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Abstract

Over the last decade, the benefits of adopting sustainable solutions in man-
ufacturing have gained an increasing global recognition. Specifically, the
control of machine states is one of the most promising measure to pursue
energy efficient operation. Based on service request, state control aims at
minimizing the energy consumed during idle periods by properly switching
off/on the machine tool. The selection of the optimal control is not trivial,
since manufacturing systems are subject to several source of randomness,
difficult to model a priori. However, most of the policies from literature
assume the stochastic processes involved in the control problem to be known.
Their practical implementation therefore requires a burdensome experimental
campaign to fit the random variable distributions.

This work provides an on-line time-based policy able to effectively control
the machine state, while learning from a real time collection of part arrivals.
Considering that a startup transitory is required to resume operational readi-
ness, an efficient solving algorithm is developed to exactly identify trade-off
solutions, which improve machine sustainability while keeping its throughput
high. Moreover, since the policy is optimized based on expectations, a measure
is presented to mitigate the risk of deteriorating machine performance over the
single service request. Finally, a change point detection method is introduced
to handle a non-stationary arrival process. In this way, the control can be
autonomously adapted to the dynamic behavior of the upstream portion of
the system, thus overcoming a critical barrier for practical implementation.
The benefits of the proposed algorithms are assessed by means of realistic
numerical cases.

Besides the scientific results, this policy can be applied to a wide range
of production cases, being tunable according to the user needs, adaptive to
the changes of a real manufacturing environment, lightweight and highly
autonomous.





Sommario

Nell’ultimo decennio, i benefici derivanti dall’adozione di soluzioni sostenibili
nel settore manifatturiero sono stati progressivamente riconosciuti a livello
globale. In particolare, una delle soluzioni più promettenti per ridurre il
consumo energetico di una macchina utensile è il controllo dei suoi stati.
Spegnere e riaccendere opportunamente la macchina sulla base delle richieste
di servizio permette infatti di minimizzare l’energia assorbita durante i periodi
di inattività. La selezione di un controllo ottimale non è semplice, in quanto i
sistemi produttivi sono caratterizzati da diverse fonti di causalità, difficili da
modellare a priori. Tuttavia, la maggior parte delle politiche in letteratura
considera noti i processi stocastici coinvolti nel problema di controllo. La loro
implementazione pratica richiede quindi un’onerosa campagna sperimentale
per riconoscere le distribuzioni delle variabili casuali.

Questo lavoro fornisce una politica di controllo online e basata su variabili
temporali, in grado di gestire lo stato della macchina imparando dai dati
relativi all’arrivo delle parti, acquisiti in tempo reale dal sistema. Dal momento
che, una volta spenta la macchina, è necessario un transitorio di accensione
per ristabilirne l’operatività, un efficiente algoritmo risolutivo è sviluppato
per identificare esattamente delle soluzioni di compromesso, che permettano
il miglioramento della sostenibilità senza danneggiare la produttività. Inoltre,
dato che la politica è ottimizzata sulla base di valori attesi, una misura è
presentata per mitigare il rischio di deteriorare le prestazioni della macchina
nella singola richiesta di servizio. Infine, una metodologia di individuazione
dei punti di cambio è introdotta per gestire una successione di arrivi non
stazionaria. In questo modo, il controllo può essere adattato autonomamente
al comportamento dinamico del processo produttivo a monte, superando così
un ostacolo critico per l’implementazione pratica. I benefici forniti dagli
algoritmi proposti sono valutati per mezzo di realistici casi numerici.

Oltre ai risultati scientifici, questa politica può essere applicata ad una
vasta gamma di casi produttivi, in quanto è calibrabile sulle esigenze del-
l’utilizzatore, adattiva ai cambiamenti di un reale ambiente manifatturiero,
leggera dal punto di vista implementativo ed altamente autonoma.
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different sample sizes. The theoretical value is g(τ ∗) = 175.94
kJ/part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 An illustrative example of RuLSIF method notation. . . . . . 102
5.2 Starvation times data stream and change point score for a

single replication - αCPD = 0.01, nCPD = 30, kCPD = 5 and
ηCPD = 25. Note that the change point score is returned with
a delay of 35 observations. . . . . . . . . . . . . . . . . . . . . 106

5.3 Change point locations returned by the RuLSIF method for
cases M1/P1/0.02 and M2/P2/0.05 (boxplots of 10 replications).108

5.4 M1/P1/0.02 - C0 = 10 kJ/part, α = 0.05 and n∗ = 500.
Dotted lines indicate the true change point locations. . . . . . 109

5.5 M2/P2/0.05 - C0 = 20 kJ/part, α = 0.05 and n∗ = 500.
Dotted lines indicate the true change point locations. . . . . . 110

5.6 Graphical representation of the considered system. . . . . . . . 112
5.7 Illustrative example of the recursive function behavior. Note

that x̌3(τ ) = 0 since a part is waiting in the buffer at process
completion of part 2. . . . . . . . . . . . . . . . . . . . . . . . 113

5.8 Case 1 - Sample-based energy saving (10 replications). . . . . 115
5.9 Case 1 - Implemented control τimpl at each algorithm iteration

k = n/25 (1 replication). Missing points correspond to τimpl =
{∞,∞}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.10 Case 1 - Frequency histograms of x (1 replication). . . . . . . 116
5.11 Case 2 - Sample-based energy saving (10 replications). Note

that the traditional and the sample-based objective functions
provide the exact same results. . . . . . . . . . . . . . . . . . . 117

B.1 φ(x, {∞,∞})− φ(x, {τoff ,∞}) for machine M1. . . . . . . . . 133
B.2 φ(x, {∞,∞})− φ(x, {τoff , τoff +$}) for machine M1. . . . . 133
B.3 Waiting time function ψ(x, τ ) for machine M1. . . . . . . . . . 135

xv





List of Tables

2.1 EEC papers classification. . . . . . . . . . . . . . . . . . . . . 8
P.1 Machine parameters. . . . . . . . . . . . . . . . . . . . . . . . 32
P.2 Optimal control τ ∗ for different scenarios. Related energy and

throughput performance are also given. . . . . . . . . . . . . . 34

3.1 D1, ta = 45 s - K-S results as mean probability of acceptance
as n increases (αK−S = 0.05, 10 replications). . . . . . . . . . . 46

3.2 D3 - K-S results as mean probability of acceptance as n in-
creases (αK−S = 0.05, 10 replications). . . . . . . . . . . . . . 46

3.3 Optimal control τ ∗ for different scenarios. Related energy and
throughput performance are also given. Scenarios with ε = 1
are reported for completeness. . . . . . . . . . . . . . . . . . . 54

3.4 M1/D1/1 - Implementation Phase settings. . . . . . . . . . . . 64
3.5 M1/D1/1 - Sample-based comparison of on-line algorithm en-

ergy performance for different settings (95% CI, 10 replications).
Experiments with n∗ =∞ are reported. . . . . . . . . . . . . . 65

3.6 M1/D1/1 - Number of observations collected before implement-
ing the solution. For C0 = 0 kJ/part the control is always
implemented at the first iteration. . . . . . . . . . . . . . . . . 65

3.7 M1/D1/1 - Effects of factors C0, α and n∗ over the mean num-
ber of observations before implementing the control parameters
ninitial and the mean number of changes. . . . . . . . . . . . . 68

3.8 M2/D2/1 - Implementation Phase settings. . . . . . . . . . . . 70
3.9 M3/D3/0.02 - Implementation Phase settings. . . . . . . . . . 71
3.10 M3/D3/0.02 - Effects of factors C0, α and n∗ over the mean

number of observations before implementing the control pa-
rameters ninitial and the mean number of changes. . . . . . . . 73

4.1 Optimal control τ ∗ for different energy risk constraint settings.
Related energy performance are also given. Results with δe = 1
(unconstrained optimization problem) are reported for comparison. 89

xvii



List of Tables

4.2 Optimal control τ ∗ for different waiting time risk constraint
settings. Related energy performance are also given. Results
with δq = 1 (unconstrained optimization problem) are reported
for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 M1/D1/1 - Optimal switch on parameters and objective func-
tion estimates for different sample sizes (5 replications). Results
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Chapter 1

Introduction

In the last ten years, alongside the classical manufacturing system research
topics concerning productivity improvement and quality enhancement, energy
efficiency has become a significant field of interest. The need for systems with
"eco-green" functionalities is driven both by the latest political regulations,
aimed at containing the environmental impact of industrial processes, and by
the competitive advantage achievable through cost reduction. Nevertheless,
some critical issues limit the widespread implementation of sustainable solu-
tions in manufacturing industries. New models and methods must therefore
be developed to overcome these barriers.

1.1 Background

According to the U.S. Energy Information Administration [1], the amount
of energy absorbed by the industrial sector in 2018 accounts for more than
50% of the world energy consumption (cf. figure 1.1). In particular, energy-
intensive manufacturing (food, pulp and paper, basic chemicals, refining,
iron and steel, non-ferrous metals and non-metallic minerals) is the largest
component in the sector, being responsible for the 52% of the total industrial
absorptions. This subsector is followed by nonenergy-intensive manufacturing
(metal-based durables, other chemicals and other manufacturing) and non-
manufacturing (agriculture, mining and construction) with a share of 35%
and 13%, respectively.

Looking to the future, the long-term projections provided in the Interna-
tional Energy Outlook 2019 [1] show that the gross output from industrial
activities (i.e. a measure of sales across industrial sectors) is supposed to
double between 2018 and 2050, resulting in an increase of industrial en-
ergy consumption (cf. figure 1.2). Nevertheless, the industrial gross output

1



Chapter 1. Introduction
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(a) Worldwide energy demand.
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(b) Industrial sector energy demand.

Figure 1.1: Energy consumption data from the International Energy Outlook 2019.

U.S. Energy Information Administration www.eia.gov/ieo#IEO2019U.S. Energy Information Administration

In the Reference case, gross output from industrial activities doubles 
by 2050—
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• World gross output, a measure of total sales across business sectors, more than doubles worldwide from 
2018 to 2050, with about half of this growth related to industrial activity. The remaining growth comes 
from the services sector and reflects non-industrial activities (i.e., commercial sector energy 
consumption).

• Gross output shares remain steady across industrial subsectors, with energy-intensive manufacturing 
(basic chemicals, food, iron and steel, non-ferrous metals, non-metallic minerals, paper, and refining) 
maintaining about a 28% share throughout the projection period. Non-energy-intensive manufacturing 
(metal-based durables, other chemicals, and other manufacturing) grows from 43% to 45%, and non-
manufacturing sectors decline from 29% to 27%.

• Following these gross output trends, the share of energy consumed by energy-intensive manufacturing 
holds steady at about 50% from 2018 to 2050. During the same period, the share of energy consumed by 
non-energy-intensive manufacturing increases from 35% to 38%. 

—with about half of industrial energy consumption in the energy-
intensive industries 
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Figure 1.2: Gross output and industrial energy consumption (2010-2050) [1].

growth outpaces the energy consumption increase, due to the higher share of
nonenergy-intensive manufacturing and the enhancements concerning indus-
trial energy efficiency.

These improvements are especially achieved in those countries that are
part of the Organisation for Economic Cooperation and Development (OECD).
In fact, while the difference between the industrial gross output growths in
OECD and non-OECD countries is supposed to progressively diminish, the
latter are clearly characterized by a stronger increase of industrial energy
consumption (cf. figure 1.3). In detail, at the end of the analyzed period,
China remains the world’s largest single industrial energy consumer, while
India’s consumptions nearly triple (cf. figure 1.4). This mainly results from
the continuous shift of energy-intensive manufacturing towards non-OECD
Asia.

Finally, the price of electrical energy is progressively increasing [2], be-
coming a significant factor for the competitiveness of a company.
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U.S. Energy Information Administration www.eia.gov/ieo#IEO2019U.S. Energy Information Administration

World industrial gross output growth continues to slow—
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• Growth in industrial gross output, a measure of sales across industrial sectors, slows worldwide in the 
Reference case from 4.2% in 2018 to 2.2% in 2050. Industrial gross output growth in countries that are 
not part of the Organization of Economic Cooperation and Development (OECD) slows from 5.0% in 
2018 to 2.3% in 2050, but it continues to outpace growth in OECD countries, which slows from 2.2% in 
2018 to 1.3% in 2050.

• Industrial consumption of delivered energy grows slowly from 2018 to 2050 at less than 0.5% per year in 
OECD countries and at 1.1% per year in non-OECD countries.

• Industrial output growth outpaces energy consumption because of increased industrial energy efficiency 
and higher growth in non-energy-intensive manufacturing output in key regions, especially in non-OECD 
countries.

• Declining industrial energy consumption in China is more than offset by growth in other non-OECD 
countries.

• The industrial share of worldwide energy consumption declines from about 40% in 2018 to 35% in 2050, 
largely because of faster growth in the transportation sector.

—but non-OECD industrial energy consumption growth remains 
strong in the Reference case
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Figure 1.3: Gross output growth and industrial energy consumption in non-OECD
and OECD countries (2010-2050) [1].

U.S. Energy Information Administration www.eia.gov/ieo#IEO2019U.S. Energy Information Administration
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• Non-OECD countries collectively consume more energy in the industrial sector than OECD countries, 
and their energy consumption growth is about twice the rate as in OECD countries through the projection 
period.

• In 2018, China consumed 29% of the world’s industrial energy, and although its energy consumption 
continues to increase modestly throughout the projection period, its share decreases to 24% by 2050.

• India’s industrial energy consumption nearly triples, growing from 16 quadrillion British thermal units (Btu) 
in 2018 to 47 quadrillion Btu by 2050 at an average annual rate of 3.4%.

• India’s 31 quadrillion Btu growth in energy consumption from 2018 to 2050 represents 40% of the total 
world increase of 78 quadrillion Btu.

—but China remains the world’s largest single industrial energy 
consumer and India experiences the most growth in consumption
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Figure 1.4: Industrial energy consumption by country (2010-2050) [1].

1.2 Energy Efficiency in Manufacturing
In the manufacturing field, energy efficiency is defined as the relationship

between the results achieved and the resources used, where the energy input
is the only resource considered [3]. Going into detail, energy efficiency can
be addressed at different hierarchical levels of the automation pyramid [4]:

• Global supply chain

• Facility / Factory

• Production line

• Machine tool

In the followings, the machine tool level is analyzed, which accounts for
approximately 50% of the total amount of electricity utilized in manufactur-
ing [5]. The above-mentioned absorptions are however significantly greater
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than the theoretical requirements for chip removal since, neglecting losses
and process inefficiencies, most of the energy is employed for creating stable
process conditions and for peripheral functions. In detail, this surplus must be
attributed to the machine auxiliary units (e.g. chiller, hydraulic, pneumatic,
cutting coolant and tool change units) which, without being directly involved
in the chip removal process, support the spindle and axes units operation.
When the machine tool is visiting a not-operative state (idle or failure), some
auxiliary units may still require a significant amount of power, resulting in
non value adding absorptions.

In light of these considerations, the energy consumption of a machine tool
can be broken down into two main constituents:

• Non-Processing Energy (NPE) – It indicates whenever energy is
used during not-operative states, i.e. consumed without adding value
to the part. It generally results from integrating a constant power
coefficient overtime.

• Processing Energy (PE) – It accounts for the energy consumed by
the machine tool while it is working on parts, commonly characterized
by:

– A constant energy, which derives from the base load power de-
manded for the processing time.

– A variable energy, which depends on the cutting parameters and
the toolpath strategy.

Different technical and organizational strategies are focused on achieving
energy efficiency in the manufacturing industries. They either consider the
whole machine or its single components:

• Machine Design – It helps to minimize the power demands of compo-
nents, reducing energy losses (e.g. machine lightening, friction reduction
and improvement of energy transformations). Many design enhance-
ments have been proposed and investigated, such as the use of more
efficient motor drives, handling, clamping, hydraulic and pneumatic
systems.

• Reuse and Recovery Systems – They include the implementation
of any measure to prevent energy from being released as a loss and
rather be used in other forms of desired work. Most energy recovery
systems exchange thermal or kinetic energy, for example the Kinetic
Energy Recovery System (KERS).
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• Process Parameters Optimization – It is focused on identifying the
process parameters (e.g. spindle rotating speed or cutting speed) which
allow to minimize the PE. Problems in this category are clearly multi-
objective, since the trade-off between cycle time and power demand has
to be explicitly addressed.

• Machine State Control – It aims to reduce the NPE by properly
switching off some auxiliary units (together or independently) when
production is not required. Since service is interrupted when the machine
is visiting a low power consumption state, the machine tool undergoes
a startup transitory to resume operational readiness as soon as one or a
pre-determined number of parts need to be processed. Nevertheless, the
time required to restore service may significantly affect the throughput.
The strategies covered by this field can be further classified according
to an increasing detail level in the production planning and control
(PP&C) hierarchy. In particular:

– Energy-Efficient Production Scheduling (EES), which refers
to scheduling the production activities with the objective to im-
prove energy efficiency. In detail, production plans are defined in
order to allocate jobs to a specific machine minimizing the number
of unproductive periods. By gathering together the time intervals
in which the machine is idle, energy saving potential arises: it
is therefore possible to switch the machine tool into a low power
consumption state respecting constraints on tardiness or total
makespan.

– Energy-Efficient State Control (EEC), which refers to man-
aging machine state transitions in order to reduce or minimize
its NPE consumptions. It focuses on the control level and pro-
vides policies to be applied during production progress, without a
deterministic knowledge of the next part arrival. Since machine
vacations in a low power consumption state are not planned at
priori, the management of the trade-off between energy saving and
throughput reduction is more challenging.

1.3 Off-Line and On-Line Problems

Manufacturing systems are commonly characterized by the presence of
stochastic processes (e.g. arrivals, failures, startup durations) and noisy in-
formation. Nevertheless, production decisions must be taken even in the
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presence of uncertainty over the underlying sources of randomness, models
and objective functions. On the basis of information availability (i.e. knowl-
edge level of random variable distributions), manufacturing problems can be
therefore classified in two categories [6, 7]:

• Off-line problems – The stochastic processes involved in the system
are assumed to be known when addressing the problem, therefore opti-
mization is performed once for all and the final decision is implemented
on the field. In reality, an a priori experimental campaign is required to
collect the large data sets needed to fit the random variable distributions.

• On-line problems – The stochastic processes involved in the system
are assumed to be unknown during problem resolution, therefore learn-
ing and optimization are executed simultaneously and iteratively. In
particular, the real time data collected from the system are progressively
employed to fit the random variable distributions. Even though this
category is a more faithful representation of real industrial cases, the
issue of estimates uncertainty has to be managed, especially when few
information are available.

1.4 Research Focus
This work is aimed at improving and extending the available models for

energy efficiency in manufacturing. In detail, the focus is on the energy-
efficient state control (EEC) of resources while they are not working on
parts (i.e. the part flow is interrupted). Specifically, machine tools executing
machining operations are considered, since they are one of the most complex
and energy demanding production equipment.

The scientific relevance of this work results from addressing the control
problem in an innovative on-line framework: solutions are provided in real
time, while collecting data from the shopfloor. Moreover, particular attention
is devoted to the management of the trade-off between energy saving and
throughput reduction. Also, since the control is based on a data-driven
estimate, the risk of incurring in not advantageous solutions is included in
problem formulation. Switching towards industrial relevance, the proposed
EEC policy can be implemented on a wide range of machining centers with
"eco-green" functionalities, being flexible and highly autonomous.

To guarantee a better understanding, the detailed thesis contribution as
well as the outline of the thesis structure are given in section 2.7.
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Chapter 2

Literature Review on Energy
Efficient State Control

The scope of this chapter is to provide a detailed literature review on the
energy efficient state control (EEC) topic. In particular, more than 50 papers
are collected and classified according to several criteria, which correspond to
the axes of table 2.1. This classification is aimed at providing the knowledge
base over which the thesis contribution will be grafted.

This chapter is structured in seven sections, which extensively illustrate the
main classification criteria. After a brief introduction, section 2.2 addresses
the machine energy states contemplated in literature. In section 2.3, the
characteristics of the two different levels of analysis (i.e. single machine and
production system) are described, focusing especially on their sources of
stochasticity. In section 2.4, the peculiar model types used to abstract the
controlled systems are detailed. In section 2.5, the control methods aimed at
achieving energy efficiency are introduced. In section 2.6, the scope of the
collected papers is analyzed (i.e. optimization or performance evaluation).
Finally, section 2.7 closes the review illustrating how the thesis contribution
fits in the current state of the art and outlying the structure of the work.

2.1 Introduction

Under the consideration of massive energy consumption of machine tools,
EEC of machine states addresses the problem of energy efficiency at the lowest
level of the production planning and control hierarchy. In particular, EEC lit-
erature provides policies to efficiently reduce the non-processing energy (NPE)
consumed by machine tools during production progress, without knowing the
occurrence of next part arrival. The work proposed by Mouzon et al. [8] can be
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Table 2.1: EEC papers classification.
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Figure 2.1: Number of EEC papers published for each year.

definitely considered the forerunner of this stream of research. In detail, they
develop several dispatching rules to effectively decrease energy consumptions
of especially underutilized manufacturing equipment. In addition, considering
a non-stationary arrival process of parts, they also exploit artificial neural
network algorithms to predict the next arrival in the system.

In more than a decade, this research field extended in terms of contribu-
tions, level of analysis, scope and modeling accuracy. Without going into the
details of the different classification criteria, figure 2.1 shows the amount of
works yearly published.

2.2 Machine Energy States

Under state control, a machine tool visits several states during a production
run, which differ in terms of power request. Since average models are generally
employed in EEC literature, the energy consumed by the machine in a given
state results from the product between the sojourn time in that state and
a constant power request. A comprehensive description of the considered
machine states is herewith provided, even though some of them are not
necessarily employed in each paper:

• Standby (Out-of-service) – Some machine modules are deactivated
in order to reduce power consumptions. Since only emergency services
are active, the machine cannot process a part, being in a "sleeping
mode". Some papers [8–26] characterize the standby state with null
power absorptions, assuming that the machine tool can be completely
switched off.
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By accurately establishing which machine modules should be deacti-
vated, it is even possible to generate several standby states, each with
different power consumptions and startup times. For example, Squeo et
al. [27] model several sleeping states by individually controlling single
machine components. On the contrary, Wang et al. [28] consider two
standby states, i.e. light sleep and deep sleep, whose power consump-
tions respectively account for the 50% and 30% of the working power.
Finally, Li and Su [29] introduce several energy hibernation states for
each machine.

• Idle (On-Service) – The machine is ready to process a part with all
its modules activated, therefore the power consumption is higher than
the standby one. In this state, the machine is in blocking or starvation
conditions.

• Startup – It accounts for the transitory the machine has to experience to
resume its operational readiness. During this state, all the procedures
required to make the machine suitable for processing are executed,
so that quality and tolerance requirements can be met. The power
consumption is generally greater compared to other not-productive
states.
In a real manufacturing environment the startup time is stochastic,
since it is affected by the system state. Nevertheless, it is generally
considered constant in EEC literature, even though some exceptions are
present. For example Maccio and Down [30–34] and Frigerio et al. [35–
37] model the startup time as an exponentially distributed random
variable, in order refer to the queuing theory framework and derive
analytical formulas. In addition, Frigerio and Matta [38] consider the
startup time as explicitly dependent on the machine sojourn time in
the standby state, defining several startup functions.
Generally, the startup state is uninterruptible. In fact, once a ma-
chine enters this state, no additional transitions are allowed until its
operational readiness is resumed. Nevertheless, Maccio and Down [33]
consider systems in which a machine can be switched off while warming
up.

• Busy – The machine is processing a part, requiring a greater amount of
power with respect to the idle state. It also includes all the non-cutting
states experienced while the part is loaded on the machine.

• Closedown – It accounts for the transitory the machine has to undergo
to switch from the idle to the standby state. When considered, it is
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Figure 2.19: Machine state model under a switching o↵/on control policy.

applied, a switching o↵ command can be issued when the machine is idle. With
the model in Fig. 2.19a, the machine is triggered in a low energy consumption
stand–by state and the service is interrupted. With the switching on command,
the service can be resumed immediately. For some machines, the switching o↵/on
transitions may require a certain amount of time as in Fig. 2.19b. Indeed,
the machine tool may need to visit a startup transitory state before the service
is resumed and a closedown transitory when the service is interrupted. The
switching o↵ and on commands can follow di↵erent rules according to the amount
of information to which the control has access. The extreme situation in which
the machine is never switched o↵ is referred as the Always On policy.

Queueing Theory — Queueing systems where servers may become unavail-
able for a period of time, due to a variety of reasons, are called in the literature
“vacation queueing systems” and they have been widely studied. The period of
temporary server absence is called “vacation” and the duration of a vacation is
usually modeled as a random variable. The service can be resumed only at the
end of a vacation. The vacation policy can be characterized by two aspects:

• The vacation starting rule determines when the server may take a vacation.
With an exhaustive starting rule the server cannot take a vacation during

39

Figure 2.2: Machine state model under a switching off/on control policy.

generally treated as constant and uninterruptible, even though some
exceptions are present. For example, Niu et al. [24] and Guo et al. [39]
consider it as generally distributed and, in addition, the latter model it
as interruptible.

