
Politecnico di Milano
Scuola di Ingegneria Industriale e dell’Informazione

Master Degree in Automation and Control Engineering
Dipartimento di Elettronica, Informazione e Bioingegneria

A cartesian model-free controller for reaching and

throwing implemented on a humanoid robot

Advisor: Prof. Matteo MATTEUCCI
Co-Advisor: Dr. Egidio FALOTICO
Co-Advisor: Dr. Lorenzo VANNUCCI

Thesis by:
Gabriele GIUDICI Matr. 898173

Academic Year 2018–2019

There’s a secret mission in uncharted space.

Contents

Abstract 1

Sommario 3

1 Introduction 6

1.1 Motivation . 6

1.2 Humanoid Robots . 7

1.3 State of the art for Cartesian model-free control of the arm . . . 9

1.4 Thesis objectives . 11

2 Proposed model 13

2.1 Control Scheme . 13

2.2 Motor Babbling . 13

2.3 Learning the forward dynamics 14

2.4 Recurrent Neural Network . 15

2.4.1 NARX . 16

2.4.2 LSTM . 18

2.5 Optimization . 22

2.5.1 Reaching . 23

2.5.2 Throwing . 23

3 Robotic Implementation 26

3.1 iCub . 26

3.2 Robotic arm structure . 27

3.3 iCub Simulators . 28

3.4 Interface with iCub - YARP . 28

3.5 Motor Control Mode . 29

3.6 Software and IT tools . 32

4 Results 34

4.1 Motor Babbling . 34

ii

4.2 Model Selection NARX . 36

4.3 Model Selection LSTM . 39

4.4 Trajectory Optimization . 40

4.5 Tollerance and Repeatability . 41

4.6 Reaching Results . 42

4.6.1 Error comparison of the end effector position for Reaching 47

4.6.2 NARX - End effector behavior 51

4.6.3 LSTM - End effector behavior 56

4.7 Preliminary Throwing Results . 59

5 Conclusions 62

Bibliography 64

List of Figures

1.1 Amico, Comau . 7

1.2 Sophia,Hanson Robotics Limited. 8

1.3 Wabot1 and Wabot2,Waseda University. 9

1.4 iCub, Istituto Italiano di Tecnologia 10

1.5 TossingBot,Google. 11

1.6 CUE-3,Toyota. 12

2.1 Control scheme architecture . 14

2.2 Dynamic model architecture using a RNN model. 15

2.3 NARX architecture . 17

2.4 NARX Open Loop. 18

2.5 NARX Closed Loop. 18

2.6 LSTM Architecture. 19

2.7 LSTM scheme. 19

2.8 LSTM Linear Layer. 21

2.9 Simulation of a throwing. 25

3.1 iCub,IIT. 27

3.2 Robotic arm . 27

3.3 iCub Simulator,IIT. 28

3.4 Comparison between Gazebo and repeatability on real robot . . . 29

3.5 YARP Logo . 29

3.6 yarpmotorgui . 30

3.7 Motor Controllers . 32

4.1 Example of Babbling references. 35

4.2 Shape of input and output vectors. 36

4.3 NARX OpenLoop performance. 37

4.4 NARX ClosedLoop performance. 38

4.5 LSTM loss. 41

4.6 iCub Cartesian reference . 42

iv

4.7 Comparison of the NARX error as the time horizons vary 48

4.8 Comparison of the LSTM error as the time horizons vary 49

4.9 Comparison of NARX and LSTM fixed the time horizon tf = 0.5s 50

4.10 Comparison of NARX and LSTM fixed the time horizon tf = 1s 50

4.11 Comparison of NARX and LSTM fixed the time horizon tf = 2s 51

4.12 Comparison between predicted NARX output and real robot move-

ment [tf = 0.5s, experiment 05] 52

4.13 Difference between predicted NARX output and real robot move-

ment [tf = 0.5s, experiment 05] 52

4.14 Comparison between predicted NARX output and real robot move-

ment [tf = 2s, experiment 10] . 53

4.15 Difference between predicted NARX output and real robot move-

ment [tf = 2s, experiment 10] . 53

4.16 Comparison between predicted NARX output and real robot move-

ment [tf = 1s, experiment 10] . 54

4.17 Difference between predicted NARX output and real robot move-

ment [tf = 1s, experiment 10] . 54

4.18 Comparison between predicted NARX output and real robot move-

ment [tf = 0.5s, experiment 10] 55

4.19 Difference between predicted NARX output and real robot move-

ment [tf = 0.5s, experiment 10] 55

4.20 Difference between predicted NARX output and real robot move-

ment [tf = 0.5s, experiment 10-B] 56

4.21 Comparison between predicted NARX output and real robot move-

ment [tf = 0.5s, experiment 06] 57

4.22 Difference between predicted NARX output and real robot move-

ment [tf = 0.5s, experiment 06] 57

4.23 Comparison between predicted LSTM output and real robot move-

ment [tf = 1s, experiment 06] . 58

4.24 Difference between predicted LSTM output and real robot move-

ment [tf = 1s, experiment 06] . 58

4.25 Comparison between predicted LSTM output and real robot move-

ment [tf = 2s, experiment 06] . 59

4.26 Difference between predicted LSTM output and real robot move-

ment [tf = 2s, experiment 06] . 59

4.27 Examples of closed hand setup 60

4.28 Comparison between predicted NARX output and real robot move-

ment [tf = 0.5s, Throwing] . 61

4.29 Difference between predicted NARX output and real robot move-

ment [tf = 0.5s, Throwing] . 61

5.1 Control scheme architecture with error compensation 63

List of Tables

4.1 Cartesian Reference . 43

4.2 Table setup point . 43

4.3 Table point 02 . 44

4.4 Table point 03 . 44

4.5 Table point 04 . 44

4.6 Table point 05 . 45

4.7 Table point 06 . 45

4.8 Table point 07 . 45

4.9 Table point 08 . 46

4.10 Table point 09 . 46

4.11 Table point 10 . 46

4.12 Error - NARX . 48

4.13 Error - LSTM . 49

4.14 Error NARX - LSTM tf = 0.5s 50

4.15 Error NARX - LSTM tf = 1s . 50

4.16 Error NARX - LSTM tf = 2s . 51

vii

Abstract

Il mondo della robotica sta vertendo sulla progettazione di robot sempre più

complessi e il controllo di questi robot attraverso i metodi più tradizionali sta

diventando gradualmente non sufficiente. Per questa ragione sta diventando

sempre più comune l’utilizzo di neuro controllori basati sulla teoria del Machine

Learning (ML). Questi controllori risultano particolarmente utili nel campo dei

robot umanoidi per i quali è usuale svolgere compiti non banali in ambienti

complessi. In questo lavoro viene presentato un nuovo neuro controllore basato

sull’utilizzo di reti neurali artificiali (RNN) in grado di approssimare la funzione

dinamica diretta di un robot generico e in grado di svolgere compiti differenti

variando solamente la funzione di costo associata al compito stesso. Questo

lavoro è la conseguente continuazione di lavori precedentemente svolti in let-

teratura ed applicati a robot morbidi. Lo scopo che questo lavoro si pone è

quello di generalizzare il medesimo approccio e validarlo su un robot di natura

differente come un robot umanoide. Inoltre viene introdotto un confronto tra

modelli di reti neurali artificiali differenti, in particolare viene fatto un confronto

nella capacità di approssimare il modello dinamico diretto di due RNN differ-

enti ovvero le reti neurali ‘Nonlinear autoregressive exogenous model (NARX)’

e le reti neurali ‘Long short-term memory (LSTM)’. Il confronto presentato tra

questi due modelli avviene attraverso una implementazione sul robot umanoide

iCub svolgendo il compito di raggiungere un punto nello spazio Cartesiano op-

erativo del robot. Infine, il lavoro mostra come il modello di controllo può essere

esteso per lanciare un oggetto in un punto prefissato.

Abstract

The world of robotics is centering on the construction of increasingly complex

robots and the control of robots through classic methods becomes gradually

insufficient. For this reason, neuro controllers based on machine learning theory

are becoming increasingly important. These controllers are really useful in the

field of humanoid robotics for which it is usual to perform complex tasks in a

complex environment. In this work we present a new neuro-controller based

on recurrent artificial neural networks capable of approximating the forward

dynamic model of a generic robot and capable of performing various tasks by

only changing objective function. This work is the consequent continuation of

previous works using a soft robot . These works have brought a great innovation

in the field of literature in the approximation of the model and control of soft

robots. This work aims to generalize the same approach and validate it on

robots of different nature such as humanoid robots. Furthermore, we want

to introduce a comparison between different recurrent artificial neural network

models, in particular the relationship between the ‘Nonlinear autoregressive

exogenous model (NARX)’ and the ‘Long short-term memory (LSTM)’ models.

We present a comparison between the two RNN through an implementation on

the iCub humanoid robot performing reaching tasks in the Cartesian space. In

addition, the work shows how to extend this controller for throwing an object

in a specific point.

Sommario

Al giorno d’oggi il mondo della ricerca scientifica e industriale si sta evolvendo

in sinergia verso una direzione dettata dall’intelligenza artificiale. In particolare

un ramo della ricerca, in collaborazione con molte realtà industriali, sta cer-

cando di dare un corpo a questa nuova forma di intelligenza. In questo senso

non è più futuristico parlare di robot bioispirati, ovvero quei robot che almeno

morfologicamente si ispirano ad essere viventi come animali (topi, polipi, cani,

etc.) o addirittura ad esseri umani.

Questo sviluppo tecnologico sta portando a un progresso non più solo set-

toriale, ma sta rendendo trasversale il progresso di diverse aree; per esempio

attraverso lo studio e la progettazione di nuovi materiali, più morbidi e allo

stesso tempo più resistenti, come siliconi; di nuovi processori sempre più potenti

e con dimensioni ridotte; di tecnologie di visione e riconoscimento immagini e

di analisi statistiche.

Tutte queste tecnologie stanno trovando sempre più applicazione pratica

nei robot industriali, con l’obiettivo di progettare robot antropomorfi sempre

migliori, i quali potrebbero risultare le migliori macchine di lavoro da affiancare

agli operatori umani.

Questi robot dai molteplici gradi di libertà sono macchine progettate per

svolgere compiti differenti e sempre più complessi, ma introducono diverse crit-

icità e componenti con comportamenti non lineari che stanno portando a un

conseguente aumento della complessità del sistema da modellare.

Con l’aumento di questa complessità potrebbe non essere più sufficiente fare

affidamento solo sulle strategie ‘classiche’ di modellazione che vengono utilizzate

per i manipolatori tradizionali, poiché abbiamo a che fare con sistemi integrati.

In questo senso diventa davvero complicato riuscire a modellizare il problema

in dettaglio partendo dalla formulazione di modelli cinematici e dinamici che

risultano diventare sempre meno banali. Alla luce di ciò, l’uso di approcci

basati sulla teoria del Machine Learning hanno trovato rapidamente spazio nel

mondo della robotica umanoide durante gli ultimi anni.

Dapprima, queste tecniche sono state ampiamente utilizzate per la loro ca-

3

4

pacità di svolgere compiti di ottimizzazione e classificazione dei dati relativi

all’uso dei robot, portando a un controllo di tipo adattivo in grado di fornire

una previsione e un’interpretazione in tempo reale dei dati raccolti dai sensori.

Ultimamente le tecniche basate sul Machine Learning stanno trovando sempre

più applicazione in molti campi della ricerca e l’uso massiccio di queste tec-

niche statistiche sta mostrando tutta la loro capacità nel risolvere vari problemi

affrontati finora con altri metodi. Uno modo innovativo di utilizzare queste

tecniche è sfruttare la capacità di apprendimento di questi modelli per approssi-

mare i modelli dinamici di robot complessi.

