
 

 





Extended abstract

Introduction
Global warming is a pressing challenge that our world has to
face in the next years, and all the sectors of human economy
are expected to gradually move towards a near zero-emissions
operation [1]. The energy storage is a key component of the
transition towards a decarbonized power generation and a
cleaner transportation system [2]. Among the available en-
ergy storage technologies, lithium-ion batteries (LIB) have the
highest share of stationary energy storage installations, own-
ing 88% of 2016 new capacity and scoring a steady growth in
the last five years [2]. They are also the leading technology
in the electric vehicles (EV) field and consumer electronics,
thanks to their advantageous properties compared to other
kinds of storage systems: high energy and power density, long
cycle life and low self-discharge rate [3]. Nevertheless, sev-
eral challenges have to be faced in order to make LIBs a fully
stable, performant and sustainable technology.
One of these issues is the final part of the LIB lifecycle: the
growth of the EV market is leading to an increasing number of
aged lithium-ion batteries that are retired after their end-of-life
in electric cars [4], with potential problems for the currently
low capability and cost-effectiveness of their recycling pro-
cess [5]. Nevertheless, these LIBs still retain a useful capacity
that can be exploited in less demanding applications. In order
to recover these aged batteries and to assess their residual
economic value, enabling a circular economy framework, a
diagnostic procedure that measure the capacity and remaining
useful lifetime is of foremost importance.
This work has the objective of defining a novel methodology
for the estimation of the physical parameters of a lithium-
ion battery, combining different experimental techniques and
a mechanistic model. In a future work, these parameters
could be related to the extent of degradation of the lithium-ion
battery [6], obtaining detailed information about its state of
health.
The activities that are carried out to achieve this objective are:

1. execution of an experimental campaign on commer-
cial battery samples, to understand the information that
are provided by three diagnostic techniques in different
operative conditions (see Thesis Chapter 3);

2. realization of a sensitivity analysis of the LIB physical
model with respect to the battery parameters, simulating
a wide operative condition matrix of the three diagnostic
tests. Using the results of the analysis, we formulated
the methodology (see Thesis Chapter 4);

3. validation of the methodology with the implementation
in a parameter estimation process using Particle Swarm

Optimization (PSO), with the utilization of both sim-
ulated and experimental datasets (see Thesis Chapter
5).

1. State of the art
1.1 Lithium-ion battery description
A lithium-ion battery (LIB) is an energy storage system based
on the electrochemical reactions of lithium ions, able to store
and release electrical energy. It is a closed system, implying
that reactants and products of the electrochemical reactions
are stored inside the battery.
The lithium-ion battery operates at a certain voltage V depend-
ing on the constituent materials and on the thermodynamic
conditions. During operation, a current I is applied, charging
or discharging the battery. The amount of charge that the
LIB can store or release is defined as its capacity Q, with
a nominal value Qnom that is measured by the manufacturer
with standard test procedures [7]. The available capacity Q
of the battery is usually expressed in a dimensionless form
as the battery state of charge, or SOC, defined as the fraction
of charge stored in the battery with respect to the nominal
capacity. The operating current I is related to the nominal
capacity through the current rate, or C-rate, C, defined as the
ratio between I and Qnom.
The simplest element of a LIB is the cell (figure 1), composed
of two porous electrodes, i.e. the anode and the cathode,
a liquid electrolyte and a separator. The oxidation reaction
(lithium deintercalation) releases the lithium ions from the
particles of one electrode, which flow through the electrolyte,
and the reduction reaction (lithium intercalaction) inserts them
into the particles of the other electrode. Instead, the electrons
flow through the external circuit that connects the anode and
cathode current collectors. The direction of the charges’ flow
depends on whether the battery is charged or discharged.
During these reactions, the concentration of lithium in the
electrodes changes, and the battery voltage V changes too, ac-
cording to the open circuit potential (OCP) characteristics of
the electrodes. In fact, V is the difference between the OCPs
of the two electrode. The cathode, with the higher potential,
is commonly made of transition metal oxides or polyanion
compounds, while the material of choice for the low-potential
anode is graphite [8].

1.2 Battery degradation and diagnostics
During their operation, lithium-ion batteries are subject to
degradation. The electrodes and the electrolyte properties
continuously change since the battery beginning of life, due
to unwanted side reactions that degrade in various ways these
components [10], such as solid electrolyte interphase (SEI)
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Figure 1. Depiction of a lithium-ion cell during a discharge, with
the indications of its main components (Adapted from [9])

growth, electrolyte decomposition, particle cracking, graphite
exfoliation, current collector corrosion and lithium deposition.
These phenomena induce loss of cyclable lithium (a capacity
fade) and an increase of the overall impedance of the battery
(a power fade). In the EV industry, the standard threshold for
the end-of-life of a LIB is when it retains only 80% of the
initial capacity or of the initial power [11]. There is the possi-
bility of employing these aged LIBs in a second life cycle in
less intensive applications, such as stationary energy storage
systems for renewable power plants or light-duty EVs [12],
with benefits for the in terms of reduction of the environmen-
tal impact of used LIBs and lower investment costs for energy
storage systems.
Nevertheless, this concept faces some challenges that needs
to be solved for an economically viable and scalable imple-
mentation [13]. In particular, in this work we deal with the
identification of the battery degradation, since a high uncer-
tainty on the state of health can hinder the battery second use,
and with the standardization of the diagnostic procedure, to
decrease the costs of refurbishment and to achieve the full
comparability of the diagnostic results.
The stressors of battery degradation are numerous [10], such
as the ambient temperature, the storage SOC, the number of
charge and discharge cycles, and the current rate. Very differ-
ent degradation mechanisms can be due to the same stressors,
and they can bring to the same degradation effects, i.e. capac-
ity and power fade. The inherent complexity of degradation is
commonly summarized in a parameter called state of health
(SOH). This indicator has not a standardized definition: the
simplest one refers to the ratio between the actual maximum
dischargeable capacity Qmax measured with the same condi-
tions of the nominal capacity, and the nominal capacity Qnom
[14].
The state of health determination stems from the execution
of diagnostic tests, after which the SOH can be calculated or
estimated with a variety of techniques. There are different
types of diagnostic tests too [15], that can provide information
on the LIB characteristics with varying degrees of accuracy

and speed. In literature and in diagnostic standards, it is often
used only one kind of test to characterize a LIB, usually the
capacity test at different temperatures and current rates [16].
Nevertheless, it has also been shown how the use of more
advanced techniques and the combination of them permit to
understand much better the nature of a complex phenomenon
such as degradation [15, 17]. In fact, the most correct and
comprehensive approach to a complex problem like the one
of battery degradation should be the one that combines these
techniques to obtain the maximum amount of useful informa-
tion in a reasonable time frame.

2. Methodology

2.1 Experimental techniques
The selected experimental techniques that are then applied
on commercial battery samples are the capacity test, the re-
laxation test and the electrochemical impedance spectroscopy
(EIS).

Capacity test The capacity test is commonly applied to
measure the amount of charge that can be exchanged with the
battery, by charging and/or discharging the LIB. With this test,
it is possible to obtain the voltage-capacity relationship of the
battery, which depends on the current rate and on the ambient
temperature at which the test is made. For the sake of degra-
dation diagnostics, this kind of test is useful to understand
the remaining capacity of the LIB and estimate the impact
of the increased overpotentials on the voltage-capacity curve.
The chosen current rate determines the aspects that emerge
more from the capacity test. The higher the current rate, the
higher the influence of the kinetic parameters of the battery
that induce overpotentials [18], i.e. the ohmic resistance, the
charge transfer resistance and the lithium concentration dise-
quilibria, with a decrease of the exchanged charge. For low
current rates, the voltage losses are lower, hence allowing the
battery to receive or release more energy, obtaining a more ac-
curate evaluation of the actual battery capacity. In fact, Qnom
is commonly measured at a low C-rate, between 0.2C and 1C.
To start the capacity test in the discharge mode, the battery
is first charged up to 100% SOC with a constant current step
and a constant voltage step, reaching the upper limit of the
voltage range in which the battery operation is safe. Then,
according to the desired current rate, a discharge current is
applied on the battery, whose voltage decreases down to the
lower voltage limit. The capacity is commonly calculated
with the coulomb-counting method, integrating the applied
current in time with a certain discretization according to the
data acquisition timestep.

Relaxation test During a current pulse, lithium concentra-
tion gradients easily develop in the electrolyte and in the solid
particles of the two electrodes, due to the low lithium diffu-
sion coefficient in these media. The higher the current and the
pulse duration, the steeper these concentration gradients.
When the current is set to zero, these gradient tend to reduce
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with a combination of diffusion processes and electrochemical
reactions happening in the electrodes and the the electrolyte
[19]. The relaxation of the gradients makes the battery voltage
increase after the end of a discharge, and decrease after the
end of a charge, in both cases with a trend that resembles a
decaying exponential.
The trend of the voltage during this relaxation phase can give
useful insights about the structure and the behavior of the
lithium-ion battery, since it depends on the the geometry of
the battery, the composition of the electrolyte, the physical
structure and the chemistry of the electrodes. These informa-
tion can be very useful for the degradation detection, but the
study of the relaxation curve with this purpose is seldom seen
in literature [20].
To perform this test, the battery is brought to the desired start-
ing SOC and ambient temperature. Then, a current pulse is
applied, whose current rate and depth of discharge (DOD),
i.e. the percentage of exchanged charge with respect to the
nominal one, define the duration of the pulse itself. When
the circuit is opened, the voltage is measured until its rise
or decrease is lower than the experimental uncertainty. In
fact, concentration gradients need a sufficiently extended and
intense current pulse to be developed, but their complete ho-
mogenization can require a very long time (up to 105 s) con-
sidering that the driving force of diffusion gradually decreases
[21–23].

Electrochemical Impedance Spectroscopy The internal
resistance of a lithium-ion battery is not an univocal concept.
Its value and its physical meaning depend on the nature of
the current pulse with which it is measured, i.e. direct current
(DC) or alternate current (AC) [24]. By using AC, the current
frequency ω determines the impedance Z, composed by a real
part and by an imaginary part:

Z(ω) =
V (ω)

I(ω)
= Z0[cos(φ(ω))+ i sin(φ(ω))] (1)

where Z0 is the module of the impedance, which represents
the ratio between the amplitudes of voltage and current, while
φ is the phase shift between the voltage and current sinusoids.
In the electrochemical impedance spectroscopy (EIS), each
frequency represents the characteristic time of a phenomenon
taking place inside the battery, obtaining the resistance associ-
ated to each of them together [25–27]:

• Inductive behavior (ω >2000 Hz): in this region there
is a purely imaginary contribution given by the wiring
and cables inductance;

• Ohmic behavior (2000 Hz< ω <500 Hz): where the
imaginary part changes sign and it is equal to zero, the
real part is called high frequency resistance (HFR), and
it is associated to the ohmic resistances of the battery;

• Kinetic behavior (500 Hz<ω <1 Hz): frequency range
attributed to the kinetics of the interfacial reactions be-
tween the electrolyte and the electrodes, and to the

Figure 2. Representation of the Fuller-Doyle-Newman P2D model
domain

double layer capacitance of the solid/liquid interfaces,
called charge transfer resistance;

• Diffusive behavior (ω >1 Hz): at low frequencies, the
concentration of lithium in the electrolyte and in the
solid particles is perturbed, since we reach the diffusion
characteristic timescales.

The EIS is very useful for the detection of degradation since
it can show the changes of the single components of the LIB
resistance, and these changes can be then related to different
degradation modes [17].

2.2 Model description
The model employed in this work is the Doyle-Fuller-Newman
pseudo-two dimensional (P2D) electrochemical model [28,
29] (see Thesis Chapter 2.2).
The parts of the battery that are modeled are the negative
electrode, the separator and the positive electrode (figure 2),
with a mechanistic approach. Each of them has several nodes
that form a 1D mesh, where the model’s partial differential
equations (PDE) are applied and solved. The model is labeled
as pseudo-two dimensional since the points in which the PDEs
are solved are placed along a linear dimension x, but in every
point except for the separator, there is an additional radial
dimension r which represents the solid particles of the elec-
trodes. These particles are usually modeled as spheres, and
the Fick’s law of diffusion is solved in the additional nodes
along their radial dimension.
The solved partial differential equations are the material bal-
ance in the electrolyte and in the electrodes, the Bulter-Volmer
electrochemical kinetics, the charge conservation in the elec-
trolyte and in the electrode, and the double layer charge or
discharge.
This basic P2D formulation is isothermal and the model pa-
rameters do not depend on the temperature. To take into
account the variation of ambient temperature and the heating
of the battery during operation, the model has been extended
in order to include the heat transfer, and hence the influence
of temperature on the battery behavior. The thermal model
geometry is a 2D representation of a cylindrical lithium-ion
battery, like the ones that have been experimentally studied.
The model coordinates are the along the radius and the axis of
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the cylinder, since the heat conduction in the angular direction
can be neglected [30].
The heat conduction equation is solved numerically in each of
the nodes of a 2D mesh, with a convective boundary condition
on the battery surfaces, and the model provides the tempera-
ture distribution in the domain. However, the electrochemical
model takes as input only a single temperature value for its
whole domain, hence each timestep the 2D temperature dis-
tribution is averaged over the battery area and given as input
to the electrochemical model. The only unknown quantity
of the thermal model is the volumetric heat generation term,
which is determined by the electrochemical model as sum of
the ohmic, the reaction and the reversible heat generations
[31]. The volumetric heat generation is calculated in each
node of the 1D electrochemical model, but the 2D thermal
model can only accept a single volumetric heat generation
term. Therefore, on each timestep, it is averaged along the
length of the electrochemical model domain and given as input
to the thermal model. We also added an Arrhenius tempera-
ture dependence for the physical quantities that are influenced
by this parameter, as the diffusion coefficients and the rate
constants.
The whole model is implemented in COMSOL Multiphysics R©,
while the control of the simulations and the analysis of the
outputs are done with MATLAB.

3. Experimental campaign

The test bench on which the experimental campaign is carried
out was designed and assembled during the previous thesis
work on the same project [32]. It allows the testing of LIBs in
four independent channels, each equipped with a Chroma UM
63640-80-80 electronic load. A NI DAQ USB 6218 acquisi-
tion board is used to measure voltage oscillations during EIS’s
and to check the voltage read by the electronic loads, while
the power supply NI RMX-4124 acts as battery charger. The
batteries are placed in a Binder KT 53 climatic chamber, that
controls the ambient temperature. The surface temperature
of each LIB is measured through four RS PRO type K ther-
mocouples, with a NI CDAQ 9211 as temperature acquisition
board. In addition to this fixed setup, an Autolab PGSTAT30
with a FRA2 module is employed to perform high-precision
EIS’s. The whole setup is controlled through the software
LabView R©.
The measurement uncertainty is evaluated on the experimen-
tal outputs, i.e. the battery voltage, surface temperature and
impedance (see Thesis Chapter 3.1.2).
The tested lithium-ion batteries are commercially available
products, in accordance to the scope of the thesis project, di-
rected towards the second use of commercial batteries. In
particular, we employed a total of four batteries: a pristine
and an aged Sony US26650VT, and a pristine and an aged
Sony US18650V3, whose technical features are reported in
table 1.

Characteristic US26650VT US18650V3
Cathode chemistry NMC+LMO NMC
Anode chemistry Graphite Graphite
Nominal capacity 2600 mAh 2250 mAh

Maximum charge current 2.6 A 2.25 A
Maximum discharge current 26 A 10 A

Nominal voltage 3.7 V 3.7 V
Maximum voltage 4.2 V 4.2 V
Minimum voltage 2.8 V 2.5 V

Temperature range (charge) 0−40◦ C 0−45◦ C
Temperature range (discharge) −10−45◦ C −20−60◦ C

Weight 85 g 44 g
Dimensions (D x H) 26 mm x 65 mm 18 mm x 65 mm

Table 1. Characteristics of the tested battery samples

3.1 Capacity test
The experimental matrix for the capacity tests is composed
by:

• three values of ambient temperature: Tamb ∈{10◦C,
25◦C, 40◦C};

• four values of current rate: C ∈{0.5C, 1C, 2C, 3C};

All the combinations of current rates and ambient tempera-
tures are tested, with the purpose of exploring the impact of
these two operative parameters on the results of this diagnostic
procedure. As an example of these tests, in figure 3 it is shown
the variation of the discharge curve of the new US26650VT
at 25◦C with the current rate.
The observations that can be made with the results of the
capacity tests are (see Thesis Chapter 3.2.1):

• an increase of the current rate corresponds to a lower
exchanged capacity, and in general this is true for all the
tested batteries and for all the employed ambient temper-
atures. For instance, in figure 3 the pristine US26650VT
passes from 2501 mAh at 0.5C to 2357 mAh at 3C.
An higher current rate implies an increased extent of
the electrochemical reaction, which consequently in-
creases the activation overpotential, according to the
Butler-Volmer kinetics [18]. Also, the ohmic losses
are higher, being the current higher too. These losses
are individuated as an increased initial voltage drop at
the beginning of the discharge, with a vertical shift of
the voltage-capacity curve. The lithium concentration
gradients in the electrolyte and in the electrode are en-
hanced too, due to the higher molar flow rate of lithium
transported in the cell. This overpotential can be visu-
alized as a contraction towards lower capacities of the
dischare curve;

• a decrease of the ambient temperature makes the ex-
changed charge decrease too. This effect is enhanced
at higher current rates. For example, in the pristine
US26650VT the capacity in a discharge curve at 0.5C
passes from 2503 mAh at 40◦C to 2377 mAh at 10◦C,
with a difference of 126 mAh. Instead, the capacity in a
discharge curve at 3C changes from 2406 mAh at 40◦C
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Figure 3. Discharge curves of the pristine US26650VT, @25◦C,
voltage variation with current rate

to 2146 mAh at 10◦C, a delta of 260 mAh.
The lower operating temperature has the effect of slow-
ing the kinetics of the electrochemical reactions, as well
as lowering the ionic conductivity of the electrolyte
[33], with an increase of the activation and ohmic over-
potentials. The lithium diffusion is more sluggish at
lower temperatures, bringing to the same phenomenon
described in the previous bullet point. These effects
have an higher impact on the capacity test if the current
rate is higher too;

• as expected, the effect of battery aging implies a lower
exchanged charge, due to the capacity fade. Com-
paring the capacity tests of the pristine and the aged
US26650VT, we have 2503 mAh against 2381 mAh at
0.5C and 40◦C, and 2146 mAh against 1989 mAh at
3C and 10◦C. The latter test show how increased ohmic
and activation losses are present in the aged battery,
probably due to the additional resistance created by the
SEI layer, by the lower ionic conductivity caused by
the electrolyte degradation, and by the lower specific
active area in the electrodes due to particle cracking and
structural disordering [10, 34]. Nevertheless, it is not
possible to be sure of this interpretation only with the
capacity test, since the overpotentials are not effectively
distinguishable with this technique.

3.2 Relaxation test
The relaxation voltage profile is measured after a current pulse
that discharges the battery with a depth of discharge of 20%,
starting from 100% SOC down to 20% SOC. After each pulse,
the battery is allowed to relax for at least three days. The
experimental matrix for the relaxation tests is composed of:

• three values of ambient temperature: Tamb ∈{10◦C,
25◦C, 40◦C};

Figure 4. Voltage recovery during relaxation for the pristine
US18650V3, after a current pulse from 80% to 60% SOC, voltage
variation with current rate and ambient temperature

• two values of current rate in the pulse: C ∈{0.2C, 3C};

In figure 4 are reported the variation with current rate and
ambient temperature of the voltage recovery of the pristine
US18650V3, after a current pulse from 80% to 60% SOC.
The voltage recovery is obtained by subtracting the voltage
measurement of the first data point after the current is set to
zero from the voltage profile during relaxation.
The main trends in the relaxation tests are (see Thesis Chapter
3.2.2):

• the extent of the voltage recovery depends on the cur-
rent rate at which the previous discharge is performed.
In the pristine US18650V3, the voltage recovery for the
3C pulse is 5 times higher than the 0.2C pulse for the
discharge from 80% to 60% SOC, while it is 10 times
higher in case of the discharge from 40% to 20% SOC.
The higher concentration disequilibria caused by the
high current corresponds to higher voltage losses during
discharge, that have to be recovered during relaxation;

• the ambient temperature has an impact both on the
magnitude and on the dynamic of the voltage recovery,
because of its influence on the diffusion processes. For
instance, the voltage recovery after a 3C pulse between
80% and 60% SOC passes from 25 mV in 5·104 s to
to 33 mV in 8·104 s (figure 4). A lower temperature
correspond to higher concentration gradients during
the discharge pulse and to a slower voltage recovery,
because of the decrease of the lithium diffusion coeffi-
cients in the electrolyte and in the electrodes.

• the effect of battery aging can be individuated since at
same exchanged charge in the current pulse, the voltage
reached at the end of the relaxation depends only on
the battery open circuit voltage, and the degradation
changes this thermodynamic characteristic [35]. In fact,
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Figure 5. Impedance spectra of the new US26650VT obtained with
EIS at 60% SOC, ambient temperature variation

the voltage recovery after a 3C pulse at 25◦C between
60% and 40% SOC passed from 0.21 V in the pristine
US18650V3 to 0.24 V in the aged one, coherent with a
change in the graphite OCP [36].

3.3 Electrochemical impedance spectroscopy
The battery impedance spectra obtained with the EIS are
measured at steady state, in the 10000-0.05 Hz range with
40 logarithmically spaced frequency points, and a 0.15 A
amplitude of the current sinusoid. The experimental matrix is:

• three values of ambient temperature: Tamb ∈{10◦C,
25◦C, 40◦C};

• four values of state of charge: SOC ∈{100%, 80%,
60%, 40%, 20%};

Figure 5 shows three impedance spectra obtained at different
ambient temperatures with the pristine US26650VT at 60%
SOC. The obtained impedance spectra suggest that (see Thesis
Chapter 3.2.3):

• the variation of the battery impedance with the state of
charge is quite complex. At 100% SOC, the impedance
shows a relevant diffusion-related impedance at low fre-
quency, whose extent can be explained with limitations
in the lithium diffusion due to phase transformations
[37, 38] and to the high slope of the open circuit po-
tential [25]. Instead, at 20% SOC, an additional charge
transfer impedance appears at low frequencies, proba-
bly caused by the shift from the metallic to semimetallic
behavior of the cathode material when near the fully
lithiated state [27, 37], with a more limited kinetics;

• the impedance spectra show evidently the effects of
battery aging. The aged US26650VT shows an HFR
equal to 19 mΩ, while the HFR of the pristine one is
17.5 mΩ. The high frequency resistance increase with

aging is mainly due to the formation of the SEI, which
adds a resistive layer around the anode particles. More-
over, at 20% SOC, the aged battery has a semicircle in
the low frequency region which is about 7 times larger
than the same semicircle of the pristine battery;

• for what concerns the ambient temperature variation,
we see in figure 5 how a lower temperature makes the
overall impedance grow. The high frequency resistance
increases from 16.7 mΩ at 40◦C to 18.5 mΩ at 10◦C,
since there is also a decrease of the ionic conductivity
of the electrolyte with the temperature [33]. Also, the
charge transfer resistance has a strong growth when
temperature decreases, about 4 times every 15◦C, due
to Arrhenius-type dependence with temperature of the
reactions’ kinetics;

4. Sensitivity analysis
We saw how the three experimental techniques they can pro-
vide insights on all the defining phenomena of the lithium-ion
battery. Also, aged batteries can be distinguished from pris-
tine ones in each of these techniques. Their combination can
be used to obtain complete overview on the battery dynamic
performances, and as far as the author’s knowledge this con-
cept has not been explored in literature.
To optimize the number and the types of tests that are needed
for the battery characterization, it is important to understand
the conditions in which these techniques can give the higher
amount of information on the battery. Therefore, we carry
out a sensitivity analysis on the lithium-ion battery model, in
order to understand the effect of the variations of the model
parameters on the simulations of the diagnostic tests’ outputs,
and to recognize the experimental tests that can better identify
a parameter by assessing its effect on the test outputs.

4.1 Sensitivity analysis methodology
The chosen sensitivity analysis methodology is the one-factor-
at-time (OFAT) [39], where the model parameters are set
to nominal values, and they are varied one at a time while
keeping the others fixed. With this type of analysis, it is eas-
ier to understand the underlying physical processes that are
influenced by the model parameters. Also, its has a lower
computational burden with respect to other techniques.
The 28 parameters on which the sensitivity analysis is per-
formed are the ones related to the dynamic performances
of the battery. The parameters linked to its thermodynamic
behavior and to its geometry, i.e. the ones that defines its
maximum capacity, are kept constant, since they are evaluated
in with other experimental techniques than the ones discussed
here, such as the incremental capacity [32, 35, 40].
The validity range for the 28 varied parameters are defined
after thorough literature review [41–55], with the pristine
US26650VT as reference battery type. Five values for each pa-
rameter are used in the simulations, which explore the whole
available range. For each value of the parameters, 190 dis-
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Figure 6. Sensitivity of the complete discharge curve 2C and 25◦C
to the negative electrode particle radius

charge curves, 96 relaxation curves and 20 impedance spectra
are simulated in various combinations of ambient temperature,
current rate, state of charge and depth of discharge. The model
outputs are the battery voltage and surface temperature in the
capacity test and in the relaxation test simulations, and the real
and imaginary impedance in the EIS simulations. In total, the
sensitivity analysis is based on 38140 simulated conditions.
In figure 6, there is an example of the obtained results, with
the sensitivity of the complete discharge curve at 2C and 25◦C
to the variations of the negative electrode particle radius.
Following the works of Zhang et al. [31] and of Edouard

et al. [56], the great amount of data that is obtained by this
wide simulation matrix is summarized through the standard
deviation, which estimates the dispersion of an output due to
the variation of a parameter (see Thesis Chapter 4.1.1). The
steps of the analysis are briefly explained in figure 7, and the
final results are:

• a classification of the model parameters according to
four categories based sensitivity of each model output
to them: Insensitive, Low Sensitivity, Mid Sensitivity
and High Sensitivity (see Thesis Chapter 4.2.2). The
classification is made by comparing the mean of the
average standard deviations of a parameter and the max-
imum average standard deviation for each model output
with a minimum limit value, whose value derives from
the measurement uncertainty analysis. The purpose
is to obtain a qualitative assessment of the degree of
sensitivity of the outputs to the model parameters;

• a comparison of the sensitivities associated to each
model parameters in each operative condition, for all
the outputs of the three simulated techniques. This
comparison is made thanks to a clustering algorithm
(Fuzzy C-Means clustering) that associates the standard

deviations of all the parameters in each operative condi-
tion to three clusters: Low Sensitivity, Mid Sensitivity
and High Sensitivity (see Thesis Chapter 4.2.3). The
purpose is the comparative evaluation of the trend of
the parameters’ standard deviation while varying the
operative conditions, to select experiments where one
or more parameters are much more relevant than others;

4.2 Sensitivity analysis results
Some general considerations that can be made from the sensi-
tivity analysis results are:

• some model parameters have a negligible impact in cer-
tain operative conditions, while they are very impactful
in others. This mixed impact is very interesting for the
purpose of our analysis, since it implies the possibility
to exclude or isolate the effect of a parameter. An ex-
ample are the variations of the double layer capacities
of the positive and negative electrodes. They are not
relevant in the capacity test and in the relaxation test,
while the EIS impedance shows a great sensitivity to
them, since these parameters define the characteristic
frequency of the charge transfer resistance;

• some parameters show an uniform impact on practi-
cally all the explored conditions. This feature is not
desirable for the parameter estimation, since there are
no conditions where a parameter can be effectively iso-
lated.
A notable example is the effect of the positive and nega-
tive particle radii. A variation of these parameters leads
to high dispersions in all the outputs of the capacity test,
of the relaxation curve and of the EIS, since the particle
radii define all the battery overpotentials, with a linear
relationship with the ohmic and activation overpoten-
tials and a quadratic relationship with the concentration
overpotential;

• some parameters have a negligible impact in every
simulated condition. By comparing their standard de-
viations with the minimum limit values, we observe
that they are always below these thresholds. Therefore,
these parameters can be excluded from the parameter
estimation process and kept constant at a reasonable
value taken from literature. In total, four of the model
parameters are classified in this category: the electrolyte
fraction in the separator, the film resistance on the pos-
itive electrode, the axial thermal conductivity and the
electronic conductivity in the negative electrode.

After analyzing all the information obtained from the sensi-
tivity analysis and the clustering of the results, we propose
this experimental methodology, designed as a series of con-
catenated tests with a limited duration that are able to give
information about all the relevant model parameters (see The-
sis Chapter 4.3):
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Figure 7. Scheme of the sensitivity analysis

1. starting from 10◦C and 100% SOC, the impedance spec-
trum is measured with an EIS, in the 4000-1 Hz range
with 20 logarithmically spaced frequencies applying
two sinusoids (time employed: around 2 minutes);

2. then, the battery is discharged for three quarters of its
nominal capacity (75% DOD) with a current rate equal
to 3C, reaching 25% SOC (time employed: around 15
minutes);

3. the current is set to zero and the battery relaxation
process starts. The cell voltage and the battery surface
temperature are measured for 1000 s, and then the ambi-
ent temperature is modified to 25◦C. A certain amount
of time has to be waited to allow the heating of the
battery and to obtain a sufficiently homogeneous tem-
perature profile. With the battery samples employed
in this work, half an hour is sufficient for this purpose
(time employed: around 45 minutes);

4. a second EIS is performed, at 25◦C and 25% SOC, with
the same frequency range and spacing of the first one
(time employed: around 2 minutes);

5. the battery is discharged down to the minimum voltage
limit with a 1C current rate and a theoretical 25% DOD,
at 25◦C and starting from 25% SOC (time employed:
around 15 minutes).

With these five experiments, we expect to obtain information
on all the defining characteristics of the lithium-ion battery.

5. Calibration and validation
The data obtained from the application of the described method-
ology are used as the training dataset for an optimization al-
gorithm that has to objective to fit the results of the physical
LIB model to this dataset.
The employed algorithm is the Particle Swarm Optimization
(PSO), a gradient-free algorithm that is simple to implement
and robust. Being a mechanistic formulation, the P2D lithium-
ion battery model has complex non-linear relations between
the outputs and the inputs. Moreover, it is not easy to guess
an initial point that can be near to the cost function minimum,
due to the presence of an high number of parameters and to
the uncertainty about their actual value, that can span orders
of magnitude in some cases.
The solution space is defined by the number of model param-
eters included in the optimization and by the ranges in which
the values of these parameters can lie (see Thesis Chapter 5.1).
The cost function is a weighted sum of the root-mean-square
errors (RMSEs) between the results of the model and the train-
ing dataset. According to the methodology, the number of
experimental outputs included in the optimization is equal to
7: the battery voltage of the two discharge curve and of the
relaxation test, and the real and imaginary impedances of the
two EIS’s. The battery surface temperature is not included to
low accuracy and reliability of this experimental output (see
Thesis Chapter 5.1.1).

5.1 Calibration
To perform the tuning of the data fitting algorithm and to
confirm the capability of the said algorithm of obtaining an
accurate result for what concerns the values of the model
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Figure 8. Validation dataset: Discharge curves at 25◦C, from 100%
SOC to 0% SOC, current rate variation

parameters, we use two simulated training datasets obtained
from the model with two different sets of assumed model pa-
rameters (see Thesis Chapter 5.2). Both the sets of parameters
found by the algorithm fit well the simulated datasets, but only
the one associated to the first dataset is similar to the actual
values given as input to the model to simulate that dataset.
The first simulated dataset represents a battery whose elec-
trodes have different properties, with the positive one that has
a charge transfer resistance about four times higher than the
negative one, and a much lower characteristic frequency of
this resistance in the impedance spectrum. Instead, the sim-
ulated dataset 2 represents a battery whose electrodes show
very similar properties. In this situation, the fitting parameter
set does not represent the real one in a satisfactory way, even
if this combination of wrong parameters reproduces well the
training dataset.
From this test we understood that the particle radii of the elec-
trodes have to be fixed in order to be sure to obtain a correct
set of parameters, due to their strong influence on all the com-
ponents of the battery impedance. Also, we recognized the
need for more accurate correlations for the parameters that
determine the battery high frequency resistance, in order to
better distinguish the single contributions to this important
characteristic.
The final step of the calibration is the use of an experimental
dataset in the fitting algorithm as training dataset, to under-
stand if it is possible to find a set of parameters that reproduces
the behavior of a real battery only using the data obtained with
the proposed methodology (see Thesis Chapter 5.3).

5.2 Validation
After the experimental training dataset is applied, the set of
parameters obtained from the algorithm is then used to simu-
late different operative conditions in all the three techniques.
This validation dataset is composed of tests made during the
experimental campaign. The battery sample on which the
tests of the training dataset and of the validation dataset are

Figure 9. Validation dataset: Relaxation curves after discharges at
0.2C, 10◦C, with 20% DOD, starting SOC variation

Figure 10. Validation dataset: Impedance spectra at 60% SOC,
temperature variation

performed is the pristine US26650VT.
The RMSE of all the tests in the validation dataset are shown
in table 2, while in the figures 8, 9 and 10 it is possible to
compare some of the results of the model with the experimen-
tal data of discharge curves, relaxation tests and EIS’s. We
briefly report some of the performances of other parameter
estimation methodologies found in the relevant literature, to
have a benchmark to compare the results reported in table 2.
As far as the author’s knowledge, in the literature concerning
the parameter estimation made with an analogous model, the
reported root-mean-square errors are only related to capacity
tests or to driving cycles profiles, a kind of test that is not
included in this work.
Zhang et al. [31] reported RMSEs between 8 and 24 mV for
discharge curves between 0.5C and 2C at 30◦C, and between
20 and 37 mV for discharge curves between 0.5C and 2C at
15◦C, on LiCoO2 batteries. Park et al. [57] obtained RMSEs
of 11.8 mV and 25.5 mV, respectively for a 0.5C and 1C dis-
charge at 25◦C, with a NCA battery. Li et al. [58] worked
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Table 2. Summary of the RMSE between the model data and the
experimental data in the validation dataset

on a LMO battery, achieving RMSEs between 6.4 mV and
12.9 mV for discharge curves between 0.5C and 3C, at 25◦C.
Yang et al. [59] reported RMSEs of 15.6 mV and 21.6 mV,
respectively for a 1C and a 2C discharge curve, at 25◦C, with
a NMC battery. We can see how in the same operative condi-
tions, our results are aligned with the literature, also including
in our work a much wider range of operative conditions and
techniques.
The zones where the model performed less well were the ones
of low/very low states of charge and low temperatures, proba-
bly due to a non-optimal fitting of the thermodynamic charac-
teristic of the battery, and of correlations that are not suitable
for highly non-linear effects like the ones found at low SOC
and low ambient temperature. Moreover, there is the need to
improve the speed of the simulations, in order to increase the
number of iterations made by the algorithm, obtaining more
accurate results. Nevertheless, the results obtained with the
application of the proposed experimental methodology sug-
gest that the combination of discharge curves, relaxation tests
and EIS can be a powerful tool for the parameter estimation
of a lithium-ion battery in a physical model. This novel and
comprehensive approach to battery characterization can be
a stepping stone in the definition of a complete diagnostic
procedure of aged lithium-ion batteries.

Conclusions
By studying and applying capacity tests, relaxation tests and
EIS’s on pristine and aged commercial battery samples, we
understood how the smart combination of these different tech-
niques can be a powerful tool to obtain a complete dataset on
the battery behavior.
A sensitivity analysis on a physical LIB model was used to
design the experimental methodology, balancing the trade off
between the amount of obtained data and the tests’ duration.
The methodology was then implemented and tested in a pa-
rameter estimation process, where a metaheuristic Particle
Swarm Optimization algorithm was employed to fit the model
results to the training dataset. Two simulated datasets and
one experimental dataset were used for the calibration and
validation of the methodology.
We showed how the validation dataset is well reproduced with
the estimated parameters in the majority of the conditions
not included in the training dataset, obtaining RMSEs that
are aligned with the relevant literature on the topic. The cali-
bration was performed on a very limited set of experiments
if compared to the validation datasets, and we considered a
much wider range of operative conditions and experimental
techniques than the literature.
We observed some limitations in the operative conditions
where the battery SOC and the ambient temperature are low.
It was highlighted the necessity of a proper fitting of the
thermodynamic characteristic of the battery to obtain a fully
reliable set of parameters.
The proposed methodology has shown promising results, and
it confirmed how the combination of different experimental
techniques and of a physical model can be a powerful tool for
a comprehensive battery characterization. The next important
step for the definition of a complete diagnostic procedure will
be the correlation of the values of the physical parameters with
the degradation sustained by the aged lithium-ion battery.
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Sommario

La crescita del mercato dei veicoli elettrici sta rendendo disponibile un grande
numero di batterie agli ioni di litio invecchiate, ritirate dopo la fine della loro
vita utile nei veicoli elettrici. In realtà, queste batterie possiedono ancora una
capacità residua che può essere sfruttata per applicazioni meno impegnative. Per
permetterne il riuso, è importante misurare il loro stato di salute e la vita utile
rimanente. L’obiettivo di questo lavoro è definire una metodologia innovativa per
la stima dei parametri fisici di una batteria agli ioni di litio, attraverso l’uso di un
modello elettrochimico e termico. I valori dei parametri fisici possono essere poi
associati agli effetti dell’invecchiamento.