• Breakdown (Failed) – The machine has experienced a failure and
needs a repair to resume operations. The power consumption in this
state can be null [40], equal to the power consumption in the idle state
[16] or peculiar of this state [41, 42].

The general machine behavior under a state control is shown in figure 2.2,
which depicts the aforementioned machine states and the transitions triggered
either by uncontrollable events or by the implemented control policy. The
common behavior of a not controlled machine tool provides for the switching
between idle and busy states, depending on the execution of part processing.
If a state control is applied, a switch off command can be issued when the
machine is idle to trigger it into the standby state. Later, service can be
resumed with the switch on command. Switch off/on transitions may require
a certain amount of time, modeled by the sojourn in the closedown and
startup transitory states.

2.3 Level of Analysis and Stochasticity Sources
In literature, EEC is addressed at two distinct levels of analysis:

• Single Machine

• Production System

Even though the early papers are focused on stand-alone machines, the most
recent works concentrate on production systems (cf. figure 2.3). In fact,
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Figure 2.3: EEC papers classification according to the level of analysis.

examining the problem at a higher hierarchical level allows to achieve a
greater energy efficiency.

2.3.1 Single Machine

In EEC literature, several papers address stand alone machines, without
focusing on their interactions with the shop floor. In particular, a widespread
assumption is that a single machine is never blocked, since parts can be
always released to an infinite downstream buffer. Therefore, energy saving
potentials arise from machine starvation, which is alternatively modeled in
two ways:

• By considering stochastic arrivals and an input buffer in which parts
accumulate. This buffer can either be finite [11, 36, 37] or infinite [34,
35, 39].

• By neglecting the presence of an input buffer and directly assuming a
stochastic distribution for starvation times. Examples are provided by
[27, 43–45].

Except for [11], failures are not explicitly modeled when dealing with stand
alone machine tools. Therefore, in addition to the arrival process, stochasticity
can be introduced in the system by assuming random processing times (which
might also account for failures) and startup/closedown durations.

When the single machine is modeled as a M/M/1 or M/G/1 queue, both
interarrivals and processing times are simultaneously stochastic. This is the
case of [24, 34–37, 45, 46].
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2.3.2 Production System

Due to their great industrial relevance, production lines, i.e. series of
machines interspersed by finite buffers, are mainly analyzed in literature.
Their control for energy savings purposes is particularly complex, since it is
tough to assess how EEC policies affect system performance.

A production line is generally modeled considering a discrete flow of parts,
but some researchers adopt continuous flow models as well [9, 10, 15, 16, 19,
21, 22, 47]. This choice allows to describe production dynamics by integral or
differential equations.

Even though the majority of papers is focused on serial production lines,
whose stations are characterized by a single machine tool, some interesting
exceptions can be found. For example, Li et al. [48] consider a production
line in which each station is composed by several machines connected in
parallel. On the contrary, Wang et al. [28] introduce assembly modules with
two upstream buffers and disassembly modules with two downstream buffers.
Finally, Sun et al. [20] assume that a station could include some parallel
substations or a series of manufacturing machines.

Depending on the scope of the analysis, the number of simultaneously
controlled machines can range from one to all. Nevertheless, the risk of
incurring in a deterioration of system performance increases with the number
of controlled machines. Indeed, switching off a machine may respectively
cause blocking and starvation to the upstream and downstream machines.
According to Frigerio et al. [49], the interaction between two sequential
machines might even cause system deadlocks, such that service cannot be
resumed. When dealing with unbalanced lines, it is suggested to control all the
machines except for the bottleneck. In fact, if the operational readiness of the
bottleneck machine is not resumed in time, the line experiences a permanent
production loss. On the contrary, controlling all the machines turns out to be
successful for balanced lines.

In EEC literature, it is assumed that each machine of a production line is
characterized by a deterministic processing time. This hypothesis is always
reasonable for automatic systems. Except for [50] and [25], it is also supposed
that the first machine is never starved and the last one is never blocked.
Stochasticity is therefore introduced by means of unreliable machines, since
the arrival process is generally not considered in this type of systems. Two
reliability models are employed:

• Bernoulli – It is suitable for systems in which machine downtime
is comparable to its cycle time. During each cycle a machine has a
probability pi to be up and 1−pi to be down, where pi is referred as the
efficiency of machine mi. Examples are provided by [41, 42, 48, 51, 52].
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In addition, Frigerio and Matta [49, 50, 53] and Renna [54] consider a
Bernoulli reliability model with a machine downtime different from the
cycle time.

• MTBF and MTTR – Failure metrics can be described by statistical
distributions. While the time to repair is generally modeled by an
exponential distribution, the time between failures can either follow
exponential [10–12, 15, 16, 21, 22, 40] or Weibull distributions [9,
29]. When the time axis is slotted in intervals of fixed duration, a
geometric reliability model is generally employed [13, 19, 28, 55, 56].
Moreover, Huang et al. [9] and Zou et al. [10] and also assume that
system reliabilities slowly vary with time.

In addition to production lines, other system configuration are analyzed
in EEC literature. In particular, Maccio and Down [30–33] focus on energy
aware multiple servers queuing systems. Even though their research field
is targeted on sever farms and data-centres, the employed model (M/M/m
queue) can be also transferred to manufacturing systems. Their scope is to
evaluate system performance and derive some structural properties of the
optimal control policies.

Finally, Zhang and Jiang [57] analyze a discrete manufacturing shop floor,
realizing an energy-efficient control of different machine tools by exploiting
the real time RFID data of jobs.

2.4 Model Type
In EEC papers, mathematical models are built to represent and study the

effect of state control in terms of logical and quantitative relationships. If the
model is simple enough, it is possible to directly work with its constituents to
get analytical solutions and formulas (e.g. queuing theory). However, many
production systems are highly complex, so that their dynamics cannot be
expressed in analytical terms. These systems must therefore be analyzed by
means of dynamic simulation models. In the followings some examples are
reported:

• Analytical Models – They are always employed when the considered
system is approximated to refer to the queuing theory framework [24,
30–34, 46] and when dealing with Bernoulli serial lines [14, 17, 18, 41,
42]. Frigerio et al. [36, 43–45] make use of a stochastic model to describe
the machine tool behavior under several state control policies. Finally,
analytical models allow to evaluate energy saving opportunities in real
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time [10, 16, 19, 21–23, 47, 48, 55, 58, 59] or to predict production
dynamics through a Markov chain [51, 56].

• Simulation Models - They are employed by Frigerio and Matta [36,
49, 50, 53] and Zou et al. [10] to find the optimal control parameters
for production lines, since it is impossible to handle their complexity
analytically. In addition, simulation models are used for performance
evaluation as a surrogate of the real system, even if the control is based
on analytical relationships or heuristic rules.

2.5 Control Method

Depending on the way in which energy efficiency is achieved, the EEC
literature can be classified in two categories [59]:

• Control Policies & Rules

• Real Time Decision Making

The former category exploits quantitative policies or rules to describe the
operation knowledge of machine/system for energy-efficient manufacturing.
On the contrary, the latter is aimed at identifying energy control opportunities
during the real time production process.

2.5.1 Policies & Rules

This category deals with the triggering of energy-efficient machine state
transitions by exploiting ad hoc control rules, generally expressed in "IF...,
THEN..." terms. Therefore, the focus lies on formulating appropriate control
policies or rules and setting pertinent values for their parameters, which can
be either optimized or not. Several types of information can be exploited for
defining energy-efficient control policies (cf. figure 2.4), here outlined.

Time. These policies employ the knowledge of machine starvation periods
to determine when service should be interrupted or resumed. Since they can
be conveniently analyzed with stochastic models, time-based policies were
the first to be developed [8, 24, 25, 34, 39, 45, 46, 60]. In particular, Frigerio
and Matta [44] propose a framework that integrates different time-based
control policies, whose core (Switching Policy) is exhaustively addressed in
the prelude to chapter 3.
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Figure 2.4: Classification of some EEC papers according to the control rule.

Buffer level. These policies employ the knowledge of the number of ac-
cumulated parts in the buffers. Control parameters are therefore related
to thresholds on buffer levels, such that machines can be controlled during
starvation periods, blocking periods or both. They are generally applied to
production systems, since buffers are introduced to decouple the behavior
of different connected machines. Nevertheless, some publications related to
single machines can be found as well. According to Frigerio and Matta [36],
a policy that uses the buffer level to control the machine is generally more
effective than a time-based one. In literature, the levels of different buffers
are used to control a machine:

• Upstream – Exploited both in case of single machines [11, 24, 35–37]
and production systems [30–33, 50, 52, 53].

• Downstream – Exclusively exploited by Renna [54] and Wei and Wang
[61]. The former analyzes a pull production control mechanism where
customer orders are satisfied by a buffer, filled by a production line. The
latter describe the state of a single machine with its production surplus,
which can also be negative to account for the backlog of demand.

• Upstream & Downstream - Exploited only for production lines,
some examples are provided by [12, 13, 28, 40–42, 49].
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In particular, it is worth mentioning the work by Chen et al. [52], since
they consider a time-dependent threshold on the buffer level to control a two
machine Bernoulli serial line.

Time and buffer level. These policies simultaneously employ the knowl-
edge of machine starvation times and the number of accumulated parts in
the buffer. Different control rules work together to trigger transitions be-
tween machine energy states. For example, Maccio and Down [34] analyze a
M/M/1 queue whose service is interrupted on the basis of starvation time
and resumed after a given number of jobs accumulates in front of the server.
On the contrary, Guo et al. [39] analyze a M/G/1 queue whose service is
interrupted if no customers arrive during the closedown time and resumed
when a given number of customers is waiting in the system. Finally, Frigerio
and Matta [36] describe a three-parameter policy, i.e. the "TNT Policy", for
energy oriented control of a single machine tool. This policy is applied in [50]
to individually control the machines of a production line.

Other. Sometimes, different or additional information are employed to
develop energy efficient control rules. Wang et al. [40] and Duoque et al. [11]
consider the production rate of each machine in addition to information
regarding buffer levels. Renna [54] also uses the customer demand and the
final buffer level to control the stations of a pull production line.

Completely different parameters are instead employed by Su et al., which
address the simultaneous optimization of energy consumptions and production
rate in Bernoulli serial lines. In particular, they focus on the optimal allocation
of machine capacity, which turns out to be the probability of each machine
to be up at the beginning of a new cycle. The authors initially address a two
machines line [17], then extend the policy to three and four machines lines,
considering different configurations for buffer capacities and energy coefficients
[18]. Finally, they propose a heuristic algorithm for larger systems [14].

2.5.2 Real Time Decision Making

The control parameters of the aforementioned policies and rules are gen-
erally optimized considering the statistical average behavior of the system
or, even, not optimized at all. Therefore, they might not be optimal for
a real time scenario, because system dynamics are not fully analyzed for
decision making. To address this issue, a further category of papers focuses
on the real time identification of energy control opportunities. In particular,
data-driven methods are developed to systematically integrate manufacturing
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monitoring and control with energy management. The advantage of these
approaches is that they enable a real time data-driven prediction capability to
more accurately estimate system performance, allowing for real time decision
making.

In the followings, the energy opportunity window framework is described
in details, since it is addressed by several papers and researchers. Later,
additional real time decision making approaches are briefly mentioned.

Energy opportunity window. Several researches from EEC literature [9,
10, 16, 19, 21–23, 47, 48, 55, 56, 58, 59, 62] are focused on the identification
of energy management opportunities for typical manufacturing systems with
multiple machines and buffers. In particular, the opportunity window (OW)
for a specific machine is defined as the time period during which the machine
can be strategically shut down (or adjusted to other states for energy savings)
without affecting the throughput of the entire line. Put differently, the OW is
the longest possible downtime of a station that does not result in permanent
production loss at the end-of-line station. The essence of opportunity windows
is to aggregate shorter idle durations of a machine to a longer interval, by
sleeping it for a suitable time length, which does not affect the throughput [55].

The algorithm to determine an energy OW descends directly from the
methods for maintenance opportunities calculation. For perfectly reliable
serial production lines the opportunity window is computed as the time it
takes for the buffers between the considered station m and the slowest station
M∗ to become empty (m < M∗) or full (m > M∗) or, in other words, for
the slowest station to become starved (m < M∗) or blocked (m > M∗) [47].
Therefore, the ability to capture real time buffer levels with sensors on the
shop floor is crucial for identifying energy saving opportunities. Nevertheless,
due to the intrinsic stochastic nature of production lines, simple deterministic
algorithm may lead to inadequate solutions. Stochastic modeling and data-
driven methods are therefore combined to calculate the OW under a stochastic
scenario [19, 48, 55].

In order to reduce the risk of permanent production losses, machines are
generally switched off for a time interval shorter than their OW. In addition, a
minimum amount of time, referred to as recovery time [16, 19, 22], is required
between two consecutive opportunity window exploitations.

Literature complexity in the energy opportunity window field has progres-
sively increased: whilst the first papers only focus on OW calculation for
a single machine, more recent publications try to determine the conditions
for several machines to exploit their energy saving opportunities. Among
the latest works in this research stream, Wang et al. [58, 59] propose a digi-
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tal twin-based bidirectional operation framework for serial production lines,
which estimates in real time energy OW for the idle machines with Max-plus
Algebra. This mathematical tool allows to model discrete event systems in
linear equations, allowing to reduce their computational complexity. On the
contrary, Zou et al. [10] develop a data-driven adaptive control policy to
improve profit and energy efficiency of a serial production line and deliver re-
silient performance against random disruption events. Controller parameters,
which are lower bounds for the length of machine opportunity windows, are
progressively updated to adapt to the slowing varying system reliabilities.

Other. Additional real time decision making approaches can be found in
EEC literature, which do not make reference to the energy opportunity window
framework. Some meaningful examples are here provided.

Li and Sun [29] develop an analytical model to establish a holistic view of
energy efficiency for a tandem production line. When a machine is detected
to be idle, the optimal action (i.e. turn it off, leave it alone or adjust its power
level) is taken in real time by means of an approximate algorithm.

Sun et al. [20] propose a data-driven dynamic energy control method that
is implemented at the beginning of each interval in which the production
horizon is divided. At each station, the following data are collected for real
time decision making: production target, completed production, level of
downstream buffer and its required lower bound, remaining time to the end
of the planning horizon and production rate.

Li et al. [51] develop an event-based control methodology to improve
energy efficiency in a multistage manufacturing system. In particular, an
analytical approach allows to quantitatively predict the system production loss
which results from an energy saving control event (i.e. turning one or several
machines to energy saving mode for a certain duration). The production
horizon is then split in control periods, at the beginning of which the optimal
energy saving control event is selected in real time.

2.6 Scope
The models found in EEC literature are not necessarily devoted to the

optimization of energy consumptions. In fact, some of them are simply
developed to assess system performance under state control. It is therefore
possible to identify two different purposes related to EEC papers:

• Optimization

• Performance Evaluation
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Once an optimization problem is solved, the effects of the optimal solution
on system performance are always evaluated. Nevertheless, to facilitate the
understanding, these categories are deliberately kept separate. Only some
papers appear in both categories [8, 34, 36, 39, 43], since they carry out
performance evaluation before the resolution of the optimization problem.

2.6.1 Optimization

This category deals with identifying, by means of appropriate optimization
methodologies, the optimal state control parameters or control actions which
maximize/minimize an objective function, respecting some constraints. In
figure 2.5, papers are classified in terms of objective function, also indicating
the presence of constraints on production performance.

Objective function. In EEC literature, the objective function of the opti-
mization problem is always referred to energy consumption. Many researchers,
such as Frigerio and Matta [27, 36, 38, 43–45, 49, 50, 53], Su et al. [14, 17,
18], Guo et al. [39] and Chen et al. [52], consider it alone. Nevertheless, it
can also be inserted in a cost function, allowing to find a trade-off solution
which accounts for other performance of interest. For example Huang et al. [9]
minimize a cost function composed by energy cost, state switching cost, profit
loss due to permanent production loss and integrated maintenance cost to
identify an optimal strategy for switching machines on or off. On the contrary,
Li et al. [51] use a simpler cost function, given by the difference between the
gain and the cost of applying an energy saving control event.

Constraints on KPI. Constraints on performance indicators are some-
times introduced: they reduce the feasibility region for possible solutions
and increase the optimization complexity. The throughput constraint is the
most widespread in EEC literature, since energy savings should be achieved
without major service level reductions. Examples are provided by [14, 17, 18,
27, 36, 38, 39, 43–45, 49, 50, 52, 53]. Other constraints regard the workforce
[17], the number of issuable switch off commands [44] and the mean waiting
time [34, 39].

Optimization methodology. According to the model type employed to
describe the effect of state control, different optimization methodologies can
be adopted, here outlined.
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Figure 2.5: Objective function and constraints used in EEC optimization problems
as in the literature.

• Analytical – It requires the objective function to be differentiable,
so that convergence to the global optimum is guaranteed. Since this
optimization methodology is derivative-based, analytical relationships
and formulas are necessary. Depending on the way in which the optimum
is identified, a further classification results:

– Exact – The optimum is obtained in a closed-form, managing the
objective function manually. Of course, the problem should be
significantly simplified, so that it can be computationally tractable.
For example, Guo et al. [39] identify in closed-form the optimal
vacation and hysteresis time to achieve an energy-delay tradeoff in a
single vacation M/G/1 queue. On the contrary, Maccio and Down
[34] derive a closed-form expression for the optimal starvation
time a M/M/1 queue has to wait before moving to a lower power
consumption state, also considering a constraint on the expected
response time. Frigerio and Matta [36, 44, 45] instead express
the expected energy consumption of a single machine in closed-
form, in the special case of exponentially distributed interarrivals.
By deriving this expression, the optimal control can be exactly
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identified. Finally, Su et al. [14, 17, 18] find a closed-form solution
for a two-machine Bernoulli serial line.

– Numerical – The objective function is still differentiable, but the
solution cannot be expressed in closed-form. Therefore, conven-
tional solving methods, such as gradient descent, bisection method,
Newton’s method, subgradient projection methods and interior-
point methods must be applied. Examples are provided by [17, 18,
27, 36, 38, 43–45, 47].

• Heuristic – Manufacturing systems are generally non-linear dynamic
systems. Therefore, if their complexity is not reduced during the mod-
eling phase, a challenging non-linear energy control problem must be
addressed. In this case, an optimal or near-optimal solution can be
identified with heuristic optimization techniques and algorithms. For
example, Huang et al. [9] and Li et al. [51] exploit genetic algorithms,
while Zou et al. [10] make use of a renewal particle swarm optimization
algorithm. On the contrary, Frigerio et al. introduce a nested partition
metaheuristic framework in [53]. These last one also employ OptQuest1
to identify the optimal control of buffer-based policies [36, 49, 50]. Fi-
nally, Zou et al. [15] and Brundage et al. [16] develop pseudo-procedures
to heuristically solve their optimization problems.

• Dynamic Programming – This methodology allows to solve stochas-
tic problems in which a sequence of control decisions must be taken at
different points in time. The goal is therefore to choose the sequence
which causes the system to perform optimally, according to a certain
objective function. In EEC literature, the complex interaction between
energy control decisions and system state evolution can be modeled
with a Markov Decision Process, which can be solved with dynamic
programming. Examples are provided by [29, 35, 37, 61].

Optimization occurrence. In EEC literature, many optimization prob-
lems are solved only once, because all the required data are available with
certainty since the beginning. These problems are addressed in papers which
belong to the "Policies & Rules" category (cf. subsection 2.5.1) [8, 14, 17, 18,
27, 34–39, 44, 45, 49, 50, 52, 53, 61] and, by making reference to 1.3, they
can be classified as off-line problems.

1OptQuest uses an implementation of scatter search (a population-based metaheuristic)
as its primary search procedure, with tabu search and neural networks playing a secondary
role.
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On the contrary, a further class of papers requires optimization to be
carried out several times during production progress, since the availability of
real time data is required. This is the case of papers belonging to the "Real
Time Decision Making" category (cf. subsection 2.5.2) [9, 10, 15, 16, 29, 51].
In addition, it is worth mentioning the work by Marzano et al. [43], which
extend an off-line time-based policy by assuming a lack of knowledge on the
starvation times distribution. Only they address an on-line problem, since
the unknown distribution is progressively fitted in real time and iteratively
employed to identify the optimal control.

2.6.2 Performance Evaluation

This category deals with studying the performance of a controlled produc-
tion system (e.g. energy consumptions, throughput or mean waiting time)
over a set of parameters, associated both to the control or to the system itself.

In particular, it includes several works related to the opportunity window
framework [19, 21–23, 47, 48, 55, 56, 58, 59, 62]. Their scope is in fact to
evaluate the energy savings and throughput losses which result from switching
off particular machines during their OWs.

Finally, it is worth mentioning a stream of papers [11–13, 28, 40] which
focus on performance evaluation of production systems controlled with fuzzy
rules. In detail, fuzzy controllers employ real time data of buffers and machines
in order to achieve energy efficient operation. The control policy is simply
described by linguistic "IF..., THEN..." rules, which connect the real time data
to the appropriate switch on/off decision. Wang et al. [40] extend this model
by developing a dynamic adaptive fuzzy reasoning Petri net which, starting
from the production information of a discrete stochastic manufacturing system,
allows to control the transitions among machine energy states.

2.7 Contribution and Structure

Over the last decade, the topic of energy efficient state control (EEC)
in manufacturing has gained an increasing prominence within the scientific
community. In particular, this field is addressed at two different levels of
analysis (i.e. single machine and production system), achieving energy saving
either with ad hoc control rules or through a real time decision making.
Several models are therefore developed to evaluate system performance under
state control policies and to identify the optimal control parameters, which
guarantee the NPE minimization.

22



2.7. Contribution and Structure

Based on the detailed review proposed in this chapter, three main needs
emerge from the literature:

• On-line algorithms. The exploitation of real time learning allows
to better cope with the intrinsic unknown stochasticity of production
systems, thus reducing the barriers for a widespread implementation of
sustainable solutions. However, only the works proposed by Marzano et
al. [43, 63] address on-line control problems.

• Constrained optimization. The identification of trade-off solutions,
which result from the introduction of productivity criteria (or others)
into optimization problems, is fundamental to guarantee the tunability
of EEC policies when applied in real environments.

• Adaptive control. The possibility to autonomously adapt the control
in response to dynamic changes in the system or in the external envi-
ronment is a clear requirement from industry, despite rarely addressed
in EEC literature [9, 10, 25, 54].

In the light of the above needs, this thesis presents an on-line time-
based policy, which enhances and extends the works proposed by Marzano et
al. [43, 63]. In detail, the existing policy from literature provides the optimal
state control parameters for a single machine tool while learning from a real
time collection of part arrivals. Nevertheless, the deterioration of machine
throughput is considered only in an approximate manner during problem
resolution and the arrival process at the machine is assumed to be stationary.
Therefore, the major contribution of this work is devoted to:

C1. The development of an efficient solving algorithm to exactly identify the
optimal control when constraints limit the feasibility region for possible
solutions. In particular, this algorithm is firstly employed to solve
the optimization problem in presence of a condition on the expected
throughput (C1.1). Later, since the policy is optimized considering the
statistical average behavior of the machine, two additional constraints
are introduced to mitigate the risk of deteriorating machine performance
over the single service request (C1.2).

C2. The introduction of a change point detection method to identify vari-
ations in the part arrival process. This allows to adapt the control
to the dynamic behaviour of a real manufacturing environment, thus
overcoming a critical barrier for practical implementation.
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Note that particular effort is also devoted to accomplish a significant response
time improvement, in order to guarantee a real time shop floor applicability.

Several numerical cases are provided to assess the effectiveness and the
computational effort of the proposed algorithms, which are entirely coded in
Matlab environment.

The remainder of the thesis is organized as follows:

• The prelude to chapter 3 provides the basis to understand the analyzed
control problem, presenting the off-line Switching Policy by Frigerio
and Matta [44, 45].

• Chapter 3 illustrates and reviews the on-line algorithm by Marzano et
al. [43, 63]. In particular, enrichments are introduced to enhance its effec-
tiveness and robustness, while limiting the computational requirements.
Contribution C1.1 is here detailed.

• Chapter 4 widens the applicability of the on-line control policy, including
considerations on risk and uncertainty. In addition to contribution
C1.2, this chapter also provides a numerical approach to quantify the
confidence of the fitting process carried out to achieve real time learning.
The possible applications of this information in the control problem are
also investigated.

• Chapter 5 adjusts the on-line control policy to make it effective when
the upstream production process is non-stationary or decoupled from
the machine by an input buffer. In addition to contribution C2, this
chapter also introduces a modified objective function to identify an
approximate optimal control when an input buffer collects parts in front
of the machine. This because, when the on-line control policy is applied
to this system, it may not converge towards a unique solution, due to
the actual control effect on machine starvation.

• Chapter 6 summarizes the conclusions, while highlighting the possible
future developments.
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The scope of this prelude is to introduce the off-line control problem as
in the literature. In detail, it supplies all the essential information to allow
the understanding of the on-line policy proposed in chapter 3. Moreover,
numerical examples are provided to get acquainted with the key results of
the control problem and the performance indicators of interest.