Lo scopo di questo lavoro è quello di estendere le opere presentate da Thu-

ruthel et al. [1], [2] nei quali viene fatta una approssimazione del modello di-

namico e poi il controllo di un robot morbido. Il nostro obbiettivo è quello di

riproporre il medesimo approccio utilizzando un robot umanoide per dimostrare

come sia possibile riutilizzare questa strategia per controllare robot di diversa

natura. Inoltre si vuole mostrare che questo approccio sia applicabile indipen-

dentemente dal tipo di riferimento della variabile di controllo dei motori (rifer-

imento di forza, riferimento di velocità) e che tutto ciò possa essere utile per

svolgere compiti differenti.

Con questi obbiettivi è stato implemenato un controllore sfruttando un ap-

proccio ‘model-free’, basato sull’utilizzo di reti neurali artificiali, per poter con-

trollare il robot nello spazio Cartesiano. Per poter utilizzare le reti neurali

ricorrentI (RNNs) è necessario avere a disposizione una grande quantità di dati

descrittivi del problema che si vuole approssimare, in questo caso dunque rel-

ativi alla dinamica del robot. Per creare una collezione di dati sufficentemente

ricca di informazioni utili ad approssimare il modello dinamico diretto si è fatto

affidamento ad un approccio chiamato ‘motor-babbling’, con il quale attraverso

una generazione casuale di comandi motori è possibile creare una relazione tra

questi comandi e la posizione cartesiana risultante del centro della mano del

robot (end effector) compiuto il movimento associato al comando motorio.

Infine si è sviluppato un processo in grado di ricavare i comandi motori nec-

essari per permettere al robot di svolgere compiti diffenti. Questo processo

è stato sviluppato utilizzando un metodo numerico di ottimizzazione in grado

di ricavare i comandi motori necessari a svolgere un determinato compito uti-

lizzando il modello approssimato, che non subirà ulteriore variazioni durante

questo processo, e una funzione di costo descrittiva del compito stesso.

Pertanto, la metodologia proposta prevede una fase di pre-allenamento at-

traverso motor babbling, una fase di addestramento della rete neurale ricorrente

e una fase in cui proveremo a svolgere diversi compiti (come raggiungere un

punto o lanciare una sfera) e si vuole mostrare come sia possibile eseguire questi

compiti su robot di diversa natura, cambiando solo la fase di pre-allenamento

5

del motor babbling. Infatti utilizzando questo approccio si vuole eliminare il

più possibile la necessità di conoscere i parametri dinamici del robot. Inoltre

si vuole analizzare l’efficacia del metodo al variare del tipo di rete neurale, in

questo modo si vuole analizzare se esista una differenza sostanziale nell’uso di

un modello di rete piuttosto che di un’altro.

Chapter 1

Introduction

1.1 Motivation

Nowadays the world of scientific and industrial research is evolving in synergy

towards a direction driven by artificial intelligence. In particular, a branch of

research, in collaboration with many industrial realities, is trying to give a body

to this type of intelligence. In this sense, it is no longer futuristic to speak of

bio-inspired robots, or robots that at least morphologically are inspired by living

beings as animals (mice, octopuses, dogs, etc.) or human beings [3].

This leading technology is no longer just sectoral, but it is making progress

across different areas; for example through the study and design of new materials

and actuators, combined with new, smaller and more powerful processors and

innovative vision and image recognition technologies.

All these technologies are finding more and more practical application in

industrial robotics, with the scientific aim to design better anthropomorphic

robots, which are potentially the best machines to work alongside with humans.

[4], [5]

These robots with multiple degrees of freedom are designed to perform dif-

ferent tasks, but they present different non-linearities leading to a consequent

increase in the complexity of the system to be modeled.

It is no longer possible to rely on ‘classic’ models used for manipulators, since

we are dealing with integrated systems. In this sense it becomes really compli-

cated to be able to model the problem in detail through descriptive equations

of kinematics and dynamics only. In light of this, the use of machine learning

approaches, has risen at a rapid pace in the world of humanoid robotics in the

last years.

Machine learning approaches have demonstrated to be a powerful tool to

be used as an alternative to analytical models for the estimation/prediction of

6

CHAPTER 1. INTRODUCTION 7

Figure 1.1: Amico,Comau

the dynamics or kinematics of the robot models. In this work we will focus on

the implementation of a model-free controller in the Cartesian space based on

a recurrent neural networks (RNN) that is able to learn the forward dynamic

model of the arm of a humanoid robot to perform reaching and throwing tasks.

1.2 Humanoid Robots

The father of the term Robot was the playwright Karel Chapek who took his

cue from the Czech word ‘Robota’ which means ‘hard work’ or ‘forced labor’ and

later Isac Asimov, whose centenary of birth is celebrated in 2020, introduced

the concept of Robotics through its science fiction narrative.

Among the anthropomorphic robots it is necessary to distinguish three types:

Cobots, Androids and Humanoids [6]. The first are essentially industrial robots,

such as mechanical arms, that emulate human actions and that collaborate with

humans to perform a task, these robots can have the peculiarity of learning while

working through the integration of multiple sensors and algorithms capable to

give meaning to the data collected. Androids like Sophia [7](Figure 1.2) are

designed to emulate human beings primarily in appearance, therefore focusing

mainly on the tissues and on the gestures and expressiveness. In parallel, they

are tools used to give a physical implementation to different branches of machine

learning that study and analyze computers’ understanding of emotional stimuli

and recognition of expressions and everything related to the most emotional

CHAPTER 1. INTRODUCTION 8

Figure 1.2: Sophia,Hanson Robotics Limited.

part of human expression.

Humanoids are inspired by the ability to move and perform actions capable

of interacting with the surrounding reality. For this purpose, humanoids have

as main characteristics two legs, two arms, a core, a head and more accurate

grippers, as could be reproductions of hands. These robots are more complex

and besides being collaborative they could have a certain level of autonomy.

Obviously this classification is purely illustrative and in recent developments

it is becoming increasingly difficult to distinguish between these types of robots

due to the great integration of the various functionalities in the developed robots.

In our work we will deal with various issues concerning those that we have

classified as humanoid and as previously said, the concept of humanoid robot was

only science fiction, but in recent decades several research centers and companies

have tried to give body to these fantasies.

We can consider the first real attempt of humanoid robotics with the presen-

tation in the 70s of Wabot-1 [8], a robot designed by a team from the Waseda

University of Tokyo that included in addition to arms and legs also visual sen-

sors.

And ten years later from WABOT-2 [9] ’In 1970, four laboratories in Waseda

University’s School of Science and Engineering teamed up and started the Wabot

project. The efforts were led by Professor Ichiro Kato, a pioneer in humanoid

robotics. In 1973, the group unveiled the Wabot 1. It was the world’s first full-

scale anthropomorphic robot, capable of walking with a quasi-dynamic gait. It

could also speak and grasp objects. In 1980, the group started working on a new

robot. In 1984, they introduced Wabot 2, a 50-degrees-of-freedom humanoid

that was able to read musical scores and play an electronic keyboard.’

CHAPTER 1. INTRODUCTION 9

Figure 1.3: Wabot1 and Wabot2,Waseda University.

In our work all the simulations and related experiments are performed using

an iCub (Figure:1.4), an Italian humanoid robot created by the IIT of Genoa

and which has as its purpose the use in Research [10]. This work is continuously

on a previous work [1] [2] which had as a study tool a soft robot (or a robot

designed with soft materials such as silicone).

1.3 State of the art for Cartesian model-free

control of the arm

In this work, we use a machine learning method to approximate the function

that maps the motor control commands into the Cartesian position of the end

effector. In literature, several studies have focused on learning the angular

position of the individual joints so that the Cartesian position of the tip of

the robotic arm can be obtained using the kinematic relationship [11]. Other

studies instead use neural networks to estimate some unknown parameters of

the dynamic model, such as for example the coefficients of friction or other non-

linear terms difficult to identify [12] or to ensure a performance of the position

control of the joints [13]. Khan et al. [14] presents the implementation of a

model-free Q-learning based discrete model reference compliance controller for

a humanoid robot arm capable of controlling the position of the hand of a

CHAPTER 1. INTRODUCTION 10

Figure 1.4: iCub, Istituto Italiano di Tecnologia

humanoid robot through complex Reinforcment Learning(RL) and Computer

Vision algorithms through visual feedback of the position of the end effector.

Braganza et al. [15] presents a controller for continuum robots, which utilizes

a neural network feedforward component to compensate for dynamic uncertain-

ties. Falkenhahn et al. [16] presents a dynamic controller in actuator space in

order to provide a good and intuitive dynamic behavior of the manipulator that

in this case was a soft robot.

An interesting elaborate is that of Plooij et al. [17] presents an approach to

perform repetitive tasks with robotic arms, without the need for feedback.

Starting from the works of Thuruthel et al. [1] who tried to learn the forward

dynamics of a soft robot through the use of a NARX neural network and then

to control the same robot through a numerical optimization algorithm [2], we

focused on extending this work by using a rigid humanoid robot to validate the

method on a different type of robot, with the future aim of being able to use

this approach to generate throwing movements.

In fact, having robots capable of throwing would broaden the field of appli-

cation of robots. There are many ways to implement this feature, but today it is

still an open question, in the following we will show some of the most interesting

works that have been implemented and then we will explain how our approach

can bring innovation in the answer to this question.

Sugimoto et al. [18] use a RL method and the desired angular velocities are

learned through the trials. A simple nominal trajectory was provided for the

elbow joint that slowly extended it. The reward function is update each trials

CHAPTER 1. INTRODUCTION 11

Figure 1.5: TossingBot,Google.

and at the end of the learning the robot has acquired the capability of repeat a

successful basketball-shooting task.

Google’s Tossing bot [19]is able to grasp and throw arbitrary objects into

boxes located outside its maximum reach range at 500+ mean picks per hour

(600+ grasps per hour with 85% throwing accuracy); and generalizes to new

objects and target locations. They propose an end-to-end formulation that

jointly learns to infer control parameters for grasping and throwing motion

primitives from visual observations (images of arbitrary objects in a bin) through

trial and error.

TOYOTA CUE-3 [20] generates a three-dimensional image of where the

basket is using sensors on its torso and then adjusts the motors inside its arm

and knees to give the shot the right angle and propulsion for a perfect shot each

time

1.4 Thesis objectives

The purpose of this work is to extend the works presented by Thuruthel et

al. [1], [2] in which the author proposed an approximation of the dynamic model,

learned with RNN, and then the control of a soft robot to perform a reaching

task. Our goal is implement this approach in a humanoid robot arm to demon-

strate how it is possible to reuse this strategy to control different robots. In

addition, we want to show that this approach is applicable regardless of the

control mode (force control, velocity control) and how to extend this approach

to perform a throwing task. Another objective is to analyze whether there is

CHAPTER 1. INTRODUCTION 12

Figure 1.6: CUE-3,Toyota.

a substantial difference in using different RNN models for learning the forward

dynamics.

The proposed methodology involves a pre-training phase (data collection

through motor babbling), a training phase of the RNN and an optimization

phase in which we generate inputs for the robot arm actuators according to the

task to be performed. By using this approach, we want to eliminate as much as

possible the need to know the dynamic parameters of the robot.

Chapter 2

Proposed model

2.1 Control Scheme

The idea behind this work is to develop a control model like the one shown

in the Figure 2.1. The goal is to obtain the values of the control variables (force,

velocity, etc.) necessary to reach a Cartesian point in the robot’s task space or

to throw an object into a target position using an optimization algorithm. We

propose a model-free approach that uses a RNN trained through via motor-

babbling and able to associate the motor commands to the movement of end

effector. By using only the position of the target in space as input to the system,

an optimal solution for the task is computed through an optimization algorithm

that searches for the best trajectory.

