
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Computer Science and Engineering

Towards Open-Ended VQA Models Using
Transformers

Advisor: matteo matteucci

Co-advisors: mark james carman, natalie parde

Master Graduation Thesis by:

alberto mario bellini

Student Id n. 893750

Academic Year 2018-2019

politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea Magistrale in

Computer Science and Engineering

Towards Open-Ended VQA Models Using
Transformers

Relatore: matteo matteucci

Correlatori: mark james carman, natalie parde

Tesi di Laurea Magistrale di:

alberto mario bellini

Matricola n. 893750

Anno Accademico 2018-2019

A C K N O W L E D G M E N T S

First and foremost, I would like to sincerely thank my advisors Prof. Matteo
Matteucci, Prof. Mark James Carman, and Prof. Natalie Parde. Their contribu-
tion to this work is priceless, and, without their help, I would still be stuck at
organizing ideas. Not only they supported me throughout this long journey
with their expertise and knowledge, but they even managed to share their
passion and love to work in this area of research.

I would genuinely love to thank my whole family, which provided me with
all the means to work on this project by continually supporting me and my
ideas. I feel privileged to have had the opportunity to focus on my thesis
without worrying about anything, having always had them backing me up.

A special “thank you" goes to all my friends that always believed in me
and in my objective, in particular to my great friend and colleague Gianpaolo,
which helped me on countless occasions by listening to my doubts and
suggesting new ideas.

Finally, I would like to thank all the special persons that I met in my life,
which contributed to make me the man who I am today; even though we
parted ways, I will always be thankful to you all.

AB

vii

C O N T E N T S

Abstract xv
1 introduction and motivation 1

1.1 VQA for Social Good . 2

1.2 A different approach . 2

1.3 Outline . 3

2 background 5

2.1 Visual Question Answering . 5

2.2 Natural Language Processing . 6

2.2.1 NLP in VQA Systems . 7

2.2.2 Preprocessing Pipeline . 8

2.3 Computer Vision . 15

2.3.1 Computer Vision in VQA Systems 16

2.4 Conclusion . 16

3 computational models 17

3.1 Computational models for text 17

3.1.1 Recurrent Neural Networks 17

3.1.2 The Transformer . 23

3.1.3 Generative Pre-trained Transformer (GPT-2) 28

3.1.4 Bidirectional Encoder Representation from Transform-
ers (BERT) . 29

3.1.5 Discussion . 30

3.2 Computational models for images 30

3.2.1 Convolutional Neural Networks 31

3.2.2 VGGNet . 34

3.3 Conclusion . 34

4 related works 35

4.1 Neural Module Networks . 36

4.2 Hierarchical Co-attention . 38

4.3 Multimodal Compact Bilinear Pooling 39

4.4 Conclusion . 40

5 dataset and implementation 43

5.1 Dataset . 43

5.1.1 VQAv2 Dataset . 44

5.1.2 Preprocessing . 46

5.2 Baselines . 48

5.2.1 Captioning Baseline . 49

5.2.2 GPT-2 Answering Baseline 52

5.2.3 BERT Answering Baseline 54

ix

5.2.4 VQA Baseline . 56

5.2.5 Dataset . 58

5.3 Proposed architectures . 59

5.4 Architectures with attention . 60

5.4.1 VGGPT-2 . 60

5.4.2 ResGPT-2 . 68

5.5 Architectures without attention 73

5.5.1 Common Dataset . 73

5.5.2 Common answer generation mechanism 74

5.5.3 Linear + SUM . 74

5.5.4 AVG & MAX + Linear [+Fix Head] 76

5.5.5 AVG & MAX + Linear + Concat 79

5.5.6 Conclusion . 81

6 evaluation 83

6.1 Answer Generation . 83

6.2 Quantitative evaluation . 84

6.2.1 Accuracy . 84

6.2.2 Bilingual Evaluation Understudy 88

6.2.3 Word Mover’s Distance 93

6.2.4 Remarks on BERT . 96

6.3 Qualitative evaluation . 96

6.3.1 Classification performances 97

6.3.2 Reasoning performances 98

6.4 Conclusions . 103

7 conclusions 105

7.1 Future work . 105

7.2 Publications . 106

bibliography 107

i appendix

x

L I S T O F F I G U R E S

Figure 2.1 Common structure of a VQA System 6

Figure 2.2 Embeddings for three tokens in R3 14

Figure 2.3 Results of an object detection system in action. 15

Figure 3.1 Recursion of hidden states in a RNN. 18

Figure 3.2 Base structure of a RNN. 19

Figure 3.3 Recursion of hidden states in a Bidirectional RNN. . . 20

Figure 3.4 Standard RNN activation. 21

Figure 3.5 An LSTM cell. 21

Figure 3.6 LSTM activation functions. 22

Figure 3.7 Transformer Encoder-Decoder stack. 24

Figure 3.8 Single head attention example. 26

Figure 3.9 Multiple head attention example. 28

Figure 3.10 General structure of a CNN. 32

Figure 3.11 Examples of convolutions 33

Figure 4.1 Neural Module Network structure. 37

Figure 4.2 Hierarchical Co-attention. 39

Figure 5.1 VQAv2 complementary image pair. 45

Figure 5.2 VQAv2 distribution example. 46

Figure 5.3 Captioning model structure. 49

Figure 5.4 VQA-Baseline Model structure. 57

Figure 5.5 VGGPT-2 Model structure. 61

Figure 5.6 VGGPT-2 Attention Mechanism. 63

Figure 5.7 VGGPT-2 Answer Generation. 66

Figure 5.8 VGGPT-2 Train Loss. 68

Figure 5.9 ResGPT-2 Model structure. 69

Figure 5.10 ResGPT-2 Attention Mechanism. 70

Figure 5.11 Linear + SUM architecture. 75

Figure 5.12 Linear + SUM Training/Testing. 76

Figure 5.13 AVG & MAX + Linear (+Fix Head) architecture. 77

Figure 5.14 AVG+Linear (+FixHead) Training/Testing. 78

Figure 5.15 AVG & MAX + Linear + Concat architecture. 79

Figure 5.16 AVG+Linear+Concat Training/Testing. 80

Figure 6.1 Evaluation Accuracy. 85

Figure 6.2 Best model accuracy. 87

Figure 6.3 VGGPT-2’s top-5 accuracy comparison. 88

Figure 6.4 Evaluation BLEU. 90

Figure 6.5 Evaluation Lengths. 92

Figure 6.6 Number of comparable results in WMD. 94

xi

Figure 6.7 Evaluation Word Mover’s Distance distribution. 95

Figure 6.8 Web Interface. 96

Figure 6.9 Classification qualitative outputs (1). 98

Figure 6.10 Classification qualitative outputs (2). 99

Figure 6.11 Classification qualitative outputs (3). 100

Figure 6.12 Reasoning qualitative outputs. 101

Figure 6.13 Generative qualitative outputs (1). 102

Figure 6.14 Generative qualitative outputs (2). 103

L I S T O F TA B L E S

Table 2.1 Sample Dictionary Lookup Encoding table 11

Table 2.2 Example of a One-Hot vector encoding table 12

Table 2.3 Example of an embedding table 14

Table 5.1 VQA Dataset structure 45

Table 5.2 Captioning Baseline dataset structure. From the top to
the bottom, we report some statistics. Size = number of
elements in each split, Seq Len = Sequence length, QL
= Question Length, AL = Answer Length, Avg <pad>
= Average number of <pad> tokens in each sequence,
Uniq Img = Number of Unique Images in the split. . . 51

Table 5.3 GPT-2 Baseline dataset structure. From the top to the
bottom, we report some statistics. Size = number of
elements in each split, Seq Len = Sequence length, QL
= Question Length, AL = Answer Length, Avg <pad>
= Average number of <pad> tokens in each sequence,
Uniq Img = Number of Unique Images in the split.
Note that in the testing set we do no pad sequences. . . 54

Table 5.4 BERT Baseline dataset structure. From the top to the
bottom, we report some statistics. Size = number of
elements in each split, Seq Len = Sequence length, QL
= Question Length, AL = Answer Length, Avg <pad>
= Average number of <pad> tokens in each sequence,
Uniq Img = Number of Unique Images in the split.
Note that in the testing set we do no pad sequences. . . 56

Table 5.5 Structure of VGGNet-11 layers without the final clas-
sifier. As the image depicts, the network performs a
series of convolutions and max-pooling operations to
gradually extract the visual features. 62

xii

Table 5.6 Differences among the datasets used in the baselines
that we train and in VGGPT-2. The size of the se-
quences, question and answers varies depending on
the tokenizer in use and the preprocessing thresholds.
Size = number of elements in each split, Seq Len =
Sequence length, QL = Question Length, AL = Answer
Length, Avg <pad> = Average number of <pad> tokens
in each sequence, Uniq Img = Number of Unique
Images in the split. 67

Table 5.7 Light dataset structure. From the top to the bottom, we
report some statistics. Size = number of elements in
each split, Seq Len = Sequence length, QL = Question
Length, AL = Answer Length, Avg <pad> = Average
number of <pad> tokens in each sequence, Uniq Img
= Number of Unique Images in the split. Note that in
the testing set we do no pad sequences. 74

Table 6.1 Accuracy scores for each model. 86

Table 6.2 Variation of n-gram weights depending on the consid-
ered BLEU metric. 89

Table 6.3 BLEU scores using add-1 smoothing function. The ta-
ble have been divided into three sections: baselines,
attention-based models and finally light models, fol-
lowing the order in which they have been introduced
in the previous chapter. 91

xiii

A B S T R A C T

In this work, we introduce a new architecture to address the Visual Ques-
tion Answering problem, an open field of research in the NLP and Vision
community. In the last few years, with the advent of Deep Learning and the
exponential growth of computing power, researches came up with brilliant
solutions to tackle the problem. However, most of the related work share a
standard limitation: the number of possible answers is usually restricted to a
limited set of candidates, limiting the power of such models. In this work,
we describe a new architecture that employs new state-of-the-art language
models, such as the Transformer, to generate open-ended answers. In the
end, our contribution to the scientific community lies in a new approach that
allows VQA systems to generate unconstrained answers. First, we introduce
the necessary background as well as the most critical computational models
to deal with text and images. Ultimately, we show that our architectures
compare well with other VQA models, setting a new baseline for future
work.

xv

S O M M A R I O

Negli ultimi anni abbiamo avuto l’opportunità di assistere a enormi progressi
nel campo dell’Intelligenza Artificiale e del Machine Learning. Questi nuo-
vi risultati hanno permesso numerosi avanzamenti tecnologici che stanno
gradualmente entrando a far parte delle nostre vite sotto forma di oggetti e
servizi con cui interagiamo quotidianamente. Spinti dalla passione per questi
argomenti e dai nuovi traguardi raggiunti negli ultimi anni, che ci hanno
permesso di processare ed elaborare una mole di dati sempre crescente,
abbiamo deciso di lanciarci nel noto campo di ricerca del Visual Question
Answering con l’obiettivo di migliorare l’attuale stato dell’arte sotto alcuni
punti di vista. Come descriveremo in questo lavoro di ricerca, focalizziamo
la nostra attenzione nel cercare di rendere le risposte di questi modelli più
ricche e lunghe, approcciando il problema in modo diverso.

Il Visual Question Answering è un campo di ricerca interdisciplinare
aperto in costante crescita, che combina Natural Language Processing e
Computer Vision per rispondere a domande poste in linguaggio naturale su
immagini di svariata natura. E’ un problema affascinante, in quanto richiede
ad una macchina di capire la semantica di una domanda per poi procedere a
elaborare le informazioni contenute nell’immagine associata. Assumendo che
il calcolatore sia in grado di effettuare le precedenti operazioni correttamente,
un ragionevole modello di VQA deve poi rispondere in linguaggio naturale
con una semantica e una sintattica corrette. Anche se questo problema può
sembrare apparentemente facile per un essere umano, non sempre lo è: una
domanda posta in modo poco chiaro o una foto scattata con un’angolatura
particolare possono indurre l’individuo in questione a rispondere in maniera
del tutto sbagliata. Tutto ciò evidenzia la complessità intrinseca e le sfide
associate a questi sistemi.

L’attuale stato dell’arte raggiunge risultati eccellenti e generalizza molto
bene su coppie di domande-immagini di vario genere. Tuttavia anche se
questi modelli sono molto accurati a eseguire il compito per cui sono stati
allenati, esibiscono una grossa limitazione comune: le risposte che generano
tendono ad essere corte, concise e ristrette a un insieme predefinito di risposte.
Queste limitazioni sono normalmente associate al modo con cui questi sistemi
vengono allenati; è infatti prassi approcciare il problema come se si avesse a
che fare con un compito di classificazione, e i modelli vengono normalmente
allenati a distribuire probabilità su un insieme di risposte molto ristretto
(solitamente un migliaio). Tutto ciò comporta poca varietà delle risposte che
questi sistemi possono generare, nonché una una scarsa ricchezza di queste
ultime, in quanto non vi è alla base alcun modello linguistico generativo.

xvi

In questo lavoro focalizziamo la nostra attenzione proprio su queste li-
mitazioni e introduciamo nuove architetture che cercano di approcciare il
problema in modo diverso. Il nostro obiettivo principale è quello di costruire
un sistema in grado di rispondere in maniera più ricca e aperta possibile,
senza essere limitato a distribuire alcuna probabilità su insiemi limitati di
risposte.

vqa per il bene comune Un forte elemento che ci ha spinto a lavorare
in questo campo si cela nei risvolti che questi sistemi potrebbero avere sulle
comunità di persone con certe disabilità, come ad esempio i non vedenti. Seb-
bene molti di noi danno per scontata la possibilità di percepire il mondo che
ci circonda con tutti e cinque i sensi, ci sono persone che sono meno fortunate
e che devono ricorre ad altri strumenti per vivere la loro vita normalmente.
Un ipotetico sistema di VQA, potente e allenato a dovere, potrebbe essere
di grande aiuto per questa cerchia di persone nell’osservare e processare
l’ambiente circostante su richiesta. Questo è uno dei più emozionanti casi in
cui il mondo del Deep Learning si incontra con quello della sanità pubblica.

contenuti Nel secondo capitolo introduciamo numerosi concetti di base
propedeutici per affrontare la lettura di questo documento con più sicurezza.
Nel terzo capitolo affrontiamo i modelli più comuni per analizzare e proces-
sare sequenze di testo e immagini, entrando anche nei dettagli. Tutti i lavori
associati saranno descritti nel quarto capitolo, con particolare attenzione al-
l’attuale stato dell’arte e alle sue limitazioni. Nel quinto capitolo descriviamo
dapprima i dati che utilizziamo e come essi vengono processati, per poi spo-
stare la nostra attenzione sulla architetture che introduciamo per affrontare il
problema. Infine, nel sesto capitolo, effettuiamo una valutazione sia sotto il
punto di vista qualitativo che quantitativo, comparando architetture base e
avanzate con più metriche.

xvii

1
I N T R O D U C T I O N A N D M O T I VAT I O N

In the last couple of years, we have observed outstanding results on a wide
variety of tasks in the Artificial Intelligence and Machine Learning fields.
Such achievements have led to incredible advancements in several different
areas of research. They are slowly becoming part of our everyday life by
being used in devices or systems that we access regularly. Greatly inspired
by the passion for these topics, the results and the huge steps that technology
took in the past years, allowing us to process enormous amounts of data, we
decided to step into the well known Visual Question Answering research area
with the goal of improving the current state-of-the-art from certain points of
view, such as overcoming the short and concise answers usually generated
by most VQA systems.

Visual Question Answering is an open, multidisciplinary field of research
that combines Vision, Natural Language Understanding, and Deep Learning
to answer open-domain questions about images. This task is challenging since
it involves both the understanding of what is being asked (i.e., the question,
asked in natural language) and the reasoning on the associated image to
seek relevant information. Assuming the previous two steps provide enough
context, a VQA system should then be capable of generating meaningful
answers in natural language, preserving semantic and syntactic correctness.
Even though the task might seem to be trivial for a human being, this is not
always the case. A question asked in the wrong way or an image shot with
the wrong angle (or even both things together) might confuse even a human
being, resulting in poor answers. This highlights the intrinsic complexity of
this problem and the challenges associated with it.

Current state-of-the-art architectures achieve excellent results and can
generalize reasonably well on different question-image pairs. These models
exhibit significant accuracies on the datasets they were trained on. Still, the
majority of them share a standard limitation: the generated answers tend
to be short and concise, with almost no context. While a typical human
being’s behavior tends to enrich his answers, providing longer sentences
with punctuation and arguments, these systems seem to lack this ability
and tend to output single labels. These shortcomings are usually correlated
with how these models were trained and on the architectures that have been
implemented. For instance, whenever the problem is tackled as a classification
task, the answers are forced to lie within a limited set of labels, thus reducing
performances and generalization capabilities.

1

2 introduction and motivation

Motivated by the great benefits that Visual Question Answering can bring
to the lives of many people, we try to address the discussed limitations with
a different approach. Our main goal is to generate open domain answers
in natural language whose lengths are not limited to any size but depend
on the context. As highlighted before, traditional models tend to give short
answers like “yes", “red", “5". It is clear that even though these systems seem
to have learned how to reason on the inputs, and perform well within a
set of candidate question-answer pairs, they appear to be still limited and
not ready for real-world scenarios. We want to overcome this "laziness" in
favor of longer and more meaningful answers, where specific words are
justified by particular captions. We do believe that aside from the ground
truth answer, whether it be a single label or a small sequence of words, it
would be great to have some extra context that might describe, for instance,
why that label was chosen as the answer. We hope that this piece of work will
help future research in focusing more and more on the richness and quality
of the answers instead of bare ground truth matching. We believe that the
whole point of VQA is not just answering with single words but coming up
with systems that, eventually, will act like real human beings.

1.1 vqa for social good

An active driver for this research project has been the will to help the research
community in coming up with a system that someday might be integrated
into tools for blind people. Even though most of us can use their own eyes to
perceive the surrounding environment better, many people are forced to use
alternative means. Visual Question Answering systems, if tuned to a point
where they can generalize well and provide rich answers, could result in
being a real game-changer for the blind community. With the help of such
tools, these people might eventually gain back more independence, without
the constant need of somebody else’s eyes when all the means they have fail
to help them. This is probably one of the most exciting applications for VQA
systems since it is one of those scenarios where Deep Learning meets with
Healthcare.

1.2 a different approach

In 2017 the Google Brain team came up with a brand new architecture: the
Transformer [1]. This is a new, attention-based, model that represents the
new state-of-the-art in several different Natural Language Processing tasks.
Amazed by the stunning capabilities of this architecture, especially when it
comes to language generation, we were extremely motivated to adapt it for

1.3 outline 3

the VQA task, confident that its flexibility and power would have benefit the
open domain nature of the answers we were trying to generate.

1.3 outline

Going next, Chapter 2 will provide all the background required to understand
the related work and the implementations themselves. Chapter 3 will go over
some of the most significant computational models that will be at the core of
our proposed baselines and implementation, such as common architectures
used to deal with text and images. All the related work will be introduced in
Chapter 4, where we will present what the scientific community has come
up with to address the VQA problem, with all the associated limitations.
Chapter 5 we will discuss the corpus that we use, how we process it, and
all the baselines. Finally, we will introduce our set of architectures and, in
Chapter 6, we will go through an in-depth evaluation process, both under a
qualitative and quantitative point of view.

2
B A C K G R O U N D

In this chapter, we introduce the background required to proceed further
in the reading. Concepts such as what is Natural Language Processing,
Computer Vision, and what are they used for are going to be at the heart of
this chapter.

2.1 visual question answering

As already mentioned, VQA is a multidisciplinary task that sees two vast
areas of research, namely Natural Language Processing and Computer Vision,
working together and sharing knowledge to pursue a common objective. It is
not the only case in which these two disciplines are put side by side; Image
Captioning systems, for instance, try to achieve a very similar result and the
only difference with respect to what is fed to a VQA system is the lack of a
question.

If we had to tear apart the main components that make up a VQA system,
we could schematize them as depicted in Figure 2.1:

• The Inputs: This is what goes into the model, in Figure 2.1 we can see
a picture of an elephant and the question “What animal is it?"

• Encoders: The encoders are high-level components that are capable of
extracting features from both the image and the question. They usually
output vectors that project the information contained in the inputs in a
higher-dimensional space.

• The Main algorithm accounts for merging the extracted features and
projecting them in a common space where the information coming from
the textual modality is combined with the visual one in a single block.
Usually, an attention mechanism is employed here to use the question
as a driver to focus on specific parts of the image.

• A Decoder finally takes care of generating the answer exploiting the
information that comes from the previous processing steps.

• The output is a sequence of words that represents the answer, in this
case, “elephant". Depending on the model in use, the output size may
vary, but most models tend to keep it quite restricted, thus highlighting
the need for open-domain approaches.

5

6 background

Figure 2.1: Common structure of a VQA system, image taken from [46]

How these components are integrated and implemented profoundly de-
pends on the model we are considering. Related works will show various
topologies that try to maximize the performance of VQA systems, and even
though they pursue the same objective, they differ a lot in their structure.

Before getting into details, we will now introduce some concepts of NLP
and Computer Vision that will help to understand what these systems are
really about.

2.2 natural language processing

Natural Language Processing, commonly referred to as NLP, is a field of
research that originated in the 1950s. It combines different methodologies
from linguistics, artificial intelligence, and computer science to study the
interaction between computers and humans, focusing its attention mainly
on how to process and analyze large amounts of data written in natural
language. In the past years, this sector has taken huge steps forward due to
both the advancements made in technology, that allowed machines to process
larger and larger chunks of data, and those ones in the Deep Learning field,
where many of the tasks that were previously performed by statistical models
experienced outstanding results using neural networks.

NLP is a vast area of research that consists of many sub-fields, such as
Natural Language Understanding, Natural Language Generation, and down-
stream tasks from Speech Recognition. They all deal with natural language
but exhibit some differences in the ultimate objective. Speech Recognition
systems, for instance, are becoming popular in these years. The vocal as-

2.2 natural language processing 7

sistants integrated into many of the most recent smartphones can process
our voice and translate it to text just because there are speech recognition
models under the hood. This is a very complicated task: the system has to
convert an electric signal coming from a microphone to a sequence of words
that ultimately represents what we said. From a high-level point of view,
these systems sample the spectrum of our voice at a specific rate and extract
features using techniques such as the Mel-Frequency Cepstral Coefficients
[3] extractor. These features are then converted to words that will form the
final recognized sequence.

One might argue that the latter systems perform Natural Language Un-
derstanding operations as well, and that is indeed partially true. Translating
a vocal signal into a sequence of words underlines that the model in ques-
tion understood what was initially recorded with the microphone. However,
the concept of understanding is definitely broader and, most of the times,
computers are just executing algorithms that are mapping something to
something else using a specific methodology and without really caring about
what is coming in input or what is leaving in output.

Even though there are contrasting opinions about whether or not a machine
will ever be able to understand what it is fed with, recent work in the
community has provided astonishing results in almost every task. Google
Translate [42] is probably one of the most evident examples of how well an
algorithm is capable of “understanding" and translating one language to
another one; it performs so well that it has more than 200 million daily users
and supports 104 different languages.

2.2.1 NLP in VQA Systems

A sound Visual Question Answering system should exhibit high capabilities
in both understanding what the question is all about and, of course, gener-
ating a meaningful and correct answer. For this reason, NLU and NLG are
two critical aspects of such models, and, in order to achieve good results,
they should both be taken into account. First off, the model should be able
to process the inputs and generate outputs. Of course, a machine does not
speak the same language of a human, and, for this reason, there is an initial
procedure that converts the inputs to the language domain of the computer
and vice versa. This is common not only to VQA models but to almost every
existing NLP system. In this case, the input is represented by a sequence (a
question) and the image. Since, in this section, we are talking about NLP, we
will focus our attention only on the question and will talk about the visual
modality later on.

As mentioned above, we first need a way to convert this sequence to
something understandable by a machine. This because the brain of the
computer, the Central Processing Unit or CPU, doesn’t know what a sequence

8 background

of words is. It is just a complex circuit that performs billions of operations
every second, like sums, multiplications, and many more. Fortunately, the
community has come up with really smart ways of translating these sequences
into something that can be processed by a machine through what is called a
preprocessing pipeline.

2.2.2 Preprocessing Pipeline

A preprocessing pipeline is a sequential set of operations that are gradually
applied to a sequence of words. Its goal is to translate a sentence in natural
language to a vector of numbers. Ultimately this vector will be the input
to the considered model, which in turn will be able to process and make
computations using the information contained in it.

The traditional pipeline consists of many steps, such as word tokenization,
stemming, lemmatization, punctuation removal, normalization, augmenta-
tion, and finally encoding. However, in the next sections, we will address
only the most relevant ones for this project.

2.2.2.1 Tokenization

The first and foremost step is the tokenization of the input sequence and
consists of chopping it into pieces, called tokens. This is necessary in order
to proceed in the preprocessing where every token can be analyzed and
processed separately.

The tokenization can occur at diverse levels, and we will first focus our
attention on the most common and simple way to turn a sequence of words
into a list of tokens, namely, word-level tokenization. The idea is simple:
given a sentence in natural language, an algorithm scans it sequentially
and converts every word it encounters into a token. For instance, given the
sentence:

I like playing football.

It will be tokenized as a list of tokens, where each token is a word:

[“I", “like", “playing", “football", “."]