This prelude is structured in three sections. In section P.1, the model of the
considered system is described. In section P.2, the off-line Switching Policy,
formalized by Frigerio and Matta [44, 45], is addressed. In particular, the
control problem which needs to be solved to identify the optimal parameters
is thoroughly reported. Finally, in section P.3 some illustrative examples
are shown, describing the scenarios which will be used as demonstrators in
chapter 3.

P.1 System Description

A single machine processing a single part type is considered. This system
can represent both machines dedicated to one single part type or to a family
of similar items and machines working large batches, while considering the
single batch.

In more detail, the machine is perfectly reliable, it might be starving of raw
parts and it is never blocked, therefore each part leaves the system immediately
after process completion. Machine starvation is modeled considering an
input mechanism that manages the arrival process: one part is sent to the
machine only during its idle or not productive periods. Stochasticity is
therefore introduced in the system considering randomly distributed machine
starvation times. The machine has a "green" functionality, since it is possible
to deactivate some of its modules for energy saving purposes. By considering
a cycle as the time frame lasting from the departure of a part until the
departure of the following one, the machine can be controlled by means of
two parameters: they respectively define the instants wherein the machine
tool is switched off/on in a cycle.
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Figure P.1: Machine state model.

P.1.1 Machine Energy States

The machine can be in one of the following energy states, modeled with
variable s ∈ LS = {1, 2, 3, 4}:

1. Standby State: s = 1. In this state some machine components are not
active, such that a lower amount of power is consumed compared to
other energy states. Being in a "sleeping" mode, the machine cannot
process a part.

2. Idle State: s = 2. In this state the machine is ready to process a part
upon its arrival, since all machine modules are active.

3. Startup State: s = 3. It is the transitory state the machine has to pass
through to switch from the standby state to the idle state. While in
startup, the control activates the machine components to achieve proper
working conditions.

4. Busy State: s = 4. In this state, the machine is processing a part. It
also includes any non-cutting operation with the part loaded on the
machine.

The transition between two states can be triggered either by an uncontrollable
event (eg. the part arrival or process completion) or by a controllable event,
as described in section P.2. The proposed machine state model, commonly
used in literature, is graphically represented in figure P.1.

P.1.2 Modeling Assumptions

The following assumptions are introduced:

1. Machine processing time tp and machine startup duration tsu are finite,
deterministic and constant. In particular, it is assumed that the user has
already validated the startup time, which can be considered a constant
input to the control policy.
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2. The power consumed by a machine visiting a certain state ws is a
finite, deterministic and constant value that represents the average
power absorbed in such a state. Power values are constrained such
that 0 ≤ w1 < w2 < w3 and w4 > w2. This assumption realistically
represents manufacturing equipment that commonly require high power
absorptions to resume the operational readiness of inactive components.

3. Machine control can only observe the starvation times, described by the
random variable X and assumed to be independent. Machine starvation
times are modeled by the stationary probability density function (pdf)
fX(x), with mean ta. The realization of X is denoted with x, which
also constitutes the arrival time realization in a cycle. At the beginning
of each cycle (x = 0) the machine is in the idle state, waiting for part
arrival.

4. The random variable X is not affected by the applied energy efficient
control policy. This assumption can represent a production case where
machines are synchronized. If the assumption does not hold, the ap-
proach yields to approximate results.

5. When the machine is not working, the incoming part is immediately
processed if the machine is ready, otherwise it has to wait until the end
of the startup procedure. In this latter case, a fixed holding power wq
is absorbed by the auxiliary equipment (e.g. part-handling system or
heated/cooled buffer) for keeping the part until machine operational
readiness is resumed.

P.2 Control Policy

This section describes the Switching Policy (SP), i.e. an off-line time-based
energy efficient state control policy developed by Frigerio and Matta [44, 45].
This policy can be used to control the state of the machine by activating a
transition form the idle to the standby state – i.e. Switch off command – and
from the standby to the startup state – i.e. Switch on command :

Switching Policy - Switch off the machine after a time interval
τoff has elapsed from the last departure. Then, switch on the ma-
chine after a time interval τon has elapsed from the last departure,
i.e., when τon − τoff has elapsed from the switch off command, or
when a part arrives.
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Starting from an a-priori knowledge of the starvation times distribution fX(x),
the policy control parameters τ = {τoff , τon} have to be tuned in order to
minimize the expected value of the energy consumed in a cycle by the machine.

P.2.1 Energy Consumption Model

When the SP is applied, the machine evolution may follow different
paths in terms of states visited and transitions triggered, depending on the
interaction between the random part arrival X and the control parameters
τ . The non-processing energy (NPE) epathi consumed through each path is
therefore the output of a stochastic process. It can be calculated as the
conditional expectation of power× time for all the states visited through that
path, given a certain event Λi representing the manifestation of path i over
the feasible ones. The same approach can be applied to derive the waiting
time qpathi a part has to experience through each path before being processed.
The busy state (s = 4) is not considered in the energy consumption model,
since it does not affect the selection of the policy parameters. In fact, the
service request cannot be avoided and the processing energy (PE) w4tp is
constant. At each cycle four different events Λi may occur, here outlined.

1. The part arrives before the machine is switched off : Λ1 = {0 ≤ x ≤
τoff}. The machine never switches from the idle state and the part is
therefore processed immediately (qpath1 = 0). The energy consumption is:

epath1 = E[w2X | Λ1] (P.1)

2. The part arrives when the machine is in standby : Λ2 = {τoff < x ≤ τon}.
The machine, switched off at τoff , is immediately triggered into the
startup state by part arrival, so that processing can start only after the
startup. The energy consumption is:

epath2 = w2τoff + E[w1(X − τoff ) | Λ2] + w3tsu (P.2)

Since the part has to wait the whole startup duration to be processed,
the waiting time is:

qpath2 = tsu (P.3)

3. The part arrives when the machine is executing the startup procedure:
Λ3 = {τon < x ≤ τon + tsu}. The machine, switched off at τoff , is
switched on again after a time interval τon has elapsed from the last
departure and it is executing the startup procedure when the part

28



P.2. Control Policy

arrives. Processing can start as soon as the transition to the idle state
is completed. The energy consumption is:

epath3 = w2τoff + w1(τon − τoff ) + w3tsu (P.4)

Since the part has to wait for the startup completion to be processed,
the waiting time is:

qpath3 = E[(τon + tsu −X) | Λ3] (P.5)

4. The part arrives when the machine has completed the startup procedure:
Λ4 = {x > τon + tsu}. The machine, switched off at τoff , is switched on
again at τon and, after the completion of the startup procedure, is in
the idle state when the part arrives. Therefore, the part is processed
immediately (qpath4 = 0). The energy consumption is:

epath4 = w2τoff +w1(τon−τoff )+w3tsu+E[w2(X−τon−tsu) | Λ4] (P.6)

Since all these events are mutually exclusive and collectively exhaustive, by
letting P(Λi) be the occurrence probability of event Λi, the expected NPE
consumed in a cycle Φ(τ ) and the expected waiting time H(τ ) result from
the application of the Total Expectation Theorem [64]:

Φ(τ ) =
4∑
i=1

epathi P(Λi) (P.7)

H(τ ) = qpath2 P(Λ2) + qpath3 P(Λ3) (P.8)

These expectations are functions of the policy control parameters τ and, given
the pdf fX(x), they can be expressed as:

Φ(τ ) = w1

[∫ τon

τoff

(x− τoff )fX(x) dx+ (τon − τoff )
∫ ∞
τon

fX(x) dx

]
+

+ w2

[∫ τoff

0

xfX(x) dx+ τoff

∫ ∞
τoff

fX(x) dx +

+

∫ ∞
τon+tsu

(x− τon − tsu)fX(x) dx

]
+ w3

[
tsu

∫ ∞
τoff

fX(x) dx

] (P.9)

H(τ ) = tsu

∫ τon

τoff

fX(x) dx+

∫ τon+tsu

τon

(τon + tsu − x)fX(x) dx (P.10)
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The expected value of the energy consumed in a cycle by the machine g(τ )
can be finally written as:

g(τ ) = Φ(τ ) + wqH(τ ) (P.11)

where wq is the power consumed by the auxiliary equipment to keep the part
waiting for machine readiness.

P.2.2 Optimization Problem

Once derived the analytical expression for the objective function g(τ ), it
is possible to formulate the optimization problem which needs to be solved
to search for the optimal values of the Switching Policy control parameters
τ ∗ = {τ ∗off , τ ∗on}.

Whenever this policy is applied to the machine, it may lead to a throughput
reduction because, in some cases, the part has to wait until the end of the
startup procedure for being processed. In fact, the expected throughput θ(τ )
depends on the expected waiting time H(τ ):

θ(τ ) =
1

tp + ta +H(τ )
(P.12)

Contrariwise, if the machine is kept always on (AON policy), i.e. τ = {∞,∞},
its throughput is the maximum achievable, since parts are immediately
processed upon arrival:

θAON =
1

tp + ta
(P.13)

Therefore, to avoid significant profit losses, a lower bound for the expected
throughput θ(τ ) is considered in the optimization problem:

τ ∗ = arg min
τ

g(τ )

Subject to: θ(τ ) ≥ (1− ε)θAON
τon > τoff

τoff , τon ∈ R+
0

(P.14)

(P.15)
(P.16)
(P.17)

where ε ∈ [0, 1] is the maximum admissible throughput reduction with respect
to the AON policy.

The throughput constraint (P.15) can be manipulated, by plugging in
equations (P.12) and (P.13), to obtain an equivalent condition on the expected
waiting time H(τ ):

1

tp + ta +H(τ )
≥ (1− ε) 1

tp + ta
⇒ H(τ ) ≤ ε

1− ε
(tp + ta) = Hmax (P.18)
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where Hmax is an upper bound for the expected waiting time H(τ ), constant
once defined ε and fX(x).

Finally, constraint (P.16) is introduced to guarantee the consistency of
the control action, in fact the machine cannot be resumed to the idle state
before being switched off. This constraint, combined with that in equation
(P.17), allows to define the domain of decision variables.

P.2.3 Structural Properties

In order to provide a better understanding of the optimization problem,
some significant properties from literature [44] are now outlined. They will be
employed in chapter 3 to develop a solving strategy for effectively identifying
the optimal control parameters τ ∗.

Property P.1. Relaxing the throughput constraint (P.15), the objective
function g(τ ) is continuous on the closed and bounded set of values that τoff
and τon can jointly assume. In addition, presenting finite limits, it has both a
maximum and a minimum on this interval. As a consequence, the optimal
solution τ ∗ can be found.

Theorem P.1. Control parameters are independent, since the mixed partial
derivative of g(τ ) with respect to τoff and τon is equal to zero. In particular,
the objective function partial derivatives can be expressed as:

∂g(τ )

∂τoff
= [1− FX(τoff )][−(w3 + wq)tsuHR(τoff ) + w2 − w1] (P.19)

∂g(τ )

∂τon
= [1− FX(τon)][r(τon)(w2 + wq)− w2 + w1] (P.20)

where FX(x) is the cdf of the starvation times distribution, while HR(τoff ) is
the Hazard Rate2 of X evaluated for x = τoff and r(τon) = FX(τon+tsu)−FX(τon)

1−FX(τon)
.

Theorem P.2. Under the assumption of unimodal distribution modeling the
starvation time, the objective function g(τ ) has at most one critical point in
addition to {∞,∞}— which is always a critical point. For these distributions,
the general Switching Policy degenerates into simpler strategies. In particular:

2Given the pdf fX(x) and the cdf FX(x) of a random variable, the Hazard Rate (HR)
is defined as follows:

HR(t) =
fX(t)

1− FX(t)

It represents the conditional probability that a part will arrive in the next moment if the
machine is starved at time t.
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• For Decreasing Hazard Rate (DHR) distributions, τ ∗ = {τ ∗off ,∞} with
τ ∗off ∈ R+

0 .

• For Increasing Hazard Rate (IHR) distributions, τ ∗ = {0, τ ∗on} with
τ ∗on ∈ R+ or τ ∗ = {∞,∞}.

Property P.2. The expected waiting time H(τ ) monotonically decreases
over τoff and monotonically increases over τon. Therefore, the maximum
waiting time occurs for τ = {0,∞}, since every part has to wait the whole
startup transitory tsu before being processed.

P.3 Illustrative Examples

Since the optimal policy is case-dependent, in this section some examples
are proposed to illustrate how the optimal solution τ ∗ changes according to
different operating situations and environments – i.e. machine parameters
and starvation times distribution. The scenarios here presented will be used
as demonstrators in Chapter 3.

Machine parameters. The three different machining centers from litera-
ture [44, 45, 63] are addressed, whose parameters are collected in table P.1.
In detail, machine M2 features the same time parameters (i.e. tsu and tp) of
M1, but it is characterized by higher power absorptions. On the contrary,
the energy performance of machine M3 are similar to that of M1, with a
significantly shorter processing time duration.

Table P.1: Machine parameters.

Machine w1[kW ] w2[kW ] w3[kW ] wq[kW ] tsu[s] tp[s]

M1 0.52 5.35 6.08 1 24 168
M2 3.12 11 12.5 0 24 168
M3 0.85 4.5 6 1 20 64

Starvation times distributions. Three starvation times distributions
fX(x) are considered, whose trend is shown in figure P.2. For fixed machine
tool parameters, they result in completely different shaped objective functions
g(τ ). In particular:
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(a) D1 - Unimodal with IHR.

(b) D2 - Unimodal with DHR. (c) D3 - Multimodal.

Figure P.2: Graphical display of the considered distributions.

• D1 (Unimodal with IHR) - Weibull distribution with shape k = 5 and
scale β = 49.011 (i.e., mean is ta = 45 s).

• D2 (Unimodal with DHR) - Weibull distribution with shape k = 0.45
and scale β = 15.73 (i.e., mean is ta = 39 s).

• D3 (Multimodal) - Weighted sum of three normal densities, such their
composition is characterized by a mode in x = 0 followed by a second
bimodal peak. The pdf is here reported.

fX(x) =

{
N(x, 7.5) + 0.1N(x− 70, 5) + 0.4N(x− 90, 10) x ≥ 0

0 x < 0
(P.21)
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Table P.2: Optimal control τ ∗ for different scenarios. Related energy and throughput
performance are also given.

Scenario τ∗ gAON g(τ∗) ∆g(τ∗) θAON θ(τ∗) ∆θ(τ∗)
[s] [kJ/part] [kJ/part] [%] [parts/h] [parts/h] [%]

M1/D1/1 {0, 29.18} 240.75 175.94 26.92 16.90 16.22 −4.04
M1/D2/1 {15.91,∞} 208.59 121.93 41.55 17.39 16.68 −4.07
M1/D3/1 {11.65, 72.87} 246.06 153.80 37.49 16.82 16.29 −3.18
M2/D2/1 {18.37,∞} 428.87 295.55 31.09 17.39 16.73 −3.82
M3/D3/1 {12.12, 74.32} 206.96 141.89 31.44 32.73 31.17 −4.77

Off-line results. In the followings, the term scenario is employed to refer
to a specific combination of machine tool, starvation times distribution and
throughput constraint setting. For the sake of simplicity, each scenario is ad-
dressed with a notation “M/D/ε”. The formulation of a scenario exhaustively
provides the necessary inputs to solve the optimization problem introduced
in subsection P.2.2. In particular, table P.2 shows the optimal control τ ∗

for some combinations of machine parameters and starvation times distri-
bution, obtained by relaxing the throughput constraint3 in equation (P.15)
(unconstrained optimization problem - ε = 1). For each analyzed scenario, the
performance of the optimal control is described providing the expected energy
saving percentage ∆g(τ ∗) and the expected throughput reduction percentage
∆θ(τ ∗) with respect to the AON condition:

∆g(τ ∗) = 100 · gAON − g(τ ∗)

gAON
(P.22)

∆θ(τ ∗) = 100 · θ(τ
∗)− θAON
θAON

(P.23)

The proposed illustrative examples show that the benefits achievable by
implementing the control policy are meaningful, even though a throughput
reduction always results, which may sometimes be unacceptable. In addition,
it is clear how for unimodal distributions (i.e. D1 and D2) the optimal control
parameters τ ∗ lead to a simpler strategy, in accordance with theorem P.2.
Finally, the objective function g(τ ) shapes for some scenarios are graphically
shown in the contour plots of figure P.3.

3Scenarios with ε < 1 will be specifically addressed in Chapter 3.
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(a) M1/D1/1 - τ∗ = {0, 29.18}.

(b) M1/D2/1 - τ∗ = {15.91,∞}.

(c) M1/D3/1 - τ∗ = {11.65, 72.87}.

Figure P.3: Contour plots of g(τ ) for different scenarios.
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Chapter 3

On-Line Control Policy:
Extensions and Improvements

The scope of this chapter is to present an on-line time-based policy, which
is able to control a single machine while learning from a real time collection
of part arrivals. The proposed algorithm improves and extends an already
existing policy by Marzano et al. [43, 63] which, in turns, adapt the off-line
Switching Policy formalized by Frigerio and Matta [44, 45] to an innovative
on-line framework.

Particular effort is devoted to the development of a solving algorithm to ac-
count for an upper bound on the machine service level reduction (contribution
C1.1). In addition, a significant response time improvement is accomplished,
allowing to achieve a real time shop floor applicability. Specifically, each of
the phases from literature is analyzed in details, introducing enrichments
to enhance the algorithm effectiveness and robustness, while limiting its
computational requirements.

This chapter is structured in seven sections. In section 3.1, the on-line
algorithm is described as in the literature. In section 3.2, the Kernel Den-
sity Estimation method is introduced, comparing the performance of three
bandwidth estimation methods. In section 3.3, a solving algorithm is pro-
posed to effectively handle the optimization problem, exploiting its structural
properties. In section 3.4, a robust policy to manage the implementation of
control parameters is described. In section 3.5, the algorithm effectiveness
and computational requirements are evaluated with numerical cases. Finally,
in section 3.6, some conclusive remarks are drawn.
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3.1 On-Line Control Policy

This section briefly describes the energy efficient on-line algorithm as in
the literature. In particular, the off-line control problem formulated in P.2
is extended by keeping the same system and assumptions, except for the
knowledge level of the starvation times distribution fX(x):

• The off-line Switching Policy assumes fX(x) to be known.

• The on-line approach assumes fX(x) to be unknown. Nevertheless,
the machine is able to observe the real time starvation times data,
progressively collected in vector x = {x1, . . . , xn}.

The resulting on-line control problem is addressed by adopting a Separated
Estimation and Optimization (SEO) approach, which consists in two phases:
the first focuses on the estimation of stochasticity, whilst the second handles
the objective function optimization. In addition, since data acquisition
is on-line, the risk of implementing a control based on biased estimates
might be high, especially with few observations available. Therefore, a third
phase is introduced to reduce the risk of incurring in an increase of energy
consumptions.

In order to exploit the greater amount of information which becomes
progressively available, the on-line control problem is solved by means of an
iterative algorithm, which performs the aforementioned phases in sequence.
In particular, at each iteration k, the on-line algorithm is characterized by:

1. A Learning Phase where, starting from the collected data x, an estimate
of the starvation times distribution f̂k(x) is made.

2. An Optimization Phase, where the estimated control parameters τ̂k =
{τ̂off,k, τ̂on,k} are identified.

3. An Implementation Phase, which ensures that the estimated control
parameters τ̂k replace the current ones τimpl = {τoff,impl, τon,impl} only
if the estimated advantage is significant. This phase also allows to
minimize the number of control changes, reducing the variability induced
in the downstream production process.

To limit the computational burden, the algorithm is iterated only after the
collection of ∆n new observations. Therefore, at iteration k the number of
available data to estimate f̂k(x) is n = k∆n. The schematic representation of
the algorithm main phases is shown by the flow chart in figure 3.1.
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Implementation
Phase!𝝉𝒌

Learning
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Optimization
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Observed data:
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𝑘 = 𝑘 + 1

No

Yes

𝝉𝒊𝒎𝒑𝒍 = !𝝉𝒌

Figure 3.1: Algorithm main phases.

3.2 Learning Phase

This section describes the first phase of the algorithm, which is aimed at
estimating the starvation times pdf f̂k(x) on the basis of collected real time
data x. Since f̂k(x) is the basis of the whole on-line algorithm, the Learning
Phase is crucial to guarantee its effectiveness and robustness and to limit
the response time. Therefore, a deeper analysis of the estimation methods is
provided.

In literature, two different methods based on a frequentist inference are
alternatively employed: the Maximum Likelihood Estimation (MLE) and
the Kernel Density Estimation (KDE). Since the former allows to estimate
the parameters of a known distribution type, it is not further addressed. In
fact the distribution type is generally unknown in practice. Conversely, the
latter learns automatically the shape of the density from the data. The KDE
effectiveness is mostly affected by the choice of the bandwidth parameter h,
which controls the smoothness of the resulting pdf.

Therefore, three bandwidth estimation methods are compared in terms of
goodness of the estimate and computational requirements, as a function of
the dataset size. The scope of the proposed sensitivity analysis is to identify
the method which provides satisfactory and robust results, while ensuring low
computational requirements for an on-line implementation.

3.2.1 Kernel Density Estimation Method

The Kernel Density Estimation method, also known as the Parzen’s window
[65], is one of the most common non-parametric approaches to estimate the
probability density function (pdf) of a random variate starting from a set of
n observations, without assuming the distribution type.

Let x = {x1, . . . , xn} ∈ Rn be a univariate, independent and identically
distributed random sample from an unknown distribution with pdf fX(x).
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The Kernel Density Estimator f̂X|H(x|h) of the pdf can be expressed as:

f̂X|H(x|h) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(3.1)

where K : R → R is a smooth function called the kernel function, h ∈ R+

is the smoothing parameter or bandwidth and the "hat" symbol denotes
the KDE dependence from sample x. Therefore, given vector x, the KDE
is affected by the choice of kernel function K(·) and the bandwidth h. In
particular, once selected a kernel function K(·), the KDE is the conditional
density function of X given H = h.

Several kernel functions are of common use: uniform, triangular, biweight,
triweight, Epanechnikov and Gaussian. Gaussian kernel function is very fre-
quent due to its convenient mathematical properties. Herewith, the following
Gaussian kernel is considered:

K(t) =
1√
2π
e−

t2

2 (3.2)

Therefore, equation (3.1) becomes:

f̂X|H(x|h) =
1

nh

n∑
i=1

K

(
x− xi
h

)
=

1

nh

n∑
i=1

1√
2π
e−

1
2

(
x−xi
h

)2

=

=
1

n

n∑
i=1

1√
2πh

e−
(x−xi)

2

2h2 =
1

n

n∑
i=1

N(x− xi, h)

(3.3)

where N(x − m, v) is the normal distribution with mean m and standard
deviation v. It can be noticed that the KDE f̂X|H(x|h) is obtained as the
average of n normal densities, each centered on one observation xi and with
standard deviation h. Since the bandwidth controls the width of the kernel,
it acts as a tuning parameter for the KDE, determining how each observation
is spread over the surrounding space. If the bandwidth h = h(n) is chosen as
a function of the observation number n such that:

lim
n→∞

h(n) = 0 (3.4)

then the estimates defined by equation (3.1) are asymptotically unbiased as
n increases.
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3.2.2 Alternative Methods for Bandwidth Selection

The goodness of the KDE is related to the choice of bandwidth h:

• High values of bandwidth h lead to under-fitting (or oversmoothing),
where the structure in the data is washed out by a kernel which is too
wide.

• Low values of bandwidth h lead to over-fitting (or undersmoothing),
where data are used only locally and the KDE is very variable.

Therefore, the selection is not trivial. The purpose of this section is to minimize
the estimation error of the target density. Let us define the Integrated Square
Error (ISE) as global error criterion [66]:

ISE(h) =

∫
[f̂X|H(x|h)− fX(x)]2 dx (3.5)

which represents the squared distance among the pdf fX(x) and the KDE
f̂X|H(x|h). The ISE is a random variable which, by the way, depends on
the particular realization of n observations. Therefore, for the purpose of
bandwidth selection, the Mean Integrated Squared Error (MISE) is examined,
which is the average of the ISE over these realizations:

MISE(h) = E[ISE(h)] = E
[∫

[f̂X|H(x|h)− fX(x)]2 dx

]
(3.6)

where E denotes the expected value with respect to the sample. In particular,
the value h∗ minimizing the MISE should be selected:

h∗ = arg min
h>0

{MISE(h)} (3.7)

Function MISE(h) is unknown, thus h∗. Therefore, several methods have
been proposed in the literature for bandwidth selection. Herewith, we compare
the three most common methods.

Silverman Rule of Thumb. This method, proposed by Silverman [67],
approximates the MISE(h) in equation (3.6) with its asymptotic approxi-
mation (AMISE) obtained with the truncated Taylor expansions. It can be
proved that the optimal bandwidth minimizing the AMISE decreases with
the sample size n proportionately to n−

1
5 . Furthermore, considering the case

in which fX(x) is a normal density, it is possible to obtain h∗AMISE as follows:

h∗AMISE =

(
4

3n

) 1
5

sX = 1.059 · sX · n−
1
5 (3.8)
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where sX denotes the standard deviation of the sample data x. Equation (3.8)
provides a practical choice of bandwidth which requires very little calculation.
Nevertheless, this approach tends to introduce oversmoothing if applied to
non-normal data, above all when they are strongly skewed or multimodal.