2.2 Motor Babbling

Motor babbling is one of the techniques used to perform the self-learning part

of complex robots such as humanoid robots or soft robots. This process consists

in generating random stimuli on some or all the motors of a part or of the whole

robot. In our case, if we want to perform tasks that basically concern the use

of only one arm, we will use this technique only on one of them. The technique

is similar to a task space exploration algorithm, in fact for better learning it is

necessary to have a large amount of data available. Then random trajectories of

different types of motor commands are generated (forces, position, velocity) and

the association between this stimulus and the final position of the end effector is

recorded. For our study it is interesting to know the position of the end effector

in Cartesian terms as well as with respect to the rotation of the joint, because

13

CHAPTER 2. PROPOSED MODEL 14

Figure 2.1: Control scheme architecture

the end effector is the final part of the arm that corresponds to the palm of the

hand or gripper where the object is held .

A forward dynamic model of the arm is learned through motor babbling,

during which the arm is repeatedly moved into random postures. The arm stops

moving only when a pre-specified number of training samples are gathered [21].

The size of the data set is related to the size of the joint vector.

The trajectory generation strategy is aimed at the use of machine learning

methods, and for this work in particular in training neural networks. Neural net-

works of different types may require different babbling strategies, for example a

NARX type network could accept a long sequence of babbling as data sets, while

other networks, such as LSTM, require many shorter series. In the following

chapters we will make a comparison between the use of different approaches.

2.3 Learning the forward dynamics

In this section, referring to the work of Thuruthel et al. [1] we want to briefly

describe how the model we want to learn is formulated. The kinematic function

of the robot can be written as:

x = F (q) (2.1)

where x is the Cartesian position within the task space and q ∈ R7 is a vector

of θ which describes a configuration of the robotic arm, we can therefore always

replace in our formulation all instances of q with an instance of x. Taking then

CHAPTER 2. PROPOSED MODEL 15

Figure 2.2: Dynamic model architecture using a RNN model.

the direct dynamic model:

M(q)q̈ + V (q)q̇ + P (q) = τ (2.2)

we can turn it into:

M̄(x)ẍ+ V̄ (x)ẋ+ P̄ (x) = τ (2.3)

Here,τ ∈ Rm are the control inputs. M, V and P represent the inertia matrix,

centripetal–Coriolis forces and potential energy stored due to gravity/deforma-

tion,respectively. M̄, V̄ and P̄ are the corresponding matrices obtained after

the transformation. This implies that, under these assumptions, it is always

possible to learn a directmapping between the states of the task space variables

and the control inputs:

(τ ,x, ẋ)→ ẍ (2.4)

knowing the structure of a recurrent neural network it is possible to rewrite

a new mapping formula between the motor commands and the end position of

the end effector

(τ c,xp,xc)→ xn (2.5)

2.4 Recurrent Neural Network

The human nervous system contains billions of processing units: the neurons.

These processing units interact each other through thousands of synapses. The

nervous system is in fact a fast parallel processing system, capable of solving

many tasks. Same as for Machine Learning systems, the brain learns from

CHAPTER 2. PROPOSED MODEL 16

experience through the concept of plasticity, namely the ability of adapting

the system to its environment. For instance, the nervous system can change

the strength of interconnections or create new ones in order to adapt to new

observations.

Artificial Neural Networks (ANNs) are a class of ML models. They share

the same principles of the biological neural networks: an ANN is a weighted

directed graph whose nodes are the neurons and edges are the synapses. There

are several types of ANNs that are distinguished by the connections between

the neurons and the computations made by the processing unit.

Recurrent Neural Networks are a class of networks suitable for dealing with

sequential data. They contains feedback loops which allow the network to main-

tain an internal state. The internal state implicitly encodes the history of past

computations. In other words, it acts as a memory of already seen input and it

permits the network to exhibit dynamic behavior. Hence, RNNs are dynamical

systems which map sequences to sequences.

There are two possible causes of poor performance in NN: underfitting and

overfitting. The model is in an underfitting situation when it cannot model

neither the training set nor the test set. This could mean that the model is not

enough complex to succeed in the task or that the learning algorithm failed in

the searching of hypothesis.

The model is overfitting the data when it reaches great performance on the

training set but it cannot generalize on new data. Overfitting must be avoided by

evaluating the learning process on a third partition: the validation set. Its role

is similar to that of test set, which is the evaluation of the system’s performance,

but it can be used more than once, even for training. Tracking the validation

error, it is possible to understand if the model is overfitting and act accordingly

with regularization techniques. Due to these critical issues, depending on the

complexity of the artificial neural network used, a model selection phase may

be necessary. In this phase the different parameters of the network are adjusted

to improve performance and ensure that the model of the selected network is

not affected by phenomena of underfitting or overfitting.

For this treatise we have used different types of neural networks, we will

briefly illustrate them theoretically in these sections and then we will show

their use for our work.

2.4.1 NARX

The NARX or nonlinear autoregressive network with exogenous inputs is a

recurrent dynamic network, with a feedback connection that closes a loop with

several layers of the network inside. The NARX model is based on the linear

CHAPTER 2. PROPOSED MODEL 17

Figure 2.3: NARX architecture

ARX model, which is commonly used in time-series modeling. The defining

equation for the NARX model is

y(t) = f(y(t− 1), y(t− 2), . . . , y(t− ny), u(t− 1), u(t− 2), . . . , u(t− nu)) (2.6)

The next value of the output y(t) is regressed to previous values of the output

signal and (optionally) to the previous values of the signal of the exogenous

input data set. The NARX is a type of model that using a feedforward neural

network allows to approximate a function f and finds many uses, in particular

it is possible to use it as a predictor, to predict the next value of the input

signal, or much more useful for our purpose the modeling of nonlinear dynamic

systems.

Before the training phase, which will be explained later, it is good to show

a peculiarity of this model. In fact, the network can be used and/or trained in

two different configurations, namely in open and closed loops. The output of

the NARX network can be considered as an estimation of the output of some

nonlinear dynamic system that we are trying to model. This output is called

‘target output’ and is an estimate made from the network input data. The

network takes as inputs the model inputs, i.e. the random data of the babbling,

and the associated outputs always collected in the babbling phase, called ‘true

output’, which will be available only during the training phase. You could create

a series-parallel (open loop) architecture as shown, in which the true output is

used instead of feeding back the estimated output. This has two advantages.

The first is that the input to the feedforward network is more accurate. The

second is that the resulting network has a purely feedforward architecture, and

static backpropagation can be used for training. Now the training phase could

be considered concluded or, by closing the network replacing the true output

with target output, we could continue the training.

CHAPTER 2. PROPOSED MODEL 18

Figure 2.4: NARX Open Loop.

Figure 2.5: NARX Closed Loop.

2.4.2 LSTM

One of the most common shortcomings of RNNs is the problem of vanishing/

exploding gradients. This problem occurs in back-propagation through RNNs

and is all the more critical as the network is deep. The continuous updates

that the network undergoes due to the chaining rule during this process can

lead to excessive vanishing or an exponential explosion of the gradient. Having

too small gradient prevents the weights from being updated and learning, while

on the contrary too high values lead the system to instability. Due to these

issues, RNNs are unable to work with longer sequences and hold on to long-

term dependencies, making them suffer from ”short-term memory”. For this

reason we decided to use a type of network that solves, through a gating system,

the problem of ”short-term memory”, that is the Long Short-Term Memory

networks (LSTMs) [22], which in addition to using the most recent information

can also keep memory on previous sequences.

The LSTM have a more complex structure in fact at each step, the LSTM

cell receives 3 different information: the current input data, the short-term

memory of the previous cell (similar to the hidden states in the RNN) and

finally the long-term memory. Short-term memory is commonly referred to as

‘hidden state’ and long-term memory is generally known as ‘cell state’.

CHAPTER 2. PROPOSED MODEL 19

Figure 2.6: LSTM Architecture.

Figure 2.7: LSTM scheme.

The cell then uses gates to adjust the information to be kept or discarded at

each step before passing the long and short term information to the next cell,

the role of these gates should selectively remove any irrelevant information. Of

course, these gates need to be trained to accurately filter what is useful and

what is not. These gates are called the Input Gate, the Forget Gate, and the

Output Gate.

Input gate The input gate is the one that filters the information to save it

in the long-term memory and does this through 2 layers. The first level can be

seen as the filter that takes short-term memory and current input and passes

them into a sigmoid function that will transform values between 0 and 1, with

0 indicating that part of the information is useless, while 1 indicates that the

information will be used. This allows us to distinguish useful values from those

to be forgotten. As the layer is trained through backward propagation, the

CHAPTER 2. PROPOSED MODEL 20

weights in the sigmoid function will be updated so that it learn to let the profit

pass only by discarding the less critical features.

i1 = σ (Wi1 · (Ht−1, xt) + biasi1) (2.7)

The second layer takes the short term memory and current input as well and

passes it through an activation function, usually the tanh function, to regulate

the network

i2 = tanh(Wi2 · (Ht−1, xt) + biasi2) (2.8)

The outputs from these 2 layers are then multiplied, and the final outcome

represents the information to be kept in the long-term memory and used as the

output.

iinput = i1 ∗ i2 (2.9)

Forget Gate This gate is fundamental for the selection of the information that

must be kept in the long-term memory and which instead must be discarded.

To do this we define from the short-term memory and the current input a Forget

Vector which will multiply the information contained in the long-term memory.

Basically this vector will behave like a selective filter layer, and get the vector

in a useful form we will have to put it into a sigmoid function (with weights

different from the one previously used in the Input Gate). This vector will be

composed of zeroes and ones in order to filter the information in the long-term

memory.

f = σ (Wforget · (Ht−1, xt) + bias forget) (2.10)

Now it is necessary to sum the output of the Forget Gate with the output of

the Input Gate in order to use the new version of the Long-term memory in the

final Output Gate.

Ct = Ct−1 ∗ f + iinput (2.11)

CHAPTER 2. PROPOSED MODEL 21

Figure 2.8: LSTM Linear Layer.

Output Gate This gate has the function of computing a new version of the

short-term memory which will be passed on to the cell in the next time step. To

do this we must put together the information generated by the previous gates.

To create the final filter we must pass the short-term of the previous state

and the current input into a new sigmoid function, also it is necessary to pass the

new long-term memory through a tanh activation function. Finally multiplying

these two information we will get the final value of the short-term memory which

will correspond to the new hidden state Ht.

O1 = σ
(
Woutput1 · (Ht−1, xt) + biasoutput1

)
(2.12)

O2 = tanh
(
Woutput2 · Ct + biasoutput2

)
(2.13)

Ht, Ot = O1 ∗O2 (2.14)

Now this new information can be reported iteratively as initialization of the

new cell and the process is repeated until the learning phase is complete finally.

To return to Cartesian coordinates, a linear layer shown in the Figure 2.8 is

introduced which allows to combine all the information in an output of three

values.

CHAPTER 2. PROPOSED MODEL 22

2.5 Optimization

Once the robot has learned the dynamic model, it will be possible to perform a

trajectory optimization to control movement in order to perform various tasks,

such as reaching a point or throwing an object. Fixed the control horizon tf

which can vary depending on the task and the specifics of the problem, and

fixed a control size step dt depending on the type of network, we want to be

able to apply an optimization algorithm that taken a generic input vector allows

the minimization of an objective function of a different nature. For example,

in the case of reaching it could be the euclidean distance between the target

point and the point reached with a series of inputs. To do this, we have chosen

numerical methods such as SQP (Sequential Quadratic Programming) [23], a

class of algorithms for solving non-linear optimization problems, that can vary

a generic input vector in an iterative way until finding a combination capable

of respecting the constraints of minimization (such as the physical limits of

the inputs). The possibility of using SQP is guaranteed by the fact that the

dynamic model is represented by an NN and with a smooth objective function

and therefore always twice derivable.