Depending on the tokenizer in use and on the task, punctuation might be
thrown away. In this case, the dot becomes a unique token, even though this
is not always true. After this procedure, it is possible to create a vocabulary of
words. The words contained within this vocabulary are those that the model
will be trained on. Depending on the size of the vocabulary, the complexity
of the system can increase or decrease; it rarely exceeds 50K-60K words, for
computational limitations. In order to account for the Out Of Vocabulary
words (OOV) special tokens are introduced, such as the <UNK> token. The

2.2 natural language processing 9

latter is used whenever a word outside the pre-computed vocabulary is found
in order to allow the model to generalize and deal with sequences of any kind.
Of course, the smaller the vocabularies, the less powerful the final model will
be since the majority of the input tokens would be treated as unknowns.

However, it is clear that this tokenization technique doesn’t scale well and
can lead to extremely large vocabularies, making the problem tough to tackle.
Fortunately, there is a much more clever technique called Byte Pair Encoding
(BPE) [2] that exploits a different technique of tokenization and leads to
smaller vocabularies using a compression mechanism. To get familiar with
the concept, consider the following words.

great, greatest, smart, smartest

The traditional word-level tokenization mechanism would have led to 4

different tokens since all the words are different. BPE instead would have
come up with only three tokens, namely:

great, smart, est

It is evident that in the end the size of the vocabulary will be smaller.
BPE is a powerful compression technique that will be at the core of the

tokenization step in the GPT-2 [4] architecture that we will discuss in the next
chapters, and for this reason we will now explain how it works.

• First, we count how many times each word appears in the corpus we
have, and we create a structure where we append to each word a special
stop token </w> with the relative word frequency. Then we split each
word into characters plus the additional </w> token. For example, the
result could look like this:

g r e a t </w>: 5

g r e a t e s t </w>: 6

s m a r t </w>: 2

s m a r t e s t </w>: 3

This means that in our corpus we found 5 times the word “great", 6

times “greatest" and so on.

• Iteratively, we count the frequency of every consecutive byte pair and
find the most frequent one. Afterward, we merge the two bytes together
to form a single, new, token. For the above example, at the first iteration,
it results that the bytes “e" and "s" form the most frequent pair “es",
with relative frequency 6+3=9. At this point, we save the new "es" token
to the vocabulary and proceed by replacing the pairs in the words as
follows:

g r e a t </w>: 5

g r e a t es t </w>: 6

10 background

s m a r t </w>: 2

s m a r t es t </w>: 3

Note that these tokens are not yet definitive and might be removed by
the following iterations.

• At the second iteration, “est" will be the next most frequent pair com-
posed by “es" and “t" with relative frequency once more equal to 9.
The merging and replacing operations are performed once again, and
the procedure goes on until we reach a specific threshold, such as a
maximum vocabulary size.

• Once the threshold is reached, our vocabulary will contain all the com-
puted tokens, and each sequence of words will be tokenized accordingly.
For instance, here you can see how the following sentence could be
tokenized using BPE on a fake corpus:

– Original sentence: I like playing football.

– Intermediate tokenization: [“I", “like", “playing", “football", “."]

– BPE tokenization: [“I", “like", “play", “ing", “foot", “ball", “."]

• The stop token is important since it helps during the tokenization
procedure. Given the token “est</w>" we will know that it won’t
belong to the word, say, “estimation" and we will avoid tokenizing it as
[“est", “imation"]. It will indeed help us with words that end with the
same pattern, such as “smartest", which will be tokenized as [“smart",
“est"].

The resulting tokenized string might be longer, but the vocabulary is usually
smaller. Furthermore, in this way, we can help the model learn some language
patterns. Take, for instance, the adjective “great". If we do not use BPE the
model might be able to understand its meaning and even those of "greater"
and “greatest" just because it could have been trained on a corpus with these
tokens. However, it might be unable to generalize well on unseen adjectives
such as “taller" because, during the training procedure, he saw only the token
“tall".

BPE can lead a system to the understanding of the relationships between
an adjective and its comparative pairs. With this technique, it is very likely
that tokens such as “er" and “est" will be present in the vocabulary; for this
reason, a model that exploits BPE will usually generalize better, allowing it
to understand what "taller" means even though he has only seen “tall". This
doesn’t apply only to adjectives but to every grammatical structure.

2.2 natural language processing 11

Table 2.1: Sample Dictionary Lookup Encoding table

Word Value

playing 5

football 6

. 7

I 8

like 9

2.2.2.2 Encoding

Following tokenization, we find the encoding step: a key part of the prepro-
cessing pipeline. Here each token gets converted into something that a model
can understand: a number. There are several different ways of encoding a
token, and here we will describe some of the most used in the NLP field.

dictionary lookup encoding Dictionary Lookup encoding is one
of the most simple and most used forms of encoding. It is even the most
intuitive form to convert a token into a number because it simply assigns to
each word a unique value. For instance, whenever we see the word “playing"
we assign it the value 5, whereas “football" will be converted to 6. From
a high-level point of view, the common approach is to iteratively build a
dictionary (or map) while tokenizing the available corpus, assigning to each
newly encountered word, not present in the dictionary, a different and unique
number.

Technically speaking, the dictionary is a widely used structure in Data
Science named Hash-Table, where the keys are represented by words, and
the values are numbers. An example is reported in Table 2.1.
With the latter lookup table (Table 2.1), the following sentence will be encoded
as follows, assuming we are not using BPE tokenization.

• Original sentence: I like playing football.

• Tokenized sentence: [“I", “like", “playing", “football", “."]

• Encoded sentence: [8, 9, 5, 6, 7]

The latter vector is ready to be fed to the considered model and carries all the
information needed. Note that if we had used BPE the lookup table would
have contained all the tokens returned by the algorithm, and the encoding
would have taken place in the same manner.

12 background

Table 2.2: Example of a One-Hot vector encoding table

Word One Hot vector

playing [1, 0, 0, 0, 0]

football [0, 1, 0, 0, 0]

. [0, 0, 1, 0, 0]

I [0, 0, 0, 1, 0]

like [0, 0, 0, 0, 1]

one hot encoding One Hot encoding is another mechanism used to
encode a sequence of words. Even though we are not using it in this project,
for reasons that will become obvious while reading through, it was worth
mentioning its existence as a comparative approach.

The idea behind One Hot encoding is to convert each word to a vector of
all zeros except for the position which represents the considered word, where
a one is set. Once more, there is a lookup table, but this time instead of a
single value we find a sparse vector. Table 2.2 helps to visualize this concept:
The latter lookup table is built on a vocabulary with five words in total, and
you can see how each one maps to its one-hot encoded representation. If we
had to encode the sentence from our usual considered example, it would
look like this:

• Original sentence: I like playing football.

• Tokenized sentence: [“I", “like", “playing", “football", “."]

• Encoded sentence: [[0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0],
[0, 0, 1, 0, 0]]

This time every word is not represented by a single number, but by a vector.
The final sequence will thus be represented by a vector of vectors, namely, a
matrix.

Even though this method reduces the ordering bias present in the Dictio-
nary Lookup encoding, it doesn’t scale well since we come up with huge
sparse matrices. For each word we append to our vocabulary, we observe
every vector increasing its size by one. This means that if we have a vocabu-
lary of, say, 50K words, we would have a sparse matrix of size 50000x50000.
Assuming we are using 4 bytes to represent each number (int32) we would
need 10GB of RAM just to hold in memory the lookup table.

2.2 natural language processing 13

word embedding Word Embedding is one of the most sophisticated
techniques to encode a token. Not only this method allows for less sparse
inputs, but it even gives the ability to the model to reason on the semantics
of the tokens.

Conceptually it consists of mapping each token to a real-valued vector of a
predefined size that brings the token into a different multidimensional space
in which every vector belongs to Rn, where n is equal to the embedding
size. In this space, similar words, in terms of semantics, such as “king" and
“queen" are close one to the other one. Contrarily, words such as “snow" and
“cow" will be very distant because their semantics differs almost from every
point of view.

To understand if two tokens are similar, we look at the angle α that is
formed between the two relative embeddings and, more specifically, we
examine how close cos(α) is to 1. This metrics is called cosine similarity. The
closer the two vectors are to each other, the closer to one the cosine between
the two will be. In trigonometry, the cosine is measured in radians.

The formula for the cosine similarity between two vectors a and b is the
following:

Cosine Similarity = cos(a, b) =
ab

‖a‖‖b‖ =

∑n
i=1 aibi√∑n

i=1 (ai)
2
√∑n

i=1 (bi)
2

(2.1)
To better understand the concept, Figure 2.2 shows how three embeddings

for the words “king", “queen" and “snow" are displaced in R3. As high-
lighted by the plot, the angle between the embedding of “king" and “queen"
represented by φ is small, thus indicating a high cosine similarity. The two
tokens are indeed semantically similar. Contrarily the embedding for “snow"
lies far away from the other two and, for instance, the angle θ formed with
“queen" is vast, resulting in a small cosine similarity.

An exciting feature that comes with word embeddings is the possibility of
performing mathematical operations between these vectors. Briefly, if we take
the embedding that represents “king", we subtract the embedding of “man"
and then add back again the one for “woman" we will get a vector that is
almost identical to the embedding of “queen".

Word embeddings are usually learned using methods such as Neural Net-
works, probabilistic models, or dimensionality reduction on the co-occurrence
matrix. Word2Vec [6] and GloVe [16] are probably the two most commonly
used forms of word embeddings, and they both exploit neural networks
trained on large corpora. Once these models have been trained, the embed-
dings are obtained by tearing apart the network and dumping all the hidden
hyperparameters for every word in the vocabulary. Afterward, these embed-
dings are released to the community as a pre-trained set that everyone can
integrate into their models.

14 background

Figure 2.2: Embeddings for three tokens in R3

Table 2.3: Example of an embedding table

Word Embedding vector

playing [0.1497, 0.3667, 0.0204]

football [0.7123, 0.9967, 0.6225]

. [0.5156, 0.8489, 0.4621]

I [0.8605, 0.6216, 0.3802]

like [0.5738, 0.822, 0.9366]

However, it is worth noticing that word embeddings might be learned
end-to-end without taking them from pre-trained repositories. Of course, the
convergence of the system will be much slower, and in most cases, will lead
to lower performances.

For completeness, we report, in Table 2.3, a word embedding encoding for
our use case example. The size of the embeddings is set to 3 (R3), and the
values have been randomly chosen, approximated to the fourth digit.

This is the resulting encoded sentence:

• Original sentence: I like playing football.

• Tokenized sentence: [“I", “like", “playing", “football", “."]

2.3 computer vision 15

Figure 2.3: Results of an object detection system in action. Image created from a
picture taken at [46]

.

• Encoded sentence: [
[0.8605, 0.6216, 0.3802],
[0.5738, 0.822, 0.9366],
[0.1497, 0.3667, 0.0204],
[0.7123, 0.9967, 0.6225],
[0.5156, 0.8489, 0.4621]
]

2.3 computer vision

Computer Vision is another vast area of research that tries to replicate all
those tasks that a human visual system can achieve. While NLP tries to come
up with methodologies to deal with natural language, the Computer Vision
community is continuously seeking new techniques to acquire, process, and
analyze images and videos to gain a high-level understanding of them. These
high-level features usually contain spatial or semantic information about the
input image or video, and are used by state of the art models to make an
inference, such as telling us whether in a photo is depicted a zebra or a lion.

Among the most critical tasks in Computer Vision, we find classification,
object detection, segmentation, event detection, image restoration, and many
more. Depending on the task, these systems are implemented adopting
several different strategies, but Deep Learning is leading the way in many of
them and has come up with a lot of with state of the art models. The power of
nowadays Neural Networks to treat images is a breakthrough, and is widely

16 background

adopted not only in research but even in our everyday life through sensors
and smartphones, just to name a few.

2.3.1 Computer Vision in VQA Systems

Visual Question Answering systems exploit Computer Vision models to
extract information from the provided image. We have talked a lot about
sequences of words, like questions and answers, but the visual modality
is a crucial aspect of this problem. Every question comes with an image,
and vice versa. In this field, it makes no sense to process a single modality
without accounting for the other one because the information required to
produce an answer lies in both of them. Once the model receives a question,
it is supposed to look at the provided image in order to seek for relevant
information, or features, that it can exploit to generate an answer.

In the past years, the community came up with architectures that are ex-
tremely powerful at getting the semantics of an image, namely, Convolutional
Neural Networks (CNNs). These models will be described later, but, for the
moment, it is just worth noticing that most VQA systems integrate such
architectures in their structure to process input images.

Once again these images need some processing before being fed to the
model, but the way in which this operation is performed strictly depends
on the adopted CNN; usually the image is resized to a specific size, split
into its three channels (red, green and blue) and all the pixels intensities are
normalized with ad-hoc methods. For this reason, the input usually results
in being a 3-dimensional matrix (channels, height, width).

2.4 conclusion

In this chapter we have introduced many concepts, from elementary ones,
such as what a token is, to more difficult problems, such as how to measure
the cosine similarity between two embeddings. All the background discussed
will be at the core of all this project while we dive into the details and will
provide a good knowledge base to feel confident with the reading. In the
following chapter we will start describing some computational models for
text sequences and images, in order to later introduce the related work in
VQA.

3
C O M P U TAT I O N A L M O D E L S

In this chapter we will present some computational models that are widely
used in the Deep Learning community and can be found in several different
VQA systems. The majority of these models are implemented using Neural
Networks and serve different purposes depending on their structure. From a
high-level point of view, these models represent sub-blocks that are usually
combined together to build the final system.

Assuming the reader is familiar with the basic concept of what a Neu-
ral Network is, we will skip describing its main components such as the
Perceptron, and we dive immediately into the most relevant architectures.

3.1 computational models for text

Dealing with sequences of text requires taking into account the notion of tem-
porality. In other words, the order in which the words appear in a sequence
represents an essential piece of information that a model should consider.
Standard Neural Networks, such as the Multi-Layer Perceptron, do not con-
sider this notion and process inputs sequentially one after the other. Even
when the execution is batched (most of the cases) and the computation occurs
in parallel, each sample is processed independently, without considering
what the network has already seen. If we were to provide an example, given
the sentence:

"Richard is hosting a party tonight for his birthday."

It is quite important to catch the relationship between "his" and "Richard"
in order to understand what the sentence is about. In order to address the
latter objective, the community came up with a technique that recurs the
output with the next input of the network. In this way, we do not lose all
the information that was previously processed because we are feeding back
to the model something related to the past of the considered sequence. This
type of architecture is typically described as a Recurrent Neural Network
(RNN) and is one of the most adopted for dealing with textual sequences.

3.1.1 Recurrent Neural Networks

As mentioned above, Recurrent Neural Networks were introduced to deal
with inputs whose temporality matters. These kinds of inputs are usually
called Time Series and, even though they may vary from being sequences

17

18 computational models

Figure 3.1: Recursion of hidden states in a RNN.
.

of words to stock price changes in certain markets, they all carry pieces of
information where each time step is somehow related to the previous and
following ones. As highlighted with the stock price change example, Time
Series are not related only to text sequences and can be helpful in a wide
range of tasks. However, in this work, we will talk about their usage to deal
with Natural Language inputs.

A key aspect of RNNs is the presence of an internal state that keeps track
of what the network has seen while processing the series. This state, usually
referred to as "Hidden State", is passed along every time a new input is
fed to the network, providing context for the current computation. In other
words, the hidden state of a RNN represents an internal memory unit that
the system can exploit when generating outputs.

From a high-level point of view, we can split the information that lies in a
RNN into three components:

• ~x : The input vector which represents the input time series. Sticking
with textual sequences, each element xi represents a single encoded
token.

• hi : The hidden state of the network at time step i. It is computed using
the hidden state at time step i− 1 and the input xi at time step i.

• ~y : The output vector which results from the computation of the current
input xi and the current hidden state hi.

Figure 3.1 provides an overview of how the input interacts with the hidden
state of the network to compute the output. At each time step i, the hidden

3.1 computational models for text 19

Figure 3.2: Given an input, the output of a RNN is computed using it and the current
hidden state. The current hidden state takes into account the previous hidden state.

.

states changes in order to keep track of what was previously fed as input. It
is worth highlighting that even though Figure 3.1 shows how a RNN works
unrolled in time (in this case over three time steps), in reality, the structure
doesn’t change depending on the size of the input but is fixed. Figure 3.2
exposes this concept visually, showing how the hidden states recur over time.

Sometimes, such as in Natural Language Understanding tasks, it is crucial
to look not only back but even forward in the input. Bidirectional RNNs serve
this purpose, and their structure is similar to standard RNNs except for a
new hidden state that takes into consideration information even from future
time steps. Figure 3.2 shows an example of a Bidirectional RNN unrolled
over three time steps.

In order to improve the capability of understanding temporal relationships,
we can make RNNs deeper by increasing the number of hidden states and
concatenating them together. This leads to more powerful networks but comes
at a cost both in terms of computational power and well-known issues.

3.1.1.1 Limitations

One of the worst issues with Deep Neural Networks (DNNs) and Deep
RNNs is the so-called "vanishing gradient". As highlighted above, in order
to strengthen the understanding capabilities of such networks, and make
them capable of dealing with long-term dependencies, the community tried
to make them deeper. However, this strongly affected the computation of the
gradients during the back-propagation procedure performed while training
the network. More specifically, the deeper the system, the more the cases
where small numbers get multiplied together, leading to near-zero gradients.
This is a horrible case because if the gradients are equal to zero (vanished),

20 computational models

Figure 3.3: Recursion of hidden states in a Bidirectional RNN.
.

the network will not be able to perform the update of its weights, resulting
in the model not learning anything at all.

To overcome this issue, in 1997, two great minds came up with a new kind
of RNN that was capable of dealing with this issue extremely well, namely,
the Long-Short Term Memory (LSTM) Networks [7].

3.1.1.2 Long-Short Term Memory Networks

Traditional RNNs, while suited for many tasks that require short-term under-
standing, usually fail to catch long-term ones because of how they handle
the information contained within their hidden states at each time step. Fur-
thermore, as described previously, making these networks deeper is not the
right solution.

In order to catch and store long-term dependencies, LSTMs [7] were intro-
duced. From a high-level point of view, these networks exhibit once again a
recurrent architecture, but profoundly change how the hidden internal state,
or memory, is stored and updated.

In traditional RNNs the input and current hidden state are passed through
an activation function (see Figure 3.4). This lets through all the information
coming from previous hidden states, and there is no filtering on what pieces
of information from the past are significant. In other words, the hidden
internal state is being always updated, regardless of the current input.

In Figure 3.4 we see a standard RNN in action: once again, ~X represents
the input time series and hi represents the hidden state at time step i.

3.1 computational models for text 21

Figure 3.4: Standard RNN with a tanh activation.
.

Figure 3.5: An LSTM cell unrolled over three time steps.
.

LSTMs provide a much more sophisticated gated mechanism to update,
keep or reset the hidden internal state that, in turn, leads to more powerful
architectures. An overview of such unit, usually referred to as cell, is provided
in Figure 3.5.

An LSTM exploits a total of 3 sigmoid and 2 tanh activation functions
to update its internal state and generate outputs. We can subdivide these
activation functions into three key components, or gates:

• Forget Gate: This gate is responsible for deciding which pieces of
information we will throw away from the current cell state, or memory.

• Input Gate: This block is responsible for deciding which pieces of
information contained in the input xi can flow into the current cell state
hi.

• Output Gate: This is where the output of the current cell is computed.

In order to understand what is going on under the hood, let’s consider a
single time step and define some elements mathematically.

First off, we will call C the internal state of the LSTM cell. This piece of
information might be updated depending on the resulting activations at each
time step. As usual xt represents the input at time step t and ht is the output
of the cell at time step t.

22 computational models

Figure 3.6: LSTM activation functions in detail.
.

The first step of a LSTM cell is to decide what information will be thrown
away from the current cell state Ct−1. Given the current input xt and the
previous cell output ht−1 a value ft between 0 and 1 is computed using a
sigmoid activation function as follows:

ft = σ(Wf · [ht−1, xt] + bf)

where Wf and bf are two parameters, learned during training. The resulting
value ft is then multiplied with each value in the cell state Ct−1 (zero means
completely throw away while one means to keep everything).

Afterwards, using once again the input xt and the previous cell output
ht−1, we compute a new vector C̃t of candidates ready to be inserted into
the cell memory using a tanh activation. However the LSTM filters out some
of the candidates using another sigmoid function it that is applied to the
candidates C̃t before adding them into the new memory state Ct. The input
gate it and the candidates C̃t are computed as:

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

where Wi, WC, bi and bC are parameters learned during training.
In order to update the internal cell state C (i.e. going from Ct−1 to Ct) the

forget gate ft deletes unwanted past values and the input gate it selects the
candidates that will be added to the cell state as follows:

Ct = ft ∗Ct−1 + it ∗ ˜Ct−1

Finally, the output gate decides what will be the output of the cell at that
specific time step. This value will be based on the updated hidden state Ct,

3.1 computational models for text 23

but will be a filtered version of it. In fact one last sigmoid activation will
compute the output gate filtering value ot which, in turn, will be multiplied
with the tanh activated hidden state Ct to compute the new output ht as
follows:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

where Wo and bo are parameters learned during training.

3.1.2 The Transformer

Back in Chapter 1 we introduced a new powerful architecture called Trans-
former [1] without getting into any detail. Since this type of model will be at
the core of our implementations, in this section we will dive into how it is
structured and what is its purpose.

We have seen that most state-of-the-art models exploit recurrent architec-
tures such as RNNs to capture dependencies between sequences. At each
time step, these model generate or update a hidden state hi as a function
of previous hidden states hi−1. The nature of such models is inherently
sequential and assumes that the input is processed one element at a time.
This negatively affects parallelization within training examples and, as the
input sequences become longer, gets more critical due to memory constraints.

The Transformer is a new architecture that relies entirely on attention
mechanisms to understand long and short term dependencies within the
input sequence. This allows for greater parallelization and more extended
input sequence processing, achieving new state-of-the-art results in many
different tasks.

One of the most significant applications of such a model is in the Ma-
chine Translation (MT) area, where we usually find high-level components
(Encoders and Decoders) working together to translate the sentence. The En-
coder usually takes care of projecting the input, which might be a sentence in
German, in another space that can be understood by the Decoder. In turn, the
Decoder uses this encoded representation to generate the proper translation
in, say, English. Until the introduction of this architecture, state-of-the-art MT
models were built using LSTMs, already achieving great results.

The original implementation of the Transformer, described in [1], comes
in an Encoder-Decoder fashion too. For this reason, we will first describe
this model as a machine translator, and then we will address two specific
variations of the system for other tasks. However, it is essential to immediately
highlight that a Transformer is not always made up with an Encoder and
a Decoder; GPT-2 [4], for instance, is an Encoder-only generative language
model that will be described later on.

24 computational models

Figure 3.7: Transformer Encoder-Decoder stack example.
.

3.1.2.1 Model Architecture

As mentioned above, at its core, the canonical Transformer for MT is com-
posed of an Encoder and a Decoder. In this case, the Encoder receives in
input a sentence in a specific language and provides as output an encoded
representation of it in a different subspace. This encoded representation holds
several different pieces of information, such as the semantic of the question,
language relationships, and much more. This encoded representation is then
fed to the Decoder, which takes care of generating the output in a different
language. The translation occurs while this sequence of operations takes
place.

Formally, given in input a sequence ~x = (x1, ..., xn), the Encoder maps it to
a continuous representation ~z = (z1, ..., zn). At this point the Decoder, using
~z, generates the output sequence ~y = (y1, ..., yn).

The Transformer is an auto-regressive model because while generating the
output consumes the symbols generated at previous time steps as additional
inputs. Both the Encoder and the Decoder consist of a stack of identical layers
of size N (6 in the original paper). Even though the layers in both stacks are
similar, there is a small, but paramount, difference:

• Encoder: Two sublayers compose each layer in the Encoder. The first one
is a multi-headed self-attention layer, while the second one consists of a
standard position-wise Feed-Forward Neural Network. A residual con-

3.1 computational models for text 25

nection [8] is employed around them, followed by layer-normalization
[9]. In other words, the output of each sublayer is computed as:

Output = LayerNorm(x+ Sublayer(x))

where Sublayer (x) is the function implemented by the Sublayer.

• Decoder: Each Decoder layer is composed of the same two sublay-
ers present in the Encoder plus an intermediate sublayer, namely, an
Encoder-Decoder self-attention layer which performs multi-head Atten-
tion on the output of the Encoder. Even in this case, residual connections
are employed and are followed by a normalization step. Another differ-
ence in the Decoder is the fact that, in each self-attention layer, every
position can attend (or look at) previous positions only. In other words,
while generating the i− th token, it can look at inputs up to i only.
This prevents looking in the future while generating the output and is
extremely important during the training phase.

At the very beginning of each stack, there is an Embedding layer that accounts
for projecting the input sequence into the right space, ready to be processed
by both the Encoder and the Decoder.

Figure 3.7 shows the structure of one of the many layers in the stack,
both for the Encoder and the Decoder. The overall architecture consists of a
pile of these layers. The original paper uses six layers for both parts, while
other models, such as GPT-2 Large (774M parameters), exploits a stack of 36

encoders.

3.1.2.2 Attention

The attention mechanism is what the Transformer is all about. It accounts
for understanding relationships in the input and replaces the hidden state
structure that was present in the LSTMs. It consists of mapping a Query and
a set of Key-Value pairs to an output. These elements are all vectors of size dk
that are generated starting from each input embedding using matrices learned
during the training step. Conceptually, exploiting mathematical operations,
we are trying to say how much a specific element in the input relates to all
the other features and, in turn, generate an output that accounts for these
interactions. But before getting into details, it is worth defining these entities
more formally.