In order to reduce the risk of oversmoothing, Silverman proposes the
following Rule of Thumb:

h∗rot = 0.9 min

{
sX ,

IQR

1.349

}
n−

1
5 (3.9)

where IQR = q̂0.75 − q̂0.25 is the interquantile range of the sample data x. In
fact, sX tends to overestimate the spread when the data present thick tails.

Least-Squares Cross Validation. This method, proposed by Rudemo
and Bowman [68, 69], aims to estimate the optimal bandwidth with the
minimizer of ISE(h), approximating this function with a cross-validation
approach. In more details, equation (3.5) can be also expressed as:

ISE(h) =

∫
f̂ 2
X|H(x|h) dx− 2

∫
fX(x)f̂X|H(x|h) dx+

∫
f 2
X(x) dx (3.10)

Since the minimizer of ISE(h) does not depend on the unknown quantity∫
f 2
X(x) dx, the last term can be neglected. The approximation lies in the

second term because, being dependent on function fX(x), it is unknown and
needs to be estimated. In general, an integral with respect to fX(x) is an
expectation with respect to random variable X. Since the true expectation is
unknown, it can be estimated by taking the sample average, suggesting [70]:∫

fX(x)f̂X|H(x|h) dx ≈ 1

n

n∑
i=1

f̂X|H(xi|h) (3.11)

However f̂X|H(xi|h) is itself a function of observation xi, therefore the cross-
validation methodology is employed to replace f̂X|H(x|h) with the leave-one-
out estimator f̂X|H,−i(x|h), constructed from the data without observation
xi:

f̂X|H,−i(x|h) =
1

(n− 1)h

n∑
j=1
j 6=i

K

(
x− xj
h

)
(3.12)

Since the first term in equation (3.10) can be directly calculated, ISE(h) can
be approximated as [71]:

ISE(h) ≈
∫
f̂ 2
X|H(x|h)dx− 2

n

n∑
i=1

f̂X|H,−i(xi|h) (3.13)
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Nevertheless, Bowman replaces the first term of expression (3.13) with its
asymptotic estimate:

ISE(h) ≈ 1

n

n∑
i=1

∫
f̂ 2
X|H,−i(x|h)dx− 2

n

n∑
i=1

f̂X|H,−i(xi|h) (3.14)

He indeed demonstrates that the expectation of expression (3.14) is the MISE
of f̂X|H(x|h) based on n− 1 observations, omitting the

∫
f 2
X(x) dx term. The

value that minimizes this expression therefore provides an estimate of the
optimal smoothing parameter. For Gaussian kernel function, the integrals in
expression (3.14) can be easily calculated, leading to a simple function to be
minimized [72]:

h∗ls = arg min
h>0

[
1

n− 1
N(0,

√
2h) +

n− 2

n(n− 1)2

n∑
i=1

n∑
j=1
j 6=i

N(xi − xj ,
√

2h) +

− 2

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

N(xi − xj , h)

] (3.15)

Leave-One-Out Cross Validation. This method, proposed by Habbema
et al. and Duin [73, 74] and employed in the on-line algorithm from liter-
ature, suggests to choose h so that the pseudo-likelihood function L(h) =∏n

i=1 f̂X|H(xi|h) is maximized. In particular, L(h) gives the probability (likeli-
hood) of obtaining the observed data as a function of the selected bandwidth
h. Therefore, the bandwidth that maximizes L(h), is the one which "best
explains" the observed data.

Since L(h) has a trivial maximum for h = 0, the cross validation principle is
invoked by replacing f̂X|H(xi|h) with its leave-one-out estimator f̂X|H,−i(xi|h)
defined in equation (3.12). Therefore, the bandwidth value h∗loo is:

h∗loo = arg max
h>0

L̃(h) = arg max
h>0

[ n∏
i=1

1

(n− 1)h

n∑
j=1
j 6=i

K(
xi − xj
h

)

]
(3.16)

Finally, by switching to logarithms to guarantee the feasibility of the maxi-
mization process:

h∗loo = arg max
h>0

{ n∑
i=1

log

[ n∑
j=1
j 6=i

K

(
xi − xj
h

)]
− n log [(n− 1)h]

}
(3.17)
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3.2.3 Estimate Normalization

As mentioned above, while starvation times are always positive, the
Gaussian kernel function is defined over an infinite domain. For this reason
the conditional density function f̂X|H(x|h) cannot be directly employed in
the algorithm Optimization Phase. An approximation must be therefore
introduced to ensure a null probability of having negative starvation times. In
particular, the estimate f̂X|H(x|h) has to be truncated and normalized over
the positive domain:

f̂normX|H (x|h) =


f̂X|H(x|h)∫∞

0 f̂T |H(t|h) dt
x ≥ 0

0 x < 0
(3.18)

In conclusion, at each algorithm iteration k, once identified the optimal
bandwidth h∗k, the estimated starvation times distribution is:

f̂k(x) = f̂normX|H (x|h∗k) (3.19)

3.2.4 Numerical Analyses

The scope is to compare method performance in terms of goodness of the
estimate and computational effort as functions of dataset size n. Methods
are tested on data sets of increasing size (up to n = 10000), generated
from the three distributions introduced in the Preludio (cf. section P.3).
Five independent samples are used as replications of the learning procedure.
Therefore, the different estimation methods are tested employing common
random numbers. The first case (D1) represents an easy case, whilst others
are known to be more difficult from the literature.

Goodness-of-fit is assessed using a Kolmogorov-Smirnov (K-S) test [75]
and significance level αK−S = 0.05. The comparison is performed creating for
each distribution 10 independent samples of 2500 observations each.

D1 (unimodal with IHR). From figure 3.2, it is possible to assess how
the behaviors of the different estimation methods are comparable, showing
a decreasing trend of h∗ which is proportionate to n−1/5. This is aligned
with Silverman’s results in equation (3.9). Method performance is similar in
this case and figure 3.3 shows how the different KDEs are overlapping as the
observation number n increases. Further, the results of the K-S test (table 3.1)
do not show any significant difference. It is possible to conclude that unimodal
IHR distributions with low densities near the origin can be easily estimated by
all methods, even though Silverman Rule of Thumb provides the smoothest
trend of h∗ over n.
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Figure 3.2: D1, ta = 45 s - Selected bandwidth h∗ for different methods as a
function of the number of observations n (mean of 5 replications).

(a) KDEs for n = 100.

(b) KDEs for n = 1000. (c) KDEs for n = 10000.

Figure 3.3: D1, ta = 45 s - Comparison of KDEs for increasing sample size n (1
replication).
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Table 3.1: D1, ta = 45 s - K-S results as mean probability of acceptance as n
increases (αK−S = 0.05, 10 replications).

Method Observation number n
100 500 1000 5000 10000

Silverman Rule of Thumb 0.10 0.48 0.60 0.86 0.88
Least Squares Cross Validation 0.12 0.40 0.46 0.82 0.90
Leave-One-Out Cross Validation 0.10 0.50 0.60 0.84 0.88

D2 (unimodal with DHR). Due to the asymptote in x = 0, the distribu-
tion is extremely difficult to handle. Figure 3.4a shows how methods perform
differently: Least-Squares Cross Validation provides too small bandwidths
(overfitting), whereas Leave-One-Out Cross Validation and Silverman Rule of
Thumb tend to introduce oversmoothing, leading to biased estimates. The
results of K-S are not reported because the null hypothesis is rejected in all
cases. It is possible to conclude that it might happen that KDE method fails
in providing adequate estimates. However, the obtained estimation might be
good enough for the purpose of the algorithm Optimization Phase.

D3 (multimodal). This distribution is characterized by high probability
in the neighborhoods of the origin, which makes the estimate more tricky.
Figure 3.5 shows how Leave-One-Out and Least-Squares Cross Validation
methods have overfitting issues. On the contrary, the bandwidth selected
by Silverman Rule of Thumb has oversmoothing issues, especially for small
sample sizes. From results of K-S test in table 3.2, the null hypothesis with
Silverman Rule of Thumb is always rejected.

Table 3.2: D3 - K-S results as mean probability of acceptance as n increases
(αK−S = 0.05, 10 replications).

Method Observation number n
100 500 1000 5000 10000

Silverman Rule of Thumb 0.00 0.00 0.00 0.00 0.00
Least Squares Cross Validation 0.00 0.18 0.28 0.72 0.76
Leave-One-Out Cross Validation 0.00 0.10 0.10 0.74 0.74

Computational effort. Results are obtained with Matlab R2018b on a
MacBook with 2.4 GHz Intel Core i5 and 8 GB 1600 MHz DDR3 of RAM.
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(a) Selected bandwidth h∗ by increasing sam-
ple size n (mean of 5 replications).

(b) KDEs obtained with n = 10000 (1 repli-
cation).

Figure 3.4: D2, ta = 39 s - Results of comparison.

(a) KDEs for n = 100.

(b) KDEs for n = 1000. (c) KDEs for n = 10000.

Figure 3.5: D3 - Comparison of KDEs for increasing sample size n (1 replication).
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Figure 3.6: Computational time required by bandwidth selection methods as the
sample size n increases (boxplots are obtained over 10 sample paths).

Computational times are reported in figure 3.6, showing a significant increment
as the sample size increases. Silverman’s method requires a negligible amount
of time due to the simple computation of the method.

3.2.5 Remarks

First of all, Silverman Rule of Thumb ensures the best trade-off between
computational times and results stability, especially when dealing with large
sample sizes. However, this methods has significant oversmoothing problems
with multimodal distributions, being a robust extension of an approach
oriented to normal densities. In multimodal cases, which are common in
industrial applications, it is necessary to switch towards Least-Squares or
Leave-One-Out Cross Validation. The obtained results are coherent with
the existing literature regarding KDE. In particular, it is proven that Least
Squares Cross Validation is very sensitive to the presence of clustering in the
data, resulting in very small smoothing parameters [72]. On the contrary, it is
known that Leave-One-Out Cross Validation produces smoothing parameters
that are too large if the underlying distribution has a long tail or if outliers
are present [68]. This explains why both methods provide poor results with
the DHR pdf (D2). This distribution is in fact characterized by high densities
in the neighborhoods of the origin and a long tail towards infinity.

On the basis of the proposed sensitivity analysis, it results that no band-
width estimation method can be singly implemented in a black-box version
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of the algorithm Learning Phase. Therefore the following suggestions are
proposed for practical application:

• For small sample sizes (n < 1000) execute in parallel Leave-One-Out
Cross Validation and Silverman Rule of Thumb, since the computational
requirements are negligible. Use h∗loo to estimate the starvation times
distribution f̂k(x), unless h∗loo >> h∗rot. In this case, keep Silverman
Rule of Thumb as the only estimation method (e.g. D2).

• When a significant amount of observation is collected (n ≈ 1000), if
h∗rot ≈ h∗loo switch to Silverman Rule of Thumb to avoid an increase in
computational requirements (e.g. D1). On the contrary, if h∗rot > h∗loo
Silverman Rule of Thumb cannot be employed, since it may lead to an
oversmoothing issue (e.g. D3).

3.3 Optimization Phase
This section addresses the second phase of the algorithm, which is aimed

at identifying the optimal control parameters τ̂k on the basis of the estimated
starvation times pdf f̂k(x). Once introduced the on-line optimization problem
which needs to be addressed at each iteration k, a solving algorithm to identify
its exact solution is proposed. Finally, numerical examples are reported to
show how the optimal control changes according to different throughput
constraint settings.

3.3.1 On-line Optimization Problem

At each algorithm iteration k, once identified the starvation times pdf
f̂k(x) as in equation (3.19), the estimated control parameters τ̂k result from
the resolution of the on-line optimization problem. Even though this problem
has the same structure of its off-line counterpart (cf. subsection P.2.2), the
formulation is based on the estimated starvation times pdf f̂k(x). In particu-
lar, denoting respectively ĝk(τ ) and θ̂k(τ ) the expected value of the energy
consumed in a cycle by the machine and the expected throughput obtained
with f̂k(x), the optimization problem becomes:

τ̂k = arg min
τ

ĝk(τ )

Subject to: θ̂k(τ ) ≥ (1− ε)θ̂AON,k
τon > τoff

τoff , τon ∈ R+
0

(3.20)

(3.21)
(3.22)
(3.23)
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Since the estimate f̂k(x) is asymptotically unbiased (cf. subsection 3.2.1),
as n → ∞ the control problem approaches that in equations (P.14)-(P.17),
resulting in τ̂k → τ ∗.

3.3.2 Solving Algorithm

In literature the on-line optimization problem is slightly simplified. In
particular, the throughput constraint in equation (3.21) is relaxed and a
fictitious power absorption is tuned to penalize the expected waiting time
in the objective function. Nevertheless, this approach leads to approximate
results, since the constraint is not explicitly formulated.

Therefore, a new solving algorithm is proposed to identify the exact
solution of the on-line optimization problem, which also guarantees a significant
response time improvement. In fact, the Optimization Phase strongly impacts
the whole algorithm computational requirements. Since this solving algorithm
can be indifferently applied to any starvation times distribution, it is described
considering a generic pdf fX(x), whose related optimal parameters are τ ∗.

Unconstrained Optimization Problem

In order to illustrate the developed solving algorithm, the unconstrained
optimization problem, obtained by relaxing the throughput constraint, is firstly
addressed. The core idea is to efficiently identify all the potential objective
function minima over the domain of feasible solutions and select the one
associated with the lowest energy consumption. The algorithm is decomposed
in four steps, exploiting the structural properties of g(τ ).

Step U1. Identify the local minima τ̃off,i of g({τoff , ·}) among the solutions
of:

∂g(τ )

∂τoff
= 0 (3.24)

and collect them in set Toff . Add τoff = 0 to the set to account for potential
solutions on the domain boundary.

Step U2. Identify the local minima τ̃on,j of g({·, τon}) among the solutions
of:

∂g(τ )

∂τon
= 0 (3.25)

and collect them in set Ton.
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Step U3. Since control parameters are independent (cf. theorem P.1), collect
in set Dunc all the combinations {τ̃off,i, τ̃on,j} with τ̃off,i ∈ Toff , τ̃on,j ∈ Ton
and τ̃on,j > τ̃off,i. Solution {∞,∞} represents the always on policy and must
be included in the set of candidates.

Step U4. Select, among the candidate solutions ∈ Dunc, the combination
associated with the lowest energy consumption.

This solving algorithm requires less computational effort than the numer-
ical one-step calculation of τ ∗, since the optimal parameters are identified
independently. In addition, it can be effectively employed with any kind of
starvation times distribution, even a multimodal one. The latter is in fact
frequently encountered in industrial applications, especially when a machine
is inserted in a production line.

Constrained Optimization Problem

The complete solving algorithm for the constrained optimization problem
is now addressed. Since control parameters are independent, the core idea is
to select the minimum among:

1. The potential solutions of the unconstrained optimization problem (i.e. ∈
Dunc), which satisfy the throughput constraint.

2. The constrained minimum of g(τ ) along the set of points which satisfy
the throughput constraint at equality, referred to as throughput boundary
THb. With reference to equation (P.18), the throughput boundary can
be expressed as:

THb = {τ ∈ R2 | H(τ ) = Hmax, τon > τoff ≥ 0} (3.26)

where Hmax is an upper bound for the expected waiting time H(τ ).

Before outlining the solving algorithm, the throughput boundary THb needs
to be analyzed in more details. In particular, its representation on a (τoff , τon)
plane is generally given by a curve, whose characteristic vary significantly
according to the considered scenario. Of course, all the points that lie above
the THb do not satisfy the throughput constraint. From the qualitative
examples in figure 3.7 it is possible to notice how the THb starts either
from side τoff = 0 or τon = τoff and it is always characterized by a vertical
asymptote. In addition, it can either be continuously defined or intersect one
or several times side τon = τoff , resulting in a piecewise curve.
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(a) Continuous and starting from τoff = 0.

(b) Piecewise and starting from τoff = 0. (c) Piecewise and starting from τon = τoff .

Figure 3.7: Different shapes for the throughput boundary THb.

It is now possible to illustrate the solving algorithm, which is decomposed
in four steps here outlined.

Step C1. Relaxing the constraint, define set Dunc accordingly to the previ-
ously detailed algorithm (cf. steps U1-U3).

Step C2. Conforming to property P.2:

• If tsu ≤ Hmax, the throughput constraint does not limit the domain.
Therefore proceed with step U4 to find the solution.

• Otherwise, identify the combinations ∈ Dunc that satisfy the throughput
constraint and collect them in set Dcon:

Dcon = {τ ∈ Dunc | H(τ ) ≤ Hmax} (3.27)
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Step C3. Identify the constrained minimum τ ∗
b of g(τ ) along the throughput

boundary THb and add it to set Dcon. In particular, solve the following
minimization problem:

τ ∗
b = arg min

τ
g(τ )

Subject to: H(τ ) = Hmax

τon > τoff

τoff , τon ∈ R+
0

(3.28)

(3.29)
(3.30)
(3.31)

Since it is not possible to derive a closed form expression that links the control
parameters such that H(τ ) = Hmax, a two-variables minimization problem
must be handled.

Step C4. Select, among the candidate solutions ∈ Dcon, the combination
associated with the lowest energy consumption.

If τ ∗
b turns out to be the optimal solution, the throughput constraint is

said to be binding, since H(τ ∗) = Hmax. On the contrary, the throughput
constraint is non-binding because it holds as a strict inequality.

3.3.3 Numerical Analyses

The effectiveness of the proposed solving algorithm is tested with different
scenarios, generated combining machine M1 with the starvation times distribu-
tions defined in subsection P.3. A progressively tighter throughput constraint
is introduced to assess how it affects the optimal parameter selection and
the related machine performance. In the proposed examples the throughput
constraint always turns out to be binding, anyway this is not always the case.
Complete results are shown in table 3.3.

Scenarios M1/D1/ε. Distribution D1 is unimodal with IHR therefore,
according to theorem P.2, the optimal solution of the unconstrained optimiza-
tion problem (i.e. ε = 1) lies on the τon axis: it is optimal to switch off the
machine at the beginning of each cycle. Figures 3.8a and 3.8b show that the
optimal solution of the constrained optimization problem still lies on the τon
axis, but the switch on command must be anticipated as the lower bound for
θ(τ ) is progressively increased. In fact, switching on the machine in advance
allows to reduce the probability that an incoming part finds the machine in
the standby or startup state, thus reducing the expected waiting time.
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Table 3.3: Optimal control τ ∗ for different scenarios. Related energy and throughput
performance are also given. Scenarios with ε = 1 are reported for completeness.

Scenario τ ∗ g(τ ∗) ∆g(τ ∗) θ(τ ∗) ∆θ(τ ∗)
[s] [kJ/part] [%] [parts/h] [%]

M1/D1/1 {0, 29.18} 175.94 26.92 16.22 −4.04
M1/D1/0.03 {0, 25.61} 177.21 26.39 16.39 −3
M1/D1/0.01 {0, 15.89} 195.23 18.91 16.73 −1
M1/D2/1 {15.91,∞} 121.93 41.19 16.70 −4.07
M1/D2/0.03 {29.16,∞} 125.04 39.69 16.89 −3
M1/D2/0.01 {113.71,∞} 155.96 24.78 17.24 −1
M1/D3/1 {11.65, 72.87} 153.80 37.49 16.29 −3.18
M1/D3/0.02 {13.04, 65.48} 156.32 36.47 16.49 −2
M1/D3/0.01 {14.91, 57.56} 165.66 32.68 16.65 −1

Scenarios M1/D2/ε. Distribution D2 is unimodal with DHR therefore,
according to theorem P.2, the optimal solution of the unconstrained optimiza-
tion problem is of the form τ ∗ = {τ ∗off ,∞}: once triggered the machine to the
standby state it is optimal to switch it on only at part arrival. Figures 3.8c
and 3.8d show that optimal solution of the constrained optimization problem
has the same formulation, even though the switch off command must be
delayed as ε is progressively reduced.

Scenarios M1/D3/ε. Distribution D3 is multimodal and the optimal so-
lution of the unconstrained optimization problem lies inside the domain. In
particular, the optimal control suggest to switch off the machine in corre-
spondence of the valley between the two peaks, since the probability of a
part arrival is low. Figures 3.8e and 3.8f show that the introduction of a
throughput constraint modifies both the control parameters, progressively
decreasing the gap among them. In fact, reducing the machine standby period
in correspondence of the pdf valley leads to a lower expected waiting time.

A note on implementation. In order to identify the optimal control for
each scenario, the proposed solving algorithm is implemented on Matlab
R2018b. The solutions of equations (3.24) and (3.25) are identified with
function fzero (bisection, secant and inverse quadratic interpolation methods).
On the contrary, the two-variables minimization problem in equations (3.28)-
(3.31) is solved with function fmincon (gradient-based method).
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(a) M1/D1/0.03 - τ∗ = {0, 25.61}. (b) M1/D1/0.01 - τ∗ = {0, 15.89}.

(c) M1/D2/0.03 - τ∗ = {29.16,∞}. (d) M1/D2/0.01 - τ∗ = {113.71,∞}.

(e) M1/D3/0.02 - τ∗ = {13.04, 65.48}. (f) M1/D3/0.01 - τ∗ = {14.91, 57.56}.

Figure 3.8: Contour plots of g(τ ) for different scenarios.
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3.4 Implementation Phase

This section describes the third phase of the algorithm, which ensures
that a change in the control parameters occurs only in presence of a sta-
tistically evident machine energy performance improvement. In particular,
at each iteration k the estimated control parameters τ̂k are compared with
the ones currently in place τimpl and the best configuration is selected. The
Implementation Phase serves two different purposes:

1. It allows to avoid an increase of energy consumptions resulting from
implementing biased control parameters, i.e. estimated on the basis of
a low number of observations.

2. It allows to avoid that control parameters are changed too frequently
overtime. In fact, the variability induced in the downstream production
process should be possibly minimized.

In literature, τ̂k and τimpl are compared in terms of objective function
employing a paired-t test. Nevertheless, its normality assumption is generally
far from being satisfied.

Therefore, an alternative policy for implementing the control parameters,
i.e. the Bootstrap CI Implementation Policy, is developed in order to guarantee
a greater robustness. Although the core structure remains unchanged, this
policy employs a bias corrected and accelerated (BCa) bootstrap confidence
interval (CI) in place of the traditional t-interval. In addition, some secondary
adjustments are proposed to facilitate parameters implementation under
some favorable conditions. Finally, an extension is provided to guarantee
parameters convergence when a constraint must be satisfied.

In order to address the proposed policy, it is necessary to introduce
and describe the energy output function (3.32) and the implementation cost
function (3.34).

3.4.1 Energy Output Function

Let random variable E be machine energy consumption in a cycle and
denote its realization with e. The energy output function e = φ(x, τ ) links
the occurrence x of starvation time X to the resulting consumption e, when
the machine is controlled with parameters τ :
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Figure 3.9: General energy output function for machine M1 (τon > τoff > 0).

φ(x, τ ) =



w2x if x ≤ τoff

w2τoff + w1(x− τoff ) + (w3 + wq)tsu if τoff < x ≤ τon
w2τoff + w1(τon − τoff ) + w3tsu+

+ wq(τon + tsu − x)
if τon < x ≤ τon + tsu

w2τoff + w1(τon − τoff ) + w3tsu+

+ w2(x− τon − tsu)
if x > τon + tsu

(3.32)
For ease of understanding, figure 3.9 shows a general φ(x, τ ) for machine M1:

• x ≤ τoff – φ(x, τ ) has the steepest slope w2, since the machine never
switches from the idle state.

• τoff < x ≤ τon – It is possible to notice a discrete step, which accounts
for the energy required during the startup (w3tsu) and the whole part
holding energy (wqtsu). φ(x, τ ) increases linearly with slope w1, since
the machine is switched to the standby state.

• τon < x ≤ τon + tsu – φ(x, τ ) decreases linearly with x, since the part
holding energy is progressively reduced. In particular, for x = τon + tsu
it results φ(τon+tsu, τ ) = φ(τon, τ )−wqtsu, as the part can be processed
immediately avoiding any waiting time.

• x > τon + tsu – φ(x, τ ) gets back to increase with slope w2, since the
machine has resumed the operational readiness.

The energy output function, also allows to derive a more compact expression
for the expected value of the energy consumed in a cycle by the machine g(τ ):

g(τ ) = E[E] = E[φ(X, τ )] =

∫ ∞
0

φ(x, τ )fX(x) dx (3.33)
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In the followings, two examples are introduced to analyze how the en-
ergy output function φ(x, τ ) changes according to the considered control
parameters τ .

Example 1. Considering scenario M1/D1/1, figure 3.10 shows the compari-
son among the energy output function of the AON policy φ(x, {∞,∞}) = w2x
and the one evaluated for τ ∗ = {0, 29.18}. In particular, the optimal control
policy improves the machine energy performance for x > x̃. Nevertheless,
there is a 14.3% probability that an incoming part incurs in higher energy
consumptions. In addition, it is worth highlighting how the energy output
function section characterized by the lowest consumptions is located in cor-
respondence of the pdf mode. Finally, for x > τon + tsu, the gap between
φ(x, {∞,∞}) and φ(x, τ ∗) is constant, since machine operational readiness
is resumed.

Figure 3.10: M1/D1/1 - φ(x, τ ∗) and φ(x, {∞,∞}).

