiamate di funzioni, a partire da specifiche funzioni sorgente.
Questo permette al nostro tool di eliminare dai risultati quelle funzioni che
contengono dei buffer overflow che non sono controllati dall’utente.

Abbiamo delineato tre esperimenti che dimostrano le abilità del nostro
tool nella individuazione delle vulnerabilità di tipo buffer overflow all’interno
di binari di diverso genere. Il primo esperimento testa le abilità del tool
usando binari linkati sia dinamicamente che staticamente a librerie esterne,
presi da liste pubbliche di programmi vulnerabili. Il secondo esperimento,
invece, testa le sue abilità usando binari estratti dal firmware di un router
basato sull’architettura ARM. Il terzo e ultimo esperimento infine testa il tool
impiegando i binari di esempio offerti dalla DARPA Cyber Grand Challenge,
costruiti usando un particolare tipo di sistema operativo usato per queste
competizioni.

I nostri test dimostrano che il tool è capace di identificare 11 dei 15 binari
pubblicamente noti come vulnerabili nel primo esperimento, e ci ha permesso
inoltre di identificare una vulnerabilità non ancora nota all’interno di uno
dei binari estratti dal firmware del secondo esperimento. I risultati del terzo
esperimento mostrano inoltre che il tool è stato capace di identificare come
vulnerabili tutti i binari contenenti almeno un buffer overflow. Nel complesso,
i risultati dimostrano che il nostro tool può essere utilizzato efficacemente per
semplificare l’individuazione di questo tipo di vulnerabilità, anche se necessita
ancora dei miglioramenti per la precisione dei risultati.

Contents

1 Introduction 3

2 Background and Motivation 6
2.1 Binary Analysis . 6

2.1.1 Control-Flow Graph 6
2.1.2 Data-Flow Graph . 7

2.2 Static vs. Dynamic Analysis 8
2.2.1 Static binary analysis 9
2.2.2 Dynamic binary analysis 10

2.3 State of the Art . 12
2.3.1 BAP: Binary Analysis Platform 12
2.3.2 Valgrind . 13
2.3.3 BitBlaze . 14

2.4 LLVM : a modular compiler framework 15
2.4.1 LLVM IR . 16

2.5 REV.NG : a unified binary analysis framework 22
2.5.1 CFG reconstruction . 23
2.5.2 Function-boundaries detection 24

2.6 Project Goal . 24

3 Design and Implementation 27
3.1 Design . 27

3.1.1 Buffer Overflow structure 28
3.2 Implementation . 29

3.2.1 Preparation . 30
3.2.2 Max Steps Pass . 31
3.2.3 Backward Propagation Pass 31
3.2.4 Revng Function Params 32
3.2.5 Function Parameters Usage 33
3.2.6 Loop Dependencies Pass 34
3.2.7 Security Wrapper Pass 34
3.2.8 Analysis Output . 34

4

4 Experiments 37
4.1 Sanity Check . 37
4.2 DARPA Challenges binaries 38
4.3 Real World Binaries . 39
4.4 Unknown binaries . 41
4.5 Taint Analysis Performances 42

5 Related Works 46
5.1 Static Value Flow Analysis . 46
5.2 Monotone Framework . 47

6 Limitations 51
6.1 Structural limitations . 51
6.2 Weeknesses . 52

7 Conclusions and Future Works 54

List of Figures

2.1 An example of a Control-Flow Graph 7
2.2 An example of a Data-Flow Graph 8
2.3 An overview of Bitblaze Vine component 15
2.4 An overview of Bitblaze TEMU component 15
2.5 An overview of Bitblaze Rudder component 16
2.6 A representation of the structure a LLVM IR Module 18
2.7 An overview of the REV.NG system. JT stands for jump tables,

and new JT means that a new jump target has been found . . 22

3.1 High-level design of the pass pipeline of the analysis 30
3.2 An example of a variable-flows produced by Function Params

Usage Pass . 33

5

LIST OF TABLES 1

List of Tables

4.1 Results of the validation tests 38
4.2 Experiment results on the binaries extracted from DARPA

CGC binaries . 39
4.3 Experiments results on the real world vulnerable programs . . 40
4.4 Experiment results on the binaries extracted from router firmwares 42
4.5 This table reports the performances of taint analysis on bina-

ries of the experiment described in Section 4.3 42
4.6 This table reports the performances of taint analysis on bi-

naries of the experiment described in Section 4.4 and other
extracted from the same firmware 43

4.7 This table reports the performances of taint analysis on bina-
ries of the experiment described Section 4.2 43

1Introduction

The production of secure softwares has become of the utmost importance
both for developers and businesses that are based on software technologies,
though detecting vulnerabilities in a program is not always a straightforward
task.

In this thesis we are going to present a security tool, developed using
modern compilation and computer security technologies, capable of detecting
security vulnerabilities in already compiled softwares. The solution proposed
by our project is able to identify vulnerabilities at function-level inside binary
executables, already deployed and used in different use-cases, extracting a lot
of information about the usage of function arguments and dumping them into
a standard format that can be further analyzed later by other tools.

Proprietary softwares are shipped with only the executable binary, so
users cannot analyze their source code for vulnerability. This is the case also
for the so called Component Off-the-Shelf or COTS software, and the same
reasoning applies also to legacy softwares, which are old programs critical in
particular businesses that cannot be replaced and whose source code in many
cases is not available, or even embedded softwares, used in many electronic
devices like routers or modems . In all these cases, the only way to discover
vulnerabilities is through a direct analysis of binaries.

A common example of vulnerabilities discovered in binaries is buffer over-
flow,which is a type of vulnerability among all type of applications actually
present on the market. A buffer overflow occurs when a value is stored be-
yond the memory region occupied by the variable that should contain that
value. The most common example of this kind of vulnerability is the strcpy
function in C standard libraries: this function copies the characters from a
string and transfers them to another one, but in many implementations the
destination buffer size is not checked, causing some characters to override
values of contiguous variables in memory. The buffer overflow vulnerability
is often used by many attackers to inject vulnerable code inside variables and
to manipulate the program instruction order to execute it.

Over the years, many countermeasures have been developed to secure
programs against buffer overflow, but attackers have always managed to find
a way to elude them. One of the first countermeasure consisted in a ca-

3

4 CHAPTER 1. INTRODUCTION

nary before the return address stored on the stack, which was introduced by
compilers in order to detect if there was a buffer overflow during execution
and then make the program quit instantly. Unfortunately, the first imple-
mentations of this solution used a fixed canary that did not change between
different invocations of the program, and which made it possible for attackers
to overwrite the canary with the same value, consenting them to bypass the
whole countermeasure.

Therefore, compilers developers began to work on an enhanced version of
this countermeasure, which required the canary to be generated randomly at
each function invocation: theoretically this manoeuvre should have made it
impossible for malicious actors to know canary value before program execu-
tion. However, even in this case, these actors found a way to reconstruct the
value of the canary, typically by exploiting some information leakage of the
application.

Years later, even some of the most important computer companies started
to study and develop their own version of a countermeasure which could
be able to avoid buffer overflows attacks, one of the most prominent was
the GCC StackGuard detector proposed at USENIX Security Symposium
in 1998 [6]. But still attackers were able to counteract to this new solution
thanks to other types of overflows, which were not covered by the newly
released countermeasures, like heap-based buffer overflow.
A review of the known attacks and possible defenses was in a paper by
C.Cowan et al. [5] published at the beginning of 2000.

Nowadays it is still impossible to write a perfectly secure software against
buffer overflows because of the many possibilities that attackers discover,
which enable them to exploit program vulnerabilities. Every year many com-
puter security competitions are organized to search for all possible attacks
on binaries, hoping this would help developers to figure out new defenses for
their applications.

For these reasons, and also since buffer overflow is still one of the most
common vulnerability (the CVE database CVE Details show that only in
2019 1,247 overflow vulnerabilities were discovered, making it one of the
most common types among all 2019 vulnerabilities), we focused our effort on
the detection of this particular type of vulnerability.

We have tested our tool using different binaries extracted from different
use cases, analyzing the performance of the results and designing future solu-
tions that can be employed to enhance detection precision and also add new
functionalities to the tool. With our tests we have been able also to iden-
tify a new buffer overflow in a firmware installed on a ARM-based router,
vulnerability that was never detected before.

https://www.cvedetails.com

2Background and Motivation

2.1 Binary Analysis

Binary analysis is the technique used to scan programs executables (that are
typically in binary format) for different reasons, first of all to find vulnera-
bilities and bugs directly inside it. While different binary formats provide
features that simplify many binary scan operations (i.e., symbol tables and
sections), it is much more difficult to analyze binaries behavior with respect
to source code because it contains much less information. For, example in
machine code all values are interpreted as integers and there is a finite set of
registers used to access all program variables, one at a time, while many high
level languages allows programmers to declare variable types and to use an
infinite number of variables. Moreover, machine code expressiveness is much
lower than the one of any high level language, and for this reason there is
a loss of information during compilation process. The information removed
by compilation often is about non-executable aspects of the program and ex-
poses information about its semantic that is very useful for security analyses,
while any vulnerabilities discovery tool strives to reconstruct the same infor-
mation from only machine code. Lastly, another disadvantage is introduced
by aggressive compilation optimizations that alter an intermediate represen-
tation of the source code before producing the final binary executable.

In the last decade, many researchers developed numerous projects in bi-
nary analysis, steadily improving this field of computer science.

Modern binary analyses are based on control-flow and data-flow inspec-
tion of programs. Each of them is a different application of the concept of
flow-graph applied to a different property of the binary.

2.1.1 Control-Flow Graph

A Control-Flow Graph (CFG) is a representation of the instructions and
branches contained in a program and order in which they are executed. Typ-
ically each node in a control flow represent a single instruction (or a sub-set of
instructions without branches) and each of them can be connected by arrows
to one or more node of the diagram. Nodes with outgoing links to more than

6

2.1. BINARY ANALYSIS 7

one instruction are called branch instructions and contain conditions which
are useful to choose which of the following instructions will be executed. An
example of a simple CFG is represented in Figure 2.1 : I1, I2,. . . , I7 are
simple instructions and C1, and C2 are branch instructions.

I1

I2

I3

I4 I5

I6

I7

C1

C2

Figure 2.1: An example of a Control-Flow Graph

For a binary analysis it is important to build or recover a CFG of the input
binary in order to have a correct representation of the possible outcome of
the program execution. Branch instructions conditions are analyzed by tools
that help understanding when it is possible that an instruction or control-flow
path is taken or, more importantly, they help identifying dead instructions,
that are instructions which are never executed, since they include a condition
a condition that can never be true.

2.1.2 Data-Flow Graph

Another important property of binaries for analyses is the data-flow. While
control-flow takes into account how instructions are related during execution,
data-flow keeps track of values flows between variables. A data-flow graph
or DFG contains different types of nodes: a variable node defines where and

8 CHAPTER 2. BACKGROUND AND MOTIVATION

how a variable is defined (the incoming edge indicates how it is defined and
the outgoing one how it is used), an operational node defines operation that
can transform variables values . Figure 2.2 shows an example of what a DFG
looks like.

a b c d

+ - *

x1 y x2

/

w z

-

Figure 2.2: An example of a Data-Flow Graph

DFG are very useful in binary analyses: they can be exploited to recover
value ranges for variables and for pointer-aliases analyses too. Pointer-aliases
analyses are also very important in control-flow reconstruction, because they
can help finding the targets of indirect jumps and calls. Data-Flow analyses
are able to identify malicious assignments on variables, or bad behavior in the
program that can lead attackers to execute malicious code, like the already
mentioned buffer overflow exploit.

2.2 Static vs. Dynamic Analysis

Nowadays binary analysis is grouped into two macro-areas based on two
different approaches for vulnerability detection in already compiled programs,
and each of them has its own pros and cons:

• Dynamic Binary Analysis

• Static Binary Analysis

2.2. STATIC VS. DYNAMIC ANALYSIS 9

2.2.1 Static binary analysis

Static binary analysis is the technique to scan input binary without executing
or emulating it, but by merely reading the machine code contained in the
input. This kind of binary analysis aims at understanding the assembly
code, reconstructing which function calls other functions and which memory
area is pointed by any pointer in each execution time. In order to work
properly, static binary analysis often needs to draw some assumptions on
input binaries and make massive use of different advanced mathematical
tools. Anyway, even with these measures, sometimes it still is not able to
obtain precise results, thus demanding the use of different statistical tools
to make predictions on the hypothetical execution of the binary, i.e., which
branch is taken at a given point by a conditional instruction. To sum up,
the main challenges in static binary analysis are:

• Value ranges for variables

• Memory Areas pointed by different pointers (also known as pointer
aliasing)

• Branch conditions predictions

Clearly though, the main complication of this kind of binary analysis
consists in the difficulty in reasoning about low-level code because of its
nature, leading to the recent birth of different intermediate languages that
try to make it Static Binary Analysis easier. A more in depth view of the
most used intermediate languages will be covered in a later chapter.