The optimal policy can be estimated by minimizing the objective function

given below:

Π∗ = arg min
τ

[
Dtask(xNNout

, xdes) + ||τ1:kf−1 − τ2:kf ||2 · β
]

(2.15)

subject to τmmin 6 τmk 6 τmmax ∀m = 1 . . .M and k = 1 . . . kf

where xNNout
is the cartesian output of the neural network, xdes indicates

the target given as reference and Dtask it is a characteristic function of each task

that calculates the distance between these two quantities; kf =
tf
dt indicates the

final discrete instant of the prediction interval tf ; k indicates the position within

the predicted trajectory; M corresponds to the number of actuators activated

and τmmin and τmmax indicate the limits of the motor controls. The part on the

right of the sum indicates a factor that control the motor effort: for safety

reasons and to make the movement smoother, we decided to weigh, in addition

to the final position, also the variation of the input commands by adding a

regularization term on successive steps of the control variable vector.

For the reaching the control objective is suited to reach the point at the end

of the control horizon while simultaneously optimizing the control effort. Other

constraints or different factor could be keep in account to weight in a different

way the position error and the effort of the motors or to add some constraints

over the speed or other.

CHAPTER 2. PROPOSED MODEL 23

2.5.1 Reaching

For reaching task we want to find Control Variable values able to bring the arm,

and in particular the Cartesian position of the end effector, in a precise position

within the task space at the end of the control horizon. Obviously, we have

redundancy of solutions, so optimization will return an optimal local solution.

Thus, the equation of the cost function has been defined as follows:

Dreach(xNNout , x
des) =

∥∥∥∥xNNout
tf
dt

− xdes
∥∥∥∥2 (2.16)

where the term on the left of the sum describes the distance between the

target and the end position of the end effector, i.e. the last position predicted

by the RNN and the term on the right is the norm of the vector that describes

the difference between a value and its successive of the input vector and this

allows to regulate the effort of the control. Once the control sequences have

been obtained, both using the NARX and LSTM, these were used on the the

robot.

2.5.2 Throwing

For the Throwing task several problems arose. In fact, having set a target

outside the task space that could be a point or circular basket, some questions

arise such as: “what is the trajectory to be followed?” , “What is the best

launch point to leave the object?”, “How fast should you leave the object?” .

To simplify the problem we decided to focus on a rigid and uniform object, such

as a plastic ball. Certainly in the future it would be interesting to integrate this

method with a model for recognizing the object and optimizing the trajectory of

non-uniform objects. We therefore decided to leave optimization to the arduous

task of answering all these questions, formulating an optimization function that

contained all the highlighted problems.

Once the generic equation of projectile motion has been written:

{
x(t) = x0 + v0xt

y(t) = − 1
2gt

2 + v0yt+ y0
(2.17)

we can adapt it for our problem. For every control instant k, we can compute

a different parabola Pk = [Yk, Zk]:

{
Zk(T) = z(k) + z(k)−z(k−1)

dt T

Yk(T) = y(k) + y(k)−y(k−1)
dt T − 1

2gT
2

(2.18)

CHAPTER 2. PROPOSED MODEL 24

where p = [y, z] = XNNout is the RNN output prediction that contains the

information of the cartesian position relative to the current input evaluated by

the optimization algorithm and T is a vector of time instant of dt duration:

T = 0 : dt : Tthrow (2.19)

The optimization function, for each set of inputs it is evaluating, will calcu-

late a velocity vector V by dividing by dt the difference between one instant p(k)

and the previous one p(k−1) of the network output associated with that input.

We will therefore have a vector P of n = Ttrow

dt positions, associated with n

control variable values, and a vector V of n velocities,that describes the velocity

necessary to reach p(k) from p(k − 1) considering the first value p(0) = 0.

V =

[
p(1)− p(0)

dt
,
p(2)− p(1)

dt
, ...,

p(k)− p(k − 1)

dt
,

...,
p(Tthrowmax)− p(Tthrowmax − 1)

dt

]
(2.20)

Of these n parabolas built we will save the one that has minimum distance

with the basket and its point of release and launch velocity. It is evident that

if we find a parabola that passes through the center of the target, it will have

zero distance from it, resulting optimal. The distance between a parabola and

the target can be computed as follows:

Dk(XNNout, x
des) = min

T

∣∣∣∣Pk(T)− xdes
∣∣∣∣2 (2.21)

Finally, the closest parabola will also give the minimal distance that can be

obtained with the current motor commands that are being evaluated:

Dthrow(XNNout, x
des) = min

k
Dk(XNNout, x

des) (2.22)

For each iteration cycle of the optimization function we will therefore have

an optimal parabola (the red one in the Figure 2.9), and finally the algorithm

will return the control variable vector to obtain this parabola together with the

related information necessary to perform the launch, in particular the release

point and launch velocity. Now, the work continues by giving the robot this

input vector and ensuring the release at the point indicated by the algorithm

we should have a launch that hits the target.

CHAPTER 2. PROPOSED MODEL 25

Figure 2.9: Simulation of a throwing.

Chapter 3

Robotic Implementation

Our project is mainly designed to be used with very complex robots whose

dynamic functions are not easily identifiable. We have used an iCub whose

arm, characterized by seven degrees of freedom, presents a non-trivial dynamic

and it is possible to implement different types of control on different motors

simultaneously.

3.1 iCub

iCub is a child-size humanoid robot capable of crawling, grasping objects, and

interacting with people [10]. It’s designed as an open source platform for re-

search in robotics, AI, and cognitive science. There are around 20 icubs in

the world, almost all of them in Europe, and one in America. Cub stands for

”cognitive universal body”.

The RobotCub Consortium, funded in part by the European Com-

mission’s Cognitive Systems and Robotics program, started devel-

oping the humanoid iCub in 2004. The first version was released in

2008. New versions followed, upgrading the robot’s head mechan-

ics, upper-body skin, and sensing. Future versions will focus on

bipedal locomotion. Other institutions participating in the project

include University of Genoa, Scuola Sant’Anna, University of Fer-

rara, Telerobot, University of Uppsala, University of Sheffield, Uni-

versity of Hertfordshire, IST, EPFL, and University of Zurich [From

robots.ieee.org/robots/icub/]

26

robots.ieee.org/robots/icub/]

CHAPTER 3. ROBOTIC IMPLEMENTATION 27

Figure 3.1: iCub,IIT.

Figure 3.2: Robotic arm

3.2 Robotic arm structure

To deal with the problem we decided to use the left arm of the iCub robot .

This arm is driven by 7 motors that corresponds to the degrees of freedom of the

arm: 3 for the shoulder, 1 for the elbow and 3 for the wrist, with the possibility

of also introducing the control on the fingers of the hand, which do not in any

way affect the position of the end effector which is placed in the center of the

palm [24].

CHAPTER 3. ROBOTIC IMPLEMENTATION 28

Figure 3.3: iCub Simulator,IIT.

3.3 iCub Simulators

Two different simulation environments are available for this robot: iCub 3D

simulator (IIT) [25], a platform built specifically for iCub, and a simulated

version of the robot in Gazebo, a platform very popular in the field of simulation.

To use the motor torque control the choice to use Gazebo [26] is mandatory

because only in the latter was there an available implementation of this kind of

controller, this was not yet available in the simulator provided by the IIT.

3.4 Interface with iCub - YARP

“YARP stands for Yet Another Robot Platform. What is it? If data is the

bloodstream of your robot, then YARP is the circulatory system”

Yarp [27], [28] is not an operating system but it is a tool to interface with

the robot, in fact it is designed to be integrated with different operating systems

and, although it is written in C++, there are several tools to be used with other

programming languages, such as Python. The philosophy that prompted the

creation of this protocol is to be usable in different contexts in order not to make

iCub a closed environment and to increase the longevity of the robot software

projects regardless of the operating system and hardware. YARP provides a

detailed language to use correctly the robot, and moreover provides several

CHAPTER 3. ROBOTIC IMPLEMENTATION 29

Figure 3.4: Comparison between Gazebo and repeatability on real robot

Figure 3.5: YARP Logo

tools, one of that is ‘yarp motorgui’ which allowed us to monitor the behavior

of the motors in real time to actually see what was going on.

As can be seen from the image it is possible to control the robot actuators

in a different way, and for our purpose we will use different control strategies

depending on the task, but as we will show later on a methodological level it

will not change to control the joint in force rather than in velocity although on

a control level it does not have the same meaning.

The most functional feature of YARP is that by changing few lines of code it

allows us to use the same script for both simulation and real robot, simplifying

and speeding up the work.

3.5 Motor Control Mode

The model of iCub(v1.x) that we use is equipped with four 6-axis Force/Torque

sensors mounted on the arms, this devices measure the force and the torque

from all the three Cartesian coordinates. iCub(v1.x) thus exploits a model-based

CHAPTER 3. ROBOTIC IMPLEMENTATION 30

Figure 3.6: yarpmotorgui

approach based on a modified Newton-Euler algorithm in order to estimate joint-

level torques from the four proximal sensors. The controller is thus distributed

in three different levels1:

• wholeBodyDynamics (application level): the modules takes the mea-

surements from the four F/T sensors of the robot limbs to make a model-

based estimation of joint torques, with the hypothesis that external forces

are applied only on the end-effector.

• iCubInterface (middleware): it sends (through yarp ports) the 6-axis

F/T sensors measurements to the wholeBodyDynamics module and re-

ceives from it the computed joint torques.

• motor control boards (firmware level): The control boards receive

the computed estimation of the joint torques from iCubInterface and im-

plement different PID control algorithms in order to track the desired

position/torque commands.

We focus on three different control modes that are currently implemented in the

firmware of the control boards:

• Position control mode: In this control mode, the motors pulse-width

modulation(PWM) is computed using a PID controller the receives in

input the desired joint position and the current measurement from the

joint encoders:

PWM = PID (q − qd) + PWMoffset (3.1)

1From the iCub online manual http://wiki.icub.org/wiki/Force_Control

http://wiki.icub.org/wiki/Force_Control

CHAPTER 3. ROBOTIC IMPLEMENTATION 31

Note that when you command a new joint position, you are not instanta-

neously assigning the reference qd in the above formula. Instead, a mimum

jerk trajectory generator takes in input your commanded position and the

desired velocity, and produces a smooth movement creating a sequence of

position references qd tracked by the PID controller.

• Velocity control mode: Velocity control mode allows you to control

the robot by assigning a desired volocity/acceleration to a joint. The

control law is the same of position control, but in this case qd is not

directly controlled by the user, but it is obtained from the integration of

the commanded user velocity.

• Torque control mode: Torque control mode allows you to directly con-

trol the robot joints torque:

PWM = PID (τ − τd) + PWMoffset (3.2)

In this case the motors PWM is computed using a PID controller the

receives in input the desired joint torque and the current measured joint

torque. Additionally, a PWM offset can be added to the output of the

control algorithm. If both the commanded reference torque and the PWM

offset is set to zero, the robot joint will be free to be moved in the space

(eventually it will move down as an effect of the gravity acting on that

joint).

The implementation of the velocity control shown in the Figure 3.7(i.e. inte-

gration of the reference command) corresponds to the current implementation

on the iCub 4DC/BLL control boards. However,this is not the only possible

implementation: an explicit velocity control loop is also possible. Torque con-

trol must implement an additional low level check to prevent the movement

of the joint against the hardware limit. In all control modes, an additional

feed-forward input, ϕoff is available.