Given an input sequence of n words ~s = (s1, ..., sn) ∈ Rn×1, its em-
bedded matrix representation X = (~x1, ..., ~xn) ∈ Rn×dmodel and three ma-
trices, learned during training, Wq ∈ Rdmodel×dk , Wk ∈ Rdmodel×dk and
Wv ∈ Rdmodel×dk we can compute the Queries Q ∈ Rn×dk , Keys K ∈ Rn×dk

and Values V ∈ Rn×dk as follows:

Q = X ∗Wq

26 computational models

Figure 3.8: Single head attention example. The image shows how much attention is
put on each word when considering the token "it". Image adopted from [43]

.

K = X ∗Wk

V = X ∗Wv

Q, K and V are three matrices and carry information about the input sequence
that are used to calculate the attention value, computed as follows:

Attention(Q,K, V) = Softmax(
Q ∗KT

√
dk

) ∗ V (3.1)

Each self-attention Sublayer in the Encoder and Decoder stacks performs this
operation. Then, as we have seen, this result is summed with the residuals
and normalized. Afterward, it is fed to the position-wise FFNN sublayer. This
set of operations is repeated in each layer of the stack, where the input to
each Encoder/Decoder is the output of the previous one, except for the first,
which deals with the Embeddings.

To better understand how the attention mechanism works, consider the
input sentence:

The animal didn’t cross the street because it was too tired.

Given the sequence, the attention mechanism computes, for each word in
the sentence, an attention vector. Figure 3.8 shows the attention values for
the word "it": brighter shades of orange correspond to words which are
given more Attention, whereas lighter ones indicate less important ones. For
instance, it can be seen that a lot of Attention is put on the word "The" and
"animal", and effectively in this case "it" refers precisely to that subject.

As it is evident from Equation (3.1) the Attention is being computed for ev-
ery element in the input sequence in parallel exploiting matrix computations.
This, in the end, leads to a model that trains way faster with respect to other

3.1 computational models for text 27

models, such as LSTMs, due to the highly parallel architecture of modern
GPUs and TPUs. At the same time, the input window can be much broader
and can account for longer sequences because less memory is being used.

3.1.2.3 Multi-Head Attention

Even though in the previous example we described the attention layer as
if it was outputting a single vector for each input token, in practice, the
original architecture computes multiple attention vectors simultaneously.
These various vectors are then concatenated together and multiplied with a
weight matrix, performing what is called a Multi-Head Attention operation
(In the original paper, h = 8 different heads are used).

As reported in [1], "Multi-Head Attention allows the model to jointly attend
to information from different representation sub-spaces at different positions";
this ultimately leads to an increase of the model performances.

The computation of each head remains unchanged, and the final Multi-
Head Attention is computed as:

MultiHeadAttention(Q,K, V) = Concat(head1, ..., headh) ∗Wo (3.2)

where Wo ∈ Rdmodel×dk is a weight matrix learned during the training phase
and:

headi = Attention(Q ∗Wi
q, K ∗Wi

k, V ∗Wi
v) (3.3)

with Wi
q ∈ Rdmodel×dk , Wi

k ∈ Rdmodel×dk and Wi
v ∈ Rdmodel×dk .

As highlighted by Equation (3.3) the computation of each head is identical
to the single head version (see Equation (3.1)) and the only difference lies in
the multiple head concatenation and multiplication with Wo.

Figure 3.9 shows how a multiple head attention mechanism put Attention
on the words of our toy example.

3.1.2.4 Position-Wise Feed-Forward Networks

Once Attention has been computed in each Sublayer, it is fed with a Position-
Wise FFNN, which is applied to each position identically. This Sublayer
consists of two Linear transformations with a ReLU in between as:

FFN(x) = max(0, x ∗W1 + b1) ∗W2 + b2 (3.4)

where W1, W2, b1 and b2 are the weights of the considered Sublayer, and
are learned within the training phase.

28 computational models

Figure 3.9: Multiple head attention example (h = 8). The image shows how each
head displaces attention when considering the token "it". Each head is represented
by a different color and the intensity indicates the attention level. Image adopted
from [43]

.

3.1.2.5 Positional Encoding

Since the model is not recurrent and does not exploit convolutions (we will
describe them in the next sections), without a proper encoding of the input
sequence, it will be unable to use the ordering information present in it. For
this reason, the authors of [1], decided to inject information about the position
of the words in the sequence using cosine functions of different frequencies.
These positional encodings are computed starting from the input embeddings
and are later on added to them, resulting in new embeddings that carry not
only the semantics of the words but even positional information.

3.1.3 Generative Pre-trained Transformer (GPT-2)

OpenAI’s Generative Pre-trained Transformer (GPT-2) [4] is one of the most
exciting and powerful applications of transformers. This model is a large-scale
unsupervised language model that is capable of performing several different
tasks all in one such as paragraph generation, reading comprehension, and
machine translation. Trained on over 8 million web pages, it is so powerful
that the biggest architecture that has been trained, with 1542M parameters,
was not released to the public until recently due to the fear of being used as
a fake news generator.

In this work, we decided to take and tune its smallest public version
(117M parameters) for our VQA models as a replacement of the commonly
used LSTMs. As mentioned many times, we hoped to exploit such power to
generate better, open-domain answers.

3.1 computational models for text 29

This model works differently from the Transformer presented in the original
paper in that it lacks the Encoder-Decoder structure described previously.
This because GPT-2 hasn’t been trained to perform Machine Translation
tasks only, but rather to generate tons of text either in a conditioned or
unconditioned manner. This is why it consists of a massive stack of encoders,
without any decoder.

The following extract is taken from a CNN article [44]:

"In the Persian Gulf, a US aircraft carrier, the USS Abraham Lincoln, lurks off the
Iranian coast, sending out a message of aggression. Meanwhile, in the Levant, the
administration of US President Donald Trump starts to roll out his version of a

widely anticipated peace plan for the Israelis and the Palestinians. "

To provide an example of how the conditioned GPT-2 model works, we report
a small snippet of the model output when fed with the previous context:

"Mindful of this, the leaders here reached an agreement after weeks of diplomatic
belaboring on a project spanning 11 conferences, with six Palestinian initiatives and
10 Arab initiatives sitting beside one another. Going all in, however, could have

exposed Mr. Trump to a game of chicken..." [continues]

The model is capable of generating sequences that are correlated with the
input exploiting the knowledge that it learned. In this case, the discussion
of a US carrier in the Persian Gulf led it to talk about Palestinians and Arab
initiatives. Furthermore, the model made references even to the US president.
Even though sentences are not always meaningful, they are, most of the time,
syntactically correct. This has been our driver to experiment with GPT-2 and
led to exciting results.

3.1.4 Bidirectional Encoder Representation from Transformers (BERT)

Google’s Bidirectional Encoder Representation from Transformers [5] is an-
other powerful pre-trained architecture based on the Transformer. It is con-
ceptually similar to GPT-2 [4] but exhibits a key difference in directionality
by which textual sequences are processed.

While GPT-2 is unidirectional and processed sequences from left to right,
BERT endorses a bidirectional approach and, when generating the token at
position i, is allowed to look backward and forward in the input sequence.

BERT’s primary goal is to provide the community with a pre-trained
language model that can be used to quickly come up with state-of-the-
art architectures for a multitude of NLP tasks just by fine-tuning the last
classification layer, usually referred to as "head".

While training BERT, in order to encourage the bi-directional behavior at
fine-tuning time, the authors trains it on two different language tasks:

30 computational models

1. Masked Language Model: The first task on which BERT is trained
consists of predicting masked tokens in the input, which are randomly
replaced 15% of the times. If the i-th token is chosen for masking, 80% of
the times it is replaced by a special token [MASK], 10% of the times it is
replaced by a random token and 10% of the times it remains unchanged.
The reason for which the i-th token is not always replaced with the
[MASK] token lies in the fact that, at fine-tuning time, we will never
feed the model a [MASK] token, but only un-masked sentences. The
goal of this training task is solely to teach the model to be bi-directional.

2. Next Sentence Prediction: Since the majority of the downstream tasks
relate to understanding the relationship between sequences, BERT au-
thors decided to train it even to make next sentence prediction. The
way in which they achieve the goal consists in feeding the model a pair
of sentences A and B and letting it classify whether B follows A or not.
During training, they feed pairs such that 50% of the times B follows A
and 50% not.

Another difference between BERT and GPT-2 is that the former employs
WordPiece tokenization [37] while the latter uses BPE [2].

While developing the baselines for this work, we experimented with BERT
and found out that, even though its bidirectional nature is beneficial for most
NLP tasks, it seriously hurts VQA systems because it allows the model to see
the answer during the training phase.

3.1.5 Discussion

As we have seen, RNNs, LSTMs, and Transformers are robust architectures
that are widely adopted in current state-of-the-art NLP models. They allow
machines to exploit the short and long-term dependencies of the sequences
when generating output, providing some understanding of the surround-
ing context. LSTMs are present in almost every related work that we will
introduce in the next chapter, and the Transformer will be at the core of our
implementations, so it was worth adding some mathematical notation to
understand key concepts better.

Now that we have addressed the essential computational models for text
sequences, we will move the focus to models for image processing.

3.2 computational models for images

The scientific community, trying to emulate how the human eye works, came
up with models that can understand the information contained within images
and videos brilliantly. Nowadays, we are able to perform, to name a few,

3.2 computational models for images 31

image and video recognition, media recreation, image analysis, and transfer
learning thanks to the architectures developed in the Computer Vision area
of research.

When talking about Deep Learning and images, the first architecture that
comes to the mind of every Data Scientist is the so-called Convolutional
Neural Network or simply CNN. Over time scientists understood that this
architecture was much more powerful with respect to standard Feed-Forward
Networks thanks to the way in which the image features were progressively
extracted and to the input invariance introduced by convolutions.

In this section, we will solely address this type of model since it is the
only used within this work, and afterward, we will discuss one task-specific
architecture implemented using CNNs.

3.2.1 Convolutional Neural Networks

A CNN is a type of Neural Network that is able to take in input an image
and assign to the various objects present in it different weights and biases in
order to understand their semantics and distinguish one from the other ones.

Even though we commonly refer to CNNs as architectures made only for
images (or 2D inputs), as in this case, it is worth mentioning that they are
used even for processing text sequences (1D inputs) or volumetric data (3D
inputs).

These types of networks perform well at processing the information present
within an image with a sequence of operations that progressively extracts
higher-level features.

The general structure of a CNN (see Figure 3.10) is made up of a sequence
of three operations that might be repeated many times, followed, usually,
by a classifier. Even though CNNs are primarily used to classify what they
are looking at, this is not always the case. For instance, in this work, we will
integrate CNNs as features extractors without any classifier.

The main components of a CNN are the following ones:

• Convolution layers

• Non-Linear activations

• Pooling layers

• Final classifier

Before describing each component into details, we assume every image to
be represented in an RGB color space with 8 bits of depth. A value between 0

and 1 represents every pixel, and every image has three channels, namely,
Red, Green, and Blue. Formally, given an image of size width× height it
will be represented by a vector I ∈ Rwidth×height×3.

32 computational models

Figure 3.10: General structure of a CNN.
.

3.2.1.1 Convolutions

Convolutions are basic functions for image processing in Computer Vision.
From a mathematical point of view, it consists of sliding a Filter (also known
as Kernel) over the entire image to produce an output map. The filter is a
square matrix of fixed size, and the amount of pixels by which it is moved
over the image at each step is called Stride. This operation condenses the
information present in the convolved pixels into a single value. Depending
on the values contained within the filter, the convolution might capture
information such as image edges or other patterns.

The input image might be padded with 0 values on the border to obtain
different sized output maps.

Generally speaking, given:

• An Image I ∈ Rw×h×c, where w = image width, h = image height and
c = image channels (usually 3).

• A Kernel K ∈ Rwk×hk , where wk = kernel width and hk = kernel
height.

a convolution Ci,j of the image I with the Kernel K to produce the element
at position i, j in the output map is defined as:

Ci,j =

w∑
k=0

h∑
p=0

c∑
m=0

Kwk−k,hk−p ∗ Ik+i,p+j,m (3.5)

3.2 computational models for images 33

(a) Filter of size 3x3 (dark blue)
going over a portion of the 5x5

input image (blue) to generate
the output map (green).

(b) Convolution between a 5x5 image (blue) and a 3x3

filter (dark blue). Stride = 1. The resulting map (green)
has size 3x3.

Figure 3.11: Examples of convolutions

where wk < w and hk < h, that means the kernel is smaller than the image.
In Figure 3.11 is shown an example of a convolution between a 5x5 image

with a 3x3 kernel. The Input image is convolved with the Kernel, and each
value (i, j) in the output map, depicted in green, is computed according to
Equation (3.5).

Convolutions are compelling operators that are used not only within CNNs
but even in several different standalone software. In the latter case, most of
their applications include generating ad-hoc filters, such as sharpening or
blurring an image. The exciting aspect of a CNN is that it learns by itself
what features each filter should extract depending on the task and the data.

3.2.1.2 Non-Linear activations

Following each convolution, there is a non-linear activation function to intro-
duce non-linearities in the network. Furthermore, since these architectures
are usually deep, a ReLU activation is usually employed to help the gradient
flow, since its derivative is always equal to one.

3.2.1.3 Pooling

After the non-linear activation, we find a pooling layer. Similar to what
happens with the convolutions, this operation accounts for reducing the
dimensionality of the output maps to a smaller space. The dimensionality
reduction operation helps to reduce the computational power needed to
process the entire image. Furthermore, the most critical aspect of the pool-
ing procedure is its capability to extract features that are invariant both to
rotational and positional shifts.

34 computational models

Given a portion of the convolution output map, pooling is implemented by
taking either the maximum value in the considered region (Max-Pool) or its
average value (Avg-Pool).

3.2.1.4 The classifier

The final classifier accounts for flattening the output of the last pooling layer
and passing it through a Feed-Forward Network, on top of which we usually
find a softmax over the possible classes.

3.2.2 VGGNet

VGGNet [10] is one of the many state-of-the-art CNNs for large-scale im-
age recognition. It came up in 2014 to compete on the Large Scale Visual
Recognition Challenge (ILSVRC) [45], setting new state-of-the-art results. In
this work, we made heavy use of this architecture by taking several different
pre-trained version of this network, like VGGNet-11, and integrating them
into our baselines and implementations.

One exciting aspect of this network is that it uses the smallest possible
receptive fields (i.e., kernels) to capture spatial dependencies, that is 3x3.
ReLU activations are employed, and the last pooling layer, in the case of
VGGNet-11, produces 512 different maps.

The classifier is composed of three fully connected layers, two of size 4096

and the last one of size 1000, equivalent to the possible classes in the ILSVRC
challenge. VGGNet comes in 6 different configurations: the smallest one has
11 layers of convolutions, non-linear activations, and pooling, whereas the
biggest one has 19 layers. No matter which architecture we choose, VGGNet
remains a mighty Deep Convolutional Neural Network. For computational
limits, in this work, we stick with the 11 layers configuration.

3.3 conclusion

In this chapter we discussed how some of the most important computational
models for this project work, describing which are the state-of-the-art tech-
niques to deal with textual and visual inputs. In the next chapter, we will
talk about the current state-of-the-art in the VQA field and will see how the
community tried developed approaches that combine both LSTMs and CNNs
to achieve the final goal.

4
R E L AT E D W O R K S

After having provided the reader with the necessary background in Chapter
2 and the knowledge of the most used models for NLP and Computer Vision
in Chapter 3, we will now discuss related works in the Visual Question
Answering field of research.

The most common architecture for a VQA system is to put side by side
textual and visual feature extractors and feed their output to an answer
generator. Most of the time, these components are just encoders and decoders
cleverly combined and followed by a final classifier.

The related works in VQA show that the most traditional way of dealing
with textual sequences is to use an LSTM. As we have seen, these architectures
can catch long-term dependencies in the input sequence and usually represent
the best approach. Image features are instead commonly extracted using pre-
trained CNNs: the majority of the related works that we will now introduce
employ networks such as VGGNet [10] or ResNet [11]. These networks are
usually pre-trained on ImageNet [45] and achieve high accuracy on the classes
in the mentioned dataset.

There are two main advantages of using pre-trained CNNs: the first one
is that we can exploit networks that are already capable of extracting visual
features very well. The second one is that the size of the final model will be
smaller since we have fewer parameters to train.

The usual approach is to integrate such CNNs in the VQA models and
fine-tune only some of its layers, keeping intact the knowledge that comes
with the pre-trained network. Most of the time, the final classifier of these
CNNs is removed in favor of other layers that bring the output into a space
where it can be combined with the output of the language model. In turn,
this new layer, as well as the language model, are trained together to learn
how to work side by side.

As we will discuss soon, one of the most delicate aspects of VQA is how
the two modalities (question and image) are brought to a shared space where
they can jointly provide a valid representation to generate correct answers.
Conventional approaches, such as in [19], include mathematical operations
between vectors, like point-wise multiplications or sums. Other approaches,
like the ones in [30], prefer projecting the two vectors in a higher dimensional
space using an outer product followed by convolutions in a Fast Fourier
Transform space.

When building a VQA system, it is crucial to understand whether or not
the built system is exploiting both modalities or not. For this reason, it is

35

36 related works

common practice to create first some baselines and then compare their output
with the final model. Such baselines are usually built incrementally, first
considering one modality at a time and then combining them together.

In [19] and [20], the authors first implement some models that perform
random guessing, then they proceed by always choosing the most common
answer depending on the type of question. Later on, their most sophisticated
baseline uses K-Nearest Neighbor [23] to find the closest question-image pair
and chooses its ground truth as the answer.

This incremental approach is fundamental, and, in this work, we follow
the same pattern to build our system.

The final implementation in [20], called LSTM Q+I, is a powerful model
that exploits both modalities to generate the answer. It uses a pre-trained
VGGNet network, that provides an encoded representation of the image, side
by side with an LSTM, to extract the question features.

The model combines the two resulting feature vectors using a simple point-
wise multiplication that is ultimately fed into a final, fully-connected, layer. On
top of the last layer, a softmax function is employed to distribute probabilities
over the possible answers that span across 1000 different candidates.

The latter softmax highlights how the problem is addressed in a classi-
fication manner. This approach does not leave space for open domain and
open-ended answers since the last classifier forces the output to lie within a
fixed set of choices. This system achieves roughly 57% overall accuracy on
the VQA Dataset [20] that they introduce, but is far from being a system that
can be used in a real-world scenario due to the way in which they treat the
problem.

However, it is essential to note that the approach discussed in [20] brought
a vast contribution to this work since they introduce a new Dataset for Visual
Question Answering that we adopt to train and test our models. Furthermore,
we took the idea of using point-wise multiplication to combine features while
developing our attention mechanism.

4.1 neural module networks

Recent literature [12] [13] decided to tackle the VQA problem by trying
to exploit the intrinsic compositional nature of questions to create ad-hoc
networks on the fly. These networks, called Neural Module Networks (NMN),
change their structure depending on the question by combining a set of
modules. These modules are, in turn, pre-trained neural networks that achieve
small tasks, like saying whether in an image there is a dog or not.

Every module is made up such that it can be concatenated with every other
module available, giving almost unconstrained limitations to the layout of
the final network.

4.1 neural module networks 37

Figure 4.1: Example of a Neural Module Network that recalls the structure described
in [12]. Given a picture and a question, a network is dynamically created combining
modules. Attention modules are in green and labeling modules in blue. In this case,
two modules are used: one to locate the dog (dog module) and the other to generate
the answer (where module). Dog image adopted from [46]

.

In these architectures [12] [13], there are usually a set of modules that focus
the interest on specific parts of the image, classify what they see and generate
a label.

Consider the following question:

Where is the dog?

This sequence, when fed to a NMN, induces the creation of an ad-hoc
layout where several different modules are combined together. Conceptually
a good layout is one where a module accounts for focusing the attention on a
portion of the image where the dog lies, leaving to another module the task
of answering the question. Figure 4.1 provides a visual example.

Modules are combined sequentially, and the output of each one is the input
to the following one. The last module is then connected with an LSTM (such
as in [12]) via a point-wise multiplication, followed by a classifier.

In [12] there are a total of 5 different modules that can be concatenated to
attend, re-attend, combine, measure, and classify every input image. Each
one of these modules generates a mask over the image depending on how
the question is parsed, and, in the end, these maps, concatenated together,
provide a spot of interest that is ultimately used to generate the final answer.

To dynamically structure the layout of the network, the authors of [12]
decided to parse the input question using the Stanford Parser [17]. Then the
parsed question is used to obtain a universal dependency representation of
the input [18], which is responsible for combining the modules of the network
together.

38 related works

Another approach that uses Neural Module Networks is shown in [13].
Even though the idea of creating a dynamic structure depending on the
question remains unchanged, the way in which the authors deal with the
input question differs.

In this case, a Reinforcement Learning technique is employed, where they
exploit a layout policy instead of a fixed parser. The policy outputs a layout
probability distribution p(layout|question) from which the most probable
layout is sampled. The latter policy is not restricted to a small set of candidates
but accounts for all possible layouts of the network.

This idea is a step forward with respect to the approach discussed in [12]
since common language parsers usually introduce severe limitations since
they are not designed for language and vision tasks and must be modified
using custom rules. In turn, this often leads to invalid layouts.

The model exploits a multi-layer LSTM that acts as the encoder for the input
question; the encoded representation is then fed to another, policy-based,
LSTM that accounts for the creation of the layout.

During the training of this architecture, a joint loss, that accounts for both
the layout policy and the parameters in each neural module, is minimized,
allowing the model to learn how to parse the question into specific linguistic
structures and how to use the latter ones to build a valid layout.

It is worth noticing that these approaches treat the problem as a classifica-
tion task, too, where single tokens compose each answer. Nevertheless, this
kind of architecture inspired many other works, including the one that lead
to the creation of the Natural Language for Visual Reasoning dataset [21]
[22], where NMNs have been employed to answer questions on real images.

4.2 hierarchical co-attention

The work described so far is mainly interested to understand which are
the relevant parts of the image to look at. However, as the authors of [29]
highlight, it is important to look at the most relevant parts of the question too.
Metaphorically speaking, aside from “where to look", another critical aspect
of answering the question is “what words to listen to" within the input.

A recently proposed approach [29] tries to jointly reason on the question
and the image in a hierarchical way. This model, while generating the answer,
first reasons at a word-level, then at a sentence-level, and finally considers
the entire question. For each considered level, an attention map is generated
on the image, which in turn prioritizes portions of the question, throwing
away useless words. These levels are subsequently combined recursively to
produce a distribution over a set of candidate answers.

This model introduces a new attention mechanism called Co-Attention,
which, unlike previous work, jointly reasons on the image and on question
attentions. Not only is the question representation used to drive the attention

4.3 multimodal compact bilinear pooling 39

Figure 4.2: Example of the Hierarchical Co-attention mechanism in action at word,
sentence and question level with corresponding softmaps. Reprinted with permission
(reported in Appendix B)

on the image, in this case the image drives the attention on the question too,
leading to better results.

An embedding matrix is used to extract semantic features at a word level,
and a 1D convolution takes care of encoding the meaning of each sentence.
Finally, at the question level, a standard RNNs is used to catch longer-term
dependencies and semantics.

The authors experimented with two different CNNs to extract visual fea-
tures, namely, VGGNet and ResNet [11], with the latter one providing slightly
higher accuracies.

The features from both modalities are then merged together with a set
of mathematical operations that make up the attention mechanism and are
finally fed to the classifier.

Even though this approach still treats the problem as a classification task,
it inspired our work, especially with the introduction of the Co-Attention
mechanism. As we will see in the implementation chapter, our model employs
a similar technique where both the image and the question are used to
compute attention over the whole input.

4.3 multimodal compact bilinear pooling

All the approaches described in the previous three sections rely on com-
bining visual and textual vector representations using element-wise or sum
operations, as well as concatenation.

Multimodal Compact Bilinear Pooling (MCB) [30] is a robust architecture
that exploits an outer product to combine the two modalities to maximize

40 related works

the multiplicative interaction between their two vector representations. The
authors of the paper believe that the traditional way of combining the two
modalities is not enough to project them in the right space and thus employ
this different mechanism.

In MCB the vector representation for text and visual inputs are computed,
respectively, by a 2-layer LSTM with 1024 units each and a 152-layer Residual
Network [33] (a particular type of CNN), recalling what is usually done in
other related works.

Once the multimodal representations are ready, in order to deal with the
high dimensional vectors resulting from traditional bilinear pooling, the
system exploits a different technique [32] to efficiently compress the output
for every modality: the Multimodal Compact Bilinear Pooling operation is
first approximated by randomly projecting the image and question into a
higher dimensional space, using a method called Count Sketch [31]; afterward,
the two representations are convolved using element-wise product in the Fast
Fourier Transform (FFT) space.

MCB is used twice in the best performing model:

• First MCB: given the outputs of the CNN and the outputs of the LSTM,
it is used to compute the attention over the input image.

• Second MCB: given the attention output computed by the first MCB
and the outputs of the LSTM, it is used to generate the final answer.

While writing this work, MCB is still the state of the art model on the
VQA Dataset [20], achieving an overall accuracy of 66.7%. Once again, this
approach does not generate open domain answers and distributes the output
over a fixed set of possible choices.

4.4 conclusion

Even though the scientific community in the VQA area of research developed
different architectures other than those described above, in this chapter, we
reported the most interesting and compelling ones for this work.

As we have seen, every model is always composed of an image encoder,
which usually is a CNN, and a text encoder, where we usually see one
LSTM in action. The difference among the described approaches lies in the
way in which these two encoded representations are brought to a common
subspace. Some systems employ only point-wise multiplications, whereas
others integrate attention mechanisms to understand the input. However, the
majority of the architectures present for VQA tasks address the problem as if
they were dealing with a classification problem, resulting in short answers.