Finally, one of the biggest project on static binary analysis in recent
years has been BitBlaze [22], that is a complete binary analysis framework
for computer security, with a component called Vine studied specifically for
static analyses of binaries.

Intermediate Languages

For many years static analysis of binary was built on top of reverse engineer-
ing, an approach that tries to translate back binary into its source code. The
main idea behind this approach was to analyze the recovered source code
for vulnerabilities, but it proved to be quite ineffective in practice: due to
compiler optimizations, the recovered source code turned out far different
from the original code and in many cases was very difficult to understand by
analyzers. In an attempt to resolve these complications, researchers started
to design languages that had binary analysis as the main goal. The idea

10 CHAPTER 2. BACKGROUND AND MOTIVATION

of an intermediate language between the high level code and the machine
code was not new, in fact compilers already used intermediate languages to
simplify code optimization process, but those intermediate languages were
not well suited for computer security analyses. This is why new intermediate
representation languages (IL) were born, like Vine, the Bitblaze intermediate
language or BIL for Binary Analysis Platform [3]. The latter is a type of IL
that represents the operational semantics of the binary input on which all
analyses will depend, implying also that any error or bug in the IL might
invalidate all previous analyses and emphasizing the critical role of IL design.
Furthermore, the translation to IL of a binary, a process also called lifting,
starts from an input language that is incredibly complex: ARM and Intel
specifications of processors machine code are reported in manuals of 6,354
and 4,700 respectively. The research of Kim, Soomin et al. in 2017 [10]
tested recent ILs of the most known binary analysis tools looking for se-
mantic bugs. The research tested the expressiveness of each intermediate
language by looking at two important characteristics of any IL: explicitness
and self-containment. An IL is explicit when no instruction updates more
than one variable, a property very useful for control-flow and data-flow based
analyses. On the other hand IL is self-contained when it represents all the
binary characteristics without relying on external functions or components.
It also means that the IR is side-effects free. For example QEMU IL, called
TCG, uses some external functions for some logical operations, and for this
reason it is not self-contained. While self-containment is very important for
the expressiveness of the IL, a non-explicit IL is not always less expressive
than an explicit one. Thanks to their works, the researchers found 23 se-
mantic bugs in three state-of the art lifters, which helped us choosing a lifter
based on LLVM IR.

2.2.2 Dynamic binary analysis

Dynamic binary analysis is based on the execution or emulation of the in-
put binary inside an instrumented environment, that allows to test program
with real inputs, by not only supporting the simulation of execution, but also
consenting its modification and without side-effects on the outside environ-
ment. It is an efficient approach in terms of response time and complexity
of design, but it does not ensure that the whole code is covered. The main
problem of this type of analysis is that the input domain can be very large
even for a simple program, thus making it essentially impossible to cover the
whole domain by enumerating of all possible value, even with the help of
most powerful supercomputers.

2.2. STATIC VS. DYNAMIC ANALYSIS 11

It is precisely for this reason that researchers developed some tools that
try to cover as much input domain as possible, drawing information from dif-
ferent approaches. Nowadays, the most common dynamic analyses are based
on input fuzzing, a technique that scans the program for invalid input which
could make it crash or behave unexpectedly. Since these input data can be
generated randomly or algorithmically, one of the most common solution is
to generate input that tries to cover all possible conditions for branches in-
structions.
A study conducted by Shoshitaishvili et al. [21] on binary offenses identi-
fies two common types of fuzzing used in dynamic analyses: coverage-based
fuzzing and taint-based fuzzing. Coverage-based fuzzing tries to find input
that maximize the coverage of executed code. The idea behind this approach
is that executing most instructions in the code raises the probability of dis-
covering an hidden vulnerability in the program. While this can be true in
many cases, it is also possible that an instruction leverages a vulnerability
only when it is executed with some specific inputs, so this approach does not
ensure that all vulnerabilities are discovered. This type of approach is used
in a famous state of the art fuzzer, named American Fuzzy Lop or AFL [25].
Taint-based fuzzers instead track how the input is propagated inside the pro-
gram (typically observing the function call stack) and use this information
to modify input that are generated next. These fuzzers are typically use-
ful when the analysis has a specific target function to track, but in a more
general approach it is very difficult to understand how to modify input in
order to identify an hidden vulnerability. Taint-based fuzzers are still under
development, but one of the most promising is the one presented in the pa-
per by S. Bekrar et al. [2] Another famous fuzzer, maybe the most powerful
fuzzer actually available, is OSS-Fuzz [19], developed by Google : it is able
to generate 4 trillion inputs a week, and it is mainly used to search bugs in
Google’s software, like Google Chrome. This fuzzer is so effective that, until
now, it has been able to find over 16,000 vulnerabilities in more than 250
open-source projects

The paper by Shoshitaishvili et al. [21] also identifies another more com-
plex and recent approach used in dynamic binary analysis, the dynamic sym-
bolic execution. This technique represents a mix of static and dynamic ap-
proaches: first the binary is statically analyzed to identify and understand
expressions and conditions inside of it; then a symbolic representation of each
of them is built, highlighting how input can change their values; in the end
these symbols are used as insights by a fuzzer for input generation. Dynamic
symbolic execution has the added value of a more concrete knowledge of the
program semantic compared to to classical fuzzers, allowing the analyzer to
target specific states of the program by simply looking at conditions or ex-

12 CHAPTER 2. BACKGROUND AND MOTIVATION

pressions and propagating its symbols backwards to the input. This powerful
technique can be used for different purposes: classical dynamic symbolic ex-
ecution engines employ it to directly find vulnerabilities inside the program

Dynamic binary analysis is sometimes also used to validate results of
static binary analysis, typically to narrow down the number of false positives
reported.

2.3 State of the Art

As of today, the most popular static binary analyzers are BAP and BitBlaze,
while for the decompilation of binaries business tools like IDA Pro and open-
source projects like radare2 are commonly used.

On the subject of reverse engineering, there are two main open-source
projects that use LLVM IR as intermediate representation language (IR):
Remill and Retdec. Retdec was developed by Avast [11] and is the most
recent reverse engineering project, it already offers many advanced func-
tionalities like RTTI and Class Hierarchy reconstruction for C++ projects,
instruction idioms recognition and stack structure reconstruction. Actually
Retdec has been opened to the public and its source code is accessible on
Github, and, even if it is still an ongoing project, its performances are already
incredible: it is able to lift a complex binary of some megabytes in a couple
of minutes at most.

Unfortunately though, the decompilation feature to C language is not
perfect yet and the output code can still come out as “dirty”, with a lot
of goto instructions, making it a bit more difficult to analyze compared to
standard C code.

2.3.1 BAP: Binary Analysis Platform

BAP is the third version of the project developed by David Brumley et al. [3]
to build a unified platform for binary analysis. The first version of the project
started with a simple decompiler, called asm2c, that translated binary code
into C code and then performed analyses on the high-level language. Then
developers opted for a custom IR, called Vine, that was based on VEX, the
IR developed and used by Valgrind [15] (another state of the art project
that will be discussed later). In this last version researchers tried to fix
Vine in order to make all code side-effects explicit in the IR, allowing to
perform syntax-based analyses. BAP is now formed by two components: a
front-end that takes the binary as input, search for executable code in it and
translate it into Vine code, and a back-end that performs analyses based on

2.3. STATE OF THE ART 13

Vine language. Additionally, the back-end can be interfaced with other tools
to enrich analyses results (i.e., it can be interfaced with an SMT solver to
compute better data-flows or with Intel Pin framework for dynamic symbolic
execution). Another feature introduced with the last version of BAP are the
Verification Conditions (or VC): BAP can analyze the program and build
particular conditions that can be verified and tested with specific inputs over
all program execution.

Currently BAP supports only binary compiled for x86 and ARM archi-
tectures.

2.3.2 Valgrind

While BAP represents the state of the art of static binary analysis, the
project developed by Nethercote et al. [15], called Valgrind, represents the
actual state of the art for dynamic binary analysis. Valgrind is a dynamic-
binary instrumentation framework designed to build heavyweight dynamic-
binary analyses and shadow values tools. Shadow values tools are particular
dynamic-binary analysis that, during program execution, replace each emu-
lated register value with a description of that value, allowing the recovery of a
brief history of that value for each register. In addition to simple instrumen-
tation framework, shadow value tools have additional complex requirements
that must be met for their building. Valgrind paper defines nine requirements
that are grouped into four categories.

A shadow tools has to keep a program state that represents memory areas
used by variables. Then, each possible machine instruction must be instru-
mented in order to populate descriptive values about each shadow value.

All analyses and interpretations are performed using an intermediate rep-
resentation language developed by Valgrind researchers: this intermediate
representation language, called VEX, had received a lot of changes until the
third implementation, when it was finally reliable enough to be used as de-
fault IR. VEX language is an architecture independent, SSA language, simi-
lar to RISC machine languages composed by blocks called superblocks. Each
superblock contains a list of instructions and each instruction is composed
by one or more expressions depending on the behavior of the instruction.
Instruction expressions can be represented in two ways: a tree VEX IR con-
tains expressions arranged in tree-form, or a flat VEX IR that contains only
linear expressions. It is always possible to convert a tree VEX IR into a flat
VEX IR, and viceversa.

Valgrind is composed by a core program and additional plug-ins that
are attached to the core when the tool starts. With this architecture, Val-

14 CHAPTER 2. BACKGROUND AND MOTIVATION

grind users can easily implement new tools by writing only new plug-ins,
reusing the same core features. The core is responsible for translation into
the VEX language using the disassemble-and-resynthetize (D&R) approach,
in contrast with more common copy-and-annotate (C&A) approaches used
by other dynamic instrumentation frameworks.

Thanks to its ability, Valgrind is actually used in different common tools
employed in many computer security fields: Memcheck, developed by Seward
Julian and Nethercote Nicholas [20], is a tool capable of identifying frequently
undefined errors vulnerabilities, common in programs written with unsafe
imperative languages like C or Fortran; TaintCheck, developed by Newsome
James and Song Dawn Xiaodong [16], is a dynamic taint analysis tool able
to follow input propagation from specific source functions in instrumented
binaries, automatically detecting input correlation of exploit attacks; Re-
dux, developed by Nethercote Nicholas and Mycroft Alan [14], is a dynamic
data-flow tracer tool able to build dynamic data-flow graphs (or DDFG) in
analyzed binaries, that represents the entire computation history of the pro-
gram. Redux, in particular, developed a whole new way to analyze program
using DDFG, allowing also to understand how values can affect the outside
environment.

These are only few of the many use-cases in which Valgrind has been used
to develop dynamic binary analysis tools.

2.3.3 BitBlaze

BitBlaze is a project conducted by Dawn Sang et al. [22] that aims at provid-
ing basic and common useful tools for binary analyses in computer security,
and from those it builds new complex and effective solutions to security
problems.

It was designed with accuracy and extensibility in mind, building models
that can accurately represent program execution and re-using core function-
alities for more sophisticated and complex analyses. BitBlaze developers
decided also to mix together static and dynamic binary analyses to benefit
from both advantages for their results.

To achieve that, BitBlaze relies on three components: Vine component
for static analyses tasks, TEMU component for dynamic analyses tasks and
Rudder component for mixed concrete and symbolic analyses based on the
other two components. Figures 2.3, 2.5, and 2.4 from the research paper offer
an overview of these Bitblaze components.

Rudder is the most innovative part of the project: it takes as input sym-
bolic specification computed by TEMU and explores execution path condi-

2.4. LLVM : A MODULAR COMPILER FRAMEWORK 156 D. Song et al.

Instruction
Lifting

Binary Format
Interface

Front End

Code Generator

Optimizations

Vine

Language
Intermediate

Back End

Program
Verification

Graphs Additional
Program
Analysis

Fig. 2. Vine Overview

The Vine back-end supports a variety of core program analysis utilities. The back-
end has utilities for creating a variety of different graphs, such as control flow and
program dependence graphs. The back-end also provides an optimization framework.
The optimization framework is usually used to simplify a specific set of instructions.
We also provide program verification capabilities such as symbolic execution, cal-
culating weakest preconditions, and interfacing with decision procedures. Vine can
also write out lifted Vine instructions as valid C code via the code generator
back-end.

To combine static and dynamic analysis, we also provide an interface for Vine to
read an execution trace generated by a dynamic analysis component such as TEMU.
The execution trace can be lifted to the IL for various further analysis.

3.2 The Vine Intermediate Language

The Vine IL is the target language during lifting, as well as the analysis language for
back-end program analysis. The semantics of the IL are designed to be faithful to as-
sembly languages. Table 1 shows the Vine IL.