Our initial idea was to directly control the motors through the generation

of motor stimuli, or torque commands but for iCub the wrist joints are not

controllable in torque by the manufacturer’s choice, but only in velocity and

position, so we opted for a velocity control [29]. Moreover, we found problems

in the torque control of the elbow joint, probably due to an error in the torque

estimation, we therefore decided to change the control mode of this joint also

in velocity mode.

Obviously this choice remains dictated by the robot used, in a different case

it would have been interesting to control all the joints through direct commands

to the motors. From the point of view of learning the model, however, if a

CHAPTER 3. ROBOTIC IMPLEMENTATION 32

Figure 3.7: Motor Controllers

correct normalization of data is applied, it remains guaranteed that the neural

network is able to learn a mapping between the control commands and the final

position of the end effector.

Finally, for safety reasons it was decided to implement a safety zone for robot

movement which necessarily bounded the task space in order to avoid dangerous

situations for the robot and the surrounding environment. To do this, a policy

for the use of all the joints has been defined, such that the robot is not asked

to work around the joint limit. In addition, a limit zone has been defined on

the y axis, i.e. the axis that passes vertically with respect to the robot, in order

to avoid a collision with the workbench. this area limits the movement of the

robot in the vertical coordinate in the range of values: [0.47, 0.8] meters.

3.6 Software and IT tools

Various IT tools and different programming languages have been used for this

project. The part of the work that required the use of the robot or simulators

was carried out by writing in C ++, able to integrate directly with YARP, and

CHAPTER 3. ROBOTIC IMPLEMENTATION 33

Python, able to interface with YARP only thanks to C ++ bindings.

The machine learning part was developed in Python for the LSTM and in

Matlab2019b for the NARX part. Let’s briefly illustrate some of the most useful

libraries for our work.

• PyTorch(Python)

PyTorch is an open source machine learning library used for developing

and training neural network based deep learning models. It is primar-

ily developed by Facebook’s AI research group. PyTorch uses dynamic

computation, which allows greater flexibility in building complex archi-

tectures. Pytorch uses core Python concepts like classes, structures and

conditional loops — that are a lot familiar, hence a lot more intuitive to

understand. This makes it a lot simpler than other frameworks like Ten-

sorFlow that bring in their own programming style. PyTorch provides two

high-level features:

- Tensor computing (like NumPy) with strong acceleration via graphics

processing units (GPU)

- Deep neural networks built on a tape-based autodiff system

• Deep Learning ToolboxTM(Matlab2019b)

Deep Learning ToolboxTM (formerly Neural Network ToolboxTM) pro-

vides a framework for designing and implementing deep neural networks

with algorithms, pretrained models, and apps.

• SciPy (Python)

SciPy is an Open Source Python-based library, which is used in mathe-

matics, scientific computing, Engineering, and technical computing. SciPy

contains varieties of sub packages which help to solve the most common

issue related to Scientific Computation.

• Optimization ToolboxTM(Matlab2019b)

Optimization ToolboxTM provides functions for finding parameters that

minimize or maximize objectives while satisfying constraints. The tool-

box includes solvers for linear programming (LP), mixed-integer linear

programming (MILP), quadratic programming (QP), nonlinear program-

ming (NLP), constrained linear least squares, nonlinear least squares, and

nonlinear equations. You can define your optimization problem with func-

tions and matrices or by specifying variable expressions that reflect the

underlying mathematics.

Chapter 4

Results

The results chapter will be presented in this way: first we will show how the

motor babbling data set was created,then we will show the results of the training

phases of the neural networks, then we will show how the optimization was

performed with the results of each network for the reaching task. Finally we will

show some considerations that we made in view of future throwing experiments.

4.1 Motor Babbling

For motor babbling we decided to build sinusoidal profiles to avoid a too sudden

variation of the reference signals, that would have led to a saturation of the

motors in some cases. In fact the motor is not able to follow a reference that

changes of a large amplitude at high frequency.

Due to this problem and the danger of working in an unsafe area, we decided

to create the data set as the sequential union of several tests all of the same

duration , that is 5 seconds, and each test restart from the robot’s setup position.

This time was considered appropriate to be able to collect enough data relating

to each sinusoidal signal.

To ensure the randomness of the signal, we decided to compose the data set

with sinusoids of different profiles. For this we have randomly selected both the

frequency of the sinusoid and the amplitude of the sinusoid. After a certain

number of tests the signal changes and becomes a sum of sinusoids, and so

on until the signal is a sum of five random sinusoids. For obvious reasons the

maximum amplitude of the sum of the sinusoids has been limited so as never to

have a signal with an excessive amplitude. For each motor a different reference

signal has been created.

34

CHAPTER 4. RESULTS 35

Figure 4.1: Example of Babbling references.

ns in=1 to 5

for (int s = 1 ; s < ns in ; s++) {
ampl = randomgen () ;

f r e q s = randomgen () ;

for (int i = 0 ; i < r e f s . s i z e () ; i++) {
s i g s [i] = s i g s [i] +

s i n (ampl [i] / nsin , f r e q s [i]) ∗ amplmax [i] ;

}
}

Below we show an example of a profile of 5 sinusoidal sequences (Figure 4.1),

where the first represents a single sinusoid and the last one a sum of 5 sinusoids,

joined sequentially to form the data set. It can be seen that at every 500 instant

of time (0.01s) we have a jump in the figure that represents that the robot has

returned to the setup position.

The final form of our reference signals is composed of sequences lasting 5

seconds. We have set a number of 500 tests but some have reached the limits

of the safety zone and were interrupted and therefore discarded, so at the end

of the 500 tests we collected 473 sequences useful for training neural networks.

CHAPTER 4. RESULTS 36

Figure 4.2: Shape of input and output vectors.

4.2 Model Selection NARX

We need to specify that some precautions have been made that have brought a

substantial modification to the NARX, as shown in the Figure 4.2 . In fact, in

order to use the same data set that we will then use for the LSTM(i.e. short

sequences), we took each of the sequences created during babbling and instead

of putting them in a long sequence, we created a sequence of 500 cells (this

number represents the instants sampled every 0.01s for the duration of each 5s

babbling experiment). In each cell we put sampling at the relative time instant

of all the experiments made (which in this case are 473).

This choice was deemed necessary both to be able to reuse the same LSTM

data set and to have a more realistic comparison between the two networks, but

also because given the limits imposed by the safety zone we would have had

discontinuities in the data set that would have introduced a further error in the

approximation phase.

For the training of this network, a very deep model selection was not made.

This choice was dictated by several factors, the first was that our goal was not

to find the best existing network, but for our approach we were convinced that

a network that approximated the dynamic model in a realistic way for our task

was enough if it wasn’t the optimal one.

A further factor of this choice derives from the fact that for the use we make

of it, this network allows to change a few features, the most relevant are certainly

the size of the single layer and the values to be kept in the TDL(Tapped Delay).

Referring to the previous work of Thuruthel et al. [1], we made several at-

tempts until we found a configuration that gave us results that we considered

acceptable. Below is an image of the training performance in OpenLoop con-

figuration, to be sure that it was not a lucky case, the same configuration has

been tried several times, giving almost identical results.

CHAPTER 4. RESULTS 37

Figure 4.3: NARX OpenLoop performance.

For this type of network the training is done in two steps, firstly the network

was trained in the open loop configuration (the choice to train the network di-

rectly in closed loop is not indicated because the training could be very sensitive

to the problem of the explosion of the gradient).

The Figure 4.3 of the performance of the open loop training shows how the

error tend to decrease both in the training and in the test and validation phases,

this behavior means that the network has learned well from the data it received

as input.

Once the training in open configuration is completed, the network can be

easily closed and another training phase can be carried out, this is necessary

because the open loop training could be subject to overfitting. For training we

tried to use two different backpropagation algorithms, Levenberg–Marquardt

(lm) and Bayesian Regularization (br), noting that the results of the second are

slightly better but with significantly longer training times. So we opted to use

the lm.

CHAPTER 4. RESULTS 38

Figure 4.4: NARX ClosedLoop performance.

The perfomance function for the open training phase is calculated as:

MSE =
1

T

T∑
t=0

‖Xt − f (Xt−1, Ut)‖2 (4.1)

where X is the input vector and U is the exogenous input vector. The function

f represents the mapping formed by the neural network

Once the training in open configuration is finished, the network can be easily

closed and another training phase can be carried out, this second training phase

is necessary because the open loop training could be subject to overfitting.

The performance function for the closed training phase is the only thing that

changes, in fact the size of the network remains constant, and is calculated as:

MSE =
1

T

T∑
t=0

∥∥∥Xt − f
(
X̂t−1, Ut

)∥∥∥2 (4.2)

Here, X̂t−1 is the prediction of the NARX network in the previous iteration.

Now the learning algorithm is not trying to reduce the single-step error but the

CHAPTER 4. RESULTS 39

whole multi-step prediction error (the performance function is the only difference

between the open loop network and the closed loop network).

4.3 Model Selection LSTM

For this network instead we preferred to use Python and in particular the use

of the PyTorch package, already described in the implementation part. This

choice was dictated by the possibility of having a random search algorithm

already implemented by Nardo [30] available. With this algorithm we were able

to do a fairly deep search and this was indispensable in the LSTM having it a

much greater number of parameters to tune. It is good to say that even in this

case we have not found the optimal solution to solve our problem, as the LSTM

model selection requires many days of computation, for this reason we opted for

an accurate but not refined selection.

rnn ml adam . s ea rch ho ldout ((models .LSTM, inp Dim , out dim)

{ ’ epochs ’ : 1000 , ’ t imes teps ’ : [8 , 16 , 32 , np . nan] ,

’ l r ’ : [−4.0 , −2.0 , 0 . 1 5] , ’ hidden ’ : [3 0 , 90 , 0 . 15 , 1 0] ,

’ beta1 ’ : [0 . 7 , 1 . 0 , 0 . 1 5] ,

’ beta2 ’ : [0 . 9 , 0 . 98 , 0 . 1 5] ,

’ e p s i l o n ’ : [−8 , −8, 0 . 1 5] ,

’wd ’ : [−8 , −5, 0 . 1 5] , ’ batch ’ : [1] ,

’ g r a d c l i p ’ : [0] } ,

{ ’ t r i a l s ’ : [2 0] , ’ r epeat ’ : 3 ,

’ pa t i ence ’ : [2 0] ,

’ e s t r ’ : (p a t i e n c e t r , 0 , m i n d e l t a t r) ,

’ e s v l ’ : (p a t i e n c e v l , 0 , 0 , avg epoch) ,

’ f cn ’ : (l o s s f c n , ob j f cn , ’ min ’) ,

’ seed ’ : seed ,

’ r e t a i n h i dde n ’ : False ,

’ met r i c s ’ : metr ix

} , device , ’ task ’ , load=True , verbose=True)

For the model selection, we divided the data set into 70:30 (training: test)

and concentrated on finding some hyperparameters such as the learning rate

lr ∈ [−4,−2]; the number of hidden state hidden ∈ [30, 90]; weight decay wd ∈
[−8,−5] is the L2 regularization and its role is to avoid the overfitting. There

are other parameters such as β1 and β2 which are not trivial to understand,

but are necessary for the Adaptive moment estimation (Adam) to control the

first and second moment of the gradient. In this treatise we are not interested

CHAPTER 4. RESULTS 40

in going deeper into the explanation of these parameters, but we can refer to

(Adam; Kingma and Ba, 2014) [31]

In addition, trials indicates the number of hyperparameter configurations

performed; patience indicates the number of epochs before stopping training

in the event of overfitting and has the function of guaranteeing early stopping;

repeat indicates the number of times we have retried training with these hy-

perparameters in order to evaluate if the result was repeatable. Obviously by

setting a number of attempts and greater repetitions we could have found better

results.