Starting from a set of 1000 observations, it is possible to analyze the
paired differences distribution φ(xi, {∞,∞})− φ(xi, τ

∗). In particular, fig-
ure 3.11a clearly shows how the considered sample is neither symmetric nor,
consequently, normally distributed. This is further confirmed by the QQ-Plot
in figure 3.11b. It results that the normality hypothesis of the paired-t test
employed in literature is difficult to be satisfied.
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(a) Frequency histogram. (b) QQ-Plot of sample data vs standard
normal.

Figure 3.11: M1/D1/1 - Paired differences distribution (1000 samples).

Example 2. Figure 3.12 compares the energy output function of machine
M1 for two generic control parameters (τ1 and τ2), considering the particular
eventuality in which τoff1 = τoff2 6= 0 and τon2 > τon1 . It is possible to notice
how the two functions overlap for 0 ≤ x ≤ τon1 . This peculiarity has to
be considered in the Implementation Phase, since the energy performance
coincide for a set of starvation times values.

Figure 3.12: φ(x, τ1) and φ(x, τ2) for M1.
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Figure 3.13: Implementation cost function for n∗1 < n∗2 < n∗3.

3.4.2 Implementation Cost Function

The proposed policy considers an implementation cost C0, introduced to
account for the risk aversion of manufacturers and to reduce the number of
changes in the applied control. In addition, this parameter is progressively
discounted to account for the greater confidence on the estimates, resulting
from an increasing number of observations. Therefore, at each iteration k,
the estimated control parameters τ̂k are implemented only if they statistically
guarantee a surplus of energy saving greater than the corresponding imple-
mentation cost function C(n) value. In particular, this function is shaped
on the basis of a negative exponential. In order to ensure that the imple-
mentation cost C0 is wholly considered at the first algorithm iteration (k = 1
and n = ∆n), it is necessary to set C(∆n) = C0. This leads to the following
expression for the implementation cost function:

C(n) = C0e
−n−∆n

ι with n ≥ ∆n (3.34)

Finally, in order to select a value for the constant ι, it is required to force the
function to pass for a point of predefined coordinates. For example, ι can be
derived by specifying the observation interval n∗ required by the function to
reach approximately the 5% of its initial value. In fact, y = 5% is conveniently
reached for n∗ = n−∆n = 3ι. Therefore, the constant ι can be expressed as:

ι =
n∗

3
(3.35)

The definitive shape of the implementation cost function C(n) for different
values of n∗ is reported in figure 3.13. Of course a higher n∗ implies higher
energy saving requirements for implementing the control parameters.
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3.4.3 Bootstrap CI Implementation Policy

The Bootstrap CI Implementation Policy is now outlined. In particular, it
consists of five steps to be performed in sequence at each algorithm iteration k.

Step 1. Calculate the paired differences Di:

Di = φ(xi, τimpl)− φ(xi, τ̂k) i = 1, . . . , n (3.36)

and gather them in set D = {Di, . . . , Dn}.

Step 2. Collect the non-zero paired differences in set D0:

D0 = {Di ∈D | Di 6= 0}. (3.37)

If the number of non-zero paired differences is greater than or equal to a
safety threshold ST (i.e. if |D0| ≥ ST ), then set D = D0.

Step 3. Formulate the null hypothesis H0:

H0 : Mean(D) ≤ C(n) (3.38)

where C(n) is the implementation cost function from equation (3.34).

Step 4. Test the null hypothesis, define a (1−α)% BCa confidence interval
for the paired differences mean µ, following the procedure here hinted.

4.1) Starting from the empirical distribution D, create B bootstrap resam-
ples1.

4.2) For each resample, compute the sample mean µ̂∗.

4.3) Sort the statistics in an increasing order, thus creating the bootstrap
distribution of the estimate µ̂:

µ̂∗(1) ≤ µ̂∗(2) ≤ · · · ≤ µ̂∗(B) (3.39)

1The bootstrap resample of an empirical distribution is an equally sized sample generated
by sampling with replacement from the empirical distribution. A single data point can
appear multiple times, since at each sampling it has the same probability of being drawn [76].
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4.4) Define the confidence interval:

CI =
[
µ̂∗(α1), µ̂

∗
(α2)

]
=
[
µ̂low, µ̂up

]
(3.40)

where α1 and α2 depend on the significance level α and on two additional
parameters, i.e. the acceleration parameter â and the bias-correction
factor ẑ0, which are autonomously estimated. The exhaustive procedure
is described in [77].

This confidence interval is very simple to form and not necessarily symmetric,
easily indulging for the distribution skewness.

Step 5. Evaluate the relative positioning of CI with respect to C(n):

• If µ̂low ≤ C(n), keep the current parameters τimpl (H0 cannot be
rejected with significance level α).

• Otherwise, implement the estimated control parameters τ̂k, since there is
statistical evidence that the objective function improves (H0 is rejected
with significance level α).

Step 2 is introduced to solve an issue that arises when there is a par-
tial overlapping between the energy output function evaluated for τ̂k and
τimpl (cf. figure 3.12). In particular, if for a large amount of observations
φ(xi, τimpl) − φ(xi, τ̂k) = 0, it is less likely to reject H0 and to implement
control τ̂k, even though it would ensure higher energy savings. The proposed
solution is to simply exclude the paired differences Di equal to 0, before
applying the test. Nevertheless, in order to ensure that D has a sufficient size
to guarantee the test effectiveness, a safety threshold ST on the minimum
number of non-zero paired differences must be introduced.

Since the proposed Bootstrap CI Implementation Policy only tests the
energy performance, it is no longer effective when a constraint needs to be
satisfied. Therefore, in this case, a further initial step must be introduced to
allow the convergence towards the optimal control:

Step 0. If, on the basis of latest pdf estimate f̂k(x), the implemented control
parameters τimpl no longer satisfy the constraint, directly implement τ̂k. The
last identified parameters are indeed certainly feasible according to the new
observations.
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Parameter selection. Before its application, the Bootstrap CI Implemen-
tation Policy requires the selection of five parameters: C0, n∗, α, ST and B.
In particular, the first three are related to the user risk-adversity. In fact
the policy becomes more conservative as C0 increases, α decreases and n∗

increases. In addition, it is suggested to set ST = 10 to assure an acceptable
sample size for CI construction and B = 10000, which is a good trade off
between accuracy and execution time.

3.5 Results

In this section, numerical analyses are performed to evaluate the on-line
algorithm effectiveness and computational requirements. The machine energy
consumption, the throughput, the number of observations before implementing
the control and the mean number of control changes are the investigated per-
formance indexes (KPIs). Three different scenarios are addressed, generated
with the machines and the distributions from subsection P.3. In detail:

• Scenarios M1/D1/1 and M2/D2/1 are employed to compare the algo-
rithm performance with that of the existing policy from literature [43,
63].

• Scenario M3/D3/0.02 is instead reported to assess the algorithm be-
haviour when a throughput constraint is set.

Moreover, since the Implementation Phase parameters strongly impact the
investigated KPIs, a sensitivity analysis on their effect is performed. Unfor-
tunately, due to the peculiarities of the analyzed model and the considered
simplifying assumptions, additional comparisons with other control policies
from literature cannot be carried out.

Experiments are designed by varying the Implementation Phase parame-
ters according to the full factorial plans in tables 3.4, 3.8 and 3.9. In detail,
α = 1 specifies an experiment in which the Implementation Phase does
not take place and, at each iteration, the estimated parameters are directly
implemented. Moreover, n∗ = ∞ indicates an experiment with a constant
implementation cost function value C(n) = C0 ∀ n. The number of designed
experiments for each scenario is 15, because some combinations are equivalent.
The full factorial plans are replicated and balanced, since each experiment is
composed by 10 replications to achieve satisfactory estimates. In addition,
common random numbers are used to guarantee comparability.

Focusing on the single replication, the algorithm is initially iterated every
∆n = 10 observations. Upon completion of the 500th part, this interval is
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finally increased to ∆n = 50. Each replication terminates when 5000 parts
are processed. Nevertheless, it is unlikely that a real industrial process shows
a stationary behaviour in such a long production run.

Finally, note that the results obtained assuming a complete knowledge of
the starvation time distributions (off-line problem), referred to as "Real Val-
ues", are used as benchmarks. Complete results can be found in appendix A.

3.5.1 Scenario M1/D1/1

In this scenario, as reported in table P.2, the AON policy obtains an
objective function value of gAON = 240.75 kJ/part and an expected throughput
of θAON = 16.90 parts/h. The AON is used as reference policy. The optimal
control is τ ∗ = {0, 29.18}, allowing to achieve 26.92% of savings on the
objective function, with an expected throughput reduction of −4.04%.

Distribution D1 is unimodal with IHR, therefore Silverman Rule of Thumb
is employed in the algorithm Learning Phase. In fact, according to section 3.2,
it provides the best trade-off between computational times and results stability.

Implementation Phase settings are reported in table 3.4. In particular,
the proposed non-zero implementation costs C0 respectively correspond to
15% and 20% of gAON .

Table 3.4: M1/D1/1 - Implementation Phase settings.

Factor Level 1 Level 2 Level 3

C0 [kJ/part] 0 36 48
α 1 0.20 0.05
n∗ ∞ 2500 500

Performance comparison and goodness of the estimate. The KPIs
obtained with the proposed algorithm are similar to those of the existing
policy from literature. From table 3.5 it indeed results that, under the same
settings2 for C0 and α, the confidence intervals for the energy consumption
per part always show some degree of overlap. The same consideration holds
for the machine throughput, which is reported in table A.1. Focusing on the
Implementation Phase, the number of acquired observations before starting
the EEC is, with few exceptions, equal (cf. table 3.6). Moreover, when C0 is
non-zero, the control is never changed after the first implementation.

2Since the original algorithm does not provide for an implementation cost discount, only
the experiments with n∗ =∞ should be considered.
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Table 3.5: M1/D1/1 - Sample-based comparison of on-line algorithm energy perfor-
mance for different settings (95% CI, 10 replications). Experiments with n∗ =∞
are reported.

C0 [kJ/part] α Algorithm Energy [kJ/part]
n = 100 n = 250 n = 500

0
0.05

Bootstrap CI 182.46± 1.15 178.74± 0.67 177.40± 0.54
Paired-t 182.29± 1.21 178.71± 0.80 177.41± 0.62

0.20
Bootstrap CI 182.21± 1.16 178.56± 0.68 177.30± 0.55

Paired-t 182.22± 1.27 178.52± 0.68 177.27± 0.55

36
0.05

Bootstrap CI 191.01± 4.26 182.15± 1.69 179.16± 0.97
Paired-t 193.32± 3.47 183.19± 1.52 179.76± 1.03

0.20
Bootstrap CI 184.25± 1.42 179.62± 0.69 178.01± 0.58

Paired-t 184.52± 1.38 179.94± 0.85 178.37± 0.78

48
0.05

Bootstrap CI 206.07± 7.97 188.92± 4.36 182.69± 2.37
Paired-t 205.30± 8.60 188.66± 4.59 182.53± 2.48

0.20
Bootstrap CI 194.42± 6.17 183.69± 2.63 180.01± 1.58

Paired-t 194.60± 6.04 183.94± 2.45 180.29± 1.45

Table 3.6: M1/D1/1 - Number of observations collected before implementing the
solution. For C0 = 0 kJ/part the control is always implemented at the first iteration.

C0 [kJ/part] α Algorithm Replication
1 2 3 4 5 6 7 8 9 10

36
0.05

Bootstrap CI 10 30 10 20 30 30 20 50 20 30
Paired-t 20 30 30 20 30 30 20 50 20 30

0.20
Bootstrap CI 10 20 10 20 20 10 10 10 10 10

Paired-t 10 20 10 20 20 10 10 10 10 10

48
0.05

Bootstrap CI 20 40 50 50 30 50 50 120 30 40
Paired-t 20 40 50 50 30 50 50 120 20 40

0.20
Bootstrap CI 20 30 10 30 30 40 10 60 20 30

Paired-t 20 30 10 30 30 40 10 60 20 30
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Figure 3.14: M1/D1/1 - Estimated switch on control parameter τ̂on,k at each
algorithm iteration k (box plot of 10 replications).

Switching to computational requirements, the proposed algorithm guaran-
tees a significant response time reduction. Even though the burden progres-
sively increases with the amount of observed data, a single iteration is always
executed in less than six seconds.

This response time enhancement allows to analyze the long-range conver-
gence of the estimated control parameters τ̂k towards the off-line optimal
solution τ ∗. In particular, figure 3.14 shows how the range of change for the
estimated switch on parameter τ̂on,k gets progressively tighter, approaching
the off-line optimal value τ ∗on (dashed line). It is worth highlighting that the
algorithm identifies the exact value τ ∗off = 0 since the first iteration.

Analysis of a single experiment. In order to clarify the algorithm func-
tioning and to get acquainted with the investigated KPIs, the experiment
with C0 = 36 kJ/part, α = 0.05 and n∗ = 500 is specifically addressed.
In particular, figures 3.15a and 3.15b show the sample-based energy saving
and throughput reduction with respect to the AON policy: as the number
of collected observations n increases, both trends approach the off-line con-
trol problem results ∆g(τ ∗) and ∆θ(τ ∗). Focusing on a single replication,
the main Implementation Phase effects can be instead appreciated from fig-
ure 3.15c. In detail, for each algorithm iteration k, it displays the estimated
switch on parameter τ̂on,k (green line) and the implemented one τon,impl (red
line). It is possible to notice that control implementation is delayed to the
second iteration, since the first estimate does not guarantee a statistically
evident improvement in energy performance. Moreover, just one additional
control change occurs, allowing to approach the off-line optimal value τ ∗on.
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(a) Sample-based energy saving (10 replications).

(b) Sample-based throughput reduction (10 replications).

(c) Estimated τ̂on,k (green line) and implemented τon,impl (red line)
switch on control parameters (1 replication).

Figure 3.15: M1/D1/1 - Experiment with C0 = 36 kJ/part, α = 0.05 and n∗ = 500.
Only the first 2000 observations are reported, i.e. 80 iterations.
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Table 3.7: M1/D1/1 - Effects of factors C0, α and n∗ over the mean number of
observations before implementing the control parameters ninitial and the mean
number of changes.

C0 [kJ/part] α n∗ ninitial
Mean Number
of Changes

0
0.05 / 10 2.20
0.20 / 10 3.10

36

0.05
∞ 25 1.0

2500 25 1.7
500 21 2.0

0.20
∞ 13 1.0

2500 13 1.8
500 13 2.3

48

0.05
∞ 48 1.0

2500 39 1.4
500 32 1.5

0.20
∞ 28 1.0

2500 28 1.4
500 24 2.3

Sensitivity analysis. A sensitivity analysis is now introduced to evaluate
how different Implementation Phase settings affect the investigated KPIs.
Specifically, table 3.7 shows how the control implementation is progressively
delayed in time when C0 increases, α decreases and n∗ increases. A similar
behavior can be also identified for the occurrence of changes in the control,
which decrease when more conservative parameters are set. In addition, once
set a significance level α, an upper bound for the mean number of changes
can be identified from the experiment characterized by a null implementation
cost C0. The effect of n∗ on the mean number of observations before imple-
menting the control ninitial is more evident in a situation with low α. On the
contrary, n∗ has a larger influence on the mean number of control changes
when a higher α is set.

Being responsible for the occurrence and the number of control changes,
the selected Implementation Phase parameters also affect the achievable en-
ergy savings. This is clearly evident from the results reported in figure 3.16.
In particular, top panel (figure 3.16a) represents four settings where the
implementation cost C0 is not discounted. A situation with high C0 and/or
low α, being more conservative, results into lower energy savings. Bottom
panel (figure 3.16b) represents three cases with fixed C0 and α, but differ-
ent discounts. A situation with a smaller n∗ implies a progressive greater
confidence on the estimates, resulting in higher energy savings.
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(a) Effects of C0 and α with n∗ =∞.

(b) Effect of n∗ with C0 = 48 kJ/part and α = 0.05.

Figure 3.16: M1/D1/1 - Sample-based mean energy saving for different settings (10
replications). Green line is obtained without the Implementation Phase.

3.5.2 Scenario M2/D2/1

This additional numerical case is introduced to account for a scenario in
which the proposed algorithm provides better energy performance with respect
to the existing policy from literature. In detail, as reported in table P.2, in
this scenario the AON policy obtains an objective function value of gAON =
428.87 kJ/part and an expected throughput of θAON = 17.39 parts/h. The
optimal control is τ ∗ = {18.37,∞}, allowing to achieve 31.09% of savings on
the objective function, with an expected throughput reduction of −3.82%.

Silverman Rule of Thumb is employed in the algorithm Learning Phase
and different settings for the Implementation Phase are tested, according
to the full factorial plan in table 3.8. In particular, the proposed non-zero
implementation costs C0 respectively correspond to 4% and 17% of gAON .
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Table 3.8: M2/D2/1 - Implementation Phase settings.

Factor Level 1 Level 2 Level 3

C0 [kJ/part] 0 17 73
α 1 0.35 0.05
n∗ ∞ 5000 500

(a) Results with α = 0.35.

(b) Results with α = 0.05.

Figure 3.17: M2/D2/1 - Algorithm comparison in terms of sample-based mean
energy saving for different settings (10 replications, n∗ =∞). Green line is obtained
without the Implementation Phase.
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Considering n∗ = ∞, figure 3.17 compares the mean energy savings
achieved by the algorithms for different settings of C0 and α. Specifically,
in a situation with low C0 and high α (figure 3.17a - C0 = 17 kJ/part,
α = 0.35) the algorithms perform similarly while, with more conservative
settings, the original once faces the implementation issue previously described
in subsection 3.4.3 (figure 3.17b - C0 = 73 kJ/part, α = 0.05). In this latter
situation, the proposed adjustments effectively allow to obtain a significant
improvement in energy performance.

3.5.3 Scenario M3/D3/0.02

A last numerical case is finally employed to analyze the algorithm ef-
fectiveness when an upper bound on the machine service level reduction is
introduced. Specifically, in this scenario the AON policy obtains an objective
function value of gAON = 206.96 kJ/part and an expected throughput of
θAON = 32.73 parts/h. If a throughput constraint is set to limit its maximum
admissible reduction to ε = 2%, the optimal control is τ ∗ = {14.44, 62.20},
allowing to achieve 28.62% of savings on the objective function.

Leave-One-Out Cross Validation is employed in the algorithm Learning
Phase, since Silverman Rule of Thumb has significant oversmoothing problems
with distribution D3 (multimodal). Even though the selected method shows
slight overfitting issues (cf. subsection 3.2.4), it provides suitable estimates to
the Optimization Phase. This because, in general, it is more convenient to
handle well-defined but slightly noisy peaks rather than smoothed estimates:
the former clearly indicate where the densities are concentrated, while the
latter tend to spread the probability over the a larger interval.

Different combinations for the Implementation Phase parameters are
tested, according to the full factorial plan in table 3.9. In particular, the
proposed non-zero implementation costs C0 respectively correspond to 12%
and 25% of gAON .

Table 3.9: M3/D3/0.02 - Implementation Phase settings.

Factor Level 1 Level 2 Level 3

C0 [kJ/part] 0 25 52
α 1 0.20 0.05
n∗ ∞ 2500 500
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Figure 3.18: M3/D3/0.02 - Total time required to complete each iteration (box plot
of 10 replications).

(a) Switch off parameter τ̂off,k.

(b) Switch on parameter τ̂on,k.

Figure 3.19: M3/D3/0.02 - Estimated control parameters τ̂k at each algorithm
iteration k (box plot of 10 replications).
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Performance analysis and goodness of the estimate. In this scenario,
the algorithm computational requirements are higher with respect to the
previous examples. In fact, Leave-One-Out Cross Validation and the solving
algorithm developed for the constrained optimization problem are character-
ized by severe computational efforts. Nevertheless, the real-time algorithm
applicability is still guaranteed. In this regard, figure 3.18 shows the box plot
of the total time required to complete a single iteration, which is always lower
than two minutes.

The long-range convergence of the estimated control parameters τ̂k towards
the off-line optimal solution τ ∗ is ensured even in this more challenging
scenario. In fact, figure 3.19 shows how the estimate ranges of change get
progressively tighter, approaching the corresponding optimal values (dashed
lines).

Sensitivity analysis. Dealing with a constrained control problem, Step 0
of the Bootstrap CI Implementation Policy (cf. subsection 3.4.3) acts as a
safety measure against the risk of excessive service level reduction. It indeed
guarantees that, at each iteration k, the implemented control parameters
τimpl always satisfy the throughput constraint. This may obviously lead to an
increase in the number of control changes, as reported in table 3.10.

Table 3.10: M3/D3/0.02 - Effects of factors C0, α and n∗ over the mean number
of observations before implementing the control parameters ninitial and the mean
number of changes.

C0 [kJ/part] α n∗ ninitial
Mean Number
of Changes

0
0.05 / 12 77.9
0.20 / 11 88.6

25

0.05
∞ 25 6.5

2500 25 23.3
500 24 54.3

0.20
∞ 14 6.4

2500 14 25.9
500 14 59.2

52

0.05
∞ 27 6.3

2500 26 17.6
500 26 51.1

0.20
∞ 26 6.4

2500 26 20.3
500 26 57.9
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(a) Switch off parameter τoff,impl.

(b) Switch on parameter τon,impl.

Figure 3.20: M3/D3/0.02 - Implemented control parameters τimpl for different
Implementation Phase settings (1 replication). Only the first 2000 observations are
reported, i.e. 80 iterations.

Focusing on a single replication, the above consideration can be visualized
in figure 3.20. In particular, the effect of Step 0, combined with risk-prone
Implementation Phase settings, leads to a large number of control changes
(red line). Nevertheless, this allows to fully exploit the energy saving potential
within the limit given by the throughput constraint, as reported in figure 3.21.

On the contrary, risk-averse Implementation Phase settings may cause the
machine to be controlled with biased parameters, which in practice largely
satisfy the throughput constraint (blue line). Even though more accurate
control parameters are progressively estimated, they are not implemented
due to the high risk aversion of the considered experiment. This result in
partial energy savings and throughput reductions lower than the maximum
admissible (cf. figure 3.22).
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(a) Sample-based energy saving.

(b) Sample-based throughput reduction.

Figure 3.21: M3/D3/0.02 - C0 = 0 kJ/part and α = 0.20 (10 replications).

(a) Sample-based energy saving.

(b) Sample-based throughput reduction.

Figure 3.22: M3/D3/0.02 - C0 = 52 kJ/part, α = 0.05 and n∗ =∞ (10 replications).
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3.6 Conclusions
In this chapter, a time-based energy efficient policy is illustrated, which

works on-line while acquiring information from the real system. The proposed
algorithm improves and extends that from literature [43, 63]. In particular,
each of the three algorithm phases is addressed in details, describing and
justifying the proposed enrichments.

With regard to the Learning Phase, a brief literature review on the Kernel
Density Estimation (KDE) method is reported. Three bandwidth estimation
methods are illustrated and compared. Numerical analyses show that no
method always provides acceptable results, suggesting to employ a mixture of
them in a black-box version of the algorithm. Focusing on the Optimization
Phase, an efficient solving algorithm is proposed step by step, assessing its
goodness numerically. Moving to the Implementation Phase, the Bootstrap
CI Implementation Policy is introduced. It guarantees a greater robustness
with respect to the paired-t test proposed in literature and it can also be
employed when a constraint must be satisfied.

The on-line algorithm effectiveness and computational requirements are
tested on the basis of some numerical cases. In particular, the control problem
is firstly addressed without considering any throughput constraint (scenarios
M1/D1/1 and M2/D2/1). Results show that the algorithm performance,
evaluated considering the investigated KPIs, are similar or better than that
of the existing policy from literature. In addition, a significant response
time enhancement is achieved, thus laying the foundations for a real time
shopfloor applicability. The sensitivity analysis proves that more conservative
Implementation Phase settings (i.e. higher C0, lower α and higher n∗) entail
a progressive delay in implementing the EEC and a lower number of control
changes, leading to reduced energy savings. These outcomes are coherent
with the existing literature. Finally, scenario M3/D3/0.02 is employed to
asses the effectiveness of the algorithm extension to account for a throughput
constraint. Results confirm the possibility to achieve energy efficiency while
respecting a user-defined maximum admissible throughput reduction.
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Chapter 4

Analysis on Risk and Uncertainty

The scope of this chapter is to widen the applicability of the on-line
control policy proposed in chapter 3, including considerations on risk and
uncertainty. Firstly, since the control is selected considering the statistical
average behavior of the machine, the optimization problem from literature
is enriched with two additional constraints in order to mitigate the risk of
deteriorating machine performance over the single cycle (contribution C1.2).
Then, the issue of uncertainty on density estimation is addressed, discussing
how to include this information in the control problem.

This chapter is structured in five sections. In section 4.1, the probability
distributions of the machine energy consumption in a cycle and the waiting
time in a cycle are derived. In section 4.2, the complete risk optimization
problem is formulated and the solving algorithm from subsection 3.3.2 is prop-
erly adjusted to identify its exact solution. In section 4.3 the goodness of the
proposed risk mitigation measure is assessed numerically. In section 4.4, the
probability density function of the KDE bandwidth h is obtained, examining
the resulting potential applications in the control problem. Finally, section 4.5
concludes the analysis.