The base types in the Vine IL are 1, 8, 16, 32, and 64-bit registers (i.e., n-bit vec-
tors) and memories. A memory type is qualified by its endianness, which can be either
little (e.g., for little-endian architectures like x86), big (e.g., for big-endian archi-
tectures such as PowerPC), or norm for normalized memory (explained later in this
section). A memory type is also qualified by the index type, which must be a regis-
ter type. For example mem t(little, reg32 t) denotes a memory type which is
little endian and is addressed by 32-bit numbers.

There are three types of values in Vine. First, Vine has numbers n of type τreg. Sec-
ond, Vine has memory values {na1 → nv1, na2 → nv2, ...}, where nai denotes a
number used as an address, and nvi denotes the value stored at the address. Finally,
Vine has a distinguished value ⊥. ⊥ values are not exposed to the user and cannot
be constructed in the presentation language. ⊥ is used internally to indicate a failed
execution.

Expressions in Vine are side-effect free. The Vine IL has binary operations ♦b (“&”
and “|” are bit-wise), unary operations ♦u, constants, let bindings, and casting. Cast-
ing is used when the semantics requires a change in the width of a value. For example,
the lower 8 bits of eax in x86 are known as al. When lifting x86 instructions, we use
casting to project out the lower-bits of the corresponding eax register variable to an al
register variable when al is accessed.

Figure 2.3: An overview of Bitblaze Vine componentBitBlaze: A New Approach to Computer Security via Binary Analysis 13

Engine

Taint Analysis Semantics

Extractor

Emulated System

T
E

M
U

 A
PI

TEMU Plugin A

TEMU Plugin B

TEMU Plugin C

Fig. 5. TEMU Overview

DynamoRIO, Pin) only provide a local view (i.e., a view of a single user-mode pro-
cess). This is particularly important for analyzing malicious code, because many
attacks involve multiple processes, and kernel attacks such as rootkits have become
increasingly popular.

– A whole-system emulator provides an excellent isolation between the analysis com-
ponents and the code under analysis. As a result, it is more difficult for the code
under analysis to interfere with analysis results.

The design of TEMU is motivated by several challenges and considerations:

– The whole-system emulator only provides us only the hardware-level view of the
emulated system, whereas we need a software-level view to get meaningful analysis
results. Therefore, we need a mechanism that can extract the OS-level semantics
from the emulated system. For example, we need to know what process is currently
running and what module an instruction comes from.

– In addition, many analyses require reasoning about how specific data depends on
its data sources and how it propagates throughout the system. We enable this using
whole-system dynamic taint analysis.

– We need to provide a well-designed programming interface (i.e., API) for users
to implement their own plugins on TEMU to perform their customized analysis.
Such an interface can hide unnecessary details from users and reuse the common
functionalities.

With these considerations in mind, we have designed the architecture of TEMU, as
shown in Figure 5. We build the semantics extractor to extract OS-level semantics in-
formation from the emulated system. We build the taint analysis engine to perform dy-
namic taint analysis. We define and implement an interface (i.e, TEMU API) for users to
easily implement their own analysis modules (i.e. TEMU plugins). These modules can
be loaded and unloaded at runtime to perform designated analyses. We implemented
TEMU in Linux, and at the time of writing, TEMU can be used to analyze binary code
in Windows 2000, Windows XP, and Linux systems. Below we describe these three
components respectively.

Figure 2.4: An overview of Bitblaze TEMU component

tions in the binary, automatically discovering behaviors hidden by particular
complex conditions. The Mixed Execution Engine (MEE) behind Rudder is
able to collect necessary information from symbolic execution and it is also
able to formulate a symbolic program of the binary: in fact when a symbolic
execution marks an instruction to be executed, it is first lifted to the Vine
IL, allowing to reconstruct a symbolic version of the program in the end .
In addition to it, MEE uses also an SMT solver to reason about symbolic
expressions provided by TEMU.

2.4 LLVM : a modular compiler framework

Low Level Virtual Machine (LLVM) framework was born from the effort of
researchers C. Lattner and V. Adve [12] who wanted to design retargatable
compilers that, starting from the same code, were able to produce executa-
bles for different architectures. LLVM ’s most valuable feature is that it is
able to easily introduce new optimizations in the compiler without specific
knowledge, neither of the input high level language nor of the target architec-
tures. This feature was achieved thanks to the well-engineered design of the

16 CHAPTER 2. BACKGROUND AND MOTIVATION

BitBlaze: A New Approach to Computer Security via Binary Analysis 17

5 Rudder: The Mixed Concrete and Symbolic Execution
Component

In this section, we give an overview of Rudder, the mixed concrete and symbolic
execution component of BitBlaze Binary Analysis Platform, describing its compo-
nents for performing mixed execution and exploring program execution space and its
implementation.

5.1 System Overview

We have designed and developed Rudder, to perform mixed concrete and symbolic
execution at the binary level. Given a binary program and a specification of symbolic
inputs, Rudder performs mixed concrete and symbolic execution and explores multiple
execution paths whenever the path conditions are dependent on symbolic inputs. By
doing so, Rudder is able to automatically uncover hidden behaviors that only exhibit
under certain conditions.

Figure 6 shows a high level picture of Rudder. Rudder consists of the following
components: the mixed execution engine that performs mixed concrete and symbolic
execution, the path selector that prioritizes and determines the execution paths, and the
solver that performs reasoning on symbolic path predicates and determines if a path is
feasible. Rudder takes as inputs a binary program and a symbolic input specification. In
TEMU, the binary program is executed and monitored. Rudder runs as a TEMU plugin
to instrument the execution of the binary program. During the execution, Rudder marks
some of the inputs as symbolic according to the symbolic input specification. Then
the mixed execution engine symbolically executes the operations on symbolic inputs
and data calculated from symbolic inputs. When a symbolic value is used in a branch
condition, the path selector determines, with assistance of the solver, which branches
are feasible and selects a branch to explore.

5.2 Mixed Execution Engine

Determine Whether to Symbolically Execution an Instruction. For each instruction,
the mixed execution engine performs the following steps. First, it checks the source
operands of that instruction, and answers whether they are concrete or symbolic. If
all source operands are concrete, this instruction will be executed concretely on the
emulated CPU. Otherwise, the mixed execution engine marks the destination operand
as symbolic, and calculate symbolic expressions for the destination operand. To mark

Engine

Execution

Mixed
Symbolic Input
Specification

Binary
Program

Path Selector

Solver

Rudder

Fig. 6. Rudder OverviewFigure 2.5: An overview of Bitblaze Rudder component

framework and also through the effort put in the implementation of the Inter-
mediate Representation Language LLVM IR. In less than ten years LLVM has
managed to become the main competitor of the old and great GCC compiler
and it has developed so much that now Clang, that is C and C++ compiler
based on LLVM , is the default compiler used by Apple in their operating
systems .

2.4.1 LLVM IR

The core strength of the LLVM framework is its well engineered intermediate
representation language named LLVM IR: it is used to translate any input
high level language into a middle form that can be easily manipulated and
optimized independently from the target architecture and the input language.
The Listing 2.1 contains an example of a LLVM IR sample program.

@G = thread_local (initialexec) global i32 0, align 4
% mytype = type { % mytype *, i32 }

declare i32 @printf (i8* noalias nocapture , ...)
declare i32 @atoi(i8 zeroext)
declare signext i8 @returns_signed_char ()

define i32 @main () #0 {
%1 = alloca i32 , align 4

for.body:
%val0 = load i32 , i32* %1, !llvm. access .group !1
store i32 %val0 , i32* %1, !llvm. access .group !1
br i1 %exitcond , label %for.end , label %for.body , !llvm.

loop !0
for.end:

ret i32 0
}

2.4. LLVM : A MODULAR COMPILER FRAMEWORK 17

; Some unnamed metadata nodes , which are referenced by the
named metadata .

!0 = !{!"zero"}
!1 = !{!"one"}
!2 = !{!"two"}
; A named metadata .
!name = !{!0 , !1, !2}

Listing 2.1: An example of LLVM IR Module

LLVM IR’s structure is very similar to assembly language, with three-
addresses statements and not so many high level constructs, but at the same
time introducing some important features that increase its expressiveness:
it has a full type system for variables, it allows the definitions of functions
and local or global variables and, most importantly, it is in Static Single
Assignment form (SSA).

Definition. A language is in SSA form when any modification or use of
variables leads to the definition of a new variable.

This property makes it very easy to decouple different uses of the same
variable in different statements of the program. This also means that theo-
retically it is possible know to which value a variable will assume for every
single statement in any execution moment (or at least a range of possible
values). The use of this structure also facilitates tracking the flow of a vari-
able with the so called define-use chains (or def-use chain): in this type of
chain any ring is composed by an use of a variable previously defined in the
program and a definition of a new variable. If two rings are consecutive,
the second ring must contain a use of the variable defined in the first one.
Formally a def-use chain can be defined as following:

Definition. A define-use chain in an SSA form language is a ordered se-
quence of instructions < i1, . . . , in > where the following property must hold:

if < i,j > is a sub-sequence of the def-use chain⇒∃v s.t.

v ∈ def(i)
v ∈ use(j)

where def(i) is the set of variables defined by i and use(j) is the set of
variables used by j.

SSA form languages are preferred for data-flow analysis, in fact thanks
to SSA property each variable in the DFG has a single definition node.

The structure of a single LLVM IR compilation unit, also called Module, is
composed by blocks: the top-most block is the Module block that contains
all other blocks in the module. Inside a Module blocks there are different

18 CHAPTER 2. BACKGROUND AND MOTIVATION

Function blocks, each of them representing a single function in the program.
One Function block can be formed by only Basic-block blocks or also by Loop
blocks (containing only Basic-blocks). A Basic-block is a block of instructions
that are executed always in the same order and it is defined typically by
a label at the beginning and a ending instruction (called also Terminator
Instruction) that connects it to other blocks. This type of block is the unit
that compose the CFG of the LLVM IR Module. An high-level overview of a
generic LLVM IR Module structure is represented in the Figure 2.6

LLVM IR Module

Functions

Loop

Basic Block

Instructions

Figure 2.6: A representation of the structure a LLVM IR Module

Inside the Basic-blocks there are only Instruction blocks, each of them
representing a single LLVM IR Instruction. Additionally, a Module can also
be enriched with other information about the program using metadatas: a
metadata is a non-executable instruction or variable that can be attached to
each component of the module, adding additional information that can be
useful for optimizations or debugging.

The most relevant aspect for developers using LLVM Framework is that
each element of the IR Language is implemented in a beautiful and well-
engineered hierarchy of C++ classes in the LLVM libraries. The hierarchy
starts with the top most class, that is Value: anything inside the LLVM IR
is a direct or indirect subclass of it. At the same time, any value inside the
IR can be an User of other values and the relation between user and used
values is represented by Use class. Then, using the polymorphism properties

2.4. LLVM : A MODULAR COMPILER FRAMEWORK 19

of C++, all other types and constructs of IR are implemented. Some of them
are:

• Constants

• Instructions

• Basic Blocks

• Functions

• Loops

Each of them inherits or overrides Value’s methods depending on the behav-
ior. All the objects in the libraries are implemented following at least C++
11 standards, making it very easy for developers to iterate over a vector of
variables uses, for example using standard methods “.begin()” and “.end()”
or the most common standard libriaries of C++. Anyway, in order to en-
hance performance, LLVM designers decided also to reimplement some of the
basic types in C++, like arrays with ArrayRef or SmallVector and strings
with StringRef and Twine. Third party developers have the possibility to
continue using standard C++, but if they need to increase the performance
of their tools they have to take into account also LLVM base classes. All these
aspects are well documented inside the LLVM programmer manual which lists
many examples that help developers with design decisions.

LLVM Passes

All optimizations and transformations performed by LLVM are built on top
of the concept of Pass, that is a component which has to perform a spe-
cific operation on the input module at a specific granularity. Passes can be
categorized into two classes:

• Analysis Pass: a pass that reads the input module and does not modify
it, retrieving information that could be useful for other passes.

• Transformation pass: a pass that actually modifies the input producing
a new module. It can invalidate previous analyses.

Passes are used by LLVM optimizer tool, called opt, that builds a pass pipeline
in which passes are ordered based on their dependencies on other passes.
Each pass can have different granularity, that specifies on which IR level the
pass is iterated:

https://llvm.org/docs/ProgrammersManual.html

20 CHAPTER 2. BACKGROUND AND MOTIVATION

• Module pass: a pass that iterates once on the whole input module
having the possibility to modify and analyze any component.

• CallGraphSCC pass: a pass that iterates over the module call-graph,
letting the developer decide in which order to visit it (depth-first or
breadth-first).

• Function pass: a pass that iterates on each function of the input module
and that can modify a function and all its internal component one at
a time.

• Basic Block pass: a pass that iterates over the basic blocks of the
module and can modify only instructions inside of it.