Result of the 3 repetitions

• Training loss(TR): 6.301e-05 Test loss(TS): 2.883e-05 epochs: 105

• Training loss(TR): 6.709e-05 Test loss(TS): 5.387e-05 epochs: 98

• Training loss(TR): 6.329e-05 Test loss(TS): 5.049e-05 epochs: 100

After model selection we take the average values of TR and TS to

choose the best model:

• TR: 6.446e-05(-+2.281e-06) — TS: 4.44e-05(-+1.359e-05)

• hidden: 41

• lr: 0.004428

• β1: 0.8262

• β2: 0.9662

• ε: 1e-08

• wd: 2.746e-08

The loss Figure 4.5 show how the design error, i.e. the loss of the training

phase, decreases and this means that the network has learned information from

the data it has taken as input. The profile of the loss of the test phase instead

is not linear and has discontinuities, this tells us that the model approximation

is probably not accurate enough for each point of the task space.

4.4 Trajectory Optimization

Once a learned model is obtained, we will use it as if it were actually a function

that taking inputs univocally associates outputs. From this moment on, there-

fore, the model will no longer change its characteristics and will no longer face

CHAPTER 4. RESULTS 41

Figure 4.5: LSTM loss.

any learning phase. In this phase, we decided to try different tasks: reaching

and throwing. The final purpose of this phase is to obtain a control variable

vector that, once given as input to the robot, can control it to perform tasks. To

do this, various optimization algorithms have been used, which we have already

described in Section 2.5. In practice, the optimization function (fmincon in

Matlab and scipy.optimize.minimize in Python) takes a vector of pairs/sets

of references of the control variable, for a number of steps equal to
tf
dt and at

each iteration varies depending on the optimization algorithm (SQL for exam-

ple) these references and evaluates the cost function as this input changes, and

finally returns the value related to the minimum error.

4.5 Tollerance and Repeatability

Before continuing our work it is good to evaluate which tolerance we want to

set in order to decide whether the result is satisfactory. First of all it would be

advisable to carry out several experiments giving the robot the same input in

order to be able to evaluate what its actual repeatability is. With the data we

had, it was possible to evaluate the average error in terms of Euclidean distance

and its variance. The results tell us that the average error for the Euclidean

distance is approx

Mean Error (m) = 0.0064

CHAPTER 4. RESULTS 42

Figure 4.6: iCub Cartesian reference

and its variation:

Standard Deviation (m) = 0.0024

For this reason we decided to select a tolerance T = 0.009m

4.6 Reaching Results

For our reaching experiment, we chose 10 points, 9 of which were random within

the task space and the Setup point, and three different time horizon tf (500ms,

1sec, 2sec). Motor trajectories to reach these points have been generated using

the optimization procedure, as described in Section 2.5.1, with a value of β

equals to for 0.005 for the NARX and 0.001 for the LSTM.

From the Figure 4.6 it is possible to see the references of the robot, we will

always refer to the references of the world. Table 4.1 shows the selected target

points and the relative distance from the setup point. This distance is shown

both in terms of all three Cartesian coordinates X, Y, Z, but it is to be noted

that we do not have any actuator capable of acting directly on the coordinate

X, in fact the shoulder pitch, the wrist pitch and pitch elbow allow to directly

change only the position on the Y-Z plane, the movement on the X axis is in fact

due to the usual mechanical limitations to which each rigid robot is subjected.

The other tables show the final position of the end effector at the end of each

experiment. The first value in the table indicates the associated experiment

and therefore a change of the reference target. The second row recall the target

CHAPTER 4. RESULTS 43

Targets X Y Z AmpMoveXY Z AmpMoveY Z

SETUP 0.1141 0.5582 0.2639 0 0
02 0.1172 0.5698 0.2724 0.0147 0.0143
03 0.1155 0.5792 0.2783 0.0255 0.0254
04 0.1212 0.5846 0.2806 0.0320 0.0312
05 0.1024 0.6130 0.2991 0.0661 0.0651
06 0.1300 0.6322 0.2893 0.0798 0.0782
07 0.0972 0.6572 0.3188 0.1144 0.1132
08 0.1080 0.6752 0.3041 0.1238 0.1237
09 0.1110 0.6919 0.3090 0.1411 0.1411
10 0.1284 0.7003 0.2972 0.1466 0.1459

[m] [m] [m] [m] [m]

Table 4.1: Cartesian Reference

SETUP STEP X Y Z dXY Z dY Z

TARGET 0.1141 0.5582 0.2639 0 0
NARX 50 0.1183 0.5562 0.2619 0.0051 0.0028
LSTM 50 0.1167 0.5477 0.2557 0.0135 0.0132
NARX 100 0.1165 0.5530 0.2597 0.0056 0.0054
LSTM 100 0.1153 0.5426 0.2515 0.0198 0.0198
NARX 200 0.1167 0.5579 0.2633 0.0027 0.0006
LSTM 200 0.1151 0.5445 0.2528 0.0176 0.0176

[0.01 s] [m] [m] [m] [m] [m]

Table 4.2: Table setup point

of the experiment and the amplitude of the movement. The following rows

indicate the network used by the optimization algorithm and the associated

time horizon tf , where the value in the column ‘STEP’ indicates the number of

control instants lasting 0.01s. The Cartesian coordinates associated with that

experiment are indicated below the X Y Z columns, while dXY Z indicates the

Euclidean distance considering all three coordinates, while dY Z consider only

Y and Z coordinates.

CHAPTER 4. RESULTS 44

02 STEP X Y Z dXY Z dY Z

TARGET 0.1172 0.5698 0.2724 0.0147 0.0143

NARX 50 0.1191 0.5711 0.2718 0.0024 0.0014

LSTM 50 0.1177 0.5571 0.2626 0.0159 0.0159

NARX 100 0.1178 0.5732 0.2730 0.0035 0.0035

LSTM 100 0.1175 0.5555 0.2615 0.0179 0.0179

NARX 200 0.1196 0.5685 0.2693 0.0040 0.0033

LSTM 200 0.1167 0.5481 0.2556 0.0273 0.0273

[0.01 s] [m] [m] [m] [m] [m]

Table 4.3: Table point 02

03 STEP X Y Z dXY Z dY Z

TARGET 0.1155 0.5792 0.2783 0.0255 0.0254

NARX 50 0.1188 0.5779 0.2758 0.0042 0.0027

LSTM 50 0.1175 0.5639 0.2677 0.0186 0.0185

NARX 100 0.1195 0.5759 0.2742 0.0065 0.0052

LSTM 100 0.1177 0.5589 0.2640 0.0249 0.0248

NARX 200 0.1207 0.5723 0.2715 0.0109 0.0096

LSTM 200 0.1170 0.5547 0.2609 0.0301 0.0301

[0.01 s] [m] [m] [m] [m] [m]

Table 4.4: Table point 03

04 STEP X Y Z dXY Z dY Z

TARGET 0.1212 0.5846 0.2806 0.0320 0.0312

NARX 50 0.1233 0.5843 0.2783 0.0031 0.0023

LSTM 50 0.1194 0.5710 0.2713 0.0164 0.0163

NARX 100 0.1208 0.5898 0.2815 0.0052 0.0052

LSTM 100 0.1186 0.5787 0.2765 0.0075 0.0071

NARX 200 0.1228 0.5849 0.2776 0.0034 0.0030

LSTM 200 0.1196 0.5702 0.2708 0.0174 0.0174

[0.01 s] [m] [m] [m] [m] [m]

Table 4.5: Table point 04

CHAPTER 4. RESULTS 45

05 STEP X Y Z dXY Z dY Z

TARGET 0.1024 0.6130 0.2991 0.0661 0.0651

NARX 50 0.1077 0.6149 0.2988 0.0056 0.0018

LSTM 50 0.1071 0.6206 0.3011 0.0091 0.0078

NARX 100 0.1089 0.6179 0.3007 0.0084 0.0050

LSTM 100 0.1094 0.6179 0.3003 0.0086 0.0050

NARX 200 0.1074 0.6200 0.3021 0.0090 0.0076

LSTM 200 0.1030 0.6000 0.2930 0.0144 0.0144

[0.01 s] [m] [m] [m] [m] [m]

Table 4.6: Table point 05

06 STEP X Y Z dXY Z dY Z

TARGET 0.1300 0.6322 0.2893 0.0798 0.0782

NARX 50 0.1300 0.6202 0.2887 0.0116 0.0116

LSTM 50 0.1244 0.6243 0.2933 0.0104 0.0088

NARX 100 0.1303 0.6348 0.2921 0.0041 0.0040

LSTM 100 0.1275 0.6303 0.2937 0.0053 0.0047

NARX 200 0.1329 0.6446 0.2940 0.0140 0.0135

LSTM 200 0.1297 0.6241 0.2903 0.0081 0.0081

[0.01 s] [m] [m] [m] [m] [m]

Table 4.7: Table point 06

07 STEP X Y Z dXY Z dY Z

TARGET 0.0972 0.6572 0.3188 0.1144 0.1132

NARX 50 0.1073 0.6536 0.3123 0.0060 0.0046

LSTM 50 0.1081 0.6556 0.3126 0.0126 0.0064

NARX 100 0.0990 0.6453 0.3135 0.0132 0.0130

LSTM 100 0.1095 0.6623 0.3155 0.0137 0.0060

NARX 200 0.0965 0.6346 0.3106 0.0241 0.0241

LSTM 200 0.1091 0.6456 0.3115 0.0182 0.0137

[0.01 s] [m] [m] [m] [m] [m]

Table 4.8: Table point 07

CHAPTER 4. RESULTS 46

08 STEP X Y Z dXY Z dY Z

TARGET 0.1080 0.6752 0.3041 0.1238 0.1237

NARX 50 0.1139 0.6700 0.3107 0.0048 0.0044

LSTM 50 0.1138 0.6794 0.3125 0.0110 0.0094

NARX 100 0.1197 0.6824 0.3116 0.0123 0.0087

LSTM 100 0.1219 0.6578 0.3036 0.0223 0.0174

NARX 200 0.1246 0.6428 0.2999 0.0353 0.0327

LSTM 200 0.1259 0.6351 0.2958 0.0447 0.0409

[0.01 s] [m] [m] [m] [m] [m]

Table 4.9: Table point 08

09 STEP X Y Z dXY Z dY Z

TARGET 0.1110 0.6919 0.3090 0.1411 0.1411
NARX 50 0.1141 0.6799 0.3131 0.0114 0.0114
LSTM 50 0.1150 0.6742 0.3104 0.0181 0.0176
NARX 100 0.1203 0.6992 0.3125 0.0114 0.0079
LSTM 100 0.1207 0.6942 0.3074 0.0101 0.0028
NARX 100 0.1207 0.6780 0.3098 0.0161 0.0137
LSTM 200 0.1238 0.6503 0.3000 0.0443 0.0424

[0.01 s] [m] [m] [m] [m] [m]

Table 4.10: Table point 09

10 STEP X Y Z dXY Z dY Z

TARGET 0.1284 0.7003 0.2972 0.1466 0.1459
NARX 50 0.1147 0.6766 0.3117 0.0217 0.0212
LSTM 50 0.1102 0.6948 0.3162 0.0222 0.0159
NARX 100 0.1328 0.7029 0.2991 0.0072 0.0041
LSTM 100 0.1294 0.6882 0.2990 0.0122 0.0122
NARX 200 0.1359 0.6940 0.2969 0.0117 0.0063
LSTM 200 0.1317 0.6785 0.2976 0.0219 0.0217

[0.01 s] [m] [m] [m] [m] [m]

Table 4.11: Table point 10

CHAPTER 4. RESULTS 47

4.6.1 Error comparison of the end effector position for

Reaching

Through the figures of this section we want to show how the trend of the er-

ror between the target and the position of the end effector at the end of the

experiment varies depending on both the network used to predict the motor

commands and the selected time horizon. All the figures have on the vertical

axis the amplitude of the error in meters, while on the horizontal axis the index

of the experiment is shown. We want to remember that the index of experiments

increases with the increase in the amplitude of the movement.

