
Politecnico di Milano
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e
Bioingegneria

Clustering and Reproduction of
Players’ Exploration Paths in

Video Games

Supervisor: Professor Francesco AMIGONI

Co-supervisors: Professor Daniele LOIACONO,

Dr. Davide AZZALINI

Thesis by:

Edoardo ZINI, ID 875275

Academic Year 2018/2019

Abstract

Collecting data from players is a common practice in the video game field.
Software houses can exploit those data to identify problems and improve
their products. During development data are usually collected via playtests.
During a playtest the development team gathers players to collect informa-
tion about how they react to the game and which are the critical points.
Playtests are time consuming and cannot be performed too often.

One piece of information collected during these playtests is the path each
player follows while exploring the virtual environment. Being able to cluster
together similar paths, and then reproduce the paths in a cluster in an au-
tomated fashion, would not only benefit the game development process, but
also constitutes an interesting scientific challenge.

In this thesis, we leverage an already existing framework capable of col-
lecting data from human players and moving an autonomous agent in a vir-
tual environment; we improve it to fit our needs and we perform a data
collection process in order to gather enough human trajectories for our tests.
We investigate which clustering procedure is the most suited for our needs,
taking into account that we ideally want clusters based on the abilities of
players. We also have to evaluate which metric should be used by the cluster-
ing procedure. We consider geometry-based metrics, like Euclidean, longest
common subsequence, and dynamic time warping. Then we consider hidden
Markov models and the answers to a survey we submitted to our players
during data collection. Lastly, we assemble a list of measures capable of
capturing the behaviour of the players without being geometrically bound.

After clustering player’s exploration trajectories we look for ways for re-
producing trajectories belonging to a cluster using an autonomous agent. We
discover that the behaviour of the agent is not as deterministic as we expect,
so we split our efforts: on one side we adapt our approach to deal with this
issue, on the other side we analyse the autonomous agent in order to better
understand the nature of this non-determinism. We find three feasible ways
for reproducing trajectories in a cluster and we detail them highlighting their
pros and cons.

iii

Sommario

Raccogliere dati dai giocatori è una pratica comune nell’ambito videoludico.
I team di sviluppo possono sfruttare questi dati per individuare problemi
e migliorare i loro prodotti. Durante lo sviluppo i dati sono raccolti nelle
sessioni di playtest. In un playtest il team di sviluppo raduna dei giocatori al
fine di raccogliere informazioni su come questi reagiscono al gioco e su quali
sono i punti critici. Organizzare un playtest richiede tempo, perciò sono rari.

Una delle informazioni raccolte in un playtest sono i percorsi seguiti dai
giocatori mentre esplorano l’ambiente virtuale. Essere in grado di raggrup-
pare percorsi simili tra loro, e poi riprodurre automaticamente i percorsi ap-
partenenti ad un gruppo, non solo sarebbe utile per il processo di sviluppo,
ma rappresenta anche una interessante sfida scientifica.

In questa tesi, sfruttiamo un framework pre-esistente in grado di rac-
cogliere dati da giocatori umani e muovere un agente autonomo in un ambi-
ente virtuale; lo miglioriamo per adattarlo alle nostre esigenze e avviamo una
raccolta dati in modo da avere abbastanza percorsi seguiti da giocatori umani
per i nostri test. Contemporaneamente consideriamo quale procedura per il
clustering è la più adatta alle nostre necessità, tenendo in considerazione che
vorremmo avere dei cluster basati sulle abilità di ciascun giocatore. Inoltre
dobbiamo valutare quale metrica sia la più adatta per il clustering. Conside-
riamo metriche basate sulla geometria, come quella euclidea, longest common
subsequence e dynamic time warping. Poi consideriamo gli hidden Markov
model e le risposte a un questionario che abbiamo sottoposto ai giocatori. In-
fine, componiamo una lista di misure in grado di catturare il comportamento
dei giocatori senza basarsi sulla geometria.

Dopo aver raggruppato i vari percorsi dei giocatori cerchiamo dei modi
per riprodurre quelli appartenenti ad un cluster usando le abilità di un agente
autonomo. Scopriamo che il comportamento dell’agente non è deterministico,
quindi dividiamo i nostri sforzi: da un lato adattiamo il nostro approccio
per far fronte a questo problema, dall’altro analizziamo l’agente in modo da
comprendere meglio la natura del non-determinismo. Troviamo tre possibili
modi per riprodurre un cluster e per ciascuno evidenziamo pregi e difetti.

v

Thanks

Firstly, I would like to thank professor Francesco Amigoni, professor
Daniele Loiacono, and Dr. Davide Azzalini for the opportunity to work on
a video game related topic, for always being available to talk in person about
the latest developments, and for making this mandatory thesis a challenging
and interesting opportunity to learn new concepts and tools.

I would also like to thank all my friends, from middle school to university;
their willingness to spend their time with me is a precious gift.

Lastly, I would like to thank my brother for tolerating me all these years,
and my parents, who have always supported me in any decision, even when
it meant wasting time and money. Without them I would not be where I am
now, and for this I will always be grateful.

Edoardo Zini

vii

Contents

Abstract iii

Sommario v

Thanks vii

1 Introduction 1

2 Previous work 3
2.1 Goals . 3
2.2 Pre-existing Unity project . 3
2.3 Testing environment . 4
2.4 Data collection . 6

2.4.1 Human data collection 6
2.4.2 Conclusions on human Results 7
2.4.3 Robot structure . 8
2.4.4 Robot data collection 11
2.4.5 Data processing . 11
2.4.6 Conclusions on robot Results 12

3 Goals and state of the the art 13
3.1 Goals . 13
3.2 State of the art . 14

3.2.1 Clustering . 14
3.2.2 Additions to previous work 17
3.2.3 Voronoi . 20

4 Clustering 23
4.1 Data collection . 23
4.2 SciPy . 23
4.3 Metric-based clustering . 25

4.3.1 Metric definitions . 25

ix

Contents

4.3.2 Preliminary results . 27

4.3.3 Metric-based clustering results 31

4.4 Hidden Markov model based clustering 31

4.4.1 Definitions . 31

4.4.2 HMM implementation 33

4.4.3 HMM-based clustering 40

4.5 Survey-based clustering . 41

4.5.1 Critical Voronoi points and groups 41

4.5.2 Measures . 42

4.5.3 Survey-based clustering results 44

4.6 Measure-based clustering . 51

4.6.1 Feature normalisation 51

4.6.2 Feature sets . 52

4.6.3 Principal component analysis 52

4.6.4 Measure-based clustering comparisons 53

4.6.5 Measure-based clustering results 59

4.7 Clustering conclusions . 64

5 Trajectory reproduction 67

5.1 Robot behaviour - introduction 67

5.2 Simulated annealing . 68

5.3 Grid search . 69

5.4 Robot behaviour - conclusions 74

5.5 Random features . 75

5.6 Robot distribution exploration 77

5.7 Robot variance analysis . 79

5.8 Robot features analysis . 82

5.8.1 Normalised features . 82

5.8.2 Single parameter . 85

5.8.3 Cube helix . 87

5.9 Human trajectories reproducibility 89

5.10 Hidden Markov models . 90

5.10.1 Hidden Markov model likelihood 90

5.10.2 Hidden Markov model samples 91

5.11 Trajectory reproduction conclusions 94

6 Conclusion 97

6.1 Known issues and possible criticism 97

6.2 Future developments . 98

x

Contents

A Acronyms & definitions 99
A.1 Acronyms . 99
A.2 Definitions . 100

B Unity documentation 105
B.1 Scenes . 105

B.1.1 Human-related scenes 105
B.1.2 Robot single target & multi target scenes 106

B.2 Scripts . 107
B.3 Maps . 109

C Firebase documentation 111
C.1 Firebase realtime database . 111
C.2 Firebase hosting . 112

D Python documentation 115
D.1 Metrics updated.py . 115
D.2 FirebaseAdapter.py . 115
D.3 Voronoi.py . 116
D.4 MetricsClustering.py . 116
D.5 ClustersDrawer.py . 117
D.6 CriticalPoints.py . 117
D.7 HMM.py . 117
D.8 HMMClustering.py . 118
D.9 SurveyGraphs.py . 119
D.10 MeasuresClustering.py . 119
D.11 TrainingAlgorithms.py . 121
D.12 FeaturesAnalysis.py . 123

xi

List of Figures

2.1 Map layouts. 5
2.2 Robot’s rays. 9

3.1 Experiment instructions (yellow rectangle superimposed to high-
light the same spot on both images). 19

3.2 Voronoi points - map open1. 21
3.3 Voronoi points - all maps. 22

4.1 Example of Knee/Elbow analysis. 25
4.2 Result15 and Result19. 29
4.3 Result4 and Result17. 29
4.4 Result1 and Result3. 29
4.5 Splines of Voronoi equivalents of Results 1, 3, and 7. 34
4.6 Newly computed splines of Results 1 and 7. 35
4.7 Heading of Results 1 and 7. 36
4.8 LogLikelihood of Result 1 and the combination of Results 1,