• Loop Pass: a pass that iterates over all the loops inside the module
and that can modify only the instructions inside it

• Instruction Pass: the most granular type of pass, it iterates over all
instructions of the module and it can modify one at a time.

An important note must be discussed about CallGraphSCC passes: since
a CallGraph can contain loops caused by recursive functions or groups of
functions calling each other, it is transformed into an acyclic graph before
execution using Strongly Connected Component (or SCC) algorithms. The
default algorithm used by LLVM is the Tarjan’s SCC algorithm, defined by
Robert Tarjan in its study about depth-first visiting of linear graphs [24].
Eventually, developers can modify its behavior by overriding the default pass
constructor. Then, developers have to override the “runOnSCC” method,
that analyzes one SCC of the CallGraph at a time. Each SCC is formed by
one or more functions, with relation links that represent which function calls
other functions inside the SCC. Finally, developers are able to analyze the
whole CallGraph overriding the method “doFinalization” that takes as input
the CallGraph without SCCs.

LLVM Pass Managers

The passes pipeline in LLVM is built by a specific class called PassBuilder.
After building, another class (the Pass Manager) executes each pass in or-
der and registers which analyses have been performed and which need to
be re-executed. This Pass Manager supports the class hierarchy of passes
described in the previous section. Each pass can declare, through an over-
loaded function, on which analyses and transformation it depends on; after
that, PassBuilder and PassManager can ensure that they are executed in the

2.4. LLVM : A MODULAR COMPILER FRAMEWORK 21

correct order. In the LLVM documentation it is assured that each pass can
depend only on specific types of other passes, which are:

• Module Pass can depend on any type of pass.

• CallGraphSCCPass can depend only on other CallGraphSCCPass.

• Function Pass can depend on other function passes and basic block,
loop pass or instruction pass.

• Loop pass can depend on other loop passes and basic block or instruc-
tion pass.

• Basic Block Passes can depend on other basic block passes or Instruc-
tion passes.

• Instruction Pass can depend only on other Instruction passes.

Unfortunately, the Pass Manager is affected by a bug due to its design, which
invalidates the dependencies of passes on other types of passes: the problem
is caused by the instantiation of each Pass inside the Pass Manager, which
leads to a crash of the program when a pass tries to access a result for a
unit from different the one that is being analyzed in that moment from that
instance.

New Pass Manager The above-mentioned problem, alongside other known
disadvantages of the current implementation, lead LLVM developers to work
on a new pass manager restructuring all the previous designs. With the new
pass manager, passes are classified into two different class hierarchies: Anal-
ysisInfoMixin and PassInfoMixin. In this way it is easier to identify which
passes can modify the input module. Additionally, the passes do not declare
if they modified the module with a simple boolean variable, but they return
a set of Preserved analyses and transformations at the end of their execution.
In this way the pass manager can reschedule only needed analyses and not
all of them, while the old pass manager re-executed all previous analyses.
Another important change has been introduced in the new pass manager to
simplify the access to analysis results: each analysis can declare a specific in-
ternal type named “Result” that must be returned at the end of the analysis.
The new pass manager registers all analyses in the pipeline and cache also
results for already processed units. During the execution each pass can access
the instance of the pass manager and ask for a particular result of analyses.
If the analyses has a different granularity, the pass can access a particular

22 CHAPTER 2. BACKGROUND AND MOTIVATION

proxy built by pass manager to facilitate the communication among those
types of passes.

At this moment the new pass manager is still in beta state, but since
LLVM 7.0.0 both versions coexist and developers can choose which type of
pass manager to use for their analyses.Moreover, the new pass manager still
has some disadvantages (no possibility to define pass-specific command line
options for example) so we had to use the old pass manager approach for our
project.

2.5 REV.NG : a unified binary analysis framework

REV.NG [8] is a unified binary analysis framework covering a very large set of
processor architectures, and at the same time it is also a decompilation and
translation tool that can translate a binary compiled for a specific architec-
ture into an executable binary for a different architecture. Differently from
BAP , REV.NG is able to target so many architectures because it relies on
QEMU (a generic open-source machine emulator and virtualizer) as front-
end for input binaries and it uses Low Level Virtual Machine IR (LLVM IR),
which is architecture-independent by design, as intermediate representation
language for the analyses. Thanks to this decision, REV.NG has the ability
to manipulate binary from different architectures without having different
specific components for each of them (while other common binary analysis
tools have to). The Figure 2.7 from the original paper shows an overview of
the system behind REV.NG .

jump, all the destination basic blocks might not be considered part
of the function, leading to a loss in accuracy.

Another issue is deciding whether a certain basic block is the
entry point of a function or not. The presence of an explicit function
call to its address is a strong indication, but it may not always
be available. Specifically, a certain function might never be called
directly but only through a function pointer, a C++ virtual call, or a
tail call.

Further, several common challenges emerge while trying to
identify function boundaries across architectures. In the following
we report some of the most relevant:

Call thunks. In ISAs where the program counter is not address-
able, it is a common practice to perform a function call to the
next instruction so that the program counter becomes available
on the stack or in the link register. The destination of such a
function call should not be mistakenly interpreted as the entry
point of an actual function.

noreturn functions. A noreturn function, in C terms, is a func-
tion that never returns (e.g., exit or longjmp). These functions
are sometimes called through a function call instruction and not
through a simple jump. This leads to a spurious path from the
call site to the next instruction, which might even be part of a
distinct function.

Shared code. Two functions may share a portion of their bodies,
in particular, two hand-written assembly functions might share
the footer or a sequence of instructions for error handling.

Calls to the middle of a function. In certain cases, a function
might have multiple entry points. This case is mostly seen in
hand-written assembly and it is usually employed to provide a
faster version of a function that does not verify certain precon-
ditions that are known to hold.

Tail calls. Tail calls appear in the code as simple unconditional
jump instructions, and, therefore, have to be handled in a way
that prevents them from being mistakenly identified as part of
the function-local CFG.

3. First Steps: Binary Lifting and a Basic CFG
This section discusses preliminary steps on how a high-level pro-
gram representation and a basic control-flow graph is obtained from
binary code. Leveraging the ISA-independent QEMU binary trans-
lator, binary code is lifted into QEMU IR which can then be trans-
lated into LLVM IR. Starting from this LLVM IR, a set of analyses
(OSRA and SET) [6] recover a basic control-flow graph.

3.1 An ISA-independent Binary Analysis Framework
A primary objective of our work consists in developing ISA-
independent analyses. While this is challenging in itself, supporting
different instruction sets in a unified manner increases these chal-
lenges. The ideal situation would be to work on an intermediate
representation while abstracting all the details specific to an archi-
tecture and making the behavior of each instruction explicit, along
with all its side effects. While this has been done in the past [3, 14],
from an engineering point of view, it requires a large amount of
work, in particular for large and complex CISC instruction sets
such as x86 and its successors. Moreover, such an effort has a non-
diminishing marginal cost for supporting new architectures, since,
in most cases, the opportunities for code reuse in different archi-
tectures are limited. Therefore, related works typically focus on
a limited set of architectures (usually one or two) and often only
support a subset of instructions in complex ISAs like x86, thus
ignoring, e.g., vector instructions or floating point instructions.

md5sum.arm
Collect JTs from

global data

Lift to
QEMU IR

Collect JTs from
direct jumps Translate to LLVM IR

new JT

Collect JTs from
indirect jumps

new JT

Identify function
boundaries

md5sum.cfg

md5sum.functions

Figure 1. Overview of the REV.NG system. JT stands for jump
target, and the new JT notation represents the fact that at least a
new jump target has been discovered.

REV.NG decouples the problem of CFG recovery from interpret-
ing an ISA by offloading the task of handling different architectures
to an existing abstraction layer: QEMU. The core component of
QEMU enabling this kind of abstraction is the tiny code generator
(TCG) which translates instructions of a supported ISA into TCG
instructions, QEMU’s IR. In emulator mode, QEMU translates its
IR to executable code for the host architecture. In our case, instead
of generating machine code, we further translate the QEMU IR into
a higher level IR, namely the LLVM IR. By employing QEMU’s
tiny code generator as a frontend, we obtain an IR from any of the
architectures it supports with minimal effort.

While our analyses are agnostic with respect to the underlying
IR, leveraging LLVM has several advantages. For example, the
LLVM IR is in SSA-form and provides use-def chains out of the
box. LLVM has a well-developed and clean API. As a compiler
framework, LLVM allows the recompilation of generated code for
any of the supported target architectures. Employing LLVM in a
binary analysis framework allows building a static binary translator
with minimal effort [6].

3.2 From Binary Code to LLVM IR
As shown in Figure 1, the translation process begins by parsing
the binary image and loading its segments into memory. Then,
the program’s global data is scanned in search of pointer-sized
values pointing to an address in the executable segment. Each target
address (or jump target), is passed to QEMU, which translates the
basic block at the corresponding address into TCG instructions.
The sequence of TCG instructions are then expanded to equivalent
LLVM IR and collected into a set of basic blocks. These basic
blocks, in turn, are collected into a function, known as root.

Destination addresses of direct jumps observed during transla-
tion are registered as jump targets for further exploration. The pro-
cess proceeds iteratively until there are no known untranslated ad-
dresses. Then, as we will describe in more detail in the next section,
targets of indirect control flow transfers are recovered, and, if nec-
essary, fed back to QEMU. Once all the possible jump targets have
been recovered, the CFG is analyzed for the recovery of function
boundaries, leading to the desired output.

Note that the translation from TCG instructions to LLVM IR
is straightforward. In particular, each TCG register (i.e., each part
of the CPU state) is mapped onto a local variable in the root
function, which we call CPU State Variable (or CSV). In case of
recompilation, the register allocator takes care of lowering such
variables in the most efficient way.

133

Figure 2.7: An overview of the REV.NG system. JT stands for jump tables,
and new JT means that a new jump target has been found

2.5. REV.NG : A UNIFIED BINARY ANALYSIS FRAMEWORK 23

2.5.1 CFG reconstruction

As previously described , CFG is one of the main properties of programs that
are utilized by vulnerabilities analyses. For this reason, CFG reconstruction
is one of the first challenges in any binary analysis tool. For example, in the
already mentioned research by C. Zhang et al.[26] , two common approaches
are described, depending on the disassembler type used: while linear disas-
semblers are simpler and cover most of the instructions, though they are not
very effective in case of indirect calls and jumps, recursive disassemblers are
more complex but handle indirect calls and jumps more effectively.

REV.NG has the ability to recover the CFG and the function boundaries
for binaries that do not have debug or any other additional information. It
can also recover program data-flow using some custom analyses developed by
REV.NG researchers. The output produced by REV.NG is an LLVM IR module
that can be compiled or processed with standard LLVM passes, allowing to
write architecture agnostic analyses. REV.NG workflow starts by searching
executable portions in input binary, and then it goes on to reconstructing
basic blocks of instructions. Each basic block can be labeled from differ-
ent sources, i.e. program entry point, or harvested with custom analyses.
When all basic blocks are labeled, their connections are reconstructed fol-
lowing direct pointer calls and jump tables in the global data sections (i.e.,
“.rodata” ELF section). After that, REV.NG starts to build the CFG of the
binary: direct jumps can be translated easily into CFG nodes, while indirect
branches and indirect function calls are more complex to analyze. It is not
always practical to enumerate all possible indirect jumps for those cases, and
REV.NG categorizes indirect branches and indirect function calls into three
macro-cases:

• Compiler-Generated, function-local CFG

• Hand-written assembly

• Indirect function calls

At the moment, REV.NG aims at handling correctly only the first macro-case,
while a lot of work still needs to be done in order to achieve proper manip-
ulation of the other ones, even if they are often involved in many situations
for function boundary detection. In fact, indirect function calls are typically
implemented for virtual tables and used for example in C++ methods that
can be overridden. Researchers tested REV.NG CFG reconstruction perfor-
mances against most known decompilers and binary analysis tools and the
results showed that REV.NG was able to recover more blocks than all other

24 CHAPTER 2. BACKGROUND AND MOTIVATION

competitors but IDA pro. While IDA pro was able to reconstruct more code
than REV.NG , researchers have noticed that REV.NG reconstructed CFG was
in general more precise than IDA pro one.

2.5.2 Function-boundaries detection

Another important feature of REV.NG is function-boundaries detection: the
tool identifies the entry points of function and assign to each of them the
reached basic blocks. At the beginning, all discovered basic blocks are col-
lected into a “pool” function called root, then after a subset of basic blocks
is identified as the body of a specific function, the root is copied into a new
function named either with the real name of the function, if debug symbols
are present, or with the address of the starting basic block. This solution al-
lows REV.NG to reconstruct also functions that can contain shared code inside
their body. Thanks to the Offset Shifted Register Analysis and SET Analy-
sis, REV.NG is able to reconstruct also the structure of function stack, and in
many cases it is also able to understand which are the function parameters,
independently from the call convention of the architecture

REV.NG was born as a thesis project developed inside our university by
Alessandro Di Federico and Giovanni Agosta, and currently it is maintained
by a large team of developers. Nowadays REV.NG has a stable code and
also an ongoing development of a decompiler that can translate a executable
binary into High Level C source code.