The Figures 4.7, 4.8 show how the error varies for each of the two artificial

neural network models as the time horizon changes, while from the following

Figures 4.9, 4.10, 4.11 we observed the trend of the error by comparing the two

networks and keeping the time horizon fixed for each figure.

From Figure 4.7 it can be seen how fixed a time horizon of 0.5s and 1s and

selected the NARX model the experiments are successful with an error value

within the tolerance set for small movements while for a greater control horizon

the result is not always accurate. As the range of motion increases, we see that

for some experiments the error grows excessively. The Figure 4.7 is associated

with a Table 4.12 in which it is marked with a symbol Xwhen the error of the

experiment is less than the tolerance T, while with a symbol × when this is

greater. This table also shows the success rate of the ten experiments we have

done, and we can see that the higher percentage is associated with time horizon

tf = 1s with a success rate of 90%. From the Figure 4.8, on the other hand,

it can be seen that the experiments having selected the LSTM model have not

actually reached the target position with precision, except on a few occasions.

Consequently, in the Table 4.13 it can be seen that the success rate remains

better for a time horizon tf = 1s, but with lower percentages.

CHAPTER 4. RESULTS 48

Figure 4.7: Comparison of the NARX error as the time horizons vary

NARX 1 2 3 4 5 6 7 8 9 10 % Succ

50 X X X X X × X X × × 70

100 X X X X X X × X X X 90

200 X X X X X × × × × X 60

Table 4.12: Error - NARX

From the Figure 4.8, on the other hand, it can be seen that the experiments

having selected the LSTM model have not actually reached the target position

with precision, except on a few occasions. Consequently, in the Table 4.13 it

can be seen that the success rate remains better for a time horizon tf = 1s, but

with lower percentages.

CHAPTER 4. RESULTS 49

Figure 4.8: Comparison of the LSTM error as the time horizons vary

LSTM 1 2 3 4 5 6 7 8 9 10 % Succ

50 × × × × X X X X × × 40

100 × × × X X X X × X × 50

200 × × × × × X × × × × 10

Table 4.13: Error - LSTM

The Figures 4.9, 4.10, 4.11 show a comparison of the error of the two net-

works fixed the time horizon, while in the tables there is a symbol on the line

associated with the network that had a better result for the experiment, if the

symbol is an × it means that although the result is better the error of the ex-

periment exceeds the set tolerance. The results show that NARX is better than

LSTM in most cases regardless of the time horizon that is set.

Now it is interesting to see the results not only of the final position of the

end effector so in the next section we present how it behaved throughout the

control trajectory.

CHAPTER 4. RESULTS 50

Figure 4.9: Comparison of NARX and LSTM fixed the time horizon tf = 0.5s

50 1 2 3 4 5 6 7 8 9 10 % Succ

NARX X X X X X X X × 80

LSTM X × 20

Table 4.14: Error NARX - LSTM tf = 0.5s

Figure 4.10: Comparison of NARX and LSTM fixed the time horizon tf = 1s

100 1 2 3 4 5 6 7 8 9 10 % Succ

NARX X X X X X X X X 80

LSTM X X 20

Table 4.15: Error NARX - LSTM tf = 1s

CHAPTER 4. RESULTS 51

Figure 4.11: Comparison of NARX and LSTM fixed the time horizon tf = 2s

200 1 2 3 4 5 6 7 8 9 10 % Succ

NARX X X X X X × × X 80

LSTM X × 20

Table 4.16: Error NARX - LSTM tf = 2s

4.6.2 NARX - End effector behavior

The analysis of the previous section shows us that by using NARX model

in many experiments we can obtain good results while in others the error is

greater,therefore it is interesting to see if the real robot behaves as predicted by

the network using the same estimated motor commands.

The Figures 4.12, 4.13 show the behaviors of the network and the iCub

having as input the same vector of motor control commands obtained by the

optimization algorithm. As can be seen from the Figure 4.12, in this experi-

ment and with this configuration of β(a factor that penalizes the weight of the

motor effort in the cost function), time horizon tf and selected target point, the

behavior of the network and the robot is almost the same. In the Figure 4.13

we will instead graph the difference between the two lines of the previous figure.

The figures 4.12, 4.13 show that the error behavior is not linear, and this

may be due to both a modeling error and the noise that characterizes every

experiment on a real robot, but in any case the modulus of this difference

always remains below 6mm and this is considered an acceptable result.For our

purpose, and in view of the error compensation algorithm, we have set a final

end effector distance T <= 0.009m as tolerance.

CHAPTER 4. RESULTS 52

Figure 4.12: Comparison between predicted NARX output and real robot move-
ment [tf = 0.5s, experiment 05]

Figure 4.13: Difference between predicted NARX output and real robot move-
ment [tf = 0.5s, experiment 05]

From the tables, however, it can be seen that in some points this differ-

ence actually appears greater, so we decided to show for the point at a greater

distance (Table 4.10) what happens in detail.

As you can see from the Figures 4.14, 4.15, 4.16, 4.17, also for these configu-

rations the results are satisfactory even if you can see how for longer sequences

the error appears greater.

CHAPTER 4. RESULTS 53

Figure 4.14: Comparison between predicted NARX output and real robot move-
ment [tf = 2s, experiment 10]

Figure 4.15: Difference between predicted NARX output and real robot move-
ment [tf = 2s, experiment 10]

CHAPTER 4. RESULTS 54

Figure 4.16: Comparison between predicted NARX output and real robot move-
ment [tf = 1s, experiment 10]

Figure 4.17: Difference between predicted NARX output and real robot move-
ment [tf = 1s, experiment 10]

It is interesting to analyze what happened for the same experiment with an

experiment of shorter duration [0.5s].

From the Figure 4.19 it can be seen that the error on the Y axis grows rapidly

and then stabilizes. We tried the test again and got a very similar result (Figure

4.20, which allowed us to rule out the fact that it was an unlucky experiment. A

possible explanation could be that for such a large movement, a different value

of β is needed to reduce the intensity of the variation of the motor commands.

Further tests will be done in the future.

CHAPTER 4. RESULTS 55

Figure 4.18: Comparison between predicted NARX output and real robot move-
ment [tf = 0.5s, experiment 10]

Figure 4.19: Difference between predicted NARX output and real robot move-
ment [tf = 0.5s, experiment 10]

CHAPTER 4. RESULTS 56

Figure 4.20: Difference between predicted NARX output and real robot move-
ment [tf = 0.5s, experiment 10-B]

4.6.3 LSTM - End effector behavior

The analysis of the section 4.6.1 shows us that the results using the LSTM are

worse than those using the NARX, let’s look at how the robot behaves having

as input the predicted motor commands using the LSTM.

From the Figures 4.21, 4.23, 4.25 you can see that actually the optimization

algorithm has obtained values of motor commands that try to bring us to the

target, but they seem being of insufficient intensity, in fact, the robot is almost

never able to reach the point respecting the set tolerance.

This could be due to an insufficiently accurate model selection, as can be

seen from the training chart of the LSTM 4.5 the minimized loss function has

irregularities that could be a sign of not very good learning by the network.

From the Figures 4.22, 4.24, 4.26, the figures where the trend of the error is

shown, you can see how the main increase of the error is in the initial phase, and

this could suggest a greater weight of β of the cost function, a sudden change

of reference of the motor could bring a greater error in the initial phase.

In the future we will certainly try to collect more data to investigate these

critical issues.

CHAPTER 4. RESULTS 57

Figure 4.21: Comparison between predicted NARX output and real robot move-
ment [tf = 0.5s, experiment 06]

Figure 4.22: Difference between predicted NARX output and real robot move-
ment [tf = 0.5s, experiment 06]

CHAPTER 4. RESULTS 58

Figure 4.23: Comparison between predicted LSTM output and real robot move-
ment [tf = 1s, experiment 06]

Figure 4.24: Difference between predicted LSTM output and real robot move-
ment [tf = 1s, experiment 06]

CHAPTER 4. RESULTS 59

Figure 4.25: Comparison between predicted LSTM output and real robot move-
ment [tf = 2s, experiment 06]

Figure 4.26: Difference between predicted LSTM output and real robot move-
ment [tf = 2s, experiment 06]

4.7 Preliminary Throwing Results

To do the throwing experiments we had to face a new challenge, namely to solve

the problem of grasping the ball to be thrown. The robotic arm of the iCub we

used also allows the use of a robotic hand that can be controlled in position.

We therefore found a configuration of the fingers able to keep the ball steady

during movement and an opening configuration in order to release the object.

As can be seen from the Figures 4.27 due to the geometry of the ball we are

CHAPTER 4. RESULTS 60

Figure 4.27: Examples of closed hand setup

unable to set the contact point of the object exactly at the position where the

end effector is estimated to be, i.e. the center of the hand. This problem can

be easily solved by adding an offset to the throwing model.

The dynamics of the motors that are used for the hand and fingers are

however much slower than that of the rest of the arm. For this reason, we

decided to empirically evaluate the time required to perform this operation.

The experiment consisted of changing the position reference from “closed hand”

to “open hand” and assessing the time needed to see the ball release. From

the experiments we have obtained that the command arrives to the motors in

less than 0.005s and the actual time to see the hand open is 0.37s ± 0.05s

for a maximum time of 0.425s. This parameter, which is characteristic of the

specific open/closed configuration of the hand, requires us to give the motor

command to release the object at least 0.46s before the release point obtained

by optimization is reached. For this reason, for future throwing experiments it

will be necessary to ensure that this time is actually respected. Finally, we show

the only throwing experiment we have done on the robot using the same NARX

model used for the reaching. In this experiment, the target point is no more a

point in the robot’s task space, but it is a point outside its operating region.

The optimization as explained in the throwing model Section 2.5.2 tries to find

the motor control commands and the release point necessary to throw the ball

at the desired target point. Given the problems in using the hand, for now we

only have data relating to the movement of the arm and not those relating to

the final position that the ball reaches.

CHAPTER 4. RESULTS 61

Figure 4.28: Comparison between predicted NARX output and real robot move-
ment [tf = 0.5s, Throwing]

Figure 4.29: Difference between predicted NARX output and real robot move-
ment [tf = 0.5s, Throwing]

The Figures 4.28, 4.29 show us that the trend of the arm also for this type

of task is similar to the predicted one, although it is possible to notice an initial

error probably due to an imprecision of the initial setup perhaps caused by the

gripping of the ball at the beginning of the test.

Chapter 5

Conclusions

In this work we proposed a cartesian model-free method, using recurrent neural

networks, for the control of a humanoid robot arm. The controller was employed

successfully for reaching tasks and preliminarily extended for object throwing

tasks. The work is based on previous works of Thuruthel and colleagues [1], [2]

which proposed a learning of the dynamic model for open loop predictive control

of soft robotic manipulators and a stable open loop controller for the same robot.

By relying on this approach, we tested the dynamic model learning method,

starting from a task space exploration algorithm using the arm of the iCub

humanoid robot. We also performed a comparison between two RNNs (NARX

and LSTM) used to learn the forward dynamic model of the robot arm.