7, 13. 38
4.9 HMMs of Results 1, 3, and 7. 38
4.10 Critical Voronoi points and groups. 43
4.11 Question 1 - Average distance between repeated positions. . . 45
4.12 Question 1 - Average speed. 45
4.13 Question 1 - Completion time. 45
4.14 Question 1 - Distance. 46
4.15 Question 1 - Number of repeated positions within repetition

window 2. 46
4.16 Question 1 - Number of repeated positions within repetition

window 3. 46
4.17 Question 1 - Number of repeated positions within repetition

window 4. 47
4.18 Question 1 - Percentage of critical Voronoi groups covered by

each trajectory. 47

xiii

List of Figures

4.19 Question 1 - Percentage of optimal exploration. 47

4.20 Question 1 - Percentage of Voronoi points covered by each
trajectory. 48

4.21 Question 2 - Average speed. 48

4.22 Question 2 - Completion time. 48

4.23 Question 2 - Percentage of optimal exploration. 49

4.24 Question 1 - Completion time with and without outliers. . . . 50

4.25 Splines of human Results 32 and 67. 51

4.26 PCA and t-SNE - 2 dimensions - map open1. 54

4.27 PCA and t-SNE - 2 dimensions - map uffici1. 55

4.28 PCA - humans and grid search robots - map open1. 56

4.29 PCA - humans and grid search robots - map uffici1. 56

4.30 Measures-based clustering human Results - Average - map
open1. 57

4.31 Measures-based clustering human Results - Average - map uf-
fici1. 58

4.32 PCA - human clusters - map open1. 59

4.33 PCA - human clusters - map uffici1. 60

4.34 Survey answers - map open1. 60

4.35 Survey answers - map uffici1. 62

4.36 Splines of Voronoi equivalent of Result 1. 65

5.1 PCA and t-SNE robot Results - map open1, round 1. 70

5.2 Dendrogram robot clustering - average - Full - map open1,
round 1 - robot Result numbers. 71

5.3 Dendrogram robot clustering - average - Full - map open1,
round 1 - robot Result parameters. 72

5.4 PCA - humans and grid search robots with and without robot
parameters - map open1, round 1. 73

5.5 PCA - humans and grid search robots with a focus on robot
Result 14 - map open1, both rounds. 73

5.6 PCA - humans and grid search robots - map open1, both rounds. 74

5.7 PCA - humans and random values - map open1. 75

5.8 PCA - humans and random values - map uffici1. 76

5.9 PCA - humans, and humans with grid search robots - map
uffici1, round 1. 76

5.10 PCA - Robot distribution exploration - map open1. 78

5.11 Box plots of variations of two features of 10 robot Results -
map open1. 80

5.12 PCA - Robot Results 248 and 263 - map open1. 81

xiv

List of Figures

5.13 Box plots of variations of completion time of 10 robot Results
and PCA of robot Result 385 - map uffici1. 81

5.14 Normalised features humans and robots - map open1, both
rounds. 83

5.15 Normalised features humans and robots - map uffici1, both
rounds. 84

5.16 Perc. optimal exp. - α and δ graphs - map open1, round 1. . . 86
5.17 Perc. optimal exp. - δ graphs - map uffici1, both rounds. . . . 86
5.18 Cube helix - completion time and has found all targets - map

uffici1, round 1. 87
5.19 Cube helix - number of repeated positions within repetition

window 2 - both maps, both rounds. 88
5.20 Cube helix - percentage of optimal exploration - open1, round

2; uffici1, round 1. 88
5.21 Robot trajectories for cluster 6, map open1. 90
5.22 Human trajectories from cluster 6, map open1. 90
5.23 HMM generated trajectories based on human Results 1, 7, 13

- map open1. 93
5.24 HMM generated trajectories based on human Results 2, 4, 18,

61 - map uffici1. 94

xv

List of Tables

2.1 Legend of symbols in a map .txt file. 4

3.1 Metrics comparison in [1]. 15

4.1 Collected trajectories. 24
4.2 Numbers of clusters per method - original 9 trajectories. . . . 28
4.3 Numbers of clusters per method - Voronoi counterparts of the

9 trajectories. 28
4.4 Numbers of clusters per method - 93 trajectories. 31
4.5 Components of a hidden Markov model. 32
4.6 Number of clusters per method. 59
4.7 Centroid vs average - open1. 61
4.8 Centroid vs average - uffici1. 63

xvii

Chapter 1

Introduction

Today, new data are constantly generated and collected. This process hap-
pens in a wide variety of fields, including video games. Software houses
working on a new title, or looking for critical issues in an already published
one, rely on data to improve their products. Before a game is published,
data are usually gathered via playtests. In a playtest, a group of players
is allowed to play a game before it is published, these players usually pro-
vide their feedback via surveys created by the development team; in addition
to the surveys, all actions performed by the players in the game are moni-
tored and recorded. Among these actions, the paths followed by the players
while exploring the virtual environment are particularly interesting in order
to identify critical spots, to understand how players navigate the virtual envi-
ronment, and, ultimately, to design better environments. When considering
several players, it is likely that they can be clustered in different groups, for
example seasoned players or more casual ones.

Our goal in this thesis is to group players together based on their skills
and on the trajectories they followed in exploring an initially unknown vir-
tual environment, which means that we must be able to cluster trajectories
based on appropriate metrics. Once the clustering is done, our next goal is
being able to generate a new trajectory that is similar to those belonging to
a given cluster of human trajectories. In order to do so, we must devise an
autonomous agent able to explore an unknown virtual environment. Achiev-
ing this goal would decrease the need for new playtests, increasing the speed
at which software houses can develop their products.

Our work leverages on what was done by Simone Lazzaretti and Yuan
Zhan (from now on L&Z) in their master’s thesis [2]. They were able to deploy
an autonomous agent that reproduces a given trajectory in the closest way
possible. We want our autonomous agent to be more flexible and able to

1

Chapter 1. Introduction

generate a new trajectory that looks like those followed by human players of
a certain ability. Since we want to be able to change the ability level of the
humans to imitate, we must be able to cluster together players with similar
abilities. Our contribution is inserted in the literature about clustering of
paths and trajectories. We find that most papers, like [1], [3], and [4], share
the same metrics and clustering techniques, with the exception of [4] that
leads us to [5]. All these possible metrics have to be tested in order to
understand if they are appropriate for our needs.

In Chapter 2 we recap what was done by L&Z. In Chapter 3 we state
our goals in more details, we report the state of the art as far as clustering
of trajectories is concerned, and we illustrate which additions are performed
to L&Z’s work in order to meet our needs. In Chapter 4 we tackle the
clustering of human trajectories, we present different techniques, and for
each one that does not work we highlight its drawbacks and limitations.
In Chapter 5 we tackle the reproduction of trajectories by an autonomous
agent; we present several techniques and for each one we discuss its pros
and cons. In Chapter 6 we summarise our results, we present issues that we
encountered and potential future developments. Lastly, in Appendix A we
list all acronyms used throughout the thesis, followed by the definitions of
the words that are mentioned by not explained in the text; in the remaining
Appendices B, C, and D we document the tools and the code used in this
thesis.

2

Chapter 2

Previous work

This thesis carries on the foundation laid out by Simone Lazzaretti and Yuan
Zhan (from now on L&Z) in their master’s thesis Simulating Human Be-
haviour in Environment Exploration in Video Games [2], for this reason we
have to recap what was done by L&Z.

2.1 Goals

L&Z’s main purpose was the development of a software framework capa-
ble of collecting data from human players while they explore an unknown
virtual environment with limited visibility, analysing them and devising an
autonomous agent able to reproduce a given human trajectory. A trajectory
is the path an agent followed when it explored the map. In order to reach
their goal L&Z started from a pre-existing Unity project designed to test
procedurally generated video game maps, and they expanded it to suit their
needs.

2.2 Pre-existing Unity project

The pre-existing Unity project L&Z worked with offers several useful tools:
it allows the runtime generation of a 3D map from a .txt file containing the
layout of that map. No different heights are allowed and all maps have a
flat floor, this allows the map to be defined as an n×m matrix where
each cell can take only one value. Two formats are allowed: char-based and
numeric-based. The idea behind them is the same: the .txt file contains
several rows, each one made up of several symbols separated by commas,
each symbol represents the value of that map cell. The possible values for
the symbols are shown in Table 2.1. In addition to the runtime creation of

3

Chapter 2. Previous work

Name Meaning
Char-
based
values

Numeric-
based
values

Starting
location

Where the agent is spawned. s 3

Wall
Non-transparent insurmountable ob-
ject. It works exactly like a real wall.

w

1 (or 5,
6,... for
coloured

walls)

Walkable
Flat empty surface where the agent
can move freely.

r 0

Unknown
Area of the map where the agent has
never been, as such they are not able
to tell the content of that map cell.

u 2

Target
Walkable map cell containing a target
the agent must get close to.

g 4

Table 2.1: Legend of symbols in a map .txt file.

a map from a .txt file, this project can also collect data on agent movement
and spawn the agent in the map with one or more weapons. Due to the
nature of their thesis, L&Z disabled all weapons related functionalities.

2.3 Testing environment

L&Z created two testing environments inside Unity: one for the human play-
ers and one for the autonomous agents that from now on will be called robots.
In both cases the goal of the agent exploring the environment is the same:
find all targets in the map. They designed four maps and a final survey. The
four maps are:

• open1 : map with perpendicular corridors, it features some open areas
where the agent can find itself in a spot where no wall is visible; it
contains only one target.

• open2 : map with non-perpendicular corridors, it features some open
areas where the agent can find itself in a spot where no wall is visible;
it contains four targets.

• uffici1 : map with perpendicular corridors, it features several rooms
and recesses which create an office-like environment; it contains four
targets.

4

2.3. Testing environment

Figure 2.1: Map layouts.

• uffici2 : map with perpendicular corridors, it features some rooms and
recesses which create an office-like environment; it contains only one
target.

You can see the map layouts in Figure 2.1. The final survey is shown only
to human players and it can be found in the Section 2.4.1.

In order to ease the playing experience L&Z opted for a WebGL release
that can be played in a compatible browser, this way only a link to the server
hosting the game is needed in order to access and play it. Alternatively, the
folder containing all the game files can be sent via email, given that it weights
only few megabytes.

5

Chapter 2. Previous work

2.4 Data collection

Any agent, whether human or autonomous, is periodically sampled so
that its position and orientation, also called rotation, are recorded. The
time interval between each sample can be changed in the Unity inspector,
by default it is set to 1.0 second. The series of collected positions creates a
trajectory. A trajectory is a series of coordinate pairs that represent points on
a plane, in particular the path the human followed when exploring the map
is the one that the robot should imitate. In addition to position and rotation
the following data are saved as well for both humans and robots: name of
the map where the experiment takes place; time required for exploration
completion; OS name and version; IP address. More data are collected,
but since they are different between humans and robots they are listed and
explained in the next sections.

2.4.1 Human data collection

L&Z’s goal requires the collection of as much data as possible for all maps,
for this reason they divided the four maps in two groups, for the purpose of
this thesis we will call them original and alternative. Then L&Z deployed
a web server in charge of providing each player with the least played group.
The maps are split in this way:

• original : open1, uffici1.

• alternative: uffici2, open2.

This way each group contains first the map with only one target, then the
map with four targets. Number of targets aside, the group structures are
specular: one group starts with the open map, the other with the office-like
map; in one group the map with four targets resembles an office, in the other
group it resembles an open environment.