Recently the team behind REV.NG has released a new version that intro-
duced supports for LLVM 9.

2.6 Project Goal

Since programs can be affected by multiple and different types of vulnera-
bilities, we decided to set buffer overflow vulnerability, which are among the
most widespread ones, as target for our analyses.

The goal of this project is to develop a security tool capable of detecting
functions that contain at least a buffer overflow vulnerability and that are
reached by a user input inside binary programs. The final program should be
able to identify such vulnerable functions in all type of binaries independently
from the linking type (statically or dynamically linked libraries) and the
architecture (i.e., x86 or ARM). Additionally, the tool should be able to
understand when user input is propagate from one function to its callers.

In order to achieve this goal we will face many problems related to dif-
ferences of available instructions sets architectures (or ISA). Even if machine

2.6. PROJECT GOAL 25

code has some common features among all architectures (i.e., variable ac-
cessed by registers), there could be substantial differences between instruc-
tions of the same type belonging to two different ISAs. Our tool should be
able to work transparently, no matter what instruction set is used in the
binary. In our case, the main problems are:

• binaries programs make use of pointers to access memory variables.
Pointers can be modified as any other variables of the program, so it
can be difficult to track which memory regions are pointed by a pointer
during execution. In our case, our tool should be able to understand
which stores point to a memory area that represents a function argu-
ment or a function local variable to identify buffer overflows patterns.

• loops in binaries are represented by a sequence of branch and jump
instructions. In many cases, jump instructions used in loops have a
fixed target (typically a LABEL) but in some cases they can use indi-
rect jumps too. Loop identification is much more complex when there
are indirect jumps, but our tools should be able to correctly identify
loops inside binary in order to detect buffer overflow vulnerabilities, in
particular those that are controlled by user input.

LLVM IR hides many aspects to architecture-dependent machine code:

• LLVM IR offers also a standard way to represent loop structures that
can be easily inspected by analyzers.

• all functions invocation can be represented in LLVM IR with the call
instruction or the invoke instruction, without rules regarding which
registers should be saved by caller.

• LLVM IR offers an infinite set of registers that could be used to access
variables, reducing the possibility that more variables share the same
register.

For this reason we decided to build our analysis on top of an intermediate
representation of input binaries using LLVM IR.

In particular, we decided to use REV.NG inside our tool in order to re-
construct such intermediate representation of binaries compiled for different
architectures. In fact REV.NG is able to understand calling conventions used
in binaries, and convert them into the standard convention used in LLVM IR,
recovering also the invocation of functions using the standard call instruction
of LLVM IR. Additionally REV.NG is able to reconstruct binary functions along
with their parameters and local variables.

3Design and Implementation

As discussed in the previous chapter, our goal is to build a security tool that
is able to identify buffer overflow vulnerabilities in binary executables. The
tool should be able to handle binaries from many architectures and linked
either statically or dynamically against external libraries. To achieve this
goal we will use an approach based on the translation of the binary into an
intermediate representation that is architectural independent, then we will
develop analyses based on this intermediate representation that does not have
to deal with architectural-dependent features. Thanks to this decision, our
tool should be easily extended to support other architectures only by imple-
menting the correct translation rules for that specific type of architecture.

The tool looks inside the intermediate representation of the binary for a
particular pattern that represents buffer overflow and checks that the store
destination inside this pattern depends on a function parameter or local
variable. In particular, this pattern should contain a loop controlled by a
variable value depending on a function parameter. Besides, this pattern is
not coupled with any architectural-dependent characteristic.

After having identified the vulnerabilities, the tool will filter out functions
that are not reached by user input, in order to exclude overflows that cannot
be controlled by attackers. The tool implements a taint analysis on the
intermediate representation using a list of input functions passed by tool
user as source and then it should be able to propagate the input to callers.
This process can be iteratively repeated adding marked callers to the initial
list of input functions until a fixed point is reached. In particular, the tool
must be aware of call loops inside the intermediate representation among
different functions.

3.1 Design

We started the design process of our tool by defining a general structure
that represents buffer overflow in common code that can be easily recognized
inside LLVM IR.

We had to face different challenges during the progress of our project:
while different analyses are able to perform advanced pointer aliasing, value-

27

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

set inferring and memory accesses overlapping, they are not compatible with
the LLVM IR produced by REV.NG lifting and are also quite challenging to
re-implement inside REV.NG . The lack of such features forced us to design
our project with a more general approach.

3.1.1 Buffer Overflow structure

For our analyses we defined that a buffer overflow is characterized by three
properties that must hold in a program function:

• A buffer, or variable that can be controlled by user input

• A cycle whose iterations are controlled by user input

• Store Instructions inside that cycle that fill program memory with user
controlled buffer values.

These property are translated easily into LLVM IR characteristics:

• A user controlled variable can be a function argument or a value coming
from a particular system input function.

• A Loop inside the LLVM IR contains a specific component (called Latch)
that represents the branch to the exit point of the loop or the next
iteration. This component can be easily analyzed by LLVM passes, in
particular the conditional instruction that rules the branch.

• LLVM has a specific type of Instruction for store, that is StoreInst, that
offers different methods that help understanding where it is inside the
module and what are its operands.

Once we had defined what can be a buffer overflow inside our tool, we
started to work on how our tool could be able to actually recognize one
when it is present. Since the desired result of our tool should be the correct
identification of vulnerable functions (or portions of code) inside the input
binary, we also defined when a function is vulnerable. For our analysis, a
function can be considered vulnerable if it has these two properties:

• It must contain at least a candidate loop.

• Any of its candidate loops contain at least a risky store.

3.2. IMPLEMENTATION 29

A candidate loop is a LLVM loop that is controlled by a condition instruction
which uses at least one of the function parameters. A risky store, instead, is
a store on variable that comes from a function argument.

In order to understand what comes from the user input, our tool imple-
ments a simple taint analysis that categorizes functions into two groups:

• Input function: system functions that read user input (like input streams
or user’s files) or wrapper functions that call these system functions and
propagate the input with their parameters or results.

• Non-input function: all other functions that do not propagate user
input

During the analyses, all functions that employ user input produced by dis-
covered input functions are also called marked functions.

Analyses results will count only marked functions as vulnerable, because
they could be effectively exploited by user input.

3.2 Implementation

The tool firstly recovers the LLVM IR from the input binary using REV.NG ,
and store it into a module named against the binary. Then it executes a
pipeline of passes on this module. In figure 3.1 an high level overview of this
pipeline is represented. The pipeline is composed by six passes executed in
the following order:

• Max Steps Pass

• Backward Propagation Pass:

• Revng Function Params Pass

• Function Params Usage Pass

• Loop Dependencies Pass

• Security Wrapper Pass

Each pass inside the pipeline implements a specific step of the global analysis
and its sub-result will be used by successive passes in the pipeline.

This approach, used also by LLVM in all its optimizations and analyses,
allows our tool to schedule correctly the passes execution and also to paral-
lelize the processing of each unit inside the LLVM module as much as possible.

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

In addition to that, with this pipeline the tool cache results from previous
analyses with the same granularity, reducing the overall response time of the
tool.

M
a
rke

d
 IR

Max

 Steps

pass

Backward

Propagation

Pass

Function

Params

Usage

Pass

Revng

Function

Params

Pass
Loop

Dependencies

Pass

Security

Wrapper

Pass

Taint Analysis

JSON

R
e
su

lt
JS

O
N

Lite
d
 IR

In
p

u
t

 Fu
n
ctio

n
s

Figure 3.1: High-level design of the pass pipeline of the analysis

All tool passes are implemented as C++ libraries that are loaded dynam-
ically by the LLVM optimization tool opt. This decision allowed also to use
the powerful library provided by LLVM for command line options, that helped
us extending passes with some configuration variables that can be change at
tool invocation in order to tune the analysis output.

3.2.1 Preparation

During the first step of reconstruction of LLVM IR from the binary (also called
lifting phase), our tool applies some optimization to the output module using
LLVM passes and custom REV.NG passes. These passes simplifies the lifted IR
for next analyses. Firstly, the output of the REV.NG lifting process does
not isolate binary functions: functions can be isolated in the lifted LLVM IR
applying the Function Isolation REV.NG pass. Additionally, REV.NG is able
to detect ABI of the binary and enforce them to LLVM function, promoting
CSVs used for function-passing as function arguments. This is achieved by
executing the Detect ABI and Enforce ABI REV.NG passes.

Once a well structured LLVM IR is obtained, some additional LLVM passes
are applied. The obtained result is restructured by applying Loop Simplifica-
tion pass, already discussed in the previous chapter. In this way it is simpler
for our analysis to understand Loop conditions and identify candidate loops.

3.2. IMPLEMENTATION 31

3.2.2 Max Steps Pass

The first pass in the pipeline of our analysis tool is the MaxStepsPass. It is
a simple CallGraphSCCPass that scans CallGraph of the input module for
cycles. On each SCC inside the CallGraph it counts the number of function
called. Then it counts the length of all branches from root node to all leaves
node using a depth-first visiting algorithm. The result of this analysis is the
maximum number found over all execution time. This simple analysis will
be useful for the next transformation pass as iteration stop check.

3.2.3 Backward Propagation Pass

Next Pass in the pipeline is the Backward Propagation Transformation pass.
It is a Module that propagates input values from a specific set of input func-
tions to their caller, one layer at a time. The maximum number found by
Max Steps Pass (Section 3.2.2) is used as upper bound of times that propaga-
tion will be repeated. This condition is used to avoid the pass to propagate
the input values inside call cycles infinitely. The LLVM IR of the analysis
is scanned for input functions or functions with name equal to address of
relocation stub. Then, callers of these input functions are marked for follow-
ing analyses. Each caller is then analyzed to check if they propagate their
input with one of their arguments or with the return value. The process is
reiterated to cover all CallGraph.

Handling relocations

While REV.NG out of the box is able to understand debug symbols and to
reconstruct names of functions from binaries built using supported default
toolchains, for binaries built outside those toolchains isolated functions are
sometimes named with the address of entry basic block. This happens com-
monly with functions imported by dynamically linked library. For our Back-
ward Propagation passes this incongruity means that it is not possible to
identify input functions by their name so we had to design another approach
to find them also by entry basic block address.

Fortunately, in the case of dynamically linked executable, the most com-
mon linkers— the system tool that is responsible to load required libraries
and replace functions addresses inside call instructions — requires some infor-
mation to process run-time dynamic linking and that information is typically
embedded inside binary itself. For example, Executable and Linkable Format
(also known as ELF) , used by GNU/Linux and other UNIX-like Operating
Systems as executable binary format and shared libraries, contains specific

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

sections dedicated to dynamic linking, i.e., “.plt” or “.got.plt” sections. Fur-
thermore, GNU/Linux offers different tools to inspect ELF objects and also
to parse out only specific sections.

In order to make our analyses cover also those type of binaries not fully
supported by REV.NG , we built a component that is invoked before all anal-
yses and that prints inside a file the entry point address of each function.
Backward Propagation Pass then reads this file and loads all relocation ad-
dresses, and for each input function tries to find it inside the module by name
or by address.

3.2.4 Revng Function Params

The Revng Function Params pass analyzes each function inside the module
and collects some information about parameters and stack variables for each
of them. It firstly scans metadata attached to each function by Enforce ABI
and Function Isolation custom revng passes. These passes tries to understand
function calls instruction and what are return types of functions and what
are the functions arguments.

In LLVM , the standard way to define function stack-allocated variables is
by using Alloca Instructions, but REV.NG is not always able to promote dis-
covered variables to Alloca instructions. In addition to that, REV.NG custom
passes in some cases are not able to recover function arguments from lifted
instructions. In these cases, those variables are translated as normal uses of
specific CSVs.

Revng Function Params pass tries to overcome these problems with some
expensive solutions. First it tries to find those un-promoted function argu-
ments searching directly for known CSVs used as argument-passing register
in particular architectures. After that, Revng Function Params pass scrapes
stack pointer register CSV uses and collect all instructions that convert a
particular offset from register value into a pointer variable (in LLVM IR this
process is represented by an Inttoptr instruction). The pass then store all
the variables allocated on the stack by the function. Unfortunately these
solutions tight analyses to subset of known register names used by common
architectures and makes incomplete results on other architectures.

It also recognizes internal QEMU functions, which are not relevant for
our analyses purpose, and build a structure with the information about each
analyzed function that can be obtained by later passes.