As we have stated in the motivation for this work, we try to overcome this
limitation with a new kind of architecture that is conceptually similar to the

4.4 conclusion 41

ones previously described, but differs in how the output is generated. As we
will see in the next chapter, we eliminate the final classifier and look at this
problem from a different perspective.

5
D ATA S E T A N D I M P L E M E N TAT I O N

In this chapter, we discuss the materials and methods used to develop our
work. We first introduce the adopted dataset, describing which are its fea-
tures and limitations. Afterward, we dive into the data preprocessing pipeline
followed to prepare the inputs to our models. After this, we introduce some
baselines and discuss their implementation. Finally, we present our architec-
tures and compare them against the baselines, qualitatively and quantitatively.

5.1 dataset

While trying to choose the most proper dataset for this work, we had to
keep in mind that we needed a large corpus with a specific structure. More
specifically, we were interested in samples that were composed of a question
on a specific image with its associated answer.

Finding such a large corpus is not an easy task since the ground truth
usually has to be annotated by real human beings, and this operation requires
time. To deal with this issue, in the past, the community adopted synthetic
datasets generated by algorithms, such as with NLVRv1 [21]. The latter
approach allows for nearly unconstrained corpora since questions, images,
and answers are generated by machines. However, this approach lacks the
usage of real-world images, which are the most interesting to deal with.

Thankfully, with the help of great web-based tools, such as Amazon Me-
chanical Turk [47], the scientific community has collected several different
annotations (in terms of question/answer pairs) on real-world images and
came up with datasets that are extremely useful for training VQA systems.

While choosing the dataset for this work, we considered the following
corpora:

• NLVRv1 [21]: The Natural Language for Visual Reasoning v1 is a
synthetically generated corpus whose task is to say whether a question
about an image is true or not. We discarded this dataset due to the lack
of real-world images and binary types of answers (true/false).

• NLVRv2 [22]: The Natural Language for Visual Reasoning v2 is the
evolution of NLVRv1 and consists of real-world images. The data was
collected via crowdsourcing, and the task is the same as NLVRv1. We
discarded this dataset because of the binary nature of its answers.

43

44 dataset and implementation

• VCR [34]: The Visual Commonsense Reasoning dataset comes with
questions about images where a rationale supports each answer. Its
goal is to train models that provide answers with supporting facts. We
discarded this dataset due to its complexity: all the images come with
a spatial annotation that tells where the objects are and every ground
truth has multiple supporting facts that we didn’t intend to exploit.

• CLEVRv1 [24]: The Compositional Language and Elementary Visual
Reasoning dataset consists of a set of questions on synthetically gen-
erated images about different shapes of different colors. Even though
CLEVR is a great dataset, widely used within the scientific community,
we discarded it due to its synthetic nature.

• MSCOCO [25]: The Microsoft Common Objects in Context dataset is
a large scale corpus whose primary goal is to train object-detection
systems. Unfortunately, even though well structured, it lacks the ques-
tion modality and is better suited for captioning tasks. The latter issue
forced us to discard this dataset.

• SQuAD [26]: The Stanford Question Answering dataset is a reading
comprehension corpus, consisting of questions posed by crowd-workers
on several different articles. Extremely useful to train language models
to Question Answering tasks, we dropped it for the lack of visual
modality.

• VQAv1 [19]: The Visual Question Answering dataset is composed
of a set of open-domain questions on real-world images taken from
MSCOCO. Each question is associated with a specific image and comes
with several different annotations (i.e., answers). We discarded this
dataset in favor of the latest version of it.

• VQAv2 [20]: It is the evolution of VQAv1 and the corpus that we use in
this work. Structured as VQAv1, it consists of a more balanced version
of VQAv1 and has almost double the number of annotations both for
the training and testing set.

5.1.1 VQAv2 Dataset

As previously mentioned, the Visual Question Answering v2 dataset is the
corpus that we use for our work. Based on real-world images, it was created
to help the community developing VQA systems that are able to reason on
question/image pairs.

Each pair comes with several different annotations (i.e., answers) that act
as ground truth; as we will discuss later, we combine the latter ones with the
questions, and finally, we train our systems. Even though the annotations

5.1 dataset 45

Figure 5.1: Example of a complementary image pair. Each question has two similar
images with different answers to the question to reduce biases in the data. Images
taken from [46]

Table 5.1: VQA Dataset structure

Split Number of questions Number of answers # of images

Training 443,758 4,437,580 82,783

Validation 214,354 2,143,540 40,504

Testing 447,793 0 81,434

are, in some cases, a bit short-ended, we thought that this would be the best
corpora to use due to its structure and simplicity to use.

The dataset is divided into three splits, and its structure is reported in
Table 5.1. For any question, there are 10 different annotations (i.e., ground
truths), and for this reason, the number of answers shown in Table 5.1 is
always ten times the number of questions.

For computational reasons and memory limitations, multiple questions
might refer to a single image. Yet the dataset remains well balanced.

In this work, we make use only of the training and validation splits since
they are sufficient to achieve our goal.

A key aspect of VQAv2 is that it is properly balanced. For instance, given
a question that begins with "what color", the answers that span across the
most common colors, such as "red", "green", "blue" are well balanced. This
is important because if the answers to this kind of question referred only to,
say, "orange", it would have meant that an intrinsic bias was present in the
data. If this was the case, any system trained on such a corpus wouldn’t be

46 dataset and implementation

Figure 5.2: Example of the percentage of questions that begin with "what color"
and "is this" in the VQAv2 dataset. As the image highlights, the top answers in both
cases are really well-balanced.

able to generalize well and, when asked a question that begins with "what
color", it could always output the same biased answer (in this case "orange").

Furthermore, the authors [20] of the corpus provide similar images with
the same questions but different answers to help reduce these biases even
more; an example of such concept is depicted in Figure 5.1.

The dataset was balanced to account for several different types of questions
that are very likely to be subject to biases, such as those whose answers
are "yes" and "no". In Figure 5.2, we report the top answers for two specific
types of questions, and, as depicted in the image, not only the question types
are balanced between themselves, but their relative answers are properly
distributed too.

5.1.2 Preprocessing

Since this dataset is huge and the computational power at our disposal is
limited, we had to select a subset of the corpus to train our models in a
reasonable amount of time.

The data is already properly formatted, with garbage characters neither
in the questions nor in the annotations. For this reason, we didn’t have to
perform any sanitization. Furthermore, in our language models, with the
only exception for one baseline, we decided to keep the punctuation, hoping
that they could understand these patterns and exploit them to generate
open-ended questions.

To select our candidates, these are the main steps that we followed:

5.1 dataset 47

1. Grayscale removal: First and foremost, we dropped all samples which
were associated with non-RGB images. Since we had plenty of data, we
decided to keep only questions on colored pictures.

2. Longer answer first: Since we were interested in creating models that
generate open-ended answers (i.e. longer answers), we decided to pri-
oritize those samples whose annotations were longer and gave less
importance to those which had concise answers.

3. Limited annotations: The idea of training our models on all the ques-
tions, exploiting all the 10 different ground truths per question, was
unfeasible. For this reason, we randomly select up to 4 annotations for
each question. This ensures that at most 4 identical question/image
pairs will be fed to the model, with 4 different answers.

4. Optimization: Since, as we will discuss later, there are issues related to
padding and performances, we remove sequences (question + answer)
whose length-frequency is under a specific threshold (1000). In the end,
this allows us to feed the model bigger batches of shorter sequences,
boosting training times. To provide the reader with an example, it might
help thinking about having a single sequence of 100 tokens in our data.
If this was the case, every other sequence would have been padded to
match this size, resulting in extremely big and sparse tensors being fed
to the model.

These steps are performed before everything else, and account for the
creation of two preprocessed corpora (Training and Testing) that contain the
most interesting samples for our needs; from now on, we will refer to these
two sets as TR-Base and TS-Base.

As we will discuss soon, these two sets are far from being ready to be used
with our models for these reasons:

• Multi-Modality: We experiment with models that accept multi-modal
inputs: Question-only, Image-Only, and Question+Image.

• Sequence processing: The models we consider encode the textual se-
quences with different algorithms such as NLTK word tokenizer [35],
WordPiece encoding [37] and Byte-Pair encoding [2].

• Multiple Inputs: Depending on the model, we usually have to provide
additional information. For instance, BERT, aside from the sequence,
expects even token type ids and input masks.

It is evident that we couldn’t have a single and unified dataset to work with;
this issue forced us to create dynamic sub-datasets starting from TR-Base
and TS-Base, depending on the considered system.

48 dataset and implementation

Later in this chapter, while going through each model, we will discuss how
we compute each sub-dataset.

However, before getting into details, we highlight another key difference
between TR-Base and TS-Base: while each sample in TR-Base has an associ-
ated answer, TS-Base has no answers at all. This distinction is explained as
follows:

1. While training, we perform Professor Forcing [36], and for this reason,
the answer should always be contained in the input. Briefly, Professor
Forcing consists of training the system to predict the input sequence
shifted ahead in time by one.

2. While evaluating, we perform Beam Search, and we do not want our
answers to be in the input. Thus, we remove all the answers from
TS-Base and create a separate file TS-Map that maps every sample
in TS-Base with all its ground truths. Later, this map will be used to
evaluate the model output.

To better understand how TR-Base, TS-Base and TS-Map are made, we
report an example here:

• TR-Base Sample: [...,[Sample ID, Question, Image, Answer], ...]

• TS-Base Sample: [..., [Sample ID, Question, Image], ...]

• TS-Map Sample: {..., Sample ID: [Answer1, ..., Answer10], ...}

each answer in TR-Base is chosen randomly across the 10 different annota-
tions.

Note that the sub-sets (TS-Model) that will be built starting from TS-Base
will consist of the same exact samples, tokenized in different ways and with
different modalities. This allows us to evaluate our systems on the same
samples.

On the contrary, the sub-sets (TR-Model) built from TR-Base slightly differ
since after tokenizing, to optimize training times, we drop sequences whose
relative length-frequency is below a threshold.

Now that we have discussed how we preprocess the data and what TR-
Base, TS-Base and TS-Map are, we can introduce our baselines.

5.2 baselines

To better evaluate our models, we decided to consider three different baselines
that exploit only a limited set of modalities, plus a pre-trained VQA system.
To generate answers, we propose one captioning model that makes use only
of the visual input, two other systems the exploit only the question, without

5.2 baselines 49

Figure 5.3: Captioning model structure. The picture shows how the three main
components (Encoder, Decoder and Attention) work together to generate the output
sequence.

being allowed to look at the image, and a full VQA baseline that uses both
the question and the image.

5.2.1 Captioning Baseline

Our captioning baseline was created to understand how much the textual in-
put (i.e., the question) is essential to create a good VQA model. Conceptually,
this is a VA (Video-Answer) system since it lacks the possibility to see the
question.

This model has been built following the approach discussed in [14], and its
implementation is based on a GitHub repository [48].

5.2.1.1 Model architecture

The architecture has been initially developed to create captioning systems
and, on the latter task, it performs well. However, since our dataset is for
VQA models, we didn’t expect this baseline to achieve good performances.

The model is composed of three main blocks:

1. Image Encoder: This block encodes the input image I ∈ R3×256×256

into an encoded representation of multiple feature mapsM ∈ R512×7×7.
The encoder, made up with VGGNet-11 [10], gradually reduces the size
of the image (from 256× 256 to 7× 7) while expanding the number of

50 dataset and implementation

channels (from 3 to 512). The latter feature maps M are then fed to an
attention layer side to side with the outputs of a decoder to perform
attention on the image.

2. Decoder: This block is responsible for generating the output sequence
(i.e. the answer). It consists of a single LSTM cell of 256 neurons with
an additional embedding layer of size 256, learned end-to-end within
the training phase. At each time step i, the decoder, using the output of
the attention layer Ai−1 generated at the previous time step, takes care
of producing the next token Ti.

3. Attention: This layer takes as input the encoded feature maps M ∈
R512×7×7 and, for each token Ti generated by the Decoder at time step
i, distributes attention over the image in order to focus on the most
relevant spots. Even though we will describe this layer more in detail
later, being very similar to the attention mechanism employed in one of
our models, it is worth noticing that this block takes care of bringing the
two modalities to a common sub-space where they are merged together
into a compact representation Ai. In turn, as described previously, the
latter one is used as input to the decoder to generate the next token
Ti+1

A visual representation on this structure is reported in Figure 5.3. It is
important to highlight that, at each time step i, the hidden state hi of the
Decoder is updated with the hidden state hi−1 of the previous time step
(as seen in Chapter 3). This allows the system to account for all the tokens
generated at previous time steps and the associated attention maps.

5.2.1.2 Dataset

The dataset used to train this model is built starting from TR-Base and
TS-Base. To generate the Training TR-Cap and Testing TS-Cap sub-sets, we
first drop the question modality, since this system is meant for captioning.
Afterward, we encode the answers in TR-Cap using the NLTK [35] word
tokenizer, dropping all the punctuation to speed up the training times. TS-
Cap, as explained before, does not contain any answer and consists only of
the input images.

We introduce three unique tokens to account for the beginning, end of the
sentence, and out-of-vocabulary (OOV) words, which are, respectively, <bos>,
<eos> and <unk>.

Furthermore, in order not to end up with an enormous vocabulary, every
word in the corpus whose frequency is less than a threshold (30) is replaced
with the <unk> token. Finally, using Dictionary Lookup Encoding (2.2.2.2), we
convert the tokenized sequences to vectors.

5.2 baselines 51

Table 5.2: Captioning Baseline dataset structure. From the top to the bottom, we
report some statistics. Size = number of elements in each split, Seq Len = Sequence
length, QL = Question Length, AL = Answer Length, Avg <pad> = Average number
of <pad> tokens in each sequence, Uniq Img = Number of Unique Images in the
split.

TR-Cap TS-Cap

Size 106 105

Seq Len 10 -

Min QL - -

Max QL - -

Avg QL - -

Min AL 3 -

Max AL 10 -

Avg AL 3.57 -

Avg <pad> 6.42 -

Uniq Img 71.440 32.622

The images are resized to a fixed size of 256× 256 pixels each in RGB mode
and then are normalized to meet the VGGNet input requirements. This last
step is mandatory since we use a pre-trained version of VGGNet-11, which
has been trained with normalized input images. The resize operation takes
place by randomly cropping portions of the image.

An example for the samples in TR-Cap and TS-Cap is herby reported:

• TR-Cap Sample: [...,[Sample ID, Image, Answer], ...]

• TS-Cap Sample: [..., [Sample ID, Image], ...]

at evaluation time, we decode the model output and compare it against the
references in TS-Map.

The final corpus size remains unchanged, both for the training and testing
steps, and is reported in Table 5.2. After the processing, the vocabulary
consists of 3520 tokens.

5.2.1.3 Training

We train this model using a technique called Professor Forcing [36] for
10 epochs with batches of size 192. As optimizer, we employ an adaptive

52 dataset and implementation

momentum technique called Adam [15] with an initial learning rate set to
4e− 4. Dropout is set to 0.4, and the loss is computed with a doubly stochastic
attention regularization that updates the gradient using CrossEntropy on
the output sequence with a regularization factor computed starting from the
attention maps.

The training takes approximately 10 hours on a machine with an RTX 2070.
We will evaluate this baseline together with the other models in Chapter 6.

5.2.2 GPT-2 Answering Baseline

The second baseline that we built is made up of a pre-trained GPT-2 [4]
Transformer. In this case, we get rid of the visual modality and see how this
system is able to answer questions just exploiting its language biases.

GPT-2 was trained on an enormous corpus, and, for this reason, can
perform several different downstream NLP tasks, as described in section 3.1.3.
Generally speaking, this model can already answer a multitude of questions
correctly, but, as we will discuss while evaluating this baseline, the visual
modality is vital to answer image-specific questions.

Since our final model is built on top of GPT-2, this baseline is handy to say
whether or not it uses the visual modality. Without following this approach,
we couldn’t know if the answer is generated by intrinsic information that
comes in the pre-trained model or not.

5.2.2.1 Architecture

The architecture follows a traditional Transformer structure except for the
lack of a Decoder. As discussed in the paper, this model can perform several
different tasks without an Encoder-Decoder structure, since it is possible to
condition the task directly in the input sequence.

Conceptually this means that if we intend to use GPT-2 as a translator
from, say, English to French, we have to condition the input like:

"English sentence A = French sentence A, English sentence B = "

and the model will output the translation for sentence B.
We exploit this conditioning capability during the training phase by giving

the model batches of sequences where each sequence is composed of the
concatenation of Question and Answer.

With this approach, the model indeed understands that it has to perform a
QA task and, as we will discuss later, produces good results.

We use the smallest pre-trained architecture with L = 12 encoder layers
and h = 12 attention heads. Each token is embedded with 768 dimensional
vectors, which corresponds even to the hidden size of the Transformer. The
model, trained solely on English corpora, totals roughly 117M parameters.

5.2 baselines 53

5.2.2.2 Dataset

We create our Training set TR-GPT2 from TR-Base by dropping the visual
modality and keeping only question and answer pairs; we subsequently
concatenate each pair together to form a sequence of words.

The Testing set TS-GPT2 is computed from TS-Base by dropping the
images and keeping the questions only, since they are the ones we are going
to use in the evaluation phase.

Later, we process the sequences in TR-GPT2 and TS-GPT2 using a BPE
tokenizer specifically designed for GPT-2.

We introduce four new tokens: <bos>, <eos>, <sep>, and <pad> to indicate the
beginning and end of the sequence, the separation between question and
answer and finally the padding token.

In TR-GPT2, we make use of all the four tokens while encoding the input
sequence; Contrarily, in TS-GPT2, we use <bos> and <sep> since we don’t have
an answer.

For example, given a question Q and an answer A, a sequence S in TR-
GPT2, before being encoded, is created as follows:

• Q: "What is it?"

• A: "A dog"

S: [’<bos>’, ’What’, ’is’, ’it’, ’?’, ’<sep>’, ’A’, ’dog’, ’<eos>’, ’<pad>’, ’<pad>’]

the latter example assumes a padding size of 11.
In TS-GPT2, we perform the same operation but without the answer, thus

effectively inserting only <bos> and <sep>.
Afterward, the sequences in TR-GPT2 get padded to a fixed size in order

to be batched together.
The final vocabulary contains 50, 254 different BPE-encoded words: 50, 250

are taken from the pre-trained architecture, and 4 (the new tokens) are
manually inserted. Table 5.3 presents some statistics about the dataset.

5.2.2.3 Training

We fine-tune this baseline for a total of 3 epochs using batches of 64 elements
each. Once again, we employ Adam [15] as optimizer and initialize the
learning rate to 5e − 5, as suggested in the paper. Even in this case, we
compute the loss through Professor Forcing with CrossEntropy.

We do not train the model for too long since we don’t want to damage
its linguistical capability with our small dataset and are solely interested in
teaching it how to use the newly introduced tokens. Furthermore, as we will
soon discuss, three epochs are more than enough to fie tune this architecture.

On an RTX 2070, the training takes approximately 12 hours.

54 dataset and implementation

Table 5.3: GPT-2 Baseline dataset structure. From the top to the bottom, we report
some statistics. Size = number of elements in each split, Seq Len = Sequence length,
QL = Question Length, AL = Answer Length, Avg <pad> = Average number of <pad>
tokens in each sequence, Uniq Img = Number of Unique Images in the split. Note
that in the testing set we do no pad sequences.

TR-GPT2 TS-GPT2

Size 106 105

Seq Len 24 22

Min QL 5 6

Max QL 21 22

Avg QL 8.45 9.48

Min AL 3 -

Max AL 18 -

Avg AL 3.89 -

Avg <pad> 11.65 -

Uniq Img - -

As we will discuss later, it is crucial to train the system to generate the
<eos> token when it has finished producing the output, especially while Beam
Searching the answers.

5.2.3 BERT Answering Baseline

Curious about how BERT would have compared to GPT-2 in this task, we
decided to implement a second answering baseline (QA only). More specifi-
cally, we were interested in knowing whether or not the bi-directionality that
comes with BERT was capable of boosting performances in this kind of task.

However, as we will see in the evaluation section, this is not the case, and
we suspect that training a bi-directional model with sequences that contain
both the question and the answer cannot work. The latter statement comes
from the fact that if the model is allowed to see what tokens are on the right
of the one currently being generated, it will never understand how to predict
them.

Conceptually speaking, if during the training phase the system is allowed
to see the target sequence, it will never learn how to generate it. As we will
discuss, BERT is learning only to shift in time the input sequence by 1, and

5.2 baselines 55

during the evaluation phase, where we feed only the question, it doesn’t
know what to do.

5.2.3.1 Architecture

Without going into the details of how the bi-directionality is implemented in
this Transformer, well described in the paper [5], we report only that we take
a pre-trained version of BERT for Masked Language Model (see section 3.1.4)
with the most similar configuration to the other answering baseline. Once
again, we have L = 12 layers with h = 12 heads each, both the embedded
vectors and the hidden size is equal to 768 and, in total, the model consists of
110M parameters.

5.2.3.2 Dataset

The dataset (TR-BERT & TS-BERT) is built similarly to the one introduced
for the GPT-2 baseline (see section 5.2.2.2). The real difference here is that we
use a different tool for tokenizing and encoding the sequences: a WordPiece
tokenizer [37] specifically built for BERT.

Moreover, we do not introduce any new token and exploit the ones that
come with BERT, following the advice of the paper [5] . These tokens are <cls>
and <sep> and can be used to achieve a multitude of NLP tasks.

To better understand the difference between BERT and GPT-2 inputs,
considering the question Q and answer A of the example introduced in
section 5.2.2.2, each sequence is processed as follows:

S: [’<cls>’, ’What’, ’is’, ’it’, ’?’, ’<sep>’, ’A’, ’dog’, ’<sep>’, ’<pad>’, ’<pad>’]

In section ?? we said that some models required additional inputs to
work correctly. BERT represents one of these exceptions and requires us to
generate, for each sequence, two additional vectors: the Token Type Ids and
the Attention Mask. These two additional pieces of information are essential
for training BERT correctly because they tell the model which parts of the
sequence make up the question and the answer, and which tokens can be
ignored while computing the Multi-Head attention, like <pad>.

Sticking with our example, the two additional vectors are computed as
follows:

S: [’<cls>’, ’What’, ’is’, ’it’, ’?’, ’<sep>’, ’A’, ’dog’, ’<sep>’, ’<pad>’, ’<pad>’]
Token Type Ids: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
Attention mask: [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]

On the one hand, in the token type ids vector, each 0 corresponds to a token
in the question, whereas 1 means that the token belongs to the answer. This
helps the model understanding the difference between question and answer.

56 dataset and implementation

Table 5.4: BERT Baseline dataset structure. From the top to the bottom, we report
some statistics. Size = number of elements in each split, Seq Len = Sequence length,
QL = Question Length, AL = Answer Length, Avg <pad> = Average number of <pad>
tokens in each sequence, Uniq Img = Number of Unique Images in the split. Note
that in the testing set we do no pad sequences.

TR-BERT TS-BERT

Size 106 105

Seq Len 24 23

Min QL 5 6

Max QL 21 23

Avg QL 8.48 9.52

Min AL 3 -

Max AL 18 -

Avg AL 3.71 -

Avg <pad> 11.79 -

Uniq Img - -

The attention mask vector, on the other hand, tells BERT on which tokens it
should compute the attention. All the tokens with a corresponding value of 0
in this vector are ignored, like the <pad>. Table 5.4 reports some metrics about
this dataset.

For what concerns the vocabulary, we keep the one that comes with BERT,
with 30.522 total WordPiece-encoded words.

5.2.3.3 Training

We train this model for a total of 10 epochs using batches of 20 elements on
an RTX 2070 for roughly 14 hours. The usual optimizer is employed (Adam),
and the learning rate is set to 5e− 5. The loss is computed in the same way
as in the GPT-2 baseline. As for the other systems, we will discuss the results
in the next chapter.

5.2.4 VQA Baseline

So far, we considered baselines that make use only of one single modality
at a time. However, we thought that it would have been a good approach to

5.2 baselines 57

Figure 5.4: The picture shows the architecture of the VQA Baseline introduced in
[27].

compare our final architecture with another system that exploits both visual
and textual inputs.

For this very reason, we implemented a fourth baseline that uses questions
and images to generate answers. This model is the implementation of what
is discussed in [27], and we were able to reproduce results using the code
contained within Cyanogenoid’s repository [49]. It is important to highlight
that this is a strong baseline (as reported in the title of the paper) and
achieves very high performances.

We do not re-train or fine-tune this architecture on our corpus since we
took a pre-trained version run on the VQAv2 dataset. In other words, this
model was ready to use out-of-the-box without any need for fine-tuning.

As we have already discussed, the usual approach in the VQA community
is to address the problem as if it was a classification task, and this system
makes no exception. The model is indeed trained to distribute probabilities
over a predefined set of possible answers. For this reason, as we will discuss
in the next chapter, the accuracy of the system on exact matches is higher
with respect to our architectures, but it is definitely a much more limited
architecture since it can generate only a predefined set of answers.

5.2.4.1 Architecture

The architecture consists of four main components:

1. Image Encoder: As usual, this block extracts visual features using a
CNN. In this case, the authors of [27] exploit a pre-trained version
of ResNet [11] where the last pooling layer returns 2048 maps of size
14× 14. In Figure 5.4 we highlight this block in blue.

2. Question Encoder: In order to get a compact representation of what
the question is about, this system uses an LSTM unit with 1024 neurons.

58 dataset and implementation

The LSTM is fed with the input sequence where each token has been
embedded into a 300-dimensional vector, learned end-to-end during
training. In Figure 5.4 the LSTM is unrolled over time with a purple
color.