La prima attività è una campagna sperimentale su batterie commerciali nuove
e invecchiate, nella quale tre tecniche di diagnostica sono utilizzate: test di capacità,
test di rilassamento e spettroscopie elettrochimiche di impedenza (EIS). Si è capito
come ogni tecnica può evidenziare in modi diversi gli effetti della degradazione sulle
batterie agli ioni di litio, e tutte e tre si sono dimostrate validi strumenti per la
stima dei parametri, specialmente se combinate assieme.

La seconda attività è un’analisi di sensitività one-factor-at-time del modello fisico
della batteria, dove le tre tecniche di diagnostica sono simulate in molte condizioni
operative, e 28 parametri del modello sono variati in un range definito da un’analisi
di letteratura. Il risultato è una classificazione dei parametri a seconda della
sensitività dei risultati del modello a una loro variazione. Da questa analisi, si è
formulata una metodologia sperimentale che bilancia la quantità di informazioni
ottenibili per la stima dei parametri e la durata dei test.

Infine, la metodologià è implementata e testata con un algoritmo di fitting Particle
Swarm Optimization (PSO). Due dataset simulati e un dataset sperimentale ot-
tenuto da una batteria commerciale da 2.6 Ah sono utilizzati per la calibrazione e
la validazione della metodologia. I risultati mostrano come i parameteri stimati
riproducono il comportamento della batteria in condizioni non comprese nel dataset
di allenamento, e come questa metodologia può essere un passo fondamentale per
la formulazione di una procedura di diagnostica completa per batterie agli ioni di
litio invecchiate.
Parole chiave: batterie agli ioni di litio, degradazione, modello fisico, metodologia
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Abstract

The growth of the electric vehicle (EV) market is leading to an increasing
number of aged lithium-ion batteries (LIB) that are retired after their end of life in
EVs. Nevertheless, these LIBs still retain a useful capacity that can be exploited in
less demanding applications. To enable the reuse of such batteries, it is important
to measure their state of health and the remaining lifetime. The purpose of this
work is to define an innovative methodology for the estimation of the physical
parameters of a lithium-ion battery, through the use of an electrochemical-thermal
model. The values of the physical parameters can be then linked to the effects of
aging.

The first activity is an experimental campaign on pristine and aged commer-
cial battery samples, where three diagnostic techniques are used: capacity tests,
relaxation tests, and electrochemical impedance spectroscopies (EIS). We under-
stood how each technique can highlight in different ways the effects of degradation
on LIBs, and all of them have proven to be valid tools for the parameter estimation,
especially if combined together.

The second activity is a one-factor-at-time sensitivity analysis of the LIB physical
model, where the three diagnostic techniques are simulated in a variety of operative
conditions and 28 model parameters are varied within sensible ranges defined by a
literature review. The result is a classification of the model parameters according
to the sensitivity of the model outputs to their variations. From this analysis, we
formulated an experimental methodology that balanced the amount of information
obtainable for the parameter estimation and the tests’ duration.

Finally, the methodology is implemented and tested with a Particle Swarm Opti-
mization (PSO) fitting algorithm. Two simulated datasets and one experimental
dataset obtained from a 2.6 Ah commercial battery sample are used for the cali-
bration and validation of the methodology. The results show how the estimated
parameters reproduce the battery behavior in conditions not included in the training
dataset, and how this methodology can be a stepping stone for the formulation of a
full diagnostic procedure for aged LIBs.
Keywords: lithium-ion batteries, degradation, physical model, methodology
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Introduction

The necessity of reducing greenhouse gases emissions is one of the most pressing
issues that our world is facing. To mitigate the impact of climate change and to
contain the temperature increase within safe values, there has to be a concerted
effort on all the main sectors of human economy. The most impactful sector is
the energy one, accounting for 71.2% of overall annual GHG emissions in 2016 [1].
This number includes electricity and heat generation in power plants and buildings,
transportation, manufacturing/construction energy needs and emissions related to
fossil fuels production. Therefore, the shift towards a decarbonized energy mix is
the key to achieve a serious decrease of GHG emissions, but this shift has to happen
in a relatively small amount of years. According to IPCC [2], the annual emissions
should peak in the next ten years, aiming to a zero-carbon economy by 2050.

The enabling technologies for such a switch are available: solar, wind, hydro,
biomass and nuclear power generation allow a near-zero carbon energy generation.
In particular, solar and wind energy have seen a continuous double-digit growth in
the installed capacity in the last years [3]. However, these two intermittent and
non-programmable renewable sources have to be coupled to an adequate integration
system in order to be exploited in a way that resembles the programmable fossil
fuel ones. Energy storage is the capstone of the integration technologies, allowing
a delay in the utilization of the generated power, increasing the flexibility of the
electric grid and facilitating the participation of the consumers in the grid operation.
Moreover, the extent of its development makes it one of the few energy technolo-
gies on track to meet the requirements for the Sustainable Development Scenario [4].

In parallel with this, the transportation sector is being transformed by the use of
electric motors as prime or auxiliary movers, with a steadily increasing adoption of
hybrid electric vehicles (HEV) and battery electric vehicles (BEV). The replacement
of the internal combustion engine, combined with a clean energy mix as input for
the production and use phases, could decrease the life cycle GHG emissions and the
toxicity indicators of a car [5], with evident benefits for the environment and for the
human health. Of course, these kinds of vehicles require an on-board storage system
that collects and delivers electric energy to the drivetrain, with strict requirements
about safety, compactness and weight.

Lithium-ion batteries (LIB) represent the vast majority of stationary energy storage
installations, owning 88% of 2016 new capacity and growing with a firm rate in
the last five years [4]. They are also the leading technology in the EV field, after
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2 Introduction

they rapidly replaced lead-acid and nickel-metal hydride batteries in the 1990s,
and consumer electronics. This fact can be explained by their advantageous prop-
erties compared to other kinds of electrochemical storage systems: high energy
and power density, long cycle life, low self-discharge rate and high cell voltage
[6]. Hence, lithium-ion batteries have the potential to avoid a significant share
of greenhouse gases emission, helping to reach the IPCC objectives. Nevertheless,
several challenges have to be faced in order to make LIBs a fully stable, performant
and sustainable technology. Safety issues, toxicity of some materials and end-of-life
(EOL) destination are among the most pressing ones [6].

This thesis will focus on the possibility of reusing lithium-ion batteries coming from
electric vehicles after their automotive end-of-life, in a circular economy framework.
In particular, it will deal with the development of an innovative methodology for
the testing of LIBs, in order to reproduce their behavior with a mechanistic model
and a set of physical parameters. This work goes into the direction of a formulation
of a diagnostic procedure that measures the EOL state of health and predicts the
remaining useful lifetime of aged lithium-ion batteries.

Outline

The structure of this thesis is:

Chapter 1 describes the state of the art of second-life lithium-ion batteries, fo-
cussing on the technical challenges of such a concept, and it presents the
research question of the thesis.

Chapter 2 explains the diagnostic techniques used in the experimental campaign,
as well as the employed physical model.

Chapter 3 reports the results of the experimental campaign made on four battery
samples, where three diagnostic techniques are employed: capacity tests,
relaxation tests and electrochemical impedance spectroscopies.

Chapter 4 explains the methodology and the results of the sensitivity analysis
made on the LIB physical model.

Chapter 5 reports the results of the fitting of LIB experimental data obtained
with the application of the proposed methodology.



Chapter 1

State of the art

1.1 Lithium-ion battery: Introduction

A lithium-ion battery (LIB) is an electrochemical energy storage system that
exploits the reduction/oxidation reactions of lithium ions to store and release elec-
trical energy. The concept was mainly developed during the 1970s and the 1980s
by John Goodenough, Stanley Whittingham and Akira Yoshino, who received the
2019 Nobel Prize for Chemistry for their work on the subject [7]. It was firstly
commercialized by Sony in 1991 as rechargeable battery for mobile phones, and in
the following decades it has become the standard for consumer electronics, electric
vehicles and stationary energy storage.

The main benefit of using lithium as reacting species is its advantageous stan-
dard electrode potential, equal to -3.0141 V vs. Standard Hydrogen Electrode
(SHE), one of the lowest among the periodic table elements [8]. This strong reactiv-
ity allows the manufacturing of high-voltage cells, up to 3.8 V as nominal voltage.
In addition, lithium is the lightest existing metal thanks to its low atomic mass
and hence it assures high specific energy and power if compared to other chemistries.

Lithium-ion batteries are closed systems, implying that reactants and products of
the electrochemical reactions are stored inside the battery. Therefore, the energy
and power density of the battery are strictly correlated, and they are linked to the
size of the device. Moreover, during normal operation there are no stationary con-
ditions in a LIB, due to the strong coupling between voltage, current, temperature
and the concentrations of reactants and products in the battery. As we will see in
the next sections, this inherent transient behavior of LIBs, with a wide range of
characteristic timescales involved, has several implications for their experimental
study and their modeling.

The simplest element is the lithium-ion cell (see figure 1.1), that operates at
a certain voltage V depending on the constituent materials and on its actual
thermodynamic conditions. It can be discharged or charged a current I, defined as
the rate of flow of electrons in the electric circuit of the battery. Its magnitude is
chosen according to the battery manufacturer specifications.

3



4 Chapter 1. State of the art

Figure 1.1: Depiction of a lithium-ion cell with its main components (Adapted from [7])

By integrating the operating current in time, it is obtained the number of the
electric charges that are exchanged with the battery, i.e. the exchanged capacity Q
usually measured in milliampere per hour (mAh):

Q =
∫ t

0
Idt (1.1)

By inserting the voltage V in the integral, we can obtain the exchanged energy J :

J =
∫ t

0
V Idt (1.2)

Cells can be connected together in modules: a series connection between cells in-
creases the voltage of the module, while a parallel connection increases its capacity.
One or more linked modules form a lithium-ion battery pack.

On every cell it is indicated the nominal capacity Qnom, obtained with standard
test procedures [9]. This quantity gives an approximate estimate of the maximum
amount of energy that can be exchanged with the cell. The available capacity of
the battery is usually expressed in a dimensionless form using the battery state of
charge, or SOC, defined as:

SOC = Q

Qnom

(1.3)

where Q is the available capacity. Using the SOC as parameter, it is possible to
study together batteries of different nominal capacity. The state of charge can be
expressed as absolute number (0−1 range) or as a percentage (0%−100% range) by
multiplying the definition of equation 1.3 by 100.

A LIB operates in a fixed voltage range to avoid safety problems and side re-
actions. Typical limits are 4.2 V as upper value and 2.8 V as bottom value at 25◦C,
but they can vary according to the chemistry of the electrodes. The minimum and
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maximum value of the battery state of charge are defined according to these limits:
at rest and at the standard temperature, a battery at the upper voltage limit has
SOC equal to 1, while a battery at the lower voltage limit has SOC equal to 0.

As it is common in electrochemistry, the current density i could be used for
lithium ion batteries:

i = I

Ael
(1.4)

where Ael is the surface area of the electrodes. With this quantity, the performance
of batteries of different size could be easily compared. However, in commercial
batteries the actual electrode area is usually quite difficult to evaluate, and hence
the current density is not generally employed.

The current at which a LIB work is related to its nominal capacity through the
current rate, or C-rate, C, defined as:

C = I

Qnom

(1.5)

The C-rate is the inverse of the number of hours that are needed to completely
charge or discharge the nominal capacity Qnom with a current I. For instance, a
C-rate equal to 2 h-1, more commonly written as 2C, means that the battery is
completely discharged in half an hour.

Usually, for high currents the real amount of time needed is lower than the C-rate
inverse. The lower or upper voltage limits are reached without fully exploiting the
battery nominal capacity, due to additional voltage losses that are not considered
in standard test conditions. The C-rate can partially substitute the current density
as way of comparing the performances of batteries with different size and nominal
currents. However, the information about the distribution of the current inside the
battery is lost.

For what concerns the efficiency of a lithium ion battery, it is possible to dis-
tinguish between:

• coulombic efficiency, or faradaic efficiency ηc, which is defined as:

ηc =
∫
disQnomdSOC∫
chQnomdSOC

(1.6)

It is the ratio of the electric charge extracted during a discharge and the
electric charge put into the battery during the charge needed to get that
discharge, in a closed cycle [10]. This efficiency accounts for irreversible charge
losses between cycles, due to unwanted side reactions of the cyclable lithium
with other elements of the battery. Generally, this parameter lays between
99.5% and 99.99%, and it is very influenced by the thermodynamic state
of the LIB. High or very low temperatures, high SOC and high C-rates are
detrimental for the coulombic efficiency;
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• energy efficiency or round trip efficiency, ηe, defined as:

ηe =
∫
dis V QnomdSOC∫
ch V QnomdSOC

(1.7)

It is the ratio of the energy extracted during a discharge and the energy put
into the battery during a charge needed to get that discharge, in a closed cycle
[11]. It is mostly determined by the current at which the charge and discharge
are performed. In the most common LIB operating conditions, the energy
efficiency is usually in the 60%-90% range. It is also possible to separately
define the discharge energy efficiency ηe,dis and the charge energy efficiency
ηe,ch as:

ηe,dis =
∫
dis V QnomdSOC∫
OCV V QnomdSOC

(1.8)

ηe,ch =
∫
OCV V QnomdSOC∫
ch V QnomdSOC

(1.9)

They are calculated with respect to the energy that is actually present in the
battery before the discharge or after the charge, calculated as the integral of
the open circuit voltage-state of charge curve (see section 1.1.1). The product
of the two efficiencies is the round trip efficiency, if they are calculated on the
same charge-discharge cycle. As the round trip efficiency, they are strongly
linked to the operating current, and they generally lay in the 80%-95% range.

Rigorously, in electrochemistry the anode is the electrode that is oxidizing, while
the cathode is the one that is reducing, so the name of the electrodes should switch
in case we are considering a discharge or a charge. Actually, in LIBs jargon the
negative electrode is always called “anode”, while the positive electrode is always
called “cathode”, hence taking the discharge condition as reference. We will always
use this convention in the following sections.

1.1.1 Open Circuit Voltage
The voltage-SOC curve is obtained by discharging/charging a battery with a

certain current rate between the voltage limits. If this current is low, it is possible
to reduce the impact of the induced voltage losses, i.e. the irreversibilities, or
overpotentials (see section 1.1.2). In the limit case, a near-zero current with an
extremely slow discharge/charge can approximate a reversible process, and in this
case the measured voltage trend is named open circuit voltage (OCV). The OCV
represents the thermodynamic characteristic of the battery, and it is the result of
the difference between the cathode and anode open circuit potentials (OCP).

To understand its meaning, we have to look at the lithium-ion batteries fundamental
working principle. In almost all the commercially available LIBs, during operation
lithium ions move from the negative electrode to the positive electrode and vice
versa with a mechanism called intercalation. It is defined as the reversible inclusion
of a species into a hosting structure, whose chemical bonds are not altered in the
reactions involving the intercalating species. Some proposed LIB chemistries involve
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conversion electrodes, i.e. materials that partake in the lithium redox reaction mod-
ifying their structure, but they are still in a research and development phase [12, 13].

When a battery is fully charged, most of the lithium is hosted in the anode structure,
while the cathode structure is depleted of it, and the system is in disequilibrium
due to this species unbalance. The electrolyte that permeates the two electrodes
allow only the movement of ions, whereas the external circuit permits only the flow
of electrons. Hence, the equilibrium can be reestablished when the external circuit
is closed and the lithium is separated in ions and electrons with the anode redox
reaction:

LiN
discharge
charge xLi+ + xe- + Li1-xN

where N is the anode host material. The lithium deintercalates from the anode and
reaches the cathode by moving in the electrolyte by diffusion and migration, while
the electrons flow in the external circuit creating an electric current.

Ions and electrons recombine thanks to the cathode redox reaction:

xLi+ + xe- + Li1-xP
discharge
charge LiP

and lithium intercalates in the cathode host material P. In this way, the battery
is discharged, with a spontaneous process that converts the energy of lithium
chemical bonds into electrical work. The anode gets delithiated, i.e. the concentra-
tion of lithium decreases, while the cathode gets lithiated, i.e. the concentration
of lithium increases. The opposite mechanism happens during the charge pro-
cess, which is not a spontaneous process and requires the provision of an external
work (i.e. a battery charger) in order to convert electric energy into chemical energy.

The intercalation and deintercalation process of lithium ions is driven by the
chemical potential difference between anode and cathode [10]. In fact, according to
Nernst equation, we have that at equilibrium the open circuit voltage difference
Eocv between cathode and anode is:

Eocv = −µLi,p − µLi,n
F

(1.10)

where µLi,p and µLi,n are respectively the cathode and anode lithium chemical
potentials, and F is the Faraday constant. Reminding the definition of µ, we can
write the chemical potential of lithium in the interstices of the host material as:

µLi = ∂G(cLi)
∂cLi

∣∣∣∣∣
T,P

(1.11)

which is the derivative of the Gibbs free energy of the Li-host compound G with
respect to the concentration of lithium in the host material cLi, i.e. the fraction
of available interstitial sites occupied by lithium [15]. In the ideal case, where the
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Figure 1.2: Anode (graphite) and cathode (LiCoO2) potentials, with the resulting battery voltage

as function of the battery SOC (adapted from [14])

interactions between lithium and the host structure are neglected, we would have
that the Gibbs free energy is a concentration-dependent quantity equal to:

G(cLi) = G0 + cLi∆G0 +RT [cLi ln (cLi) + (1− cLi) ln (1− cLi)] (1.12)

where G0 is the free energy of the host material without lithium, ∆G0 is the free
energy change without configurational entropy per mole of lithium added and the
last term is the free energy change coming from the possible configurations of the
lithium in the interstitial sites of the host material, i.e. the configurational entropy
dependent term. Deriving with respect to cLi for both anode and cathode and
putting the result in 1.10, we get:

Eocv = −
[
∆G0,p +RT ln

(
cLi,p

1− cLi,p

)]
−
[
∆G0,n +RTln

(
cLi,n

1− cLi,n

)]
=

= E0,p − E0,n +RT ln
[
cLi,n(1− cLi,p)
cLi,p(1− cLi,n)

] (1.13)

where E0,p and E0,n are the standard reduction potentials of the cathode and of the
anode, and the third term is the concentration-related term of the cell open circuit
potential. The standard reduction potential terms are obtained via the relation:

∆G0 = −nFE0 (1.14)

with n equal to the number of moles of electrons transferred in the reaction, that
in our case is equal to 1. From equation 1.13 we can see how Eocv is related to the
thermodynamic condition of the lithium ion battery at equilibrium conditions:
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• the higher the temperature, the higher the battery voltage;

• the higher the concentration of lithium in the cathode and the lower the
concentration of lithium in the anode, the lower the battery voltage. This
explains why voltage decreases while discharging the battery and vice versa;

• the higher the difference between cathode and anode standard electrode
potentials, the higher the battery voltage. This fact highlights the importance
of the choice of the electrode materials.

Even when removing the ideality constraints, these considerations still hold true.
During operation there will be additional voltage losses due to the effect of current,
but the main trend will be dictated by the OCV.

An electrode open circuit potential curve (see figure 1.2) is measured against
a reference lithium metal anode, whose constant chemical potential does not in-
terfere with the trend of the cathode one. In this case, the anode-related terms in
equation 1.13 are substituted with the lithium metal standard electrode potential,
equal to 0 V, and we obtain only the OCP-SOC relation of the studied electrode
material. The concentration of lithium in the electrode can be expressed in a
dimensionless form as the electrode absolute state of charge SOCel, through the
relation:

SOCel = cLi
cLi,max

(1.15)

where cLi,max is the maximum concentration of lithium that can be accepted by the
electrode material. cLi is the concentration on the surface of the particles of the
electrode material.

The presence of voltage limits avoids the complete filling or emptying of an electrode,
and the concentration of lithium that is present in the host at these limits can be
expressed in a dimensionless form as:

SOCmin,n = cLi,n

cLi,max,n

∣∣∣
Vmin,25◦C

SOCmax,n = cLi,n

cLi,max,n

∣∣∣
Vmax,25◦C

SOCmax,p = cLi,p

cLi,max,p

∣∣∣
Vmin,25◦C

SOCmin,p = cLi,p

cLi,max,p

∣∣∣
Vmax,25◦C

(1.16)

where Vmin and Vmax are the battery voltage limits, specific to the cell chemistry,
measured at 25◦C in equilibrium conditions.
The electrode absolute state of charge SOCel can be rescaled in the 0−1 range as
the electrode relative state of charge SOCel

’ if we take into account the amount
of lithium that is present in the electrode when the voltage limits are reached,
according to the formula:

SOC
′

el = SOCel − SOCel,min
SOCel,max − SOCel,min

(1.17)
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Figure 1.3: Examples of different open circuit potential curves, showing their correlation with the

Gibbs free energy of the Li-host compound. (a) and (b): single phase solid solution;

(c) and (d): two phase solid solution; (e) and (f): two phase solid solution with

intermediate single phase (Taken from [16])

It is important to notice that at the upper voltage limit the anode relative state
of charge is 1 while the cathode relative state of charge is 0, since almost all the
available lithium is in the negative electrode. Vice versa at the lower voltage limit.
Reminding the definition of battery SOC given with equation 1.3, we see that the
anode relative SOC is equal to the battery SOC, while the cathode relative SOC is
its complementary number.

Looking at figure 1.3, it is possible to notice how in reality the open circuit
potential can strongly deviate from the ideal formulation described in equation 1.13,
due to the effect of the interactions between the constituents of the electrodes and
the cyclable lithium. According to the behaviour of the solid mixture(s) formed by
lithium and the host material, there can be several cases [16]. Some examples are:

• a single solid solution, as in figures 1.3.(a) and 1.3.(b). The OCP curve is
monotonously decreasing, quite similar to the ideal case;

• two phase solid solution, as in figures 1.3.(c) and 1.3.(d). The OCP curve shows
a constant voltage part, due to the two phase behaviour of the solid solution
between the Li-poor phase α and the Li-rich phase β, where µα=µβ=constant;

• two phase solid solution with intermediate phase, as in figures 1.3.(e) and
1.3.(f). The OCP curve shows a two constant voltage part with an intermediate
single phase behaviour. In between the Li-poor phase α and the Li-rich phase
β there is a stable intermediate phase γ.
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1.1.2 Overpotentials
When a current is applied to a lithium-ion battery, the trend of the voltage is

still dictated by the OCV curve, but there is the addition of voltage losses that
increases with current, also called overpotentials. These overpotential stem from
the irreversibilities caused by the movement of a charged species in one or more
media, and they can have three different natures [17]:

• ohmic overpotential: this voltage loss derives from the ohmic resistances
inside the cell, and implies an instantaneous voltage drop/rise after the
discharge/charge starts. It follows Ohm’s law, and hence it is proportional to
the applied current;

• charge transfer overpotential: when the electrochemical reactions are
activated, in an electrode the electrons and the ions, i.e. the charges, are
transferred between the different phases. This charge transfer reaction has a
certain rate, and it requires the overcoming of an energy barrier (activation
energy), which depends on the temperature, on the kind of reaction and
on the requested current, proportional to the reaction rate. The higher the
current, the higher the activation energy, which corresponds to an additional
voltage drop. Also, the formation of space charge layers, also called double
layer in solid/liquid interfaces, has to be taken into account [18, 19]. This
layers act like capacitances, and hence they smooth the voltage profile of the
cell during the first instants of the charge/discharge;

• diffusion overpotential: at high current rates, the diffusion processes of
lithium in the liquid electrolyte and, more often, in the solid electrodes become
dominant. The concentration of lithium on the surface of the solid particles,
which controls the open circuit potential of the electrode, becomes different
from the concentration of lithium in the bulk of the particles. Therefore, not
all the available lithium will be utilized for the reactions due to the limitations
induced by diffusion. The battery will reach the voltage limits with a lower
exchanged charge with respect to the equilibrium. Please note that this is not
a real overpotential that increases the irreversibilities of the reactions, but
it can be seen as a “faster movement” on the OCV curve of the electrode(s)
where the diffusion is limiting the flow of lithium inside or outside the solid
particle (see Chapter 1.2), hence creating an unbalance between the surface
and the bulk concentration.
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1.2 Lithium-ion battery: components
After having defined the basic quantities in the previous section, we can analyse

more in depth the lithium-ion battery structure, understanding better its advantages
and its limits. Lithium-ion batteries are composed by an anode, a cathode, an
electrolyte and a separator, plus the metallic current collectors that are necessary
to connect the battery to the external load or charger.

1.2.1 Electrodes
The desirable characteristics for the LIB electrodes are:

• high gravimetric capacity (or specific capacity): the capacity of lithium
per unit weight that can be accepted by the anode material, measured in
mAh/g. It is directly linked to the amount of energy that can be stored in
the battery;

• high volumetric capacity (or energy density): the capacity of lithium
per unit volume that can be accepted by the electrode material, measured in
mAh/cm3. An high value of this quantity corresponds to smaller batteries
for the same capacity;

• low electrode potential: to obtain an high cell voltage, the anode potential
should be the lowest possible, while the cathode one should be the highest
possible. The electrodes’ voltages are measured taking as reference the
lithium standard electrode potential of -3.0141 V, using V vs. Li/Li+ as unit
of measure. Therefore, the lithium standard electrode potential will be 0 V
vs. Li/Li+. We will always use this convention, but for the sake of brevity we
will keep the symbol V;

• high electronic conductivity: the electrode should offer the lowest possible
resistance to the electron flow, to avoid an excessive voltage drop;

• high mechanical stability: the continuous bidirectional reaction with
lithium ions cause volume changes to the electrode, inducing mechanical
stresses and eventually disordering the electrode structure. Therefore, the
volume change during charge and discharge should be reduced to minimum;

• high lithium solid diffusion coefficient: in many materials, lithium needs
to diffuse into and out the solid electrode structure during charge and discharge.
If the solid diffusion is sluggish, there can be severe performance limitations
with high current densities;

• high thermal stability: the electrode should be stable at high temperatures,
with a marginal impact of thermally activated decomposition side reactions;

• no side reactions with the electrolyte: the electrode is always in contact
with the electrolyte, and they should not cause undesired reactions that
consume both electrode material and cyclable lithium;
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• no side reactions with lithium ions: lithium ions can form inactive
metallic lithium and lithium dendrites, which both imply power and capacity
loss and safety issues. The electrode material nature and structure should
not favour these reactions;

• no toxicity and flammability: these properties are fundamental for the
safety of the lithium-ion battery in all the phases of its lifecycle;

• low cost

Anode

The anode is the negative electrode of a lithium-ion battery. As previously
discusses, in this electrode, we observe an oxidation reaction during discharge and
a reduction reaction during charge.
The most obvious choice would be the use of lithium metal as anode material,
thanks to its very low and constant electrochemical potential (0 V), its very high
gravimetric capacity (3860 mAh/g) and low density (0.534 kg/m3) [20]. Despite
its lightness, it still retain an high volumetric capacity (≈1900 mAh/cm3). The
straightforward redox reaction is:

Li(s)
discharge
charge Li+ + e-

However, ionic lithium tends to deposit in an irregular way on the lithium metal
anode surface, becoming inactive and reducing the cell capacity. In fact, this
kind of anode has a low coulombic efficiency. Moreover, the deposited lithium
forms needle-shaped structures called dendrites, that cause severe safety problems:
dendrites can short-circuit the battery by piercing the separator and connecting the
anode with the cathode [21]. For these two key problems, lithium metal anodes are
not currently in use in LIBs, except in laboratory coin cells as reference electrodes
for cathode materials.

Instead, carbon-based materials have established themselves as anode material of
choice [22], thanks to their good theoretical gravimetric capacity (372 mAh/g),
low potential (0.05-0.8 V) and the high reversibility of the intercalation reaction,
corresponding to very high coulombic efficiency. In particular, graphite is now the
leader in commercial batteries, owning 89% of the anode materials market share as
of 2016 [13]. Graphite has a regular and stable layered structure, that favours the
ordered insertion and deinsertion of lithium between parallel carbon layers. In this
case, a possible intercalation reaction in the anode is:

LiC6
discharge
charge xLi+ + xe- + Li1-xC6

Intercalation in graphite is one of the most studied phenomena of lithium-ion
batteries, and it results in a quite complex OCV curve, the outcome of the process
called staging [24, 25]. Lithium firstly occupies interlayers that are distant to
each other due to repulsion effects, before occupying more and more neighboring
interlayers. This mechanism creates distinct Li-C solid phases, with large two-phase
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Figure 1.4: Example of OCV curve of graphite, where the single phases are labelled with their

name and the phase transitions are highlighted with different colours (Adapted from

[23])

transition regions that regularly occur at determined voltages. These phases are
named with a number according to the nth interlayer that is occupied by lithium,
and eventually a letter L that indicates a disordered, liquid-like behaviour of lithium
in the interlayers if compared to the ordered behaviour in normal phases.

According to the literature on the topic [26, 27], at ambient temperature up
to six different phases can be present (figure 1.4):

• 1L (≈LiC72): also called graphite solid solution. When lithiation begins,
lithium occupies every available interlayer in a disordered manner. It is
followed by a small phase transition towards the stage 4L;

• 4L, 3L, 2L (≈LiC36, ≈LiC27, ≈LiC18): increasing the concentration,
lithium starts to occupy every fourth, then every third and then every second
interlayer available, with a liquid-like behaviour. There are not distinct phase
transitions between these three stages, and it seems that usually it exists a
superposition of them [27];

• 2 (LiC12): the transition from the stages 4L/3L/2L to the ordered stage
2 is quite evident, and it can be identified as a voltage plateau at around
100-120 mV.

• 1 (LiC6): the transition from stage 2 to stage 1 is well understood, and it
sits around 85 mV.
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Their presence strongly depends on the current rate at which the OCV curve is
measured, since some phases are formed only with extremely slow lithiation. For
instance, Dahn et al. [23] observed the formation of only four different phases with
1/80C, an 80 h discharge. In a subsequent work, Dahn [24] identified all the six
phases with 1/800C, which corresponds to a 800 h discharge, but the 2L phase
was very short-lived.

The disadvantages of the graphitic anode are its quite low volumetric capacity
(330-440 mAh/cm3), a not negligible 10% volume change during cycling and,
most of all, the formation of a relevant solid electrolyte interphase (SEI) on the
graphite-electrolyte interface. This layer consumes available lithium, reducing the
cell capacity, and increases the overall resistance, hindering the power capability.
It will be better described in the degradation section of the thesis (see section 1.3.2).

Other types of commercially available anode materials include:

• Graphite-Silicon mixtures (C-Si): small amount of silicon are now usually
added to the the graphitic anode by manufacturers (up to 5% wt) [28]. SI
has a very high gravimetric capacity, exceeding 3000 mAh/g. Hence, even
some traces can bring the gravimetric capacity of graphite anode to 400-500
mAh/g, overcoming its theoretical limit. As drawback, the electrode voltage
is in average higher;

• Amorphous carbons (C): disordered carbon structures, as hard and soft
carbon, represent a small market share of the commercial anode material
(≈7%) [13]. Their structure is full of configurational defects in which lithium
can intercalate, increasing the theoretical limit of 372 mAh/g, and they have
a lower cost than graphite. Nevertheless, their high specific surface favours
the formation of an high amount of SEI, limiting the cell available capacity;

• Lithium Titanate (LTO): Li4Ti5O12 is an anode material that is thermally
stable, has zero volume change during cycling and a good volumetric capacity
(≈600 mAh/cm3). It has an exceptional coulombic efficiency, since the SEI is
barely present in this kind of electrode. However, it shows an high electrode
potential (1-2 V) that severely limits its specific capacity (175 mAh/g), and
the cost of titanium is way higher than the one of graphite [11]. For these
reasons, the use of LTO is limited to some high power application, with a
very small 2% market share.

The anode materials are manufactured as a fine powder with an average radius
in the order of micrometers. A binder agent [29, 30] is required to consolidate
the porous electrode structure, counteracting to volume changes, and to bind the
anode powder to the anode current collector, that it is usually made of copper [31].
Additional agents as carbon black can be added to the anode to improve electronic
conductivity, but this is less important than in cathodes thanks to graphite good
conductive properties.
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Cathode

The cathode is the positive electrode of a lithium-ion battery. In this electrode,
we observe a reduction reaction during discharge and an oxidation reaction during
charge. The desirable characteristics for a LIB cathode are almost the same of the
anode. The only difference is that cathodes require a high electrode potential, in
order to obtain a high voltage battery. During the years, lots of cathode materials
have been proposed and there is plenty of research in this field [12]. The ones that
managed to get into the market belong to the categories of transition metal oxides
and polyanion compounds. The commercially available cathode materials are:

• LCO: LiCoO2 was the first metal oxide to be employed in commercial LIBs
[32]. LCO has a layered structure with an high theoretical gravimetric capacity
(274 mAh/g), very high theoretical volumetric capacity (1363 mAh/g) and
an high electrode voltage (up to 4.5 V). However, its main limitation is that
the voltage has to be capped to 4.2 V to avoid structural disordering due to
deep delithiation, halving its capacity [33]. Moreover, it has a low thermal
stability, and cobalt is an expensive and toxic material;

• NCA: cobalt can be effectively substituted by nickel, another transition metal
which is much more cheaper and less toxic while retaining a high specific
capacity. Still, nickel has the tendency of occupying the sites in the cathode
structure available for lithium ions, hindering lithium diffusion [34]. Hence,
the addition of a part of cobalt improves the stability of the material. Includ-
ing also a fraction of aluminum can enhance the thermal stability and reduce
the impedance rise due to the formation of an electrolyte interphase on the
nickel-cobalt cathode [35]. As a matter of fact, layered LiNi0.8Co0.15Al0.05O2,
or NCA, is now used in electric vehicle applications thanks to an high theoret-
ical gravimetric capacity (279 mAh/g), high theoretical volumetric capacity
(1284 mAh/g) and a wide voltage operating range. However, the interphase
formation on the cathode is enhanced when exceeding 40◦C, inducing severe
capacity fade [36];

• LMO: pure manganese cathodes are commercially available as LiMn2O4, the
three-dimensional spinel form of this transition metal oxide. It is a more
stable structure compared to the two-dimensional layered form [37], but still
LMO suffers from substantial degradation during lifecycle, and it has the
lowest gravimetric capacity among commercial cathodes (148 mAh/g). Its
main benefit is the very low cost of manganese if compared to the other
commonly used elements;

• NMC: manganese is another cheap and environmentally friendly material that
is suitable as a component of cathode electrodes. However, in layered LiMnO2,
manganese is prone to dissolve in the electrolyte, disordering the cathode
structure and enhancing the graphite anode SEI formation [12]. Therefore,
nickel and cobalt are added to highly improve the structural stability of
the manganese compounds. Layered LiNi0.33Co0.33Mn0.33O2, or NMC 111,
has found widespread application in lithium-ion batteries, due to its very
high theoretical gravimetric and volumetric capacity (280 mAh/g and 1333
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mAh/cm3) and the very high coulombic efficiency. The research efforts are
going towards the increase of the nickel content in NMC, as NMC 632 or
NMC 811 [38], to reduce the presence of toxic and expensive cobalt and
increase the specific capacity by lowering the percentage of manganese;

• LFP: among polyanion compounds, LiFePO4, or LFP, is the only one that
is commercially available. It is a very thermally stable material, capable of
sustaining well high current rates. It has a quite low theoretical gravimetric
capacity (170 mAh/g), but, unlike transition oxide metal, the high LFP
electrochemical stability allow the utilization of almost all this theoretical
capacity [39]. As drawbacks, its average voltage is quite low, and the electronic
conductivity and solid diffusivity of lithium are very limited. To overcome
this disadvantage, LFP particles are manufactured to have the average radius
in the order of nanometers, compared to transition metal oxides particles
radius that is in the micrometers range.