3.2. IMPLEMENTATION 33

3.2.5 Function Parameters Usage

Function Params Usage pass is used to build all value flows of function ar-
guments and variables found by . The flows are collected and cached using a
depth-first visiting of variable uses. Each first Use of a variable or parameter
defines a new flow that is attached to the starting variable or parameter,
creating a new vector populated initially by the related first User. During
flows visiting, the pass keeps track of already visited Users, in order to avoid
not-terminating cycles. The pass populate an initially empty queue with new
users discovered for each use, adding only those users that were not already
visited. When the queue is empty, the flow is finished and pass can start to
analyze next flow or next variable or argument. This procedure is facilitated
by SSA form of the LLVM IR, that makes def-use chains syntactically explicit.

The LLVM IR and search for their parameters that maybe revng was not
able to isolate. It also scans the stack for parameters allocated on it. Then
builds the def-use chains in SSA form for each of them. Then search in each
chain for store that takes as argument a pointer to a function argument.

The Figure 3.2 shows an example of the flows collected on the variable
“rsp” in a sample lifted function.

rsp

%4 = load i64,
i64* @rsp

 %95 = load
i64, i64* @rsp

%92 = load i64,
i64* @rsp

%90 = load i64,
i64* @rsp

 %87 = load
i64, i64* @rsp

%1 = load i64,
i64* @rsp

%88 = inttoptr
i64 %87 to i64*

%84 = add i64
%4, -5

%89 = load i64,
i64* %88

%75 = add i64
%4, -32

%67 = add i64
%4, -4

%60 = add i64
%4, -4

%96 = add i64
%95, 8
%96 = add i64
%95, 8

%96 = add i64
%95, 8
store i64 %96,
i64* @rsp

%96 = add i64
%95, 8
%93 = inttoptr
i64 %92 to i64*

%96 = add i64
%95, 8
%94 = load i64,
i64* %93

%2 = sub i64
%1, 8

%91 = add i64
%90, 8

store i64 %91,
i64* @rsp

store i64 %2,
i64* @rsp

%3 = inttoptr
i64 %2 to i64*

%3 = inttoptr
i64 %2 to i64*

Figure 3.2: An example of a variable-flows produced by Function Params
Usage Pass

At the end, the pass collects all risky stores idenfied for each flow, using
the definition in Section 3.1, into a vector that can be later analyzed by
other passes. This solution allows to understand when store instructions
use pointers that derive from function arguments or local variables, solving
the problem represented by pointers described at the end of the previous
chapters.

With this approach, analysis results, specially risky stores, are cached for

pass:revngparams

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

each function and later passes do not have to build and traverse again the
def-use chains.

3.2.6 Loop Dependencies Pass

Loop Dependencies pass scans all the loops inside each function for loop
conditions that can depend from a function argument. Thanks to Loop
Simplification LLVM pass, we can approach all loops in a general way, and
covering in these most of the possible loops types. Additionally, Loop Info
Analysis pass builds for each function a Loop Info object for each loop: Loop
Info is a wrapper class that contains all relevant information about the loop
and also allows to easily access relevant component of the structure.

For each Loop Info, Loop Dependencies pass access the Latch block of the
loop and scans Instructions inside it until it found a conditional statement,
i.e., icmp. Then the pass analyzes statement operands and checks if they are
contained inside any of the value flows built by . When this happens, the
pass marks the related loop as candidate loop and search for risk stores that
are inside it. If any of the candidate loops inside a function contain at least
one risk store, the pass marks the function as vulnerable.

This pass, along with the ability of REV.NG of translating loops in binaries
code, solves the loop identification problem defined at the end of the previous
chapter.

3.2.7 Security Wrapper Pass

Last pass of the pipeline, Security Wrapper pass collects results from all other
passes and re-factorizes them into a JSON object, with one sub-object for
each function. This pass is used as synchronization point for the pipeline,
because it have to wait that all previous passes are completed before writing
result file. It also allows to user to choose which fields must be contained
inside the JSON result: for example, a user can be not interested in many
details about the analysis and can choose to include only result from pass
3.2.6 inside the result. This example solution can also speed up a lot the tool
execution time because the I/O operations are the bottleneck of the program,
in particular the dump of the JSON result into a file.

3.2.8 Analysis Output

The analysis produces two JSON output files: one contains taint analysis
results and the other contains information about buffer overflows discovered.

pass:revngparams

3.2. IMPLEMENTATION 35

Taint analysis JSON file contains the lists of marked functions inside the
program as a key-value map: the key is the marked function and the value
is a list of the input functions called by the marked function. For each input
function, there is also additional fields that identify what is the parameter
used to transfer the input.

The other JSON file contains the lists of marked functions analyzed by
the program. For each of them, the file reports also the arguments recognized
by RevngFunctionParamsPass, the chains recovered by FunctionParamsPass,
the vulnerable loops and their conditions discovered by LoopDependencies-
Pass, and the risky stores contained.

The use of the standard JSON format for the output of the analysis,
allows also additional post-analyses refinement, like statistic collecting and
filtering thanks to the versatility of such format.

4Experiments

In this chapter we present the experiments we designed to test our tool abili-
ties in buffer overflow vulnerability detection. The goals of these experiments
are:

• to understand if the tool is actually able to identify real world buffer
overflow vulnerabilities

• to understand if it can be used to discover new buffer overflow vulner-
abilities

• to measure performances of vulnerability detection among different
types of binaries

Test Environment For our tests, the tool was compiled following the
standard build instructions of REV.NG . It has been installed on a GNU/Linux
virtual machine equipped with a dual-core x86-64 virtual processor and 8 GB
of virtual memory.

4.1 Sanity Check

The first experiment was designed to test the validity of our analyses in an
ideal case and to identify a buffer overflow for a simple program containing
a single vulnerable function. It was designed also to test tool robustness
against binaries without buffer overflow vulnerabilties: the tool, of course,
should not find buffer overflow in secure program. In this case we are not
interested in functions reached by input, because the simple program does
not require any user input. In order to test the correctness of our analysis
we used three C simple programs written by us:

1. the first program, named “strcpy”, was a simple reimplementation of a
vulnerable strcpy

2. the second program, named “not-vulnerable”, was a simple program
without vulnerabilities

37

38 CHAPTER 4. EXPERIMENTS

3. the third program, named “standard-loop”, was a simple program with
a loop and no vulnerabilities.

The results of the validation tests are reported in Table 4.1

Binary Vulnerable Functions total functions ground truth Risky Stores total stores
not-vulnerable 0 1 0 0 4
strcpy 1 10 1 4 55
standard-loop 0 7 0 0 41

Table 4.1: Results of the validation tests

From the results we notice that the analysis is able to identify our vul-
nerable function inside the program “strcpy”. On the other hand, for not-
vulnerable programs the expected results were obtained: in “not-vulnerable”
and “standard-loop” programs no risky stores were reported by analyses out-
put, and even in “not-vulnerable” programs no loop were detected. Therefore
the experiment demonstrated that our tool is able to recognize buffer over-
flow pattern in our designated target, which is the vulnerable function in
“strcpy” program.

4.2 DARPA Challenges binaries

In the second experiment we decided to test our tool abilities with uncom-
mon binaries, using the binaries shipped with the DARPA Cyber Grand
Challenge (or CGC) platform. The DARPA Cyber Grand Challenge is a
competition designed to help and test automatic defenses systems in com-
puter technologies. DARPA hosted the Cyber Grand Challenge Final Event
on August 2016 in Las Vegas and then released the developed technologies
publicly, enabling researchers all over the world to benefitfrom them. In
particular these technologies consist of a custom platform containing a set
of vulnerable binaries that could be exploited by attackers. This platform
now is still used to test new computer security tools. This test suite has also
become one of the standard benchmarks used when new computer security
tools are released. In our experiment we collected different binaries provided
by the CGC platform, either vulnerable to buffer overflow or not, and packed
each of them into an ELF format in order to make them compatible with
REV.NG . Then each binary was analyzed following the same approach of the
experiment described in Section 4.1, with the addition that we also provided
a list of input functions (in particular common C functions used to access
user input) to our tool in order to trigger the taint analysis filtering.

4.3. REAL WORLD BINARIES 39

Table 4.2 reports the results of the tests conducted on the CGC binaries
marked with at least one buffer overflow vulnerability.

Binary Vulnerable Functions Marked Functions Overall Functions Risky Store Total Stores Contains BO?
CADET 00001 3 0 8 38 218 yes
CADET 00002 7 0 16 64 555 yes
CROMU 00007 16 0 45 147 1221 yes
CROMU 00013 18 0 58 546 2218 yes
KPRCA 00001 7 0 41 7 908 yes
KPRCA 00003 9 0 24 100 654 yes
NRFIN 00003 10 0 36 131 1180 yes
YAN01 00001 6 0 18 288 1025 yes
YAN01 00004 16 0 51 360 1700 yes
YAN01 00005 10 0 40 315 1321 yes
CROMU 00002 16 0 41 432 1219 no
CROMU 00027 27 0 66 744 2378 no
CROMU 00029 24 0 69 633 2611 no
CROMU 00041 29 0 49 260 1450 no
KPRCA 00013 48 0 112 1134 4691 no
KPRCA 00023 15 0 79 130 1472 no

Table 4.2: Experiment results on the binaries extracted from DARPA CGC
binaries

The first observation we can draw is that our taint analysis does not work
with this type of binaries, hence we analyzed also results for non-marked
vulnerable functions. Secondly, our tool found buffer overflow patterns in
different functions for binaries that were declared in the CGC platform as
vulnerable against buffer overflows. The downside is that the tool found
similar patterns also in many functions of binaries that were not known to
contain a buffer overflow (even if this cannot completely exclude that they
may contain a buffer overflow vulnerability). In addition, we noticed that
for this type of binaries the approach used for taint analyses is not useful
because they binaries are compiled on top of an operating system which
contains different system functions for input operations. But since these
binaries do not contain debug symbols or useful symbol tables, we are not
able to identify manually those functions.

These results show that even in binaries without buffer overflow there is a
pattern similar to buffer overflow and, unfortunately, they demonstrate that
our results may contain a larger number of false positives when taint analysis
filtering is not used.

4.3 Real World Binaries

This expereminent was designed to test performances of our tool in a realistic
scenario, with much more complex programs. As target program we used
a list of binaries reported as vulnerable in different public vulnerabilities

40 CHAPTER 4. EXPERIMENTS

lists, more specifically, we referred to The Ultimate security vulnerability
datasource, Exploit Database and Common Vulnerabilities and Exposures
(CVE) List as sources of vulnerable programs. Each program was analyzed
in the same way as binarieso of the experiment described in Section 4.2, but
we also added some common functions used in the C++ language to the list
of input functions . For each binary, we check if the tool found had identified
the vulnerable function listed in the corresponding CVE. Whenever the CVE
did not report the vulnerable functions, we made some assumptions: if a
function among the vulnerable ones had a name that could be reconduced
to the CVE description, then the CVE was verified; otherwise if none of the
vulnerable functions had a name attributable to CVE description, the CVE
was not verified.

The results of the experiment on real world binaries are reported in the
Table 4.3.

CVE Binary Vuln. Functions Marked Vuln. Func. Ground Truth Analyzed Functions Risky Stores Total Stores Verified
CVE-2014-0158 OpenJPEG 115 0 3 348 3549 12306 yes
CVE-2008-1959 yespp 109 0 1 2261 1675 41169 yes
EDB-ID-42357 mawk 35 0 ? 190 492 6552 yes
CVE-2019-1010057 nfdump 28 0 2 174 628 6917 yes
CVE-2004-1257 abc2mtex 27 0 1 119 851 3255 yes
CVE-2019-14267 pdfresurrect 18 0 1 83 434 1484 yes
CVE-2000-0359 thttpd 14 0 ? 200 79 3452 yes
CVE-2018-20337 LibRAW 11 0 2 375 261 1083 yes
CVE-2019-1010301 jhead 8 0 1 187 87 6318 yes
EDB-ID-46807 MiniFTP 8 0 ? 157 58 1726 yes
CVE-2018-17174 nmealib 5 0 1 49 82 1103 no
CVE-2017-6438 libplist 4 0 3 96 46 1335 no
CVE-2018-1000221 pkgconf 3 0 1 87 84 5421 yes
CVE-2019-3574 img2sixel 0 0 2 23 0 43 no
CVE-2019-16346 ngiflib 0 0 ? 32 0 797 no

Table 4.3: Experiments results on the real world vulnerable programs

Similarly to the experiment described in Section 4.2, also in these tests
our taint analysis did not work very well with dynamically linked binaries for
x86 and x86-64 architectures, thus we took into account also results for non-
marked vulnerable functions. This experiment demonstrated that our tool
is able to detect and verify 10 CVEs among the test binaries, identifing the
vulnerable functions reported in the description of each CVE. The experiment
shows also that our tool needs improvements in filtering out false positives,
because the number of vulnerbale functions detected was generally bigger
than the one reported in CVEs. Another important observation provided by
the experiment is that our tool performs better on smaller input binaries: the
results report a smaller percentage of detected functions in binaries with a
number of scanned functions in the order of 100/200 functions. Unfortunately
though, the results also show that our tool is not able to identify buffer
overflow in all possible inputs, hence some CVEs could not be verified with
our experiment. In order to have a better understanding of this last problem,

https://www.cvedetails.com/
https://www.cvedetails.com/
https://www.exploit-db.com/
https://cve.mitre.org/
https://cve.mitre.org/

4.4. UNKNOWN BINARIES 41

we manually checked the lifted IR produced by the tool for each binary and
we found out that REV.NG was not able to reconstruct calls to low level
functions with standard LLVM call instructions. In particular, we noticed
that taint analysis marked a common function among all binaries (that did
not contain buffer overflows pattern and so it was not listed in the results),
named “do syscall”. This name suggests that REV.NG may handle call to
these low level functions with this auxiliary function.