3. Stacked attention: This architecture makes use of an attention layer to
merge the two modalities together. The authors concatenate the features
extracted from the CNN and the LSTM together, and then they pass
the resulting vector through a series of convolutions and non-linear
activations followed by a Softmax function. The output of ResNet is
then averaged with the values computed by the Softmax and is then
concatenated back with the features extracted by the LSTM. In Figure
5.4 we highlight attention operations with red.

4. Classifier: The output of the attention layer is passed through two
separate fully-connected layers (yellow blocks in Figure 5.4), with non-
linear activations in-between, which are then followed by a Softmax
that distributes probabilities over a fixed set of candidate answers (3000

possible choices).

This architecture, even though not very complicated, serves as a good
baseline for our experiments, producing meaningful results.

5.2.5 Dataset

Following Cyanogenoid’s implementation [49], we build two different vo-
cabularies (Vocab-Q and Vocab-A) that contain, respectively, all the possible
words in the questions and all the possible answers in the annotations.

Afterwards, we create TS-VQA-Baseline processing every question in TS-
Base by word-tokenizing and encoding it with the corresponding word-id
in Vocab-Q (lookup encoding). At this point, every question is a vector of
numbers. Finally, every question is padded to the longest possible sequence
with a <pad> token.

At the end of this process, mandatory to use the pre-trained checkpoint
downloaded from [49], Vocab-Q totals 15192 words and Vocab-A is made up
by 3000 possible answers. Once again, to ensure consistent results, TS-VQA-
Baseline is built starting from TS-Base and contains 100K samples.

5.3 proposed architectures 59

5.3 proposed architectures

After having discussed the corpus and the baselines in use, in this section, we
present a set of architectures that we introduce to address the VQA problem.

As we will shortly discuss, the key difference of these architectures from
the ones discussed in the related works is that they are capable of generating
open-ended answers. In other words, we do not distribute probabilities over a
predefined set of answers but exploit the power of a language model (GPT-2)
to generate arbitrarily long sequences.

Furthermore, we contribute to the scientific community by creating a set of
previously-unseen architectures that combines Transformers with CNNs in a
way that, at the time of writing this work, has never been tried before.

Every architecture that we describe is composed of some key components
that are recurrent in every model, such as:

• Image Encoder: Extracts image features and feeds them to the attention
mechanism.

• Language Model: Extracts features from the question and shares them
with the attention mechanism.

While the employed language model is always set to be OpenAI’s GPT-2 [4],
the image encoders might vary between VGG-11, VGG-19, ResNet-101, and
ResNet-152. The image encoder weight updates are always fixed, while those
of GPT-2 are either set to be trainable or not, depending on the considered
architecture.

As discusses, a key aspect in VQA is how the two features (question and
image) are combined together. There are multiple paths that can be followed,
and in this work, we focus on the following ones:

• Simple feature fusion: We exploit concatenations, summations, point-
wise multiplications with linear layers to bring the modalities in a
common space where they are combined.

• Attention fusion: We build ad-hoc attention layers that perform much
more sophisticated operations, such as focusing on relevant portions of
the image to answer the question.

While working on this project, we initially focused our attention on develop-
ing models that use attention, and only afterward we asked ourselves whether
or not the attention layer was effectively useful. For this reason, we follow
the same order while describing the models, addressing first architectures
that use attention, such as VGGPT-2, our best performing model.

60 dataset and implementation

5.4 architectures with attention

In this section, we present two architectures, VGGPT-2 and ResGPT-2. These
two models are very similar but present three key differences. The first, as the
name might suggest, lies in the adopted image encoder, which in the former
is VGG-11 and in the latter is ResNet-101. The second difference is in the
attention mechanism, which is simplified in ResGPT-2. Finally, the answer
generation layer presents some differences too.

5.4.1 VGGPT-2

VGGPT-2 is is our best performing model. It intensely relies on attention
mechanisms at multiple levels and is capable of combining the information
contained in the question to look at specific portions of the image. At the
same time, the information contained in the interesting spots of the image are
used to drive the generation of the answer, conditioned even by the question
itself.

5.4.1.1 Architecture

This model is composed of four high-level components that work together to
process both the visual and textual modalities and generate an open-ended
answer, which can briefly be described as:

1. Image Encoder: Extracts image features and feeds them to the attention
mechanism.

2. Language Model: Extracts features from the question and shares them
with the attention mechanism.

3. Attention Mechanism: Using the features extracted from the input,
generates an attention vector.

4. Answer Generator: Concatenates the language model output with the
attention output to generate the answer.

in Figure 5.5 we show how these components are connected together.
We now describe each component in detail and how it interacts with the

others.

5.4.1.2 Image Encoder

Since we expect the questions to be about a specific image, we first need a
way to extract information about the visual input. For this reason, we decide
to embed in this architecture an Image Encoder, which is made starting from
VGGNet-11.

5.4 architectures with attention 61

Figure 5.5: VGGPT-2 Model structure. The picture shows, from an extremely high
point of view, how the four main components (Image Encoder, Language Model,
Attention Mechanism, and Answer Generator) are combined together to generate
the answer. Note that the operations inside the circles are representative, and the
vectors are not combined directly, as depicted above.

It has been proved that very deep CNNs perform particularly well in
extracting high-level features from images, and, for this reason, we decide to
take a pre-trained architecture specifically designed to achieve such a task.

As we have already discussed in section 3.2.2, VGGNet-11 is a CNN with
11 subsequent weight layers: the first 8 consist of convolutions and pooling
operations, whereas the last 3 are a sequence of fully-connected layers that
act as a classifier.

In the classifier, the first two layers, of size 4096, flatten the output of the
previous 8 layers, and the last distributes probability over the 1000 different
classes present in ImageNet [45], the dataset on which VGGNet was trained
on.

Since, in our context, we do not need VGGNet to act as a classifier, we
follow the best-practices and drop the last three fully connected layers. In
this way, given an image, the encoder produces a set of maps that contain
high-level extracted features.

We now introduce some notation to better understand how our Image
Encoder works. The input consists of an Image I ∈ Rci×wi×hi , with ci = 3
different channels (RGB) of width wi = 224 and height hi = 224. The output
of the network, after going through the 8 layers described in Table 5.5 , consist
of a set of maps M ∈ Rco×wo×ho , with co = 512 different channels of width
wo = 7 and height ho = 7. M will be one of the two inputs to our Attention
Mechanism.

62 dataset and implementation

Table 5.5: Structure of VGGNet-11 layers without the final classifier. As the image
depicts, the network performs a series of convolutions and max-pooling operations
to gradually extract the visual features.

Layer number Operations

1 3D-Convolution, 64 channels

Max-Pooling

2 3D-Convolution, 128 channels

Max-Pooling

3 3D-Convolution, 256 channels

4 3D-Convolution, 256 channels

Max-Pooling

5 3D-Convolution, 512 channels

6 3D-Convolution, 512 channels

Max-Pooling

7 3D-Convolution, 512 channels

8 3D-Convolution, 512 channels

Max-Pooling

5.4.1.3 Language Model

As anticipated, we take as Language Model the OpenAI’s GPT-2 (small, 117M)
transformer. Once again, we take this pre-trained architecture, and we refine
it in order to integrate the latter into our system.

GPT-2 consists of two core blocks: the first one is the Transformer, which
is responsible for computing the multi-head attention discussed previously,
and the second one is the final classifier which, for each token processed by
the Transformer, produces a distribution of probabilities over the vocabulary
of words (recall that this is a language model that exploits attention, which
means that the probability p(wi|ti, ti−1, ...ti−k) of generating the word wi at
time step i is conditioned on the input tokens ti, ti−1, ...ti−k up to time step
i).

Since our goal is to have the Language Model interacting with the Image
Encoder, we split apart these two blocks and use them separately in this
model. Given a sequence of n input tokens S ∈ Rn×1, the output of the
transformer T ∈ Rn×hidden consists of a sequence n hidden vectors of size
hidden = 768. We use T as the second input to the Attention Mechanism,

5.4 architectures with attention 63

Figure 5.6: VGGPT-2 Attention Mechanism in detail. On the top left, in blue, there
are the maps M coming out from VGGNet-11. In purple we highlight Ti, one of the
n elements in T. In practice the attention mechanism is always fed with T but in this
diagram, for the sake of simplicity, we consider just a single element. Finally, red is
used to represent the flow of the attention operations.

while the final classifier C (also known as head) will be discussed later in the
Answer Generation block.

5.4.1.4 Attention

This block is the most important part of our full implementation. It is capable
of combining features coming from two, totally different sub-spaces into a
single representation. In this part of the architecture, we effectively see in
action a Co-Attention mechanism since we use the question to drive the focus
on the image and vice versa.

In order to understand how this block works, let’s recall what its inputs
are:

• Image Encoder Output: a vector M ∈ R512×7×7

• Language Model Output: a vector T ∈ Rn×768.

64 dataset and implementation

The first operation consists in flattening M into a more convenient repre-
sentation Mflat ∈ R512×49.

Then, both Mflat and T are fed to two separate Linear layers (LinM and LinT)
that bring the two vectors into a common subspace of size AttDim = 512:

• LinM (# of params = 512×AttDim): brings Mflat ∈ R512×49 into Matt ∈
RAttDim×49

• LinT (# of params = 768×AttDim): brings T ∈ Rn×768 into Tatt ∈
Rn×AttDim

At this point, for every element Tatt
i ∈ RAttDim in Tatt, with i ∈N ∧ i ∈

[0, n), we repeat the following set of operations (it might help to check Figure
5.6 at each step):

1. We sum Tatt
i to each element Matt

k ∈ RAttDim of Matt, with k ∈
N ∧ k ∈ [0, 49), obtaining the first multi-modal attention representation
A1

i ∈ RAttDim×49 for the i-th token in the input sequence.

2. We rectify A1
i using a ReLU unit and obtain an intermediate attention

representation A2
i ∈ RAttDim×49.

3. Using a Linear layer (Linsoft) we compress AttDim down to 1. In other
words, Linsoft brings A2

i ∈ RAttDim×49 into A3
i ∈ R1×49.

4. In order to obtain a softmap that highlights relevant spots of the image
given a specific word at position i, we pass A3

i through a Softmax
function and obtain A4

i ∈ R1×49, where A4
i, h ∈ (0, 1) with h ∈ N ∧

h ∈ [0, 49). Even though the mathematical notation might be confusing,
at this point every pixel in A4

i has an associated value between 0 and
1, which indicates how much important is that pixel to answer the
question.

5. Afterwards we perform a point-wise multiplication between every
element Mflat

k ∈ R1×49 in the original flattened maps Mflat with A4
i,

obtaining a new vector A5
i ∈ R512×49. In this step we perform the

Question-to-Image attention, since we exploit the softmaps computed
at the previous step to mask out irrelevant portions of the image.

6. Later we sum, for each channel in A5
i, all the masked pixels together,

reducing the dimension from 49 to 1. In other words, we go from
A5

i ∈ R512×49 to A6
i ∈ R512×1 by summing all the elements together

on the pixel axis.

7. We then bring A6
i back to the transformer space through a final Linear

layer (Linout), which expands A6
i ∈ R512×1 to A7

i ∈ R768.

5.4 architectures with attention 65

8. The last step computes the Image-to-Question attention through a final
point-wise multiplication between A7

i and every element Ti ∈ R768

of T, which is the original output of the transformer before this layer.
The final output of the Attention Mechanism for every embedded token
Ti and the maps M coming from the Image Encoder is the vector
Aout

i ∈ R768.

We described, for the sake of simplicity, how the attention layer works
considering one single embedded token Ti at a time. However, now that we
have discussed how the mechanism works for a single element, it is easy
to scale it up with a sequence of n elements. The vectors in the attention
layer just have an additional dimension that accounts for the token under
consideration, resulting in: A1 ∈ Rn×AttDim×49, A2 ∈ Rn×AttDim×49, A3 ∈
Rn×1×49, A4 ∈ Rn×1×49, A5 ∈ Rn×512×49, A6 ∈ Rn×512×1, A7 ∈ Rn×768

and Aout ∈ Rn×768.
The output Aout of the Attention Mechanism, as we will discuss in the

next section, is then combined back with the output of GPT-2 to generate the
answer. This layer totals roughly 8M parameters.

The Attention Mechanism used in this model is very similar to the one
used in our Captioning baseline, introduced in [14] and implemented in
Sgrvinod’s repository [48].

5.4.1.5 Answer Generator

We generate the final answer exploiting once again our language model. While
most related works would have fed the output of the Attention Mechanism
to a classifier, in order to distribute probabilities over a predefined set of
answers, we address the problem from another point of view.

We basically try to condition the generation of words in GPT-2 using the
output of the Attention layer in a particular way; instead of feeding the output
T of the transformer directly to its head, we first perform a key operation:
we take the Attention output Aout and concatenate it with the transformer
output T into a new vector O ∈ Rn×1536. Then, with the help of a new Linear
layer (LinClassifier), we distribute probabilities over the original vocabulary of
words of GPT-2. In order not to lose the valuable information contained in
the weights of the pre-trained classifier C (or head), we do the following:

1. We initialize the first 768× 50254 weights of LinClassifier with the ones
present in the original head of GPT-2.

2. We initialize the last 768× 50254 weights, that account for the Attention
layer output, to 0.

This allows the model to start training from a status where it is already
able to generate sequences of words correctly since, in the beginning, all the

66 dataset and implementation

Figure 5.7: The image shows how each output Ti of the Transformer is concatenated
to its relative Attention layer output Aout

i. We use different colors to indicate how
we initialize the weights in LinClassifier.

weights relative to the Attention Mechanism are set to 0, and the only ones
that influence the output are coming from T. This last Linear layer consists
of roughly 77.1M of parameters alone (1536× 50254), so it is imperative to
perform such initialization to train the system in a reasonable amount of time
(≈ 50 hours on an RTX 2070 with 8GB of GDDR6).

Figure 5.7 shows how we concatenate the two vectors together: once again
we consider a single element Ti in T with its corresponding attention output
Aout

i.
Afterward, we feed O, also known as the Logits vector, to a softmax that

distributes probabilities over our vocabulary. To generate the output word wi

corresponding to the input token at position i, we Beam Search the probability
space with different beam sizes, as we will discuss in the next chapter.

What is essential to understand is that, instead of using a compact rep-
resentation of the input question and the image to distribute probabilities
over a fixed set of answers, we dynamically generate each word constantly
conditioning it on the previously generated words.

At evaluation time, this allows the system to generate arbitrarily long
answer since:

1. Given a Question of n words and an Image, we first let the system gen-
erate the initial word in the answer, conditioned only on the Question
and the Image.

2. After we have generated the first word, we append it to the original
question, which becomes a sequence of n+ 1 words. This time, the

5.4 architectures with attention 67

Table 5.6: Differences among the datasets used in the baselines that we train and
in VGGPT-2. The size of the sequences, question and answers varies depending on
the tokenizer in use and the preprocessing thresholds. Size = number of elements in
each split, Seq Len = Sequence length, QL = Question Length, AL = Answer Length,
Avg <pad> = Average number of <pad> tokens in each sequence, Uniq Img = Number
of Unique Images in the split.

Captioning GPT-2 BERT VGGPT-2

Train Test Train Test Train Test Train Test

Size 106 105 106 105 106 105 106 105

Seq Len 10 - 24 22 24 23 24 22

Min QL - - 5 6 5 6 5 6

Max QL - - 21 22 21 23 21 22

Avg QL - - 8.45 9.48 8.48 9.52 8.45 9.48

Min AL 3 - 3 - 3 - 3 -

Max AL 10 - 18 - 18 - 18 -

Avg AL 3.57 - 3.89 - 3.71 - 3.89 -

Avg <pad> 6.42 0 11.65 0 11.79 0 11.65 0

Uniq Img 71440 32822 - - - - 71450 32822

second word in the answer gets generated conditioned on the new
sequence.

3. The procedure goes on until the system outputs the <eos> token.

5.4.1.6 Dataset

The corpus used to train this architecture is the exact same one of our GPT-2
baseline (see section 5.2.2.2), with the only difference being the addition of
the visual modality. We report in Table 5.6 all the datasets side to side.

5.4.1.7 Training

We train the system for 20 epochs using batches of 20 elements. The learning
rate is initialized to 5e-5 and Adam is employed as optimizer. Even in this
case we exploit Professor Forcing with a Cross-Entropy loss function that
ignores <pad> tokens. In Figure 5.8 we report the smoothed training loss, with
a brief description.

68 dataset and implementation

Figure 5.8: VGGPT-2 Train Loss: we plot the loss for each iteration (one batch) over
the whole training duration. Each epoch consists of 50K iterations, for a total of 1M
iterations (50K × 20). We report the smoothed loss which descends to a value of
≈ 0.9

The overall architecture, disabling VGGNet-11 weight updates, consists
of 202M parameters since we fine-tune GPT-2 (117M) side to side with the
Attention Mechanism (8M) and the final classifier (77M). Training took ≈ 50
hours on an NVIDIA RTX 2070 with 8GB of GDDR6 memory.

5.4.2 ResGPT-2

ResGPT-2 is the second attention-based architecture that we propose. Aside
from the image encoder, which changes and becomes ResNet-101, we simplify
the attention layer to cut down the number of trainable parameters in the
architecture. As we saw above, VGGPT-2 had 202M trainable parameters.
This was a huge amount of weights, and our objective was to shrink down
the architecture to simplify it while keeping performances high. We manage
to reduce the number of parameters down to 166M from 202M (18% less).
Probably the most significant change is that we do not concatenate the output
of the attention layer with that of the transformer anymore, and directly feed
to the classifier with the attention mechanism output.

5.4.2.1 Architecture

This model is once again composed by the four high-level components that
we discussed in VGGPT-2. However, there are some differences:

1. Image Encoder: The image encoder is now ResNet-101.

2. Language Model: The language model remains OpenAI’s GPT-2 (117M).

5.4 architectures with attention 69

Figure 5.9: ResGPT-2 Model structure. The picture shows, from an extremely high
point of view, how the four main components (Image Encoder, Language Model,
Attention Mechanism, and Answer Generator) are combined together to generate
the answer. Note that the operations inside the circles are representative, and the
vectors are not combined directly, as depicted above.

3. Attention Mechanism: The attention mechanism is similar, but simpli-
fied by removing some linear transformations.

4. Answer Generator: We no longer concatenate the output of the atten-
tion mechanism together with the output of the transformer. We directly
feed the classifier with the attention output.

in Figure 5.9 we show how these components are connected together, where
it is evident that the residual arc present in VGGPT-2 from the transformer
to the answer generator has been removed.

5.4.2.2 Image Encoder

This time the image encoder is composed by a Residual Network [33], namely
ResNet-101 [11].

We decided to experiment with another image encoder to check whether or
not we could boost performances. However, as we will see in the next chapter,
the only difference is that the model requires more time to converge without
significant benefits in terms of performances. This because ResNet-101 has
2048 output maps, each one of size 14× 14, while VGG-11 had 512 maps of
size 7× 7

70 dataset and implementation

Figure 5.10: ResGPT-2 Attention Mechanism in detail. On the top left, in blue, there
are the maps M coming out from VGGNet-11. In purple we highlight Ti, one of the
n elements in T. In practice the attention mechanism is always fed with T but in this
diagram, for the sake of simplicity, we consider just a single element. Finally, red is
used to represent the flow of the attention operations.

Even in this case, we do not need ResNet to act as a classifier, thus we drop
the last fully connected layers and keep only the output of the last pooling
layer.

To stick with the previously introduced notation, now the input consists
of an Image I ∈ Rci×wi×hi , with ci = 3 different channels (RGB) of width
wi = 224 and height hi = 224. The output of the network, after going through
the pooling and convolution layers, consist of a set of maps M ∈ Rco×wo×ho ,
with co = 2048 different channels of width wo = 14 and height ho = 14. M
will be one of the two inputs to our Attention Mechanism.

5.4.2.3 Attention

In order to simplify our attention layer we perform the following operations:

1. We remove the linear transformation that was previously applied to the
output of the transformer, namely LinT.

5.4 architectures with attention 71

2. We change the linear transformation that was previously applied to
the flattened maps to bring them directly into a 768-dimensional
space where they can be directly added with the transformer out-
put. This transformation, LinM, now brings Mflat ∈ R2048×196 into
Matt ∈ R768×196

3. We get rid of the final point-wise multiplication between the final linear
transformation and the output of the transformer.

Ultimately this results in no more in a co-attention mechanism, because we
are driving the attention on the image using the question, but not driving the
attention on the question using the image, as was the case for VGGPT-2.

In order to better understand how this block works, let’s recall what its
inputs are:

• Image Encoder Output: a vector M ∈ R2048×14×14

• Language Model Output: a vector T ∈ Rn×768.

Once again, the first operation consists in flattening M into a more conve-
nient representation Mflat ∈ R2048×196.

Then Mflat is fed to a Linear layer (LinM that brings the vector into a
compatible subspace of size 768:

• LinM (# of params = 2048× 768): brings Mflat ∈ R2048×196 into Matt ∈
R768×196

At this point, for every element Ti ∈ R768 in T, with i ∈N ∧ i ∈ [0, n), we
repeat the following set of operations (it might help to check Figure 5.10 at
each step):

1. We sum Ti to each element Matt
k ∈ R768 of Matt, with k ∈ N ∧ k ∈

[0, 196), obtaining the first multi-modal attention representation A1
i ∈

R768×196 for the i-th token in the input sequence.

2. We rectify A1
i using a ReLU unit and obtain an intermediate attention

representation A2
i ∈ R768×196.

3. Using a Linear layer (Linsoft) we compress 768 down to 1. In other
words, Linsoft brings A2

i ∈ R768×196 into A3
i ∈ R1×196.

4. In order to obtain a softmap that highlights relevant spots of the image
given a specific word at position i, we pass A3

i through a Softmax
function and obtain A4

i ∈ R1×196, where A4
i, h ∈ (0, 1) with h ∈

N ∧ h ∈ [0, 196). Even though the mathematical notation might be
confusing, at this point every pixel in A4

i has an associated value
between 0 and 1, which indicates how much important is that pixel to
answer the question.

72 dataset and implementation

5. Afterwards we perform a point-wise multiplication between every
element Mflat

k ∈ R1×168 in the original flattened maps Mflat with A4
i,

obtaining a new vector A5
i ∈ R2048×196. In this step we perform the

Question-to-Image attention, since we exploit the softmaps computed
at the previous step to mask out irrelevant portions of the image.

6. Later we sum, for each channel in A5
i, all the masked pixels together,

reducing the dimension from 196 to 1. In other words, we go from A5
i ∈

R2048×196 to A6
i ∈ R2048×1 by summing all the elements together on

the pixel axis.

7. We then bring A6
i back to the transformer space through a final Linear

layer (Linout), which expands A6
i ∈ R2048×1 to Aout

i ∈ R768.

Even for this lighter attention mechanism, we described how the attention
layer works considering one single embedded token Ti at a time. In reality,
this happens in parallel for all the tokens Ti in T.

The output Aout of the Attention Mechanism, as we will discuss in the next
section, is then directly fed to the final classifier.

5.4.2.4 Answer Generator

While in VGGPT-2 we would have concatenated the output of the attention
layer back with the output of the transformer, causing the final classifier,
or head, to total roughly 77.1M parameters, this time we directly feed to
the classifier the output of the attention mechanism, resulting in 38.5M
parameters (50% less).

In order not to lose the valuable information contained in the weights of
the pre-trained head of GPT-2, we initialize the weights of our classifier to
those present in the original head. The output logits are then interpreted in
the same way as in VGGPT-2.

The way in which we generate the answers at evaluation time is the same
as for VGGPT-2, which means that we exploit the autoregressive behavior of
GPT-2.

5.4.2.5 Dataset

The corpus used to train this architecture is the exact same one of VGGPT-2,
since we wanted to be able to properly compare these two architectures.

5.4.2.6 Training

We train the system for 20 epochs using batches of 20 elements. The learning
rate is initialized to 5e-5 and Adam is employed as optimizer. Even in this
case we exploit Professor Forcing with a Cross-Entropy loss function that
ignores <pad> tokens.

5.5 architectures without attention 73

5.5 architectures without attention

In this section, we introduce a total of 8 different architectures that lack any
attention mechanism. They are all very similar, but every model presents
slight differences. Our goal was to test simpler architectures that lack spacial
attention over the image, and see how they compare with our attention-based
systems.

Furthermore, there is one core difference with respect to the previously
addressed models: in order to reduce the number of trainable parameters, we
prevent the transformer weights to be updatable. In other words, we do not
allow backpropagation over the GPT-2 decoders.

5.5.1 Common Dataset

For all the architectures that we will describe in this section, we use a shared
dataset. For this reason, we first describe it here and afterward proceed in
discussing the architectures themselves.

Even though the processing for this set of models is different, the samples
contained in both training and testing sets are equal to those contained in all
the other datasets, being processed starting from TR-Base and TS-Base.

In order to achieve the task of reducing the number of trainable weights,
we had to get rid of custom tokens that would have changed the embedding
layer within the transformer, and opted to use already-available tokens in
GPT-2’s vocabulary:

• We completely removed the <bos> token, convinced that it might have
been unnecessary.

• We replaced the <sep> token with the question mark "?", a word already
present in the vocabulary. We believed that GPT-2 already knew that
this token is usually associated with questions, so we decided to adopt
it as a separator.

• We replaced the <eos> token with the already-present <|endoftext|>
token in the vocabulary. This is the stop token that comes with GPT-2,
and we thought that it might be a good substitute for our model.

• Finally, we replaced the <pad> token with the "-" character.

Removing custom tokens allowed us to block the transformer weight
updates, avoiding us to back-propagate over 78.4M of parameters. Table 5.7
shows how the dataset is structured.