In commercial batteries, it is possible to find cathodes formed by the blending of
two intercalating materials Ẇith this technique, manufacturers try to adjust the
advantages and disadvantages of two different materials, creating more balanced
cathodes with mixed properties.

Transition metal oxides and polyanion compounds can show poor to very poor
electronic conductivity due their semiconductor behaviour [40]. This fact can
severely hinder the lithium redox reaction, which requires the presence of free elec-
trons. Consequently, cathode materials are enhanced with electronically conductive
particles, often made of carbon black, in order to overrun this drawback [41]. Hence,
along with the required binder like in anodes, in porous positive electrodes there is
this more additional electrochemically inert material due to their worst conductive
properties. The cathodic current collector is made of aluminum, which it is not
corroded at the high voltages of cathodes [31].

1.2.2 Electrolyte
The role of the liquid electrolyte solution in LIBs is the transport of lithium

ions between the anode and the cathode during the charge/discharge process [42,
43]. Lithium ions can be transported by migration, i.e. by a potential difference,
and by diffusion, i.e. by the driving force created by the lithium concentration
gradients in the electrolyte.

An electrolyte solution is made up of three components:

• an electrolyte salt, that it is dissolved into Li+ and an anion, thus providing
the electrically conducting solution to the system. Lithium hexafluorophos-
phate (LiPF6) is the dominant choice among electrolyte salts for LIBs. It is
not so thermally stable, and it is very sensitive to water, making more difficult
and costlier its manufacturing and handling. Nevertheless, other possible
salts are even more limiting than LiPF6 [43];
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• an electrolyte solvent, that dissolves the electrolyte salt, allowing the
formation of an ionic current. Liquid solvents can be aqueous, i.e. water, or
non-aqueous, as organic molecules. In case of LIBs, the aqueous solvents have
a much smaller potential stability window than non-aqueous one, and so the
latter are the only one that are commercially employed. However, aqueous
solvents are inherently safer, and they do not present flammability or toxicity
problems, and research efforts are going towards the development of stable
water-based electrolytes [44, 45];

• electrolyte additives, tailored on the specific chemistry and on the purposes
of the LIB. They can made up to 5%wt of the electrolyte solution, and they can
serve to several purposes, such as SEI controllers, electrolyte salt stabilizers,
current collectors corrosion inhibitors, cathode protectors, safety enhancers
and Li+ deposition improvers [46];

The desirable characteristics for an electrolyte solution are:

• high ionic conductivity: the key property for an electrolyte, that quantifies
how much ions are mobile in the solution, and hence their availability for the
electrochemical reactions. To obtain an high ionic conductivity, it is needed
that the solvent shows a high dielectric permittivity, to dissociate well the salt
in cations and anions, and a low viscosity, to allow a smooth ion transport
[42]. No single solvent has both these qualities, therefore commercial LIBs
contain mixtures of solvents that are characterized by the first property, as
ethylene carbonate (EC), and by the second property, as dimethyl carbonate
(DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) [47].
In commercial batteries, electrolyte salts are dissolved into solvents with
concentrations ranging from 800 to 1500 mol/m3, depending on the solvent
mix, in order to optimize the value of ionic conductivity;

• high lithium diffusion coefficient: while conductivity is related to the
ability of an ion to pass through a medium when there is an external electrical
field, the diffusivity represents the ability to pass through a medium where
there is a species concentration gradient. It can be demonstrated that ionic
conductivity and diffusivity are the same property and that they are directly
correlated [40]. Therefore, an high ionic conductivity will assure an high
lithium diffusion coefficient;

• high lithium transference number: this number represents the amount
of cations, i.e. lithium ions, that are transported by the ionic current with
respect to the total migration flow of cations and anions. An high transference
number is important because the current that matters is the cationic one,
and the information given by the ionic conductivity is on the total ionic flow
[47]. Usually, the transference number of commercial LIB electrolytes lies in
the 0.2-0.4 range;

• high thermal stability: the electrolyte should be stable at high tempera-
tures, without decomposing and generating dangerous products, as gases;
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• electrochemical stability: the electrolyte should be stable in the whole
voltage range in which the battery operates, so between 0.05-0.5 V for the
anode and 3.8-4.5 V for the cathode. If not, the electrolyte can decompose
and form solid electrolyte interphases (SEI) on the anode and/or on the
cathode;

• no toxicity and flammability: these properties are fundamental for the
safety of the lithium-ion battery in all the phases of its lifecycle;

• low cost

Solid state electrolytes could be one of the most interesting improvements of LIBs
in the next future. Their higher thermal and (sometimes) electrochemical stability
can greatly improve LIBs safety and widen the voltage and thermal operating range.
Moreover, only lithium ions are transported with the ionic current, improving the
power capabilities of batteries. However, they are still in a phase of research and
development, and problems about interface kinetics with the electrodes needs to be
solved [48].

1.2.3 Separator
The separator is a porous solid barrier which has the purpose to physically

separate anode and cathode, preventing short-circuits, while allowing the flow of
ions through the electrolyte. It also acts as a fuse in case of battery malfunctioning,
since it can melt when critical temperatures are reached, closing its pores and hence
cutting the ionic current between anode and cathode. The ideal properties for
separators are high wettability, high mechanical and thermal stability, fusibility at
determined temperatures, no electronic conductivity to avoid battery self-discharge,
electrochemical stability and small thickness [49]. In commercial batteries, they are
commonly made of polyolefins, often covered by a ceramic coating, with a thickness
in the 10-20 µm range [13].
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1.3 Lithium-ion batteries: degradation
Lithium-ion batteries are time-variant systems, since their performances depend

on the actual state of its constituents, that varies in time. The electrodes and the
electrolyte properties continuously change with respect to the battery beginning
of life (BOL), due to unwanted side reactions that degrade in various ways these
components.

This is the reason why LIBs have to be replaced after a certain time, since they can
show both a capacity fade and a power fade caused by these degradation reactions.
In the EV industry, the common threshold for the end of life (EOL) of a LIB is
when it retains 80% of the initial capacity or of the initial power [50]. Even if this
number is quite arbitrary [51] and not so usually reached in the eight-years long
warranty period of EV lithium-ion batteries [52], the remaining available capacity
and power could be more than enough for other less demanding applications. This
concept is the foundation of the battery second use (B2U), which aims to increase
the useful lifetime of EV lithium-ion batteries, obtaining several benefits.

Of course, for such an objective, it is of the foremost importance to understand
how the components of the battery degrade, which are the effects of degradation
and how to effectively detect them, predicting the future behaviour of the battery.

1.3.1 Circular economy of lithium-ion batteries
The destination of lithium-ion batteries after their end of life is quite an open

issue. Until now, the low volumes of spent LIBs, mostly coming from consumer
electronics, has not driven much innovation in the sector, due to the classic chicken-
and-egg problem. However, the recent surge in electric vehicle sales and the
spreading of energy storage systems will bring increasing quantities of LIBs at their
EOL in the next years [53] (see figure 1.5).

The number of facilites that are able to recycle LIBs are increasing, and cur-
rently seems that they are able to process around 50-60% of the yearly disposed
batteries [54]. The high-temperature pyrometallurgical and low-temperature hy-
drometallurgical processes recover pure materials, while the direct cathode recovery
process is used to directly obtain a new positive electrode from the spent battery
[55]. The available recycling processes are feasible from an economic and environ-
mental point of view only if there are considerable percentages of precious and
energy-intensive metals that can be recovered, i.e. cobalt and nickel in LCO and
NMC batteries [56]. If not, LIB recycling plants have to be subsidised, and anyway
their profitability is strongly linked to the quite volatile market prices of these
metals. Moreover, the tendency is to lower the amount of cobalt in batteries due to
the toxicity and the cost of this material, further hindering the economic viability
of recycling.

The other option for the EOL management is the battery second use, or bat-
tery second life, which means the repurposing of aged batteries for uses that are
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Figure 1.5: Lithium-ion batteries placed on the market, in tonnes, with forecast to 2025 (Taken

from [53])

different from the original one. In a circular economy framework, reuse should be
preferred to recycling, since it consumes much less energy and it directly provides a
ready-to-use product instead of pure materials or single components [57].

Focusing on the electric vehicle case, we mentioned how retired EV batter-
ies can retain 80% or more of their initial capacity or power. For electric vehicle
users, it is fundamental to have maximum performances and autonomy throughout
all the car lifetime, and the battery needs to maintain quite high specific energy and
power, since it has to stay in the very limited space available in a road vehicle. This
is why EV batteries have these strict EOL requirements. Instead, energy storage
systems (ESS) are much less demanding, thanks to their modular structure, the
removal of the available space limitation and the more [58]. Also, light-duty EVs
such as e-scooters or e-bikes are more and more adopted in urban environments,
and their capacity and power requisites are a fraction of cars’ ones.

These two applications (especially the first one) can be the key for battery second
use, with several benefits for the entire lithium-ion battery value chain:

• reduction of environmental impact: depending on the electric energy
mix with which the EV is fueled, the LIB production phase can account for
10-20% of the life cycle GHG emissions and 20-50% of the toxicity indicators
for the environment of an electric car [59]. These figures increase with cleaner
energy mix as input for the vehicles. The extension of the battery lifetime
by 10-20 years can reduce this impact by avoiding the production of new
batteries for the systems in which second-life batteries are employed and
delaying the recycling process;

• decreased upfront cost of EV: leasing is the commonly used business
model for the battery pack of an electric vehicle, hence Original Equipment
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Manufacturers (OEMs) retain the ownership of the battery after their re-
tirement [60]. The revenue streams that come from B2U can be taken into
account to reduce the leasing fee for customers (between 5 and 25%) [61],
decreasing the overall EV cost;

• lower investment costs for ESS: in 2015, the potential difference of the
cost between new and repurposed LIBs was estimated to be between 30 and
70%, depending on the first-life degradation rate and on the second-life use
[62]. Therefore, the investment cost for energy storage systems in which
second use batteries are employed can be quite reduced, with lower barriers
for the implementation of such fundamental systems for the integration of
renewable energy in the electric grid. All the pilot projects of B2U are directed
towards ESS solutions, with car manufacturers as project sponsors [60];

Nevertheless, B2U faces several important challenges that needs to be solved for an
economically viable and scaled implementation:

• Degradation identification: the value that can be extracted from second-
life batteries strongly depends on their remaining lifetime and on the power
performances. Without reliable data about the capacity and its future trend,
it is quite hard to implement them in energy storage systems, since the ESS
profitability and operation strategy (e.g. frequency regulation, behind-the-
meter time of use, energy time shift) depend on the battery capabilities
[62]. High uncertainties on the state of health can hinder the adoption of
B2U. For this reason, it is of foremost importance to identify the degradation
mechanisms that are affecting the battery and infer the future trend of
the capacity and power fade. Ideally, this should be made at a cell level,
since in battery modules the aging process is quite heterogeneous, and the
worst performing cells limit the overall performances [63]. Enabling the
possibility to rearrange battery packs and to group together cells with similar
degradation characteristics will allow the creation of more homogeneous and
reliable second-life batteries;

• Battery handling and disassembly: battery packs have to be disassembled
in order to test and repurpose the cells for B2U. This phase can be quite
dangerous, because of the safety hazards of handling lithium-ion batteries,
such as short-circuits and thermal runaway [57]. Actually, the disassembling
is performed manually by specialized operators, but with the forecasted high
volumes of potential second-life batteries, the automation of the process has to
be implemented [64] to avoid bottlenecks and high refurbishment costs. The
absence of a standard for battery packs (different for every car manufacturer),
cells (cylindrical, pouch, layered, coin) and support materials (glues, bolts,
cases) implies a hard challenge for this delicate process. This fact shows the
importance of the inclusion of circular economy principles in the design phase
of lithium-ion batteries;

• Diagnostic tests: like the disassembly phase, also the diagnostic of cells lacks
a standardized and automated procedure. A variety of techniques are studied
and/or used [65], but only the most simple and less insightful ones have
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reached a quite widespread use. The normalization of this phase will decrease
the refurbishment costs and will increase the reliability of the remaining
lifetime prediction. Moreover, in a market logic, the full comparability of
the diagnostic results will allow an unbiased choice of the best second-life
product.

This thesis will deal with the first and the third problems, and hence in the next
sections, before introducing the thesis specific objectives, we will briefly discuss
about the state of LIB degradation identification and diagnostics.

1.3.2 Degradation mechanisms
The topic of lithium-ion batteries degradation has been thoroughly studied

during the years [66–68], and there is a widespread accordance on the mechanisms
and on the related causes of degradation.

As we already mentioned, degradation can affect both the energy and power
capabilities of a LIB. For the first quantity, we observe a capacity fade, which
corresponds to a decrease of the available lithium that can be cycled between the
anode and the cathode (loss of lithium inventory, LLI) or to a reduction of
electrochemically active material sites in both electrodes (loss of active material,
LAM). For instance, in electric vehicles a capacity fade corresponds to a decrease
of the available range. For the second quantity, we have a power fade, where there
is an increase of the battery impedance due to the formation of additional resistive
layers in the electrodes, a decrease of the conductivity of the existing ones and a
decrease of the specific active area for the electrochemical reactions (resistance
increase, RI). Power fade also occurs with the LAM, since this degradation mode
reduces the amount of surface available for the electrochemical reactions, with
an effect that is comparable to the decrease of specific active area [69]. Keeping
the example of electric vehicles, a power fade corresponds to lower acceleration,
maximum speed and drivability.

The mechanisms that induce this worsening of the overall performances of LIBs are
(see figure 1.6):

• SEI growth: the solid electrolyte interphase, or SEI, is a layer that is gener-
ated on carbonaceous anodes after the first charge of the battery. Since the
non-aqueous electrolyte is unstable at low potentials, at around 0.8 V it is
reduced on the active carbon surface, forming an interface, i.e. the SEI, com-
posed by inorganic and organic products of the salt and solvent degradation
[70]. Its composition strongly depends on the electrolyte formulation, but
generally it is made by C, Li and salt/solvent components, as P, F, or Br [71].
Its permeable structure allows the flow of lithium-ions, and it protects the
anode from further contacts with the electrolyte. Therefore, after the first
cycle, the SEI growth rate is strongly reduced thanks to the protective action
of the SEI itself that separates the anode and the electrolyte The SEI con-
sumes cyclable lithium, inducing a capacity fade, and it creates an additional
layer that has to be crossed by the ionic current, hence increasing the overall
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cell resistance and causing a power fade. The SEI growth continues during
the battery lifetime, and it is enhanced by high temperatures, high voltages
and high current rates, all factors that favours the SEI formation reactions
kinetics. An electrolyte interphase can be also present on the cathode side
if the cathode voltage reaches high values that can favour the electrolyte
oxidation. It is usually called Cathode Electrolyte Interphase (CEI), but its
formation and growth is not generally limiting for LIBs performances [72];

• SEI decomposition: the SEI is not stable at high temperatures, and it can
show a damage-reformation cycle that alters its structure and properties [73].
In particular, the SEI decomposition allows the contact between the anode
and the electrolyte, inducing the formation of additional SEI and further
capacity and power loss;

• Electrolyte decomposition: as we have seen describing the SEI, all the
electrolyte components are involved in side reactions, and hence their concen-
trations in the solution is modified. Since the electrolyte salt concentration
is optimized for maximum ionic conductivity, its variation induces a loss of
conductivity, with the consequence of a resistance increase in the cell. More-
over, the electrolyte can degrade also because of high temperatures, forming
dangerous gases [74];

• Binder decomposition/loss of electric contact: the binder and the
conductive additive keep stable the anode/cathode structure, also ensuring
that all the electrochemically active particles are connected together. High
temperatures can induce binder decomposition reactions, and during cycling
the volumetric expansion or/and the fracturing of electrode materials can
also influence the binder-additive structure, isolating active particles from the
whole electrode, i.e. a LAM [75];

• Graphite exfoliation: the layered structure of graphite is altered by the
interaction with the electrolyte. The carbonate solvents can cointercalate
with lithium in the interlayers, and the gases produced by the electrolyte
decomposition reactions can exfoliate the anode structure [76]. Graphite
exfoliation isolate active electrode particles, inducing a loss of active material;

• Structural disordering: both the electrode structures can suffer from high
reaction rates, i.e. high currents, in particular lithiation states. For instance,
highly lithiated LMO changes its cubic structure into a tetragonal one, with
a phase change that causes binder decomposition and particle cracking [67].
Instead, the graphite anode should not be brought to its most delithiated
states with high current loads in order to avoid the degradation of graphite
into disordered carbons [77];

• Lithium plating/dendrite formation: in the negative electrode, overpo-
tentials due to high charging currents can bring the overall electrode potential
below 0 V. In this potential range, the deposition of lithium becomes ther-
modynamically allowed [78]. If the lithium ionic current is too high to be
accepted by the graphite structure with the intercalation reaction, the plating
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reaction occurs, consuming cyclable lithium [79]. Metallic lithium can form a
film on the graphitic anode, which increase the overall impedance of the cell by
the removal of active sites, and also dendrites, whose needle-like structure can
potentially pierce the separator and create short-circuits. Lithium deposition
is enhanced by low temperatures, which decrease the solid diffusion coefficient
of lithium in graphite;

• Electrode particle cracking: the fracture of electrode particles can happen
both in anode [80] and cathode [81]. This phenomenon is caused by mechanical
stresses, due to phase transitions and volume variations. Particle cracking
expose active particles to the electrolyte, increasing the SEI or CEI formation,
and it can isolate parts of the electrode;

• Transition metal dissolution: transition metal oxides cathodes can suffer
from the dissolution of the transition metals embedded in their structure due
to very low or very high voltages [82]. For instance, in LMO cathodes the
manganese disproportionation reaction occurs at low potential, and it removes
some Mn ions from the positive electrode structure, substituting them with Li
ions. The Mn ions are transported by the electrolyte to the anode, where they
enhance the SEI formation. Instead, at high potentials there are dissolution
reactions both in LCO, for irreversible structural changes, and LMO cathodes,
for the interaction with fluoridric acid (HF), which is formed by the electrolyte
hydrolysis with water impurities due to the manufacturing process;

• Corrosion of current collectors: the copper (anode) and aluminum (cath-
ode) current collectors can experience corrosion due to very high potentials
for Al or very low potentials for Cu. Also, the effect of HF enhances Al
degradation [31]. This mechanism increases the impedance of the cell, due to
the lower amount of conductive material, and reduces the active sites for the
lithium intercalation, since metallic ions can deposit on the electrodes surface.

1.3.3 Degradation diagnostics and identification
As we have seen, the causes of degradation are numerous, and most importantly

they are strongly interdependent. Very different mechanisms can be due to the
same stressors and they can bring to the same degradation modes, often disguising
and/or enhancing each other.
For instance, in literature it is reported how lithium-ion cells exhibit a sudden
exponential capacity decrease [62] (“ageing knee”) after a certain number of cy-
cles that had a linear ageing trend, depending on the battery type and on the
operative conditions. The identification of the onset of this phenomenon is very
important for B2U, since after the ageing knee the battery capacity sharply reduces
and they need to be substituted. This nonlinear behaviour has been attributed
to the occurrence of lithium plating enhanced by other degradation mechanisms
[83], to an exponential behaviour of LAM that is initially hidden by a linear be-
haviour of LLI [84, 85] and to the oversizing of negative electrode compared to
positive electrode which postpones the effect of LLI and LAM [84, 86]. Each of
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Figure 1.6: Summary of degradation mechanisms with the related causes and effects in lithium-ion

batteries. (Adapted from [69])

these explanations are acceptable to elucidate the origin of the aging knee, and
they can fit different used batteries according to their chemistry and first-life history.

The inherent complexity of the degradation phenomena is commonly summarized
in a parameter called state of health (SOH). This indicator has not a standard-
ized definition: the simplest one refers to the ratio between the actual maximum
dischargeable capacity Qmax measured with the same conditions of the nominal
capacity, and the nominal capacity Qnom [87]:

SOH = Qmax

Qnom

(1.18)

but it can also be related to the achievable peak power [88], to the DC [89] or AC
[90] cell internal resistance or to more complex evaluations on the overall state
of the cell [84]. The best representation of the battery state of health should
comprehend different features of the battery itself, such as a combination of the
listed parameters, in order to take into account all the aspects that contribute to
degradation and to have a sound prediction of the remaining useful life (RUL) that
considers also nonlinear and hidden effects.

The state of health determination stems from the execution of diagnostic tests, after
which the SOH can be calculated or estimated with a variety of techniques [87] (e.g.
direct measurement, model fitting, data filtering, data-driven approaches). There
are different types of diagnostic tests too [65], that can give insights on certain
characteristics of the LIB with varying degrees of accuracy and speed without
altering the structure of the LIB itself (non-invasive tests). Some of them will be
presented in the first part of chapter 2, since they have been employed during this
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thesis work.

In literature and in diagnostic standards, it is often used only one kind of test to
characterize a LIB, usually the capacity test at different temperatures and current
rates [91]. Nevertheless, it has also been shown how the use of more advanced
techniques and the combination of them permit to understand much better the
nature of a complex phenomenon such as degradation [65, 92]. In fact, the most
insightful approach should be the one that exploits the strengths of each one of these
tests, by combining them in an intelligent way that gives the maximum amount of
useful data in a reasonable time frame.

Then, the information gathered during diagnostics should be analysed with a
sound model that synthesizes the characteristics of the battery and how degradation
occurred with some key parameters. In fact, we propose the use of a physically-
derived model of lithium-ion batteries, adapted to the purpose of our work, in
order to fit the experimental data coming from several techniques to a tool that
can extend the outcome of the analysis to different conditions from the ones tested,
thanks to the generality of the underlying equations of the model.



28 Chapter 1. State of the art

1.4 Thesis objectives
This master thesis is the context of the interdepartmental CIRC-EV project,

which has the objective to enable the circular economy of lithium-ion batteries
through the development of an automated and rapid disassembly, diagnostic and
repurposing process of aged battery packs.
The MRT Fuel Cell & Battery Laboratory, where this thesis was developed, is
working on the diagnostic part, with the objective of developing a sound and fast
battery test procedure with the support of an electrochemical model of LIBs (see
chapter 4) for the degradation identification.
A previous thesis work on the same project [93] dealt with the preparation of the
test bench and the execution of an experimental campaign of battery stress tests
at different current loads. It also verified the feasibility of the identification of
degradation modes from battery experimental data with the electrochemical model.

The research question of this master thesis is: is it possible to estimate the
lithium-ion battery defining parameters through a physical model, by using data
coming from different diagnostic tests that give the maximum amount of insightful
information on the battery with a limited duration of the experiments?

The steps with which we will try to answer this question are:

1. execution of an experimental campaign on commercial battery samples,
to understand the information that are provided by three techniques in a
variety of operative conditions: the capacity test, the relaxation test and the
electrochemical impedance spectroscopy (EIS);

2. realization of a sensitivity analysis of the LIB physical model with respect
to the battery parameters, simulating a wide operative condition matrix of the
three diagnostic tests. Detection of the best conditions for the identification
of the battery parameters through the results of the sensitivity analysis, and
formulation of a test methodology;

3. implementation of the proposed methodology in a data fitting algorithm,
making the calibration and the validation with the use of both simulated and
experimental datasets.

The objective is to facilitate the development of a diagnostic test procedure for used
LIBs that can readily detect the parameters that are linked to degradation effects
[94], in order to understand its current state and infer about the remaining lifetime.
Moreover, the sensitivity analysis can be a useful general tool to understand the
behaviour of the LIB physical model in different operative conditions.
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Methodology

In this chapter, we will first describe the experimental techniques that are
utilized in this work to test lithium-ion batteries (see Chapter 3). Then, we will
present the LIB model that will be employed in the sensitivity analysis, with the
improvements made to it. (see Chapter 4).

2.1 Experimental techniques

2.1.1 Capacity tests

The most widespread diagnostic technique for lithium-ion batteries is for sure the
capacity test, that can be done both in charge and discharge. With this technique,
it is possible to measure the voltage-capacity relationship of the battery, which
depends on the C-rate and on the temperature at which the test is made. According
to the international standards and the recent literature, capacity tests can have a
current rate between 0.1C and 10C and an operating temperature between −20◦C
and 45◦C [65].
The higher the C-rate of the test, the higher is the influence of the kinetic parameters
of the battery that induce voltage losses, i.e. ohmic resistances, activation energies
and diffusion, with a decrease of the discharged or charged capacity. For low C-rates,
the voltage losses are much more limited, hence allowing the battery to receive
or release more energy. In fact, the nominal capacity of the battery is commonly
measured at a quite low C-rate, between 0.2C and 1C.
For the degradation diagnostics, this kind of test is useful to understand the
remaining capacity of the LIB and estimate the impact of the resistances on the
voltage curve. The choice of the test C-rate depends on the aspects that are
investigated and on the desired duration of the test.
The capacity test procedure is the following:

1. Assuming that initially the battery is at a random state of charge, it has to be
fully charged to 100% SOC in order to measure its whole available capacity.
Therefore, the battery is charged in two steps. The first one is the constant
current (CC) step, where the charging current I is kept constant, at a
value specified by the manufacturer that usually is around 1C. This step ends

29
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Figure 2.1: Example of voltage and current trends in a CC-CV charge process

when the battery voltage V reaches the upper voltage limit, a safety value
specified by the manufacturer;

2. At this point, the battery is not fully charged yet. In case the circuit was
opened, there would be a voltage drop equal to the overpotentials induced
by the charging current (see Chapter 1.1.2). It is important to remind that
we consider a battery at 100% SOC if its voltage at rest is equal to the
upper limit voltage. Therefore, the second step of the charging process is a
constant voltage (CV) step, where the current is gradually reduced to
keep the voltage constant by reducing the overpotentials while continuing
to charge the battery (see figure 2.1). The process stops when the current
reaches the so-called termination current, usually 5-10% of the nominal one,
when the battery is considered to be at equilibrium when the circuit is opened,
i.e. the voltage remains at its upper limit value. In reality, there is still
a drop due to residual overpotentials, in particular the one related to the
concentration disequilibria. The species diffusion processes in the electrolyte
and (mostly) in the electrodes are characterized by high time constants, and
the strong concentration gradients caused by the high-current CC step can
be still present after the end of the CV step. When the current is reduced
and then removed, the gradients tends to zero, with a consequent change in
the cell voltage. This mechanism will be better explained when describing
the relaxation test in section 2.1.2.
An even lower termination current would remove also this residual voltage
drop, but the time required to complete the charge would become too high,
so this approximation of a steady state is accepted.

3. when 100% SOC is finally reached, the battery can be discharged with
a determined current rate down to the lower voltage limit, without a CV
step. Manufacturers usually employ 0.5C or 1C to determine the nominal
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Figure 2.2: Example of incremental capacitance and differential voltage, with their relations

with the discharge curve

capacity, while in research works also higher or lower C-rates are used for
an in-depth study of the battery behavior. The voltage and eventually the
surface temperature of the cell are registered as outputs. The capacity is
commonly calculated with the coulomb-counting method, which practically is
the integration of current in time seen in equation 1.1, discretized according
to the data acquisition timestep.

If the current employed in capacity tests is very low (indicatively, less that 1/10C),
the battery OCV curve of can be obtained with an acceptable degree of approxima-
tion, in a test that lasts at least 10 hours [95]. With this curve, it is possible to
calculate the incremental capacity (IC) and the differential voltage (DV),
which are respectively the derivative of the capacity with respect to the voltage
and vice versa:

IC = ∂Q

∂V
(2.1)

DV = ∂V

∂Q
(2.2)

At such low current rates, the IC and the DV represent the thermodynamic
characteristic of the electrodes. These quantities permit an in-depth analysis of the
state of the electrode materials and of the amount of lithium present in the battery
[84]. In fact, phase transformations (see Chapter 1.1.1), which corresponds to flat
voltage regions in the OCV curve, are enhanced by the derivatives and they are
represented as peaks in the IC and plateaus in the DV (see figure 2.2). The change
in the position and magnitude of these features can suggest the occurrence of loss
of active material and loss of lithium inventory, with the possibility to attribute
the degradation modes to the single electrodes [86, 96, 97]. These techniques were
extensively analyzed in the previous thesis work on the same project [93].
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2.1.2 Open circuit voltage tests
With capacity tests, even if the current rate is very small, the effects of kinetics

is always present, and hence the real thermodynamic characteristic is not obtain-
able without approximations. However, OCV can be achieved by perturbing the
battery and allowing it to relax with no current applied, measuring the value of
the voltage after a certain time in which it is assumed that the battery reaches
full equilibrium. This method is called Galvanostatic Intermittent Titration
Technique (GITT), and it allows to reconstruct the OCV curve with several
points acquired by current pulses followed by relaxation. By increasing the number
of measured points and the duration of the relaxation period, the accuracy of the
OCV curve is increased too. However, the time needed for a GITT test, that can
span from some hours to a couple of weeks [65], grows proportionally to the desired
accuracy. Moreover, the OCV curve can be different whether the GITT is made in
charge or in discharge due to the effect of phase transformations, a phenomenon
called voltage hysteresis [98]. With a GITT test, we are able to determine the solid
diffusion coefficient of lithium in an electrode material, in an half-cell configuration
with lithium metal as anode. It is also possible to do it in commercial cells, whose
anode and cathode are coupled, but it is not trivial to distinguish between the
contributions of the single electrodes to the whole voltage response [99].
For the sake of degradation, a GITT test can be employed to track the variation
of the OCV curve due to structural modifications of anode and cathode, or to
observe change in the solid diffusion coefficient of lithium in the host materials of
the electrodes [100].

Relaxation curve

In addition to the OCV that is reached at equilibrium conditions, also the trend
of voltage during relaxation can give useful insights about the structure and
the behavior of the lithium-ion battery. The voltage increases after the end of a
discharge, while it decreases after the end of a charge, in both cases with a trend
that resembles a decaying exponential (see figure 2.3).
During a current pulse, lithium concentration gradients easily develop in the
electrolyte and in the solid particles of the two electrodes, due to the sluggish
diffusion of lithium in these media. The higher the current and the pulse duration,
the higher the magnitude of these concentration gradients.
The impact of the diffusion processes on the relaxation voltage trend can be
explained by looking to their characteristic time τD, written as:

τD ≈
L2
c

D
(2.3)

where Lc is the characteristic length of the diffusion, while D is the diffusion
coefficient. The characteristic length of the diffusion in the electrolyte is the
electrode length, in the order of 1·10-4 m, while the one of the diffusion in the solid
is the radius of the solid particle, in the order of 5·10-6 m. The lithium diffusion
coefficient in the electrolyte is in the order of 1·10-10 m2/s. Its value depends on
the electrolyte chemical composition and on the concentration of lithium in this
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Figure 2.3: Example of relaxation voltage profiles after a discharge and a charge

liquid [40, 101].
Instead, the diffusion coefficient in the solid is in the 1·10-13−1·10-18 m2/s range,
according to the specific material and to the state of its crystalline structure [102].
Assuming a lithium diffusion coefficient in the solid of about 1·10-14 m2/s, a value
that is representative of many cathode materials, we get:

τD,e ≈ (1·10−4)2

1·10−10 = 100 s

τD,s ≈ (5·10−6)2

1·10−14 = 2500 s

In general the diffusion in the electrolyte is roughly one order of magnitude faster
than the diffusion in the electrode. The former is in the 101−102 s range, while
the latter belongs to the 102−103 s range. Thicker electrodes and bigger particles
increase the characteristic time of these processes with a quadratic relationship. To
make a comparison, in LIBs the ohmic overpotential is practically istantaneous,
and the timescale of the charge transfer overpotential lies around 10-2 s [103].
Concentration gradients need a sufficently extended and intense current pulse to be
developed, but their complete flattening can require a very long time (104−105 s),
considering that the driving force of diffusion gradually decreases.

In addition to pure species diffusion, the relaxation of a LIB can also be driven by
an electrochemical reequilibration process. To understand this phenomenon,
it is useful to think to a discharge process [103]:
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1. When the discharge current is applied, lithium deintercalates from the surface
of the anode particles, flows in the electrolyte in its ionic form and reinterca-
lates on the surface of the cathode particles. The shortest path between the
negative and the positive electrode is the one that connects the faces of the
electrodes that are in contact with the separator. Therefore, the deintercala-
tion and intercalation processes are more intense near the separator, since
the ionic lithium flow follows the path with the least resistance;

2. Consequently, the concentration of lithium on the surface of the electrodes
particles is uneven along the electrode length. This phenomenon is enhanced
by high current rates, which exacerbate species gradients, and by a low
diffusion coefficient in the solid, which hinders an homogenization of the
lithium concentration profile in the solid particles. Gradients of open circuit
potential along the electrodes are then established by the said surface lithium
concentration gradients. In fact, reminding from equation 1.15 that the
electrode OCP is function of the electrode SOC on the surface of the particles,
it is possible to notice that there is a potential difference between the part of
the electrode near the separator and the one near the current collector;

3. When the applied current is set to zero, we still observe the presence of two
reaction currents in the electrodes, independent of one another since the
electric circuit that connects them is open. These reactions are due to the
internal potential difference that was created during the pulse. This voltage
acts as a driving force for an intercalation reaction inside of the electrodes. In
particular, after a discharge the lithium deintercalates from the anode near
the current collector and the cathode near the separator, and it intercalates
in the anode near the separator and in the cathode near the current collector,
until the surface concentration becomes homogeneous along the electrodes
length.

This electrochemical reequilibration process is strongly linked to the shape of the
open circuit potential curve of the electrodes, and of course it interacts with the
lithium diffusion processes described above.

Therefore, the majority of the trend of voltage during relaxation is dictated by the
geometry of the battery, the composition and the concentration of lithium in the
electrolyte, and the structure and chemistry of the electrodes. These information
can be very useful for the degradation detection, but the study of the relaxation
curve with this purpose is seldom seen in literature [104].

2.1.3 Internal impedance tests
The internal resistance of a lithium-ion battery is not an univocal concept. Its

value and its physical meaning depend on the nature of the current pulse with which
it is measured, i.e. direct current (DC) or alternate current (AC). In the latter case
it also depends on the frequency of the perturbing signal [105]. Temperature, SOC
and internal concentration unbalances [106] in the cell have an influence on the
value of the cell resistances too.
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With DC signals, the resistance of the cell RDC is measured by dividing the voltage
drop ∆V at certain time (0.1-50 s) after the beginning of the pulse by the applied
current I :

RDC = ∆V
I

(2.4)

Reminding the different overpotentials involved in the battery voltage drop (see
chapter 1.1.2), according to the duration of the DC pulse, we will include different
phenomena in the cell resistance, increasing it. The resistance value can also change
in accordance with the direction of the pulse, since generally an higher electrode
potential offers more resistance to the intercalation reactions. Therefore, during
discharge the DC resistance will be slightly higher [105].

Electrochemical Impedance Spectroscopy

By using alternate current, the signal frequency ω determines the measured
resistance, or impedance Z, which will be composed by a real part and by an
imaginary part:

Z(ω) = V (ω)
I(ω) = V0e

iϕ1(ω)

I0eiϕ2(ω) = Z0e
i(ϕ1(ω)−ϕ2(ω)) = Z0(cos(ϕ(ω)) + isin(ϕ(ω)) (2.5)

where Z0 is the module of the impedance, which represents the ratio between the
amplitudes of voltage and current, while ϕ is the phase shift between the voltage
and current sinusoids. Each frequency solicitates a phenomenon taking place inside
the battery (e.g. ohmic drop, charge transfer, diffusion), therefore it is possible to
obtain the resistance associated to each phenomena.

To obtain such a relationship between current and voltage, the system has to
respect three criteria:

1. Stability: the voltage response of the battery should not diverge when
the current input is applied. This condition is normally respected without
particular conditions;

2. Causality: the voltage response of the battery should be caused only by the
current input. Therefore, other factors that impact on the voltage should be
avoided, as temperature variations or internal concentration unbalances;

3. Linearity: if a linear combination of current inputs is applied on the battery,
the overall voltage response should be a linear combination of the voltage
responses to the single current inputs, i.e. the lithium-ion battery is a linear
system. In general, this statement is not true, and the battery voltage
response is highly non-linear. Nevertheless, for a small amplitude of the
voltage output (indicatively, under 10 mV), it is possible to assume that the
battery is responding in a linear way to the current perturbation (first-order
approximation). The validity of this assumption is usually controlled by
employing the Kramers-Kronig analysis on experimental data [107].
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Figure 2.4: Impedance spectrum obtained with the EIS, with the impedance regions that are

commonly identified

The AC impedance is commonly evaluated in diagnostic tests and by manufacturers
with a single 1 kHz signal, that should correspond to the pure ohmic behaviour of
the cell. Nevertheless, the frequency at which this behavior appears can widely
change according to the test temperature and the type of cables with which the
battery is tested, which add an inductive-ohmic impedance that influences the
measured resistance.