Lastly, it is interesting to underline the case represented by the binaries
“img2sixel” and “ngiflib” where the tool did not find any buffer overflow
pattern. In fact, in those cases the results show that the tool is capable
of correctly recognizing functions inside the binary, but the number of risky
stores suggests that there might have been a problem on the analyses of loops
control instructions inside those binaries.

4.4 Unknown binaries

The follwing experiment is designed with the purpose of testing our tool abil-
ities to discover new vulnerabilities in binary deployed without source code,
therefore we collected binaries extracted ARM-based router firmwares, using
the tool developed by P. De Nicolao et. al in their project ELISA [7]. While
most of theses firmware are based on Linux operating system, they may use
different formats for binary executables. Fortunately, the ELF format can
be used also as an archive for binary data, therefore we were able to easily
pack each binary found in the firmwares into an ELF executable, making it
compatible with our tool. Unfortunately, since these binaries had not yet
been analyzed by anyone, we did not have a ground truth to use as perfor-
mance standard for our tool, therefore we manually analyzed only binaries in
which the results reported at least one vulnerable function reached by input
functions. We used IDA Pro tool to decompile each binary and then look at
the decompiled code to double-check each vulnerable function found by the
tool. We chose IDA Pro because it represents the de-facto state of the art
decompiler in the current market, and it is commonely used to identify vul-
nerabilities in binaries, particularly loop based buffer overflow as reported
by S. Rawat and L. Mounier in their work [18] on identification of buffer
overflows in binaries.

The results of the experiment are reported in the Table 4.4.
The results show that our tool was able to identify vulnerable functions

in almost every input binary. Additionally, all the binaries were marked as
reached by input functions from the anlaysis, revealing a possibility to exploit
such vulnerabilities by a malicious attackers. Our manual check performed on

42 CHAPTER 4. EXPERIMENTS

Binary Vulnerable Functions Marked Functions Analyzed Functions Risky Stores Tot Stores Confirmed
mDNSResponderPosix 176 104 786 2044 7392 no
afpd 55 44 1069 358 3037 no
app data center 26 10 309 385 1595 no
vol id 5 2 77 9 16 no
UsbIppCheck 2 2 29 12 25 yes
setfattr 4 1 49 16 36 no
pidstat 12 9 159 513 998 no

Table 4.4: Experiment results on the binaries extracted from router firmwares

these binaries from discarded the results regarding all binaries but one, that
is “UsbIppCheck”, which was the only one to contain a real buffer overflow
vulnerability. Thanks to this experiment, we proved that our tool is useful for
discovering vulnerabilities inside binaries without source code.Moreover, it
also demonstrated that our tool is able to recognize vulnerabilities in different
types of binaries for different architectures.

4.5 Taint Analysis Performances

This last experiment was designed to mesaure the performance of our tool
in filtering out functions that were not reached by user input. In this test
we collected the results regarding taint analyses from all the previous exper-
iments, as well as some additional binaries extracted from firmwares which
were not manually checked. Data about filtered vulnerable functions for each
binary are reported in Tables 4.5, 4.6, and 4.7.

Binary Vulnerable Functions Marked Vulnerable Functions Analyzed Functions
OpenJPEG 115 0 348
sipp 109 0 2261
mawk 35 0 190
nfdump 28 0 174
abc2mtex 27 0 119
pdfresurrect 18 0 83
thttpd 14 0 200
LibRAW 11 0 375
jhead 8 0 187
MiniFTP 8 0 157
nmealib 5 0 49
libplist 4 0 96
pkgconf 3 0 87
img2sixel 0 0 23
ngiflib 0 0 32

Table 4.5: This table reports the performances of taint analysis on binaries
of the experiment described in Section 4.3

4.5. TAINT ANALYSIS PERFORMANCES 43

Binary Vulnerable Functions Marked Vulnerable Functions Analyzed Functions
mDNSResponderPosix 176 104 786
afpd 55 44 1069
wl 50 18 1004
tc 49 39 789
business proc 35 7 777
6relayd 31 25 208
app data center 26 10 309
px5g 26 12 252
wtfslhd 24 14 286
athdiag 21 2 286
ozker 21 8 351
partx 19 2 339
wimaxd 13 7 443
pidstat 12 9 159
vol id 5 2 77
setfattr 4 1 49
qosd 4 2 165
UsbIppCheck 2 2 29

Table 4.6: This table reports the performances of taint analysis on binaries
of the experiment described in Section 4.4 and other extracted from the same
firmware

Binary Vulnerable Functions Marked Vulnerable Functions Analyzed Functions
CADET 00001 3 0 8
CADET 00002 7 0 16
CROMU 00007 16 0 45
CROMU 00013 18 0 58
KPRCA 00001 7 0 41
KPRCA 00003 9 0 24
NRFIN 00003 10 0 36
YAN01 00001 6 0 18
YAN01 00004 16 0 51
YAN01 00005 10 0 40
CROMU 00002 16 0 41
CROMU 00027 27 0 66
CROMU 00029 24 0 69
CROMU 00041 29 0 49
KPRCA 00013 48 0 112
KPRCA 00023 15 0 79

Table 4.7: This table reports the performances of taint analysis on binaries
of the experiment described Section 4.2

The combined results from all four experiments demonstrate that our
taint analysis is effective only on binaries which were taken from router
firmwares used in the experiment described in Section 4.4. The reason behind
such increase in performances could be due to the direct use of low level func-

44 CHAPTER 4. EXPERIMENTS

tions in firmware binaries, without using any abstraction provided neither by
an operating system nor by a high-level programming language. Besides, the
drop in performances for CVE binaries could be explained in a way similar
to the one discussed at the end of Section 4.2, where operating systems in
collaboration with high-level languages and compilers provide abstractions
that are not effectively handled by REV.NG function isolation feature, forcing
it to use auxiliary functionalities that disrupt the standard call interface of
LLVM IR.

The results for DARPA CGC binaries instead are not covered by taint
analysis functionalities, because they use a different set of system functions:
we manually inspected many CGC binaries to understand which functions
could be marked as starting input ones, but because of the lack of symbol
tables and debug symbols (probably due to the fact that they were not origi-
nally packed in ELF format) we were not able to identify any input function.

5Related Works

In this chapter we present some related works about static binary analysis
that can be used as reference for future improvements on this project.

5.1 Static Value Flow Analysis

Static Value Flow is a project conducted by Sui et al. [23], who produced
a tool for Static Value Flows analyses based on LLVM . It was designed to
construct data-flow analyses from LLVM IR of C and C++ programs, building
an abstraction layer that can be extended easily by any other developer. The
tool offers a set of points-to analyses, a particular type of analysis used to
reconstruct the data-flow of variables taking into account also pointers. Each
points-to analysis is composed by a Graph, a set of Rules and a Solver. Each
of these components has a specific role and is loosely coupled to the others,
allowing to easily build new customized analyses: the Graph builds an high-
level abstraction of the LLVM , marking portions where pointer analyses will be
executed; the set of Rules defines how information can be obtained by each
instruction; and the Solver identifies the constraints and defines in which
order they must be solved.

The tool offers the Andersen’s analysis as default pointer analysis: it was
built following the instructions reported in Andersen’s study about analysis of
C programming language [1] and using a Solver based on Wave analysis [17],
while as additional analyses some field-sensitive flow analyses, able to track
also flow of values inside object fields for C++ programs.

The results of the Pointer analyses are reused by the tool for the Mod-Ref
Analysis, that catches inter-procedural references and uses of variables. This
analysis partitions the memory in different regions, using also the Memo-
rySSA transformation (that will be discussed later), reconstructing also in-
direct references and uses. After that a Value-Flow graph (VFG) is built,
connecting each variable definition to all its uses known so far. The VFG
can be used from other analyses to access def-use chains of all variables in
the program.

The versatility of the SVF tool allows its uses in different scenarios: in
addition to simple pointer analyses, it can be useful in taint analysis based on

46

5.2. MONOTONE FRAMEWORK 47

source-sink path discovery or also for accelerating dynamic analysis, removing
unnecessary instrumentation and reducing run-time overhead.

5.2 Monotone Framework

There are many researches about data flow analyses based on mathemati-
cal tools, but one of the most powerful is the monotone data-flow analysis
framework developed by Kam, John B. and Ullman, Jeffrey D. [9]. It is a
generalization of the Kildall’s lattice theoretic, adapted for DFG. The frame-
work is built around the mathematical concept of flow graph, semilattice and
meet operation. While we have already explained what flow-graph is, we still
need to define what a semilattice and a meet operation on it are. Kam, John
B. and Ullman, Jeffrey D, in their paper, define a semilattice with a meet
operation, as following:

Definition. A semilattice is a set L with a binary meet operation 4 such
that for all a,b,c ∈ L :

a4a = a (idempotent)
a4b = bAa (commutative)

a4(b4c) = (a4b)4c (associative)

In such a semilattice, thanks to the meet operation it is possible to define
an order relation > among the elements of L: we say that given a,b ∈ L

a≥ b iff a4b = b

a > b iff a4b = b∧a 6= b

The order relation > allows then to define a lower and an upper bound for the
semilattice.In particular, in each semilattice L we can define two particular
elements: the zero element 0, such that ∀x ∈ L 04x = 0, and the one
element 1, such that ∀x ∈ L 14x = x

For each semilattice L it is possible to construct the monotone function
space associated with L, that is a set of particular functions on L. In the
same paper the following definition of a monotone function space associated
with a semilattice is reported:

Definition. Given a bounded semilattice L, a set of functions F on L is said
to be a monotone function space associated with L if the following conditions
are satisfied:

48 CHAPTER 5. RELATED WORKS

1. Each function f ∈ F satisfies the monotonicity condition,

∀x,y ∈ L,f ∈ F f(x4y)≤ f(x)4f(y)

2. There exists an identity function i in F , such that

∀x ∈ L i(x) = x

3. F is closed under composition, i.e., f,g ∈ F ⇒ fg ∈ F , where

∀x,y ∈ L fg(x) = f(g(x))

4. L is equal to the closure of {0} under the meet operation and application
of functions in F .

Given the definition of these needed concepts, the paper then formalizes
the concept of a monotone data flow analysis framework with the following
definition:

Definition. A Monotone data flow analysis framework is a triple D = (L,4,F),
where

1. L is a bounded semilattice with meet 4

2. F is a monotone function space associated with L

A Monotone framework can be used to state the most common prob-
lems that are targeted by data-flow analysis, from simpler ones like variables
oddity at given instruction to much more complex ones like the Abstract
Interpretation for program proposed by Cousot et al. [4]

In order to use a monotone data flow analyses framework, users only have
to state the problem they have to face using a semilattice L and a monotone
space function associated with it according to its goals. While this task may
not seem particularly difficult, actually the designing of a semilattice is a
very demanding job, because of the complex and various properties the set
of values must satisfy. Alongside to the growth in the number of values, also
the process to verify that the properties of the monotone space associated
with the lattice are satisfied becomes increasingly difficult.

Once the problem has been stated, the framework can be solved using two
possible algorithms. The most common algorithm used to solve Monotone
Data Flow frameworks problems is the meet over all path solution or MOP
algorithm: it tries to propagate the information from {0} at the starting
point to a given m node in the graph, meet-ing all the solutions found over

5.2. MONOTONE FRAMEWORK 49

all possible paths that connect n0 to m. The problem with this algorithm is
that it is known to be undecidable, hence there is no certainty on its termi-
nation. The other well known algorithm used to solve monotone framework
based problems is the maximum fixed point solution or MFP algorithm. This
algorithm sorts the nodes that must be visited to reach the given node m in
reverse-post order, and it always takes the first node to appear on the list.
The MFP algorithm proved to be decidable,therefore it will always termi-
nate; this quality though has its own costs: in order to be used as solving
algorithm MFP requires the meet operation in the semilattice to satisfy also
the distributive property. This additional requirement increases the difficulty
of the monotone data-flow framework design process.