After completing each group the player is given a survey containing the
following questions and possible answers:

1. How many hours per week do you play games?

(a) Less than 1 hour.

(b) Between 1 and 3 hours.

(c) Between 3 and 7 hours.

(d) More than 7 hours.

6

2.4. Data collection

2. Do you often play First Person Shooter games?

(a) Yes.

(b) Never.

(c) Used to.

3. What amount of area of the last map do you think you have explored?

(a) Less than 50%.

(b) Between 50% and 75%.

(c) More than 75%.

4. Now think about the last map you have played. Which one of these
maps was it?

(a) [correct image]

(b) [wrong image]

(c) [wrong image]

In order to limit player visibility a fog of war is used. This means the
player is at the center of sphere, everything inside this sphere is lit and can
be seen while outside objects are not visible; however, each cell containing a
wall has an embrasure at the top which is always visible from any distance,
this means players may use those embrasures to orient themselves in the map.

Before exploring one of the two groups of maps each player must complete
a s-shaped tutorial map to ensure they have understood how to move and
what their goal is. Players are allowed to spend as much time as they need in
order to find all targets. If a player quits before all targets have been found
their Result will not be uploaded to the server.

2.4.2 Conclusions on human Results

L&Z relied on 12 tester to gather a total of 28 human trajectories:

• 9 human trajectories for map open1

• 9 human trajectories for map open2

• 4 human trajectories for map uffici1

• 6 human trajectories for map uffici2

7

Chapter 2. Previous work

Combining the trajectories with the answers to the survey they found that:

• Humans often underestimate the amount of area they explored.

• Experienced players require the same time as unexperienced players to
find the targets...

• ...but they get a better mental representation of the map, either because
of good memory or because of a higher ability to extract information
from what they see.

• Indoor office-like maps with more walls are easier to explore w.r.t. open
maps.

• Players navigate near a wall almost all the time.

• Players tend to keep the same direction.

2.4.3 Robot structure

A robot is a game object inside Unity composed of two parts: a head and a
body. The head is where the virtual camera is located, this way it is possible
to watch the virtual environment from the robot’s point of view. The body
is a parallelepiped surrounded by proximity sensors. The parallelepiped
is used by Unity to ensure the robot does not enter a wall, while 270 sensors
are placed on its front and sides in order to cover a 270◦ angle. Each sensor
shoots an outward facing ray that stops after a given distance. This distance
is meant to simulate the fog of war that prevents human players from seeing
too far into the distance. Rays can be seen in Figure 2.2 where the blue
ones are on the left hand side of the robot, the green ones on the right hand
side and the red one between the other two groups is the front of the robot.
These sensors are the only way the robot perceives the environment: if a ray
hits a wall then the robot updates its internal map representation by putting
the wall symbol on the cell located where the ray was interrupted; if the
ray hits a target then the robot performs all the necessary actions in order
to immediately reach that target; if the ray hits nothing then all the cells
between the robot position and end of the ray are marked walkable. The
choice of modelling the autonomous agent this way was deliberate: the idea
was to design it so that it would work like a real robot, even tough without
the intrinsic imprecision of a real world environment.

8

2.4. Data collection

Figure 2.2: Robot’s rays.

The robot uses its map representation to decide where to go next. Each
known cell adjacent to an unknown cell is part of a frontier. Groups of
adjacent cells are bundled together to create a frontier. For each frontier
a centroid is computed, this point will be used by any policy that needs
to compute the distance between that frontier and another position. Several
policies can be used to decide which frontier should be explored next. In their
work L&Z presented more than one policy, however we focus our attention
only on the last one called RobotDMUtilityCloseWall , which proved to
be the best. This policy relies on two parameters to make a decision:
α and β. α is used as weight of the distance between the frontier and
its closest wall; this distance is important since humans are less likely to
explore areas that are far away from walls, given that by doing so they
would lost sight contact with a point of reference, thus increasing the chances
of getting lost. β is used to weight the inertia of the robot movement,
this matters since humans are not likely to reverse the direction of their
movement. A combination of α and β is used as weight of the distance
between the robot and the frontier point. The chosen frontier is the one that
minimises the utility as defined in Algorithm 1, where Distance(frontier,
wall) is the Euclidean distance between the frontier centroid and the closest
wall to that centroid among all walls known by the robot. This policy entails
that the robot makes greedy decisions, so it may not behave in the most
efficient way possible; furthermore, decisions about where to go next are
taken periodically, thus a robot may go back and forth if it constantly changes
its mind.

9

Chapter 2. Previous work

Algorithm 1: Utility

Utility(α, β)
if 1− α− β ≥ 0 then

return (1− α− β)×Distance(robot, frontier) + α×
Distance(frontier, wall) + β ∗ Inertia(robot, frontier)

else
return
(1− αNorm − βNorm)×Distance(robot, frontier) + αNorm ×
Distance(frontier, wall) + βNorm × Inertia(robot, frontier)

end

end

Distance(a, b)
return EuclideanDistance(a, b)

end

Inertia(robot, frontier)
switch frontier point position w.r.t. robot do

case in front do
return 0

case sideway do
return −50

otherwise do
return +50

end

end

end

αNorm

return α
1+α+β

end

βNorm

return β
1+α+β

end

10

2.4. Data collection

Once the next frontier to be explored is chosen a robot component checks
if it can be immediately reached, if not a theta* algorithm is used to com-
pute the best path to reach that frontier.

In addition to α and β, a third parameter, called δ or forgetting
factor, is used to periodically reset the status of a cell in the robot map
representation. When a cell in the map representation changes from unknown
to known a timer starts, after an amount of seconds equals to the forgetting
factor that cell is set back to unknown. In practice a higher forgetting factor
means a robot with more memory of the previously observed map.

2.4.4 Robot data collection

In L&Z’s thesis finding the appropriate values of α, β, and δ yields a robot
behaviour that closely resembles a given human trajectory, for this reason
also these three values are saved together with all other collected data. L&Z
found the best values via grid search. α and β can take any value between
0 and 1, the chosen increment is 0.1, thus the following pairs are tested: (0.0,
0.0), (0.1, 0.0), (0.2, 0.0),... (0.9, 0.0), (1.0, 0.0), (0.0, 0.1),... which means
11× 11, i.e., 121, pairs. Each pair must have an associated forgetting factor,
L&Z chose the following values: 30, 60, 120, 180. Four possible values for δ
means a total of 11× 11× 4, i.e., 484, parameter combinations.

In order to prevent a robot from being stuck in a loop a maximum of
420 seconds is given, once that time limit is reached the robot exploration is
automatically terminated and the robot Result is deemed useless.

2.4.5 Data processing

Once the data have been collected they must be processed in order to find the
robot that best resembles the human trajectory of interest. The comparison
between a human path and each robot path is performed using a metric.
L&Z tested several metrics, for the purpose of this thesis only three metrics
are considered: Euclidean, longest common subsequence, and dynamic time
warping.

Euclidean computes the Euclidean distance between the i-th position of
one trajectory and the i-th position of the other trajectory, then all these
distances are summed up to get the final overall distance. The robot trajec-
tory with the lowest overall distance is selected. It is important to highlight
that this technique can only be used when the two trajectories have the same
length.

11

Chapter 2. Previous work

Longest common subsequence, or LCSS, checks any subsequence of
one trajectory against any subsequence of the other trajectory. Two se-
quences are considered to be in common if all their points are close to one
another, i.e., within a certain assigned distance. The longer the subsequence,
the higher the amount of positions it contains and the higher the LCSS value.
In practice the LCSS value is the length of the subsequence. This means two
trajectories may represent the same exploration path only partially and at
different time instants while keeping a high LCSS value. However, there is
a drawback: the time-based nature of the sampling process, where the i-th
position is sampled after the same amount of time for both trajectories. This
means that identical paths exploring the environment at different speeds re-
sult in two different sequences that LCSS no longer consider in common after
a while. LCSS can handle trajectories of different lengths w.r.t. one another.

Dynamic time warping, or DTW, checks similarities between two tra-
jectories in a similar fashion w.r.t. LCSS, however DTW can manage different
exploration speeds by warping time. This means that if two trajectories are
identical in shape, but not in time, DTW will be able to compensate for this
difference and recognise the two trajectories as similar. DTW has proved to
be the best metric according to L&Z’s results.

All the code needed to compute the distance between two trajectories is
implemented in Python. In the end we choose the robot trajectory with the
lowest (or highest in LCSS case) distance.

2.4.6 Conclusions on robot Results

L&Z tested all robot parameters according to the grid search described in
Section 2.4.4. They discovered that most of the Results obtained in maps
with multiple targets had to be discarded, but among the remaining ones
DTW is the best metric to identify a robot trajectory that best resembles
the chosen human trajectory. Furthermore, better Results can be found
when α and β are different from one another, but this is not a strict rule.
Unfortunately, they found no way of determining an optimal direction to be
explored while looking for potentially better parameter values.

12

Chapter 3

Goals and state of the the art

In this chapter we explain the goals of the whole research project, the goals
of this specific thesis and how we leverage what was done in previous theses.

Then, we analyse the state of the art as far as clustering methods are
concerned, by looking for the most effective methods and metrics.

Finally, we take into account which improvements are performed to the
existing work overviewed in Chapter 2. These improvements are the basis on
which what is explained in the next chapters is built upon.

3.1 Goals

The overall goal is implementing an autonomous agent able to move
in a virtual environment in a similar fashion w.r.t. what human
beings would do. This goal requires several steps to be accomplished, some
of them were already completed when this thesis started, while some were
not. What was already done is the result of Simone Lazzaretti and Yuan
Zhan’s master’s thesis [2] and it is laid out in Chapter 2. It is important to
highlight that L&Z’s goal was to reach a state where all the elements of the
system, from those that collect data on human behaviour to those that drive
the robots around, were implemented and operational. Inevitably, this led
to some implementation choices that are not the most efficient ones.