Instead, the proper Electrochemical Impedance Spectroscopy (EIS) employs a
wide range of frequencies to obtain a whole impedance spectrum, that can fully
characterize the behaviour of the cell in all its mechanisms. Since a lithium-ion
battery mainly shows a capacitive behavior, corresponding to a negative imaginary
part, the ordinate axes of the EIS plot is usually reversed. According to the fre-
quency range (see figure 2.4), we can indicatively classify the regions of the EIS as
[108–110]:

• Inductive behavior (ω>2000 Hz): actually, a LIB does not have compo-
nents related to an inductive impedance. Instead, the positive imaginary part
at these high frequencies is caused by the battery wires induction. This purely
imaginary contribution Zw can be calculated as:

Zw(ω) = i · (2πωLw) (2.6)

where Lw is the cables inductance. If Lw is known, the inductive part can be
subtracted from the overall impedance of the battery;
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• Ohmic behavior (2000 Hz<ω<500 Hz): in this frequency range, the imagi-
nary part changes sign, shifting from an inductive to a capacitive behavior. At
the frequency where the imaginary part is equal to zero, the overall impedance
has only the real component, and it is called high frequency resistance (HFR).
The HFR represents the purely ohmic behaviour of the battery, and it takes
into account the electronic conductivity of the solid electrodes, the ionic
conductivity of the electrolyte, the conductivity of the SEI/CEI film layers
on the anode/cathode particles, and other external contributions, such as
the ohmic resistance of the cables and contact resistances. The HFR charac-
terize the istantaneous voltage drop/rise that we observe when applying a
discharge/charge current to the battery;

• Kinetic behavior (Rct) (500 Hz<ω<0.5 Hz): at these intermediate fre-
quencies, we observe the presence of one or more semicircle-like shapes in
the battery impedance spectrum, with the real part which monotonously
increases and the capacitive imaginary part which shows a maximum and a
minimum. This frequency range is attributed to the charge transfer resistance
(Rct) that characterize the interfacial reactions between the electrolyte and
the electrodes, i.e. the kinetics of the intercalation reactions. Moreover, it is
also present the double layer behavior of the said solid/liquid interfaces. In
fact, the impedance of one electrode in this region is written as:

Zct(ω) = − 1
1
Rct

+ i · ωCdl
(2.7)

where Cdl is the double layer capacitance of the electrolyte/electrode interface.
The charge transfer resistance Rct can be modeled as:

Rct = RT

i0F
(2.8)

where exchange current density i0 represents the kinetics of the lithium
intercalation/deintercalation reaction in the Butler-Volmer equations (see
section 2.2.2). The higher the value of the double layer capacitance, the lower
the frequency at which the semicircle is present.
Since in the battery there are two active electrodes, the impedance will be
characterized by the sum of the charge transfer resistance of both electrodes.

• Diffusive behavior (ω>1 Hz): at such low frequencies, the concentration
of lithium in the electrolyte and in the solid particles starts to be perturbed,
since we reach the diffusion characteristic timescales (see section 2.1.2). The
impedance in this region has approximately the shape of a finite-space Warburg
element [111], which is associated to the diffusion of ions in a storage electrode.
Many factors contributes to the low-frequency impedance: the porosity of the
electrodes, the lithium diffusion coefficients in the anode and cathode, the
diffusion coefficient in the electrolyte and the particle radii distribution in the
electrode, the presence of a solid phase transition.
The influence of the solid particles is particularly important, since the diffusion
is much more limited in the electrodes if compared to the situation in the
electrolyte.
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The temperature at which the EIS is measured strongly influences the overall shape
of the battery impedance spectrum [112]. The higher the temperature, the lower
the module of the impedance, in particular at mid-low frequencies. In addition, the
higher the temperature, the higher the frequency at which the described mechanisms
display their features in the EIS.

Instead, the battery SOC impacts on the value of the AC impedance only if
one of the electrodes is near its complete filling or depletion of lithium. In such a
condition, the kinetics of the interfacial reaction in the said electrode is severely
limited, and this effect is included in the definition of the exchange current density
i0 in equation 2.16.

The EIS has the potential of being very useful for the detection of degradation since
it can show the changes of the single components of the LIB resistance, and these
changes could be related to different degradation modes [92]. However, it requires
quite sophisticated and accurate test instruments for a reliable measurement.

2.1.4 Selection of the experimental techniques
The purpose of this thesis work is the formulation of a suitable experimental

methodology for the parameter identification of aged lithium-ion batteries, and
as remarked in section 1.3.3, the most insightful approach should be the one that
combines different techniques, to obtain a complete dataset on the characteristics of
the cell. For this reason, three experimental techniques are chosen and applied on
commercial lithium-ion batteries, i.e. the capacity test, the relaxation test and the
EIS. Each of these techniques should highlight different aspects of the tested battery,
and they are explored in a wide number of operative conditions. In particular:

• the capacity test at high current rates should provide a general overview
of the battery dynamic performances, with also the data on the exchanged
capacity in each operative condition;

• the relaxation test should give information on the long-term diffusive pro-
cesses happening in the battery after a current pulse. It could be useful to
separate this aspect from the charge transfer and ohmic overpotentials;

• the electrochemical impedance spectroscopy should be useful to sepa-
rate the resistances associated to each overpotential thanks to the broad range
of frequencies involved in the impedance measurement. Also, the impact of
the two electrodes on the overall charge transfer resistance could be separately
assessed.

The results of the experimental campaign are reported and discussed in chapter 3.
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2.2 Lithium-ion battery model
As will be seen in chapter 3, each of the diagnostic techniques enlighten the

different characteristics of a lithium-ion battery. Also, the variability of the tests’
results with operative conditions suggests that the effect of some key parameters
that define the performance of the battery can be enhanced or weakened with
specifically designed experiments. However, it is not evident nor the identity of
these parameters nor the exact influence of the operative conditions on them.
The need for a model of the LIB stems from this point: by simulating the ex-
perimental tests with a battery mathematical model and observing the effect of
the variation of the defining quantities of the model itself, it would be possible to
understand the actual influence of these different quantities and hence give a sound
explanation to the outcomes of the experiments. The parameters that are related
to the aging process could be isolated by the others with selected experimental
conditions and estimated with the interpretation of the diagnostic data by the
battery model. For these reasons, we decided to select a suitable mathematical
model of the LIB. The next sections will deal with the description of the chosen
modelization, and the improvements made to it.

2.2.1 Model selection
In literature, it is possible to find three classes of lithium-ion battery models

[87, 113]:

• Equivalent Electric Circuit (EEC): Equivalent circuits are the most
common kind of battery model, and they are structured as an electric circuit
with an ohmic resistor and one or more RC circuits in series [114, 115]. Thanks
to their simplicity and the very low computational effort needed, they are
currently implemented as online battery management systems of consumer
electronics and electric vehicles, where they are used to continuously monitor
the state of charge and/or state of health through the measure of the battery
output quantities.
Basic EECs do not contain any physical background, and they act as lookup
tables of the battery SOC/SOH with respect to voltage and sometimes
temperature. The electrical components of the circuit are modeled by fitting
experimental data to the response of the mathematical model of the EEC.
This approach lacks the ability to extrapolate data from conditions that are
not included in the fitted dataset, due to the absence of knowledge about the
electrochemical behavior of the battery.
More accurate representations are given when the circuit elements are related
to electrochemical phenomena [5] and in this case, EIS is usually employed
to assign to each element its physical meaning (see figure 2.5). Nevertheless,
the mathematical formulation of these electric components is not trivial, and
it requires some approximations to be practically implemented in EECs plus
the introduction of more complex circuital elements, such as constant phase
elements. Also, they are still a simplified approach if compared to full-scale
electrochemical models;
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Figure 2.5: Example of Equivalent Electric Circuit with electrochemically-based elements, used

to fit EIS data (Taken from [116])

• Data-driven models: Data-driven modeling is being studied for different
kinds of applications in the lithium-ion battery field, thanks to the increasing
availability of data and to the higher computational capabilities of battery
management systems. The relation between the state of charge, the state of
health and the battery output quantities (voltage, relaxation time, internal
impedance, IC/DV, etc.) are learned by data-driven models with training on
input-output data, and the obtained relations are tested and applied on new
datasets. If these models are fully based on data, i.e. black-box models, some
employed techniques are Support Vector Regression [117], Neural Networks
[118] or Gaussian Process Regression [119]. They are mostly thought for on-
board SOC/SOH monitoring, but a case of utilization of a black-box model for
the offline prediction of remaining useful life has been reported [120]. Instead,
we talk about grey-box models when data-driven approaches are coupled with
EECs to improve prediction capabilities. For instance, the EEC identifies the
SOC of the battery by modeling its dynamic behavior, avoiding the need for
long resting periods for an accurate SOC estimate, and the data-driven part,
such as a lookup table, predicts the SOH with the battery outputs and the
SOC value [121].
Both black-box and grey-box models can be very powerful since they do not
need to know the physically exact relations between the battery parameters,
but they can fail when going outside the training dataset. Moreover, due to
their nature, it is not clear what are the relations that they build between
inputs and outputs, and hence there is not a deep control over their behavior;

• Mechanistic models: Models that are based on the underlying physics
of the lithium-ion battery aim to reproduce its behavior with the use of
its geometrical, electrochemical and thermal properties coupled together in
partial differential equations (PDE). A variety of phenomena can be accurately
modeled in this way, such as heat transfer, SEI growth, lithium plating, and
even microscale phase transformation [122]. Since the model parameters are
based on measurable quantities, there is plenty of literature on the reasonable
range in which their value lies, thanks to direct measurements. More general
correlations can be obtained with mechanistic formulations, and they can be
applied with a good degree of accuracy outside of the fitting dataset.
Nevertheless, the computational burden of such models is quite high, since
there are no closed-form expressions for these PDE and they have to be
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solved numerically. The number of needed parameters can easily reach very
high numbers in complex models, with large differences in their value among
the different battery chemistries. A full, faithful modelization of a LIB is
unfeasible, and hence the employed model(s) should be tailored to the studied
phenomena. For instance, if a mechanistic model is employed in on-board
control systems, it is reduced to a simplified, analytical form to greatly reduce
the computational time, with the cost of a reduced accuracy on the results
[123, 124].

In this work, it was decided to use a mechanistic model. The objective is to develop
a one-time diagnostic procedure of aged batteries, not a real-time, on-board control
strategy. Hence, the drawback of the high calculation time is surely mitigated. In
addition, the possibility to rely on a quite general formulation is a strong plus, due
to the great variety of chemistries, shapes and past histories the tested batteries can
have. The eventual optimization and implication of the model will be the objective
of future activities, while in this work we concentrate on the correctness of the
physical description the lithium-ion battery.
In particular, the chosen model is the Doyle-Fuller-Newman pseudo-two dimensional
electrochemical model (P2D) [125]. The core of this model has been developed
about thirty years ago, and it is still widely used in literature thanks to its good com-
promise between accuracy and computational cost. Starting from the P2D model,
there has been the development of simpler formulations, like the single-particle
model [126], and of more complex ones, like the electrochemical-electric-thermal
3D model [127], but the basis is still the Doyle-Fuller-Newman modelization of the
battery. This model has been adapted and utilized in a previous thesis work [93]
to replicate the aging process of cycled batteries, by simulating degradation modes.
The author focused on thermodynamic aspects, ensuring that the OCV curves of
the positive and negative electrodes and the overall capacity of the battery were
well reproduced. For our scope, it has been necessary to improve the kinetic part
of the model, as it will be explained in the next sections.

The model is implemented in COMSOL Multiphysics®, and the control of the
simulations and the analysis of the outputs are done with MATLAB, with the
support of COMSOL LiveLink™.

2.2.2 Model description
In this section, we will not describe the way in which the model’s partial differ-

ential equations are obtained. The reader is referred to the original work of John
Newman [10] and to the clear explanation of professor Gregory L. Plett [128] for
the full derivation of the P2D model.

The parts of the battery that are modeled are the negative electrode, the sep-
arator and the positive electrode (see figure 2.6). Each of them has several nodes
that form a 1D mesh, where the model’s partial differential equations are applied
and solved. The model is labeled as “pseudo-two dimensional” since the points in
which the PDEs are solved are placed along a single dimension x. But, in every
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Symbol Description Symbol Description

Latin Subscript
a
[
m−1] Specific active area a anodic

Ael [m2] Electrode area am active material

c [molm−] Lithium concentration ax axial

C
[
J kg−1 K−1] Specific heat c cathodic

Cdl

[
F m−2] Double layer capacitance conv convective

D
[
m2 s−1] Lithium diffusion coefficient e electrolyte

EAk

[
J mol−1] Rate constant activation energy gen generated

EADs

[
J mol−1] Solid diffusion activation energy i inactive material

Eocp [V ] Electrode open circuit potential man mandrel

F
[
Asmol−1] Faraday constant max maximum

FCE [−] Ionic conductivity factor min minimum

h
[
W m−2 K−1] Heat transfer coefficient n negative

i
[
Am−2] Current density nom nominal

i0
[
Am−2] Exchange current density ohm ohmic

I [A] Current p positive

j
[
molm−2] Lithium molar flux r reaction

k
[
ms−1] Rate constant rad radial

kT

[
W

mK

]
Thermal conductivity rev reversible

L [m] Cell component length s solid

n [−] Number of charges sep separator

q
[
W m−3] Volumetric heat flux

Q [As] Capacity Superscript
r [m] Battery component radius eff effective

R
[
J mol−1 K−1] Gas constant

Rb [m] Battery total radius Coordinate
Rext [Ωm2] External resistance r radial coordinate

Rfilm [Ωm2] External resistance x linear coordinate

Rp [m] Particle radius z axial coordinate

SOC [−] State of charge ϑ angular coordinate

t+0 [−] Lithium transference number t time

T [K] Battery temperature

∆V [V ] Cell voltage

Greek
α [−] Transfer coefficient

ε [−] Battery material fraction

η [V ] Overpotential

κe [S m−1] Electrolyte ionic conductivity

κD [Am−1] Electrolyte diffusional conductivity

ϕ [V ] Electric potential

ρ
[
kgm−3] Density

Table 2.1:

List of symbols, subscripts and superscripts used in the model description
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Figure 2.6: Representation of the Fuller-Doyle-Newman P2D model domain

point except for the separator, there is an additional radial dimension r which
represents the solid particles of the electrodes. These particles are usually modeled
as spheres, and the solid diffusion PDEs are solved in additional nodes along their
radial dimension. All the quantities in the model’s equations are reported in table
2.1.

The governing equations of the lithium-ion battery mathematical model are:

1. Material balance in the electrolyte
On the left-hand side of this PDE, there is the accumulation term of lithium
in the electrolyte. On the right-hand side, there is the flow of lithium in the
electrolyte, composed by the diffusion term, the migration term, and the source
term. Since the lithium transference number t+0 is usually approximated
as constant, the migration term is often neglected. In the separator, this
equation holds true except for the source term, which is equal to zero due to
the absence of reactions in the separator.

εe
∂ce
∂t

= ∂

∂x

(
εlD

eff
e

∂ce
∂x

)
−

ie
∂t0+
∂x

nF
+ ajr(1− t0+) (2.9)

The effective lithium diffusion coefficient in the electrolyte De
eff accounts

for the effect of the tortuosity of the porous electrode with the Bruggeman
correlation:

Deff
e = Deε

1.5
l (2.10)

The boundary conditions for the balance in the electrolyte are:

∂ce

∂x

∣∣∣
x=0

= ∂ce

∂x

∣∣∣
x=Ln+Lsep+Lp

= 0

− Deff
e

∂ce

∂x

∣∣∣
x=L−n

= − Deff
e

∂ce

∂x

∣∣∣
x=L+

n

− Deff
e

∂ce

∂x

∣∣∣
x=Ln+L−sep

= − Deff
e

∂ce

∂x

∣∣∣
x=Ln+L+

sep

(2.11)
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where the first two conditions refer to the impermeable walls that contain
the battery, with a null lithium flux, and the last two conditions refer to
the continuity of lithium-ions transport at the interfaces between the two
electrodes and the separator.

2. Material balance in the solid particles
This partial differential equation models the diffusion of lithium in the solid
particles, with spherical coordinates.

∂cs
∂t

= 1
r2

∂

∂r

(
Dsr

2 ∂

∂r
cs

)
(2.12)

The model simplifies the real characteristic of a battery electrode, where a
complex distribution of particle radii is present. Here, Rp is a single radius
that represents the average value of the said distribution.
The equation has the boundary conditions of no flux in the center of the
sphere, and of equivalence between the lithium flux at the surface of the
particle and local reaction lithium flux:

∂cs

∂r

∣∣∣
r=Rp

= − jloc

Ds

∂cs

∂r

∣∣∣
r=0

= 0
(2.13)

3. Electrochemical kinetics
The local reaction current density ir generated by the electrode reaction is
determined by the Butler-Volmer equation, which relates it to the overpotential
η of the electrochemical reactions.

ir = i0

[
exp

(
αaF

RT
η
)
− exp

(
−αcF
RT

η
)]

(2.14)

The local reaction current density ir is related to the local reaction lithium
flux jr through the Faraday’s law:

ir = nFjr (2.15)

The exchange current density i0, i.e. the bidirectional current between the
electrode and the electrolyte that is present at equilibrium conditions, is
expressed as:

io = F (kc)αa (ka)αc (cs,max − cs)αa (cs)αc

(
ce
ce,0

)αa

(2.16)

where the concentration of lithium in the solid material is calculated on the
external surface of the electrode particle.
These concentration-related terms correct the exchange current density accord-
ing to the availability of lithium in the electrode and in the electrolyte: the
lower the amount of lithium in the electrolyte and the nearer to the lithium
concentration limits of the electrode, the lower the exchange current density.
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Figure 2.7: Cathode and anode open circuit potentials profiles used in the model

A low exchange current density corresponds to an high charge transfer resis-
tance [108]. Since the αa and αc transfer coefficients are assumed to be equal
to 0.5, and the cathodic kc and anodic ka reaction rates are considered equal
to a generic electrode reaction constant k, the expression can be simplified to:

io = Fk
√

(cs,max − cs) (cs)

√√√√( ce
ce,0

)
(2.17)

Instead, the overpotential is expressed as:

η = ϕs − ϕe − Eocp − irRfilm (2.18)

where the Rfilm represents the resistance of SEI/CEI on the surface of the
active electrode particles, simply modeled as a film with no thickness.
In this work, the battery thermodynamic characteristic is not fitted, and hence
the open circuit potential curves Eocp are calculated from lookup tables of the
electrode potential as a function of the electrode state of charge 2.7. According
to the methodology developed in the previous thesis work, the lookup tables
are obtained from the experimental data of a slow 0.1C discharge on the
battery samples (see section 3), which is considered as a good approximation of
an equilibrium process [93]. The electrode state of charge SOCel is calculated
according to equation 1.15.

4. Solid potential
The current density in the solid is is modeled with Ohm’s law:

is = −σeffs

∂ϕs
∂x

(2.19)

The electrode electric conductivity σseff is corrected for the tortuosity of the
porous electrode with the Bruggeman correlation:

σeffs = −σsε1.5
s (2.20)

For what concerns boundary conditions, to have a reference point with which
it is possible to measure the cell voltage, the potential of the solid ϕs is
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set to zero on the left boundary of the negative electrode. Also, since in
the separator only the electrolyte is present, at the interfaces between the
separator and electrodes, the current in the solid is equal to zero as well as
the potential gradient.

ϕs|x=0 = 0

∂ϕs

∂x

∣∣∣
x=L−n

= ∂ϕs

∂x

∣∣∣
x=Ln+L+

sep

= 0

∂ϕs

∂x

∣∣∣
x=Ln+Lsep+Lp

= − is
σeff

s

(2.21)

5. Electrolyte potential
The current density in the electrolyte ie has a part that is due to Ohm’s law
and another one that accounts for the transport of ions by the concentrations
gradients.

ie = −κeffe

∂ϕe
∂x

+ 2κeffe RT

F

(
1 + ∂ ln f±

∂ ln ce

)(
1− t0+

) ∂ ln ce
∂x

(2.22)

The second term on the right-hand side is often expressed as the diffusional
conductivity κDeff:

κeffD = 2κeffe RT

F

(
1 + ∂ ln f±

∂ ln ce

)(
1− t0+

)
(2.23)

The ionic conductivity of the electrolyte κeeff is corrected for the tortuosity of
the porous electrode with the Bruggeman correlation:

κeffe = κeε
1.5
l (2.24)

The boundary conditions on the electrolyte potential ϕe are:

∂ϕe

∂x

∣∣∣
x=0

= ∂ϕe

∂x

∣∣∣
x=Ln+Lsep+Lp

= 0

ϕe|x=L−n = ϕe|x=L+
n

ϕe|x=Ln+L−sep
= ϕe|x=Ln+L+

sep

(2.25)

where the first two conditions refer to the continuity of the potential at the
interfaces between the electrodes and the separator, i.e. there is only flow of
current in the electrolyte inside the separator. Instead, the last two conditions
imply that there is only flow of current in the solid at the edges of the battery,
where there are the metallic current collectors.

6. Charge conservation
The derivative of the current density in the electrolyte and in the solid are
related by the equation:

∂ie
∂x

= −∂is
∂x

= nFajr + aCdl
∂ (Φe − Φs)

∂t
(2.26)
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where the first term on the right-hand side of the equation is the reaction
current density (also called faradaic current), while the second term accounts
for the current density in the double layer (also called non-faradaic current).
The active surface-to-volume ratio of spherical particles a is calculated as:

a = 3εs,am
Rp

(2.27)

Please note that the active surface-to-volume ratio is calculated with the
active solid fraction εs,am. In each electrode and in the separator, the mass
balance of the constituents gives:

εe + εs = εe + εs,am + εs,i = 1 (2.28)

where εs,i is the fraction of inactive solid material, i.e. the binder and the
conductive additives. In the separator, εs,am is equal to zero due to the absence
of active material. The total current density i is given by the sum of the solid
and electrolyte current densities:

i = ie + is (2.29)

The overall current I that is applied to the battery is related to the total current
density through the relation:

I = Ael · i (2.30)
The cell voltage ∆ V is measured by the model as the difference between the
solid potentials at the edges of the battery plus the voltage drop over an external
resistance referred to the electrodes’ area Rext, which accounts for current collectors
and cables resistances:

∆V = ϕs|x=Ln+Lsep+Lp
− ϕs|x=0 −

RextI

Ael
(2.31)

Lastly, the battery nominal capacity Qnom is calculated as:

Qnom = min{Qp, Qn} (2.32)

The electrodes’ capacities Qp and Qn are:
Qp = Ael Lp εs,am,p cs,max,p(SOCmax,p − SOCmin,p)

Qn = Ael Ln εs,am,n cs,max,n(SOCmax,n − SOCmin,n)
(2.33)

determined by the lengths of the electrodes Lp and Ln, by the fraction of active
materials εs,am,p and εs,am,n, by the maximum concentrations of lithium in the
electrodes cs,max,p and cs,max,n and by the SOC limits of the electrodes (see Chapter
1.1.1).

The independent variables of the model are x, t, and r, while the dependent
variables are ce,cs, ϕe, ϕs, ie, and jloc. The PDEs 2.9, 2.14, 2.19, 2.22 and 2.26 are
solved in each one of the N nodes of the 1D mesh of the lithium-ion battery. The
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solid diffusion PDE 2.12 is solved in each of the M nodes inside each of the N-Nsep
electrode spherical particles, where Nsep is the number of nodes in the separator,
that has no particles inside. Therefore, in each timestep, 5N+(N-Nsep)·M partial
differential equations are solved. The direct, fully coupled solver uses the nonlinear
Newton’s method, with the implicit backward differentiation formula for the time
stepping.

2.2.3 Model improvements

In this work, the basic P2D model has been extended in order to include the
heat transfer, and hence the influence of temperature on the simulations. Since the
basic model formulation is isothermal and its physical parameters do not have a
dependency on temperature, the outcomes of the simulation are not reliable when
the ambient temperature is far from normal conditions. Also, when high current
rates are employed for a prolonged time, it is experimentally observed an increase in
the battery temperature. Therefore, a comprehensive simulation of such conditions
has to include the effect of temperature on the model.

The LIBs that have been experimentally studied and modeled are cylindrical
(see Chapter 3.1.1), hence the thermal model will be based on this geometry. The
general 3D heat conduction equation in cylindrical coordinates is:

1
r

∂

∂r

(
rkT

∂T

∂r

)
+ 1
r2

∂

∂ϑ

(
kT
∂T

∂ϑ

)
+ ∂

∂z

(
kT
∂T

∂z

)
+ qgen = ρC

∂T

∂t
(2.34)

On the left-hand side, we have in succession the radial conduction term, the angular
conduction term, and the axial conduction term, plus the internal heat generation.
On the right-hand side, there is the heat accumulation term.
Cylindrical lithium-ion batteries are made by wrapping the compound active
material around a central insulating mandrel, all enclosed by a steel can (figure
2.8). The number of windings is variable, but it usually lies between 15 and 30,
according to the type of battery. Thanks to the high number of layers that compose
the spiral, the angular heat conduction can be neglected without losing accuracy
[129].
Therefore, the heat conduction equation reduces to:

1
r

∂

∂r

(
rkT

∂T

∂r

)
+ ∂

∂z

(
kT
∂T

∂z

)
+ qgen = ρC

∂T

∂t
(2.35)

Therefore, in COMSOL Multiphysics, the cylindrical battery is modeled as a 2D
geometry with radial symmetry (figure 2.9), with three layers that represent the
central mandrel, the active material, and the steel can. The heat transfer equation
will be solved in each of these three regions, connected by the heat flux continuity
boundary conditions. The heat generation term is present only in the active material
layer, where the electrochemical reactions are taking place.
The boundary conditions are:
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Figure 2.8: Cross-section of a cylindrical lithium-ion battery, with a zoom on the structure of

the active material. P: positive electrode; N: negative electrode; S: separator; CP:
positive current collector; CN: negative current collector

Figure 2.9: Geometry of the 2D cylindrical LIB thermal model. Blue area: mandrel; Red area:

active material; Yellow area: steel casing



50 Chapter 2. Methodology



∂T
∂r

∣∣∣
r=0,z∈[0,H]

= 0

−kT ∂T∂r
∣∣∣
r=r−

md
,z∈[0,H]

= kT
∂T
∂r

∣∣∣
r=r+

md
,z∈[0,H]

−kT ∂T∂r
∣∣∣
r=rmd+r−am,z∈[0,H]

= kT
∂T
∂r

∣∣∣
r=rmd+r−am,z∈[0,H]

−kT ∂T∂r
∣∣∣
r=R−

b
,z∈[0,H]

= hconv(T − Tamb)|r=R+
b
,z∈[0,H]

−kT ∂T∂z
∣∣∣
r∈[0,Rb],z=(0,H)−

= h
′
conv(T − Tamb)

∣∣∣
r∈[0,Rb],z=(0,H)+

(2.36)

Apart from the no flux condition at the center of the cylinder and the heat flux
continuity between layers, the PDE has convective heat transfer conditions on the
external surfaces, with a convective heat trasfer coefficient hconv’ at the top and
bottom surfaces which is assumed to be 25% of the one on the lateral surface hconv’.
These convective heat transfer boundary conditions are quite simplified with respect
to the real situation [130], but this approximation is suitable for our purposes:
we are not interested in the inhomogeneous temperature distribution inside the
battery since this temperature distribution will be averaged, in order to have a
single temperature value for the active material.
The thermal conductivity of the active material is strongly anisotropic. In fact, the
radial thermal conductivity kT,rad is about two orders of magnitude lower than the
axial thermal conductivity kT,ax, mainly because of the contact resistance between
all the layers [131]. The heat conduction equation is solved numerically in each of
the nodes of a 2D mesh, generated by COMSOL.

The only unknown parameter of this thermal model is the volumetric heat gener-
ation term qgen, which is determined by the electrochemical model. In fact, it is
possible to express this term as:

qgen = qohm + qr + qrev (2.37)

The generated heat has three components:

• Ohmic heat generation: heat generated by the passage of current in the
resistances of the battery, because of the Joule effect. It is calculated as:

qohm = σeffs

(
∂ϕs
∂x

)2

+ κeffe

(
∂ϕe
∂x

)2

+ κeffD

∂ ln(ce)
∂x

∂ϕe
∂x

(2.38)

where the three terms represent respectively the heat generation due to the
passage of current in the solid, the heat generation due to the passage of
current in the electrolyte and the heat generation due to the ionic migration;

• Reaction heat generation: heat generated by the irreversibilities of the
electrochemical reaction, e.g. activation energy. It is calculated as:

qr = airη (2.39)
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Figure 2.10: Scheme of the coupling principle between the 1D electrochemical model and the 2D

thermal model

• Reversible heat generation: heat generated by the entropy change of the
electrodes, expressed as:

qrev = airT
∂Eocp
∂T

(2.40)

The derivative of the open circuit potential with respect to the temperature
of each electrode is a SOC-dependent quantity, taken as a lookup table from
the COMSOL material library. The accuracy of this term is quite low, but
the reversible heat generation is not so relevant in the overall heat generation,
in particular at mid-high current rates.

The volumetric heat generation is calculated in each node of the 1D battery mesh,
but the 2D thermal model can only accept a single volumetric heat generation
term. Therefore, on each timestep, the average heat generation in the battery is
calculated as:

qgen = 1
L

∫ L

0
qgendx (2.41)

where L is the overall length of the battery.
On the other hand, each timestep the 1D battery model takes only a single tem-
perature as an input for the whole domain, being the model isothermal. Hence,
the temperature distribution in the active material calculated by the 2D thermal
model is averaged as:

T = 1
Aam

∫
Aam

TdA (2.42)

where Aam is the area of the active material in the red section of figure 2.9.

Summing up, in each timestep the battery model takes as input the average
temperature calculated by the thermal model while giving to it the average volu-
metric heat generation term (figure 2.10).

Since the temperature is now a variable quantity in the electrochemical model, we
implemented a temperature dependence for the physical quantities that are more
influenced by this parameter and that have more impact on the simulation output:
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• Open circuit potential: each electrode open circuit potential has an ad-
ditional term function of temperature, which is exactly the one included in
the reversible heat generation. This term derives from the thermodynamic
definition of open circuit potential:

Eocp = Eocp,0 + T
∂Eocp
∂T

(2.43)

• Ionic conductivity: for the electrolyte ionic conductivity, it is used an em-
pirical correlation of temperature and lithium concentration in the electrolyte,
obtained from experimental data on LiPF6-based electrolytes [101]:
κe =FCE · ce(−10.5 + 0.0740T − 6.96 · 10−5 + 0.668ce − 0.0178ceT

+ 2.8 · 10−5ceT
2 + 0.494c2

e − 8.86 · 10−4c2
eT )2 (2.44)

The trend of the ionic conductivity with temperature and concentration can
be visualized in figure ??.
FCE is a constant that multiplies the ionic conductivity obtained from the
correlation, in order to scale it during the data fitting process, adapting it to
the specific battery.

• Lithium diffusion in the electrolyte: for what concerns the lithium
diffusion coefficient in the electrolyte, it is possible to demonstrate that it
is directly correlated with the ionic conductivity through the Nernst-Planck
relationship [40]:

De = κeRT

F 2ce
(2.45)

• Activity coefficient: the activity coefficient, contained in the κDeff expres-
sion, corrects this quantity according to the deviation from the dilute solution
condition. It is expressed as an empirical correlation of temperature and
lithium concentration in the electrolyte, obtained from experimental data on
LiPF6-based electrolytes [101]:(

1 + ∂ ln f±
∂ ln ce

)
= 1+ ce

ce,ref

[
−1.0189

21 + 0.9831√ce

(
1
√
ce
− 0.9831

1 + 0.9831√ce

)
+ 1.5842

]
(2.46)

• Rate constant: the rate constant k, which is contained in the definition of
the exchange current density, has an Arrenhius-type dependence with the
temperature. Each of the two electrodes’ rate constant will be coupled to an
activation energy EAk, with the reference rate constant k0 measured at T0:

k = k0 exp
{
EAk
R

( 1
T0
− 1
T

)}
(2.47)

• Solid diffusivity: also the lithium diffusion coefficient in the solid material
Ds presents an Arrenhius-type dependence with temperature [23], alike the
rate constant, with the activation energy EAD. The reference solid diffusivity
Ds,0 is measured at T0:

Ds = Ds,0 exp
{
EAD
R

( 1
T0
− 1
T

)}
(2.48)
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Figure 2.11: Trend of the electrolyte ionic conductivity with concentration and temperature given

by the correlation of equation 2.44 (taken from [101])

The dependence of the electrical resistances with temperature were not added, due
to the lack of data about these relationships in lithium-ion battery literature. More-
over, their impacts on the simulation output are considered negligible if compared
to the ones of the parameters listed above.

Finally, the integration of COMSOL with MATLAB has been improved, allowing
the users to give complex combinations of inputs to the model from the MATLAB
IDE, and to easily export and store the desired simulation data for subsequent
analyses.





Chapter 3

Experimental campaign

3.1 Experimental bench
The core of the test bench was designed and built in the context of the previous

thesis on the same project [93]. During this work, we improved and rationalized the
system’s wiring, and we eliminated a source of electromagnetic noise that decreased
the accuracy of the electrochemical impedance spectroscopy.
The test bench (see figure 3.1) has been developed with a modular structure, that
allows the testing of batteries in a flexible way in four independent channels, each
equipped with a Chroma UM 63640-80-80 electronic load. A NI DAQ USB 6218
acquisition board is used to measure voltage oscillations during EIS and to check the
battery voltage read by the electronic loads, while the power supply NI RMX-4124
acts as battery charger. The batteries are placed in a Binder KT 53 climatic
chamber, that controls and adjusts the operative temperature in the 4◦C− 100◦C
range. The individual surface temperature of each LIB is measured through four
RS PRO type K thermocouples, with a NI CDAQ 9211 as temperature acquisition
board.
In addition to this fixed setup, an Autolab PGSTAT30 with a FRA2 module is
employed to perform high-precision electrochemical impedance spectroscopies on
the batteries. The list of all the components is reported in the table 3.1 below.

Instrument Scope Measured quantity Measurement uncertainty

NI RMX-4124 Power supply Current ±0.5%± 0.1%f.s.b

Chroma UM 63640-80-80 Electronic load Voltage
Current

±0.025%± 0.01%f.s.b
±0.1%± 0.1%f.s.b

NI DAQ USB 6128 Voltage acquisition Voltage ±0.0085%± 0.002%f.s.b

Binder KT 53 Temperature control Temperature ±0.3 Kb

NI CDAQ 9211 w/ K-TC Temperature measurement Temperature ±3 Kb

Autolab PGSTAT30+FRA2 Impedance measurement Impedance variable a

a Measurement uncertainty type A
b Measurement uncertainty type B, see table 3.3

Table 3.1: Instruments used in the lithium-ion batteries experimental bench

55
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Figure 3.1: Photo of the laboratory test bench, with the core components highlighted

In figure 3.2 it is represented the electric circuit that connects each battery to
the respective electronic load and to the power supply. Each battery is coupled to
a switch, that allows to pass from the discharge mode (position a, open) to the
charge mode (position b, closed) and vice versa. The standard position is a, where
the battery is disconnected from the circuit.
The load has the possibility to drain a variable current from the battery, while the
power supply applies a fixed current, according to its selected range. If the switch
is in position a, the battery can be only discharged by the electronic load. If the
switch is in position b, the battery can be charged by the power supply. In this
case, due to the fixed applied current of the power supply, the charging current
of each battery is regulated by the respective the electronic load, that subtracts
a specified amount of current according to the desired C-rate on the battery. A
fifth electronic load acts as a fixed resistance of 0.3 Ω that checks the value of the
current in the main electric circuit
With this configuration, the batteries are completely independent from one another
and they can operate in different modes without affecting the others. Moreover, a
single power supply is sufficient to charge all of them. When the Autolab station
is needed for the electrochemical impedance spectroscopy, its power cables are
connected to the load corresponding to the tested battery, while the sensor cables
are connected to the corresponding channel in the voltage acquisition board.