6Limitations

The experiments conducted on our tool exposes different problematics that
the tool is not able to face. While some of them are structurally impractical
to solve, others are related to the effort required to solve them and they are
untargetable by a single-man thesis project.

6.1 Structural limitations

The first observation that arises when looking at the experiments results, is
the drop in accuracy performance when the tool analyzes binaries compiled
with other toolchains than the one shipped with REV.NG . This poor perfor-
mances are caused mainly by the quality of the lifting result: while REV.NG is
able to track different optimizations and transformations performed by com-
pilers shipped with it, its efficacy gets much worse when it has to deal with
other compilers. This affected mainly the ability to detect and enforce the
ABI of the binary, decreasing the number of arguments that are promoted
in isolated functions. Additionally, when REV.NG tackles such binaries, the
symbols are not always well interpreted, and the consequence is that many
functions are labeled incorrectly or, even worse, different fucntions bodies are
grouped inside a single macro-function.

There is also another problem that is quite impractical to tackle in binary
analysis: dynamically linked functions. It is impossible to understand if
one of these functions may be vulnerable beacuse their code is not actually
present in the binary, instead it is available only at run-time. In different
cases it is possible to rebuild the environment in which the binary should
be executed, like the many approaches used in dynamic binary analysis, but
there are also many cases in which this is an impractical solution. In addition
to that, linked functions are not always the same in all possible environments
because of the behavior of dynamically linked libraries: this solution has been
proposed to decouple the libraries from the user binaries, allowing to update
them indipendentely. In this case it becomes useless to analyze all linked
libraries, because some of them may be vulnerable depending on the systems
in which the binary is executed.

51

52 CHAPTER 6. LIMITATIONS

Compiler optimizations applied to binary can also decrease the perfor-
mance of our tools. In most cases these optimization changes in a disruptive
way the structure of the original code in order to produce the binary. One
of the most common optimization that has decreased the performance of
our tests is the inlining optimization: compilers can replace the call to a
function inside another function with the actual body of the called function,
removing the cost of an additional function call. The biggest problem of
this optimization process is that callee-saved and caller-saved registers are
no more required, and the compiler can choose to use different registers for
the called-function parameters. In these cases, Function Params Pass may
not include the def-chain for the called functions inside the chains of the
function argument, leaving many possible risky stores outside the result.

There are also cases in which our buffer overflow structure is not present
for real vulnerabilities. Another common case is when a system or low-level
function is used to perform a buffer copy, hiding the vulnerability inside the
body of these functions. Most common case is represented by legacy binary
that calls the already known vulnerable function “strcpy” shipped with GNU
libc system library, whose buffer overflow exploit is described in a paper by
Lhee et al. [13] about format string overflows.

6.2 Weeknesses

Another factor that affects our REV.NG version perfomances is that the Lazy
Value Info analysis used to reconstruct variable value ranges is way too con-
servative. Among the tests conducted, Lazy Value Info analysis, for most of
the store instructions marked as risky stores, returned the full set of value
that an integer pointer can have (depending on the register size of the bi-
nary architecture) therefore making the result useless for us. For this reason,
our tool treats as candidate risky stores also instructions that do not really
represent a possible vulnerability. While there are many implementations
of pointers-to analyses based on the LLVM IR, i.e., the already mentioned
SVF, we had many problems in making them cover also IR produced by
REV.NG lifting. These problems let us stuck with the simpler and less precise
Lazy Value Info analysis of LLVM .

7Conclusions and Future Works

The experiments exposed in the previous chapter have proven the ability of
REV.NG to identify a common vulnerability like buffer overflow in binaries
thanks to our modifications. While the results could become much better
with additional work, it is remarkable how the LLVM framework simplified
the implementation of such a difficult problem, mainly thanks to its ability
to divide the work in isolated steps that can be automatically managed and
orchestrated by the framework itself. Additionally, the ability of REV.NG to
reconstruct a reliable CFG allowed able to target different architectures, with
very few adjustements and only in particular cases like non-ELF binaries.
The actual disadvantage of REV.NG is its tighten coupling with its shipped
toolchains and the uncertainty given outside this ideal environment. The
team is already working on enhancing and improving these weak points of
the tool and the latest release of REV.NG already offers a better compatibility
to all binaries compiled with a GNU C Compiler version lower than nine.

Other projects have also proved how powerful the LLVM framework is and
what it is capable of, which makes us think that there might be a wide
amount of enhancement that can be introduced on our version of REV.NG .
Another actual disadvantage of REV.NG is that it requires a lot of space on
the system to be compiled, installed and used because of its dependencies
on QEMU engine and LLVM framework. While at this moment there is no
pre-packed version of REV.NG that can be downloaded and executed directly
without compiling it, it would be amazing to make it less strictly coupled
with its dependencies, for example without the requirement of recompiling
them any time that REV.NG is compiled. To do so, the REV.NG team has to
make REV.NG capable of working better with standard implementations of
QEMU and LLVM since, as of today, it requires to apply some patch to these
two frameworks before they are compiled, breaking the compatibility with
their mainstream versions.

Regarding the actual security analyses, it would be great to integrate
them with much more complex analysis tools to understand better how values
are propagated through variable: the best solution would be to design and
implement a monotone data flow framework that is able to understand which
ranges of values each variable can hold for each node in the CFG. Another

54

55

approach would be to reimplement the passes developed by SVF and make
them compatible with the output of the REV.NG lifting, in order to understand
when different pointers may point to the same memory area or on overlapping
memory-areas, leading to memory corruption or buffer overflows.

Despite the poor performances in particular cases, we are quite satisfied
with the results achieved by our project and we hope that with additional
work it can get more precise.

Bibliography

[1] L. O. Andersen. “Program analysis and specialization for the C pro-
gramming language”. PhD thesis. University of Cophenhagen, 1994.

[2] S. Bekrar et al. “A Taint Based Approach for Smart Fuzzing”. In: 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation. 2012, pp. 818–825. doi: 10.1109/ICST.2012.182.

[3] D. Brumley et al. “BAP: A Binary Analysis Platform”. In: Computer
Aided Verification. Ed. by G. Gopalakrishnan and S. Qadeer. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 463–469. isbn: 978-
3-642-22110-1.

[4] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints”. In: Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages. POPL ’77. Los
Angeles, California: Association for Computing Machinery, 1977, 238–252.
isbn: 9781450373500. doi: 10.1145/512950.512973. url: https:
//doi.org/10.1145/512950.512973.

[5] C. Cowan et al. “Buffer overflows: attacks and defenses for the vulnera-
bility of the decade”. In: Proceedings DARPA Information Survivability
Conference and Exposition. DISCEX’00. Vol. 2. 2000, 119–129 vol.2.
doi: 10.1109/DISCEX.2000.821514.

[6] C. Cowan et al. “Stackguard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks.” In: USENIX security symposium.
Vol. 98. San Antonio, TX. 1998, pp. 63–78.

[7] P. De Nicolao et al. “ELISA: ELiciting ISA of Raw Binaries for Fine-
Grained Code and Data Separation”. In: Detection of Intrusions and
Malware, and Vulnerability Assessment. Ed. by C. Giuffrida, S. Bardin,
and G. Blanc. Cham: Springer International Publishing, 2018, pp. 351–
371. isbn: 978-3-319-93411-2.

[8] A. Di Federico, P. Fezzardi, and G. Agosta. “rev.ng: A Multi-Architecture
Framework for Reverse Engineering and Vulnerability Discovery”. In:
2018 International Carnahan Conference on Security Technology (ICCST).
2018, pp. 1–5. doi: 10.1109/CCST.2018.8585654.

57

https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/DISCEX.2000.821514
https://doi.org/10.1109/CCST.2018.8585654

58 BIBLIOGRAPHY

[9] J. B. Kam and J. D. Ullman. “Monotone data flow analysis frame-
works”. In: Acta informatica 7.3 (1977), pp. 305–317.

[10] S. Kim et al. “Testing Intermediate Representations for Binary Analy-
sis”. In: Proceedings of the 32Nd IEEE/ACM International Conference
on Automated Software Engineering. ASE 2017. Urbana-Champaign,
IL, USA: IEEE Press, 2017, pp. 353–364. isbn: 978-1-5386-2684-9. url:
http://dl.acm.org/citation.cfm?id=3155562.3155609.

[11] J. Křoustek, P. Matula, and P Zemek. Retdec: An open-source machine-
code decompiler. 2017.

[12] C. Lattner and V. Adve. “LLVM: a compilation framework for life-
long program analysis transformation”. In: International Symposium
on Code Generation and Optimization, 2004. CGO 2004. 2004, pp. 75–
86. doi: 10.1109/CGO.2004.1281665.

[13] K.-S. Lhee and S. J. Chapin. “Buffer overflow and format string over-
flow vulnerabilities”. In: Software: Practice and Experience 33.5 (2003),
pp. 423–460. doi: 10.1002/spe.515. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/spe.515. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.515.

[14] N. Nethercote and A. Mycroft. “Redux: A dynamic dataflow tracer”. In:
Electronic Notes in Theoretical Computer Science 89.2 (2003), pp. 149–
170.

[15] N. Nethercote and J. Seward. “Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation”. In: SIGPLAN Not. 42.6
(June 2007), 89–100. issn: 0362-1340. doi: 10.1145/1273442.1250746.
url: https://doi.org/10.1145/1273442.1250746.

[16] J. Newsome and D. X. Song. “Dynamic Taint Analysis for Automatic
Detection, Analysis, and SignatureGeneration of Exploits on Commod-
ity Software.” In: NDSS. Vol. 5. Citeseer. 2005, pp. 3–4.

[17] F. M. Q. Pereira and D. Berlin. “Wave Propagation and Deep Propaga-
tion for Pointer Analysis”. In: 2009 International Symposium on Code
Generation and Optimization. 2009, pp. 126–135. doi: 10.1109/CGO.
2009.9.

[18] S. Rawat and L. Mounier. “Finding Buffer Overflow Inducing Loops
in Binary Executables”. In: 2012 IEEE Sixth International Conference
on Software Security and Reliability. 2012, pp. 177–186. doi: 10.1109/
SERE.2012.30.

[19] K. Serebryany. “OSS-Fuzz-Google’s continuous fuzzing service for open
source software”. In: (2017).

http://dl.acm.org/citation.cfm?id=3155562.3155609
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1002/spe.515
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.515
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.515
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.515
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.515
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1109/CGO.2009.9
https://doi.org/10.1109/CGO.2009.9
https://doi.org/10.1109/SERE.2012.30
https://doi.org/10.1109/SERE.2012.30

BIBLIOGRAPHY 59

[20] J. Seward and N. Nethercote. “Using Valgrind to Detect Undefined
Value Errors with Bit-Precision.” In: USENIX Annual Technical Con-
ference, General Track. 2005, pp. 17–30.

[21] Y. Shoshitaishvili et al. “SOK: (State of) The Art of War: Offensive
Techniques in Binary Analysis”. In: 2016 IEEE Symposium on Security
and Privacy (SP). 2016, pp. 138–157. doi: 10.1109/SP.2016.17.

[22] D. Song et al. “BitBlaze: A New Approach to Computer Security via
Binary Analysis”. In: Information Systems Security. Ed. by R. Sekar
and A. K. Pujari. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 1–25. isbn: 978-3-540-89862-7.

[23] Y. Sui and J. Xue. “SVF: interprocedural static value-flow analysis in
LLVM”. In: Mar. 2016, pp. 265–266. doi: 10.1145/2892208.2892235.

[24] R. Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM
journal on computing 1.2 (1972), pp. 146–160.

[25] M. Zalewski. American fuzzy lop. 2014.
[26] C. Zhang et al. “Practical Control Flow Integrity and Randomization

for Binary Executables”. In: 2013 IEEE Symposium on Security and
Privacy. 2013, pp. 559–573. doi: 10.1109/SP.2013.44.

https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1109/SP.2013.44

	Introduction
	Background and Motivation
	Binary Analysis
	Control-Flow Graph
	Data-Flow Graph

	Static vs. Dynamic Analysis
	Static binary analysis
	Dynamic binary analysis

	State of the Art
	BAP: Binary Analysis Platform
	Valgrind
	BitBlaze

	LLVM : a modular compiler framework
	LLVM IR

	REV.NG : a unified binary analysis framework
	CFG reconstruction
	Function-boundaries detection

	Project Goal

	Design and Implementation
	Design
	Buffer Overflow structure

	Implementation
	Preparation
	Max Steps Pass
	Backward Propagation Pass
	Revng Function Params
	Function Parameters Usage
	Loop Dependencies Pass
	Security Wrapper Pass
	Analysis Output

	Experiments
	Sanity Check
	DARPA Challenges binaries
	Real World Binaries
	Unknown binaries
	Taint Analysis Performances

	Related Works
	Static Value Flow Analysis
	Monotone Framework

	Limitations
	Structural limitations
	Weeknesses

	Conclusions and Future Works