74 dataset and implementation

Table 5.7: Light dataset structure. From the top to the bottom, we report some
statistics. Size = number of elements in each split, Seq Len = Sequence length, QL
= Question Length, AL = Answer Length, Avg <pad> = Average number of <pad>
tokens in each sequence, Uniq Img = Number of Unique Images in the split. Note
that in the testing set we do no pad sequences.

TR-Light TS-Light

Size 106 105

Seq Len 22 18

Min QL 3 1

Max QL 20 18

Avg QL 10.56 11.03

Min AL 3 -

Max AL 17 -

Avg AL 4.11 -

Avg <pad> 11.23 -

Uniq Img 70365 32529

5.5.2 Common answer generation mechanism

For all the models that we introduce in this section, we exploit the same
mechanism to pull out answers at evaluation time as for VGGPT-2. In other
words, we exploit the the autoregressive behavior of GPT-2, appending to the
input sequence the last generated word, pooled greedily as the most probable
one. At the same time, while training and testing, we perform Professor
Forcing and ensure that the generated sequence (Question + Answer) shifted
in time by one matches the input sequence.

5.5.3 Linear + SUM

The first two architectures that we propose are ResNet Linear + SUM and
VGG Linear + SUM. Both models exploit a Linear layer to bring the feature
maps coming out of their image encoders into a space where they are later
summed with the hidden states of GPT-2. Finally, the resulting tensor is fed
to the classifier (i.e. head) that generates the output.

• ResNet Linear + SUM: exploits a ResNet-152 pre-trained encoder.

5.5 architectures without attention 75

Figure 5.11: Linear + SUM architecture. In blue we report the output of the image
encoders, in purple the output of the transformer for the i-th input token.

• VGG Linear + SUM: uses a pre-trained instance of VGG-19.

5.5.3.1 Architecture

To understand how these two models work, let’s call M the output of their
image encoders. Then, considering one token at a time Ti in the input
sequence T, the output Outputi is computed as follows (see Figure 5.11):

1. First we flatten M into MFlat for a more convenient representation. Note
that M ∈ RC×W×H, where ResNet-152 has C = 2048 and W = H = 14

while VGG-19 has C = 512 and W = H = 7.

2. Afterward, we transform MFlat through a linear transformation Lin into
MT ∈ R768×(W∗H).

3. Then, for each element MT
k ∈ R768 in MT, we sum MT

k with Ti and
obtain S1

i ∈ R768×(W∗H).

76 dataset and implementation

Figure 5.12: Linear + SUM Training/Testing plots. The dashed line refers to the
testing loss, while the solid one to the training loss

4. Finally, we sum again S1
i over the number of pixels and obtain S2

i ∈
R768, which is fed to the classifier (or head) that generates Outputi.

Outputi is ultimately pooled greedily to extract the next most probable
word.

5.5.3.2 Training

We train both systems for 20 epochs with Adam as optimizer. The learning
rate is set to 5e-5. As usual, we emlpoy Professor forcing with a Cross-
Entropy loss function. In order to speed up the process, we parallelize the
training over 2 GPUs with different memory, hence we set the batch size of
LightResGPT-2 to 100 and that of LightVGGPT-2 to 124. The former model,
trained on a RTX 2070, took 1 day and 21 hours while the latter, trained on
an RTX 2080ti took just 22 hours. We report the loss in Figure 5.12.

5.5.4 AVG & MAX + Linear [+Fix Head]

We further experiment with two other architectures, this time using only VGG-
19 as image encoder since it has smaller feature maps and thus faster training

5.5 architectures without attention 77

Figure 5.13: AVG & MAX + Linear (+Fix Head) architecture. In blue we report the
output of the image encoders, in purple the output of the transformer for the i-th
input token.

times. While with the Linear + SUM models we had first a linear layer
followed by a summation, in these sets of architectures we first average (or
take the maximum value) over the pixels in the feature maps, and afterward
we pass the resulting tensor through a Linear layer. We test each model in a
double configuration, the first one allows weight updates in the head while
the second one has them fixed. As we will see in the evaluation chapter
though, fixing the weights update in the classifier results in extremely poor
performances; yet, we wanted to make sure to explore this strategy. The
models described in this section are:

• VGG AVG + Linear: VGG-19 image encoder followed by an average
over the feature map pixels.

• VGG AVG + Linear + Fix Head: VGG-19 image encoder followed by
an average over the feature map pixels. The weights in the head are
fixed.

• VGG MAX + Linear: VGG-19 image encoder followed by a max oper-
ator over the feature map pixels.

• VGG MAX + Linear + Fix Head: VGG-19 image encoder followed by
a max operator over the feature map pixels. The weights in the head
are fixed.

78 dataset and implementation

Figure 5.14: AVG+Linear (+FixHead) Training/Testing plots. The dashed line refers
to the testing loss, while the solid one to the training loss

5.5.4.1 Architecture

M and Ti are the usual inputs: the output of the image encoder and a single
token in the input sequence. In Figure 5.13 we highlight how these models
work, and report the details here with the usual notation:

1. First we flatten M into MFlat. In this case, since we use VGG-11, M ∈
RC×W×H, where C = 512 and W = H = 7.

2. Afterward, we bring MFlat into S1
i ∈ R512 by either computing the

average or taking the maximum value in each channel.

3. Then, we pass S1
i through a linear layer Lin and obtain S2

i ∈ R768

4. Later, we sum Ti with S2
i and obtain S3

i ∈ R768.

5. Finally, we feed to the classifier S3
i and obtain Outputi ∈ R768

5.5.4.2 Training

We train the four architectures until early stopping is triggered with Adam
as optimizer. The learning rate is set to 5e-4. As usual, we employ Professor

5.5 architectures without attention 79

Figure 5.15: AVG & MAX + Linear + Concat architecture. In blue we report the
output of the image encoders, in purple the output of the transformer for the i-th
input token.

forcing with a Cross-Entropy loss function. The batch size is set to 100 for
all models, and each one stops after 4 or 5 epochs of training due to the
testing loss not decreasing and early stopping being triggered. We report the
loss in Figure 5.14.

5.5.5 AVG & MAX + Linear + Concat

Finally, we experiment with one last pair of systems that exploit a final
concatenation, as was happening in VGGPT-2. More precisely, these models
are the evolution of the AVG & MAX + Linear architectures: instead of
feeding directly the last tensor to the classifier, we first concatenate it back
with the output of the transformer.

5.5.5.1 Architecture

Following our standard notation, we describe here how the architecture
works, reported in Figure 5.15.

1. First we flatten M into MFlat. In this case, since we use VGG-11, M ∈
RC×W×H, where C = 512 and W = H = 7.

80 dataset and implementation

Figure 5.16: AVG+Linear+Concat Training/Testing plots. The dashed line refers to
the testing loss, while the solid one to the training loss

2. Afterward, we bring MFlat into S1
i ∈ R512 by either computing the

average or taking the maximum value in each channel.

3. Then, we pass S1
i through a linear layer Lin and obtain S2

i ∈ R768

4. Later, we sum Ti with S2
i and obtain S3

i ∈ R768.

5. Finally, we feed to the classifier the concatenation of S3
i and Ti, and

obtain Outputi ∈ R768

Note that in the head we initialize the weights associated to Ti to the
pre-trained ones (as in VGGPT-2), while the other ones (associated with S3

i),
are initialized to 0.

5.5.5.2 Training

We train the two systems until early stopping is triggered, once again employ-
ing Adam as optimizer. The learning rate is set to 5e-4. As usual, we employ
Professor forcing with a Cross-Entropy loss function. The batch size is set
to 124 for all models, and each one stops after 5 or 6 epochs of training due to
the testing loss not decreasing and early stopping being triggered. We report
the loss in Figure 5.16.

5.5 architectures without attention 81

5.5.6 Conclusion

In this chapter we introduced a lot of new material, like the dataset that
we use and our proposed architectures. In total we addressed 14 models: 4

baselines and our 10 systems, 2 of which with a spatial attention mechanism.
As discussed, the 8 "light" architectures are much simpler and, as we will
see in the next chapter, these simplifications will impact dramatically over
performances.

6
E VA L UAT I O N

In the previous chapter we have introduced several different architectures,
and we are now going to evaluate them under both a quantitative and
qualitative point of view. Since we propose a different way of generating
answers, testing set performances are not enough to fully evaluate our results.
We are not classifying images or performing any other task with an exact
output label that we can compare with the output of our models. Since we
approach the problem in an open-ended fashion, two sentences might express
the same concept, but depending on the metric in use we might believe that
our systems perform very poorly or extremely good. Thus we propose 3

quantitative evaluation metrics and then we further evaluate qualitatively our
best model.

6.1 answer generation

Before getting into the evaluation process, we need to address one last detail
that highlights how we obtain answers from our systems. Depending on the
considered model, we follow two different approaches:

• To get answers from all our systems but the VQA-Baseline, we perform
Beam Search:

– Initially we feed the system a question Q and let it generate a
probability distribution over all the words in the vocabulary. At
this point we keep the K most probable words in this distribution
w1, ..., wk.

– At the second time step we create K new sequences SK, where
each sequence Si is created by concatenating Q with wi.

– At every new time step we keep on pooling the K most probable
words out of the K× VocSize ones generated by the SK sequences.
For each new word, we keep track of the source sequence and
update SK by keeping only those sequences which generated the
last most probable words.

– The process goes on until either a threshold is reached (in our
case 20 words) or a stop word is generated (like the <eos> or
<|endoftext|> token).

– We experimented with different beam sizes (from 1 to 50) on a
small sub-set of the validation corpus and discovered that increas-

83

84 evaluation

ing the beam size always leads to worst results. For this reason,
we fix the beam size to 1 across all of our experiments. In other
terms, we always pool the most probable words out of the ones
generated by our systems, effectively performing a greedy search.
All the results that we report are computed with beam size equal
to 1. Future work will provide a comparison with bigger beam
sizes, but for the time being, we stick to 1; this even because the
evaluation process is prolonged due to the small batch size (=1)
that we must use.

• Contrarily, for the VQA-Baseline, we always take the most probable
output from the ones generated by the system. The latter architecture
does not generate a sequence of words incrementally; it outputs a single
sentence (the answer) directly. This procedure is straight-forward and
can be parallelized very well (we use batches of 192 elements at a time).

6.2 quantitative evaluation

In this section, we report some numerical results that help visualize the
performance differences among the proposed architectures. We evaluate
our models using the following three metrics: Accuracy, BLEU [38], and
Word Mover’s Distance [39]. As we will discuss soon, these metrics are very
different but help understanding how each system behaves.

6.2.1 Accuracy

We split the accuracy evaluation process into two parts, following what is
usually done in VQA papers on the VQAv2 corpus. First, in Figure 6.1, we
report results for the 4 most essential types of accuracy and then, as shown
in Figure 6.2, we show which are the questions for which our models achieve
the highest scores.

In Figure 6.1 we introduce the following 4 accuracy metrics:

1. Overall accuracy: this is the overall accuracy computed for all the
answers in the validation set.

2. Yes/No accuracy: this is the accuracy on binary answers like "yes" and
"no".

3. Numerical accuracy: accuracy computed solely on answers which re-
quire the model to count objects or elements in the picture.

4. Other accuracy: accuracy computed on all the answers but Yes/No and
Numerical ones.

6.2 quantitative evaluation 85

Figure 6.1: Evaluation Accuracy for the four main type of answers. Overall refers
to the overall accuracy, yes/no to that of the binary answers, number to those which
requires the system to count and finally other refers to the accuracy of the other type
of answers.

Looking at the results reported in Figure 6.1 and Table 6.1, we can highlight
few aspects:

• The best performing model, according to this metric, is the (strong)
VQA-Baseline. We were expecting this result since this model has been
trained to maximize this metric, and produces outputs that span across
a fixed vocabulary. In other words, if we consider exact matches between
the generated output and the label, without looking at any semantic
aspect, the VQA-Baseline beats almost every time our architectures.
Interestingly though, some of the models we introduce achieve com-
parable results, the best being those in which an attention layer is
present.

• Some models consistently score an accuracy of 0. This is due to the
architectures not being able to learn the task or, as we discover, not
being fit for it. For instance, further investigation revealed that BERT
is not able to generate text conditioning it on its previous output due
to its bidirectional behavior. We discover that fixing the weights in the

86 evaluation

Table 6.1: Accuracy scores for each model.

Model Overall Other Yes/No Number

Q+I Baseline Captioning 0.000 0.000 0.000 0.000

Q+A Baseline GPT-2 0.106 0.143 0.021 0.019

Q+A Baseline BERT 0.000 0.000 0.001 0.000

V+Q+A Baseline 0.459 0.406 0.714 0.271

VGGPT-2 0.344 0.242 0.729 0.226

ResGPT-2 0.343 0.252 0.687 0.238

VGG Linear+SUM 0.244 0.133 0.636 0.194

ResNet Linear+SUM 0.201 0.079 0.620 0.165

VGG AVG+Linear 0.324 0.230 0.672 0.241

VGG MAX+Linear 0.281 0.176 0.655 0.220

VGG AVG+Linear+FixHead 0.000 0.000 0.000 0.000

VGG MAX+Linear+FixHead 0.000 0.000 0.000 0.000

VGG AVG+Linear+Concat 0.300 0.201 0.661 0.228

VGG MAX+Linear+Concat 0.268 0.159 0.662 0.203

head leads to extremely poor performances, as the picture highlights.
It is worth mentioning that this metric, even though it is not the most
appropriate, already tells us something about the performances of
our systems: as we will see, results will be consistent across all the
other evaluation metrics. The motivation behind the low scores of such
systems might hide in the fact that they tend to generate very repetitive
and incorrect answers. For instance, the Captioning baseline does not
understand when to stop generating words, consistently producing
sequences of 20 tokens.

• A very interesting aspect is that VGGPT-2 consistently beats GPT-2,
confirming that the visual modality is indeed of great help to that
architecture. Furthermore, VGGPT-2 is better than the VQA-Baseline
when it comes to counting objects in the image, suggesting that it’s very
deep architecture allows for better reasoning. Furthermore, the big jump
in performances in the "yes/no" type of answers between VGGPT-2
and GPT-2 is exciting too, suggesting that GPT-2 is performing random
guessing with these kinds of answers while VGGPT-2 has learned to
reason on the image features.

6.2 quantitative evaluation 87

Figure 6.2: In this picture we report what are the five questions that lead each model
to score the highest accuracy. We discard those architectures that have always null
accuracies, like the fix-head models or BERT.

• These results suggest that the bigger attention-based models are achiev-
ing only small performance improvements, and one might believe that
these deeper systems are useless or not necessary. In this work, we were
very much interested in answering this question, and this is the reason
that leads us to the development of this wide range of architectures. We
don’t have a definite answer yet but, as we will see in the qualitative
evaluation, the only system that is actually capable of understanding a
question, reasoning on the associated image and answering correctly is
VGGPT-2. All the other architectures seem not very fit for real-world
applications.

• ResGPT-2 looks very similar to VGGPT-2 from most of the metrics, but
after having tested in with real-world questions on real-world images,
we can firmly say that it does not perform as good as it due to its lighter
attention mechanism.

88 evaluation

Figure 6.3: This picture shows how the best 5 per-question accuracies of VGGPT-2
compare with the other models (except those with consistent null accuracy).

In Figure 6.2 we report what are the five questions that lead each model to
score the highest accuracy, discarding those architectures that have always
null accuracies, like the fix-head models or BERT. Afterward, in picture Figure
6.3, we take the five questions that result in the highest accuracy scores within
VGGPT-2, and compare them across the other models.

A very interesting aspect that we observe in Figure 6.2 is that models such
as GPT-2, that lack one modality, produce their best answers only when they
can infer it from the context. For instance, it is easier for GPT-2 to answer
correctly when the question is something like "What brand..?" or "What
color..?" since it can exploit its language bias to understand what the context
is. If the question is about what a specific color is, he might guess the correct
answer much more easily with respect to more complicated questions.

Furthermore, the plot highlights how the VQA-Baseline and VGGPT-2 /
ResGPT-2 score high in the type of questions that start with "Is it..?"; this is
consistent with the fact that their accuracy related to binary answer is high
as well.

Even though the accuracy metric suggests that our architectures are not as
powerful as the VQA-Baseline, we must recall that our systems are meant
to generate open-ended answers. This strongly affects the accuracy metric,
penalizing our outputs enormously. Overall we can say that our architectures
are at least comparable with the VQA-Baseline, suggesting that we followed
the right approach.

6.2.2 Bilingual Evaluation Understudy

Not satisfied by the results provided by the Accuracy metric, we decided to
proceed and further investigate our results using the BLEU [38] metric.

Even though BLEU was originally developed for translation systems, it can
be used for a series of NLP downstream tasks, such as evaluating the quality

6.2 quantitative evaluation 89

Table 6.2: Variation of n-gram weights depending on the considered BLEU metric.

α β γ δ

BLEU-1 1 0 0 0

BLEU-2 0.5 0.5 0 0

BLEU-3 0.3 0.3 0.3 0

BLEU-4 0.25 0.25 0.25 0.25

of the answers that our system generates. In fact, we use BLEU to check how
similar our answers are to the ground truths.

When considering BLEU scores, a perfect match gives a value of 1, whereas
total miss-match results in a 0. It is worth noticing that not even humans can
achieve a consistent score of 1 since the translations (or, as in our case, the
answers) might slightly differ from the references.

The metric works by counting n-gram overlaps between the generated
output and the ground truths. The comparison is made regardless of word
order in the sentences. The metric keeps track of the occurrences of reasonable
words in the sentences. It automatically penalizes translations which consist
of repetitions (this is referred to in the paper as "modified n-gram precision").

To account for 0 n-gram counts, which can cause the BLEU score to be
equal to zero, we experiment with 4 different smoothing functions present in
the NLTK framework:

• Add-epsilon: the first smoothing technique consists in adding ε counts
to precisions with 0 counts. The NLTK framework defaults to ε = 0.1
and we keep this value without modifying it. In other words, if the
counts for the unigram "dog" is 0, it becomes 0.1.

• Add-one: this method consists of adding 1 to both numerator and
denominator, regardless of the counts. This technique is discussed in
[40].

• NIST-Geometric: in this case, as reported on the NLTK documentation
[35], "smoothing is computed by taking 1

2k , instead of 0, for each preci-
sion score whose matching n-gram count is null". k is set to 1 for the
first n that have a 0 n-gram count. Once k is set to 1, each subsequent
(n+1)-gram will have k = k+ 1. This means that if we have, for instance,
no trigrams, k will be 0 for unigrams and bigrams, 1 for trigrams, and
2 for 4-grams.

• Chen and Cherry: the method described in [41] suggests following
a different approach since, as reported on the NLTK documentation
[35], "shorter translations may have inflated precision values due to

90 evaluation

Figure 6.4: Modified 1-gram, 2-gram, 3-gram and 4-gram precision BLEU computed
using the "add-1" smoothing method on our architectures.

having smaller denominators". Instead of replacing null n-gram counts
as in the NIST-Geometric approach, the paper suggests to divide by

1
ln(len(T)) where len(T) is the Translation length.

To evaluate our results using this metric, we compute a corpus-level BLEU
score by comparing each output with its relative 10 ground truths. In Figure
6.4 we report four different types of BLEU that consider modified 1-gram, 2-
gram, 3-gram and 4-gram precisions (BLEU-1, BLEU-2, BLEU-3 and BLEU-4).
In each BLEU, the weights associated with each n-gram vary. If we call α, β,
γ and δ the weights associated to unigrams, bigrams, trigrams and 4-grams,
we can synthesize their variation in Table 6.2

We report in reftab::bleu-add-1 the BLEU scores associated with the "add-1"
smoothing function, since the results with other smoothing functions were
very similar between each other’s. The scores are computed on the testing set.
Furthermore, in Figure 6.5 we show what the answer length distribution in
each model is. From these results, we can make the following considerations:

• It is evident that, as we consider bigger n-gram overlaps (BLEU-2, -3 and
-4), our systems, and especially ResGPT-2 & VGGPT-2, perform almost

6.2 quantitative evaluation 91

Table 6.3: BLEU scores using add-1 smoothing function. The table have been
divided into three sections: baselines, attention-based models and finally light
models, following the order in which they have been introduced in the previous
chapter.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4

Q+I Baseline Captioning 0.010 0.000 0.000 0.000

Q+A Baseline GPT-2 0.293 0.149 0.074 0.027

Q+A Baseline BERT 0.003 0.000 0.000 0.000

V+Q+A Baseline 0.594 0.187 0.066 0.011

VGGPT-2 0.463 0.223 0.101 0.036

ResGPT-2 0.465 0.228 0.104 0.038

VGG Linear+SUM 0.261 0.101 0.039 0.012

ResNet Linear+SUM 0.212 0.085 0.033 0.007

VGG AVG+Linear 0.444 0.197 0.080 0.024

VGG MAX+Linear 0.357 0.153 0.064 0.016

VGG AVG+Linear+FixHead 0.000 0.000 0.000 0.000

VGG MAX+Linear+FixHead 0.000 0.000 0.000 0.000

VGG AVG+Linear+Concat 0.399 0.159 0.061 0.017

VGG MAX+Linear+Concat 0.359 0.131 0.051 0.015

every time better with respect to the VQA-Baseline. We were expecting
this result since the latter model cannot generate longer answers, and,
for this reason, when we compute the BLEU on longer sequences, it
doesn’t score as good as our attention-based models. Moreover, the task
of the VQA-Baseline is to produce close-ended answers. Even though
the difference is marginal, it is consistent and remains constant as we
increase the n-gram size, suggesting that our models generate more
precise answers as we consider longer overlaps.

• All the full V+Q+A models outperform all the baselines that exploit
only two modalities, indicating that the multimodal input is of great
benefit to the quality of the answers. This indicates that merging the
image and question features boosts performances and is mandatory to
address the VQA problem.

• GPT-2, being a model pre-trained on large textual corpora, achieves
stunning performances when we consider its BLEU scores. This is not
surprising considering that the model is very deep in nature and its
knowledge base is wide: it can answer many questions without looking

92 evaluation

Figure 6.5: Distribution of answer lengths across our models. On the x-axis of each
plot, there is the answer length and on the y-axis, there is the corresponding number
of answers. To compute the answer length in the VQA-Baseline we word-tokenize
the predicted answer. As highlighted by the graph, most models produce slightly
more short answers with respect to GPT-2, indicating that training the system on
our short-ended dataset is affecting the capability of generating longer sequences.
Yet the answers generated by our architectures are generally longer than those of
our VQA-Baseline.

at any image; however, when questions are image-related, it can only
perform random guessing, exhibiting a lower BLEU score with respect
to the VQA systems.

• The light systems that we introduce compare well with the attention-
based architectures, but seems to be less powerful. Furthermore, the
reported BLEU scores indicate that fixing the weight updates in the
final head leads to very bad performances. If we look at the results
reported in reftab::bleu-add-1, it looks like the best performing model

6.2 quantitative evaluation 93

is consistently VGG AVG+Linear, since it achieves the highest scores in
all BLEUs compared to the other light architectures.

• The Captioning and BERT baselines achieve low scores because of
the bad quality answers they generate. After further investigation,
we discovered that both architectures fail to learn what the task is:
the Captioning system always generates sequences of "yes" and "no",
whereas BERT outputs either garbage words or nothing at all. Later we
will address more precisely why these models, and especially BERT,
which is apparently similar to GPT-2, perform so bad.

Even though BLEU helps to understand some critical aspects of how our
systems perform, it has some severe shortcomings: it is not capable of dealing
with the semantic contained in the answer. In a real-world scenario, if we ask
a human something, he might reply in several different (and correct) ways.
BLEU, however, fail to give high scores to correct answers that use different
words.

Consider the question "What color is the water?" and assume the ground
truth is "Blue"; an answer like "Same color as the sky" would result in a BLEU
score of 0, even though it might be a perfect answer (provided there are no
clouds in the sky). The latter issue convinced us to experiment with one
further metric, namely, Word Mover’s Distance [39].

6.2.3 Word Mover’s Distance

To check the semantic similarity between the answers generated by our
models and the ground truths, we employed a powerful metric based on
pre-trained word-embeddings, which is the Word Mover’s Distance (WMD)
[39].

Before getting into details, consider the following two sentences, taken
from [51]:

Obama speaks to the media in Illinois
The President greets the press in Chicago

it is evident that they do not have any word in common, and, for this reason,
their BLEU score would be 0, even though they carry the same piece of
information.

Word Mover’s Distance is capable of saying how much two sentences
are "semantically distant" by projecting the tokens of each sentence in a
higher-dimensional space (word-embeddings) and computing which is the
minimum cumulative distance that words from sentence A need to travel
to match precisely those in sentence B. A distance of 0 indicates a perfect

94 evaluation

Figure 6.6: Number of answers in each model for which we can compute the WMD
to the ground truths. Recall that the testing set consists of 100K samples. As we
discuss, depending on the output, the WM distance to the ground truths might
be infinite. When this is the case, we are unable to say how distant the answer is
from the ground truths, and we discard the value. For instance, BERT, producing
almost every time empty or garbage sequences, has ≈ 20K answers whose WMD
is not infinite, while the models with the fixed head have almost non-computable
distances.

semantic match. In contrast, the maximum distance is arbitrary and might be
infinite (no relation at all).

In our evaluation process, we employ WMD with 100-dimensional pre-
trained GloVe embeddings [16] and discover that some of our models (like
VGGPT-2 and ResGPT-2) are indeed generating quality answers, following
the trend highlighted by both Accuracy and BLEU metrics.

Since we use pre-trained embeddings and their vocabularies, it might
happen that some words in our answers or ground truths do not have a
corresponding embedding. This usually results in an infinite distance between
the two sentences and forces us to drop the latter when plotting the results
(see Figure 6.6).