The test bench is connected to a computer and controlled with the software
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Figure 3.2: Electric circuit of the laboratory test bench

LabView©. The data about voltage, current and temperature are collected by the
instruments, and monitored and saved by the test bench control system. The control
system also checks that the batteries operative conditions are among the safety
limits, in order to avoid overcharges, overdischarges and excessive temperatures.
These conditions can not only be detrimental for the battery health, but they can
also be dangerous for the safety of the test bench itself, due to the problem of
thermal runaway [90].
The safety limits of the test bench are:

• Maximum current: I<20 A (limit on the switches maximum load, fixed);

• Maximum voltage: V<Vmax (limit on the batteries maximum voltage,
adjustable);

• Minimum voltage: V>Vmin (limit on the batteries minimum voltage, ad-
justable);

• Maximum temperature: T<50◦C (limit on the batteries maximum tem-
perature, fixed);

If one of these limits is met, the switches and the resistance on the main circuit are
opened, and the batteries are disconnected from the power supply. Moreover, the
electronic loads have an internal lower voltage limit, that can be manually set and
that can act as a redundancy in case of a failure of the control system.
The limits on the maximum and minimum voltage can be adjusted according the
specific battery that is being tested, since different chemistries can have different
voltage limits.

3.1.1 Battery samples
The tested lithium-ion batteries are commercially available products, in ac-

cordance to the scope of the thesis project, directed towards the second use of
commercial batteries. Apart from some basic data about the nominal voltage
and capacity, the safety limits and the chemistry of the electrodes, there are no
information regarding the parameters that would be important for the model, such
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Characteristic US26650VT US18650V3

Cathode chemistry NMC+LMO NMC

Anode chemistry Graphite Graphite

Nominal capacity 2600 mAh 2250 mAh

Maximum charge current 2.6 A 2.25 A

Maximum discharge current 26 A 10 A

Nominal voltage 3.7 V 3.7 V

Maximum voltage 4.2 V 4.2 V

Minimum voltage 2.8 V 2.5 V

Temperature range (charge) 0− 40◦ C 0− 45◦ C

Temperature range (discharge) −10− 45◦ C −20− 60◦ C

Weight 85 g 44 g

Dimensions (D x H) 26 mm x 65 mm 18 mm x 65 mm

Table 3.2: Characteristics of the tested battery samples

as the internal geometry, the particles average radius in the anode and the cathode
or the type of electrolyte. This is a common situation in the LIB sector, where
a wide application of the industrial secret causes a lack of information on the
composition and structure of the batteries.
Before reporting the known specifics of the batteries, it is important to describe the
differences between the two main types of commercial lithium-ion batteries that
are currently employed [132]:

• high-power batteries: these batteries are designed for high current drain
applications, where it is more important the peak power performance than
the autonomy. To obtain this characteristic, the battery resistance has to
be minimized. The available active area in the anode and in the cathode is
maximized by using a low average active particle size, offering an high amount
of sites for the electrochemical reactions. Then, the electrodes are made thin, in
order to reduce their resistance and to minimize the electrolyte concentration
unbalance across the cell after a strong charge/discharge, lowering the resulting
overpotential. Finally, the porosity of the electrodes is quite high, in order to
make available an high quantity of electrolyte to the active materials when
high current rates are achieved;

• high-energy batteries: this kind of battery is employed in applications
where an high autonomy is desired, and the battery capacity is the key
parameter. An high capacity is obtained by storing an high amount of
lithium in the electrodes. To do so, the electrodes are made thick and less
porous, increasing the amount of active material that can accept lithium.
The drawback is an increased resistance of the cell, that limits its maximum
current rates;

According to these general characteristics of the two battery types and to the
existing literature, it is possible to assign sound values to the geometrical and
thermodynamic parameters of the tested batteries, in order to consider them fixed
during the sensitivity analysis (see chapter 4.1).
In total, four lithium ion batteries are tested in the experimental campaign: two
Sony US26650VT and two Sony US18650V3 (figure ??). The former belong to the
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high-power category, while the latter have more high-energy characteristics. Each
group of two batteries is composed by a new and an aged sample. The aging has
been performed in laboratory during the previous thesis work [93] in case of the
high-power battery, while the aged high-energy battery was used in electric bikes.
Their specifics are reported in the table 3.2.

3.1.2 Measurement uncertainty
Uncertainty on voltage measurement

For what concerns the voltage, the electronic load has 6 V as full-scale value.
According to the accuracy band reported by the manufacturer, the uncertainty on
the voltage output σV will be:

σV = (0.025% ·+0.01% · 6V ) = 0.085%

Uncertainty on current measurement

The accuracy on the load current σI is reported by the manufacturer of the
electronic load (table 3.1). Since the full-scale value of the current in the electronic
load is 8 A, we get:

σI = (0.1% ·+0.1% · 8A) = 0.9%

Uncertainty on the ambient temperature

The temperature that is set by the climatic chamber, i.e. the battery operative
temperature, has an absolute error uT declared by the manufacturer, that is:

uT = ±0.3K

Uncertainty on the initial OCV

When the battery is brought through a charge or a discharge to the desired
SOC, there is always a small error that makes the actual SOC different from the
target one. In our case, the most common condition is reaching SOC equal to 100%
with a charge before starting a discharge. This SOC should correspond to 4.2 V,
nevertheless it is always observed a small deviation from this value, that depends
on the current rate at which the charge is made, on the time waited after the charge
before starting the discharge and on the termination current used during the CV
section of the charge. This little offset causes a vertical shift of the whole discharge
curve with respect to the "ideal" discharge curve that starts from exactly 4.2 V.
This uncertainty on the initial OCV is quantified by analysing the experimental
data of the discharge curves that started from 100% SOC that we performed during
the experimental campaign and calculating the mean and the double of the standard
deviation of the voltage value of the initial points of such discharge curves, assuming
a normal distribution of the errors. The result of this analysis is:

uOCV = ±0.0045V
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Uncertainty on the exchanged capacity

Regarding the exchanged capacity, its uncertainty is based on the one of the
current drained by the load during the discharge. The formula that calculates the
exchanged capacity Qexc is:

Qexc = Idis · tdis (3.1)

where Idis is the applied discharge current and tdis is the duration of the discharge.
Theoretically, tdis could be calculated according to the discharge operative parame-
ters as:

tdis =
DOD · 3600

[
s
h

]
C

(3.2)

Nevertheless, this formula gives only a rough estimate of the duration of the
discharge, since it is based on the nominal capacity of the battery. For currents
higher than the nominal one, the real duration will be lower, vice versa for currents
lower than the nominal one. Moreover, here the aging of the cell is not considered,
and the lower available capacity caused by degradation phenomena make the
discharge duration decrease even more.
The uncertainty on Qexh is the cumulative sum of the uncertainty on the applied
current. Therefore, σQ is based on the accuracy on the load current σI reported
by the manufacturer of the electronic load (table 3.1) and on the duration of the
capacity test. Being a cumulative sum of the normal probability distributions
of the current uncertainty uI (multiplied a constant timestep), uQ has a normal
distribution too. To obtain the trend of the uncertainty on the exchanged charge
during a discharge with our experimental bench, we simulate the sum of normal
probability distributions using a full discharge from SOC 100% to SOC 0% in a
battery with a nominal capacity of 2600 mAh, such as the US26650VT, dividing
the discharge curve in . In each point n we run 100000 simulations on the possible
outcome of the uncertainty uQ,n:

uQ,n =
n∑
i=1

randn(µ = 0, σ = 0.0045) · I ·∆t

where the current I is taken equal to 1.3 A, 2.6 A, 5.2 A and 7.8 A, corresponding
respectively to 0.5C, 1C, 2C and 3C, and randn(µ = 0, σ = 0.0045) is a random
number in a normal distribution with mean (µ) equal to zero and standard deviation
(σ) equal to half the uncertainty on the current, assuming that this uncertainty
corresponds to a 95% level of confidence.
Therefore, for each point n we obtain a probability distribution of the uncertainty
on the exchanged charge. The double of the standard deviation of each probability
distribution is then calculated (95% level of confidence), obtaining the trend of the
uncertainty on the exchanged charge uQ during the discharge of figure 3.3.

Combined uncertainty on the cell voltage

By combining all the previous data, it is possible to estimate the uncertainty on
the measured voltage by taking into account all the possible sources of error. The
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Figure 3.3: Trend of the error on the exchanged charge

combined uncertainty on the cell voltage V is expressed as:

uV =

√√√√(σV · V )2 +
(

∆V
∆I · uI

)2

+
(

∆V
∆T · uT

)2

+ u2
OCV +

(
∆V
∆Q · uQ

)2

(3.3)

where ∆V/∆I is the variation of voltage caused by a variation of the current,
∆V/∆T is the variation of voltage caused by a variation of the temperature and
∆V/∆Q is the variation of voltage caused by a variation of the exchanged charge.
Each of these three terms is dependent on the current rate, on the operative
temperature and on the state of charge. Therefore, it is not possible to give an
exact, fixed value for every discharge curve, but they will be calculated in each
specific operative condition.
Here, we give an example on a full discharge curve starting from 100% SOC, with
current rate equal to 3 and ambient temperature equal to 25◦C. By analyzing the
experimental data, we can calculate approximated values for the variation of the
voltage with current and temperature:

∆V
∆I = 35 mV

A

∆V
∆T = 8 mV

K

It is not possible to approximate the variation of the voltage with the charge to a
single value without introducing a significant error.
The resulting uncertainty on the cell voltage of the considered discharge curve is
shown in figure 3.4. For most of the duration of the discharge the voltage error
stays around ±7 mV, while it raises up to ±14 mV in the final part of the curve,
where the slope of the voltage is higher and the uncertainty on the exchanged charge
has more weight.
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Figure 3.4: Error bands (in red) on the measured voltage during a full discharge from 100%

SOC, at 3C and 25◦C

Uncertainty on the battery surface temperature

The temperature is the measured quantity on which there is the highest uncer-
tainty, due to the low accuracy of the used instruments, on the non-optimal contact
between the battery and the thermocouple, and the absence of insulation from the
ambient air of the thermocouples. The manufacturer of the temperature acquisition
board reports a maximum error σT,tc of ±2 K with K-type thermocouples in the
temperature range employed in our tests. Nevertheless, we observed from experi-
mental data that the dispersion of the temperature among the four thermocouples
employed in our setup was much more limited than the range reported by the
manufacturers. By analyzing the data of temperature acquisitions during a whole
day where the temperature of the batteries and the temperature of the chamber was
not changed, we calculated the mean and the double of the standard deviation of
the temperature data, assuming a normal distribution of the errors. The resulting
uncertainty on the measured battery surface temperature is equal to ±0.18 K.
However, due to the poor quality of the battery-thermocouple contact and to the
exposition to ambient air, it was decided that the measured temperature was not
a reliable indicator of the actual battery surface temperature. Therefore, this
temperature acquisition is only used as a control to avoid excessive battery heating
and to check the ambient temperature set by the climatic chamber.

Uncertainty on impedance

For the measurement of the battery impedance, the employed instrument is
the Autolab PGSTAT30 with the FRA2 module. The manufacturer does not
provide an accuracy band on the impedance value, but he reports the uncertainty
on the measured voltage and on the applied current. Nevertheless, the band for the
impedance cannot be calculated as the compound uncertainty since the analytical
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High Frequency Mid Frequency Low frequency
Temperature uZR

[µΩ] uZI
[µΩ] uZR

[µΩ] uZI
[µΩ] uZR

[µΩ] uZI
[µΩ]

10◦ C ±18.0 ±13.5 ±590 ±216 ±197 ±238
25◦ C ±12.2 ±11.1 ±208 ±93.6 ±168 ±114
40◦ C ±10.9 ±7.88 ±238 ±76.3 ±81.0 ±99.6

Table 3.3: Results of the uncertainty analysis on the battery impedance with Autolab PGSTAT30

relationship between the impedance and these two quantities is very complex, and
hence the partial derivatives contained in the compound uncertainty formula are
not easily computable.
Due to this fact, the accuracy on the battery impedance is computed based on
repeated measurements, as a type A uncertainty. It is evaluated on the new
US26650VT battery at 100% SOC and with ambient temperature equal to 10◦ C,
25◦ C and 40◦ C. In each of these three conditions, 20 impedance measurement are
performed in succession in the frequency range 4000-0.05 Hz, with 25 logarithmically
spaced points. In this way, we include the uncertainties on the other quantities, e.g.
temperature, frequency.
The uncertainty is calculated as the double of the standard deviation of the mea-
surements in each frequency point (2σ confidence interval assuming a normal
distribution of the errors), separately for the real part (uZR

) and for the imaginary
part (uZI

):

uZR
= 2 ·

√
1
20

20∑
n=1

(ZR − ZR,n)2

uZI
= 2 ·

√
1
20

20∑
n=1

(ZI − ZI,n)2
(3.4)

In table 3.3. the results of the uncertainty analysis are reported, while in figures
3.5, 3.6 and 3.7 the real and imaginary impedance error bars in each frequency
point and in each temperature are shown. The average impedance value is indicated
as a red dot. The axes ranges are different in the three charts, in order to better
visualize the error bars.
In order to provided more compact information in the table 3.3, an average of the
uncertainties is calculated according to the frequency range. In particular, high
frequency includes the points between 4000 Hz and 100 Hz, mid frequency includes
the points between 100 Hz and 1 Hz, and low frequency includes the points between
1 Hz and 0.05 Hz.
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Figure 3.5: Error bars for the impedance measurement in an EIS at 100% SOC, 10◦C

Figure 3.6: Error bars for the impedance measurement in an EIS at 100% SOC, 25◦C

Figure 3.7: Error bars for the impedance measurement in an EIS at 100% SOC, 40◦C
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3.2 Results
In the following section, we will present and discuss the results of the performed

tests on the samples, i.e. the capacity tests (Chapter 3.2.1), the relaxation tests
(Chapter 3.2.2) and the electrochemical impedance spectroscopies (Chapter 3.2.3),
with the objective of understanding the information on the batteries provided by
each technique.

3.2.1 Capacity test
The capacity tests are executed according to the methodology reported in section

2.1.1, with a CC-CV charge with 0.05 A as CV termination current followed by
a discharge down to the lower voltage limit of the battery. When the climatic
chamber temperature is modified, the batteries are left at rest for at least 4 hours,
in order to obtain a homogeneous battery temperature profile.
The experimental matrix for the capacity tests is composed by:

• three values of ambient temperature: Tamb ∈{10◦C, 25◦C, 40◦C};

• four values of current rate: C ∈{0.5C, 1C, 2C, 3C};

The combinations of current rates and ambient temperatures have the purpose
of exploring the impact of these two operative parameters on the results of the
diagnostic procedure. The figures shown in this chapter are obtained from capacity
tests on the new US26650VT battery, plus a couple of examples from the aged
US26650V T and the new US18650V3 in order to make comparisons with the new
US26650VT.

Effect of current rate

In figure 3.8.a, it is shown the variation of the discharge curve of the pristine
US26650VT at 25◦ C with the C-rate. It is possible to see that an increase of the
C-rate corresponds to a lower exchanged capacity, and in general this is true for all
the tested batteries and for all the employed ambient temperatures. For instance,
the pristine US26650VT passes from 2501 mAh at 0.5C to 2357 mAh at 3C.
The reasons for this effect are:

• an higher C-rate implies an larger reaction current ir, which increases the
activation overpotential according to the Butler-Volmer kinetics (equation
2.14). Moreover, the electronic ohmic losses in the solid are enhanced, since
they are proportional to the current in the solid is itself (equation 2.19).
Finally, the higher current in the electrolyte ie leads to an increase of the ionic
ohmic losses and of the electrolyte concentration overpotential, according to
equation 2.22. The increase of the activation and ohmic losses can be noticed
by the higher initial voltage drop, since at the beginning of every discharge
the battery has the same equilibrium conditions (100% SOC, at 4.2 V);

• an higher C-rate induces a higher lithium concentration disequilibrium in
the particles of both the electrodes, due to the higher molar flow rate of
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Figure 3.8: On the left: Discharge curves of new US26650VT, @25◦C, voltage variation with C-

rate. On the right: Discharge curves of new US26650VT, @25◦C, battery temperature

variation with C-rate

lithium transported in the cell. According to the mechanism described in
section 1.1.2, the difference in concentration between the electrode particle
surface and the bulk of the electrode particle itself implies a lower/higher
open circuit potential of the cathode/anode if compared to a situation where
the discharge does not create an inhomogeneous lithium concentration profile
in the particles.
In addition, an higher C-rate has the effect of enhancing the difference between
the surface lithium concentration of the electrode particles near the current
collector and the ones near the separator. The electrochemical reaction is
more concentrated in the points that are nearer to the other electrode, i.e. in
proximity of the separator [103]. This uneven reaction profile further limits
the amount of lithium accessible during the reaction, decreasing the exchanged
capacity during the discharge.
The effects of the unbalances in the concentration of lithium in the solid in
the capacity tests are observable from the contraction of the discharge curve
towards lower exchanged capacities, without taking into account the vertical
shift due to the ohmic and activation losses.

The increased overpotential is also consistent with the trend of the surface temper-
ature with the C-rate, in figure 3.8.b. Higher voltage losses cause a higher heat
generation, as shown by equation 2.37.

Effect of ambient temperature

The effect of the ambient temperature on the discharge curves can be observed
in figures 3.9 and 3.10. The former figure shows tests at 0.5C while the latter figure
shows test at 3C. We choose to report these two conditions in order to help to
understand the impact of a temperature variation with different battery loads.
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The lower the ambient temperature at which the battery operates, the lower the
exchanged capacity, and this effect is enhanced at higher current rates. For example,
in the pristine US26650VT the capacity in a discharge curve at 0.5C passes from
2503 mAh at 40◦C to 2377 mAh at 10◦C, with a difference of 126 mAh. Instead,
the capacity in a discharge curve at 3C changes from 2406 mAh at 40◦C to 2146
mAh at 10◦C, a delta of 260 mAh.
The explanations for this phenomenon are:

• the lower operating temperature has the effect of slowing the kinetics of
the electrochemical reactions, as indicated by the Arrhenius-type relation
of the rate constants k with the temperature (equation 2.47), leading to an
higher activation overpotential. Moreover, the temperature affects also the
electrolyte ionic conductivity κe, making it decrease, as seen in figure 2.11.
Therefore, the ohmic losses increase;

• the equivalent ionic conductivity κD is directly proportional to the ionic
conductivity κe and to the temperature. Therefore, with a temperature
decrease, κD decreases too. According to equation 2.22, to maintain the same
electrolyte current the concentration gradient in the electrolyte has to increase.
This increased concentration gradient makes the whole electrode less accessible
for the electrochemical reaction, which consequently concentrates near the
separator, giving the same effect described when discussing about the variation
of the current rate. The steeper concentration gradient is also implied by
the lower lithium diffusion coefficient in the electrolyte De, determined by
equation 2.45. De decreases if the ionic conductivity κe and the temperature
decrease too;

• the lithium diffusion coefficient in the solid electrode Ds has an Arrhenius-type
dependence with temperature, according to equation 2.48. The lower the
temperature, the lower this diffusion coefficient. Therefore, the obtained
effect is analogous to the one described in the section about the current rate
variation, with the difference that the increased concentration gradients in
the electrode are caused by a more sluggish diffusion of the lithium and not
by an higher lithium molar flow. This effect is particularly evident at higher
current rates, as in figure 3.9.a. In fact, with the low current rate of figure
3.10.a, we notice only a vertical shift of the voltage, while in figure 3.9.a a
contraction of the curves is evident at 10◦C.

The variation of the battery surface temperature of figure 3.9.b validates the expla-
nation of higher overpotentials induced by the lower temperature.

Effect of battery aging

In figure 3.11.a, it is possible to see how the capacity tests change according to
the battery aging, with a discharge at 0.5C and 40◦C, and one at 3C and 10◦C.
Comparing the capacity tests of the pristine and the aged US26650VT, we have
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Figure 3.9: On the left: Discharge curves of new US26650VT, @3C, voltage variation with

ambient temperature. On the right: Discharge curves of new US26650VT, @3C,

battery temperature variation with ambient temperature

Figure 3.10: On the left: Discharge curves of new US26650VT, @0.5C, voltage variation with

ambient temperature. On the right: Discharge curves of new US26650VT, @0.5C,
battery temperature variation with ambient temperature
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Figure 3.11: On the left: Discharge curves @0.5C, 40◦C and 3C, 10◦C, battery comparison. On

the right: Discharge curves of new and aged US26650VT, @0.5C, 40◦C and @3C,

10◦C

2503 mAh against 2381 mAh at 0.5C and 40◦C, and 2146 mAh against 1989 mAh
at 3C and 10◦C.
The reasons for this effect are:

• the aged US26650VT battery has a lower available capacity than the new
US26650VT battery, due to the degradation effects that induce a capacity
fade. The discharge curve made at 0.5C and 40◦C shows this fact, since the
overpotentials and the concentration gradient are very low with this current
rate, and the difference between the new and the aged voltage curve can be
only explained by a difference in the capacity;

• the aged battery shows higher ohmic and activation losses, as noticeable
from the difference between the new and the aged voltage curve at 3C and
10◦C. This characteristic reflects a power fade in the aged battery, probably
due to the additional resistance created by the SEI layer, by the lower ionic
conductivity caused by the electrolyte degradation, and by the lower specific
active area in the electrodes due to particle cracking, structural disordering,
etc. (see Chapter 1.3.2);

• from these curves it is not clear if there are differences in the diffusion processes
between the two batteries;

Effect of battery type

Figure 3.11.b show the comparison between the discharge curve of the new
US26650VT and the one of the new US18650V3, still with a discharge at 0.5C and
40◦C, and one at 3C and 10◦C. As x-axis, the state of charge is used instead of the
exchanged capacity, due to the unequal nominal capacity of the two batteries. The
most evident feature are:
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• the difference in the open circuit voltage, as it is clear from the shape of the
0.5C and 40◦C discharges. Since the anode material is graphite in both cases,
the variation of open circuit voltage is due to the distinct cathode materials of
the two batteries: LMO+NMC for the US26650VT, NMC for the US18650V3.
Also, the second chemistry allows a lower cut-off voltage to the US18650V3
battery (2.5 V vs 2.8 V);

• from the curves of figure 3.11.b it seems that there are no major differences
in the ohmic and activation losses, but we have to remind that the actual
current at which the tests are made is not the same for the two batteries. In
fact, 3C for the US26650VT is equal to 7.8A, while 3C for the US18650V3
is equal to 6.75A. Since the voltage losses are proportional to the current,
actually the US26650VT has lower ohmic and activation overpotentials than
the US18650V3 at the same current, since these losses are equal in figure
3.11.b.

3.2.2 Relaxation test
The relaxation voltage profile is obtained after a current pulse that discharges

the battery with a depth of discharge (DOD) of 20%. The depth of discharge is the
percentage of nominal capacity that is exchanged during a current pulse. After the
pulse, the battery is allowed to relax for at least three days, in order to be sure
to measure the whole voltage recovery after the end of discharge. In fact, a full
equilibrium can be reached only after hours or days after a current pulse, according
to the magnitude of the current pulse itself [106, 133, 134]. Then, the subsequent
pulse is applied. The starting point for each battery is 100% SOC, and theoretically
there could be five pulses with 20% DOD. Nevertheless, the last pulse is always
stopped before reaching the desired depth of discharge because of the lower voltage
limit. Since we want to have the same exchanged capacity for all the pulses, the
relaxation tests are stopped when 20% SOC is reached. Therefore, the reached
states of charge are 80% SOC, 60% SOC, 40% SOC and 20% SOC.
The experimental matrix for the relaxation tests is composed of:

• three values of ambient temperature: Tamb ∈{10◦C, 25◦C, 40◦C};

• two values of current rate in the pulse: C ∈{0.2C, 3C};

In the figures, the quantity with which the relaxation curve is shown as the voltage
recovery after the end of discharge, taking as reference the first point measured
with current equal to zero (t ≈ 0.5 s), and subtracting this reference value to all the
subsequent points. This quantity allows to easily compare the trends of the tests
that have a different end of discharge voltage. Since the relaxation curves start
from approximately 0.5 seconds after the end of discharge, the ohmic and activation
overpotentials considered recovered, as well as the discharge of the double layers
capacity is considered complete, thanks to the very low characteristic times that
are associated to these phenomena (≈ 0.01− 0.001 s) [103, 125]. Therefore, the
trend of the relaxation curve is practically determined by the reequilibration of the
lithium concentration gradients in the electrolyte and in the solid materials.
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Figure 3.12: On the left: Voltage recovery in time during relaxation, logarithmic time scale -

New US18650V3, @3C, 25◦C and 0.5C, 25◦C. On the right: zoom on the voltage

recovery 0.5C, 25◦C (different voltage scale)

The battery surface temperature is not reported, since its trend is only determined
by the preceding discharge pulse and by the convective heat transfer coefficient
in the climatic chamber, that cools the battery down to the ambient temperature.
The relaxation process does not affect the battery temperature per se, since in this
phase there are no reaction currents that are so relevant that they can induce heat
generation. The figures report the tests on the new US18650V3 high-energy battery,
with a comparison with the aged US18650V3 and with the new US26650VT high-
power battery. We chose to report the data about the high-energy batteries since
the voltage recovery during the relaxation is larger than the one of the high-power
batteries, and then it is easier to understand the effect of the variation of the
operative conditions.

Effect of pulse current rate

In figure 3.12.a, it is shown the voltage recovery in the new US18650V3 after
all the 20% DOD discharge pulses at 25◦C, with two different current rates. Figure
3.12.b is a zoom on the relaxation voltage after the pulses at 0.2C, to better
appreciate the difference between the reached states of charge. The main trends in
these plots are:

• the magnitude of the voltage recovery is strongly affected by the current rate
at which the previous discharge is performed. The voltage recovery for the
3C pulse is 5 times higher than the 0.2C pulse for the discharge from 80% to
60% SOC, while it is 10 times higher in case of the discharge from 40% to
20% SOC. The explanation for this behavior can be found in the much higher
concentration disequilibria caused by the high current, which corresponds to
higher voltage losses according to the mechanisms described in section 1.1.2;

• it is interesting to notice how in both cases the voltage profiles reach an almost
stable value in the 5 · 104 − 105 s range, which correspond to about 12− 24 h.
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Figure 3.13: On the left: Voltage recovery in time during relaxation, logarithmic time scale

- New US18650V3, @3C and 0.5C, variable ambient temperature. On the right:

zoom on the voltage recovery @0.5C (different voltage scale)

This similarity in the time needed to reach the peak value of voltage recovery
can be explained by the fact that the rate at which a concentration gradient
is flattened is proportional to the concentration gradient itself (see equation
2.12). Therefore, the reequilibration process progressively slows down with
time. In case of the high current pulses, at the beginning of the relaxation the
concentration gradients are very steep, in fact the voltage recovery is quite
high and fast in this zone. Instead, from 103 − 104 s the voltage recovery is
much more gradual, with a trend comparable to the one of the low current
pulses;

• another reason of the very slow voltage recovery can be found in the shape of
the open circuit potential of the graphitic anode (see figure 1.4 of Chapter
1.2.1). If the lithium concentration in the anode corresponds to an almost
constant potential region in the OCP curve, the electrochemical reequilibration
process that balances the surface concentration of lithium on the electrode
particles has practically no driving potential. This is due to the fact that
even if two particles in the anode have two different lithium concentrations
on their surfaces, the corresponding open circuit potentials are almost equal
[133]. Therefore, the lithium cannot easily pass from a particle to the another
through the electrolyte, causing a severe slowing of the relaxation process in
anode. Nevertheless, the voltage recovery due to the graphite is much lower
than the one due to the cathode material, due to the much narrower range of
the anodic OCP [103];

• this last consideration is not entirely valid when the battery gets near low
states of charge. In fact, the slope of the graphite OCP is high in this region,
and therefore the voltage recovery is impacted by the reequilibration in the
anode material too. This fact can be seen in figure 3.12.a, where the voltage
recovery after the 3C current pulse from 40% SOC to 20% SOC is about
50% higher than the ones of the other 3C pulses. For the pulses at 0.2C
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Figure 3.14: On the left: Voltage recovery in time during relaxation, logarithmic time scale -

Aged US18650V3, @3C, 25◦C and @0.5C, 25◦C. On the right: zoom on the voltage

recovery @0.5C, 25◦C (different voltage scale)

of figure 3.12.b, this phenomenon is much less present, probably because
the disequilibrium induced by the very low current is not enough strong to
effectively deplete the negative electrode. Nevertheless, both the relaxation
processes need an higher time to reach a peak value (t > 105);

• each voltage recovery reaches a peak value, after which it slowly starts to
decrease (please note the logarithmic scale of the time axis). The magnitude
of this decrease is compatible with the self-discharge phenomena that affect
lithium-ion batteries [135], which lead to a 2%-10% reversible SOC loss per
month, according to the ambient temperature and to the SOC itself (the higher
the temperature and the SOC, the higher the self-discharge). The causes are
the side reactions in the battery, such as the leakage of electrons from the
anode to the cathode through the electrolyte, and an imperfectly open battery
electric circuit, which creates a closed circuit between the electrodes. The
voltage decrease is much more evident with the low current pulses, because the
magnitude of the voltage recovery is comparable to the one of self-discharge
voltage loss. Nevertheless, they are present after the high current pulses, too;

Effect of ambient temperature

In figure 3.13.a, the effect of the ambient temperature on the relaxation profiles
with the two current rates is shown, keeping constant the SOC value after the
discharge. Figure 3.13.b is a zoom of the low current pulses. The features of these
curves are:

• an ambient temperature decrease corresponds to an increase in the voltage
recovery. This phenomenon is caused by the higher concentration gradients
that are established during the discharge pulse, because of the lower lithium
diffusion coefficient in the electrolyte De and in the solid material Ds;
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Figure 3.15: Voltage recovery in time during relaxation, logarithmic time scale - Battery com-

parison @0.5C, 10◦C and @0.5C, 40◦C

• the ambient temperature affects the speed of the voltage recovery, too. This
fact can be seen both for the low current and for the high current pulses.
The peak point of the voltage recovery shifts toward higher times when the
ambient temperature decreases, since the diffusion is more sluggish, and the
trend of the relaxation profile is mostly determined by diffusion in this region.

Effect of battery aging

A comparison between the relaxation profiles of the aged and of the pristine
US18650V3 at 0.2C/3C and 25◦C can be made by comparing the figures 3.14.a
and 3.12.a. Figure 3.14.b shows a zoom on the low current pulse relaxations of the
aged battery. Comparing these tests, we see that all the low and the high current
pulse relaxations show a quite small difference in the final value of voltage recovery,
except for the 3C pulse between 60% and 40% SOC. The voltage recovery of this
pulse passes from 0.21 V in the new battery to 0.24 V in the aged battery, and the
difference between the two values, 0.03 V, is almost equal to the potential difference
between the stage 1 and the stage 2 of lithiated graphite (see Chapter ??). If the
cathode-related voltage recovery is the same, this fact implies that at equilibrium
conditions, the 40% SOC point of the new US18650V3 battery lies in the stage 1
region of the graphitic anode, while the 40% SOC point of the aged US18650V3 is
in stage 2. Hence, the shape of the OCV curve of the aged US18650V3 battery is
probably different from the one of the new US18650V3 battery, due to the effect
of a loss of lithium inventory (LLI, see Chapter 1.3.2). Since the NMC cathode
open circuit potential curve has a quite constant slope and does not show voltage
plateaus [12], this hypothesis is reasonable.

Effect of battery type

Finally, in figure 3.15 we compare the voltage recovery of the new US18650V3
high-energy battery with the one new US26650VT high-power battery, at 0.2C
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and two ambient temperatures, 10◦C and 40◦C. The high-power battery shows
both a lower voltage recovery and a lower time to reach the voltage recovery
peak, in particular at low temperature. High-power batteries are made with
thinner electrodes and with smaller electrode particles to enhance the specific
active area and decrease the battery resistance (see Chapter 3.1.1). Therefore, the
characteristic time of diffusion in the electrolyte and in the electrode τD is smaller
in the US26650VT, since it depends on the square of the characteristic diffusion
length (see equation 2.3). In general, high-power battery concentration gradients
are smaller than the ones of high-energy batteries, and the diffusion process is faster
too, at same operative conditions.

3.2.3 Electrochemical Impedance Spectroscopy
The impedance spectra obtained with the EIS are measured at steady state,

in the 10000-0.05 Hz frequency range and 40 logarithmically spaced points, and a
0.15 A amplitude of the current sinusoid. The experimental matrix is:

• three values of ambient temperature: Tamb ∈{10◦C, 25◦C, 40◦C};

• five values of state of charge: SOC ∈{100%, 80%, 60%, 40%, 20%};

The combinations of state of charge and temperature are thought with the purpose
of fully characterizing the battery impedance in many different operative conditions.
Starting from 100% SOC, the impedance spectrum is measured and then the battery
is discharged with a 0.2% pulse and 20% DOD. The battery is left at rest for 24
hours before performing the next EIS and repeating the cycle down to 20% SOC,
since it is known that the impedance spectrum is sensitive to internal concentration
unbalances [106, 134]. The test could not provide the steady-state impedance values
if made shortly after the battery is perturbed.
The EIS is made on the pristine and aged high-power US26650VT batteries. For
the pristine and aged high-energy US18650V3, only some specific conditions are
investigated in this work. For the indication of the frequency on the plots, please
refer to figure 2.4 of Chapter 2.

Effect of state of charge

Figure 3.16. shows the impedance spectra of the pristine US26650VT at 25◦C
and at all the states of charge included in the experimental matrix. For what
concerns this trend, we can say that:

• the high frequency resistance is practically equal for all the SOC values
(around 17.5 mΩ), while the real and imaginary impedance related to the
charge transfer are very similar only up to the 20 − 5 Hz frequency range.
After these values, a dependency of the impedance with the SOC is evident;

• at 100% SOC, the impedance shows a relevant linear branch at low frequency,
whose shape can be linked to limitations in the lithium diffusion due to phase
transformations [136, 137] and to the slope of the open circuit potential
[108]. The higher the slope, the higher the diffusion impedance, while a phase
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Figure 3.16: Impedance spectra of the new US26650VT obtained with EIS @25◦C, state of charge

variation

transformation leads to a slope in the Nyquist plot lower than 45◦. Moreover,
phase transformations also cause locally lower diffusion coefficients Ds [138],
leading to an higher diffusion impedance. Hence, the presence of a phase
transformation at 100% SOC in our battery seems to be the case that explains
the experimental data, due to the higher diffusion impedance and to the lower
slope of the linear branch if compared to the other SOCs;

• at SOC equal to 80% and 60%, the impedance spectra are quite similar,
with a much smaller diffusion impedance if compared to the 100% case. The
impedance starts to grow in the mid-low frequency range, below 20− 5 Hz.
Theoretically, the exchange current density i0 has a inverted parabolic shape
trend with the electrode state of charge, with a maximum at 50% SOC. Since
the charge transfer resistance is inversely proportional to the exchange current
density (see equation 2.8), the impedance should have a minimum around
50% SOC. Our data seem to show this trend, but only for mid-low frequencies;

• at 20% SOC, a second semicircle appears at low frequency, which overlaps with
the diffusion impedance. The theoretical exchange current density relation
with SOC does not explain this trend, since this impedance growth appears
to be quite abrupt, while the exchange current density has a much more
gradual decrease with the SOC that approaches zero or one. An explanation
could be given by the behavior of layered cathode materials when near to
the fully lithiated state, i.e. when the battery SOC is going towards zero.
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When approaching this region, the lithium intercalation makes the layered
material shift from a semi-metal behavior to a semi-conductor behavior [110,
136]. The latter has a much more limited kinetics, which could explain the
sudden impedance increase.