The results of the reaching tasks performed as a combination of a RNN and

the optimization algorithm demonstrate that the proposed approach allows the

robot arm to produce reaching movements with a success rate of 90% in the

best case.

The comparison of the two RNNs shows important differences in the per-

formances. Specifically for NARX, we have observed that shorter trajectories

guarantee better results, i.e. the final position error does not exceed the set

tolerance (0.009m). In fact, for experiments with time horizon tf = 0.5s the

success rate is 70%, for those with tf = 1s the success rate is 90% while for

those with tf = 2s seconds the rate drops to 60%. This is because the predic-

tion error of the learned model tends to increase as the time increases or for too

short experiments. For the LSTM network, on the other hand, we observed a

larger and more discontinuous error that tends to increase with the increasing

prediction horizon, as for the NARX but in the best case fixed tf = 1s the

success rate is 50%. We believe that LSTM performances could be improved

with a more accurate model selection, in fact the Figure 4.5 shows a not perfect

behavior in the learning phase.

62

CHAPTER 5. CONCLUSIONS 63

Figure 5.1: Control scheme architecture with error compensation

For the part relating to throwing we have not been able to collect data, but

we have described and implemented a model for solving this problem (Section

2.5.2). The proposed model is based on the use of the same model trained

for the reaching experiments, and by changing only the cost function that the

optimization uses to find the motor commands it is possible to perform the

throwing task.

To improve the robustness of the results, one could consider collecting new

reaching experiments to refine the analysis, try to refine the model selection of

the LSTM network and perform more throwing experiments. Another possible

extension to the work, as shown in Figure 5.1, would be the introduction of a

further phase of error compensation, both to improve the reaching experiments

but above all to go to compensate for all the non considered errors, such as for

example that due to friction of the air or the error introduced by the addition

of weight on the robot hand, in the throwing experiment.

Finally, we believe that the proposed model can be useful in the modeling of

robots of different nature such as musculoskeletal robots, where the reproduc-

tion of muscles is developed through the elongation and contraction of elastic

elements and other elements that are not easily modeled or controllable.

Bibliography

[1] Thomas George Thuruthel, Egidio Falotico, Federico Renda, and Cecilia

Laschi. Learning dynamic models for open loop predictive control of soft

robotic manipulators. Bioinspiration & Biomimetics, 12, 08 2017.

[2] T. G. Thuruthel, E. Falotico, M. Manti, and C. Laschi. Stable open loop

control of soft robotic manipulators. IEEE Robotics and Automation Let-

ters, 3(2):1292–1298, April 2018.

[3] Fumiya Iida and Auke Jan Ijspeert. Biologically Inspired Robotics, pages

2015–2034. Springer International Publishing, Cham, 2016.

[4] Terrence Fong, Illah Nourbakhsh, and Kerstin Dautenhahn. A survey of

socially interactive robots. Robotics and autonomous systems, 42(3-4):143–

166, 2003.

[5] Brian R Duffy. Anthropomorphism and the social robot. Robotics and

autonomous systems, 42(3-4):177–190, 2003.

[6] Comau. Amico. https://www.comau.com/it/pages/this_is_comau/

innovation/amico.aspx, Accessed 2020-04-01.

[7] Jesús Retto. Sophia, first citizen robot of the world. ResearchGate

https://www. researchgate. net, pages 2–9, 2017.

[8] Ichiro Kato. ” the wabot-1” an information-powered machine with sences

and limbs. Bulletin of Science and Engineering Research Laboratory, 62,

1973.

[9] Ichiro Kato, Sadamu Ohteru, Katsuhiko Shirai, Toshiaki Matsushima,

Seinosuke Narita, Shigeki Sugano, Tetsunori Kobayashi, and Eizo Fuji-

sawa. The robot musician ‘wabot-2’(waseda robot-2). Robotics, 3(2):143–

155, 1987.

[10] Giorgio Metta, Lorenzo Natale, Francesco Nori, Giulio Sandini, David Ver-

non, Luciano Fadiga, Claes Von Hofsten, Kerstin Rosander, Manuel Lopes,

64

https://www.comau.com/it/pages/this_is_comau/innovation/amico.aspx
https://www.comau.com/it/pages/this_is_comau/innovation/amico.aspx

BIBLIOGRAPHY 65

José Santos-Victor, et al. The icub humanoid robot: An open-systems

platform for research in cognitive development. Neural Networks, 23(8-

9):1125–1134, 2010.

[11] Kuniyuki Takahashi, Tetsuya Ogata, Jun Nakanishi, Gordon Cheng, and

Shigeki Sugano. Dynamic motion learning for multi-dof flexible-joint robots

using active–passive motor babbling through deep learning. Advanced

Robotics, 31(18):1002–1015, 2017.

[12] T. Hester, M. Quinlan, and P. Stone. Generalized model learning for re-

inforcement learning on a humanoid robot. 2010 IEEE International Con-

ference on Robotics and Automation, pages 2369–2374, May 2010.

[13] Y. Karayiannidis and Z. Doulgeri. Model-free robot joint position regula-

tion and tracking with prescribed performance guarantees. Robotics and

Autonomous Systems, 60(2):214 – 226, 2012.

[14] S. G. Khan, G. Herrmann, F. Lewis, T. Pipe, and C. Melhuish. A q-learning

based cartesian model reference compliance controller implementation for a

humanoid robot arm. 2011 IEEE 5th International Conference on Robotics,

Automation and Mechatronics (RAM), pages 214–219, Sep. 2011.

[15] D. Braganza, D. M. Dawson, I. D. Walker, and N. Nath. A neural net-

work controller for continuum robots. IEEE Transactions on Robotics,

23(6):1270–1277, 2007.

[16] V. Falkenhahn, A. Hildebrandt, R. Neumann, and O. Sawodny. Dynamic

control of the bionic handling assistant. IEEE/ASME Transactions on

Mechatronics, 22(1):6–17, 2017.

[17] M. Plooij, W. Wolfslag, and M. Wisse. Open loop stable control in

repetitive manipulation tasks. In 2014 IEEE International Conference on

Robotics and Automation (ICRA), pages 949–956, 2014.

[18] N. Sugimoto, V. Tangkaratt, T. Wensveen, T. Zhao, M. Sugiyama, and

J. Morimoto. Trial and error: Using previous experiences as simulation

models in humanoid motor learning. In IEEE Robotics Automation Maga-

zine, volume 23(1), pages 96–105, 2016.

[19] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas

Funkhouser. Tossingbot: Learning to throw arbitrary objects with residual

physics. Proceedings of Robotics: Science and Systems (RSS), 2019.

[20] TOYOTA. CUE-3. https://global.toyota/en/newsroom/corporate/

28595150.html, Accessed 2020-04-01.

https://global.toyota/en/newsroom/corporate/28595150.html
https://global.toyota/en/newsroom/corporate/28595150.html

BIBLIOGRAPHY 66

[21] GANGHUA SUN and BRIAN SCASSELLATI. A fast and efficient

model for learning to reach. International Journal of Humanoid Robotics,

02(04):391–413, 2005.

[22] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:

Continual prediction with lstm. Neural Computation, 12(10):2451–2471,

2000.

[23] Roger Fletcher. Practical methods of optimization. John Wiley & Sons,

2013.

[24] Ugo Pattacini, Francesco Nori, Lorenzo Natale, Giorgio Metta, and Giulio

Sandini. An experimental evaluation of a novel minimum-jerk cartesian

controller for humanoid robots. In 2010 IEEE/RSJ international confer-

ence on intelligent robots and systems, pages 1668–1674. IEEE, 2010.

[25] Vadim Tikhanoff, Angelo Cangelosi, Paul Fitzpatrick, Giorgio Metta,

Lorenzo Natale, and Francesco Nori. An open-source simulator for cogni-

tive robotics research: the prototype of the icub humanoid robot simulator.

In Proceedings of the 8th workshop on performance metrics for intelligent

systems, pages 57–61, 2008.

[26] Enrico Mingo Hoffman, Silvio Traversaro, Alessio Rocchi, Mirko Ferrati,

Alessandro Settimi, Francesco Romano, Lorenzo Natale, Antonio Bicchi,

Francesco Nori, and Nikos G Tsagarakis. Yarp based plugins for gazebo

simulator. In International Workshop on Modelling and Simulation for

Autonomous Systems, pages 333–346. Springer, 2014.

[27] Lorenzo Natale, Ali Paikan, Marco Randazzo, and Daniele E Domenichelli.

The icub software architecture: evolution and lessons learned. Frontiers in

Robotics and AI, 3:24, 2016.

[28] G Metta, P Fitzpatrick, and L Natale. Towards long-lived robot genes,

2007.

[29] Francesco Nori, Silvio Traversaro, Jorhabib Eljaik, Francesco Romano, An-

drea Del Prete, and Daniele Pucci. icub whole-body control through force

regulation on rigid non-coplanar contacts. Frontiers in Robotics and AI,

2:6, 2015.

[30] Stefano Nardo. An empirical comparison of recurrent neural networks on

sequence modeling. Tesi di laurea, Università di Pisa, 2018/2019.

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. CoRR, abs/1412.6980, 2014.

Ringraziamenti

I miei più cari ringraziamenti vanno ad Egidio e Lorenzo, che oltre ad avermi

dato la possibilità di lavorare in laboratorio con loro mi hanno sostenuto fino

alla fine soprattutto nei momenti più critici di questo periodo di tesi. Oltre a

loro devo ringraziare tutti i ragazzi del laboratorio che oltre ad avermi fatto una

grande compagnia sono sempre stati disponibili ad aiutarmi e a confrontarsi

sul lavoro che stavo facendo. Un ringraziamento è dovuto anche al professor

Matteucci per la fiducia che mi ha dato senza la quale questo periodo di lavoro

non sarebbe stato possibile.

Un ringraziamento va anche a tutta la mia famiglia, a mio babbo, a mia

mamma, le mie zie, mio fratello, le mie tre magnifiche sorelle, ai loro compagni

e i miei nove nipoti, insomma a tutto l’asilo che mi ritrovo ogni volta che torno

a casa. Senza il loro sostegno e il loro affetto non avrei trovato né gli stimoli né

la forza per scoprire cosa la realtà ha da offrirmi tutti i giorni.

Non posso dimenticare tutti gli amici del Poli e in particolare Polifemo che ha

sempre vegliato su di me e i PoliUltras, una banda di matti che mi ha totalmente

rivoluzionato il cuore e mi ha mostrato che non c’è sconfitta nel cuore di chi

lotta ma comunque Poli 1 - Catto 0.

Un ultimo e caro ringraziamento va a tutti i Regaz di Rimmini che da sempre

sopportano tutto il mio sentimentalismo e animo polemico e che tra una piada

e una cantata in piazzetta mi hanno insegnato che l’unico criterio nella vita è il

cuore.

67

	Abstract
	Sommario
	Introduction
	Motivation
	Humanoid Robots
	State of the art for Cartesian model-free control of the arm
	Thesis objectives

	Proposed model
	Control Scheme
	Motor Babbling
	Learning the forward dynamics
	Recurrent Neural Network
	NARX
	LSTM

	Optimization
	Reaching
	Throwing

	Robotic Implementation
	iCub
	Robotic arm structure
	iCub Simulators
	Interface with iCub - YARP
	Motor Control Mode
	Software and IT tools

	Results
	Motor Babbling
	Model Selection NARX
	Model Selection LSTM
	Trajectory Optimization
	Tollerance and Repeatability
	Reaching Results
	Error comparison of the end effector position for Reaching
	NARX - End effector behavior
	LSTM - End effector behavior

	Preliminary Throwing Results

	Conclusions
	Bibliography