This thesis carries on L&Z’s work by improving it on two fronts: first by
moving from imitating one human trajectory to a cluster of human tra-
jectories, which means moving from a geometric-based metric to a higher
level metric to measure the quality of the exploration; then by looking
for more efficient ways of getting the appropriate robot parame-
ters. In details, this means implementing a clustering procedure able to
properly separate groups of humans based on their abilities, which requires

13

Chapter 3. Goals and state of the the art

the development of new metrics able to distinguish different ability levels.
Furthermore, the robot parameters optimisation process developed by L&Z
is single threaded and relies on a brute-force approach. Looking for more
efficient ways would be useful to speed up the overall procedure.

3.2 State of the art

Clustering trajectories is a known topic in data mining, several papers have
already been published, thus we check which method has proved to be the
most effective. Furthermore, some additions to L&Z’s work are performed in
order to have a more scalable basis for this thesis to work on.

3.2.1 Clustering

In [1], authors compare the metrics shown in Table 3.1, where n is the total
number of points of trajectory 1, m is the total number of points of trajec-
tory 2 and unified length means m = n. After that, they take into consid-
eration some densely clustering methods: DBSCAN, adaptive multi-kernel
based, k-means, expectation maximisation, fuzzy c-means; and some hierar-
chical clustering methods: agglomerative and divisive. They discover that
densely clustering methods classify trajectories mainly by distance metrics,
thus weighting too much the spatial information of the trajectories. Bet-
ter Results are obtained using hierarchical clustering methods which
have shown to take into account more attributes. As far as the metrics are
concerned, LCSS has proved to be the best, also due to its ability to
cope with trajectories of different lengths.

In [3], authors discover that the clustering method has a small im-
pact over the quality of the final result, while the distance measure has
a much greater influence.

In [4], authors compare mostly the same metrics shown in Table 3.1, with
a noticeable addition: Piciarelli-Foresti (PF). They discover that LCSS is
more robust to noise and outliers than DTW, and they highlight the fact
that PF can work with incomplete trajectories. All metrics we have
considered so far require completed trajectories, which means that a robot
exploring the environment must end its exploration before we can assess the
similarity of its exploration w.r.t. the desired trajectory; PF removes this
limitation. As far as the clustering methods are concerned, again, Brendan
Morris et al. compare mostly the same metrics used by Jiang Biana at al., but
they take into account different types of trajectories. We focus on the results

14

3.2. State of the art

Metric
Required
unified
length

Com-
plexity

Explanation

Euclidean Yes O(n)
It measures the contemporary in-
stantiations of trajectories.

Hausdorff No O(m×n)
It is the greatest distance between
any point of one trajectory and its
closest point on the other trajectory.

Bhatta-
charyya

Yes O(n)

It measures the similarity of two
probability distributions, this means
each trajectory is treated as a series
of samples from a distribution.

Frechet No O(m×n)
It measures the similarities between
two curves by taking into account lo-
cation and time ordering.

DTW No O(m×n)

It is a sequence alignment method
to find an optimal matching between
two trajectories without considering
lengths and time ordering.

LCSS No O(m×n)

It finds the longest common sub-
sequence in all sequences and its
length is the similarity between the
two trajectories.

Table 3.1: Metrics comparison in [1].

of the human trajectories: LCSS is the best metric; agglomerative
hierarchical clustering is the best clustering method.

Given the potential usefulness of Piciarelli-Foresti we look for more details
about this metric. In [5], Piciarelli and Foresti describe their technique. The
idea is to map a trajectory on a tree of nodes obtained by applying PF to
each trajectory. A node can be considered as the area containing a group of
points belonging to one or more trajectories. The root node of the tree is
located where the trajectory starts, this means that if we considered more
than one trajectory then multiple trees with different starting points might
be created. As the trajectory goes on it is mapped onto the tree nodes on a
distance basis. Each point of the trajectory is assigned to the closest node,
the newly assigned point is used to update that node, this means that as
time goes by a node will change. Similar trajectories take the same path
across the various nodes, but when a trajectory gets too far from an already

15

Chapter 3. Goals and state of the the art

existing node a new node is created, and the older node is either kept or split
depending on whether the new node is placed at the end or in the middle
of the older one. Periodically, or at the end, a tree maintenance procedure
is applied in order to merge nodes that are close to one another, or nodes
that, due to how the tree evolved over time, end up being a unique series of
consecutive nodes. This concatenation process can only happen if pruning is
used. The older the trajectory the less important its points, thus it is useful
to weight those points taking time into account. Pruning ensures that points
belonging to older trajectories are discarded, and this may cause an entire
series of nodes to disappear, potentially eliminating crossroads and resulting
in a branch composed only of consecutive nodes.

Despite its useful features PF has some drawbacks, in [5] it is ap-
plied to trajectories of cars on a highway exit, this makes those trajectories
extremely similar due to the few possibilities a car has: always go forward
and never pass on the same spot twice. These conditions are perfect for the
anomaly detection goal considered by Piciarelli and Foresti, but they are the
opposite of what we are dealing with in our project. Furthermore, even if the
paper [5] contains a detailed description of PF, it does not precisely explain
how each and every step should be implemented. This, in addition to the
lack of an already implemented solution, the drawbacks mentioned before,
and the fact that PF would be heavily geometrically based, make us decide
to avoid using PF.

After reading papers about trajectory clustering we find out that most
of them take into account the same metrics, and they agree on considering
LCSS the best one, however they also point out that the performance of
a metric is dataset-dependent. In particular, all papers consider trajectories
that never pass on the same location twice or more, since their human trajec-
tories represent people moving from point A to point B in the most efficient
fashion, avoiding unnecessary turns. These papers also agree on considering
the metric far more important than the clustering method.

Previous papers suggest agglomerative hierarchical clustering as a poten-
tial candidate for the clustering method, however, we decide to compare some
techniques to assess their requirements. We compare hierarchical clustering,
k-means, BFR, mean shift, expectation maximisation, and density-based DB-
SCAN. Based on [6] we concluded that k-means, BFR, and expectation max-
imisation should be discarded due to the need of knowing in advance the de-
sired number of clusters; mean shift requires us to properly size the window,
this would be an additional task, so this method is discarded too; density-
based DBSCAN not only requires us to provide two parameters (radius ε and

16

3.2. State of the art

MinPts), but it may fail if there are major density fluctuation in the data to
be clustered, thus it is discarded as well; hierarchical clustering can work
without additional parameters, and the previously defined metrics are ideal
for the computation of a distance matrix among our trajectory samples.

In conclusion agglomerative hierarchical clustering is the chosen
clustering method, since it has proved to be effective and it does not
require additional input parameters.

3.2.2 Additions to previous work

L&Z’s work can perform all the steps from collecting human data to identi-
fying the best robot parameters. We decide to improve some of those steps
in order to better suit our needs.

General additions

Firstly we add distance-based sampling to the already implemented time-
based sampling described in Section 2.4. The idea is to sample position and
rotation of the agent every n meters, actually units are used instead of meters
since we are working within the Unity coordinate system. The actual value
of n can be set in the Unity inspector of Player and Robot, more on this
in Appendix B. This means that, given two trajectories, the i-th sample of
the first trajectory corresponds to the i-th sample of the second trajectory in
terms of walked distance, but likely not in terms of elapsed time. This can
be useful in order to remove the temporal element, and thus the exploration
speed of each agent. An average speed can still be computed by dividing the
overall walked distance by the completion time.

Then we change the amount of time a robot is given before the ex-
ploration is automatically terminated, we increase it from 420 to 480
seconds, i.e., from 7 to 8 minutes. We also add this time limit to human
players, since L&Z gave humans no limit. With these changes we can now
consider valid all robot trajectories, since we are likely to collect trajectories
where the agent has not found all targets for both humans and robots.

Humans-related additions

Concerning the experiments involving human players, we change both the
front-end and the back-end. L&Z needed as many trajectories as possible
for each map, while we need as many trajectories as possible for a single

17

Chapter 3. Goals and state of the the art

map. For this reason the Heroku server they used as back-end is no longer
used. It is replaced with a direct upload of the experiment data to a newly
established Firebase Realtime Database, then the data can be downloaded
as a unique json file from the Firebase web interface. This file containing all
data is converted into multiple files, one for each trajectory, by the Python
script FirebaseAdapter.py. Getting rid of the Heroku back-end requires a new
way of selecting which map group should be played. Our goal is to maximise
the amount of collected data, ideally all players should play the original
group of maps (Section 2.4.1), then the most willing players should be
allowed to play the alternative group either immediately or at a later date,
without the need to replay the original one. This means either leaving the
choice of which group to play to the final user or implementing a user
identification system that would require a login. The latter poses additional
work for us, and also increases friction for the users. Thus we decide to
leave the responsibility to the final user, however some countermeasures
are implemented.

Firstly, we need to consider that our testers, those receiving the link to
play the game, are relatives, friends, or other students. The latter receive a
mail explaining the experiment and asking them to complete it, however they
are not forced to play, which means only those who are interested will play it.
Furthermore, we can assume a higher than average computer literacy, given
that they are all computer science and engineering students. As far as the
other testers are concerned we have direct contact with them, so any issue
can be directly addressed. All of this is to say that players can be provided
with a detailed explanation about how to procede (e.g., disable any ad-block,
change your browser) and we can be confident in their ability to follow
those instructions.

Secondly, a safety net is implemented in UX and UI: if a player skips
all instructions and just presses the next button they will end up pressing
the play originals button located in the same spot, as shown in Figure 3.1.
Furthermore, the play originals button is bigger than the other ones to let
players instinctively know that that is the button to press. This means
players are likely to automatically do what they are supposed to do: play
the original group first. At the end of the survey for the first group of maps
a message is shown asking the player to play the second group.

The game is provided to testers as a link to a Firebase Hosting
instance that lets people play the game in their browser, so no installation
is required, streamlining the process. In case of necessity we can update the
game with virtually no latency: we can push a new build to Firebase Hosting
and within few seconds this new build is delivered to anyone opening the link.

18

3.2. State of the art

Figure 3.1: Experiment instructions (yellow rectangle superimposed to high-
light the same spot on both images).

This was not the case with a possible alternative to Firebase Hosting:
simmer.io (https://simmer.io). Simmer.io is a YouTube-like service for
WebGL games. It has the advantage of letting us add a description text
that can be updated independently from the game, and its similarity with
YouTube makes it more user-friendly. However, it has proved to have severe
latency when it comes to pushing an updated build to people loading the
game page; for this reason it is not used.