Figure 3.17: Impedance spectra of the aged US26650VT obtained with EIS @25◦C, state of

charge variation

Effect of battery aging

In figure 3.17, it is possible to see the impedance spectra of the aged US26650VT,
in the same operative conditions of the pristine battery, at 25◦C and at all the
states of charge. The differences between the two impedance spectra are:

• the aged battery shows an HFR equal to 19 mΩ, while the HFR of the
pristine one is 17.5 mΩ. The high frequency resistance increase with aging is
due to the formation of the SEI, which creates an additional resistive layer
Rfilm around the graphitic anode particles. Also, a small contribution can
to the HFR increase can come from the electrolyte decomposition. In fact,
the electrolyte concentration ce,0 in new batteries is commonly calibrated
by manufacturers to have the maximum ionic conductivity (see equation
2.44). If the electrolyte decomposes, the concentration of the lithium salts
decreases, with a consequent decrease of the ionic conductivity. This effect is
in accordance with the increase in the initial voltage drop observed comparing
the discharge curves of the aged and pristine US26650VT batteries. With the
EIS, we see how it is possible to understand that the increased voltage drop
is due to an increase in the ohmic overpotential, thanks to the separation of
the limiting phenomena of the battery in the impedance spectrum;
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• at 20% SOC, the aged battery has a second semicircle in the low frequency
region which is about 7 times bigger than the second semicircle of the new
battery. Also, the impedance spectrum at 40% SOC is larger than the
correspondent in the new battery too. This relevant increase at 20% SOC
could be explained by the fact that the aged battery is actually "smaller" than
the new one in terms of available capacity, due to the degradation effects
that induce a capacity fade. Therefore, a theoretical 20% SOC in the aged
battery (based on the nominal capacity at the beginning of life) is actually
much more close to an actual 0% SOC, due to the lower capacity of the aged
battery. Therefore, the positive electrode of the aged battery should be more
lithiated than the positive electrode of the new one, with a sharp increase of
the related impedance due to the enhanced semi-conductor behavior.

Figure 3.18: Impedance spectra of the new US26650VT obtained with EIS at 60% SOC, ambient

temperature variation

Effect of ambient temperature

The variation with the ambient temperature of the impedance spectrum of the
new US26650VT is reported in figure 3.18, with a fixed SOC at 60%. The main
trends in this chart are:

• the HFR increases as the ambient temperature decreases. The main component
of this resistance increase is the decrease of ionic conductivity of the electrolyte
κe with the temperature, as it is possible to see in figure 2.11 and from the
equation 2.44 of the previous chapter.
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• the charge transfer resistance semicircle has a strong growth when temperature
decreases. The Arrhenius-type dependence of the kinetic rate constants k of
the electrodes’ reactions with temperature explains this trend (see Chapter
2.2.3), since the kinetics of the electrochemical reactions is enhanced at high
temperatures and hindered at low temperatures.

3.3 Final remarks
In this chapter, we explored three different experimental techniques for the

battery diagnostics, and we observed how they can provide data on all the main
characteristics of the lithium-ion battery. Also, aged batteries can be distinguished
from new batteries in each of these techniques. Hence, all of them have proven to
be valid tools for the battery parameter identification, in particular if used together.

As far as the author’s knowledge, the combination of the information given by capac-
ity tests, relaxation tests and EIS to reproduce the lithium-ion battery behavior is
not present in literature. Nevertheless, an optimal diagnostic procedure should not
take into account only the quantity of provided information on the studied system,
since each experiment requires time for its execution. It is not realistic to perform
on aged commercial battery that have to be characterized all the experiments that
we made on our battery samples, in particular in the scenario in which high vol-
umes of spent batteries will be available for the second-use market in the next future.

Therefore, it is important to understand the conditions in which these techniques
can give the higher amount of insights on the battery, in order to exploit these
conditions to design a diagnostic procedure that combines the quantity and quality
of provided information with a low experimental time.





Chapter 4

Sensitivity analysis

In this chapter, we describe the sensitivity analysis made with the P2D model
on the experimental techniques studied, analyzed and applied during the first part
of this work, reported in chapter 3. The objectives of the proposed sensitivity
analysis are:

• to understand the effect of the variation of the model parameters
when simulating the same set of tests performed in the experimental campaigns,
i.e. voltage or temperature variations during discharge and relaxations, and
impedance change during the EIS. Usually, the influence of a parameter is
qualitatively known, but the actual magnitude of this influence among different
diagnostic tests and operative conditions are not straightforward, due to the
strongly nonlinear behavior of the P2D model. For some physical quantities,
the range of sensible values can span among two orders of magnitudes, while
others exist in a narrow interval, according to the uncertainty in the literature
on their actual value and on the battery characteristics. The sensitivity
analysis helps to quantitatively understand the impact of the battery defining
parameters in their validity range on the model’s results;

• to identify the operating conditions and the measurements where
each parameter shows the highest sensitivity value (or a group of
them) by assessing their effect on the test outputs, for the sake of the fitting
of experimental data (see Chapter 5). For instance, a parameter can impact
more on the trend in time of the voltage during relaxation than on other
conditions, or/and it can be the only one that defines that relaxation voltage
trend. Therefore, the fitting of that parameter will be based on a relaxation
test. Having analyzed 28 parameters of the P2D model, it would be unfeasible
to run a different test for each of them, and hence it will be necessary to select
conditions that result to be the best compromise for the good identification
of groups of parameters.

First, we will describe the structure of our sensitivity analysis, starting with a brief
literature review (Chapter 4.1.1) and explaining its mathematical formulation 4.1.2.
Then, we will present the most relevant results of the sensitivity analysis (Chapter
4.2), with the formulation of an optimized experimental protocol that is able to
provide data for the fitting of the lithium-ion battery physical model (Chapter 4.3).

81
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4.1 Sensitivity analysis: structure

4.1.1 Literature review
There are many tools to understand the sensitivity of a model to its parameters,

but in general the most adopted methodologies are [139]:

• One-Factor-At-Time (OFAT): in the OFAT analysis, the model parame-
ters are set to nominal values, and they are varied one at a time while keeping
the others fixed. The variations of the output with respect the variations of a
single input are calculated, and the results are analyzed to understand the
sensitivity of the model to that input. Each parameter has a validity range,
and the simulations are performed by assigning to the parameter several
values within its own range. This procedure is repeated for every parameter.
If the range in which the values of the parameter are chosen is wide, the
analysis allows to explore well the relationship between the output and the
input, revealing nonlinear behaviors or tipping points. Instead, if the range is
small, the result of the sensitivity analysis resembles more a partial derivative
of the model output with respect to the selected input, calculated in the point
where the input assumes its nominal value.
The advantages of the OFAT analysis are its simplicity, its relatively low
computational cost and its ability to well understand the mechanistic relations
among the model output and the inputs. The drawbacks are that interactions
among different inputs are not explored (i.e. the parameters are not varied
simultaneoulsy) and that the information that the OFAT analysis give are
quite qualitative;

• Global Sensitivity Analysis (GSA): in a GSA, a more rigorous statistical
approach is used, since it is based on the variance of the model output with
respect to a great number of combinations that the model parameters can
assume. The contribution of each parameter to the total variance of the
output can be assessed with various techniques, for instance with regression
models or Sobol’ indices. GSA can unveil the effect of interactions among
the model parameters, and it is able to give a statistically sound quantitative
information on the sensitivity of each of them, assigning an index based on
variance analysis. Nevertheless, GSA requires a great amount of model runs
in order to get a suitable sample of model outputs, with the use of Monte
Carlo simulations or analogous methods. Also, the effects of poorly-sensitive
parameters might be lost since they are hidden by more sensitive parameters
[140].

In literature, it is possible to find several examples of sensitivity analyses on lithium-
ion battery models: on electric equivalent circuits [141–143], on the single-particle
model [144–146], on the proper P2D model [147, 148] and also on the coupled
electrochemical-electrical-thermal model [140]. The use of GSA is possible only for
EECs and for simplified versions of physical models, due to the high computational
time required. The battery model is usually linearized or expressed in an approxi-
mated polynomial form, in order to be solved much faster than its partial-differential
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equation form, with the consequence of a lower accuracy of the results. Instead,
the OFAT analysis is performed both on simplified models and on the full-scale
P2D model. It is important to notice that the reported sensitivity analyses of the
battery models have been performed only on discharge curves or on more complex
combinations of current inputs, such as driving cycles. As far as the author’s knows,
there are no papers that focus on the combined sensitivity of capacity tests, relax-
ation tests, and EIS tests in order to obtain an optimized experimental methodology.

In the work of Schmidt et. al [144], they analyzed five specific experiments, which
comprehended pulse tests and discharges with a simultaneous ambient temperature
variation. The sensitivity analysis was coupled with the parameter identification
process, in order to understand which parameters could be fitted to each experi-
ment in a better way. The results were satisfactory, but they did not report the
performance of the model in other conditions than the fitting experiments.

Lin et. al. [140] performed a global sensitivity analysis on the coupled electrochemical-
electrical-thermal model, using Sobol’ indices with several simplifications to the
battery model, which were necessary for a reasonable computational time. The
limits of a GSA are evident in this work: the most sensitive parameters had to be
excluded from the analysis in order to get a meaningful sensitivity index on the
other parameters. Moreover, it is hard to get physical insights from this approach.
For instance, Lin et. al. noticed a very high influence of the solid diffusivity of
the cathode on the maximum temperature reached by a battery after a discharge.
They justified it with the high impact of the concentration overpotential on the
overall one, an impact that was reflected on the heat generation from irreversibilities
(Chapter 2.2.3, eq. 2.39). However, as we reminded in chapter 1.1.2, the effect of
inequality between the surface and bulk concentration of lithium on the electrode
material is related to a variation of the open circuit potential of the electrode itself,
and not to the development of a proper overpotential like the ohmic and kinetic
ones. Therefore, a variation of the solid diffusion coefficient is not directly related
to a temperature variation. What Lin et. al. observed is probably due to the
fact that if the solid diffusivity is low, the battery voltage reaches the lower cutoff
voltage limit faster than if the solid diffusivity is high. Consequently, the battery
has less time to heat up and hence the maximum temperature is lower. Therefore,
the influence of solid diffusivity on the temperature is correct, but it is indirect,
and not linked to a proper overpotential that generates heat.

Murbach and Schwartz [149] created a large database of EIS simulated with the
P2D model, with the purpose of using it as a fitting tool for experimental data, but
they did not analyze the sensitivity of the EIS with respect to the model parameters.

The sensitivity analysis methodology that is chosen in this work is similar to
the one of Zhang et. al. [147] and of Edouard et. al. [145]. They both performed
an OFAT analysis, the former on an LFP battery simulated with the full-scale
P2D-thermal model, the latter on an LFP battery simulated with the single-particle
model coupled to a thermal model. They took 10 different values for each model
parameter, and they simulated a wide matrix of possible operative conditions for a
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Table 4.1: P2D model parameters involved in the sensitivity analysis

Anode Separator/Electrolyte/Cell Cathode
Parameter Nominal Range Nominal Range Nominal Range
Cdk [F m−2] 1 0.02− 50 - - 1 0.02− 50
k[ms−1] 1 · 10−9 1 · 10−10 − 1 · 10−8 - - 1 · 10−9 1 · 10−10 − 1 · 10−8

ce,0 [molm−3] - - 1200 800− 1600 - -
FCE [−] - - 0.387 0.100− 1.500 - -
t+0 [−] - - 0.350 0.300− 0.400 - -

σs [S m−1] 316 10− 10000 - - 3.16 0.1− 100
Rp [m1] 6.75 · 10−6 1 · 10−6 − 12.5 · 10−6 - - 6.75 · 10−6 1 · 10−6 − 12.5 · 10−6

Ds [ms−1] 1.58 · 10−13 5 · 10−14 − 5 · 10−13 - - 3.16 · 10−14 1 · 10−14 − 1 · 10−13

Rfilm [Ωm2] 3.16 · 10−3 1 · 10−3 − 1 · 10−2 - - 3.16 · 10−4 1 · 10−4 − 1 · 10−3

εe [−] 0.375 0.325− 0.425 0.600 0.550− 0.650 0.375 0.325− 0.425
EAk [J mol−1] 4 · 104 2 · 104 − 6 · 104 - - 4 · 104 2 · 104 − 6 · 104

EADs [J mol−1] 4 · 104 2 · 104 − 6 · 104 - - 4 · 104 2 · 104 − 6 · 104

ρam [kg m−3] - - 2500 2250− 2750 - -
Cam [J kg−1K−1] - - 1250 1000− 1500 - -

kT,rad,am [W m−1K−1] - - 0.550 0.100− 1.000 - -
kT,ax,am [W m−1K−1] - - 30.00 10.00− 50.00 - -
hconv [W m−2K−1] - - 30.00 5.000− 55.00 - -

Rext [Ωm2] - - 0.003 0.001− 0.005 - -

discharge curve. The standard deviation of voltage and surface temperature was
used as a descriptor of the sensitivity of the output with respect to the varied param-
eter. Then, the parameters were classified according to their mean sensitivity values
and a cluster analysis was performed, in order to find the experimental conditions
that enhanced the identification of the model parameters. Lastly, the parameter
identification was performed on a simulated dataset in [147] and on an experimental
dataset in [145], with a stepwise methodology that firstly fitted the most sensitive
parameters and then all the others. They both found good accordance between the
simulation output and the dataset created with their methodology. Nevertheless,
they focused only on a simple discharge test as an experimental technique, and
their results should be taken as valid only for LFP batteries, which show quite
different values for the physical parameters with respect to the other chemistries.

In this thesis, the sensitivity analysis methodology is the OFAT, through which it is
possible to get insights on the underlying mechanistic processes of the lithium-ion
battery that are influenced by the model parameters. Also, its lower computational
burden is helpful to reduce the time needed to perform the analysis on the very wide
matrix of operative conditions and experimental techniques that will be described
below. The 28 LIB parameters on which the sensitivity analysis is performed are
reported in table 4.1, with the associated validity range, defined after a thorough
literature review [132, 150–163]. Five values for each parameter are used in the
simulations, which explore the whole available range. The five parameter values are
linearly or logarithmically spaced, according to the distance between the minimum
and maximum values of the range: linear if the minimum and the maximum have
the same order of magnitude, otherwise logarithmic.

It has been chosen to not take into account all the parameters that are re-
lated to the thermodynamic and geometric characteristics of a lithium-ion battery,
i.e. all the parameters that define its capacity (εs,a,p, εs,a,n, SOCmin,p, SOCmin,n,
SOCmax,p, SOCmax,n, Lp, Ln, Ael, cs,max,p, cs,max,n). The reason behind this choice is
that the thermodynamic parameters require slow experimental techniques in order
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Table 4.2: Fixed P2D model parameters

Parameter Anode Separator/Electrolyte/Cell Cathode
L [m] 40.0 · 10−6 22.5 · 10−6 40.0 · 10−6

SOCmin [−] 0.049 - 0.125
SOCmax [−] 0.850 - 0.870

cs,max [molm−3] 31000 - 37035
εs,a [−] 0.500 - 0.450
Ael [m2] - 0.19534 -

Qnom [mAh] - 2600 -
αc [−] 0.5 - 0.5
αa [−] 0.5 - 0.5
Tref [K] 298.15 298.15 298.15
H [m] - 65.00 · 10−3 -
ram [m] - 10.75 · 10−3 -
rman [m] - 2.000 · 10−3 -
tst [m] - 0.250 · 10−3 -

Cman [J kg−1 K−1] - 1700 -
Cst [J kg−1 K−1] - 475 -
ρman [kgm−3] - 1150 -
ρst [kgm−3] - 7850 -

kT,man [W m−1 K−1] - 0.26 -
kT,st [W m−1 K−1] - 44.5 -

to be properly evaluated, such as incremental capacity and differential voltage,
which were investigated the previous work [93]. In this thesis, we concentrate on
faster techniques that enhance the dynamic behavior of lithium-ion batteries, away
from equilibrium conditions. Instead, the geometric parameters can be evaluated
quite accurately by comparing the type of battery that is being analyzed with
the data that are available in literature [132, 150–152], thanks to some design
standards that are present in the lithium-ion battery manufacturing. Therefore, the
thermodynamic and geometric parameters are fixed and taken from experimental
tests and literature, as well as other secondary parameters (table 4.2).

The battery modeled in the sensitivity analysis is based on the pristine SONY
US26650VT (section 3.1.1), an NMC/LMO high power battery, with a nominal
capacity of 2600 mAh. Therefore, the benchmark of all the model parameters stems
from this type of battery. It is important to remind that this sensitivity analysis
should be considered completely valid only for the batteries that are similar to
the one on which the benchmark parameter set is based on. Nevertheless, general
implications are obtained from the study, applicable to the specific cases with some
modifications.

The sensitivity analysis is performed in the subsequent conditions:
• Capacity test: the discharge simulation matrix is made of four ambient

temperatures (Tamb∈{-5◦C, 10◦C, 25◦C, 40◦C}), four starting states of charge
(SOCin∈{100%, 75%, 50%, 25%}), four depths of discharge (DOD∈{100%,
75%, 50%, 25%}) and four current rates (C∈{0.5, 1, 2, 3}). Obviously, in every
simulation, the depth of discharge has to be equal or lower the starting state of
charge. Therefore, we obtain 160 operating conditions for the capacity test in
which the outputs are cell voltage and cell surface temperature. The battery
model is initialized with the selected starting SOC and ambient temperatures,
then the current is applied for a certain amount of time according to the
selected C-rate and depth of discharge.
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The number of registered data points is 100, and hence the timestep ∆t of
each discharge simulation will be:

∆t =
DOD · 3600

[
s
h

]
100 · C (4.1)

The simulation can end before its expected duration, due to the fact that
the model has a stop condition if the cell voltage gets lower than the cutoff
voltage provided by the manufacturer limit for the simulated battery. In this
case, the output will have a lower number of data points;

• Relaxation test: the relaxation simulation matrix is the direct consequence
of the discharge simulations and it has exactly the same operative conditions.
In fact, after every discharge, the current is set to zero in the model, allowing
the battery to restore an equilibrium condition starting from the unbalanced
lithium concentrations in the electrolyte and in the electrodes.
It is important to underline that for the sake of the sensitivity analysis, the
trends of voltage and temperature during relaxation are fully comparable only
if there has been exactly the same DOD before the end of discharge. This is
because the differences among the internal disequilibria in the battery have
to be caused only by the varied physical parameter, and not by inequalities in
the operative conditions of the discharges that generate those disequilibria. In
this way, it is possible to appreciate the influence of the varied parameter on
the voltage and temperature trends separated by other effects. Therefore, the
simulations of relaxation processes where the starting SOC is equal to the DOD
in the preceding discharges will be discarded, since this combination always
meets the lower cutoff voltage stop condition that ends the discharge before
the prefixed duration, creating differences among the tests. As a consequence
of this fact, 96 operative conditions are modeled for the relaxation tests.
The timestep of the simulation is equal for every simulation, logarithmically
spaced, with 34 points for each decade between 10−1 s and 103 s and a total
of 133 data points of cell voltage and surface temperature. The choice of a
logarithmic timestep is due to the dominance of diffusion during relaxation,
and as a first approximation, the lithium diffusion processes in the cell follow
an exponential decay trend. Hence, to capture the behavior of the first
moment of relaxation, a very small timestep is needed, while a much larger
one is sufficient for the final part of the test.
The simulation ends after 1000 seconds due to the inability of the employed
P2D model to replicate the long-term voltage behavior experimentally seen
in Chapter 3, as in figure 3.12. This trend is probably caused by temperature
and concentration disequilibria along the length of the battery spiral [164,
165], which are very slow to reequilibrate with respect to the disequilibria
along the electrochemical cell. The difference in the length scale of the two
geometries (10−1 m for the spiral vs. 10−4 − 10−5 m for the cell), which
determines the characteristic time of diffusion, explains this phenomenon.
Since the P2D model simulates only a single cell and not the whole battery,
we only take into account the first part of the relaxation process, the one
dominated by the cell re-equilibration;
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• Electrochemical Impedance Spectroscopy: the EIS is simulated at equi-
librium, at four ambient temperatures (Tamb∈{-5◦C, 10◦C, 25◦C, 40◦C}) and
at five states of charge values (SOCin∈{100%, 75%, 50%, 25%, 0%}), with
a total of 20 operative conditions. The frequency range in which the EIS is
performed is between 4000 Hz and 0.005 Hz, with 30 logarithmically spaced
data points where the real and imaginary impedances are calculated. The
amplitude of the sinusoidal current input is 0.15 A, similar to the one em-
ployed in experimental tests, with 16 sampled points for each sinusoid.
The EIS is simulated in the time domain, by applying the alternating current
to the battery model and registering the consequent voltage output. Two
complete sinusoids are applied, and only the output of the second one is used,
in order to remove the effect of an initial transient voltage response. Then,
the Fast Fourier Transform (FFT) [166] is employed in MATLAB to calculate
the impedance value. The inductive trait at high frequency, typical of experi-
mental EIS because of the cables inductance, is added to the impedance after
the FFT with a correction that has the formula:

Zcorr(ω) = Z(ω) + 2 · πlω (4.2)

where l is the cable inductance, equal to 1.07 · 10−6H , estimated from our
experimental data.
It is important to remark that in the EIS sensitivity analysis, the five param-
eters that are related to a temperature variation in the battery (ρam, Cam,
kT,rad,am, kT,ax,am and hconv) can be excluded. This is because the EIS is made
as a steady state measurement and the alternating current employed is very
small, and hence the temperature variations due to an heat generation in the
battery are neglegible. Therefore, the EIS sensivivity analysis is made on 23
parameters.

In total, the sensitivity analysis is based on 38140 simulated conditions, which took
a total of 42 full days of computations on two desktop PCs of the laboratory.

4.1.2 Mathematical formulation
The large amount of information that is generated by this wide simulation

matrix needs to be summarized with few key indicators. These indicators will
enable a simpler and more insightful analysis of the sensitivity results, allowing us
to compare together the outcomes coming from different operative conditions and
from different parameters.

Following the works of Zhang et al.[147] and Edouard et al.[145], the indicator that
was chosen to understand the impact of the variation of a parameter on the model
outputs is the standard deviation SD. This quantity represents the variability of the
nth of the Nd data points of a model output y (tension, temperature or impedance)
considering the five x values of the jth physical parameter, in the ith of the No

operative conditions related to an experimental technique. The coordinate i is
linked to a specific combination of temperature, starting SOC, DOD and current
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Figure 4.1: Explanation of the computation of the SD values in a set of discharge curves

rate (only temperature and SOC in case of the EIS).
Therefore, the formula for the standard deviation is:

SDn
y,j,i =

√√√√√ 5∑
x=1

(
ynj,i,x − ynj,i

)2

5 (4.3)

where ynj,i is the mean of the five values of the output ynj,i,x for the jth physical
parameter in the ith operative condition, calculated as:

ynj,i =

5∑
x=1

(
ynj,i,x

)
5 (4.4)

Then, the standard deviation of the output is averaged in different ways, according
to the specific experimental technique. This averaging is made to condense the
information about the variability of the output given in every point for each
operative condition in a simple number, greatly reducing the number of handled
data:

• for the discharge curve, we calculate the average of the standard deviation
considering all the data points of the curves. If one of the curves has a smaller
amount of points (since it reaches the cutoff voltage before the others), we only
consider the points in common to all the curves, since SD can be calculated
only if the data of all the five curves are available. In figure 4.1, this process
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Figure 4.2: Explanation of the computation of the SD values in a set of relaxation curves

is explained graphically. Hence, we obtain:

SD
D
y,j,i =

Nd,min∑
n=1

(
SDn

y,j,i

)
Nd,min

(4.5)

where Nd,min is:

Nd,min = min{Nd,x1 , Nd,x2 , Nd,x3 , Nd,x4 , Nd,x5} (4.6)

This formula is applied both for tension and temperature, obtaining only two
values of SD per parameter in each operative condition;

• for the relaxation test, we divide the time vector of the voltage and the
temperature curves in three regions with an equal number of logarithmically
spaced data points:
- Fast Relaxation (FR) (1 ≤ n ≤ 44, 0.1 s ≤ t ≤ 1.7 s)
- Mid Relaxation (MR) (45 ≤ n ≤ 88, 1.8 s ≤ t ≤ 31 s)
- Slow Relaxation (SR) (89 ≤ n ≤ 133, 32.6 s ≤ t ≤ 1000 s)
This division is made to understand if there are some physical parameters
that are influential only on a certain timescale of the relaxation process. For
instance, it is expected that the diffusion of lithium in the solid will be more
impactful on the output voltage over longer timescales if compared to the
diffusion of lithium in the liquid [125].
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Figure 4.3: Explanation of the computation of the SD values in a set of Bode plots

Therefore, the formulas will be:


SD
SR
y,j,i =

44∑
n=1

(SDn
y,j,i)

44

SD
MR

y,j,i =

88∑
n=45

(SDn
y,j,i)

44

SD
FR

y,j,i =

133∑
n=89

(SDn
y,j,i)

45

(4.7)

The graphical explanation is found in figure 4.2;

• in the EIS, each data point with the respective real and imaginary impedances
is associated to a certain frequency. These logarithmically spaced frequencies
are divided in three sections:
- High Frequency (HF) (1 ≤ n ≤ 10, 4000Hz ≤ f ≤ 59Hz)
- Mid frequency (MF) (11 ≤ n ≤ 20, 37Hz ≤ f ≤ 0.54Hz)
- Low frequency (LF) (21 ≤ n ≤ 30, 0.34Hz ≤ f ≤ 0.005Hz)
Similarly to the case of relaxation, the EIS is divided in regions in order to
find differences in the sensitivity of the physical parameters if more timescales
are considered.
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Hence, we get: 

SD
HF

y,j,i =

10∑
n=1

(SDn
y,j,i)

10

SD
MF

y,j,i =

20∑
n=11

(SDn
y,j,i)

10

SD
LF

y,j,i =

30∑
n=21

(SDn
y,j,i)

10

(4.8)

Once again, there is a graphic explanation of this concept in figure 4.3, where
a Bode plot of the real impedance is used to visualize the frequencies on the
x-axis.

Classification

To summarize these information and to get a qualitative synthesis of the results of
the sensitivity analysis, for each parameter j and for each output y we calculate the
mean of the average standard deviations SDy,j among all the operative conditions,
and we report the maximum value of the average standard deviation SDy,j,max, as
well as the operative condition where maximum value is located.


SDy,j =

No∑
i=1

(SDy,j,i)
No

SDy,j,max = max{SDy,j,i}
(4.9)

Moreover, a first classification of the physical parameter is made according to the
comparison with a minimum limit value SDy,lim. The standard deviations are
compared with these reference values in order to define whether they are significant
or negligible. The limit values for voltage, real and imaginary impedance are based
on the experimental uncertainty analysis of chapter 3, according to this line of
reasoning: if the dispersion of an output caused by the variation of a parameter
(i.e. its standard deviation) is smaller than the experimental uncertainty on that
output, it is not correct to fit that parameter with experimental data, because its
effect on the output is lower than the uncertainty in the measuring process.
Therefore, the parameters are classified according to these criteria:

– insensitive if SDy,j,max<SDy,lim

– low sensitive if SDy,j<SDy,lim and SDy,j,max>SDy,lim

– mid sensitive if SDy,j>SDy,lim and SDy,j<2SDy,lim;

– high sensitive if SDy,j>2SDy,lim
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where the minimum limit values SDy,lim are:
SDV,lim = 0.004V
SDT,lim = 0.1K
SDZR,lim = 0.0001 Ω
SDZI ,lim = 0.0001 Ω

Clustering

The last step of the sensitivity analysis is the clustering of all the results, in
order to analyze them together, see the trends that emerge from the variation of
the operative condition and of the diagnostic technique, and refine the concept of
sensitivity of a parameter (see section 4.2.2).
For every combination of operating condition and diagnostic technique, a clustering
algorithm divides the standard deviations of the parameters into three classes: low
sensitive, mid sensitive and high sensitive. The classes are adaptive, in the sense
that they are relative to the values of the standard deviation SDy,j,i of all the
parameters in that operative condition. Therefore, the membership of a parameter
to a certain class depends not only on the value of its own standard deviation, but
also on the values of the standard deviation of the other parameters. For instance,
a standard deviation equal to SDx can indicate a low sensitivity in the operative
condition where the average standard deviation among the parameters is 10·SDx,
but it is surely connected to a high sensitivity if the average standard deviation in
another operative condition is 0.1·SDx.

The employed algorithm is the Fuzzy C-Means clustering, implemented in the
software MATLAB, based on the minimization of the cost function:

CF =
D∑
i=1

N∑
j=1

µmij ‖xi − cj‖
2 (4.10)

where D is the number of values that have to be clustered, N is the number of
clusters in which the dataset is divided, µij is the degree of membership of a value
xi to the cluster j. cj is the center of the cluster j, calculated as:

cj =

D∑
i=1

µmijxi

D∑
i=1

µmij

(4.11)

Instead, the degree of membership is calculated as:

µij = 1
N∑
k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

(4.12)

where ck are exactly the same cluster centers indicated in the previous equation as
cj, but with a different index k for the summation, since in this formula the index j
is fixed. The parameter m is an exponent that defines the degree of overlap between
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the clusters. It has to be greater that 1, and the higher its value, the fuzzier is the
membership of a value xi to the cluster, i.e. the said value has a more distributed
membership to the clusters. The sum of all the degrees of membership for a given
value is always 1. Then, the highest of the values of µij is selected and the point xi
is assigned to the cluster j.
In this work, D is equal to 28, the number of model parameters on which the
sensitivity analysis is performed (23 for the EIS sensitivity analysis, since the five
parameters related the battery thermal model are not considered), whose value of
average standard deviation SDy,i,j is xi. As already noted, the number of clusters
N is equal to 3, in order to have a cluster that groups together the parameters
with a low SD value in that operative condition (low sensitivity cluster), a cluster
that does the same with the parameters with a medium SD value (mid sensitivity
cluster), and a cluster for the high SD values (high sensitivity cluster).

Before performing the clustering, the average standard deviation values of the
parameters are normalized with respect to the reported minimum limit values
SDy,lim. In this way, the sensitivity of the parameters on the different model outputs
can be easily compared by means of their ratio with the minimum value at which
they are considered detectable. The normalization formula is:

SD
′

y,j,i = SDy,j,i

SDy,lim

(4.13)

where at each output y is associated its own minimum value.

The whole scheme of the sensitivity analysis is summarized in figure 4.4.
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Figure 4.4: Summary of the sensitivity analysis process



4.2. Sensitivity analysis: results 95

4.2 Sensitivity analysis: results

4.2.1 Output variation with operative conditions
First, we describe how the model reproduces in a satisfactory way some trends

observed during the experimental campaign of Chapter 3. It indicates that the
model is reliable on its interpretation of the lithium-ion battery behavior.

Capacity test

Figure 4.5 shows the effect of ambient temperature and current rate on battery
temperature and voltage profiles during some discharges. All the trends resemble
the ones of figures 3.8, 3.9 and 3.10 of Chapter 3, where the influence of these
operative parameters on the measured discharge curves was reported. The increased
ohmic and activation losses are noticeable, as well as the impact of the more sluggish
lithium diffusion at high current rates and, in particular, at low temperatures. The
temperature profiles confirm these reasonings.

Relaxation test

In figure 4.6, we report the effects of the current rate and of the depth of
discharge on the voltage and temperature values during relaxation. Also in this
case, the trends resemble the ones of figures 3.12 and 3.13 of Chapter 3. An
higher C-rate at fixed DOD increases the overall variation of the voltage during the
relaxation process as well as its duration, while maintaining the same OCV as final
voltage value.
The effect of the DOD variation on the left of figure 4.6 is shown as the voltage
recovery during relaxation. The resemblance with the experimental results is clear:
the trend is mainly guided by the OCP curves of the electrodes, therefore we have
a non-linear variation of the voltage recovery with the depth of discharge. Even
though it is not used in the sensitivity analysis, the relaxation trend after a 100%
DOD is shown. The much higher variation of voltage during relaxation is due to
the high slope of the OCP of the graphite in the region near the end of discharge,
as hypothesized while discussing the results of the experimental campaign.

EIS

The impact of the variation of the ambient temperature and of the SOC on the
EIS is shown in figure 4.7. The temperature decrease results in an increase of all the
resistances, in particular the charge transfer one, as seen in the experiments from
figure 3.18 of Chapter 3. The trend of the HFR is shown in a inset in the figure 4.7:
its increase with the temperature decrease is evident, and it is comparable with the
experimental results.
The effect of the SOC variation on the EIS shows a non-linear behavior, and it is
observable both on the charge transfer resistance and on the diffusion resistance.
The former changes due to the trend of the exchange current density with the
electrode state of charge (equation 2.17), which shows a maximum for 50% SOC
and decreases towards 100% SOC and 0% SOC. The latter is proportional to the
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Figure 4.5: On the left, effect of the C-rate variation on the voltage and temperature profiles

simulated by the model in a discharge curve. On the right, effect of the ambient

temperature variation on the same quantities
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Figure 4.6: On the left, effect of the ambient temperature variation on the voltage and temperature

profiles simulated by the model in a relaxation curve. On the right, effect of the

DOD variation on the same quantities
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Figure 4.7: On the left, effect of the ambient temperature variation on the real and imaginary

impedance simulated by the model in a EIS, with a zoom on the HFR zone. On the

right, effect of the SOC variation on the same quantities

slope of the open circuit potentials of the anode and cathode [108], which is higher
at the extreme values of the state of charge. The EIS at 1% SOC has not been
experimentally observed, so we are not able to confirm the model behavior at this
value of SOC, while the trend of the EIS with the other values of SOC are similar
the ones seen in figure 3.16.
Nevertheless, the second circle that appears experimentally at low SOC is not seen
in figure 4.7. This can be due to the benchmark set that is used for the sensitivity
analysis, that is not meant to perfectly fit the experimental behavior of the battery
samples. Also, the capability of the P2D model of reproducing the EIS of a complex
electrochemical system as a commercial lithium-ion battery in all its characteristics
has been questioned in literature [151], in particular in its simplification of the
particle size distribution in the electrodes as a single particle radius and in the
shape of the diffusion impedance.

External parameters

Lastly, in figure 4.8 we show on the left the effect of the variation of the external
resistance Rext on the voltage in a discharge curve, and on the right the one of the
variation of the convective heat transfer coefficient hconv on the surface temperature
during another discharge curve. These plots highlight the importance of knowing
the value of these two quantities, whose extent is not due to the lithium-ion battery.
Instead, it comes from the instruments and the components that are employed in
the lithium-ion battery diagnostics, in particular the wiring and the connections for
the external resistance, and the climatic chamber for the convective heat transfer
coefficient. In fact, during the subsequent fitting of the battery, they are kept
constant at a reasonable value according to our experimental conditions. An error
in the evaluation of one of them could lead to considerable errors in the identifica-
tion of the battery parameters, since their effects on the output are of the same
order of magnitude of the effects of the other parameters, if not higher in some



4.2. Sensitivity analysis: results 99

Figure 4.8: On the left, effect of the variation of the external resistance on the voltage simulated

by the model in a discharge curve. On the right, effect of the variation of the

convective heat transfer coefficient on the battery surface temperature simulated by

the model in a discharge curve

cases. Therefore, when the diagnostic of a battery is made to try to evaluate its
parameters, a careful calculation of the cables and contact resistances and of the
heat transfer coefficient should be made in order to avoid considerable errors [167].