In Figure 6.7 we show the WMD scores for each model. The graph high-
lights that the full V+Q+A architectures generate a significantly larger amount
of answers whose WM distance is 0, indicating that the latter models are

6.2 quantitative evaluation 95

Figure 6.7: Word Mover’s Distance distribution computed for all of our models on
the testing set. A sharper peak near 0 indicates better performances. On the y-axis
we report the percentage of answers in the testing set corresponding to the WM
distance reported on the x-axis.

making good use of both the visual and textual modality to generate the
outputs.

The highest correlation is between the VQA-Baseline and VGGPT-2 /
ResGPT-2, since these models tend to produce answers which are really
close (semantically) to the ground truths (distance close to 0). The light
architectures perform good as well, but the peak around 0 is less sharp and
the distribution is more flattened out. The best light model appears to be
VGG AVG+Linear, according to the plots.

Even though WMD is not a definitive metric of evaluation for VQA architec-
tures, it confirms the general trend and supports the fact that our architecture

96 evaluation

Figure 6.8: Screenshot of our web interface layout. At the top there is the possibility
to upload an image and, below, there are some sample images that can be chosen for
an immediate interaction.

is indeed able to address the VQA task quite well. The further qualitative
evaluation will provide some other exciting results.

6.2.4 Remarks on BERT

The BERT Baseline performs so badly because we are using its architecture
as if it was meant for language generation. Although extremely powerful for
many NLP downstream tasks, its bi-directionality does not allow the system
to generate the next word given the probability distribution of the previous
context. In other words, this architecture is not able to generate reasonable
answers (or textual sequences) conditioning them in the previous context
because the model is always allowed to look at both directions in the input.
These architectures are complicated, and we didn’t notice this issue until we
evaluated all our systems. However, we decided to compare the results even
with BERT to show its shortcomings when it comes to VQA and language
generation.

6.3 qualitative evaluation

In the previous section, we introduced a lot of numeric results that gave us
an estimate about how each model compared with the others.

Aside from the quantitative results, which are very important to say how a
system compares with other architectures, we wanted to test our model with
arbitrary questions to check its ability to reason on multimodal inputs.

6.3 qualitative evaluation 97

We decided to perform a qualitative evaluation because we believe the
metrics mentioned in the previous section were not enough to provide a
sound overview of our architecture’s performances.

For this reason, we built a Web-Interface (see Figure 6.8) connected to a
Python Backend that allows anybody to interact directly with the system.
The platform (built using Flask & Bootstrap 4.0), allows users to upload their
own images or select them from a random sample taken from the validation
set. Afterward, the users are redirected to an interactive page where they can
ask multiple questions on the selected (or uploaded) image. The backend is
connected to both VGGPT-2 and the VQA-Baseline.

We experimented with several different types of questions and checked the
ability of our VQA systems to classify, count, and detect different objects in
the images.

After having spent a lot of time testing our systems with our own questions
and images, we observed that the only systems capable of addressing the
VQA problem properly were VGGPT-2 and the VQA Baseline. Even though
our initial intent was to report all the outputs for every model we discussed,
for the sake of brevity, we include qualitative results only for VGGPT-2
and VQA Baseline.

We now report these results considering different question/image pairs
and briefly discuss the differences between the two architectures. For VGGPT-
2, we even report the softmaps computed within the attention mechanism,
which show how the focus on the image changes depending on the considered
word in the question and the answer. Softmaps for the three tokens <bos>,
<sep>, and <eos> are not reported. Note that the tokens that appear within the
softmaps are BPE-Encoded.

6.3.1 Classification performances

First, we report some outputs to classification-like questions to check the
ability of our model to describe what it is seeing.

The outputs associated with the example reported in Figure 6.9 show the
limitations of the VQA-Baseline: the picture contains multiple animals, but
the baseline can only predict one of the two since it has a fixed set of possible
answers. On the other hand, VGGPT-2 successfully generates the correct
answer using its language model. The same issue limits the baseline output
reported in Figure 6.10, where it can only predict one color at a time. Our
architecture is indeed able to addend the image and answer correctly.

98 evaluation

Figure 6.9: Outputs produced by the two architectures for the question "What do
you see?" on the image reported on the top left.

6.3.2 Reasoning performances

Afterward, we start asking our models more complex answers and discover
that VGGPT-2 is indeed performing even better than our baseline, answering
most of the times with richer sentences in correct English. From our point of

6.3 qualitative evaluation 99

Figure 6.10: Outputs produced by the two architectures for the question "What color
is the train?" on the image reported on the top left.

view, VGGPT-2 is a better model with respect to our VQA-Baseline when it
comes to real-world VQA.

If we consider the example reported in Figure 6.11, we can clearly see
the limitations of treating the problem as a classification task. A system that
distributes probabilities over a fixed set of answers, such as our VQA-Baseline,
will never be able to produce an answer like "walking in water" if it is not one

100 evaluation

Figure 6.11: Outputs produced by the two architectures for the question "What are
the animals doing?" on the image reported on the top left.

of the possible candidates. Contrarily, VGGPT-2 is flexible and scales well
with more complex questions.

Once again, in Figure 6.12, we clearly see how the language model empow-
ers our architecture, allowing it to generate a better description of what is on
the plate.

6.3 qualitative evaluation 101

Figure 6.12: Outputs produced by the two architectures for the question "What is in
the plate?" on the image reported on the top left.

6.3.2.1 Generation performances

We discover that our systems (and especially VGGPT-2) can generate a
question autonomously with an associated answer or a description of what it
sees without any input at all. This is fascinating because if we do not feed
any question, the VQA-Baseline always returns "yes", whereas VGGPT-2
generates something which is always correlated to the image. In other words,

102 evaluation

Figure 6.13: Outputs produced by the two architectures with no input question on
the image reported on the top left. VGGPT-2 generates first a question and then
answers it autonomously.

the VQA-Baseline is not able to generate anything if not conditioned on a
question. Contrarily, VGGPT-2 can exploit only the visual features to generate
sequences that makeup questions, answers, or captions, all on its own. We
report two examples in Figure 6.13 and Figure 6.14.

6.4 conclusions 103

Figure 6.14: Outputs produced by the two architectures with no input question on
the image reported on the top left. VGGPT-2 generates first a question and then
answers it autonomously.

6.4 conclusions

As we highlighted in this section, a qualitative evaluation has revealed one
of our models performs indeed well (VGGPT-2), and definitely better with
respect to what the quantitative evaluation told us. We are satisfied with
these results, which have definitely gone beyond our expectations.

We showed that it is indeed possible to use a Transformer as a new language
model to address the VQA task, and we are motivated to keep on refining
our architecture to improve performances.

7
C O N C L U S I O N S

In this work, we discussed a new approach to Visual Question Answering,
firmly believing in the need to address this problem in an open-ended fashion.
We have introduced a lot of concepts, such as what a Transformer is, and we
proposed a set of new architectures that try to exploit its power to deal with
the problem differently.

At the beginning of this work, we were unsure about whether or not we
would have ever been able to build any system fit for the task using a new
type of architecture. We had to face countless challenges to reach a point
where our implementation was able to generate answers, and, after fine-
tuning the structure of our system for months, the results have gone, in the
end, beyond our expectations.

Our primary objective was not to beat the current state of the art, but
rather addressing the problem from a different point of view, providing the
community with a new baseline that intends to move the attention towards
an open-ended VQA approach.

We are thrilled to have had the opportunity to work in this field and hope
that this work will eventually be taken into consideration by the scientific
community for further improvements.

7.1 future work

Even though this is the end of this document, we do not intend to stop our
research for better VQA models. Future work will try to build a different and
more efficient architecture while maintaining the power of the system, and
possibly improving it. Briefly, this is our roadmap towards improving our
model:

• Multiple attention heads: As discussed in [1], multi-headed attention
systems usually perform better. For this very reason, instead of sticking
with a single attention vector for each token in the input sequence,
we would like to concatenate the outputs of multiple attention heads
together and see if we manage to boost performances.

• More powerful language model: Even though our best-performing
architecture is already profound (VGGPT-2, 202M parameters), we
wonder how the system would behave using more powerful versions
of GPT-2, such as the ones with, respectively, 345M, 774M or 1558M
parameters. OpenAI shows that the performances of these systems scale

105

106 conclusions

well with the number of parameters; for this reason, we are confident
that combining more powerful language models in our system would
result in better answers. However, at the moment, we are limited by the
computing power at our disposal.

• Other metrics: We would like to test our systems on other metrics that
we did not explore, such as WUPS and METEOR, and compare these
new results with ours.

7.2 publications

This thesis has been written on top of my previous work for the defense at
the University of Illinois at Chicago (UIC). After having discussed my thesis
I wrote a paper with my advisors and submitted it to the 29th International
Joint Conference on Artificial Intelligence. The work was not very mature
back in December 2019, so it has been rejected. In these last months of hard
work, we tested several new architectures and our intention is to improve the
paper by adding them all and re-submit it to both IJCAI and ACL conferences
as soon as possible. We add the paper at the end of this document, inside the
last appendix.

B I B L I O G R A P H Y

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention
Is All You Need.” In: CoRR abs/1706.03762 (2017). arXiv: 1706.03762
(cit. on pp. 2, 23, 27, 28, 105).

[2] Yusuke Shibata, Takuya Kida, Shuichi Fukamachi, Masayuki Takeda,
Ayumi Shinohara, and Takeshi Shinohara. “Byte Pair Encoding: A Text
Compression Scheme That Accelerates Pattern Matching.” In: (Sept.
1999) (cit. on pp. 9, 30, 47).

[3] Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken Language
Processing: A Guide to Theory, Algorithm, and System Development. 1st.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001. isbn: 0130226165

(cit. on p. 7).

[4] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. “Language models are unsupervised multitask
learners.” In: OpenAI Blog 1.8 (2019) (cit. on pp. 9, 23, 28, 29, 52, 59).

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding.” In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805
(cit. on pp. 29, 55).

[6] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient
estimation of word representations in vector space.” In: arXiv preprint
arXiv:1301.3781 (2013) (cit. on p. 13).

[7] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory.”
In: Neural computation 9 (Dec. 1997), pp. 1735–80 (cit. on p. 20).

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
Residual Learning for Image Recognition.” In: CoRR abs/1512.03385

(2015). arXiv: 1512.03385 (cit. on p. 25).

[9] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer nor-
malization.” In: arXiv preprint arXiv:1607.06450 (2016) (cit. on p. 25).

[10] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition.” In: arXiv preprint arXiv:1409.1556
(2014) (cit. on pp. 34, 35, 49).

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
Residual Learning for Image Recognition.” In: CoRR abs/1512.03385

(2015). arXiv: 1512.03385 (cit. on pp. 35, 39, 57, 69).

107

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

108 bibliography

[12] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. “Deep
Compositional Question Answering with Neural Module Networks.”
In: ArXiv abs/1511.02799 (2015) (cit. on pp. 36–38).

[13] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Kate Saenko. “Learning to Reason: End-to-End Module Networks for
Visual Question Answering.” In: CoRR abs/1704.05526 (2017). arXiv:
1704.05526 (cit. on pp. 36–38).

[14] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville,
Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. “Show,
Attend and Tell: Neural Image Caption Generation with Visual Atten-
tion.” In: CoRR abs/1502.03044 (2015). arXiv: 1502.03044 (cit. on pp. 49,
65).

[15] DP Kingma and JL Ba. “Adam: A method for stochastic optimization.
arXiv 2014.” In: arXiv preprint arXiv:1412.6980 (2014) (cit. on pp. 52, 53).

[16] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove:
Global Vectors for Word Representation.” In: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct. 2014,
pp. 1532–1543 (cit. on pp. 13, 94).

[17] Dan Klein and Christopher D Manning. “Accurate unlexicalized pars-
ing.” In: Proceedings of the 41st Annual Meeting on Association for Compu-
tational Linguistics-Volume 1. Association for Computational Linguistics.
2003, pp. 423–430 (cit. on p. 37).

[18] Marie-Catherine De Marneffe and Christopher D Manning. “The Stan-
ford typed dependencies representation.” In: Coling 2008: proceedings of
the workshop on cross-framework and cross-domain parser evaluation. Associ-
ation for Computational Linguistics. 2008, pp. 1–8 (cit. on p. 37).

[19] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh. “VQA: Visual
Question Answering.” In: The IEEE International Conference on Computer
Vision (ICCV). 2015 (cit. on pp. 35, 36, 44).

[20] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh. “VQA: Visual
Question Answering.” In: CoRR abs/1505.00468 (2015). arXiv: 1505.
00468 (cit. on pp. 36, 40, 44, 46).

[21] Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. “A corpus of
natural language for visual reasoning.” In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers). 2017, pp. 217–223 (cit. on pp. 38, 43).

https://arxiv.org/abs/1704.05526
https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/1505.00468
https://arxiv.org/abs/1505.00468

bibliography 109

[22] Alane Suhr, Stephanie Zhou, Iris Zhang, Huajun Bai, and Yoav Artzi.
“A Corpus for Reasoning About Natural Language Grounded in Pho-
tographs.” In: CoRR abs/1811.00491 (2018). arXiv: 1811.00491 (cit. on
pp. 38, 43).

[23] Naomi S Altman. “An introduction to kernel and nearest-neighbor
nonparametric regression.” In: The American Statistician 46.3 (1992),
pp. 175–185 (cit. on p. 36).

[24] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C. Lawrence Zitnick, and Ross B. Girshick. “CLEVR: A Diagnostic
Dataset for Compositional Language and Elementary Visual Reason-
ing.” In: CoRR abs/1612.06890 (2016). arXiv: 1612.06890 (cit. on p. 44).

[25] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev,
Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. “Microsoft COCO: Common Objects
in Context.” In: CoRR abs/1405.0312 (2014). arXiv: 1405.0312 (cit. on
p. 44).

[26] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
“SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” In:
CoRR abs/1606.05250 (2016). arXiv: 1606.05250 (cit. on p. 44).

[27] Vahid Kazemi and Ali Elqursh. “Show, Ask, Attend, and Answer: A
Strong Baseline For Visual Question Answering.” In: CoRR abs/1704.03162

(2017). arXiv: 1704.03162 (cit. on p. 57).

[28] Mateusz Malinowski and Mario Fritz. “A Multi-World Approach to
Question Answering about Real-World Scenes based on Uncertain
Input.” In: Advances in Neural Information Processing Systems 27. Ed.
by Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q.
Weinberger. Curran Associates, Inc., 2014, pp. 1682–1690.

[29] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. “Hierarchical
question-image co-attention for visual question answering.” In: Ad-
vances In Neural Information Processing Systems. 2016, pp. 289–297 (cit. on
p. 38).

[30] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor
Darrell, and Marcus Rohrbach. “Multimodal compact bilinear pooling
for visual question answering and visual grounding.” In: arXiv preprint
arXiv:1606.01847 (2016) (cit. on pp. 35, 39).

[31] Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding
frequent items in data streams.” In: International Colloquium on Automata,
Languages, and Programming. Springer. 2002, pp. 693–703 (cit. on p. 40).

https://arxiv.org/abs/1811.00491
https://arxiv.org/abs/1612.06890
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1704.03162

110 bibliography

[32] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. “Compact
bilinear pooling.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 317–326 (cit. on p. 40).

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
residual learning for image recognition.” In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 770–778

(cit. on pp. 40, 69).

[34] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. “From Recog-
nition to Cognition: Visual Commonsense Reasoning.” In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2019 (cit.
on p. 44).

[35] Edward Loper and Steven Bird. “NLTK: The Natural Language Toolkit.”
In: Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies
for Teaching Natural Language Processing and Computational Linguistics -
Volume 1. ETMTNLP ’02. Philadelphia, Pennsylvania: Association for
Computational Linguistics, 2002, pp. 63–70 (cit. on pp. 47, 50, 89).

[36] Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying Zhang, Saizheng
Zhang, Aaron C Courville, and Yoshua Bengio. “Professor forcing: A
new algorithm for training recurrent networks.” In: Advances In Neural
Information Processing Systems. 2016, pp. 4601–4609 (cit. on pp. 48, 51).

[37] Mike Schuster and Kaisuke Nakajima. “Japanese and korean voice
search.” In: 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2012, pp. 5149–5152 (cit. on pp. 30, 47,
55).

[38] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. “BLEU:
a method for automatic evaluation of machine translation.” In: Proceed-
ings of the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics. 2002, pp. 311–318 (cit. on
pp. 84, 88).

[39] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. “From
word embeddings to document distances.” In: International conference
on machine learning. 2015, pp. 957–966 (cit. on pp. 84, 93).

[40] Chin-Yew Lin and Franz Josef Och. “Automatic evaluation of machine
translation quality using longest common subsequence and skip-bigram
statistics.” In: Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics. Association for Computational Linguistics.
2004, p. 605 (cit. on p. 89).

[41] Boxing Chen and Colin Cherry. “A systematic comparison of smoothing
techniques for sentence-level bleu.” In: Proceedings of the Ninth Workshop
on Statistical Machine Translation. 2014, pp. 362–367 (cit. on p. 89).

bibliography 111

[42] Google Translate. https://translate.google.com/. Online; Accessed
2019-10-15 (cit. on p. 7).

[43] The Illustrated Transformer. http://jalammar.github.io/illustrated-
transformer/. Online; Accessed 2019-10-28 (cit. on pp. 26, 28).

[44] Trump dances with danger in Middle East. https://edition.cnn.com/
2019/05/26/middleeast/trump-middle-east-iran-analysis-trump-

intl/index.html. Online; Accessed 2019-10-28 (cit. on p. 29).

[45] Large Scale Visual Recognition Challenge (ILSVRC). http://www.image-
net.org/challenges/LSVRC/. Online; Accessed 2019-10-29 (cit. on
pp. 34, 35, 61).

[46] The internet’s source of freely useable images. https://unsplash.com.
Online; Accessed 2019-10-30 (cit. on pp. 6, 15, 37, 45).

[47] Amazon Mechanical Turk. https://www.mturk.com/. Online; Accessed
2019-11-3 (cit. on p. 43).

[48] Show, Attend, and Tell | a PyTorch Tutorial to Image Captioning. https:
//github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning.
Online; Accessed 2019-11-5 (cit. on pp. 49, 65).

[49] Strong baseline for visual question answering. https : / / github . com /

Cyanogenoid/pytorch-vqa. Online; Accessed 2019-11-5 (cit. on pp. 57,
58).

[50] COCO - Common Objects in Context. http://cocodataset.org/. Online;
Accessed 2019-5-18.

[51] Word Mover’s Distance for Text Similarity. https://towardsdatascience.
com/word- movers- distance- for- text- similarity- 7492aeca71b0.
Online; Accessed 2019-10-18 (cit. on p. 93).

https://translate.google.com/
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://edition.cnn.com/2019/05/26/middleeast/trump-middle-east-iran-analysis-trump-intl/index.html
https://edition.cnn.com/2019/05/26/middleeast/trump-middle-east-iran-analysis-trump-intl/index.html
https://edition.cnn.com/2019/05/26/middleeast/trump-middle-east-iran-analysis-trump-intl/index.html
http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/
https://unsplash.com
https://www.mturk.com/
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
https://github.com/Cyanogenoid/pytorch-vqa
https://github.com/Cyanogenoid/pytorch-vqa
http://cocodataset.org/
https://towardsdatascience.com/word-movers-distance-for-text-similarity-7492aeca71b0
https://towardsdatascience.com/word-movers-distance-for-text-similarity-7492aeca71b0

Part I

A P P E N D I X

Towards Open-Ended VQA Models Using Transformers

Alberto Mario Bellini1,2 , Natalie Parde2 , Matteo Matteucci1 and Mark James Carman1

1Politecnico di Milano
2University of Illinois at Chicago

albertomario.bellini@mail.polimi.it, parde@uic.edu
matteo.matteucci@polimi.it, mark.carman@polimi.it

Abstract
Visual Question Answering (VQA) is an open area
of research at the intersection of natural language
processing and computer vision, with many excit-
ing practical applications. However, most prior
work on this problem shares a standard limita-
tion: the number of possible answers is restricted
to a limited set of candidates, constraining the re-
sulting models’ power and flexibility. We address
this shortcoming by introducing a new architecture
for VQA that employs a state-of-the-art language
model, the Transformer, to generate open-ended
answers. This novel approach allows the system
to generate unconstrained text rather than selecting
from discrete categories, representing a substantial
contribution towards developing more humanlike
VQA systems. We show that our architecture com-
pares well with existing VQA models, setting an
exciting new benchmark for future research.

1 Introduction
Visual Question Answering (VQA) is an open, multidisci-
plinary research problem that combines computer vision, nat-
ural language processing, and deep learning to interpret and
respond to open-domain questions about images. This task
is challenging because it requires both (a) an ability to un-
derstand what has been asked, and (b) an ability to reason on
the associated image to seek relevant information. If both of
these subtasks are performed adequately, a sound VQA sys-
tem should be capable of generating meaningful answers to
the questions in natural language, preserving semantic and
syntactic correctness.

Despite the difficulty of these interrelated subtasks, cur-
rent VQA architectures achieve strong results and can gen-
eralize reasonably well on different question-image pairs
[Antol et al., 2015; Andreas et al., 2016; Lu et al., 2016;
Hu et al., 2017; Tan and Bansal, 2019]. Still, they share a
standard limitation: the generated answers tend to be short
and concise (e.g., “yes,” “no,” “blue”), with little to no con-
text. This arises at least partially from how the VQA prob-
lem is commonly framed—language generation is typically
treated as a classification task, rather than the open-ended, un-
constrained problem more reflective of how it is approached

by humans. Because of this framing, answers are forced
to lie within a limited, predefined set of candidates. This
naturally creates a dichotomy between the human and ma-
chine scenarios—while humans may enrich their answers,
providing longer sentences with punctuation and arguments,
VQA systems tend to rely on outputting single words as a
performance-preserving mechanism.

In this work we tackle VQA using a different approach:
instead of distributing probabilities over a predefined set of
possible candidate answers, we employ a Generative Pre-
Trained Transformer-2 (GPT-2) model [Radford et al., 2019]
to generate answers one token at a time. GPT-2 is a powerful,
Transformer-based language model that relies entirely on at-
tention mechanisms to condition the generation of tokens on
the given context and the tokens generated at previous time
steps. Our contributions are as follows:

1. We leverage the Transformer architecture in a VQA sys-
tem to develop a model capable of exploiting its linguis-
tic knowledge to generate more natural and open-ended
answers.

2. We empirically demonstrate the feasibility of combining
GPT-2 with common visual feature extractors (e.g., con-
volutional neural networks), to condition the generation
of each token not only on the textual modality but on
visual input as well.

3. We do so by introducing a variation of the Transformer
architecture such that feature maps output from the im-
age encoder are taken into consideration when generat-
ing the next token.

4. We show that our novel architecture is competitive with
existing VQA models, providing evidence that uncon-
strained, generative models are a viable approach for
VQA and establishing a benchmark to stimulate further
research in this area.

We describe our methods and evaluation procedures in
more detail in the following sections.

2 Related Work
Prior work in VQA has primarily shared a common struc-
ture [Antol et al., 2015; Andreas et al., 2016; Lu et al., 2016;
Hu et al., 2017; Tan and Bansal, 2019]. First, encoders (e.g.,

long short-term memory (LSTM) or convolutional neural net-
work (CNN) models) extract features from the visual and tex-
tual inputs. Then, the two modalities are joined in a com-
mon subspace to form a higher-level representation. Finally,
a classifier distributes probabilities over a vocabulary of pos-
sible answers. A host of smaller variations to this common
structure exist across architectures; we describe the highest-
performing recent models in more detail.
MCB. Multimodal Compact Bilinear Pooling (MCB)
[Fukui et al., 2016] is a robust architecture that exploits an
outer product to combine the two modalities, to maximize the
multiplicative interaction between their two vector represen-
tations. Fukui et al. [2016] devised this mechanism under
the hypothesis that existing methods for combining the two
modalities were insufficient for projecting them in the right
space. In MCB, the vector representations for text and vi-
sual inputs are computed, respectively, by a two-layer LSTM
and a Residual Network [He et al., 2016]. Once the multi-
modal representations are encoded, they are pooled together.
Traditional bilinear pooling results in high-dimensional vec-
tors; however, MCB efficiently compresses the output for ev-
ery modality by first projecting the image and question into
a higher-dimensional space using the Count Sketch method
[Charikar et al., 2002], and then convolving the two represen-
tations by taking the element-wise product in the Fast Fourier
Transform space [Gao et al., 2016]. Given the attention out-
put computed by MCB and the outputs of the LSTM, the final
answer is generated using a classifier. MCB achieves a 62%
accuracy on the VQA dataset.
BUTD. Bottom-Up and Top-Down Attention for Image
Captioning and Visual Question Answering [Anderson et al.,
2018] is a recent architecture that currently achieves an ac-
curacy of 70.3% on the VQA dataset. It combines bottom-
up and top-down attention mechanisms that enable atten-
tion to be calculated both at the level of objects and other
salient image regions. The bottom-up attention mechanism
accounts for determining interesting regions in the input im-
age, whereas the top-down mechanism determines how to
weight each region. The final classification model distributes
probabilities over a fixed set of candidate answers.
LXMERT. Tan and Bansal’s [2019] architecture is the cur-
rent state-of-the-art on the VQA dataset, achieving a 72.5%
accuracy. Like our approach, LXMERT incorporates a Trans-
former architecture, although it does so for a different pur-
pose. The large-scale model consists of three encoders: an
object relationship encoder, a language encoder, and a cross-
modality encoder. To train the model to connect vision and
language, Tan and Bansal pre-train the model with large
amounts of image-and-sentence pairs. However, the model
does not generate open-ended answers, with the authors in-
stead exploiting Transformers as more powerful encoders.
Ultimately, the cross-modal intermediate output is fed to a
classifier, which still distributes probabilities over a prede-
fined vocabulary of answers.