Robot-related additions

During the grid search (Section 2.4.4) L&Z tested one robot parameter
combination at a time using a real time simulation. In order to speed up
this process we add the possibility to change the time scale via the Unity
inspector of the Exploration Iterator, the component in charge of handling
the grid search, more on this in Appendix B. However, the way the robot
is implemented, combined with the Unity engine, makes changing the time
scale unfeasible. The reason is the following: the robot can either go forward
or rotate until it faces the current destination. It is aware of where that
destination is w.r.t. itself, so it knows which rotation direction is the best to
face the destination. In order to check whether it is facing the destination or
not, a forward facing ray is shot from the front of the robot. When this ray
collide with a parallelepiped collider representing the destination the robot
stops rotating and starts to move forward. The collision check is performed
once per frame. Increasing the time scale means the elapsed time between
two frames is increased, thus the robot might turn too much between two
frames and overshoot its destination. This would result in the robot starting
to rotate on the opposite direction, but then it would overshoot it again, and
so on. The robot would get stuck; for this reason we choose to keep the time
scale to 1.0, i.e., real time.

19

https://simmer.io

Chapter 3. Goals and state of the the art

In addition to time scale changes, we aim at parallelising the robot
exploration by having multiple robots at the same time. L&Z’s imple-
mentation was designed to destroy and recreate the Unity scene each time a
new robot is spawned, we change it so that the scene is kept after a robot
ends its exploration. Furthermore, we change how the target positions are
handled so that it is possible to move a target and have its corresponding
position updated in real time, previously even if the target was moved, the
game logic would still consider its original spawn point as target location.

It is possible to change the increment used during the grid search from
the default 0.1, but it must be done directly in the Exploration Iteration C#
code. Since 0.1 is not perfectly convertible into a binary number, summing
0.1 multiple times could result in a wrong number. So we add a rounding
phase after each summation in order to minimise the error.

Lastly, after some tests we decide to change the forgetting factors
from the original 30, 60, 120, 180 to 30, 90, 180, 360. Since α, β, and their
increment are not changed, the total number of possible combinations is still
484, but the maximum memory of the robot has been raised from 180 to 360
seconds.

3.2.3 Voronoi

L&Z’s code works on the original trajectory positions. Each position of the
agent is approximated to the closest integer in the n×m map matrix (Section
2.2), which means that two agents walking down the same corridor are likely
to be close to one another, but not exactly on the same map cell. This
difference is negligible for our purposes and we would like to get rid of it.
This can be done by converting each position to the corresponding
Voronoi equivalent. Voronoi points are all those points that are equidistant
from their two closest obstacles. In our case, walls are the obstacles, thus,
for example, the Voronoi points of a corridor are all the points on the axis of
that corridor, as we can see in Figure 3.2.

Figure 3.3 shows the map layout, followed by all Voronoi points in or-
ange. These points can be found inside walls too, this is because walls are
defined over an integer grid, as such the space between each integer value
can contain valid Voronoi points. This is why we have to filter out unwanted
Voronoi points, which results in the image Filtered Voronoi. The last image
overlaps the original map with the filtered Voronoi points to make it easier
to understand how they are distributed on the map.

For each map, the list of filtered Voronoi points is saved; once the data
collection is over, each point of each trajectory is mapped on to the closest

20

3.2. State of the art

Figure 3.2: Voronoi points - map open1.

Voronoi point. At the end of this process the resulting trajectories are as
long as the original ones, but without the noise caused by minor variations
in the exploration: two agents walking down the same corridor will walk over
the same spots. We acknowledge that this approximation does impact the
local exploration speed: multiple distinct points might be mapped onto the
same Voronoi point zeroing the speed, and a jump from two distant Voronoi
points would represent a possibly unrealistic high speed spike. In our case,
given that we consider only the overall speed, this is not a problem.

21

Chapter 3. Goals and state of the the art

Figure 3.3: Voronoi points - all maps.

22

Chapter 4

Clustering

In this chapter we use the previously described metrics (Section 2.4.5) to
perform agglomerative hierarchal clustering over a set of trajectories. We
discover that those metrics are not appropriate for our purposes, thus we
look for different approaches.

The first new approach is based on Hidden Markov Models (HMMs),
which does not prove useful for clustering purposes; then we focus on the
survey presented in Section 2.4.1, and its collected answers. Although they
are not useful per se, it is from them that we take inspiration to define the
measures that are used in the winning approach.

By using these measures as features we apply hierarchical clustering and
this time we get results in line with our expectations. We end this chapter
with a conclusion that sums up our results and highlights their limits.

4.1 Data collection

In order to perform a meaningful clustering procedure we need more trajec-
tories than those collected by L&Z (Section 2.4.2), thus we implement all
the additions described in Section 3.2.2, then we send the Firebase link to
the testers. After few weeks we collected the amount of trajectories
reported in Table 4.1.

4.2 SciPy

We choose SciPy (pronounced “Sigh Pie”), a Python library containing many
scientific algorithms [7], including the ones to perform hierarchical clustering
[8]. SciPy’s hierarchical clustering requires the following input: the distances
between each pair of samples, or the matrix containing the positions of each

23

Chapter 4. Clustering

Map Total number of trajectories Trajectories with survey

open1 102 83
uffici1 83 83

uffici2 40 34
open2 35 34

TOTAL 260 234

Table 4.1: Collected trajectories.

sample in a n-dimensional space; the method to be used when computing the
distances between clusters. Seven methods are allowed:

• Average: given clusters u and v, their cardinalities |u| and |v|, for all

points i in u and j in v the distance is d(u, v) =
∑
i,j

d(u[i],v[j])
|u|∗|v| .

• Centroid: given clusters u and v, their respective centroids cu and cv,
the distance is d(u, v) = |cu − cv|2. When two clusters are combined
the new centroid is computed over all the original samples in each of
the two original clusters.

• Complete (or max): given clusters u and v, for all points i in u and
j in v the distance is d(u, v) = max(d(u[i], v[j])).

• Median: same as centroid but when two clusters are combined the new
centroid is the average of the centroids of the two combined clusters.

• Single (or min): given clusters u and v, for all points i in u and j in
v the distance is d(u, v) = min(d(u[i], v[j])).

• Ward: given clusters s and t, cluster u as the combination of clus-
ters s and t, cluster v as an unused cluster and T = |v| + |s| + |t|
where |a| is the cardinality of cluster a, the distance is d(u, v) =√
|v|+|s|
T

d(v, s)2 + |v|+|t|
T

d(v, t)2 − |v|
T
d(s, t)2.

• Weighted: given cluster u composed of clusters s and t, cluster v is a
remaining cluster, the distance is d(u, v) = d(s,v)+d(t,v)

2
.

After computing all clusters and drawing the full dendrogram we need a way
to decide the appropriate number of clusters. In order to do so we implement
the Knee/Elbow analysis (KE), the idea is to compute within-cluster
sum of squares (WSS) and between-clusters sum of squares (BSS)
for any possible number of clusters, then we plot those values and choose the

24

4.3. Metric-based clustering

Figure 4.1: Example of Knee/Elbow analysis.

number of clusters where a knee or an elbow can be seen, e.g., 5 clusters in
Figure 4.1. Ideally, we would like a low WSS and a high BSS. WSS and BSS
formulae are:

WSS(C) =
k∑
i=1

∑
xj∈Ci

d(xj, µi)
2 BSS(C) =

k∑
i=1

|C i|d(µ, µi)
2

where k is the number of clusters; C is the list containing all k clusters; C i

is a single cluster from C; xj is a single sample from cluster C i; d(a, b) is the
distance between a and b; µi is the centroid of cluster C i; µ is the centroid
of C.

4.3 Metric-based clustering

4.3.1 Metric definitions

Even though according to L&Z DTW is the best metric (Section 2.4.6),
according to several other works in the literature (Section 3.2.1) LCSS is the
best one. We test both of them, in addition to the Euclidean (EU), to check
which one better suits our goals. Since we need to provide the distances
between each pair of trajectories, we have to solve two problems: firstly, not

25

Chapter 4. Clustering

all trajectories have the same length in terms of number of sampled positions;
secondly, when working with distances, the lower the distance, the better,
but that is not the case with LCSS, where the higher the LCSS, the better.
In order to cope with these problems we consider the following metrics:

• DTW is exactly the same DTW defined in Section 2.4.5.

• LCSS Lin computes LCSS values, then it converts those values into
distances via 1000−LCSS. We choose 1000 since it is higher than the
length of longest trajectory, and it is a round number.

• LCSS Norm computes LCSS values, then it converts those values into
distances via

2∗LCSS(T1,T2)
|T1|+|T2|

, where T 1 and T 2 are two trajectories and

|T i| is the length of trajectory i.

• LCSS Inter Lin computes LCSS values on the extended trajectories
rather than on the recorded ones: each time a pair of trajectories do
not have the same length, the shortest one is extended by making it
as long as the other one; all the intermediate values are obtained via
linear interpolation: if a trajectory A is composed of 10 positions, and
a trajectory B is composed of 7 positions, then trajectory B is extended
to 10 position, its first and last positions are the same as the original B,
while the remaining positions are computed by linearly interpolating
the 2 closest values in the original B. At the end the LCSS values are
converted into distances via 1000− LCSS.

• LCSS Inter Norm uses the same extended trajectories as LCSS Inter
Lin, but a conversion is done via

2∗LCSS(T1,T2)
|T1|+|T2|

, where T 1 is the original

trajectory and T 2 is the extended one, or viceversa.

• EU requires unified length, i.e., the same length for the two trajectories,
if necessary we repeat the last position of the shortest trajectory until
it matches the length of the longest one.

• EU Inter recalls the idea of interpolation: each time a pair of tra-
jectories do not have the same length, the shortest one is extended
by making it as long as the other one; all the intermediate values are
obtained via interpolation.