4.2.2 Output variation with model parameters
In the next pages, an example of the effects of the variation of a sample of

eight parameters (FCE, Rfilm,n, Rp,n, Cdl,p, kp, Ds,p, εe,sep and kT,rad,am) in some
different experimental conditions are shown (figures 4.9, 4.10, 4.11, 4.12 and 4.13).
We chose these parameters because with them it is possible to understand all the
main trends that emerge from the sensitivity analysis. From the analysis of these
parameters and of the other ones not shown here for reasons related to the available
space, some general considerations can be made:

• some parameters have a negligible impact in certain techniques and/or in
certain operative conditions, while they are very important in others. The
parameters that belong to this mixed impact category show a mean of the
average standard deviations

SDy,j that is much lower than the maximum of the average standard deviations
SDy,j,max, and/or they are among the most sensitive ones only in one or two of the
three diagnostic techniques. This characteristic is very interesting for the purpose
of our analysis, since it implies the possibility to exclude or isolate the effect of a
parameter in some conditions.
For instance, the variation of the double layer capacity of the positive electrode (as
well as the one of double layer capacity of the negative electrode, not shown in the
figures) has not an appreciable effect on the discharge curve voltage and temperature
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(figures 4.9 and 4.10), in any operative condition. In the relaxation test, a difference
in the voltage in the first fractions of second after the beginning of the relaxation
can be seen in figure 4.11, but such a rapid variation is not detectable from our
voltage acquisition system, as well as from common battery cyclers. Instead, the
EIS impedance shows a great sensitivity to a variation of the double layer, since
this parameter defines the frequency at which the charge transfer effects occur.
The higher the double layer capacitance, the lower the range of frequencies of the
charge transfer semicircle, since this capacitance delays and smooths the onset of
the faradaic current.
Another example is the effect of the lithium solid diffusion coefficient in the positive
electrode. In most conditions, it is one of the most sensitive parameters on the
voltage value of discharge and relaxation curves, since it has a strong influence
on the lithium concentration unbalance between the surface and the bulk of the
cathode particles. Lowering the current rate, decreasing the depth of discharge and
increasing the ambient temperature, the effect of this parameter declines, because
the diffusion is favored at higher temperatures and smaller current pulses imply
a lower concentration disequilibrium in the cathode due to the lower quantity of
transported lithium. Moreover, the effect of a variation of the diffusion coefficient
on the temperature is negligible, since the concentration unbalances in the solid do
not induce a proper overpotential 1.1.2;

• some parameters show an uniform impact in almost all the explored conditions.
These parameters have an the mean of the average standard deviation
SDy,j in the same order of magnitude of maximum standard deviation SDy,j,max.
This characteristic is not desirable for the parameter identification, since there are
no conditions where they can be effectively isolated.
A notable example is the effect of the positive particle radius (as well as effect of
the negative one, not shown in the figures). A variation of this parameter leads to
high dispersions in all the outputs of the capacity test, of the relaxation curve and
of the EIS (figures 4.9, 4.10, 4.11, 4.12 and 4.13). The positive particle radius has a
linear impact on the charge transfer resistance of the positive electrode, since it
is contained in the expression of the specific active electrode area (equation 2.27).
Also, its squared value is in the expression of the characteristic time of diffusion
in the solid particle (equation 2.3). Therefore, the particle radius of the cathode
material has a direct and high influence on the main phenomena that dictate the
trend of the battery voltage, temperature and impedance;

• finally, some parameters have a negligible impact in every simulated condition.
Their mean of the average standard deviations
SDy,j and their maximum standard deviation SDy,j,max are below the chosen mini-
mum limits SDy,lim, and hence their fitting do not lead to sound parameter values.
Therefore, these parameters can be excluded from the parameter identification
process and kept constant equal to a reasonable value taken from literature.
For instance, the electrolyte volume fraction in the separator shows a very little
influence on all the outputs of all the simulated experimental conditions (figures
4.9, 4.10, 4.11, 4.12 and 4.13). The reasons of this behavior are that the range in
which it can vary is very narrow, due to the manufacturing standards of the battery
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separators [49], and that in the P2D model it is only present in the formulation of
the equivalent ionic conductivity in the separator (equation 2.23).
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All the results of the sensitivity analysis are summarized in the tables 4.3, 4.4,
4.5, 4.6, 4.7 and 4.8. For each parameter, it is reported the mean of the average
sensitivites of all the operative conditions SDy,j, the maximum value of average
sensitivity SDy,j,max with the related operative condition at which we observe this
maximum value, and the class which the parameter belongs to, according to the
criteria reported in the previous section.
However, this level of analysis is not sufficient to understand in depth the impact of
each parameter in the different operative conditions and experimental techniques.
With these tables, we are able to qualitatively assess which is the degree of sensitiv-
ity of the outputs to the model parameters.
Instead, the objective is to understand if it is possible to find a combination of
tests that maximizes the useful information obtainable from the battery diagnostics,
to allow a comprehensive parameter identification. In literature, the battery P2D
model fitting is often made with only charge/discharge curves, and the electro-
chemical impedance spectroscopy is employed only with electric equivalent circuit
models (see Chapter 2). The combination of capacity tests, relaxation curves and
EIS made in several operative conditions should provide a full characterization
of the lithium-ion battery, since the fitting dataset would include very different
behaviors, with a variety of characteristic timescales included.

The ideal parametrization process should include a specific test for each model
parameter according to its maximum sensitivity conditions reported in the tables, i.e.
its best condition for identification. Actually, this approach is for sure excessively
complicate and time consuming, due to the high number of experiments required
(at least one per parameter). Therefore, it is important to select a reasonable
number of experiments, each of which is sufficiently near to the best conditions
for identification of a group of parameters, and far from the the ones of all the
other parameters. In this way, each chosen experiment should be used to effectively
fit the group of parameters that impact the most in that condition, while keeping
low/very low the sensitivity to all the other parameters.
At the end, the desired outcome is a set of few experiments that together are able to
fully characterize the battery, while minimizing the time needed for their execution.
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Discharge curve - Voltage

Parameter SD
D

V,j [mV] SD
D

V,j,max [mV] Operative condition Class

Cdl,pos 2.1 9.2 −5◦C, 25% SOC, 25% DOD, 3C Low Sensitivity

Cdl,neg 2.1 9.2 −5◦C, 25% SOC, 25% DOD, 3C Low Sensitivity

kp 42.2 67.7 −5◦C, 25% SOC, 25% DOD, 3C High Sensitivity

kn 42.2 67.9 −5◦C, 25% SOC, 25% DOD, 3C High Sensitivity

ce,0 3.5 6.9 −5◦C, 50% SOC, 25% DOD, 3C Low Sensitivity

FCE 39.4 90.0 −5◦C, 50% SOC, 50% DOD, 3C High Sensitivity

t+0 2.6 6.8 −5◦C, 100% SOC, 25% DOD, 3C High Sensitivity

σp 3.0 6.9 −5◦C, 25% SOC, 50% DOD, 3C High Sensitivity

σn 0.04 0.45 −5◦C, 25% SOC, 25% DOD, 2C Insensitivity

Rp,p 62.5 157.7 −5◦C, 100% SOC, 75% DOD, 3C High Sensitivity

Rp,n 31.3 73.5 −5◦C, 25% SOC, 25% DOD, 1C High Sensitivity

Ds,p 36.8 112.6 −5◦C, 100% SOC, 100% DOD, 3C High Sensitivity

Ds,n 9.3 40.4 −5◦C, 25% SOC, 25% DOD, 0.5C High Sensitivity

Rfilm,n 7.9 15.3 −5◦C, 75% SOC, 25% DOD, 3C Mid Sensitivity

Rfilm,p 0.8 1.8 −5◦C, 25% SOC, 25% DOD, 3C Insensitivity

Rext 30.6 56.5 10◦C, 75% SOC, 50% DOD, 3C High Sensitivity

εe,p 1.7 5.2 −5◦C, 50% SOC, 25% DOD, 3C Low Sensitivity

εe,sep 0.8 2.2 −5◦C, 100% SOC, 25% DOD, 3C Insensitivity

εe,neg 1.6 4.1 −5◦C, 25% SOC, 25% DOD, 3C Low Sensitivity

Cam 1.1 7.2 −5◦C, 75% SOC, 75% DOD, 3C Low Sensitivity

kT,rad,am 2.1 14.9 −5◦C, 100% SOC, 100% DOD, 3C Low Sensitivity

kT,ax,am 0.01 0.08 −5◦C, 50% SOC, 50% DOD, 3C Insensitivity

ρam 1.6 4.1 −5◦C, 25% SOC, 25% DOD, 3C Low Sensitivity

hconv 5.3 34.2 −5◦C, 100% SOC, 100% DOD, 3C Mid Sensitivity

EAkp 7.6 26.0 −5◦C, 25% SOC, 25% DOD, 3C Mid Sensitivity

EAkn 7.6 25.9 −5◦C, 25% SOC, 25% DOD, 3C Mid Sensitivity

EADs,p 14.5 65.2 −5◦C, 75% SOC, 25% DOD, 3C High Sensitivity

EADs,n 7.1 45.6 −5◦C, 75% SOC, 25% DOD, 0.5C High Sensitivity

Table 4.3: Sensitivity analysis: Voltage output, discharge curve
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Discharge curve - Temperature

Parameter SD
D

T,j [◦C] SD
D
T,j,max [◦C] Operative condition Class

Cdl,pos 0.014 0.053 −5◦C, 50% SOC, 25% DOD, 3C Insensitivity

Cdl,neg 0.005 0.032 −5◦C, 25% SOC, 25% DOD, 3C Insensitivity

kp 0.749 1.930 10◦C, 100% SOC, 100% DOD, 3C High Sensitivity

kn 0.745 1.868 10◦C, 100% SOC, 100% DOD, 3C High Sensitivity

ce,0 0.056 0.194 −5◦C, 100% SOC, 100% DOD, 3C Low Sensitivity

FCE 0.663 2.754 −5◦C, 100% SOC, 100% DOD, 3C High Sensitivity

t+0 0.049 0.205 −5◦C, 100% SOC, 25% DOD, 3C Low Sensitivity

σp 0.062 0.222 40◦C, 25% SOC, 50% DOD, 3C Low Sensitivity

σn 0.001 0.007 10◦C, 100% SOC, 50% DOD, 3C Insensitivity

Rp,p 0.300 0.884 10◦C, 100% SOC, 75% DOD, 3C High Sensitivity

Rp,n 0.299 0.915 −5◦C, 100% SOC, 75% DOD, 3C High Sensitivity

Ds,p 0.013 0.049 −5◦C, 100% SOC, 100% DOD, 3C Insensitivity

Ds,n 0.011 0.059 −5◦C, 75% SOC, 50% DOD, 3C Insensitivity

Rfilm,n 0.002 0.015 −5◦C, 100% SOC, 100% DOD, 3C Insensitivity

Rfilm,p 0.001 0.006 10◦C, 100% SOC, 50% DOD, 3C Insensitivity

Rext 0.001 0.002 −5◦C, 75% SOC, 75% DOD, 2C Insensitivity

εe,p 0.029 0.135 −5◦C, 100% SOC, 100% DOD, 3C Low Sensitivity

εe,sep 0.016 0.065 −5◦C, 100% SOC, 100% DOD, 3C Insensitivity

εe,neg 0.031 0.116 −5◦C, 100% SOC, 100% DOD, 3C Low Sensitivity

Cam 0.080 0.300 −5◦C, 75% SOC, 75% DOD, 3C Low Sensitivity

kT,rad,am 0.202 1.007 −5◦C, 100% SOC, 100% DOD, 3C High Sensitivity

kT,ax,am 0.002 0.011 −5◦C, 100% SOC, 100% DOD, 3C Insensitivity

ρam 0.080 0.300 −5◦C, 75% SOC, 75% DOD, 3C Low Sensitivity

hconv 0.721 2.892 −5◦C, 100% SOC, 100% DOD, 3C High Sensitivity

EAkp 0.134 0.493 −5◦C, 100% SOC, 100% DOD, 3C Mid Sensitivity

EAkn 0.133 0.488 −5◦C, 100% SOC, 100% DOD, 3C Mid Sensitivity

EADs,p 0.006 0.042 −5◦C, 75% SOC, 50% DOD, 3C Insensitivity

EADs,n 0.009 0.072 −5◦C, 75% SOC, 25% DOD, 3C Insensitivity

Table 4.4: Sensitivity analysis: Temperature output, discharge curve
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Relaxation curve - Voltage

Parameter SD
R

V,j [mV] SD
R
V,j,max [mV] Operative condition Class

Cdl,pos 6.3 44.3 −5◦C, 50% SOC, 25% DOD, 2C, FR Mid Sensitivity

Cdl,neg 5.7 39.9 −5◦C, 50% SOC, 25% DOD, 3C, FR Mid Sensitivity

kp 5.7 36.4 −5◦C, 100% SOC, 50% DOD, 3C, FR Mid Sensitivity

kn 6.0 35.3 −5◦C, 100% SOC, 50% DOD, 3C, FR Mid Sensitivity

ce,0 4.1 20.7 −5◦C, 50% SOC, 25% DOD, MR 3C Mid Sensitivity

FCE 22.8 83.0 −5◦C, 100% SOC, 75% DOD, 3C, FR High Sensitivity

t+0 1.4 7.5 −5◦C, 100% SOC, 25% DOD, 3C, FR Low Sensitivity

σp 0.392 4.1 −5◦C, 100% SOC, 50% DOD, 3C, FR Low Sensitivity

σn 0.014 0.139 −5◦C, 100% SOC, 50% DOD, 3C, SR Insensitivity

Rp,p 36.2 171.7 −5◦C, 100% SOC, 50% DOD, 3C, FR High Sensitivity

Rp,n 7.4 85.8 −5◦C, 100% SOC, 75% DOD, 1C, FR Mid Sensitivity

Ds,p 32.1 153.3 −5◦C, 100% SOC, 50% DOD, 3C, MR High Sensitivity

Ds,n 7.2 102.0 −5◦C, 100% SOC, 75% DOD, 2C, FR Mid Sensitivity

Rfilm,n 0.146 0.829 −5◦C, 100% SOC, 25% DOD, 3C, MR Insensitivity

Rfilm,p 0.018 0.168 −5◦C, 100% SOC, 25% DOD, 3C, MR Insensitivity

Rext 0.001 0.104 −5◦C, 100% SOC, 75% DOD, 2C, MR Insensitivity

εe,p 0.907 4.8 −5◦C, 100% SOC, 25% DOD, 3C, FR Low Sensitivity

εe,sep 0.341 1.5 −5◦C, 100% SOC, 25% DOD, 3C, FR Insensitivity

εe,neg 0.499 2.9 −5◦C, 100% SOC, 25% DOD, 3C, FR Insensitivity

Cam 0.548 7.9 −5◦C, 50% SOC, 25% DOD, 3C, FR Low Sensitivity

kT,rad,am 1.5 15.9 −5◦C, 100% SOC, 75% DOD, 3C, FR Low Sensitivity

kT,ax,am 0.004 0.137 −5◦C, 100% SOC, 50% DOD, 3C, LR Insensitivity

ρam 0.548 7.9 −5◦C, 50% SOC, 25% DOD, 3C, FR Low Sensitivity

hconv 4.0 41.6 −5◦C, 100% SOC, 75% DOD, 3C, FR Mid Sensitivity

EAkp 1.2 10.1 −5◦C, 100% SOC, 50% DOD, 3C, FR Low Sensitivity

EAkn 1.2 9.9 −5◦C, 100% SOC, 50% DOD, 3C, FR Low Sensitivity

EADs,p 11.9 84.6 −5◦C, 50% SOC, 25% DOD, 2C, MR High Sensitivity

EADs,n 6.5 123.9 −5◦C, 75% SOC, 50% DOD, 1C, MR Mid Sensitivity

Table 4.5: Sensitivity analysis: Voltage output, relaxation curve
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Relaxation curve - Temperature

Parameter SD
R

T,j [◦C] SD
R

T,j,max [◦C] Operative condition Class

Cdl,pos 0.011 0.041 −5◦C, 75% SOC, 25% DOD, 3C, FR Insensitivity

Cdl,neg 0.003 0.029 −5◦C, 50% SOC, 25% DOD, 3C, FR Insensitivity

kp 0.965 2.657 −5◦C, 100% SOC, 75% DOD, 3C, FR High Sensitivity

kn 0.954 2.563 −5◦C, 100% SOC, 75% DOD, 3C, FR High Sensitivity

ce,0 0.070 0.310 −5◦C, 100% SOC, 75% DOD, Fr 3C Low Sensitivity

FCE 0.980 4.701 −5◦C, 100% SOC, 75% DOD, 3C, FR High Sensitivity

t+0 0.067 0.283 −5◦C, 100% SOC, 75% DOD, 3C, FR Low Sensitivity

σp 0.082 0.300 40◦C, 100% SOC, 75% DOD, 3C, FR Low Sensitivity

σn 0.001 0.009 10◦C, 100% SOC, 50% DOD, 3C, FR Insensitivity

Rp,p 0.423 1.539 −5◦C, 50% SOC, 25% DOD, 3C, FR High Sensitivity

Rp,n 0.405 1.291 −5◦C, 100% SOC, 75% DOD, 3C, FR Mid Sensitivity

Ds,p 0.054 1.652 −5◦C, 50% SOC, 25% DOD, 3C, FR Low Sensitivity

Ds,n 0.035 1.265 −5◦C, 50% SOC, 25% DOD, 2C, FR Low Sensitivity

Rfilm,n 0.003 0.017 −5◦C, 100% SOC, 75% DOD, 3C, FR Insensitivity

Rfilm,p 0.001 0.007 −5◦C, 100% SOC, 50% DOD, 3C, FR Insensitivity

Rext 0.063 0.008 −5◦C, 100% SOC, 50% DOD, 3C, LR Insensitivity

εe,p 0.042 0.205 −5◦C, 100% SOC, 75% DOD, 3C, FR Low Sensitivity

εe,sep 0.022 0.088 −5◦C, 100% SOC, 75% DOD, 3C, FR Insensitivity

εe,neg 0.041 0.157 −5◦C, 100% SOC, 75% DOD, 3C, FR Low Sensitivity

Cam 0.077 0.371 −5◦C, 50% SOC, 25% DOD, 3C, FR Low Sensitivity

kT,rad,am 0.258 1.443 −5◦C, 100% SOC, 75% DOD, 3C, FR High Sensitivity

kT,ax,am 0.003 0.016 −5◦C, 100% SOC, 75% DOD, 3C, FR Insensitivity

ρam 0.077 0.371 −5◦C, 50% SOC, 25% DOD, 3C, FR Low Sensitivity

hconv 1.448 6.467 −5◦C, 100% SOC, 75% DOD, 3C, LR High Sensitivity

EAkp 0.165 0.598 −5◦C, 100% SOC, 50% DOD, 3C, FR Mid Sensitivity

EAkn 0.163 0.591 −5◦C, 100% SOC, 50% DOD, 3C, FR Mid Sensitivity

EADs,p 0.015 0.726 −5◦C, 50% SOC, 25% DOD, 3C, FR Low Sensitivity

EADs,n 0.031 1.437 −5◦C, 50% SOC, 25% DOD, 3C, FR Low Sensitivity

Table 4.6: Sensitivity analysis: Temperature output, relaxation curve
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EIS - Real impedance

Parameter SD
E

Z′ ,j [mΩ] SD
E
Z′ ,j,max [mΩ] Operative condition Class

Cdl,pos 5.7 27.8 −5◦C, 100% SOC, MF High Sensitivity

Cdl,neg 7.1 48.4 −5◦C, 1% SOC, LF High Sensitivity

kp 25.9 169.0 −5◦C, 100% SOC, LF High Sensitivity

kn 27.9 200.6 −5◦C, 1% SOC, LF High Sensitivity

ce,0 2.7 19.5 −5◦C, 1% SOC, LF High Sensitivity

FCE 2.8 4.8 −5◦C, 1% SOC, LF High Sensitivity

t+0 0.056 0.215 25◦C, 100% SOC, LF Low Sensitivity

σp 0.823 0.892 −5◦C, 100% SOC, HF High Sensitivity

σn 0.009 0.057 25◦C, 100% SOC, LF Insensitivity

Rp,p 7.5 45.7 −5◦C, 100% SOC, LF High Sensitivity

Rp,n 9.7 83.1 −5◦C, 1% SOC, LF High Sensitivity

Ds,p 0.422 3.4 −5◦C, 100% SOC, LF High Sensitivity

Ds,n 0.724 15.7 −5◦C, 1% SOC, LF High Sensitivity

Rfilm,n 1.8 1.9 −5◦C, 75% SOC, HF High Sensitivity

Rfilm,p 0.022 0.035 −5◦C, 1% SOC, HF Insensitivity

Rext 7.2 7.2 −5◦C, 100% SOC, HF High Sensitivity

εe,p 0.135 0.257 −5◦C, 25% SOC, LF Mid Sensitivity

εe,sep 0.066 0.095 −5◦C, 25% SOC, LF Insensitivity

εe,neg 0.125 0.257 −5◦C, 1% SOC, LF Mid Sensitivity

EAkp 4.6 47.1 −5◦C, 100% SOC, LF High Sensitivity

EAkn 5.1 64.1 −5◦C, 1% SOC, LF High Sensitivity

EADs,p 0.189 2.7 −5◦C, 100% SOC, LF Mid Sensitivity

EADs,n 0.565 19.1 −5◦C, 1% SOC, LF High Sensitivity

Table 4.7: Sensitivity analysis: Real impedance output, EIS
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EIS - Imaginary impedance

Parameter SD
E

Z′′ ,j [mΩ] SD
E
Z′′ ,j,max [mΩ] Operative condition Class

Cdl,pos 2.9 10.6 −5◦C, 100% SOC, MF High Sensitivity

Cdl,neg 3.3 16.2 −5◦C, 1% SOC, MF High Sensitivity

kp 9.0 56.3 −5◦C, 100% SOC, LF High Sensitivity

kn 10.5 83.6 −5◦C, 1% SOC, LF High Sensitivity

ce,0 0.764 3.5 −5◦C, 100% SOC, MF High Sensitivity

FCE 0.447 0.990 10◦C, 100% SOC, LF High Sensitivity

t+0 0.062 0.247 25◦C, 100% SOC, LF Low Sensitivity

σp 0.0222 0.062 −5◦C, 100% SOC, HF Insensitivity

σn 0.001 0.043 25◦C, 100% SOC, HF Insensitivity

Rp,p 2.2 10.8 −5◦C, 100% SOC, MF High Sensitivity

Rp,n 2.9 34.0 −5◦C, 1% SOC, LF High Sensitivity

Ds,p 0.504 4.9 −5◦C, 100% SOC, LF High Sensitivity

Ds,n 0.804 20.0 −5◦C, 1% SOC, LF High Sensitivity

Rfilm,n 0.095 0.529 −5◦C, 100% SOC, HF Low Sensitivity

Rfilm,p 0.016 0.098 −5◦C, 25% SOC, HF Insensitivity

Rext 0 0 - Insensitivity

εe,p 0.031 0.108 −5◦C, 100% SOC, LF Low Sensitivity

εe,sep 0.012 0.060 25◦C, 100% SOC, MF Insensitivity

εe,neg 0.036 0.109 −5◦C, 100% SOC, LF Low Sensitivity

EAkp 1.3 9.0 −5◦C, 100% SOC, MF High Sensitivity

EAkn 1.6 15.9 −5◦C, 1% SOC, LF High Sensitivity

EADs,p 0.236 3.8 −5◦C, 100% SOC, LF High Sensitivity

EADs,n 0.680 25.1 −5◦C, 1% SOC, LF High Sensitivity

Table 4.8: Sensitivity analysis: Imaginary impedance output, EIS
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4.2.3 Clustering of the results

The clustering of the results of the sensitivity analysis is performed to enable the
comparison of the average standard deviations caused by the parameters’ variations
on the model outputs. With this technique, it is possible to evaluate the trend
of their sensitivity while varying the operative conditions, and eventually select
experiments where one or more parameters are much more relevant than the others
in defining the cell voltage, the surface temperature or the impedance.

Firstly, the average standard deviations SDy,j,i are normalized with respect to
the minimum border value of the output SDy,lim, according to equation 4.13. The
nondimensionalization of the standard deviations has the purpose of comparing in
a more direct way the sensitivities of voltage, temperature and impedance to the
model parameters. The nondimensionalized value can be read as the how many
times larger the variation of an output caused by a change of a parameter is than
the minimum detectable variation of the output itself.
Then, the clustering algorithm described in the section 4.1.2 is separately applied to
each operative condition in each experimental technique. Three clusters are created,
and in the subsequent figures they are indicated as red, yellow and green, which
are respectively the low sensitivity cluster, the mid sensitivity cluster and
the high sensitivity cluster. Their shape changes according to the operative
condition, since they are based on the values of the standard deviation in that
operative condition.
In each point, the normalized average standard deviations of the parameters SD

′

y,j,i

will belong to one of the three clusters, but they can change cluster in the other
points according to the sensitivity of the model output in the other operative
conditions.

In figures 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, 4.21, 4.22, 4.23 and 4.24, some
of the most relevant trends obtained from the clustering analysis are reported. In
particular, the trend of the normalized average standard deviation SD

′

y,j,i is shown
for the parameters already used in the previous section to show the variation of the
model outputs (FCE, Rfilm,n, Rp,n, Cdl,p, kp, Ds,p, εe,sep and kT,rad,am). For the
sake of brevity, not all the operative conditions are shown.

The main considerations that we can make from the clustering of the sensitiv-
ity analysis are:

• in the discharge curve, a low ambient temperature generally increases the
sensitivity of the model outputs to the parameters, in particular the cell
voltage. The diffusion-related parameters as the ionic conductivity factor and
the solid diffusion coefficients are very impactful, since the diffusion process
tends to become very sluggish at low temperatures. As this variable increases,
the relative influence of the charge transfer-related parameters as the rate
constants increases, too.
The effect of the current rate variation is very high: the influence of a
parameter on the cell voltage in a discharge at 3C is as much as 3-4 times
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larger than its influence in a discharge at 0.5C, and up to 10 times higher
if we consider the battery temperature. Even the generally less impactful
parameters as the ones related to the thermal behavior of the battery are more
important with high current rates. The reason of this trend can be found in
the higher reaction rate required in case of high current, which exasperates all
the battery irreversibilites, with a substantial increase of the ohmic, activation
and concentration overpotentials and of the heat generation. Therefore, the
values of the parameters that define these irreversibilites have much more
impact on the resulting cell voltage and temperature.
A decrease of the depth of discharge affects mostly the diffusion process and
the parameters related to it, as it is possible to see in top figure 4.15 for the
solid diffusion coefficient in the positive electrode. With a lower DOD at the
same current rate, there is less time for the establishment of concentration
gradients and hence the model sensitivity to the diffusion decreases. Also, a
lower DOD implies a lower duration of the heat generation in the battery,
and hence a general reduction in the sensitivity of the battery temperature to
the parameters. The effect of the initial state of charge is not shown, since it
is quite similar to the effect of the depth of discharge;

• in the relaxation curve, the differentiation among the three time regions
of the relaxation process reveals that in the first instants (fast relaxation,
0.1 s ≤ t ≤ 1.7 s) the double layer capacitances and the rate constants have a
certain influence on the cell voltage, but they are almost not relevant in the
other timescales.
As expected, the parameters that dictate the trend of the voltage and that
remain influential in all the timescales are the diffusion-related parameters,
i.e. the solid diffusion coefficients and the ionic conductivity factor. The
former has a much higher normalized sensitivity in case of high current rates
and low temperatures, while the latter has a more homogeneous trend with
respect to these two operative conditions. The higher the DOD, the higher
the overall sensitivity of both voltage and temperature, since there has been
more time in the discharge to establish concentration gradients and to heat
up the battery.
The "spikes" that are seen in the top of figures 4.19, 4.20 and 4.21 for the
lowest ambient temperature are due to the very limited diffusion in this
condition, which induces a high variability in the final point of the discharge
that precedes the relaxation;

• for the EIS impedance, from the figures 4.22, 4.23 and 4.24 it is actually
possible to observe all the operative conditions in which the EIS has been
simulated, thanks to the much lower number of possible combinations among
the said operative conditions.
The sensitivity of the real and imaginary impedance to the value of the double
layer capacitances is quite important at high and medium frequencies, while
it decreases sharply at low frequencies. This is because the double layer
influences the dynamics of the charge transfer process, that is commonly
found at high-mid frequencies.
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The real impedance at high frequency, i.e. the HFR, is mostly determined by
ionic conductivity factor, the negative film resistance (and hence also from the
negative particle radius), the solid conductivity of the positive electrode and
the double layer capacitances. In addition, a variation of external resistance
can change the value of the HFR considerably, and this fact strengthen the
reasoning made in section 4.2.1 about the necessity of an accurate evaluation
of this parameter before the fitting process.
The mid-low frequency impedance is practically determined by the rate
constants and the particle radii, which determine the value of the charge
transfer resistance. The effect of a variation in diffusion-related parameters in
the very low frequencies is not as evident as a variation of the charge transfer-
related parameters in the mid-low frequencies. The solid diffusion coefficients
become more important at the extremes of the state of charge, where both
the electrode are nearer to their maximum/minimum concentration of lithium
allowed by the material. The solid particles are rapidly filled/depleted by
the low frequency AC signals, and hence the particles show a capacitor-like
behavior [108]. In general, all the parameters are more influential at very
low or very high SOC, even in the charge transfer region, because of the
parabola-shaped exchange current density formulation from equation 2.17.
As seen for the other experimental techniques, a lower ambient temperature
increases the sensitivity of the real and imaginary impedance to all the model
parameters.
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Figure 4.14: Trend of SD
′

y,j,i for the voltage and temperature outputs from the discharge curve

at 100% SOC and 100% DOD, varying the ambient temperature and the current

rate
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Figure 4.15: Trend of SD
′

y,j,i for the voltage and temperature outputs from the discharge curve

at 100% SOC and 25◦C, varying the depth of discharge and the current rate
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Figure 4.16: Trend of SD
′

y,j,i for the voltage and temperature outputs from the relaxation curve

at 100% SOC and 25◦C, varying the depth of discharge and the current rate (fast

relaxation)
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Figure 4.17: Trend of SD
′

y,j,i for the voltage and temperature outputs from the relaxation curve

at 100% SOC and 25◦C, varying the depth of discharge and the current rate (mid

relaxation)
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Figure 4.18: Trend of SD
′

y,j,i for the voltage and temperature outputs from the relaxation curve

at 100% SOC and 25◦C, varying the depth of discharge and the current rate (slow

relaxation)
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Figure 4.19: Trend of SD
′

y,j,i for the voltage and temperature outputs from the relaxation curve

at 100% SOC and 75◦C, varying the ambient temperature and the current rate

(fast relaxation)
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Figure 4.20: Trend of SD
′

y,j,i for the voltage and temperature outputs from the relaxation curve

at 100% SOC and 75◦C, varying the ambient temperature and the current rate

(mid relaxation)
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Figure 4.21: Trend of SD
′

y,j,i for the voltage and temperature outputs from the relaxation curve

at 100% SOC and 75◦C, varying the ambient temperature and the current rate

(slow relaxation)
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Figure 4.22: Trend of SD
′

y,j,i for the real and imaginary impedance outputs from the EIS,

varying the ambient temperature and the state of charge (high frequency)
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Figure 4.23: Trend of SD
′

y,j,i for the real and imaginary impedance outputs from the EIS,

varying the ambient temperature and the state of charge (mid frequency)
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Figure 4.24: Trend of SD
′

y,j,i for the real and imaginary impedance outputs from the EIS,

varying the ambient temperature and the state of charge (low frequency)
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4.3 Methodology formulation
By analyzing all the information obtained from the sensitivity analysis, it is

possible to propose a diagnostic methodology that satisfies the requirements of
completeness with respect to the identification of the model parameters and of low
experimental time.

Our proposal is (figure 4.25):

1. after a sufficient rest time to ensure steady state, the impedance spectrum is
measured with an EIS at 10◦C and 100% SOC, in the 4000-1 Hz range with
20 logarithmically spaced frequencies and two sinusoids per frequency (time
employed: around 2 minutes);

2. then, the battery is discharged for three quarters of its nominal capacity
(75% DOD) with a current rate equal to 3C (time employed: around 15
minutes). The cell voltage and battery surface temperature are registered;

3. the current is set to zero and the battery relaxation process starts. The cell
voltage and the battery surface temperature are measured for 1000 s, and then
the ambient temperature is modified to 25◦C. A certain amount of time has
to be waited to allow the heating of the battery and to obtain a sufficiently
homogeneous temperature profile. With the battery samples employed in this
work, half an hour is sufficient for this purpose (time employed: around 45
minutes);

4. a second EIS is performed, at 25◦C and 25% SOC, with the same frequency
range and spacing of the first one (time employed: around 2 minutes);

5. the battery is discharged down to the minimum voltage limit with a 1C
current rate and a theoretical 25% DOD, at 25◦C and starting from 25% SOC
(time employed: around 15 minutes).

The reasons that motivates this particular choice are:

• the EIS are meant to provide information about the parameters that define
the vast majority of the ohmic and charge transfer overpotentials. Since the
EIS separates the former from the latter, unlike the discharge curve, it is
convenient to use this technique to efficiently obtain the maximum amount of
useful information for the parameter identification. The EIS is stopped at
1 Hz, since around this frequency the diffusive processes start to influence
the impedance spectrum. The impact of the diffusion on the impedance is
quite small and not so accurately modeled, hence it is excluded from the
methodology.
For the ohmic overpotential, we include the negative film resistance Rfilm, the
ionic conductivity factor FCE, and the positive solid conductivity σpos (high
frequency). For the charge transfer overpotential, we have the rate constants
kp and kn, and the particle radii Rp,p and Rp,n (mid frequency). The double
layer capacitances Cdl,p and Cdl,n influences both the phenomena, by changing
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Figure 4.25: Explanation of the proposed methodology, with the trend of the cell voltage in time

the frequencies at which they occur.
The use of two ambient temperatures (10◦C and 25◦C) and two states of
charge (100% SOC and 25% SOC) allow to include in the parameter identifi-
cation process two very different operative conditions for the same output, i.e.
the real and imaginary impedance of the battery. The variation of ambient
temperature is useful to obtain the value of the positive and negative rate
constant activation energies EAkp and EAkn , since they are the parameters
that control the variation of the charge transfer resistance with the tempera-
ture. Then, as it was seen in chapter 3, differences in the impedance spectra
can emerge at two distant state of charges, since the electrode are nearer to
their concentration limits;

• the relaxation curve is measured for the fitting of the diffusion-related pa-
rameters, i.e. the lithium solid diffusion coefficient Ds,p and Ds,n, the ionic
conductivity factor FCE, and the particle radii Rp and Rn. Since we want
to isolate as much as possible the effect of these parameters, only the slow
relaxation part (32.6 s ≤ t ≤ 1000 s) of the cell voltage is used as fitting data,
since only the diffusion processes are relevant in this part of the relaxation
curve;
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• the discharge curves are meant to be used in the fitting dataset as a way to fit
all the model parameters, since with this technique is not trivial to separate
their different effects on the battery voltage and temperature. Nevertheless,
the two operative conditions in which the discharge curves are measured aim
to maximize the information that are obtained. The one at 25◦C, 25% SOC,
25% DOD and 1C is designed to limit the overpotentials, thanks to the low
duration and to the relatively low employed current. Nevertheless, the low
SOC region is approached, and the lithium solid diffusion coefficient in the
negative electrode Ds,n strongly influences the cell voltage, because of the
high slope of the anode open circuit potential (see figure 1.4). Since in the
relaxation curve most of the trend is dictated by the lithium solid diffusion
coefficient in the cathode, this capacity test is a way to obtain useful data
for the negative one. The discharge curve at 10◦C, 100% SOC, 75% DOD
and 3C has the purpose of fitting all the remaining parameters (ρam, Cam,
εe,p, εe,n, ce,0, t+0 ), since the sensitivities of the outputs are highly enhanced
in this condition thanks to the low temperature, the high depth of discharge
and the high current rate. Also, it serves as additional dataset for ones that
already have a dedicated experiment. The two ambient temperatures are
also useful to obtain the information about the positive and negative solid
diffusion coefficient activation energies EADs,p and EADs,n , which determine
the variation of the solid diffusion coefficients with temperatures;

• the separator electrolyte fraction εe,sep, the positive film resistance Rfilm,p,
the axial thermal conductivity kT,ax,rad and the negative solid conductivity
σs,n are not included in the analysis since the model outputs are found to be
insensitive to a variation of the said parameters, as it can be read in the tables
4.3, 4.4, 4.5, 4.6, 4.7 and 4.8. Instead, as already explained the convective
heat transfer coefficient hconv and the external resistance Rext are not fitted
with these experimental data, but they are measured or estimated in other
manners and fixed to the obtained value before the fitting process;

• it is important to notice that in the the proposed methodology we tried to
minimize the required time for the experiments, by avoiding erratic conditions
and by choosing tests that can be easily concatenated.

In the next chapter, we will use the data obtained from the described experimental
methodology applied to one of the battery samples to fit the battery P2D model,
by employing an optimization algorithm. In total, 22 model parameters will be
considered in the fitting process.
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Calibration and validation

In this chapter, we will present the algorithm with which the fitting of exper-
imental data was performed. Then, we will briefly discuss about the calibration
of the algorithm for our specific problem. Finally, we will show the results of the
fitting of the training experimental data obtained with the methodology defined in
the previous chapter on the validation dataset.

5.1 Data fitting algorithm
The fitting of the results of a model to experimental data is an optimization

problem, where the cost function is usually expressed as the sum of the squared
difference between the corresponding points in the experimental data and in the
model results. The minimum of the said function can be found with an optimization
algorithm, which is chosen in accordance to the nature and the complexity of the
considered model.
Being a mechanistic formulation, the P2D lithium-ion battery model has complex
non-linear relations between the outputs (voltage, temperature and impedance)
and the inputs (the model parameters). Moreover, it is not easy to guess an initial
point that can be near to the cost function minimum, due to the high number of
parameters and to the uncertainty about their actual value, that can span order of
magnitudes in some cases.