4.1 Machine Performance Density Functions

This section illustrates the procedure to express the distribution functions
of the machine energy consumption in a cycle and the waiting time in a
cycle, which are respectively described by random variables E and Q. Since
these functions are conditioned to the starvation times distribution fX(x),
the Method of Transformations (cf. appendix B.1) is applied for this purpose,
being the general approach to find the distribution of a function of a continuous
random variable [78].
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4.1.1 Energy Probability Density Function

The machine energy consumption in a cycle E is here addressed. In
particular, with reference to subsection 3.4.1, it depends on random variable
X via the energy output function:

E = φ(X, τ ) (4.1)

Given a starvation times distribution fX(x) and a control τ , the Method of
Transformations can be therefore exploited to derive the analytical expression
for its probability density function fE(e|τ ):

fE(e|τ ) =


m∑
i=1

fX(xi)

|φ′(xi, τ )|
if ∃ xi, i = 1, . . . ,m | e = φ(xi, τ )

0 otherwise

(4.2)

where φ′(xi, τ ) is the energy output function derivative with respect to x.

The analysis can be also extended to account for the difference in machine
energy consumption with respect to the AON policy, described with random
variable ∆E:

∆E = φ(X, {∞,∞})− φ(X, τ ) (4.3)

Denote the realization of ∆E with ∆e. First and foremost, by making reference
to figure 4.1, it is worth noting that ∆emin < ∆e ≤ ∆emax. Specifically:

• ∆emin = −(w3 + wq)tsu

• ∆emax = w2(τon + tsu)− [w2τoff + w3tsu + w1(τon − τoff )]

In addition, bottom panel of figure 4.1 also allows to appreciate that ∆e = 0
and ∆e = ∆emax correspond to ranges of starvation times values. They may
then become mass points for probability. In particular:

• ∆e = 0 accounts for the probability that a part arrives before the
machine is switched off (x ≤ τoff ):

P(∆E = 0 | τ ) = FX(τoff ) (4.4)

• ∆e = ∆emax accounts for the probability that a part arrives after the
machine operational readiness is resumed (x > τon + tsu):

P(∆E = ∆emax | τ ) = 1− FX(τon + tsu) (4.5)
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Figure 4.1: Comparison between φ(x, {∞,∞}) = w2x and a general φ(x, τ ) for
machine M1.

Due to presence of the mass points, the probability distribution of ∆E is mixed.
Therefore, it can be uniquely expressed with the cumulative distribution
function F∆E(∆e|τ ):

F∆E(∆e|τ ) =



∫ e

∆emin

f∆E(t|τ ) dt if ∆emin ≤ ∆e < 0∫ e

∆emin

f∆E(t|τ ) dt+ P(∆E = 0 | τ ) if 0 ≤ ∆e < ∆emax

1 if ∆e = ∆emax
(4.6)

where f∆E(∆e|τ ) is the pdf of the continuous part, whose analytical expression
results from applying the Method of Transformations :

f∆E(∆e|τ ) =


fX(xi)

w2 − φ′(xi, τ )

if ∃ xi ∈ (τoff , τon + tsu] | ∆e =
= φ(xi, {∞,∞})− φ(xi, τ )

0 otherwise
(4.7)

Considering scenario M1/D1/1 (cf. figure 3.10), whose optimal control is
τ ∗ = {0, 29.18}, the probability distribution of E is shown, for illustrative
purposes, in figure 4.2a. In particular, since it is optimal to immediately
switch off the machine at the beginning of each cycle, the startup procedure is
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(a) fE(e|τ∗). (b) f∆E(∆e|τ∗) and mass point at ∆emax.

Figure 4.2: M1/D1/1 - Energy probability distributions for τ ∗.

always executed and the lowest possible occurrence of E is φ(τon + tsu, τ
∗) =

161.10 kJ/part. Moreover, focusing on the probability distribution of ∆E
(cf. figure 4.2b), it is evident that most of the probability belongs to positive
differences ∆e > 0, resulting in significant energy savings. Finally, the mass
point at ∆emax = 123.43 kJ/part indicates that, under the optimal control,
more than 20% of the parts arrive at the machine once its operational readiness
is resumed.

4.1.2 Waiting Time Probability Density Function

The discussion laid out in subsection 4.1.1 can also applied to the part
waiting time in a cycle Q, whose realization is denoted with q. To achieve this
goal, the waiting time function q = ψ(x, τ ), which links q to the starvation
times occurence x and the control τ , needs to be introduced:

ψ(x, τ ) =


0 if x ≤ τoff

tsu if τoff < x ≤ τon

τon + tsu − x if τon < x ≤ τon + tsu

0 if x > τon + tsu

(4.8)

By looking at function ψ(x, τ ) (cf. figure 4.3) it can be inferred that the
probability distribution of Q is a mixed one. In particular, it is characterized
by a continuous part fQ(q|τ ) combined with the following mass points:

80



4.1. Machine Performance Density Functions

Figure 4.3: General waiting time function for machine M1 (τon > τoff > 0).

• q = 0, which accounts for the probability that a part arrives when the
machine is idle (x ≤ τoff ∨ x > τon + tsu):

P(Q = 0 | τ ) = FX(τoff ) + [1− FX(τon + tsu)] (4.9)

• q = tsu, which accounts for the probability that a part arrives when the
machine is in standby (τoff < x ≤ τon), since it has to wait the whole
startup duration to be processed:

P(Q = tsu | τ ) = FX(τon)− FX(τoff ) (4.10)

Here again, the probability distribution of Q can be uniquely expressed with
the cumulative distribution function FQ(q|τ ):

FQ(q|τ ) =


P(Q = 0 | τ ) if q = 0

P(Q = 0 | τ ) +

∫ q

0

fQ(t|τ ) dt if 0 < q < tsu

1 if q = tsu

(4.11)

where the analytical expression of the continuous part fQ(q|τ ) results from
applying the Method of Transformations :

fQ(q|τ ) =

{
fX(xi) if ∃ xi ∈ (τon, τon + tsu] | q = ψ(xi, τ )

0 otherwise
(4.12)

Focusing once more on scenario M1/D1/1, figure 4.4 shows the probability
distribution of Q. In particular, it results that more than 75% of parts
experience a waiting time before being processed.
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Figure 4.4: M1/D1/1 - fQ(q|τ ∗) and mass points for τ ∗.

4.2 Optimization with Risk Tail Constraints
Since control parameters are optimized based on expectations, they might

sometimes lead to a deterioration of machine performance over the single cycle.
Therefore, in this section, a measure is proposed to select the optimal control
while mitigating the risk of increasing the machine energy consumption and
the machine cycle time with respect to AON policy.

To serve this purpose, the focus is on the Optimization Phase of the on-line
algorithm from chapter 3. In detail, once introduced the risk optimization
problem, adjustments to the solving algorithm introduced in subsection 3.3.2
are proposed to identify its exact solution.

4.2.1 Risk Optimization Problem

To account for the possible negative influence of the control over the
machine performance in the single cycle, the optimization problem from liter-
ature (cf. subsection P.2.2) is enriched with two additional constraints. The
resulting risk optimization problem has the following complete formulation:

τ ∗ = arg min
τ

g(τ )

Subject to: F∆E(∆etarget|τ ) ≤ δe

1− FQ(qtarget|τ ) ≤ δq

τon > τoff

τoff , τon ∈ R+
0

(4.13)

(4.14)
(4.15)
(4.16)
(4.17)
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where F∆E(∆e|τ ) and FQ(q|τ ) are the cumulative distribution functions
introduced in equations (4.6) and (4.11).

Constraint (4.14), referred to as energy risk constraint, is introduced to
mitigate the risk of incurring in higher consumptions with respect to the
AON policy:

P[φ(X, {∞,∞})− φ(X, τ ) ≤ ∆etarget] ≤ δe (4.18)

Risk-averse users may in fact prefer to give up the maximum saving on the
objective function, if this implies a high probability of deteriorating machine
energy performance in a single cycle. This constraint requires the setting of
two parameters:

• A target difference ∆etarget < 0.

• A probability δe ∈ [0, 1].

Constraint (4.15), referred to as waiting time risk constraint, is instead
introduced to mitigate the risk of increasing the machine cycle time with
respect to the AON policy:

P[ψ(X, τ ) > qtarget] ≤ δq (4.19)

In fact, this increase actually results from the waiting time Q a part may
experience before being processed. This constraint, which is conceived as an
alternative to the condition on the expected throughput from equation (P.15),
requires the setting of two parameters:

• A target waiting time qtarget ≥ 0.

• A probability δq ∈ [0, 1].

Since constraints (4.14) and (4.15) act on the tails of the aforementioned
distribution functions, they are coherently termed risk tail constraints. Of
course, smaller values of δe and δq imply a higher risk-aversity. Moreover,
it is worth highlighting that these constraints should be perceived as safety
measures, therefore they might be non-binding in reality.

Lastly, constraints (4.16) and (4.17) allow to define the domain of decision
variables. Nevertheless, this set can be reduced thanks to the following
theorem:
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(a) τon < τoff + ξ. (b) τon > τoff + ξ.

Figure 4.5: Different control configurations for machine M1.

Theorem 4.1. It exists a critical sojourn duration in the standby state ξ
such that, for any feasible starvation times occurrence x:

φ(x, {∞,∞}) ≤ φ(x, {τoff , τon ≤ τoff + ξ}) (4.20)

The critical sojourn duration is:

ξ =
w3 − w2

w2 − w1

tsu (4.21)

Proof: The proof of theorem 4.1 is carried out graphically. In particular,
figure 4.5a shows a control configuration for machine M1 which cannot
guarantee any energy saving with respect to the AON policy. Indeed, the
sojourn duration in the standby state is so short that φ(x, {∞,∞}) ≤ φ(x, τ )
for any feasible starvation times occurrence x.

It is therefore evident that, to guarantee the potential for energy saving,
there must exist an interval of starvation times over which φ(x, {∞,∞}) >
φ(x, τ ). This can be appreciated from figure 4.5b.

The critical condition is obtained when φ(x, {∞,∞}) and φ(x, τ ) overlap
for x > τon + tsu:

φ(τon + tsu, {∞,∞}) = φ(τon + tsu, τ ) (4.22)

Expanding equation (4.22), it results:

w2(τon + tsu) = w2τoff + w3tsu + w1(τon − τoff ) (4.23)

Solving for τon:
τon = τoff +

w3 − w2

w2 − w1

tsu (4.24)
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Therefore, the critical sojourn duration in the standby state is:

ξ
def
=
w3 − w2

w2 − w1

tsu (4.25)

Physically speaking, theorem 4.1 suggests that, the sojourn duration in
the standby state (τon − τoff) must be sufficiently long to ensure that the
energy consumed by the machine in the standby and startup states is lower
than that it would have absorbed if it had not been switched off:

w3tsu + w1(τon − τoff ) < w2(τon + tsu − τoff ) (4.26)

The condition in equation (4.16) is henceforth replaced by:

τon > τoff + ξ (4.27)

Note that, in order to reduce the computational complexity of the problem,
the risk tail constraints are addressed independently in the following. It is
indeed extremely difficult to assess their combined influence on the domain of
feasible solutions. The identification of a solving algorithm for the complete
risk optimization problem is therefore left as a future development.

4.2.2 Energy Risk Constraint

The risk of incurring in higher consumptions with respect to the AON
policy is firstly considered. In particular, the related optimization problem
results from relaxing constraint (4.15). Since control parameters are indepen-
dent (cf. theorem P.1), the optimal trade-off solution must be selected as the
minimum among:

1. The potential solutions of the unconstrained optimization problem, which
satisfy the energy risk constraint.

2. The constrained minimum of g(τ ) along the set of points which satisfy
the energy risk constraint at equality, referred to as ∆Eb:

∆Eb = {τ ∈ R2 | F∆E(∆etarget|τ ) = δe, τon > τoff + ξ, τoff ≥ 0} (4.28)

For the sake of clarity, two qualitative examples of general feasibility regions
are shown in figure 4.6. In particular, it is possible to appreciate how the
introduction of an energy risk constraint sections the domain into vertical
feasibility bands. It is also evident that, once exceed a certain threshold
(dotted line), the boundary ∆Eb goes straight towards τon =∞. This behavior
is explained by the following theorem:
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Figure 4.6: Different shapes for the boundary ∆Eb.

Theorem 4.2. Once set a feasible target difference ∆etarget, it exists a limit
sojourn duration in the standby state $ such that:

F∆E(∆etarget|{τoff , τon > τoff +$}) = F∆E(∆etarget|{τoff , τoff +$}) (4.29)

The limit sojourn duration is:

$ =
(w3 + wq)tsu + ∆etarget

w2 − w1

(4.30)

Proof: A graphical proof is provided in the appendix B.2.

The trade-off solution under the energy risk constraint is finally identified
by exploiting the solving algorithm introduced subsection 3.3.2. Nevertheless,
the following steps are modified:

Step C2. Identify the combinations ∈ Dunc that satisfy the energy risk
constraint and collect them in set Dcon:

Dcon = {τ ∈ Dunc | F∆E(∆etarget|τ ) ≤ δe} (4.31)

Step C3. Identify the constrained minimum τ ∗
b of g(τ ) along the the

boundary ∆Eb and add it to set Dcon. In particular, solve the following
minimization problem:

τ ∗
b = arg min

τ
g(τ )

Subject to: F∆E(∆etarget|τ ) = δe

τon > τoff + ξ

τoff , τon ∈ R+
0

(4.32)

(4.33)
(4.34)
(4.35)
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Figure 4.7: General shape for the boundary Wb.

4.2.3 Waiting Time Risk Constraint

The risk of increasing the machine cycle time with respect to the AON
policy is now addressed. In particular, the related optimization problem
results from relaxing constraint (4.14). Here again, the optimal trade-off
solution must be selected as the minimum among:

1. The potential solutions of the unconstrained optimization problem, which
satisfy the waiting time risk constraint.

2. The constrained minimum of g(τ ) along the set of points which satisfy
the waiting time risk constraint at equality, referred to as Qb:

Qb = {τ ∈ R2 | FQ(qtarget|τ ) = 1− δq, τon > τoff + ξ, τoff ≥ 0} (4.36)

A qualitative example of a general problem feasibility region is shown in
figure 4.7. In particular, it is worth noting how the behavior of Qb resembles
that of the throughput boundary THb, previously depicted in figure 3.7. This
is not surprising, since they both result from constraints which, albeit in
different ways, address the part waiting time. It is also evident that, once
exceed a certain threshold (green line), the waiting time risk constraint is
always satisfied. This behavior is explained by the following theorem:

Theorem 4.3. Once set a probability δq, it exists a lower bound for the switch
off parameter τLBoff such that, for any feasible qtarget:

1− FQ(qtarget|τ ) ≤ δq ∀ τ | τoff ≥ τLBoff ∧ τon > τoff + ξ (4.37)

In particular, τLBoff is the 100(1− δq)th quantile of fX(x).

Proof: A graphical proof is provided in the appendix B.3.
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The trade-off solution under the waiting time risk constraint is again
identified by properly adjusting the solving algorithm from subsection 3.3.2:

Step C2. Identify the combinations ∈ Dunc that satisfy the waiting time
risk constraint and collect them in set Dcon:

Dcon = {τ ∈ Dunc | 1− FQ(qtarget|τ ) ≤ δq} (4.38)

Step C3. Identify the constrained minimum τ ∗
b of g(τ ) along the the

boundary Qb and add it to set Dcon. In particular, solve the following
minimization problem:

τ ∗
b = arg min

τ
g(τ )

Subject to: FQ(qtarget|τ ) = 1− δq
τon > τoff + ξ

τoff , τon ∈ R+
0

(4.39)

(4.40)
(4.41)
(4.42)

4.3 Results
In this section, numerical analysis are reported to assess the benefits

brought by the risk tail constraints introduction. In particular, off-line control
problems are firstly addressed to show how the optimal control changes
according to different constraint settings. Later, the on-line applicability of
the proposed risk mitigation measure is evaluated with two numerical cases.

4.3.1 Off-Line Control Problems

The possibility to effectively solve the risk optimization problem is first of
all investigated in different off-line operating environments, generated with the
machines and the starvation times distributions defined in subsection P.3. For
each combination, addressed with notation "M/D", the risk tail constraints
are applied independently, in order to assess how they influence the optimal
parameters selection and the related machine energy performance. In the
examples herewith provided, the constraints are designed to be always binding,
considering two levels for their settable parameters.

Energy risk constraint. Focusing on the energy risk constraint, results
from table 4.1 show the possibility to identify trade-off solutions which
correctly mitigate the risk of incurring in higher energy consumptions with
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Table 4.1: Optimal control τ ∗ for different energy risk constraint settings. Related
energy performance are also given. Results with δe = 1 (unconstrained optimization
problem) are reported for comparison.

M/D ∆etarget δe
τ ∗ g(τ ∗) ∆g(τ ∗) F∆E

[kJ/part] [s] [kJ/part] [%] (∆etarget|τ ∗)

M1/D1

−20
1 {0, 29.18} 175.94 26.92 0.09

0.08 {0, 25.94} 176.97 26.49 0.08
0.05 {0, 14.41} 199.78 17.02 0.05

0−
1 {0, 29.18} 175.94 26.92 0.14

0.11 {0, 21.41} 182.32 24.27 0.11
0.08 {0, 12.79} 205.21 14.76 0.08

M2/D2

−100
1 {18.37,∞} 295.55 31.09 0.14

0.11 {24.19,∞} 296.63 30.42 0.11
0.07 {39.17,∞} 304.11 28.66 0.07

0−
1 {18.37,∞} 295.55 31.09 0.17

0.15 {22.34,∞} 296.09 30.55 0.15
0.11 {32.46,∞} 300.31 29.56 0.11

M3/D3

−120
1 {12.12, 74.32} 141.89 31.44 0.04

0.02 {14.93, 74.32} 143.22 30.80 0.02
0.01 {17.10, 74.32} 145.64 29.63 0.01

0−
1 {12.12, 74.32} 141.89 31.44 0.05

0.03 {14.11 74.32} 142.59 31.11 0.03
0.02 {15.42, 74.32} 143.68 30.57 0.02

respect to the AON policy. As mentioned in subsection 4.2.1, a high risk-
aversity (lower δe) leads to the loss of a greater amount of energy saving
opportunities. In detail, as the constraint gets tougher:

• The switch on command must be anticipated for IHR distributions (D1).

• The switch off command must be delayed for DHR distributions (D2).

Finally, it is worth highlighting that the optimal switch on parameter τ ∗on for
combination M3/D3 in not modified by the constraint introduction. This
follows from theorems P.1 (independence of control parameters) and 4.2.

Waiting time risk constraint. Moving on to the waiting time risk con-
straint, results from table 4.2 show that, when identifying the optimal control,
it is possible to effectively account for its effect on part waiting time. Here
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Table 4.2: Optimal control τ ∗ for different waiting time risk constraint settings.
Related energy performance are also given. Results with δq = 1 (unconstrained
optimization problem) are reported for comparison.

M/D qtarget δq
τ ∗ g(τ ∗) ∆g(τ ∗) 1− FQ

[s] [s] [kJ/part] [%] (qtarget|τ ∗)

M1/D1

0
1 {0, 29.18} 175.94 26.92 0.78

0.60 {0, 24.16} 178.51 25.85 0.60
0.40 {0, 18.85} 187.47 22.13 0.40

t−su

1 {0, 29.18} 175.94 26.92 0.07
0.02 {0, 22.46} 180.66 24.96 0.02
0.04 {0, 25.85} 177.04 26.46 0.04

M2/D2 t−su

1 {18.37,∞} 295.55 31.09 0.34
0.30 {23.76,∞} 296.49 30.45 0.30
0.20 {45.14,∞} 307.74 27.81 0.20

M3/D3

0
1 {12.12, 74.32} 141.89 31.44 0.43

0.30 {13.09, 67.44} 143.62 30.61 0.30
0.20 {14.22, 60.89} 148.70 28.16 0.20

t−su

1 {12.12, 74.32} 141.89 31.44 0.16
0.05 {14.43, 65.75} 145.25 29.82 0.05
0.01 {18.61, 60.46} 154.20 25.50 0.01

again, a high risk-aversity (lower δq) leads to the loss of a greater amount of
energy saving opportunities. Considering combination M2/D2, it is worth
noting how, under the optimal control τ ∗ = {τ ∗off ,∞}, the waiting time in
a cycle can only be q = 0 (x ≤ τ ∗off) or q = tsu (x > τ ∗off). Therefore, any
feasible setting for qtarget would lead to the same result. Finally, with regards
to combination M3/D3, it clear how, unlike before, both control parameters
are affected by the constraint introduction.

4.3.2 On-Line Control Problems

The possibility to pursue energy efficiency, while mitigating the risk of a
deterioration of machine performance over the single cycle, is here evaluated
in on-line scenarios. In particular, two cases are analyzed, assuming that the
starvation times distribution fX(x) needs to be learnt from real time data:

• Energy risk constraint - M1/D1 with F∆E(0−|τ ) ≤ 0.11.

• Waiting time risk constraint - M3/D3 with 1− FQ(0|τ ) ≤ 0.20.
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The resulting on-line control problems are addressed with the iterative algo-
rithm from chapter 3, taking into account the latest enrichments brought to
its Optimization Phase. The investigated KPIs are the machine energy con-
sumption and the proportion of observations in which the targets (i.e. ∆etarget
and qtarget) are exceeded, respectively denoted with πe and πq:

πe =
1

n

n∑
i=1

I(∆ei ≤ ∆etarget) (4.43)

πq =
1

n

n∑
i=1

I(qi > qtarget) (4.44)

where I(·) is the indicator function.
For each case, the Implementation Phase is set according to a generic

configuration, i.e. C0 = 20% gAON , α = 0.10 and n∗ = 2500. Moreover,
an additional experiment is carried out to evaluate the effects of updating
the control parameters at each iteration (α = 1). All the experiments are
composed by 10 replications, within which the algorithm is iterated every
∆n = 10 new observations. Upon completion of the 500th part, this interval
is increased to ∆n = 50. The replication ends when 5000 parts are processed.

Note that the results of the off-line control problems (cf. subsection 4.3.1),
referred to as "Real Values", are used as benchmarks.

M1/D1 with F∆E(0−|τ ) ≤ 0.11. Consider combination M1/D1, with
which the AON policy obtains an objective function value of gAON = 240.75
kJ/part. In order to achieve energy efficiency while limiting at δe = 0.11 the
whole probability of increasing the machine energy consumption with respect
to the AON policy, the optimal control is τ ∗ = {0, 21.41}. In detail, it allows
to obtain 24.27% of savings on the objective function. Since D1 is unimodal
with IHR, Silverman Rule of Thumb is employed in the Learning Phase.

Starting from figure 4.8, it is possible to appreciate the algorithm effective-
ness in identifying the optimal control: the range of change for the estimated
switch on parameter τ̂on,k gets progressively tighter, approaching the off-line
optimal value τ ∗on. Nevertheless, an accurate convergence is achieved only in
the long range. This because the behavior of the boundary ∆Eb is strongly
sensitive to the estimated starvation times distribution f̂k(x).

Dealing with a constrained control problem, Step 0 of the Bootstrap
CI Implementation Policy (cf. subsection 3.4.3) guarantees that the energy
risk constraint is always satisfied by the implemented control. This can be
visually perceived by making reference to figure 4.9, in which the details of one
replication are reported. In particular, at each iteration k, the implemented
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Figure 4.8: M1/D1 with F∆E(0−|τ ) ≤ 0.11 - Estimated switch on control parameter
τ̂on,k at each algorithm iteration (box plot of 10 replications).

Figure 4.9: M1/D1 with F∆E(0−|τ ) ≤ 0.11 - Estimated (green) and implemented
(red) switch on control parameters at each algorithm iteration k (1 replication).

switch on parameter τon,impl (red line) is forced to be lower than or equal to
the estimated one τ̂on,k (green line).

Focusing on the investigated performance indexes, figure 4.10a shows the
on-line algorithm capability to exploit most of the energy saving potential,
within the limit given by the energy risk constraint. In this regard, it is worth
noting how the 95% confidence interval for the mean of πe (proportion of
observations in which ∆ei ≤ 0−), reported in figure 4.10b, is always lower than
δe = 0.11. This indicates that the risk of incurring in higher consumptions
with respect to the AON policy is correctly mitigated.

Finally, results with α = 1 prove that the actual machine energy consump-
tion and the number of control changes still depend on the Implementation
Phase settings. Nevertheless, a sensitivity analysis on their effect is not carried
out, since it would not add value to the insights from section 3.5.
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4.3. Results

(a) Sample-based energy saving with C0 = 48 kJ/part, α = 0.10
and n∗ = 2500. Green line is obtained without the Implementation
Phase (α = 1).

(b) Proportion of observations in which ∆etarget is exceeded (πe).
Green line is obtained without the Implementation Phase (α = 1).

Figure 4.10: M1/D1 with F∆E(0−|τ ) ≤ 0.11.