26

4.3. Metric-based clustering

4.3.2 Preliminary results

We rely on the 9 trajectories that L&Z collected for map open1 in order to
compute some preliminary results. First we use SciPy to perform hierarchi-
cal clustering, then we use the Knee/Elbow analysis to check which number
of clusters could be appropriate. This approach has two issues: the minor
one is that we do not use a centroid in BSS and WSS formulae, nut we use
a clustroid represented by the trajectory that is the closest to the other ones
in that cluster; the main issue is that the total number of samples is just 9.
We apply the clustering procedure to both the original trajectories and their
Voronoi counterparts. We look for metrics that provide consistent results
across the various methods, furthermore, we manually cluster the trajecto-
ries, each one called “Result” followed by a number, in order to compare
our clustering results against what we get from the hierarchical clustering
procedure. We report our results in Tables 4.2 and 4.3. If we consider the
various methods we find that:

• DTW results in 2 clusters, providing an extremely stable result across
almost all possible methods. It separates the two longest trajectories
(Figure 4.2) from the other ones; however, according to our manual
clustering, we would expect at least 3 clusters.

• LCSS Lin provides inconsistent results. Even when the cardinalities
of the clusters are the same, different methods tend to provide differ-
ent results. Furthermore, it does not always keep together Result4 and
Result17, which are clearly meant to be together due to their strong
similarity (Figure 4.3). This means that we cannot rely on this met-
ric for appropriate clustering. The reason for this lies in how LCSS
works: it looks for the longest common subsequence, so longer paths
may have longer common subsequences despite being far more different
than Result4 and Result17.

• LCSS Norm provides a mostly consistent result of 2 clusters, and all
clusters are identical. Differently form DTW, the shortest paths (Re-
sult4 and Result17, Figure 4.3) are the ones that are kept together.
This happens because they are very similar and, due to normalisation,
they are the most similar. Other solutions with higher number of clus-
ters are similar but not equal to the corresponding manual clustering
solutions.

• LCSS Inter Lin provides inconsistent results that often have high
cardinality, meaning that the number of clusters is almost equal to the

27

Chapter 4. Clustering

Original AVG CENTR MAX MED MIN WARD WEIG
DTW 2 2 2 2 2 3 or 4 2

LCSS
Lin

2 or 4
or 7
or 8

6 or 8
2 or 7
or 8

4 or 5
or 6
or 8

4 or 8
2 or 7
or 8

2 or 4
or 7
or 8

LCSS
Norm

2 (or
8)

2 (or 8)
3 (or
6 or
8)

2 (or
8)

2 (or
8)

2 or 4
(or 8)

2

LCSS
Inter Lin

4 or 7 8 2 or 5 8 3 or 7 2 or 6
2 or 4
or 7

LCSS
Inter
Norm

2 2 2 2 2 2 2

EU
2 or 3
(or 7)

2 or 3
(or 7)

2 or 3
(or 7)

2 or 3
(or 7)

2 or 3
(or 7)

2 or 3
2 or 3
(or 7)

EU Inter 2 or 3 2 or 3 2 or 3 2 or 3 2 or 3 2 or 3 2 or 3

Table 4.2: Numbers of clusters per method - original 9 trajectories.

Voronoi AVG CENTR MAX MED MIN WARD WEIG
DTW 2 2 2 2 2 2 2
LCSS
Lin

2 or 5 8 2 or 6 8
4 or 6
(or 8)

2 or 6 2 or 5

LCSS
Norm

3 (or
8)

2 (or 8)
3 (or

8)

3 (or
6 or
8)

2 (or
5 or
8)

3 (or
8)

3 (or
8)

LCSS
Inter Lin

2 or 5
or 7

∅ 2 or 5 8 3 or 6
2 (or

7)
2 or 4
or 7

LCSS
Inter
Norm

2 (or
8)

2 (or 8)
2 (or

8)
2 (or

8)
2 (or

8)
2 (or

8)
2 (or

8)

EU 2 or 3 2 or 3 2 or 3 2 or 3 2 or 3
2 or 3
or 5

2 or 3

EU Inter
2 or 3
(or 7)

2 or 3
(or 7)

2 or 3
(or 7)

2 or 3
(or 7)

2 or 3
(or 7)

2 or 3
or 6
or 7

2 or 3
(or 7)

Table 4.3: Numbers of clusters per method - Voronoi counterparts of the 9
trajectories.

28

4.3. Metric-based clustering

Note: in all these figures the green dots represent the target.

Figure 4.2: Result15 and Result19.

Figure 4.3: Result4 and Result17.

Figure 4.4: Result1 and Result3.

29

Chapter 4. Clustering

number of trajectories. Furthermore, this solution searates Result4 and
Result17 (Figure 4.3), when they should clearly be grouped together.

• LCSS Inter Norm is extremely consistent: it always provides 2 clus-
ters which keep Result4 and Result17 (Figure 4.3) together as expected.

• EU provides a mostly stable result: either 2 or 3 clusters where the 2
longest paths (Figure 4.2) are separated from all the other ones, and
also from each other. If a cardinality is chosen then the content of the
clusters is the same for all methods, making this alternative extremely
consistent. However, none of these solutions is equal to the expected
manual clustering solutions, even if they are both reasonable. Ideally,
we should have low WSS and high BSS, thus the 2 clusters solution
should be discarded since its WSS and BSS are almost identical and
they are both high, while they are much farther apart in the 3 clusters
case. Furthermore, by inspecting higher cardinality solutions we can
see that the pairs Result4-Result17 (Figure 4.3) and Result1-Result3
(Figure 4.4) are kept together as expected.

• EU Inter is very similar to EU, with most of the results having car-
dinality 2 or 3, and the same clusters as EU.

Preliminary conclusions

For both original trajectories and Voronoi equivalents the best and worst
metrics are the same. Good clustering metrics: DTW, LCSS Norm, LCSS
Inter Norm, EU, and EU Inter. Bad clustering metrics: LCSS Lin, and LCSS
Inter Lin. We can conclude that:

• None of the tested metrics and methods provided the same results
as a manually-made clustering. This is likely due to the low number
of samples and to the large differences between each other. Collecting
more samples could confirm or reduce the set of good clustering metrics.

• DTW is stable and consistent, and provides good results for both orig-
inal and Voronoi trajectories.

• LCSS should be used only in normalised form, whether directly or after
interpolation does not seem to have a major impact, although it should
be noted that LCSS Inter Norm provided more consistent results.

• Euclidean metrics are consistent and provide the same results between
EU and EU Inter.

30

4.4. Hidden Markov model based clustering

Voronoi AVG CENTR MAX MED MIN WARD WEIG
DTW 13 14 9 4 8, 17 6 4

Table 4.4: Numbers of clusters per method - 93 trajectories.

4.3.3 Metric-based clustering results

We collect 93 trajectories, and for each one we have the distance-based sam-
pled positions (detailed in Section 3.2.2), thus we switch to these new sam-
ples. The sampling frequency used by the distance-based sampling process is
too high, in order to reduce the noise and make the trajectories more realistic
we consider only their even positions when computing the Voronoi equiva-
lents. All data are still available in the original files if needed, more on this
in Appendices B and D. After checking our results we find that DTW is the
most promising metric, its numbers of clusters can be seen in Table 4.4. We
check the content of each one of the clustering results, and we discover that
all clusters are different, with the solely exception of average and weighted.
Furthermore, not only all clusters are different, but looking at the tra-
jectories we see that they are not clustered as we would like. The
cause of this is intrinsic in the way all these metrics work: they compare
the positions that constitute each path, thus the geometry of the trajecto-
ries has a major impact over the final result. As stated in Section 3.1, we
need to move from geometric-based metrics to higher level metrics able to
distinguish among different ability levels, for example distinguishing players
that explored the same areas only once from players who got lost and trav-
elled over the same spots multiple times. In conclusion the metric-based
approach does not provide good results and it is discarded.

4.4 Hidden Markov model based clustering

4.4.1 Definitions

Once we acknowledge the need for a new approach we decide to try Hidden
Markov Models (HMMs) [9]. The idea is based on [10] where the authors
apply HMMs to model trajectories on a road intersection, a highway, and a
laboratory in order to perform anomaly detection.

Before detailing this approach we need to provide some definitions. As
the name suggests, HMMs extend the concept of Markov chains, the com-
ponents of a Markov chain are Q, A, and π and their definitions can be found
in Table 4.5. The underlying idea is that we have several nodes, i.e., states,

31

Chapter 4. Clustering

Component Definition
Q = q1q2...qN Set of N states.

A = a11...aij...aNN

Transition probability matrix A where each aij

represents the probability of moving from state i
to state j such that

∑N
j=1 aij = 1 ∀i.

O = o1o2...oT Sequence of T observations.

B = bi(ot)

Sequence of observation likelihoods, also know
as emission probabilities, each expressing the
probability of an observation ot being generated
from a state i.

π = π1, π2, ..., πN

Initial probability distribution over states. πi

is probability that the Markov chain will start in
state i. It is possible to have some states j where
πj = 0, i.e., they cannot be initial states. π is such
that

∑n
i=1 πi = 1.

Table 4.5: Components of a hidden Markov model.

and we have a certain probability of moving from one node to another, i.e.,
the transition probability; we use the initial probability distribution to pick
which node is the starting one. Both Markov chains and HMMs rely on
the Markov assumption: when predicting the future, the past does not
matter, only the present is relevant. Formally: P (qi|q1...qi-1) = P (qi|qi-1).

Hidden Markov models expand Markov chains and they use all com-
ponents listed in Table 4.5. In a Markov chain we move from an observable
state to another observable state, this means we know in which state we are
at any given moment. In HMMs that is no longer the case, these models are
hidden because we cannot observe the states directly, we can only see ob-
servations. The actual underlying process moves from one state to another,
but since we only see observations we have to estimate which states are the
ones involved. We use first-order HMMs, which means we are working under
two assumptions: the aforementioned Markov assumption and the output
independence, i.e., the probability of an observation depends only on the
current state that produced that observation and not on any other states or
observations. Formally: P (oi|q1, ..., qi, ..., qT, o1, ..., oi, ..., oT) = P (oi|qi).

Both Markov and output independence assumptions are needed in order
to keep our model simple, but they do limit the modelling abilities of the
HMM.

HMMs involve three basic problems [9]:

1. Likelihood (forward algorithm): given an HMM λ = (A,B) and

32

4.4. Hidden Markov model based clustering

an observation sequence O, determine the likelihood P (O|λ).