3 Architecture
In this work, we introduce a generative VQA model (VGGPT-
2) that employs attention mechanisms at multiple levels and

is capable of using the information contained in the question
to focus on specific portions of the image. This information
is in turn used to mask out irrelevant portions of the question
to facilitate the generation of accurate answers. Four com-
ponents work together to process both the visual and textual
modalities to form natural, unconstrained answers. We de-
scribe these components in the subsections below, and pro-
vide a high-level overview of the architecture in Figure 1.

3.1 Image Encoder
The first component, an image encoder, consists of a
pre-trained VGGNet-111 model [Simonyan and Zisserman,
2014]. We employ this model to extract visual features from
the images associated with the input questions. Since, in our
context, we do not need VGGNet to act as a classifier, but
rather as a feature extractor, we follow common practice and
drop the last three fully-connected layers, retaining only the
output of the last average pooling layer. This way, given an
image, the encoder produces a set of maps that contain high-
level extracted features.

Specifically, letting ci be three different channels (red,
blue, and green) of width wi = 224 and height hi = 224,
the visual input consists of an image I ∈ Rci×wi×hi . The
output of the image encoder then consists of a set of maps
M ∈ Rco×wo×ho , where co = 512 different channels of width
wo = 7 and height ho = 7. M then serves as one of the two
inputs to our attention mechanism.

3.2 Language Model
We use OpenAI’s GPT-2 (small, 117M) Transformer [Rad-
ford et al., 2019] as our language model, refining their pre-
trained architecture in order to integrate it into our system.
GPT-2 consists of two core blocks: (1) the Transformer,
which is responsible for computing the multi-head attention
discussed previously; and (2) the final classifier which, for
each token processed by the Transformer, produces a distri-
bution of probabilities over the vocabulary of words.2

Since our goal is for the language model to interact with
the image encoder, we split apart GPT-2’s two blocks and
use them separately in our model. Given a sequence of n
input tokens S ∈ Rn×1, the output of the transformer T ∈
Rn×hidden consists of a sequence of n hidden vectors of size
hidden = 768. We use T as the second input to our attention
mechanism.

3.3 Attention
The attention component is critical to our architecture, and
is responsible for combining features from the two different
sub-spaces into a single representation. We employ a co-
attention mechanism, using the question to drive the focus on
the image and vice versa. To formally define this component,
we recall its inputs:

1We do not experiment with deeper vision architectures in this
work since our primary focus is on the language modeling aspect.

2Recall that this is a language model that exploits attention,
which means that the probability p(wi|ti, ti−1, ...ti−k) of generat-
ing the word wi at time step i is conditioned on the input tokens
ti, ti−1, ...ti−k up to time step i.

Figure 1: VGGPT-2 architecture overview, highlighting the answer generation process beginning from a question/image pair.

• Image Encoder Output: a vector M ∈ R512×7×7

• Language Model Output: a vector T ∈ Rn×768

Our model first flattens M into a more convenient repre-
sentation Mflat ∈ R512×49. Then, both Mflat and T are fed to
two separate linear layers (LinM and LinT) that bring the two
vectors into a common subspace of size AttDim = 512:

• LinM: brings Mflat ∈ R512×49 into Matt ∈ RAttDim×49

• LinT: brings T ∈ Rn×768 into Tatt ∈ Rn×AttDim

At this point, for every element Tatt
i ∈ RAttDim in Tatt,

with i ∈ N ∧ i ∈ [0, n), we repeat the following set of opera-
tions:

1. We sum Tatt
i to each element Matt

k ∈ RAttDim of Matt,
with k ∈ N∧k ∈ [0, 49), obtaining the first multi-modal
attention representation A1

i ∈ RAttDim×49 for the ith

token in the input sequence.

2. We rectify A1
i using a ReLU unit and obtain an interme-

diate attention representation A2
i ∈ RAttDim×49.

3. Using a linear layer (Linsoft) we compress AttDim
down to 1. In other words, Linsoft brings A2

i ∈
RAttDim×49 into A3

i ∈ R1×49.

4. To obtain a softmap that highlights relevant spots of the
image given a specific word at position i, we pass A3

i

through a Softmax function and obtain A4
i ∈ R1×49,

where A4
i, h ∈ (0, 1) with h ∈ N ∧ h ∈ [0, 49). At this

point every pixel in A4
i has an associated value between

0 and 1, which indicates how important that pixel is to
answer the question.

5. We perform a point-wise multiplication between every
element Mflat

k ∈ R1×49 in the original flattened maps
Mflat with A4

i, obtaining a new vector A5
i ∈ R512×49.

In this step we perform the Question-to-Image atten-
tion, since we exploit the softmaps computed at the pre-
vious step to mask out irrelevant portions of the image.

6. We sum, for each channel in A5
i, all the masked pixels

together, reducing the dimension from 49 to 1. In other
words, we go from A5

i ∈ R512×49 to A6
i ∈ R512×1 by

summing all the elements together on the pixel axis.

7. We bring A6
i back to the Transformer space through a

final linear layer (Linout), which expands A6
i ∈ R512×1

to A7
i ∈ R768.

8. We compute the Image-to-Question attention through
a final point-wise multiplication between A7

i and every
element Ti ∈ R768 of T, which is the original output of
the Transformer before this layer. The final output of
the attention mechanism for every embedded token Ti

and the maps M coming from the image encoder is the
vector Aout

i ∈ R768.

We described how the attention layer works considering
one single embedded token Ti at a time. However, it is easy
to scale it up to a sequence of n elements. To do so, we
just include an additional dimension for the vectors in the at-
tention layer that accounts for the token under consideration.
The output Aout of the attention mechanism is then combined
back with the output of the language model to generate the
answer.

3.4 Answer Generator
We generate the final answer by once again exploiting the lan-
guage model. This last component diverges from traditional
VQA systems—while most existing work has fed the output
of the attention mechanism to a classifier, thereby distributing
probabilities over a predefined set of answers, we frame this
last step differently.

We condition the generation of words using the output of
the attention layer. Instead of feeding the output T of the
Transformer directly to its head, we first perform a key opera-
tion: we take the attention output Aout and concatenate it with
the Transformer output T into a new vector O ∈ Rn×1536.
Then, with the help of a new linear layer (LinClassifier), we
distribute probabilities over the original vocabulary of words
from the pre-trained GPT-2 model. In order not to lose the
valuable information contained in the weights of the pre-
trained model C (or head), we do the following:

1. We initialize the first 768×50254 weights of LinClassifier
with the ones present in the original head of GPT-2.

2. We initialize the last 768 × 50254 weights, accounting
for the attention layer output, to 0.

This allows the model to start training from a state in which it
is already able to generate sequences of words correctly, since
all weights relevant to the attention mechanism are initialized
to 0, and the only ones that influence the output are coming
from T. This last linear layer consists of roughly 77.1M pa-
rameters (1536× 50254), so it is imperative to perform such
an initialization to train the system in a reasonable amount of
time.

Afterward, we feed O, also known as the Logits vector, to a
Softmax function that distributes probabilities over our vocab-
ulary. To generate the output word wi corresponding to the
input token at position i, we pool the most probable word in a
greedy fashion.3 Importantly, instead of using a compact rep-
resentation of the input question and the image to distribute
probabilities over a fixed set of answers, we dynamically gen-
erate each word, conditioning it on the previously-generated
words. At evaluation time, this allows the system to generate
arbitrarily long answers in the following fashion:

1. Given a question of n words and an image, we first let
the system generate the initial word in the answer, con-
ditioned only on the question and the image.

2. After we have generated the first word, we append it to
the original question, which becomes a sequence of n+1
words. This time, the second word in the answer gets
generated conditioned on the new sequence.

3. The procedure goes on until the system outputs the
<eos> token or a maximum length threshold is
reached.

4 Dataset
Following other recent work on VQA, we train and evaluate
our model using the Visual Question Answering V2 (VQAv2)
dataset [Goyal et al., 2017], a large collection of real-world
question-image pairs. Although the corpus is primarily meant
for standard classifier-driven VQA models, its use facilitates
direct comparison with existing models; such a comparison is
key to demonstrating the effectiveness of open-ended, gener-
ative VQA models such as that proposed here.

Importantly, the dataset is based on real-word images and
not on synthetic ones, allowing for better generalization capa-
bilities. It consists of more than 200K images, 1M questions
and 10M ground truth answers, manually annotated. There
are at least 3 questions (5.4 on average) per image, and each
question/image pair has 10 different annotated answers. To
disincentivize answers based purely on linguistic bias, some
questions have complementary image pairs. Additionally, an-
swers were balanced for different question types in order not
to have a predominant value.

4.1 Preprocessing
We apply a variety of preprocessing steps to the text and im-
ages in order to most productively make use of the corpus. We
summarize the structure of the preprocessed dataset in Table
1, and elaborate further on our preprocessing steps below.

3We also experimented with beam search, finding that with beam
sizes greater than one, the model generated shorter answers more
characteristic of those produced by traditional classification-based
VQA systems.

Train Test

Split size 106 105

Sequence length 24 22
Question + Answer yes no
Min. question length 5 6
Max. question length 21 22
Avg. question length 8.45 9.48
Min. answer length 3 -
Max. answer length 18 -
Avg. answer length 3.89 -
Avg. <pad> count 11.65 -
of unique images 71450 32822

Table 1: Structure of the processed dataset

Grayscale removal. We discarded all samples associated
with non-RGB images, retaining only colored images.
Answer length. Since we were interested in building an
architecture capable of generating open-ended answers, we
prioritized longer samples and gave less importance to those
with concise answers.
Answer variability. We randomly selected up to 4 anno-
tations for each question, ensuring that at most 4 identical
question/image pairs were fed to the model, with 4 different
answers.
Data formatting. Given a question/answer pair for a given
image, we concatenated the pair to form a sequence of words.
This sequence was then fed to the model at training time.
For the test data, we dropped all answers and kept only the
question/image pairs. At evaluation time we let the model
generate the full answer in a greedy fashion, by pooling the
most probable word at each time step. All textual inputs were
byte-pair encoded [Shibata et al., 1999] using the pre-trained
GPT-2 vocabulary.
Custom tokens. We introduce four new tokens: <bos>,
<eos>, <sep>, and <pad> to indicate the beginning and
end of the sequence, the separation between question and
answer, and finally the padding token. In the training set,
we make use of all four tokens while encoding the input se-
quence. In the test set, we only use <bos> and <sep> since
no answer is present. Since we introduce these new tokens,
we set the language model’s weights to be trainable in order
to update the embedding matrix and the attention layers.

5 Training
To train our architecture we employ a technique called
Teacher Forcing [Lamb et al., 2016]: given a question with
its associated answer, we combine the two to form a sequence
of tokens that are fed to the model. Exploiting a CrossEn-
tropy loss function, we train our system to predict the in-
put sequence shifted by 1 time step, effectively telling the
model to condition the probability of generating a new token
on the previously seen context. The loss function ignores the
<pad> tokens and focuses only on portions of the sequence
that contain meaningful information. We block weight up-
dates in our image encoder, using it solely as a visual feature

extractor. However, we set our language model’s weights to
be trainable. This is necessary for the model to learn both the
nature of the task and the meaning of the newly introduced
tokens. We train the system for 20 epochs using batches of
20 elements. The learning rate is initialized to 5 × 10−5 and
Adam is employed as the optimizer. The overall architec-
ture consists of 202M parameters, since we fine-tune GPT-2
(117M) alongside the attention mechanism (8M) and the final
classifier (77M).

6 Evaluation
To assess the performance of our architecture, we compare it
against three different baselines:
Captioning baseline. The first baseline that we consider is
a captioning system [Xu et al., 2015]: given an image, this
model tries to generate a meaningful description about what
it sees. Our goal was to understand the extent to which the
textual modality (i.e., the question) was useful to generate an-
swers. The captioning baseline exploits a VGGNet-11 image
encoder to extract visual features that are later combined with
the outputs of an LSTM. The joint representation then passes
through an attention layer, which focuses on specific parts of
the image and updates the hidden states of the LSTM. The
caption is generated one token at a time and the process goes
on until an <eos> token is produced. We train this model
using Teacher Forcing and a loss computed with a doubly
stochastic attention regularization that updates the gradient
using CrossEntropy on the output sequence, with a regular-
ization factor computed starting from the attention maps.
Answering baseline. To check if our architecture was mak-
ing use of the information contained in the input images, we
considered another baseline starting from a pre-trained in-
stance of GPT-2 (Small). We fine-tuned the system to learn
how to answer the questions exploiting only the linguistic
bias present in the question, without allowing it to condition
the generation of the answer on the images.
VQA baseline. For a direct comparison with a standard,
publicly-available VQA system, we consider a third baseline
[Kazemi and Elqursh, 2017] that uses both question and im-
age to generate the answer. This is a strong baseline specif-
ically designed for VQA tasks, and a sound comparative ar-
chitecture. The system consists of an image encoder (ResNet-
152 [He et al., 2016]), alongside an LSTM which extracts tex-
tual features. A compact, but powerful, attention layer brings
the two modalities into a common subspace where they are
combined to generate attention maps over the image. Finally,
the attention output is concatenated back with the LSTM hid-
den state and the resulting vector is fed to a classifier which
distributes probabilities over 3000 possible answers. We do
not re-train or fine-tune this architecture, and download the
authors’ pre-trained instance on the VQAv2 dataset. This ar-
chitecture follows the standard VQA approach of addressing
the task in a classification manner, generating short and con-
cise answers.

6.1 Quantitative Results
We evaluate our models using three different quantitative
metrics: Accuracy, BLEU [Papineni et al., 2002], and Word

Model Overall Yes/No Number Other

Captioning 0.00 0.00 0.00 0.00
Answering 0.11 0.20 0.20 0.14
VQA 0.46 0.71 0.27 0.41
VGGPT-2 0.34 0.73 0.23 0.24

Table 2: Accuracy scores of the three baselines and VGGPT-2.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4

Captioning 0.100 0 0.100 0
Answering 0.293 0.149 0.074 0.027
VQA 0.549 0.187 0.066 0.011
VGGPT-2 0.463 0.223 0.101 0.036

Table 3: BLEU-k scores of the three baselines and VGGPT-2.

Mover’s Distance [Kusner et al., 2015]. We describe each
briefly here.
Accuracy. Nearly all existing VQA work reports accuracy
as the primary metric, computed as the percentage of times
an answer exactly matches one of the ground truths. Even
though our architecture doesn’t generate answers that span
across a fixed set of possible choices, we report these results
as a comparative means for traditional VQA approaches. It is
critical to keep in mind that if a ground truth is, say, “sunny,”
and our system outputs “it is sunny,” the accuracy would be
0. Since our architecture’s goal is to generate open-ended an-
swers, this problem occurs very frequently. Nevertheless, we
find that our model’s accuracy is comparable to that of the
VQA baseline (Table 2). Interestingly, when we compare the
shortest answers (i.e., binary outputs), VGGPT-2 achieves a
higher accuracy than the VQA baseline; it appears that when
the model does output short answers, it does so with relatively
high precision. For other question types, the VQA baseline
performs better, as expected given the preponderance of short,
concise answers in both the gold standard and VQA base-
line’s output.
BLEU. BLEU [Papineni et al., 2002] is commonly used as
an evaluation metric for generative language tasks, and thus
we incorporated it as an additional evaluation metric here.
We compute a corpus-level BLEU score by comparing each
output with its respective 10 ground truths from the VQAv2
corpus. In Table 3 we report BLEU-k scores.4 From these
results we highlight a couple interesting findings:

1. As we consider bigger n-gram overlaps (BLEU-2, -3 and
-4), VGGPT-2 performs better relative to our VQA base-
line. This means that our architecture performs better
when it comes to generating longer answers, while the
VQA baseline is strongest with single word outputs.

2. The two VQA models outperform the captioning5 and

4When we compute BLEU-k we equally weight n-gram matches
from 1 to k to sum up to 1, and set all other weights to 0.

5In general, we observe that the captioning baseline failed to
properly learn the task, as evidenced by dismal scores for both accu-
racy and BLEU.

Figure 2: Word Mover’s Distance distribution.

(particularly importantly) answering baselines, confirm-
ing that multimodality is key to answer quality.

Word Mover’s Distance. To check the semantic similarity
between the answers generated by our models and the ground
truths, we also evaluated our results using a metric that ex-
ploits pre-trained word embeddings, known as Word Mover’s
Distance (WMD) [Kusner et al., 2015]. We employ WMD
with 100-dimensional pre-trained GloVe embeddings [Pen-
nington et al., 2014], finding evidence that VGGPT-2 indeed
generates semantically high-quality answers, further support-
ing the trend of high performance observed with both accu-
racy and BLEU metrics.

In Figure 2 we plot the WMD distribution for each model.
The plot demonstrates that VQA architectures generate a
larger amount of answers whose WMD is small (sharper peak
around 0), indicating that the latter models are making good
use of both the visual and textual modality to generate the
outputs. If we compare the VQA baseline with VGGPT-2,
we see a strong correlation between the two models since they
both tend to produce answers which are semantically close to
the ground truths. Overall, the WMD distribution effectively
confirms the general trend seen with our other evaluation met-
rics, and supports the notion that an open-ended, generative
architecture offers a feasible alternative to traditional means
of addressing the VQA task.

6.2 Qualitative Results

In addition to the quantitative results, we perform a quali-
tative analysis of our architecture’s performance. In Table
4, we compare answers for specific question/image pairs be-
tween VGGPT-2 and the VQA baseline. We discover that
our model generates, most of the time, longer and correct an-
swers, exploiting the autoregressive behavior of the underly-
ing language model. In contrast, the VQA baseline gener-
ates shorter and more concise outputs. This issue becomes
more evident when the question requires the output to be de-
scriptive, such as in the case of Picture 1, where the VQA
baseline can pick only one of the many objects present in the
plate. Picture 2 highlights the need for a language model that
allows the system to generate a sequence of terms (in this
case colors) to answer correctly. Picture 3 also demonstrates
a heightened awareness of the image’s events.

(a) Picture 1 (b) Picture 2 (c) Picture 3

Figure 4: Attention maps associated with Picture 3.

Model Answer

(a): What is in the plate?

VQA Salad
VGGPT-2 Toast, orange and salad

(b): What color is the train?

VQA Red
VGGPT-2 Red and white

(c): What are the animals doing?

VQA Drinking
VGGPT-2 Walking in water

Table 4: Qualitative results on real-world images.

7 Conclusion
In this work, we proposed a novel Transformer-based archi-
tecture for visual question answering that combines textual
and visual modalities to generate unconstrained, open-ended
answers. We empirically verify the feasibility of leveraging
this architecture by framing the problem in a way that di-
verges from the standard classification perspective, with the
objective of building a system that does not distribute prob-
abilities over a fixed set of possible answers but generates
them dynamically one token at a time. In future work we plan
to experiment with deeper image encoders, such as Residual
Networks [He et al., 2016], and will experiment with a multi-
head variation of our attention mechanism. We will also ex-
amine deeper Transformer architectures in this context, such
as the recently released GPT-2 variant with ≈ 1.5B parame-
ters. It is our hope that the work reported here stimulates ad-
ditional interest in open-ended models in the VQA domain,
and to that end we also release our model and source code
online to facilitate ease of replication.6

6Link in camera-ready paper.

References
[Anderson et al., 2018] Peter Anderson, Xiaodong He, Chris

Buehler, Damien Teney, Mark Johnson, Stephen Gould,
and Lei Zhang. Bottom-up and top-down attention for im-
age captioning and visual question answering. In Proceed-
ings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6077–6086. IEEE, 2018.

[Andreas et al., 2016] Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Dan Klein. Neural module networks.
In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 39–48, 2016.

[Antol et al., 2015] Stanislaw Antol, Aishwarya
Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Ba-
tra, C. Lawrence Zitnick, and Devi Parikh. Vqa:
Visual question answering. In The IEEE International
Conference on Computer Vision (ICCV), December 2015.

[Charikar et al., 2002] Moses Charikar, Kevin Chen, and
Martin Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Lan-
guages, and Programming, pages 693–703. Springer,
2002.

[Fukui et al., 2016] Akira Fukui, Dong Huk Park, Daylen
Yang, Anna Rohrbach, Trevor Darrell, and Marcus
Rohrbach. Multimodal compact bilinear pooling for visual
question answering and visual grounding. In Proceedings
of the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 457–468, Austin, Texas,
November 2016. Association for Computational Linguis-
tics.

[Gao et al., 2016] Yang Gao, Oscar Beijbom, Ning Zhang,
and Trevor Darrell. Compact bilinear pooling. In Pro-
ceedings of the Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 317–326, 2016.

[Goyal et al., 2017] Yash Goyal, Tejas Khot, Douglas
Summers-Stay, Dhruv Batra, and Devi Parikh. Making the
V in VQA matter: Elevating the role of image understand-
ing in Visual Question Answering. In Proceedings of the
Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

[Hu et al., 2017] Ronghang Hu, Jacob Andreas, Marcus
Rohrbach, Trevor Darrell, and Kate Saenko. Learning to
reason: End-to-end module networks for visual question
answering. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), pages 804–813,
2017.

[Kazemi and Elqursh, 2017] Vahid Kazemi and Ali Elqursh.
Show, ask, attend, and answer: A strong baseline for visual
question answering, 2017.

[Kusner et al., 2015] Matt Kusner, Yu Sun, Nicholas Kolkin,
and Kilian Weinberger. From word embeddings to docu-

ment distances. In International Conference on Machine
Learning, pages 957–966, 2015.

[Lamb et al., 2016] Alex M Lamb, Anirudh Goyal
Alias Parth Goyal, Ying Zhang, Saizheng Zhang,
Aaron C Courville, and Yoshua Bengio. Professor
forcing: A new algorithm for training recurrent networks.
In Advances In Neural Information Processing Systems,
pages 4601–4609, 2016.

[Lu et al., 2016] Jiasen Lu, Jianwei Yang, Dhruv Batra, and
Devi Parikh. Hierarchical question-image co-attention for
visual question answering. In Advances In Neural Infor-
mation Processing Systems, pages 289–297, 2016.

[Papineni et al., 2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia, Penn-
sylvania, USA, July 2002. Association for Computational
Linguistics.

[Pennington et al., 2014] Jeffrey Pennington, Richard
Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha, Qatar,
October 2014. Association for Computational Linguistics.

[Radford et al., 2019] Alec Radford, Jeffrey Wu, Rewon
Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners.
OpenAI Blog, 1(8), 2019.

[Shibata et al., 1999] Yusuke Shibata, Takuya Kida, Shuichi
Fukamachi, Masayuki Takeda, Ayumi Shinohara, and
Takeshi Shinohara. Byte pair encoding: A text compres-
sion scheme that accelerates pattern matching. Technical
Report DOI-TR-161, Department of Informatics, Kyushu
University, 1999.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[Tan and Bansal, 2019] Hao Tan and Mohit Bansal.
LXMERT: Learning cross-modality encoder represen-
tations from transformers. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 5099–5110, Hong Kong, China, November 2019.
Association for Computational Linguistics.

[Xu et al., 2015] Kelvin Xu, Jimmy Ba, Ryan Kiros,
Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, attend and tell:
Neural image caption generation with visual attention.
In International Conference on Machine Learning, pages
2048–2057, 2015.

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abstract
	Abstract
	Sommario

	1 Introduction and Motivation
	1.1 VQA for Social Good
	1.2 A different approach
	1.3 Outline

	2 Background
	2.1 Visual Question Answering
	2.2 Natural Language Processing
	2.2.1 NLP in VQA Systems
	2.2.2 Preprocessing Pipeline

	2.3 Computer Vision
	2.3.1 Computer Vision in VQA Systems

	2.4 Conclusion

	3 Computational Models
	3.1 Computational models for text
	3.1.1 Recurrent Neural Networks
	3.1.2 The Transformer
	3.1.3 Generative Pre-trained Transformer (GPT-2)
	3.1.4 Bidirectional Encoder Representation from Transformers (BERT)
	3.1.5 Discussion

	3.2 Computational models for images
	3.2.1 Convolutional Neural Networks
	3.2.2 VGGNet

	3.3 Conclusion

	4 Related works
	4.1 Neural Module Networks
	4.2 Hierarchical Co-attention
	4.3 Multimodal Compact Bilinear Pooling
	4.4 Conclusion

	5 Dataset and Implementation
	5.1 Dataset
	5.1.1 VQAv2 Dataset
	5.1.2 Preprocessing

	5.2 Baselines
	5.2.1 Captioning Baseline
	5.2.2 GPT-2 Answering Baseline
	5.2.3 BERT Answering Baseline
	5.2.4 VQA Baseline
	5.2.5 Dataset

	5.3 Proposed architectures
	5.4 Architectures with attention
	5.4.1 VGGPT-2
	5.4.2 ResGPT-2

	5.5 Architectures without attention
	5.5.1 Common Dataset
	5.5.2 Common answer generation mechanism
	5.5.3 Linear + SUM
	5.5.4 AVG & MAX + Linear [+Fix Head]
	5.5.5 AVG & MAX + Linear + Concat
	5.5.6 Conclusion

	6 Evaluation
	6.1 Answer Generation
	6.2 Quantitative evaluation
	6.2.1 Accuracy
	6.2.2 Bilingual Evaluation Understudy
	6.2.3 Word Mover's Distance
	6.2.4 Remarks on BERT

	6.3 Qualitative evaluation
	6.3.1 Classification performances
	6.3.2 Reasoning performances

	6.4 Conclusions

	7 Conclusions
	7.1 Future work
	7.2 Publications

	 Bibliography
	 Appendix