M3/D3 with 1− FQ(0|τ ) ≤ 0.20. The focus now shifts to combination
M3/D3, with which the AON policy obtains an objective function value of
gAON = 206.96 kJ/part. In order to achieve energy efficiency, while limiting
at δq = 0.20 the probability of increasing the machine cycle time with respect
to the AON policy, the optimal control is τ ∗ = {14.22, 60.89}. In detail, it
allows to obtain 28.16% of savings on the objective function. According to
subsection 3.2.4, Leave-One-Out Cross Validation is employed in the algorithm
Learning Phase.

A brief analysis of the investigated KPIs is simply carried out for this case.
In particular, figure 4.11a shows how, for each replication, the sample-based
energy saving quickly approaches the off-line control problem result ∆g(τ ∗).
This indicates the algorithm effectiveness in identifying a promising control,
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(a) Sample-based energy saving with C0 = 41 kJ/part, α = 0.10
and n∗ = 2500. Green line is obtained without the Implementation
Phase (α = 1).

(b) Proportion of observations in which qtarget is exceeded (πq).
Green line is obtained without the Implementation Phase (α = 1).

Figure 4.11: M3/D3 with 1− FQ(0|τ ) ≤ 0.20.

even when few observations are available. Finally, it is worth highlighting how
the 95% confidence interval for the mean of πq (proportion of observations in
which qi > 0) never overcomes δq = 0.20 (cf. figure 4.11b). Here again, the
risk of increasing the machine cycle time with respect to the AON policy is
successfully controlled.

A note on computational requirements. Even though the computa-
tional complexity of the on-line algorithm significantly increases due to intro-
duction of the risk tail constraints, its real time applicability is still guaranteed.
In particular, focusing on the analyzed cases, the Optimization Phase is always
executed in less than a minute, also when n = 5000 observations are collected.
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4.4 Uncertainty on Density Estimation
Since, as discussed in section 3.2, the whole on-line algorithm effectiveness

might be strongly affected by the estimated starvation times distribution f̂k(x),
this section is aimed at identifying the potential benefits of accounting for its
uncertainty. In particular, the focus is on the bandwidth parameter h, which
acts as a smoothness controller for the Kernel Density Estimation (KDE)
method employed in the Learning Phase of the algorithm. Once introduced a
numerical approach to express the bandwidth probability density function
fH(h), an overview of the resulting potential applications is then reported.

4.4.1 KDE Bandwidth Probability Density Function

Even though the KDE bandwidth selection is a classical research problem in
non-parametric statistics, all the existent approaches are aimed at identifying
just one optimal value h∗ (cf. subsection 3.2.2). This means that the resulting
estimate f̂X|H(x|h∗) does not contain any information on the goodness in
approximating the real distribution. There is, then, no doubt that the
knowledge of the entire bandwidth density function fH(h) would bring a
significant added value to the estimate.

In this regard, the cross validated pseudo-likelihood function L̃(h), intro-
duced in equation (3.16), needs to be recalled:

L̃(h) =
n∏
i=1

1

(n− 1)h

n∑
j=1
j 6=i

K(
xi − xj
h

) (4.45)

Indeed, once normalized, it can actually be considered as the bandwidth
density function fH(h), since it estimates the probability of obtaining the
observed data as a function of h. Unfortunately, due to a numerical issue,
function L̃(h) cannot be directly employed for this purpose. Specifically,
as the sample size n increases, L̃(h) takes values lower than the Matlab
machine epsilon, due to the effect of the (n− 1) term in the denominator of
equation (4.45).

How to solve the numerical issue. The the aforementioned numerical
issue can be solved by switching to logarithms. In fact, once identified the
optimal bandwidth h∗loo by means of equation (3.17), the order of magnitude
γ for the maximum of L̃(h) is also known:

γ = log[L̃(h∗loo)] =
n∑
i=1

log

[ n∑
j=1
j 6=i

K

(
xi − xj
h∗loo

)]
− n log [(n− 1)h∗loo] (4.46)
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Figure 4.12: Bandwidth density function fH(h) of distribution D1 for different
sample sizes.

As a result, the cross validated pseudo-likelihood function is bounded between:

0 ≤ L̃(h) ≤ 10dγe (4.47)

In order to magnify this interval, a scale factor equal to 10−dγe+1 needs to be
applied:

0 ≤ 10−dγe+1L̃(h) ≤ 10 (4.48)

Once spread this scale factor on each of the n components which make up
the product in equation (4.45), it results:

0 ≤ L̃scaled(h) =
n∏
i=1

10
−dγe+1

n

(n− 1)h

n∑
j=1
j 6=i

K(
xi − xj
h

) ≤ 10 (4.49)

As mentioned above, the pdf fH(h) is finally obtained by normalizing function
L̃scaled(h), since it can now be evaluated numerically:

fH(h) =
L̃scaled(h)∫∞

0
L̃scaled(t) dt

(4.50)

Considering distribution D1, the bandwidth density functions for different
sample sizes (n = 50, 500 and 5000) are shown in figure 4.12. It is worth
highlighting that, as the sample size increases, fH(h) shifts towards the
origin, its variance progressively decreases and its shape approaches that of a
Gaussian distribution. This is coherent with what introduced in equation (3.4)
and it implies a gradual greater confidence on the estimate.
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(a) n = 50. (b) n = 500. (c) n = 5000.

Figure 4.13: Joint distribution function f̂norm(x, h) of D1 for different sample sizes.

4.4.2 Potential Applications in the Control Problem

Since the KDE can be seen as the conditional density function of X given
H = h, starting from equations (3.18) and (4.50) it is now possible to express
the starvation times joint distribution function:

f̂norm(x, h) = f̂normX|H (x|h)fH(h) (4.51)

The qualitative examples in figure 4.13 clearly show the added value brought
to the estimate by the knowledge of the entire bandwidth density function
fH(h). In addition, the progressive improvement resulting from an increasing
sample size is also evident.

In the followings, an investigation over the possible applications of fH(h)
is carried out, focusing both on the Optimization and Implementation Phases.

Optimization phase. When considering the bandwidth variability, the
traditional objective function, i.e. the expected value of the energy consumed
in a cycle by the machine, turns out to be a random variable:

ĝ(τ |h) =

∫ ∞
0

φ(x, τ )f̂normX|H (x|h) dx (4.52)

An obvious choice is therefore to minimize its expectation over the bandwidth
pdf fH(h):

Eh[ĝ(τ |h)] =

∫ ∞
0

∫ ∞
0

φ(x, τ )f̂norm(x, h) dx dh (4.53)
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Table 4.3: M1/D1/1 - Optimal switch on parameters and objective function esti-
mates for different sample sizes (5 replications). Results with ĝ(τ |h∗loo) are compared
to those with Eh[ĝ(τ |h)]. τ∗off = 0 is not shown.

Sample
size n

Replication
number

ĝ(τ |h∗loo) Eh[ĝ(τ |h)]

Switch on Objective Switch on Objective
parameter function parameter function

[s] [kJ/part] [s] [kJ/part]

50

1 31.15 175.05 31.29 175.28
2 28.72 175.18 29.15 175.57
3 28.88 177.33 29.13 177.42
4 29.41 176.52 29.70 177.10
5 31.86 178.58 32.14 178.71

500

1 29.91 176.09 29.94 175.83
2 27.94 175.83 27.96 175.51
3 29.27 176.72 29.27 176.43
4 29.66 176.33 29.70 176.09
5 31.32 177.66 31.36 177.43

The potential benefits of this approach can be numerically assessed by
making reference to scenario M1/D1/1, whose optimal control τ ∗ = {0, 29.18}
allows to obtain an objective function value of g(τ ∗) = 175.94 kJ/part. The
idea is to compare the optima obtained by minimizing both Eh[ĝ(τ |h)] and
ĝ(τ |h∗loo): while the former accounts for the the whole bandwidth pdf fH(h),
the latter simply employs the optimal value h∗loo. Five replications are carried
out for the analyzed sample sizes (n = 50 and 500), whose results are reported
in table 4.3. In detail, it can be noticed that the differences among the two
solutions are very limited and, sometimes, accounting for the whole pdf fH(h)
may even drive away from the real optimum. Finally, the minimization of
Eh[ĝ(τ |h)] respectively raises the computational times from few seconds to
few minutes (n = 50) or more than an hour (n = 500).

Summarizing, this approach does not bring any significant advantage, in
fact the enormous increase in computational complexity is not counterbalanced
by a greater accuracy in identifying the optimal control. Moreover, all the
objective function properties from literature are lost.
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(a) n = 50. (b) n = 500. (c) n = 5000.

Figure 4.14: M1/D1/1 - Normalized frequency histogram of ĝ(τ ∗|h) for different
sample sizes. The theoretical value is g(τ ∗) = 175.94 kJ/part.

Implementation phase. The knowledge of the bandwidth density function
fH(h) also allows to appreciate the gradual greater confidence on the objective
function estimate ĝ(τ |h), resulting from an increasing number of observations.
Unfortunately, the Method of Transformations cannot be employed for this
purpose, therefore the distribution function of ĝ(τ |h) must be calculated
numerically from the bandwidth probability space. In this regard, focusing
again on scenario M1/D1/1, figure 4.14 shows the normalized frequency
histograms of ĝ(τ ∗|h) for increasing sample sizes (n = 50, 500 and 5000). It is
clear that, while the estimate approaches the theoretical value g(τ ∗) = 175.94
kJ/part, its dispersion is progressively reduced.

This awareness of the uncertainty on the objective function estimate
enables to define a new Bandwidth Implementation Policy. In particular, at
each iteration k, the idea is to compare the estimated control parameters
τ̂k with the ones currently in place τimpl in terms of objective function. To
account for the uncertainty embedded in the observations, random variable
Dh is defined:

Dh = ĝ(τimpl|h)− ĝ(τ̂k|h) (4.54)

The new control τ̂k is implemented only if the following condition holds:

P[Dh ≤ C(n)] ≤ αh (4.55)

where C(n) is the implementation cost function from equation (3.34) and
αh ∈ [0, 1] is a probability. Since the cdf of variable Dh must calculated
numerically, the number of random samples drawn from fH(h) requires a
detailed calibration, in order to guarantee a suitable trade-off between accuracy
and computational requirements.
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The introduction of the Bandwidth Implementation Policy in the on-line
algorithm as well as the assessment of its efficacy and effectiveness is however
left as a future development.

4.5 Conclusions
This chapter is aimed at extending the previously detailed on-line control

policy with considerations on risk and uncertainty. First of all, the Method
of Transformation [78] is employed to analytically derive the distribution
functions of the machine energy consumption in a cycle and the waiting time
in a cycle, thus increasing the amount of knowledge available in literature.

Later, on the basis of this additional information, the risk optimization
problem is formulated. Specifically, assuming the AON policy as a reference,
the introduction of the risk tail constraints allows to pursue energy efficiency
while mitigating the risk of a deterioration of machine performance over the
single cycle. Addressing each constraint independently, adjustments to the
solving algorithm from subsection 3.3.2 are proposed to identify the exact
trade-off solutions. The resulting benefits are assessed in different off-line
operating environments, showing the constraint influence on the optimal
control τ ∗. Moving on to on-line problems, the possibility to mitigate the risk
while learning from real time data is tested with two numerical cases. Results
confirm the goodness of the approach: most of the energy saving potentials
are exploited, within the limits given by the risk tail constraints.

Finally, focusing on the issue of estimates uncertainty, the KDE bandwidth
probability density function fH(h) is numerically expressed. While its appli-
cation to the Optimization Phase only involves an increase in computational
complexity, the gradual greater confidence on the objective function estimate
can be employed to define the new Bandwidth Implementation Policy.
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Chapter 5

Adjustments towards Realistic
Arrival Processes

The scope of this chapter is to adjust the on-line control policy from
chapter 3 to make it effective when the upstream production process is
non-stationary or decoupled from the machine by an input buffer.

This chapter is structured in three sections. In section 5.1 a change
point detection method is proposed to identify changes in the part arrival
process, thus allowing to adapt the control in response to variations in the
operating environment (contribution C2). In section 5.2, a slightly different
control problem is studied, assuming that the machine is able to observe the
interarrivals of parts to its upstream input buffer, in which they accumulate
before processing. Since the on-line control policy may not converge to a
unique solution in this environment, a modified objective function is proposed
to identify an approximate optimal control. Finally, in section 5.3 some
conclusive remarks are drawn.

5.1 Non-Stationary Arrival Process

In this section, an algorithm enhancement to account for a non-stationary
arrival process is presented. In particular, it is now assumed that the starvation
times distribution fX(x) changes at unknown discrete points in time, due
to variations in the upstream production process. If these changes were not
systematically detected, the estimated control parameters would be biased,
being computed from a sample with non-homogeneous subsets. Therefore, a
change point detection method from literature is introduced and calibrated in
order to ensure an effective control adaptation. The goodness of the proposed
approach is then assessed numerically.
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5.1. Non-Stationary Arrival Process

samples starting from observation xi:

X (i) = [X(i)T ,X(i+ 1)T , . . . ,X(i+ nCPD � 1)T ] (5.2)

For change point detection, the RuLSIF method considers two consecutive sets
X (i) and X (i+nCPD) and computes the symmetrized ↵CPD-relative Pearson
divergence as a dissimilarity measure between them1. More specifically, this
measure can be interpreted as a change point score: the higher the dissimilarity,
the more likely point xi+nCPD

is a change point.
According to the authors, peaks of change point score should be perceived

as detection alarms. Moreover, in order to filter out false alarms, a threshold
⌘CPD for the change point score is introduced. In conclusion, change points
correspond to peaks of change point score whose value is greater than or
equal to ⌘CPD.

In addition to the threshold ⌘CPD, the effectiveness of the RuLSIF method
is affected by the choice of three main parameters:

• nCPD, which controls the number of retrospective subsequences in each
set X .

• kCPD, which indicates the size of the sliding window employed to
generate each subsequence.

• ↵CPD, which acts as a smoothness controller for the change point score.
In particular, the ↵CPD-relative density-ratio, which is bounded above
by 1/↵CPD, tends to be smoother as ↵CPD gets larger.

Note that nCPD should be large enough to store a sufficient number of data
to represent the time series state, yet small enough to guarantee a responsive
detection [79]. The RuLSIF method is indeed defined to be nCPD + kCPD-real
time, since it needs to look at nCPD+kCPD data points ahead of the candidate
change point. Finally, 2nCPD + kCPD � 1 observations should be collected to
estimate the first change point score, which is referred to point nCPD + 1.

5.1.2 Parameter Calibration

RuLSIF parameters are calibrated on the basis of a specific generating
process for the starvation times data stream (labeled P1), which is character-
ized by two states. In detail, distribution D1 is employed in state 1, while
distribution D3 is selected for state 2. A back and forth transition (D1-D3-D1)

1The Matlab implementation of the proposed method is provided by the authors, refer
to [80] for the exhaustive procedure.
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Figure 5.1: An illustrative example of RuLSIF method notation.

5.1.1 Change Point Detection Problem and Methods

A change point represents a transition between different states in a process
that generates a time series data stream. Therefore, change point detection
(CPD) can be defined as the problem of hypothesis testing between two
alternatives, the null hypothesis H0: "No change occurs" and the alternative
hypothesis H1: "A change occurs".

Over the last several decades, many CPD algorithms have been proposed
in literature, which differ in terms of on-line applicability, computational
efficiency and requirements on the input data [79]. Amongst them, particular
attention should be placed on unsupervised methods, since they can be
directly employed to discover patterns in unlabeled data, without requiring
prior training for each situation. In fact, such algorithms identify change
points based on the statistical features of the collected samples.

On the basis of a detailed review of unsupervised algorithms, the rela-
tive unconstrained least-squares importance fitting (RuLSIF) method is im-
plemented [80]. Indeed, being on-line and non-parametric, it completely
complies with the requirements of the considered problem. The core idea
behind this approach is to analyze the probability distributions of the data
before and after a candidate point, and identify it as a change point if the
two distributions are significantly different. In particular, the ratio of these
probability densities is directly estimated, since it is easier than estimating
each distribution separately.

Descending further into the details (cf. figure 5.1), given xi as a generic
sample in the collected time series x = {x1, . . . , xn}, let X(i) be the subse-
quence starting from xi with length kCPD:

X(i) = [xi, xi+1, . . . , xi+kCPD−1] (5.1)

In addition, letX (i) ∈ RkCPD×nCPD be a set of nCPD retrospective subsequence
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samples starting from observation xi:

X (i) = [X(i)T ,X(i+ 1)T , . . . ,X(i+ nCPD − 1)T ] (5.2)

For change point detection, the RuLSIF method considers two consecutive sets
X (i) and X (i+nCPD) and computes the symmetrized αCPD-relative Pearson
divergence as a dissimilarity measure between them1. More specifically, this
measure can be interpreted as a change point score: the higher the dissimilarity,
the more likely point xi+nCPD is a change point.

According to the authors, peaks of change point score should be perceived
as detection alarms. Therefore, in order to filter out false alarms, a threshold
ηCPD for the change point score is introduced. In conclusion, change points
correspond to peaks of change point score whose value is greater than or
equal to ηCPD.

In addition to the threshold ηCPD, the effectiveness of the RuLSIF method
is affected by the choice of three main parameters:

• nCPD, which controls the number of retrospective subsequences in each
set X .

• kCPD, which indicates the size of the sliding window employed to
generate each subsequence.

• αCPD, which acts as a smoothness controller for the change point score.
In particular, the αCPD-relative density-ratio, which is bounded above
by 1/αCPD, tends to be smoother as αCPD gets larger.

Note that nCPD should be large enough to store a sufficient number of data
to represent the time series state, yet small enough to guarantee a responsive
detection [79]. The RuLSIF method is indeed defined to be ε-real time, since
it needs to look at ε = nCPD + kCPD data points ahead of the candidate
change point. Finally, 2nCPD + kCPD − 1 observations should be collected to
estimate the first change point score, which is referred to point nCPD + 1.

5.1.2 Parameter Calibration

RuLSIF parameters are calibrated on the basis of a specific generating
process for the starvation times data stream (labeled P1), which is character-
ized by two states. In detail, distribution D1 is employed in state 1, while
distribution D3 is selected for state 2. A back and forth transition (D1-D3-D1)

1The Matlab implementation of the proposed method is provided by the authors, refer
to [80] for the exhaustive procedure.
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Table 5.1: Experimental plan for RuLSIF parameter calibration.

Factor Level 1 Level 2 Level 3

αCPD 0.01 0.05
nCPD 20 30 40
kCPD 5 10

between the states is considered, assuming that changes occur at intervals of
200 observations (cf. top panel of figure 5.2). As a consequence, two change
points must be detected.

To appropriately manage the trade-off between accuracy and responsive-
ness, it is required to identify the parameter combination which allows to:

• Detect the change points with the least possible delay.

• Minimize the number false alarms.

In this regard, an experimental campaign is designed by varying αCPD, nCPD
and kCPD according to the factorial plan in table 5.1. In detail, each experi-
ment is composed by 10 replications and comparability is guaranteed by the
use of common random numbers. Based on the value of αCPD, the detec-
tion alarms returned by each experiment are then filtered out with different
threshold levels ηCPD. This because, with reference to subsection 5.1.1, the
change point score is bounded above by 1/αCPD. The investigated responses
are the average probability of CPD, respectively denoted with C̄1 and C̄2,
and the average number of false alarms F̄a.

To discriminate between correct detections and false alarms, the same
convention employed in [80] is adopted. More specifically, a change point
detection referred to observation xi is regarded as correct if there exists a true
change point in position j such that i ∈ [j − 10, j + 10]. In addition, to avoid
duplication, an alarm is removed if it is less than 20 observations away from
the previous one.

Results, which are thoroughly reported in tables 5.2 and 5.3, show that two
parameter combinations provide the best performance in terms of accuracy
and responsiveness:

• αCPD = 0.01, nCPD = 30, kCPD = 5 and ηCPD = 25

• αCPD = 0.05, nCPD = 30, kCPD = 5 and ηCPD = 10
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Table 5.2: RuLSIF results with α = 0.01.

(a) nCPD = 20, kCPD = 5

ηCPD C̄1 C̄2 F̄a

20 1 1 1.6
25 1 0.7 0.9
30 0.6 0.5 0.4

(b) nCPD = 20, kCPD = 10

ηCPD C̄1 C̄2 F̄a

20 0.7 0.7 0.8
25 0.5 0.4 0.6
30 0.4 0.2 0.2

(c) nCPD = 30, kCPD = 5

ηCPD C̄1 C̄2 F̄a

20 1 1 0.1
25 1 1 0
30 1 0.9 0

(d) nCPD = 30, kCPD = 10

ηCPD C̄1 C̄2 F̄a

20 0.7 0.8 0.5
25 0.6 0.6 0.2
30 0.4 0.4 0

(e) nCPD = 40, kCPD = 5

ηCPD C̄1 C̄2 F̄a

20 1 1 0.1
25 1 1 0
30 1 1 0

(f) nCPD = 40, kCPD = 10

ηCPD C̄1 C̄2 F̄a

20 1 1 0.2
25 0.8 1 0.1
30 0.6 0.7 0

Table 5.3: RuLSIF results with α = 0.05.

(a) nCPD = 20, kCPD = 5

ηCPD C̄1 C̄2 F̄a

7.5 1 1 1.5
10 0.8 0.8 0.4
12.5 0.5 0.2 0.3

(b) nCPD = 20, kCPD = 10

ηCPD C̄1 C̄2 F̄a

7.5 0.7 0.9 1.1
10 0.1 0.1 0.3
12.5 0.1 0 0

(c) nCPD = 30, kCPD = 5

ηCPD C̄1 C̄2 F̄a

7.5 1 1 0.3
10 1 1 0
12.5 1 0.7 0

(d) nCPD = 30, kCPD = 10

ηCPD C̄1 C̄2 F̄a

7.5 1 1 0.4
10 0.5 0.2 0.1
12.5 0.2 0 0

(e) nCPD = 40, kCPD = 5

ηCPD C̄1 C̄2 F̄a

7.5 1 1 0.2
10 1 1 0
12.5 1 0.9 0

(f) nCPD = 40, kCPD = 10

ηCPD C̄1 C̄2 F̄a

7.5 1 1 0.2
10 1 0.6 0
12.5 0.3 0.2 0
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Figure 5.2: Starvation times data stream and change point score for a single
replication - αCPD = 0.01, nCPD = 30, kCPD = 5 and ηCPD = 25. Note that the
change point score is returned with a delay of 35 observations.

In particular, they ensure that change points are always identified with the
least possible delay, i.e. nCPD + kCPD = 35, without returning any false
alarm. For the sake of completeness, the change point score obtained for
one replication with the first parameter combination is reported in figure 5.2,
allowing to visually appreciate the effectiveness of the approach.

Finally, the following insights can be also extrapolated:

• Lower threshold levels ηCPD imply a higher probability of change point
detection but also a greater number of false alarms.

• For fixed values of the other parameters, a higher nCPD improves the
accuracy of the method. In particular, it results in a higher probability
of change point detection and in a lower number of false alarms. The
drawback is a longer delay in identifying the change point.

• For fixed values of the other parameters, results with kCPD = 10 are
generally worse than those obtained with kCPD = 5. Therefore, a higher
sliding window size does not implicate a more accurate detection.
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5.1.3 Results

The benefits of detecting changes in the upstream production process,
while controlling the machine for energy saving purposes are here evaluated
with two numerical cases. In this regard, an additional starvation times
distribution fX(x) is introduced to define a second generating process for the
starvation times data stream:

• D4 (Unimodal with IHR) - Erlang-3 distribution with rate λ = 0.037
(i.e., mean is ta = 81.08 s).

In detail, this new generating process (labeled P2) is always characterized
by two states: distribution D2 is employed in state 1, while distribution D4
is selected for state 2. Here again, a back and forth transition (D2-D4-D2)
between the states is considered, now assuming that changes occur at intervals
of 300 observations.

In this numerical analysis, the optimization problem in equations (3.20)-
(3.23) is considered, since it includes a condition on the expected throughput.
Therefore, in conclusion, the following cases (denoted with notation "M/P/ε")
are analyzed, obtained by combining a machine tool, a generating process for
the starvation time occurrences and a throughput constraint setting ε:

• Case M1/P1/0.02 - Change points at n = 201 and n = 401.

• Case M2/P2/0.05 - Change points at n = 301 and n = 601.

In addition to the accuracy in identifying the change points, the machine
energy consumption and the throughput are the investigated performance
indexes (KPIs). Specifically, to achieve satisfactory estimates, the experiments
are composed by 10 replications.

According to the analysis in subsection 5.1.2, the RuLSIF method is
tuned with the following parameter combination: αCPD = 0.01, nCPD = 30,
kCPD = 5 and ηCPD = 25. From an implementation perspective, every
time the change point score exceeds the threshold ηCPD, the control is set to
τimpl = {∞,∞}. Once identified the peak, the following observations are then
employed to estimate the new control parameters. Therefore, the algorithm
is iterated every ∆n = 10 new observations or at change point detection.

Finally, focusing on the Learning Phase, the suggestions provided in
subsection 3.2.5 are here implemented, in order to always provide suitable
estimates of the starvation times distribution.
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Figure 5.3: Change point locations returned by the RuLSIF method for cases
M1/P1/0.02 and M2/P2/0.05 (boxplots of 10 replications).