2. Decoding (Viterbi algorithm): given an HMM λ = (A,B) and an
observation sequence O, determine the best hidden state sequence Q.

3. Learning (forward-backward or Baum-Welch algorithm): given
the number of states in the HMM and an observation sequence O, learn
A and B, i.e., transition probabilities and emission probabilities. Time
complexity: T ×N2, where T is the length of the observation sequence
and N is the number of states. At first the algorithm places states
randomly, after that it iteratively refines them n iter times; this leads
the overall time complexity to n iter × T ×N2.

4.4.2 HMM implementation

We use Baum-Welch in order to learn the HMM model, then we can use
this model to compute the likelihood of any trajectory, both complete and
incomplete, or we can sample the model to get a new trajectory.

Our full HMM implementation is composed of several steps that will be
explained in details:

1. Import trajectories from files.

2. Remove subsequent duplicated points.

3. Interpolate a cubic spline from the remaining points and uniformly
sample it to get 1.5 times the number of points used to generate it.

4. Add Gaussian noise.

5. Compute heading direction, i.e., orientation, and make it circular.

6. Duplicate x and y coordinates to increase their weight.

7. Perform HMM learning, possibly with BIC.

8. Compute final states.

9. Prevent self transitions.

10. Try to compute stable version of transition matrix.

11. Plot learned states.

12. Get samples and plot them.

The code can be found in HMM.py, details in Appendix D.7.

33

Chapter 4. Clustering

Figure 4.5: Splines of Voronoi equivalents of Results 1, 3, and 7.

Import trajectories from files

The first step is trajectory imports, our code can work with a variety of
trajectories (human original, human Voronoi, robot Voronoi,...), in this case
we use the Voronoi-equivalent paths. As input to the entire procedure we
specify both the type of trajectories and the corresponding Result numbers
that are used to univocally identify the trajectories. If we have already
imported them, and we have treated them so that they are ready to be
learnt, then we can use their values as input of the entire procedure and skip
all steps from 1 to 6. In the next paragraphs we will use the three trajectories
in Figure 4.5 as examples.

Remove subsequent duplicated points

For each trajectory we need to remove duplicated positions that are one im-
mediately after the other, otherwise we would have a problem when adding
the Gaussian noise: the noise might potentially change the geometric mean-
ing of the points. For instance, consider an agent moving from left to right in
a straight line, if a point is duplicated it means the agent moves, then stops,
then moves again. The movement is always from left to right. The Gaussian
noise slightly displace all points, which may result in the agent moving from
left to right, then from right to left, then from left to right again. This way
we introduced two reverses that are not present in the original trajectory.
This will impact the computation of the heading, thus it must be avoided.

Get a spline from the remaining points and uniformly sample it to
get 1.5 times the number of points used to generate it

Since Voronoi points are not uniformly distributed in the environment we
convert each trajectory into a spline, then we extract a uniformly distributed

34

4.4. Hidden Markov model based clustering

Figure 4.6: Newly computed splines of Results 1 and 7.

trajectory with 50% more points than the original one, i.e., the one used to
create the spline. We can see two examples in Figure 4.6. We choose 50%
since it strikes a balanced between getting a smooth trajectory and keeping
the number of samples under control. In case of need, this percentage can
be changed.

Add Gaussian noise

The need to add Gaussian noise may seem counter-intuitive after we con-
verted all trajectories to Voronoi for the exact reason of reducing all possible
noise. The reason we add some noise back is due to how Baum-Welch works.
If we kept several points aligned in a straight line the algorithm would have
no variance on the perpendicular axis to that line. Avoiding this not only
allows the algorithm to work as designed, but also provides a nicer visual
feedback once we plot the states of the HMM: the ellipses representing the
states would still be ellipses, otherwise they would be reduced to straight
lines.

Compute heading direction, i.e., orientation, and make it circular

The heading direction is computed from the new positions obtained from the
spline. We cannot use the orientation sampled during the data collection
process because it would not align with the new positions, and, more impor-
tantly, it would not be what we actually want. The sampled orientation is
where the agent is looking, but we want the agent’s direction of movement.
If the agent is the robot, then the sample orientation represents where the
robot is heading for, but this is not the case with human players. Humans
are likely to move to a certain location while their field of view is focused on

35

Chapter 4. Clustering

Figure 4.7: Heading of Results 1 and 7.

somewhere else.

Once the heading direction is computed we need to make it circular. The
problem is the actual interval used to represent it: from 0 to 360; we can see a
couple of examples in Figure 4.7. If an agent’s heading direction changed from
359◦ to 1◦, the HMM learning algorithm would see those two values as much
more distant than, for example, 1◦ and 3◦. The problem is the circularity
nature of the degrees, while numbers are linear. In order to solve this we rely
on the same approach used in [11] and [12]: we split the orientation value
into cos(2π × orientation/360) and sin(2π × orientation/360) so that the
jump 360◦ − 0◦, and viceversa, is completely removed.

The reasons we use the heading direction is twofold. On one side when
working with robots it is good practice to take into account not only posi-
tional information but directional too [13]; on the other side if two agents
walk down the same corridor in opposite directions we want them to be con-
sidered differently, without the heading direction that would not be possible
since both agents would walk over the same spots.

Duplicate x and y coordinates to increase their weight

For each point of each trajectory we have x, y, cos, and sin. If we kept these
four values we would get an HMM where points in different parallel corridors
would be assigned to the same state state: if the agent walked down those
corridors in the same direction, and the corridors are parallel, i.e., same x or
same y, then three out of four values would be almost identical. This is a
problem because we want states to be centred in a walkable space, not in the
wall between two walkable spaces. In order to solve this problem we increase
the weight of the positions, to do so in a simple way we double them so that
for each trajectory point we have: x, y, cos, sin, x, and y.

36

4.4. Hidden Markov model based clustering

Perform HMM learning, possibly with BIC

In order to learn the HMM we use the hmmlearn Python library [14], in
particular we use GaussianHMM, which means hidden Markov model with
Gaussian emissions. In addition to positions and orientations of the trajec-
tories we must provide the number of components, i.e., the number of states
of our HMM. This is a problem since we do not know what is the appropri-
ate value to be set. We can solve this problem in three ways: first, we may
provide a high enough number of states, in the worst case scenario we get
several states where only one would be enough, but this is not ideal in terms
of complexity, and it does not solve our issue. How many states are “high
enough”? Thus we discard this option.

Another option is to manually test some values until we get a convincing
final result, but this requires a lot of time and it is not scientifically sound.

The third solution is to rely on a criterion like Bayesian Information
Criterion (BIC) [15]. We compute the BIC value via BIC = log(n)×k−2×
logLikelihood where log is the natural logarithm; n is the total number of
points in all trajectories under consideration, i.e., the sum of their lengths;
k is the number of parameters estimated by the model, i.e., the sum of the
number of starting probabilities, the size of the transition matrix, 6 × the
number of states used by the HMM model. We compute the BIC for all
possible numbers of states starting from 1, and we stop once the BIC has
worsen enough. We cannot stop as soon as it gets worse since the BIC trend
presents local minima, as such we need to ensure we do not select one of them.
In practice we stop once its value is above the sum of the best BIC value found
so far and min(750× number Of Trajectories Under Consideration, 2500),
the idea is that we use 750 or 1500 or 2250 or 2500 if we are considering one
or two or three or more than three trajectories respectively. In Figure 4.8
we can see two examples: the first with only one trajectory; the second with
three. For extra information we also include the value for the logLikelihood.
At the end of the entire procedure we visually inspect the HMM to ensure the
result is in line with our expectations, since it is, we consider BIC a suitable
approach to solve our problem.

Compute final states

Once the HMM model is learnt we compute which of its states are final,
i.e., which states are the ones the agent needs to reach in order find the
target(s). Since the states are different for each model we cannot establish
them once and for all, but we need a way to dynamically compute them.
For each trajectory, one of the collected piece of information is has found all

37

Chapter 4. Clustering

Figure 4.8: LogLikelihood of Result 1 and the combination of Results 1, 7,
13.

Figure 4.9: HMMs of Results 1, 3, and 7.

38

4.4. Hidden Markov model based clustering

targets, which tell us whether the agent has found all targets or not; it can be
True or False. If it is True then we check which is the HMM state that most
likely generates the ending position of that trajectory and we mark that state
as final, we can do this by applying Viterbi (Section 4.4.1). The more the
trajectories, the more accurate the marking operation. Since we mark based
only on the last trajectory position we need at least as many trajectories as
targets, and these trajectories must be such that they all end in different
targets and all their has found all targets are True. The computation of the
final states is mandatory only if we want to sample the HMM. Examples of
final states con be seen in Figure 4.9, where each final state is labeled with
a small red box containing the letter “F” followed by a number.

Prevent self transitions

The transition matrix includes self-transitions, since each state contains sev-
eral points. This means that the probability of remaining in each state is
much higher than the probability of leaving it. This is useful if we want to
model the speed at which the player can cross the states, but we are not
interested in that. Since we want to be able to sample the HMM, we zero all
transition probabilities on the main diagonal, and we distribute each value
across the other probabilities on the same row. The distribution is not uni-
form, but it is weighted on the values of each element in the row; however, if
a row i contains only zeroes, with the exception of the element in [i, i], that
row is not changed. For example, if the first row of the transition matrix
were [0.8, 0.1, 0.0, 0.1], then it would become [0.0, 0.5, 0.0, 0.5]; if the second
row of the transition matrix were [0.0, 0.7, 0.1, 0.2], then it would become
[0.0, 0.0, 0.333, 0.666], and so on.

Try to compute stable version of transition matrix

Given the limitations of the aforementioned approach to final states identi-
fication, we look for a possible solution by powering the transition matrix
several times until it no longer changes, at this point it reaches the stable
form. We check the stable matrix for any absorbing state, i.e., a state that
can be reached but not left. Any absorbing state is marked as final. Al-
ternatively, we can avoid powering the matrix by solving a linear system of
equations. We try this approach, but we cannot find any absorbing state,
thus we keep using the previous approach.

39

Chapter 4. Clustering

Plot learned states

We plot the HMM states, in Figure 4.9 we can see the states as black ellipses
with additional labels over the final ones. Note that in this case we com-
puted one HMM for each trajectory, but we can learn an HMM for multiple
trajectories. In Figure 4.9 we can also see that, despite being learned from
different trajectories, most of the states can be overlapped. This confirms
BIC as a suitable solution to determine the number of states in an HMM.