By analyzing the literature that concerns the parameter identification of lithium-ion
batteries, we see that the most commonly employed algorithms are the Leven-
berg–Marquardt Algorithm (LMA) [146, 148, 168], the Genetic Algorithm (GA)
[147, 169, 170], and the Particle Swarm Optimization (PSO) [171–173]. The first one
requires the gradient calculation, while the second and the third one are gradient-
free techniques.
In this work, it was chosen to use the Particle Swarm Optimization algorithm,
due to its simplicity of implementation and to its robustness with respect to the
nature of the cost function. Nevertheless, the PSO does not assure that the global
optimum is obtained, since it can also stop on a local optimum. The principle of
this metaheuristic algorithm is based on the collaborative search of the function
minimum by a set of possible inputs, i.e. the swarm.

131
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Considering the iteration i of the algorithm, each input, i.e. the particle, is
represented as a vector that contains all the model parameters, also called position
Pi. Each component of the particle position Pi,k is one of the model parameters.
The particle position is given as input to the cost function, which is evaluated and
its output is assigned to the particle. The particle position changes according to its
velocity Si, which is calculated as:

Si = w · Si−1 + c1 · rand(0, 1) · (Pi − Pi,lb) + c2 · rand(0, 1) · (Pi − Pgb) (5.1)

where the parameters are:

• w is called inertia coefficient, and it multiplies the velocity of the previous
iteration Si−1. This parameter has the purpose of keeping the information
about the previous iterations through the use of the damped preceding velocity;

• c1 is the competitive velocity coefficient, multiplied by the difference between
the current position Pi and the best local position Pi,lb, i.e. the position
where the lowest output of the cost function for the considered particle was
calculated. The velocity term linked to c1 enhances the exploration of the
solution space, by making the particles stay near the minimum they have
found;

• c2 is the collaborative velocity coefficient, multiplied by the difference between
the current position Pi and the best global position Pgb, i.e. the position
where the lowest output of the cost function among all the particles was
calculated. The velocity term linked to c2 enhances the exploitation of the
best found position, by making the particles move towards the optimum.

The velocity Si is then summed to the current position Pi to obtain the position of
the subsequent iteration:

Pi+1 = Pi + Si (5.2)
The velocity and the position are subject to limits, in order to avoid that the
particle exits the valid solution space:{

if Si < Smin, Si = Smin
if Si > Smax, Si = Smax

{
if Pi,k < Pk,min, Pi,k = Pk,min
if Pi,k > Pk,max, Pi,k = Pk,max

At the first iteration, each particle is initialized with a random position and a
random velocity, with which the cost function is evaluated to initialize the local
and global best positions too.
The algorithm uses a certain number of particles Np in each iteration: the higher
this value, the better the exploration of the solution space, but the higher the
number of needed cost function evaluation. Indicatively, 10 particles are needed
for each component Pi,k of the position, since by increasing the length of the input
vector from n to n+ 1, the solution space changes from Rn to Rn+1.
The algorithm stops when a maximum number of iteration Imax is reached or when
the value of the cost function is below a certain threshold Emin. The result of the
PSO is the position of the particle with which the lowest output of the cost function
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Table 5.1: Range of the model parameters included in the fitting process

Parameter Anode Separator/Electrolyte/Cell Cathode

Cdl [F m−2] 0.02− 50 - 0.02− 50

k [ms−1] 1 · 10−10 − 1 · 10−8 - 1 · 10−10 − 1 · 10−8

ce,0 [molm−3] - 1000− 1500 -

FCE [−] - 0.1− 1.5 -

t+0 [−] - 0.3− 0.4 -

σs [S m−1] 1000 (assumed) - 1− 10

Rp [m] 3 · 10−6 − 12.5 · 10−6 - 3 · 10−6 − 12.5 · 10−6

Ds [m2 s−1] 5 · 10−15 − 5 · 10−13 - 1 · 10−15 − 1 · 10−13

Rfilm [Ωm2] 0.001− 0.05 - 0.0001 (assumed)

εe [−] 0.325− 0.425 0.575 (assumed) 0.325− 0.425

EAk [J mol−1] 20000− 80000 - 20000− 80000

EAD [J mol−1] 20000− 80000 - 20000− 80000

ρam [kgm−3] - 2000− 2750 -

Cam [J kg−1 K−1] - 800− 1200 -

kT,rad,am [W m−1 K−1] - 0.1− 1 -

kT,ax,am [W m−1 K−1] - 30 (assumed) -

hconv [W m−2 K−1] - 17.5 (estimated) -

Rext [Ωm2] - 6.87 · 10−4 (estimated) -

was calculated. For what concerns this work, the shape of the cost function is
described in section 5.1.1, while the validity range given to the model parameters
included in the optimization is shown in table 5.1. Actually, these values are the
ones that limit the position of the components of the input vector Pi,k.
The fixed model parameters are the same of the sensitivity analysis, and they can be
found in table 4.2. In addition, five parameters that were included in the sensitivity
analysis are considered constant in the fitting process, due to their irrelevance for
the model outputs as observed from the sensitivity analysis (σs,n, εe,sep and kT,ax,am)
or because they are external parameters that do not depend on the lithium-ion
battery nature (Rext and hconv). Their value is taken from literature or estimated.
Finally, the PSO algorithm parameters are initialized with these values, based on
the literature [174] and on the observed behavior of the algorithm with this specific
problem:

• w = 0.721

• c1 = 1.665

• c2 = 1.665

• Np = 200

• Imax = 20

• Emin = 1 · 10−4

• Smax = 0.05 · (Pk,max − Pk,min)

• Smin = −0.05 · (Pk,max − Pk,min)
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Note that the maximum number of iterations is very low for a PSO algorithm, since
this parameter is commonly two orders of magnitude higher than the one used in
this work. This limit had to be set to obtain a reasonable computational time.
Every simulation of the five experiments of the methodology takes 200− 225 s, and
every iteration requires Np simulations. Therefore, about nine days are needed for
20 full iterations. For sure, one of the future developments of this work will be
the decrease of the computational time, by implementing a model order reduction
and/or parallel computing.

5.1.1 Cost function
The cost function that we have to set in this optimization problem has to consider

the difference between the experimental data that are used for the fitting process
and the result that the model gives with the set of parameters corresponding to the
position of the particle. In particular, the chosen measure is the root-mean-square
error (RMSE) between the experimental data and the model data. Therefore, the
cost function is expressed as:

CF =
Nf∑
j=1

fj ·
√√√√√ 1
Nd,j

·
Nd,j∑
i=1

(xei,j − xmi,j)2

xej

 (5.3)

where:

• Nf is the number of experimental outputs used in the cost function, each one
with an associated sub-cost function. Reminding the methodology defined in
chapter 4, in our case we have five different experimental test, two discharge
curves, a relaxation curve and two EIS. From the relaxation curve and
the discharge curves we only use the measured cell voltage as experimental
output. The reason behind the choice of not considering the battery surface
temperature is that these data could have a quite low reliability, due to the
contact resistance between the thermocouples and the batteries, and the
exposure of the non-insulated thermocouples to the ambient air (see section
3.1.2). From each EIS we obtain the real and the imaginary impedance.
Therefore, the number of experimental outputs is equal to 7;

• Nd,j is the number of data points associated to the jth output. The discharge
curves are divided into 100 points, the relaxation curve has 45 points, while for
the two EIS we take only 8 points for the real and the imaginary impedance.
The reason behind this low number of used points is the high amount of
time needed by the model to simulate the EIS, which is the bottleneck of the
overall simulation time. Since the outputs have a different number of data
points, the sub-cost function are divided by Nd,j to avoid a bias towards the
sub-cost functions with an higher number of data points;

• fj is a weight factor for the sub-cost function of the jth output. These weights
are empirically determined, and they have the purpose of giving the same
relative weight to all the sub-cost functions, avoiding a bias due to the typical
values of the jth experimental data;
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• xei,j and xmi,j are respectively the ith data point of the experimental data and
of the model data of the jth output;

• xej is the mean of the experimental data vector of the jth output. Not all the
sub-cost function have the same unit of measure, since they are related to
different outputs, and they could not be summed together. Therefore, the
mean value of the jth experimental data vector (equal in every algorithm
iteration) is used to nondimensionalize the jth sub-cost function.

5.2 Simulated datasets
Prior to the fitting of experimental data, we perform the tuning of the data

fitting algorithm, to confirm the capability of the said algorithm of obtaining an
accurate result for what concerns the values of the model parameters. For this
purpose, we use two simulated training datasets with two different sets of model
parameters. Each set of parameters is given as input to the model, and the five
experimental tests of the formulated methodology are simulated. Then, the outputs
of the simulation of these tests are used as fictitious experimental data in the cost
function, and the PSO is employed to obtain a set of parameters that can reproduce
the said dataset.
The main objective of these algorithm tests is to understand whether it is possible
to find a set of parameters that not only reproduces well the experimental dataset,
but that represents the correct values of the model parameters too. This aspect is
very important for the purpose of this work: a wrong set of parameters could bring
to a satisfactory experimental data fitting thanks to the particular combination
of the said wrong parameters, that at the end has the same effects on the model
outputs of the correct set of parameters.

The results of the fitting of the simulated datasets are shown in table 5.2,
where the real values of the parameters are contrasted with the values obtained
with the fitting by the algorithm. The important things to notice are that:

• the values of the particle radii Rp,p and Rp,n during the two fitting processes
are fixed to the correct numbers. The reason for this choice is that, without
using the right values for the particle radii, the experimental data are fitted
with a wrong parameter set. In fact, the particle radius is a parameter
that in the P2D model is linked to all the overpotentials of the lithium-ion
battery, because it defines the specific active area of the battery (see equation
2.27) determining the charge transfer overpotential, and it has quadratic
relationship with the characteristic diffusion time in the solid (see equation
2.3). Moreover, the presence of a significant film resistance Rfilm,n on the
negative electrode means that the negative particle radius Rp,n influences the
ohmic overpotential, too. During the fitting process, all the combinations
between the values of the other parameters that are included in the definition
of these overpotentials, such as the rate constants k and the lithium diffusion
coefficients in the solid Ds, and the particle radii that give a satisfactory fit of
the experimental data are considered as good "candidates" for the parameter
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Simulated dataset 1 Simulated dataset 2
Parameter Real value Fitted value Difference Real value Fitted value Difference
Cdl,p [F m−2] 2.000 2.016 0.79% 0.800 1.604 100.49%
Cdl,n [F m−2] 0.25 0.2503 0.10% 1.2 0.5426 54.79%
kp [ms−1] 8.25 · 10−10 7.72 · 10−10 6.42% 5.25 · 10−9 7.50 · 10−9 42.95%
kn [ms−1] 1.50 · 10−9 1.38 · 10−9 7.92% 3.50 · 10−9 2.52 · 10−9 42.95%

ce,0 [molm−3] 1150 1310 13.91% 1350 1285 4.81%
FCE [−] 1.150 0.891 22.51% 0.550 0.639 16.17%
t+0 [−] 0.325 0.347 6.73% 0.39 0.300 23.04%

σp [S m−1] 2.5 1.371 45.17% 9.5 9.783 2.98%
Rp,p [m] 9.25 9.25a - 5.7 5.7a -
Rp,n [m] 4.5 4.5a - 4.2 4.2a -
Ds,p [m2 s] 2.56 · 10−14 2.94 · 10−14 14.89% 8.50 · 10−15 7.26 · 10−15 10.26%
Ds,n [m2 s] 1.60 · 10−13 9.40 · 10−14 41.26% 7.00 · 10−14 3.71 · 10−13 430.29%

Rfilm,n [Ωm2] 6.75 · 10−3 5.224 · 10−3 22.61% 3.25 · 10−3 5.21 · 10−3 60.30%
εe,p [−] 0.390 0.332 14.99% 0.360 0.373 3.52%
εe,neg [−] 0.360 0.353 1.96% 0.32 0.411 28.54%

EAkp [J mol−1] 53500 37716 29.50% 53000 59572 12.40%
EAkn [J mol−1] 55500 58049 4.59% 47000 33314 29.12%
EADs,p [J mol−1] 28900 31922 10.46% 41500 35078 15.47%
EADs,n [J mol−1] 35600 47116 32.35% 33300 46572 39.86%
ρam [kg m−3] 2130 2334 9.58% 2120 2488 17.36%

Cam [J kg−1K−1] 1120 1180 5.36% 930 886 4.73%
kT,rad,am [W m−1K−1] 0.165 0.250 51.58% 0.125 0.103 23.04%
a fixed value

Table 5.2: Results of the fitting of the simulated datasets

set that minimizes the cost function. Therefore, it is likely that the parameter
set obtained at the end of the PSO does not represent the real value of the
battery parameters, but it is only a combination that gives the same outputs.
To solve this problem, it was chosen to fix the values of the particle radii,
because they are quantities that govern to all the phenomena of the battery.
Also, they are a geometric measurable quantity with appropriate techniques
as laser diffraction [150], or they can be provided by the battery manufacturer;

• both the sets of parameters found by the algorithm fit well the simulated
datasets, but only the one associated to the simulated dataset 1 is similar to
the real model parameters.
The simulated dataset 1 represents a battery whose electrodes have very
different properties, with the positive one that has a charge transfer resistance
about four times higher than the negative one, and the frequency range in
which the charge transfer resistance is present in the impedance spectrum
is lower for the positive electrode, due to the much higher double layer
capacitance Cdl.
Instead, the simulated dataset 2 represents a battery whose electrodes show
similar properties, with almost equal double layer capacitances. In this
situation, the fitting parameter set does not represent the real one in a
satisfactory way.
The better performance of the fitting algorithm with the simulated dataset
1 can be explained by the great difference between the properties of the
anode and of the cathode, which implies that it is hard to find a combination
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of wrong model parameters that can fit well the dataset. On the contrary,
the fitting algorithm performed worse on the simulated dataset 2, probably
because of the similarity between the electrodes;

• the parameters that are linked to the high frequency resistance of the battery,
i.e. the ionic factor conductivity FCE, the positive solid conductivity σs,p
and the negative film resistance Rfilm,n show differences between the real
values and the fitted values in the 20 − 60% range. These moderate/high
differences are due to the fact that their overall effect on the HFR can be
obtained with a variety of combinations of these three parameters, which can
bring to wrong estimate. Since the negative film resistance is an important
parameter for the degradation identification, linked to the SEI growth, it is
necessary to have a quite accurate estimate. Possible solutions are the fitting
of all the coefficients of the ionic conductivity correlation with concentration
and temperature (see equation 2.44), and the use of a correlation also for
the positive solid conductivity [175], in order to improve the quality of the
estimate of these two parameters;

• the lithium diffusion coefficient in the negative electrode Ds,n and its related
activation energy EADs,n are not fitted well in both the simulated datasets
probably because the diffusion in the anode is not a limiting condition for
the battery with these sets of parameters, and hence the output of the model
are not affected in a significant way by these parameters. By comparing the
characteristic times of diffusion in the electrodes, we can see how the diffusion
in the cathode is much more limiting, determining the trend of the cell voltage.
In fact, Ds,p and EADs,p are fitted in a satisfactory way.

τDs,p,1 = (9.25·10−6)2

2.56·10−14 = 3342 s

τDs,n,1 = (4.5·10−6)2

1.60·10−13 = 126 s


τDs,p,2 = (5.7·10−6)2

8.50·10−15 = 3822 s

τDs,n,2 = (4.2·10−6)2

7.00·10−14 = 252 s

• the parameters that were classified as "low sensitive" in the sensitivity analysis
(t+0 , ce,0, εe,p, εe,n, ρam, Cam and kT,rad,am) can have a quite high difference
between the fitted value and the real value, because the lower sensitivity of
the model output to the value of the said parameters.

The information obtained by this calibration step will be very useful to critically
analyze the results of the fitting of the real experimental data, and for the future
development of the battery diagnostic procedure.

5.3 Experimental dataset
The final step of this work is the use of an experimental dataset in the fitting

algorithm as training dataset, to understand if it is possible to find a set of parame-
ters that reproduces the behavior of the battery only using the data obtained with
the proposed methodology.
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The five tests (see Chapter 4.3) are performed on the new high-power US26650VT
battery. Because of extraordinary reasons, it was not possible to make the second
discharge curve from 25% SOC at 1C and 25◦C, as well as the EIS at 25% SOC
and 25◦C. Therefore, the experimental dataset is completed with a discharge curve
from 25% SOC at 0.5C and 40◦C, and a EIS at 25% SOC and 40◦C. They were
performed on the same battery few days before the other three tests (EIS at 100%
SOC and 10◦C, discharge curve from 100% SOC to 25% SOC at 3C and 10◦C, and
relaxation test for 1000 s after the discharge), and they are quite similar to the
tests planned in the methodology, although not so optimal.

Instead, the validation dataset includes:

• four complete discharge curves from 100% to the lower voltage limit at 25◦C,
with four current rates: 0.5C, 1C, 2C and 3C;

• three complete discharge curves from 100% to the lower voltage limit at 0.5C,
with three ambient temperatures: 10◦C, 25◦C and 40◦C;

• three complete discharge curves from 100% to the lower voltage limit at 3C,
with three ambient temperatures: 10◦C, 25◦C and 40◦C;

• four relaxation curves from 0.5 s to 1000 s, after four concatenated discharge
pulses at 0.2C, 10◦C and 20% DOD: 100−80% SOC, 80−60% SOC, 60−40%
SOC and 40− 20% SOC;

• four relaxation curves from 0.5 s to 1000 s, after four concatenated discharge
pulses at 3C, 40◦C and 20% DOD: 100− 80% SOC, 80− 60% SOC, 60− 40%
SOC and 40− 20% SOC;

• three impedance spectra from 10000 Hz to 0.05 Hz with 40 logarithmically
spaced points, at 25◦C and three states of charge: 100% SOC, 60% SOC, 20%
SOC;

• three impedance spectra from 10000 Hz to 0.05 Hz with 40 logarithmically
spaced points, at 60% SOC and ambient temperatures: 10◦C, 25◦C and 40◦C.

These experimental data on the new US26650VT battery were collected during
the experimental campaign described in Chapter 3. We choose these tests because
they show different operative conditions from the ones of the training dataset, and
they can highlight both the strengths and the limits of the obtained set of model
parameters.

5.3.1 Results
The set of fitted parameters is reported in table 5.3. The comparison between

the experiments and the model on training dataset, with the tests of the proposed
methodology, is shown from figure 5.1 to 5.5. Instead, it is possible to see the
comparison between the experiments and the model in the validation dataset from
figure 5.6 to 5.12. The root mean square error is used as a measure of the average
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Table 5.3: Set of parameters obtained from the fitting of experimental data

Parameter Anode Separator/Electrolyte/Cell Cathode

Cdl [F m−2] 0.244 - 1.536

k [ms−1] 9.793 · 10−10 - 5.985 · 10−10

ce,0 [molm−3] - 1302 -

FCE [−] - 0.167 -

t+0 [−] - 0.365 -

σs [S m−1] 1000 (assumed) - 2.669

Rp [m] 10.67 · 10−6 - 5.753 · 10−6

Ds [m] 1.624 · 10−14 - 3.717 · 10−15

Rfilm [Ωm2] 7.808 · 10−3 - 0.0001 (assumed)

εe [−] 0.361 0.575 (assumed) 0.3714

EAk [J mol−1] 56213 - 41182

EADs [J mol−1] 38521 - 32251

ρam [kgm−3] - 2225 -

Cam [J kg−1 K−1] - 886.5 -

kT,rad,am [W m−1 K−1] - 0.1762 -

kT,ax,am [W m−1 K−1] - 30 (assumed) -

hconv [W m−2 K−1] - 17.5 (estimated) -

Rext [Ωm2] - 6.87 · 10−4 (estimated) -

distance between the results of the model and the real data. The root mean square
error RMSEj between the two curves of each output j is calculated as:

RMSEj =

√√√√√ 1
Nd,j

Nd,j∑
i=1

(
xei,j − xmi,j

)2
(5.4)

As far as the author’s knowledge, in the literature concerning the parameter identi-
fication made with the P2D physical model, the reported root-mean-square errors
are only related to discharge curves. In the works on the EIS impedance spectra,
only equivalent circuits are employed, while we have not found papers that focus
on the relaxation curves.

Zhang et al. [147] reported RMSEs between 8 and 24 mV for discharge curves
between 0.5C and 2C at 30◦C, and between 20 and 37 mV for discharge curves
between 0.5C and 2C at 15◦C, on LiCoO2 batteries. Park et al. [168] obtained
RMSEs of 11.8 mV and 25.5 mV, respectively for a 0.5C and 1C discharge at 25◦C,
with a NCA battery. Li et al. [169] worked on a LMO battery, achieving RMSEs
between 6.4 mV and 12.9 mV for discharge curves between 0.5C and 3C, at 25◦C.
Yang et al. [173] reported RMSEs of 15.6 mV and 21.6 mV, respectively for a 1C
and a 2C discharge curve, at 25◦C, with a NMC battery.

For what concerns the training dataset, we can observe that:

• there is a good accordance between experiments and model for the 3C, 10◦C
discharge of figure 5.1, with a RMSE of 36.7 mV. The voltage plateau of
the curve between 200 and 600 mAh is due to the progressive heating of the
battery, that locally benefits from the higher temperature in terms of lower
overpotentials. The model reproduces well this complex behavior, thanks
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to the introduced coupling between the electrochemical and the thermal
behaviors;

• the discharge curve at 0.5C, 40◦C shows a quite high RMSE (44.0 mV) for
such a low current test. Since the model and the experiment curves of figure
5.2 seems to be vertically shifted, we suppose that their difference is due to
a non-optimal thermodynamic fitting, i.e. the open circuit potential curves
of the electrodes implemented in the model could be improved. This part
of the model is based on experimental data, but it has not been fitted like
the parameters that determine the dynamic behavior, hence it shows a lower
accuracy;

• the relaxation curve of figure 5.3, made after the discharge of figure 5.1, has an
RMSE of 40.1 mV, mostly due to the difference in the reached OCV between
the experiment and the model, a fact that can be attributed again to the
non-optimal thermodynamic behavior. Nevertheless, the dynamics of the
relaxation is reproduced well in the considered time frame, which suggest a
correct estimation of the diffusion-related phenomena;

• the EIS impedance spectrum of figure 5.4 is performed at 10◦C and 100%
SOC. The RMSE of the real impedance is 5.61 mΩ, while the one of the
imaginary impedance is 1.91 mΩ. At high frequency, on the left part of
the chart, the experimental curve shows a lower slope than the model one.
This almost 45◦ linear slope on the experimental data is attributed to the
presence of a distribution of particle sizes in the electrodes [108], instead of
a single characteristic particle size like in our model. In fact, the model is
not able to reproduce such a low slope in any combination, and hence the
best approximation is a more circular shape of this trait. This mismatching
and an overall higher frequency of the model impedance lead to a moderate
RMSE of the real part, while the imaginary part shows a good accordance;

• lastly, the impedance spectrum of figure 5.5, made at 40◦C and 25% SOC, has
a real impedance RMSE of 0.712 mΩ, and an imaginary impedance RMSE
of 0.470 mΩ. The shift in the HFR is probably due to the non-optimal
correlation between the ionic conductivity and the battery temperature. With
such a low FCE parameter, (see table 5.3), the relative impact of the the
ionic conductivity on the HFR is quite high, and the variation of this model
parameter with temperature is not a fitted characteristic, but it is obtained
from an empirical correlation (see equation 2.44). At low frequency, the
experimental data show higher value of real and imaginary impedance, due
to the occurrence of the second semicircle at low SOC that was described
in Chapter 3.2.3 [110, 136]. This complex behavior is not well reproduced
by the model, partly because of the non-optimal thermodynamic behavior,
but mostly because the exchange current density relation with the SOC of
equation 2.17, which does not take into account such a non-linear behavior of
the cathode material.

The performance on the validation dataset is summarized in table 5.4, where the
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Technique Operative condition RMSE

Discharge curve

0.5C, 25◦C, 100− 0% SOC 20.6 mV

1C, 25◦C, 100− 0% SOC 20.3 mV

2C, 25◦C, 100− 0% SOC 18.3 mV

3C, 25◦C, 100− 0% SOC 26.6 mV

0.5C, 10◦C, 100− 0% SOC 37.8 mV

0.5C, 40◦C, 100− 0% SOC 22.9 mV

3C, 10◦C, 100− 0% SOC 60.5 mV

3C, 40◦C, 100− 0% SOC 30.9 mV

Relaxation test

0.2C, 10◦C, 100− 80% SOC 6.5 mV

0.2C, 10◦C, 80− 60% SOC 12.0 mV

0.2C, 10◦C, 60− 40% SOC 17.1 mV

0.2C, 10◦C, 40− 20% SOC 11.6 mV

3C, 40◦C, 100− 80% SOC 18.6 mV

3C, 40◦C, 80− 60% SOC 28.8 mV

3C, 40◦C, 60− 40% SOC 35.7 mV

3C, 40◦C, 40− 20% SOC 38.8 mV

EIS

25◦C, 100% SOC
ZR: 1.28 mΩ

ZI : 1.43 mΩ

25◦C, 60% SOC
ZR: 1.27 mΩ

ZI : 0.606 mΩ

25◦C, 20% SOC
ZR: 2.69 mΩ

ZI : 1.00 mΩ

40◦C, 60% SOC
ZR: 0.501 mΩ

ZI : 0.313 mΩ

10◦C, 60% SOC
ZR: 8.54 mΩ

ZI : 1.95 mΩ

Table 5.4: Summary of the RMSE between the model data and the experimental data in the

validation dataset

RMSEs of all the comparisons between model and experiments are reported. Some
general consideration that can be made are:

• the results on the discharge curves (figures 5.6, 5.7 and 5.8) are satisfying,
with RMSEs on the voltage that are aligned with the literature values. The
best performances are shown at 25◦C, a temperature that is not included in
the provided training dataset. This fact shows the reliability of the model in
a wide range of conditions, thanks to the generality of most of the underlying
mechanistic correlations.
The higher RMSE among these tests belongs to the 3C, 10◦C discharge (figure
5.7), which shows a mismatching between model and experiment at low voltage.
This behavior is probably due to the moderately high activation energies of
the solid diffusion coefficients EADs,p and EADs,n , which overestimate the
effect of the battery heating on the lithium diffusion in the electrode, leading
to progressively lower voltage losses due to concentration disequilibria (see
Chapter 1.1.2);

• both the sets of relaxation curves show good results, in particular the one
with low current pulses (figure 5.9). The curves at high current of figure 5.10
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show larger RMSEs probably because of the higher disequilibrium caused by
such an higher current, that can lead to the temperature and concentration
inhomogeneities along the battery spiral described in Chapter 4.2.2 [164, 165].
Such inhomogeneities lead to much higher relaxation times (104− 105 s), that
our model is not able to predict;

• the results of the EIS are particularly good for high-mid SOC at 25◦C of figure
5.11, where the behavior of the experimental data is well reproduced, with
a slightly higher RMSE at high SOC. The model EIS at 20% SOC does not
show the second semicircle at low frequency, for the same reason explained in
the training dataset observations. The variation of the model impedance with
temperature of figure 5.12 is good going towards higher temperatures, while
the experimental low temperature spectrum is underestimated by the model.

• for what concerns the experimental uncertainty, the results obtained in the
related Chapter 3.1.2 suggest an average error on the voltage measurement in
the order of 5− 10 mV, depending on the operative condition. Instead, the
average uncertainty on the impedance measurement is in the order of 0.02−0.5
mΩ, strongly varying with the frequency range. Comparing these values with
the RMSEs of table 5.4, we see how the in certain conditions, as the high-
temperature EIS and the low current pulse relaxations, the average difference
between model and experimental data is comparable with the measurement
uncertainty. Nevertheless, many other conditions show an RMSE much higher
than the related uncertainty, suggesting that the quality of the fitting has
still room for improvement even considering the errors on the measurement
process.
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Figure 5.1: Training dataset: Discharge curve at 3C, 10◦C, from 100% SOC to 25% SOC.

RMSE: 36.7 mV

Figure 5.2: Training dataset: Discharge curve at 0.5C, 40◦C, from 25% SOC to 0% SOC.

RMSE: 44.0 mV
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Figure 5.3: Training dataset: Relaxation curve after discharge at 3C, 10◦C, from 100% SOC to

25% SOC. RMSE: 40.1 mV

Figure 5.4: Training dataset: Impedance spectrum at 10◦C, 100% SOC. RMSE real impedance:

5.61 mΩ, RMSE imaginary impedance: 1.91 mΩ
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Figure 5.5: Training dataset: Impedance spectrum at 40◦C, 25% SOC. RMSE real impedance:

0.712 mΩ, RMSE imaginary impedance: 0.470 mΩ

Figure 5.6: Validation dataset: Discharge curves at 0.5C, from 100% SOC to 0% SOC, tem-

perature variation. RMSE 10◦: 37.8 mV, RMSE 25◦: 20.6 mV, RMSE 40◦: 22.9
mV
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Figure 5.7: Validation dataset: Discharge curves at 3C, from 100% SOC to 0% SOC, temperature

variation

Figure 5.8: Validation dataset: Discharge curves at 25◦C, from 100% SOC to 0% SOC, current

rate variation
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Figure 5.9: Validation dataset: Relaxation curves after discharges at 0.2C, 10◦C, with 20%

DOD, starting SOC variation

Figure 5.10: Validation dataset: Relaxation curves after discharges at 3C, 40◦C, with 20% DOD,

starting SOC variation
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Figure 5.11: Validation dataset: Impedance spectra at 25◦C, SOC variation

Figure 5.12: Validation dataset: Impedance spectra at 60% SOC, temperature variation
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5.3.2 Final remarks
The results obtained with the application of the proposed experimental method-

ology suggest that the combination of discharge curves, relaxation tests and EIS
can be a powerful tool for the parameter estimation of a lithium-ion battery in a
physical model. We obtained a good results on a wide range of conditions that
were not included in the training dataset, and considering a much wider range of
operative conditions and techniques than the literature. This novel and comprehen-
sive approach to battery characterization can be a stepping stone in the definition
of a complete diagnostic procedure of aged lithium-ion batteries. The open issues
that have to be addressed are:

• the set of parameters of table 5.3, obtained by the algorithm with the fitting
of experimental data, could suffer from the issue highlighted in Chapter 5.2,
where it was shown how a wrong set can still reproduce a training dataset.
The proposed solutions to this problem at the end of Chapter 5.2 should be
applied. Also, a post-mortem investigation of the value of the parameters
could be performed with appropriate techniques, to check the validity of the
set with direct measurements;

• the computational time required by the model is quite high, allowing only a
really low number of iterations of the fitting algorithm. An improvement in
this direction, for instance with model order reductions and parallelization,
could improve further the quality of the data fitting and of the parameter
estimation process;

• in the validation dataset, the regions where the model performed less well
were the ones of low/very low state of charge, probably due to a lack of a
proper thermodynamic fitting and of poor correlations not suitable for highly
non-linear effects. The thermodynamic characteristics of the battery could
be fitted with a process analogous to the one designed in this work for the
dynamic characteristics.





Conclusions

This master’s thesis fits into the context of the circular economy of lithium-ion
batteries, acknowledging the fact that in the near future there will be a continuously
increasing number of aged LIBs retired after their end of life in electric vehicles
and that these used batteries can be employed in less demanding applications. One
of the enabling factors of this circular framework is a reliable and standardized
measurement procedure of the aged batteries state of health and the remaining
useful lifetime. The objective of this work is the definition of a novel experimental
methodology to estimate the physical parameters that determine the battery be-
havior in a mechanistic model. The values of these parameters can be then related
to the effects of aging, for the evaluation of the state of health.

• Reviewing the literature on diagnostic procedures of lithium-ion batteries,
we understood how only capacity tests have a widespread use. Instead, it is
suggested that the most insightful approach should be the one that combines
different techniques, to obtain a complete dataset on the cell behavior in
a variety of operative conditions. For this reason, three techniques were
chosen and applied in the experimental campaign, i.e. the capacity test,
the relaxation test and the electrochemical impedance spectroscopy. For
what concerns the modeling part, the electrochemical pseudo two-dimensional
Doyle-Fuller-Newman model was integrated with a two-dimensional thermal
model of a cylindrical battery, and the effect of temperature variations on the
battery physical parameters was implemented.

• The experimental campaign was performed on four batteries, with pristine and
aged commercial samples with different cathode chemistries. We understood
how each technique can highlight different effects of the degradation on LIBs,
with important variations according to the operative conditions of the test.
Therefore, the effectiveness of the combination of capacity tests, relaxation
tests and EIS was proven.

• To define the methodology, a sensitivity analysis of the LIB physical model was
designed and carried out, where the three diagnostic techniques were simulated
and 28 model parameters were varied within a range defined by the literature
review. We obtained a quantitative classification of the model parameters
according to the sensitivity of the model outputs to their variations. From
these results, we designed an experimental methodology that balanced the
trade off between the amount of information obtainable from the experimental
techniques for the parameter estimation phase and the tests’ duration. In
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particular, the methodology consists of two discharge curves, a relaxation
curve and two impedance spectra from the EIS.

• Finally, the methodology was implemented and tested in a parameter estima-
tion process, where a metaheuristic Particle Swarm Optimization algorithm
was chosen and adapted to our problem and used to fit the model results to
the training dataset. Two simulated datasets and one experimental dataset
obtained from a pristine 2.6 Ah high-power commercial battery were used for
the calibration and validation of the methodology. It was possible to exclude
some physical parameters from the parameter estimation process thanks to
the insights obtained by the sensitivity analysis.

• For what concerns the experimental dataset, the results on the validation
data show how the estimated parameters reproduce well the battery behavior
in the majority of the conditions not included in the training data, obtaining
RMSEs that are aligned with the relevant literature on the topic. Moreover,
we included in our validation three different experimental techniques and a
wide range of operative conditions, a feature that is not present in literature
and that indicates the generality of our approach;

The proposed methodology has shown promising results, and it confirmed how the
combination of different experimental techniques and of a physical model can be
a powerful tool for a comprehensive battery characterization. The main follow
up activities that should be performed in the next future for the definition of a
complete diagnostic procedure are:

• the proper fitting of the thermodynamic characteristic of the battery. In
the validation, some limitations emerged in the operative conditions where
the battery SOC is low. It was highlighted the necessity more accurate
thermodynamic characteristic to obtain a fully reliable set of parameters.
This fitting could be following the same path of this thesis, applied to the
thermodynamic-related model parameters;

• the reduction of computational time required by the model simulation, to
allow an higher number of iterations of the fitting algorithm. With this
improvement, for instance with model order reductions and parallelization
of the operations, it would be possible to further improve the quality of the
obtained set of physical parameters from the fitting process;

• the definition of the correlations between the values of the physical parameters
and the degradation modes sustained by the aged lithium-ion battery.



Acronyms

AC Alternate current

B2U Battery second use

BOL Beginning of life

CEI Cathode electrolyte interphase

DC Direct current

DEC Diethyl carbonate

DMC Dimethyl carbonate

DV Differential voltage

EC Ethylene Carbonate

EEC Equivalent electric circuit

EIS Electrochemical impedance spectroscopy

EMC Ethyl methyl carbonate

EOL End of life

ESS Energy storage system

EV Electric vehicle

FFT Fast Fourier transform

FR Fast relaxation

GHG Greenhouse gas

GITT Galvanostati Intermitten Titration Technique

GSA Global sensitivity analysis

HF High frequency

IC Incremental capacity

LAM Loss of active material
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154 Acronyms

LCO Lithium cobalt oxide battery

LF Low frequency

LFP Lithium iron phosphate battery

LIB Lithium-ion battery

LLI Loss of lithium inventory

LMO Lithium manganese oxide battery

LTO Lithium titanate battery

MF Mid frequency

MR Mid relaxation

NCA Nickel cobalt aluminum battery

NMC Nickel manganese cobalt battery

OCP Open circuit potential

OCV Open circuit voltage

OEM Original equipment manufacturer

OFAT One factor at time

P2D Pseudo two-dimensional

PDE Partial differential equation

RI Resistance increase

RMSE Root mean square error

RUL Remaining useful lifetime

SEI Solid electrolyte interphase

SHE Standard hydrogen electrode

SOC State of charge

SOH State of health

SR Slow relaxation
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