Accuracy in change point detection. First of all, the accuracy of the
RuLSIF method can be assessed by making reference to figure 5.3, which
shows the boxplots of the returned change point locations for each of the
analyzed cases. Even though the estimates vary according to the considered
sample path, they are very close to the real locations.

Case M1/P1/0.02. In order to reduce NPE consumptions while limiting
the maximum throughput reduction at ε = 0.02, the optimal control is
τ ∗ = {0, 21.55} for distribution D1 and τ ∗ = {13.04, 65.48} for distribution
D3. These parameters respectively allow to achieve 24.36% and 36.47% of
savings on the objective function. In addition, the following Implementation
Phase setting is employed: C0 = 10 kJ/part, α = 0.05 and n∗ = 500.

The goodness of the proposed approach clearly results from an analysis of
machine energy performance (cf. figure 5.4a). Specifically, it is evident how
the on-line detection of change points allows to reverse the initially declining
trends of the sample-based energy savings, caused by the net variations in
the part arrival process (vertical dotted lines).

The steps to achieve an effective control adaptation can be appreciated
from the details of one replication, reported in figures 5.4c and 5.4d. In par-
ticular, immediately after the first change point (n = 200), the implemented
control is strongly biased, since the algorithm processes the whole starvation
times dataset. Later, when the change point score exceeds the threshold
ηCPD, the control is set to τimpl = {∞,∞}. Finally, once properly detected
the change point (n ≈ 235), the earlier observations are discarded, allowing
to adapt the control to the current starvation times distribution. Note that
the same sequence occurs for the second change point (n = 400).
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(a) Sample-based energy saving (10 replications).

(b) Sample-based throughput reduction (10 replications).

(c) Implemented switch off parameter
τoff,impl (1 replication).

(d) Implemented switch on parameter
τon,impl (1 replication).

Figure 5.4: M1/P1/0.02 - C0 = 10 kJ/part, α = 0.05 and n∗ = 500. Dotted lines
indicate the true change point locations.
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(a) Sample-based energy saving (10 replications).

(b) Sample-based throughput reduction (10 replications).

(c) Implemented control τimpl (1 replication). Note that τon,impl =
∞ for n < 335 ∧ n > 635.

Figure 5.5: M2/P2/0.05 - C0 = 20 kJ/part, α = 0.05 and n∗ = 500. Dotted lines
indicate the true change point locations.
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Switching towards machine throughput, figure 5.4b shows the capability of
the algorithm to guarantee the requested service level. Indeed, the threshold
is sometimes slightly exceed only after a change in the arrival process, before
the control is again adapted to the new operating environment.

Case M2/P2/0.05. In this case, the throughput constraint turns out to be
binding only when machine starvation times are modeled with distribution D4.
Therefore, while the optimal control for distribution D2 is τ ∗ = {18.37,∞},
the trade-off solution for distribution D4 is τ ∗ = {0, 65.74}. These parameters
respectively allow to achieve 30.67% and 28.73% of savings on the objective
function. In addition, the Implementation Phase is set according to the
following generic configuration: C0 = 20 kJ/part, α = 0.05 and n∗ = 500.

Here again, the dynamic behavior of the operating environment is ef-
fectively handled. Specifically, focusing on a single replication, figure 5.5c
shows how the implemented control is successfully modified in response to
the net changes in the part arrival process (vertical dotted lines). Note that,
for observations 335 ≤ n ≤ 600, the variability of the implemented switch
on parameter τon,impl only results from the need to satisfy the throughput
constraint.

The benefits of control adaptation can be especially perceived from the
clear adjustments in the sample-based energy saving trends near observation
n = 335 (cf. figure 5.5a). On the contrary, the lack of confidence on the
estimated control results in smoother trends after the detection of the second
change point (n ≈ 635).

Finally, focusing on machine throughput, figure 5.5b shows how the sharply
declining trends after the first change point are then mitigated once identified
the variation in the arrival process. A similar behavior can be also observed
for the second change point : after its detection, the sample-based throughput
reduction starts to increase.

5.2 Arrivals to an Upstream Buffer

This section finally addresses a slightly different control problem, which
results from considering the presence of an upstream buffer in front of the
machine, in which parts accumulate. First of all, the analyzed system is
described, highlighting the considered modeling assumptions. Since in this
environment the on-line control policy from chapter 3 may lead to a non-
stationary control problem, a modified objective function is then proposed
to guarantee the convergence towards a unique solution. In conclusion, the
resulting benefits are assessed with a numerical analysis.
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Figure 5.6: Graphical representation of the considered system.

5.2.1 System Description and Assumptions

A single machine processing a single part type is considered. In more
detail, it is perfectly reliable, never blocked and some of its modules can be
deactivated for energy saving purposes. This machine is still characterized by
the energy states and parameters introduced in section P.1, nevertheless the
part holding power wq is no longer included in the model.

An infinite input buffer is now assumed to collect parts in front of the ma-
chine. Stochasticity can be therefore introduced considering i.i.d. interarrival
times at the buffer, described by random variable A, whose realization is de-
noted with a. This arrival process, which is not affected by the applied energy
efficient control policy, is modeled by the stationary pdf fA(a). Even though
fA(a) in unknown to the machine, the real time interarrival and starvation
times data can be collected in vectors a = {a1, . . . , an} and x = {x1, . . . , xn},
respectively. A graphical representation of the described system is reported
in figure 5.6.

Note that starvation times are now affected by the applied energy efficient
control policy. Indeed, the possible occurrence of part waiting times, caused
by the introduction of the startup procedure, entails an average decrease of
machine starvation periods. This influence has two major consequences:

• The on-line control policy from chapter 3 results in a non-stationary
control problem. Indeed, according to the previous consideration, the
implementation of new control parameters modifies the behavior of
the starvation times data stream, on the basis of which they were
estimated. Therefore, the convergence towards an optimal solution
cannot be guaranteed, since the control problem may diverge.

• The control effect on the throughput is negligible. Indeed, the occurrence
of a part waiting time is counterbalanced by a subsequent reduction
of machine starvation. As a consequence, the average cycle time stays
basically unchanged. The throughput constraint in equation (3.21) can
therefore be relaxed.
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Figure 5.7: Illustrative example of the recursive function behavior. Note that
x̌3(τ ) = 0 since a part is waiting in the buffer at process completion of part 2.

5.2.2 Sample-Based Objective Function

To guarantee the convergence towards an approximate optimal solution,
the traditional objective function ĝk(τ ) of the on-line optimization problem
(cf. subsection 3.3.1) is properly modified, allowing to include the control
effect on machine starvation. This complex dynamic interaction can be
indeed modeled recursively. In particular, starting from the interarrivals time
series a, the following recursive function (cf. figure 5.7) allows to derive the
corresponding machine starvation times x̌(τ ) = {x̌1(τ ), . . . , x̌n(τ )} when
control τ is implemented:

Recursive step.

x̌i(τ ) = max

[
0,

i∑
j=1

aj −
i−1∑
j=1

(x̌j(τ ) + q̌j(τ ) + tp)

]
(5.3)

q̌i(τ ) = ψ[x̌i(τ ), τ ] (5.4)

where q̌i(τ ) is the waiting time in a cycle and ψ(x, τ ) is the waiting time
function introduced in equation (4.8).

Base case.

x̌1(τ ) = a1 (5.5)
q̌1(τ ) = ψ[x̌1(τ ), τ ] (5.6)

On the basis of the the collected interarrivals a = {a1, . . . , an}, this
recursive function can then be employed to formulate a sample-based objective
function ǧk(τ ):

ǧk(τ ) =

∑n
i=1 φ[x̌i(τ ), τ ]

n
(5.7)
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where φ(x, τ ) is the energy output function introduced in equation (3.32).
Physically speaking, ǧk(τ ) represents the average energy per part the machine
would have historically consumed, if it had been controlled with parameters τ .

From an implementation perspective, at each algorithm iteration k, the
Learning Phase is skipped and a genetic algorithm is employed to carry out
the minimization task, since the sample-based objective function ǧk(τ ) cannot
be expressed in closed-form. It is worth highlighting that the resulting control
τ̌k is approximate, being obtained from an optimization over the sample-path.
Finally, focusing on the Implementation Phase, τ̌k is implemented only if the
following condition holds:

ǧk(τimpl)− ǧk(τ̌k) ≥ C(n) (5.8)

where C(n) is the implementation cost function from equation (3.34).

5.2.3 Results

The benefits brought by the the introduction of the sample-based objective
function are finally assessed numerically. In this regard, two production cases
are considered, obtained by combining a machine tool and an interarrival
times distribution fA(a). Whilst the former case is similar to those treated in
the previous chapters, the latter is instead conceived to be a more faithful
representation of a real manufacturing environment. For each case, the on-
line algorithm is applied with both the sample-based objective function ǧk(τ )
and the traditional objective function ĝk(τ ). In particular, experiments are
composed by 10 replications and common random numbers are employed
to guarantee comparability. The investigated KPIs are the machine energy
consumption, the throughput and the average buffer level.

Case 1. Assume that the interarrival times at machine M1 (tp = 168 s) are
modeled by distribution D1, delayed by the part processing time tp:

fA(a) ∼ tp +Weibull(5, 49.011) (5.9)

In this case, the considered machine is clearly underutilized. In particular, its
upstream buffer would be always empty if the AON policy were adopted. To
pursue energy efficient operation, the on-line algorithm is then iterated every
∆n = 25 new observations, until 1000 parts are processed. In addition, the
following Implementation Phase settings are considered2: C0 = 10 kJ/part,
α = 0.05 and n∗ =∞.

2Note that α is employed only with the traditional objective function.
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(a) Traditional objective function.

(b) Sample-based objective function.

Figure 5.8: Case 1 - Sample-based energy saving (10 replications).

(a) Traditional objective function. (b) Sample-based objective function.

Figure 5.9: Case 1 - Implemented control τimpl at each algorithm iteration k = n/25
(1 replication). Missing points correspond to τimpl = {∞,∞}.
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(a) k = 1, n = 25. (b) k = 8, n = 200.

Figure 5.10: Case 1 - Frequency histograms of x (1 replication).

Results, in terms of sample-based energy saving with respect to the AON
policy, are respectively reported in figures 5.8a and 5.8b. While the savings
are initially similar, an abrupt inversion in the trends obtained with the
traditional objective function can be then identified. Focusing on the details
of a single replication (cf. figure 5.9a), it can be indeed noticed how at iteration
k = 8 (i.e. n = 200) the EEC is suddenly interrupted. This undesirable change
actually results from the control influence on machine starvation times. In
particular, the parameters implemented at the first iteration (i.e. n = 25)
modify the behavior of the starvation times data stream, as shown in the
frequency histograms of figure 5.10. Since, at iteration k = 8, a good portion
of observations is located near the origin, the algorithm identifies that it is
optimal to never switch off the machine (i.e. AON policy). Once set the
control to τimpl = {∞,∞}, machine starvation times get back to increase
and the limit cycle starts again. On the contrary, the results obtained with
the sample-based objective function are not affected by this issue, since it is
formulated to directly account for the control effect on machine starvation.
Specifically, focusing on the same single replication, figure 5.9b shows that no
additional changes occur after the the first control implementation.

Moving on to the others KPIs, no throughput reductions were identified
and the 95% confidence intervals for the average buffer level are respectively
0.078±0.005 and 0.103±0.006. These results are coherent with the considered
arrival process, since the accumulation of parts is only due to the effect of
the implemented control policy.

Case 2. In this last numerical analysis, a more realistic production case is
finally addressed. It is indeed assumed that the arrival process at the buffer
of machine M2 (tp = 168 s) is generated by three unreliable parallel machines

116



5.2. Arrivals to an Upstream Buffer

Figure 5.11: Case 2 - Sample-based energy saving (10 replications). Note that the
traditional and the sample-based objective functions provide the exact same results.

with the same parameters. In detail, their processing time is tp = 564 s
and their failure metrics are described by exponential distributions with
MTTF = 10 h and MTTR = 30 min, i.e. the availability is 0.95. Therefore,
the production rate in isolation of the upstream portion of the system is
18.24 parts/h, whilst that of the controlled machine is 21.43 parts/h. It is
evident that the parallel machines constitute the bottleneck of the system.
Focusing on the single replication, the algorithm is initially iterated every
∆n = 25 observations. Upon completion of the 500th part, this interval
is finally increased to ∆n = 100. The replication terminates when 5000
parts are processed, therefore simulation time is approximately 233 hours. In
addition, the Implementation Phase is set according to the following generic
configuration: C0 = 10 kJ/part, α = 0.05 and n∗ =∞.

In this second case, the traditional and the sample-based objective func-
tions provide the exact same results. In particular, the identified optimal
control is always τ = {0,∞}. Therefore, at process completion, the machine
is immediately switched off if starved and the startup procedure is then
triggered by part arrival.

For what concerns machine energy performance, figure 5.11 shows that
the EEC allows to reduce the NPE consumptions of approximately 45% in
the long range. Specifically, at observation n = 5000, the 95% confidence
interval for the mean energy saving with respect to the AON policy is 726.02±
22.24 MJ . Assuming a gross industrial electricity price of 0.26 e/kWh [81],
this corresponds to an economy of about 50 e. Of course, more noticeable
monetary results would be achieved if the policy were applied to a more
energy demanding production equipment.

It is also worth noting that energy efficiency is pursued without affecting
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the production rate of the system. In particular, upon completion of the
simulations, the 95% confidence interval for the average throughput of the
controlled machine is 18.24± 0.08 parts/h, which exactly corresponds to the
arrival frequency at the buffer.

Finally, the 95% confidence interval for the average buffer level is 0.44±
0.03. This results from the combined effect of the arrival process and the
implemented control policy. Of course, a higher capacity utilization of the
controlled machine would progressively reduce the energy saving potentials.

5.3 Conclusions
This chapter is aimed at making the on-line control policy effective when

the upstream production process is non-stationary or decoupled from the
machine by an input buffer. First of all, the possibility to systematically
adapt the control in response to changes in the starvation times distribution
is investigated. In this regard, a change point detection method (RuLSIF)
from literature [80] is exploited. Indeed, being unsupervised, on-line and
nonparametric, it completely complies with the requirements of the considered
problem. The effectiveness of this method is affected by the choice of four
main parameters, which must be calibrated addressing the trade-off between
accuracy and responsiveness. On the basis of an experimental campaign, the
following combination is suggested: αCPD = 0.01, nCPD = 30, kCPD = 5 and
ηCPD = 25. Numerical results show the goodness of the proposed approach.
In particular, the detection of change points allows to adapt the control to the
new starvation times distribution, thus avoiding the deterioration of machine
performance.

Later, a sample-based objective function is proposed to guarantee the
convergence towards a unique approximate control, when an infinite input
buffer is assumed to collect parts in front of the machine. In particular,
it is recursively formulated on the basis of the collected interarrivals time
series, allowing to account for the control effect on machine starvation. A first
numerical analysis shows that the traditional objective function may result
in an alternate switching between two control configurations, which strongly
affects the achievable savings. On the contrary, the results obtained with
the sample-based objective function are not affected by undesirable behavior.
Finally, a more realistic production case is addressed, in which the arrival
process is generated by three unreliable parallel machines. Considering the
AON policy as a reference, the on-line algorithm allows to achieve approxi-
mately 45% of savings with both objective functions, without influencing the
throughput of the system.
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Conclusions

The objective of this work is to move a step forward in the energy efficient
control of machine states under uncertainty in part arrival. Specifically, the
control problem is addressed in an innovative on-line framework, providing
solutions in real time while acquiring information from the real system. In
this regard, an on-line time-based policy is presented, which improves and
extends an existing algorithm from literature [43, 63]. By means of deep
analytical and numerical analyses, the following enrichments are introduced:

• Learning Phase - Being crucial to guarantee the effectiveness of the whole
algorithm, three methods to estimate the KDE bandwidth parameter h
are compared. In order achieve robust results, it is suggested to employ
a mixture of them in a black-box version of the algorithm. In addition,
the issue of uncertainty on density estimation is explicitly addressed
by identifying the bandwidth probability density function fH(h). This
information provides an additional unprecedented dimension to the
problem, but increases its computational complexity.

• Optimization Phase - A solving algorithm is developed to exactly select
the optimal control in presence of constraints on machine performance.
In particular, a condition on the expected throughput allows to improve
machine sustainability, while guaranteeing a user-defined service level.
Moreover, two additional constraints are formulated to mitigate the
risk of deteriorating machine performance over the single cycle. Their
influence on the optimal control is studied numerically.

• Implementation Phase - The Bootstrap CI Implementation Policy is
developed in order to provide a greater robustness with respect to the
statistical paired-t test employed in literature. In addition, it also
guarantees parameters convergence when a constraint must be satisfied.
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Several numerical analyses are performed to evaluate the policy effectiveness
and computational requirements. In particular, it allows to achieve significant
savings with respect to the AON policy, within the limits given by the imposed
constraints. Moreover, the shopfloor applicability is ensured by an overall
enhancement in computational times.

The possibility to adapt the control in response to changes in the upstream
production process is also investigated. In detail, a change point detection
method (RuLSIF) [80] is included into the algorithm, in order to identify
variations in the distribution of starvation times. After an appropriate
calibration, numerical results show that the detection of change points allows
to avoid the deterioration of machine performance, caused by a transition in
the part arrival process.

In conclusion, a slightly different control problem is addressed, which
results from considering the presence of an upstream buffer in front of the
machine. In this environment, the proposed policy may not converge towards
a unique solution due to the control influence on starvation times. Therefore,
the collected interarrivals data are employed to formulate a sample-based
objective function which, as shown by the numerical results, guarantees the
implementation a stable optimal control.

Besides the scientific results, this work contributes to the removal of some
critical barriers, which limit the practical implementation of machine state
control in the industrial sector. The proposed policy can be indeed applied
to a wide range of production cases, being flexible and highly autonomous.

Two main future research directions can be outlined:

• Uncertainty on Density Estimation - The potential applications of the
bandwidth probability density function fH(h) in the control problem
require a deeper investigation. For example, this additional information
can be exploited to set a stopping criteria for assessing the algorithm
convergence. In addition, a numerical analysis of the Bandwidth Imple-
mentation Policy can be also carried out.

• Time Variant Behavior - Future developments may be devoted to the
application of change point detection methods to other performance of
interest. This may allow to identify variations in the system or in the
external environment in a more effective way. Moreover, it could be
also possible to classify the different states of the process that generates
the arrivals at the machine.
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Appendix A

Detailed Simulation Results of
Chapter 3

In this appendix, detailed simulation results from chapter 3 are collected
as follows:

• Table A.1: M1/D1/1 - Sample-based comparison of on-line algorithm
energy consumption and throughput for different settings.

• Table A.2: M1/D1/1 - Effects of factors C0, α and n∗ over the number
of observations before implementing the control parameters and the
mean number of changes.

• Table A.3: M2/D2/1 - Sample-based comparison of on-line algorithm
energy consumption and throughput for different settings.

• Table A.4: M2/D2/1 - Effects of factors C0, α and n∗ over the number
of observations before implementing the control parameters and the
mean number of changes.

• Table A.5: M3/D3/0.02 - Sample-based energy consumption and through-
put for different settings.

• Table A.6: M3/D3/0.02 - Effects of factors C0, α and n∗ over the
number of observations before implementing the control parameters and
the mean number of changes.
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Appendix A. Detailed Simulation Results of Chapter 3
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Appendix A. Detailed Simulation Results of Chapter 3
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Appendix B

Proofs of Chapter 4

B.1 Method of Transformations

Assuming that X is a continuous random variable with pdf fX(x) and
Y = Ω(X) is a function of X, the Method of Transformations [78] allows to
analytically express the pdf fY (y). In order to guarantee an intuitive grasp
of this approach, let function Ω satisfy the following properties:

• It is differentiable, with derivative Ω′.

• It is strictly increasing, therefore inverse function Ω−1 is well defined.
That is, for each possible y, there exists a unique x1 such that Ω(x1) = y
and Ω′(x1) > 0.

In this case, the cumulative distribution function (cdf) FY (y) can be easily
found:

FY (y) = P(Y ≤ y) = P(Ω(X) ≤ y) = P(X ≤ Ω−1(y)) = FX(x1) (B.1)

To express the pdf fY (y), it is eventually required to differentiate:

fY (y) = F ′Y (y) = F ′X(x1)
dx1

dy
=
fX(x1)

Ω′(x1)
(B.2)

The same argument can be repeated for the case where function Ω is
strictly decreasing. Since Ω′(x1) turns out to be always negative, its absolute
value |Ω′(x1)| needs to be introduced in equation (B.2).

These considerations can be finally extended to a more general case, in
which function Ω is not monotone. The solution consists in partitioning its
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Appendix B. Proofs of Chapter 4

domain into a finite number of intervals, over which Ω is strictly monotone
and differentiable. The pdf of Y is therefore given by:

fY (y) =
n∑
i=1

fX(xi)

|Ω′(xi)|
(B.3)

where x1, x2, . . . , xn are real solutions to y = Ω(x). Of course, fY (y) = 0
when y = Ω(x) does not have a solution.

B.2 Proof of Theorem 4.2
Theorem 4.2. Once set a feasible target difference ∆etarget, it exists a limit
sojourn duration in the standby state $ such that:

F∆E(∆etarget|{τoff , τon > τoff +$}) = F∆E(∆etarget|{τoff , τoff +$}) (B.4)

The limit sojourn duration is:

$ =
(w3 + wq)tsu + ∆etarget

w2 − w1

(B.5)

Proof: The proof for this theorem starts from an analysis of figure B.1, which
shows the energy output functions for τ = {∞,∞} and τ = {τoff ,∞} as well
as their difference. Once set a feasible target difference ∆etarget, it is possible
to identify the corresponding starvation time occurrence xtarget such that:

φ(xtarget, {∞,∞})− φ(xtarget, {τoff ,∞}) = ∆etarget (B.6)

Solving for xtarget, it results:

xtarget = τoff +
(w3 + wq)tsu + ∆etarget

w2 − w1

= τoff +$ (B.7)

According to figure B.1, the cdf value F∆E(∆etarget|{τoff ,∞}) corresponds
to the probability of part arrival between x = τoff and x = xtarget:

F∆E(∆etarget|{τoff ,∞}) = FX(τoff +$)− FX(τoff ) (B.8)

The same consideration can be extended to any control configuration of the
type τ = {τoff , τon > τoff +$}, in fact:

• φ(xtarget, {∞,∞})− φ(xtarget, {τoff , τon > τoff +$}) = ∆etarget.

• φ(x, {∞,∞})− φ(x, {τoff , τon > τoff +$}) is monotonic increasing for
x > τoff .
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B.2. Proof of Theorem 4.2

Figure B.1: φ(x, {∞,∞})− φ(x, {τoff ,∞}) for machine M1.

Figure B.2: φ(x, {∞,∞})− φ(x, {τoff , τoff +$}) for machine M1.
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It is therefore possible to state that:

F∆E(∆etarget|{τoff , τon > τoff +$}) = FX(τoff +$)− FX(τoff ) (B.9)

The control configuration τ = {τoff , τoff +$} is now addressed. In this case,
as shown by figure B.2, the cdf value F∆E(∆etarget|{τoff , τoff +$}) accounts
for the probability that a part arrives at the machine during its whole sojourn
in the standby state:

F∆E(∆etarget|{τoff , τoff +$}) = FX(τoff +$)− FX(τoff ) (B.10)

By comparing equations (B.9) and (B.10), it finally results:

F∆E(∆etarget|{τoff , τon > τoff+$}) = F∆E(∆etarget|{τoff , τoff+$}) (B.11)

B.3 Proof of Theorem 4.3
Theorem 4.3. Once set a probability δq, it exists a lower bound for the
switch off parameter τLBoff such that, for any feasible qtarget:

1− FQ(qtarget|τ ) ≤ δq ∀ τ | τoff ≥ τLBoff ∧ τon > τoff + ξ (B.12)

In particular, τLBoff is the 100(1− δq)th quantile of fX(x).

Proof: The proof for this theorem starts from an analysis of figure B.3, which
shows a general waiting time function for machine M1. Given a feasible target
0 ≤ qtarget < tsu, it is possible to identify the corresponding starvation time
occurrence xtarget such that:

ψ(xtarget, τ ) = qtarget (B.13)

Solving for xtarget, it results:

xtarget = τon + tsu − qtarget =⇒ τoff < τon < xtarget ≤ τon + tsu (B.14)

According to figure B.3, 1− FQ(qtarget|τ ) corresponds to the probability of
part arrival between x = τoff and x = xtarget:

1− FQ(qtarget|τ ) = FX(xtarget)− FX(τoff ) (B.15)

Let τLBoff be the 100(1− δq)th quantile of fX(x). By assuming τoff ≥ τLBoff , it
results:

1− δq ≤ FX(τoff ) ≤ FX(xtarget) ≤ 1 (B.16)
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B.3. Proof of Theorem 4.3

Figure B.3: Waiting time function ψ(x, τ ) for machine M1.

Considering equations (B.15) and (B.16), it finally possible to conclude that:

0 ≤ 1− FQ(qtarget|{τoff ≥ τLBoff , τon > τoff + ξ}) ≤ δq (B.17)

In particular:

• The left boundary results from FX(xtarget) = FX(τoff ).

• The right boundary results from FX(xtarget) = 1 and FX(τoff ) = 1− δq.
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