Get samples and plot them

In order sample the HMM we could use its default sampling function. This
works and avoid self-transitions since we have updated the transition matrix,
however we want more control over the sampling process, for this reason we
implement a custom sampling procedure. This is beyond the purpose of this
chapter, we will explain this procedure in Section 5.10.2.

4.4.3 HMM-based clustering

Once an HMM model is learnt, we can save it and use it to compute the
logLikelihood of any trajectory. The idea is to apply the forward algorithm
(Section 4.4.1) to get the logLikelihood and then use it as distance in an
agglomerative hierarchical clustering procedure. We start by considering
each trajectory as its own cluster, and we stop once all trajectories are in the
same cluster.

Firstly we compute one HMM for each cluster, then we compute the
logLikelihood of each cluster w.r.t each HMM. We insert those results in
a matrix where the element in cell [i, j] is the logLikelihood of cluster i
w.r.t. the HMM learnt from cluster j. The resulting matrix is not a distance
matrix yet, it is not symmetric. Since each HMM is computed with BIC they
all have different numbers of states, this makes their logLikelihood values
incomparable, furthermore, we must take into account the lengths of the
trajectories since the longer the trajectory the lower the logLikelihood. To
cope with these issues we apply the same technique used in [10]: we multiply
each value in our matrix by γ, given a cell [i, j] we can compute its γ via
γ = average lengths of traj. in cluster i

average lengths of traj. in cluster j
. Once all cells have been multiplied by their

γ, we average them in the following way: cell[i, j] = cell[i,j]+cell[j,i]
2

. Now the
matrix is symmetric and we can use it as distance matrix. We select the
highest value in the upper-right triangular matrix (main diagonal excluded),
then all trajectories in the cluster corresponding to the selected row must be
added to cluster corresponding to the selected column. At this point we have

40

4.5. Survey-based clustering

one less cluster and we can restart the process.

What we have described is the theoretical approach, the practice has
proved more challenging. We have to take into account the fact that, for
each new HMM that must be learnt, a computationally expensive procedure
is performed; not only that, for one actual HMM several others have to
be learnt and discarded due to how BIC works. Furthermore, hmmlearn
has shown signs of instability: sometimes it throws an error, other times it
works as expected. During our experiments we gave up when an HMM with
twelve trajectories threw an error after more than an hour of computation.
We highlight the fact that by using BIC we were effectively multiplying the
aforementioned Baum-Welch complexity (Section 4.4.1) by the number of
BIC iterations. This, combined with the instability of hmmlearn, makes
us decide to abandon this approach, at least as far as clustering is
concerned. We will consider HMMs again in Section 5.10.2.

4.5 Survey-based clustering

We need a new approach, we decide to try with the surveys. The idea is to
cluster trajectories based on what players answered to the survey questions
(Section 2.4.1), this means that from now on we will consider only those
trajectories whose survey answers are available. In order to understand if
this might yield a good result we need to check if the various groups created
based on the answers are actually distinct from each other. To do so, we look
for measures that can show major differences among the various groups. We
take into consideration some measures that are directly obtained from the
collected data, but we also include measures that are computed on the fly.

4.5.1 Critical Voronoi points and groups

Before listing and explaining all measures we need to explain the concept
of critical Voronoi points and critical Voronoi groups. In Section 3.2.3 we
described how we get the Voronoi points for each map. If we look at the
leftmost maps in Figure 4.10 we can see that some of those points are less
relevant: we want to know if and where a player enters or leaves a certain
space (a corridor, a room,...), however, we are less interested in what they
do inside that space; for this reason we deploy an algorithm that filters the
Voronoi points. This algorithm keeps only those Voronoi points that have
one (and only one) closest Voronoi point, e.g., points inside a corridor are
discarded since they are between two equidistant points, while the points on

41

Chapter 4. Clustering

the extremes of the corridor are kept. In this way we obtain the critical
Voronoi points shown in the central column of Figure 4.10; then we group
together all critical points that are close to each other, by close we mean
that their distance is below a given threshold, 2 Unity units in our case.
This grouping procedure provides the critical Voronoi groups shown in
the rightmost maps in Figure 4.10.

In the following sections critical Voronoi groups are used as proxy to
measure how many map areas a player has explored. Being automatically
generated, they are not perfectly aligned with what we may consider an
appropriate map area, but on the other hand this approach prevents any
human bias from affecting the areas identification process.

4.5.2 Measures

After defining what critical Voronoi groups are we are ready to list all mea-
sures that will be used in the following sections. The full list is the following:

• Average distance between repeated positions
Average number of samples between each repeated position pair. Not
all repetitions are considered, we only take them into account accord-
ing to the trajectory order. For example, in a trajectory constituted
by the following positions [..., A1, ..., A2, ..., A3, ...] we consider 2 repe-
titions: A1 − A2 and A2 − A3, while A1 − A3 is not considered. Note
that any immediately repeated position is discarded before starting this
procedure. If a trajectory has no repeated position, then its value is
set to null.

• Completion time
Time elapsed before the last remaining target is found, otherwise it is
the time limit before the exploration is automatically terminated.

• Distance
Length or number of positions in the Voronoi equivalent path.

• Average speed
It is computed via distance

completion time
.

• Number of repeated positions within repetition window n
Each time a repeated position is found within n positions of distance
a counter is increased. This counter is the number of repeated posi-
tions. The window size considers n positions after the base position.
For example, in the following list of positions [..., A,B,C,A, ...] if we

42

4.5. Survey-based clustering

Figure 4.10: Critical Voronoi points and groups.

43

Chapter 4. Clustering

considered A as the base position then we would not found any dupli-
cate for n equal to 1 or 2, but we would found a duplicate for n equal
to 3. Note that any immediately repeated position is discarded before
starting this procedure.

• Percentage of critical Voronoi groups covered by each trajec-
tory
It is computed via number of unique critical V oronoi groups visited by trajectory i

total number of critical V oronoi groups in that map
.

• Percentage of optimal exploration
It is computed via number of unique V oronoi points in trajectory i

total number of V oronoi points in trajectory i
.

Note that the denominator is the length of the trajectory.

• Percentage of Voronoi points covered by each trajectory
It is computed via number of unique V oronoi points in trajectory i

total number of V oronoi points in the map where i takes place
.

4.5.3 Survey-based clustering results

For each measure we plot two types of graphs: the first one is the box plot [16],
the second one is the normal distribution [17]. A box plot is a rectangle, i.e.,
a box, that starts from the lower quartile values of the data and extends up
to the upper quartile. A horizontal line is placed to identify the median. Two
lines terminating with whiskers extend from the box, these lines cover all the
data points that are not outliers. All outliers, i.e., all points below or above
the whiskers, are represented with a black circle around them. Normal
distribution plots contain some vertical lines, each one representing the
mean of the data points of each answer; these points are fitted using a normal
distribution and then represented in the curves. In both types of graphs each
data point represents a trajectory and it is drawn with a transparency value
applied to it, this means that if several data points are overlapped their
colours become darker. Whenever possible grey lines are added to the image
in order to show the minimum and/or maximum value(s) for that particular
measure.

We look for the graphs where the distribution of the data points is differ-
ent among the various answers. For this reason we plot the graphs for all four
questions (Section 2.4.1), in both single map, i.e., all data points come from
that one map, and all maps variants, i.e., data points come from all maps.
In this document we report only a subset of images due to space constraints.
In Figures from 4.11 to 4.23 we report the graphs of all measures for the
answers to the first survey question; then we report some of the graphs for
the answers to the second question. All these graphs contain data from all

44

4.5. Survey-based clustering

Figure 4.11: Question 1 - Average distance between repeated positions.

Figure 4.12: Question 1 - Average speed.

Figure 4.13: Question 1 - Completion time.

45

Chapter 4. Clustering

Figure 4.14: Question 1 - Distance.

Figure 4.15: Question 1 - Number of repeated positions within repetition
window 2.

Figure 4.16: Question 1 - Number of repeated positions within repetition
window 3.

46

4.5. Survey-based clustering

Figure 4.17: Question 1 - Number of repeated positions within repetition
window 4.

Figure 4.18: Question 1 - Percentage of critical Voronoi groups covered by
each trajectory.

Figure 4.19: Question 1 - Percentage of optimal exploration.

47

Chapter 4. Clustering

Figure 4.20: Question 1 - Percentage of Voronoi points covered by each
trajectory.

Figure 4.21: Question 2 - Average speed.

Figure 4.22: Question 2 - Completion time.

48

4.5. Survey-based clustering

Figure 4.23: Question 2 - Percentage of optimal exploration.

maps. We highlight the fact that answers 1 and 3 of question 2 are tech-
nically different, but they identify the same class of users: those with some
experience with FPS games.

If we check all images for all questions and all variants we find some
promising measures: average speed (questions 1 and 2), completion time
(questions 1 and 2), distance (question 1) and percentage of optimal explo-
ration (question 2). Since we do not know if players answered truthfully, we
decide to discard all outliers and plot all graphs again. The following list
contains the outliers for the previously listed measures:

• Q1 - Average speed: 153, 235, 236.

• Q1 - Completion time: 167, 178, 199, 203, 221, 234.

• Q1 - Distance: 41, 44, 72, 141, 167, 178, 199, 209, 221, 234, 246.

• Q2 - Average speed: 74, 114, 116, 117, 125, 192, 193, 236.

• Q2 - Completion time: 44, 72, 193, 203, 221, 234.

• Q2 - Percentage of optimal exploration: ∅.

We highlighted in blue the outliers in common between different measures of
question 1, in red the ones in common between different measures of question
2 and we underlined the ones in common between question 1 and 2. We can
see that some of them are shared, this does not come as a surprise since
average speed is computed from distance and completion time, while the
higher the distance, the higher the amount of time required to cover that
distance, thus the higher the completion time. As stated before, we remove
these outliers and then we plot the graphs again. In Figure 4.24 we report
an example.

49

Chapter 4. Clustering

Figure 4.24: Question 1 - Completion time with and without outliers.

After removing all outliers, if any, we collect the trajectories correspond-
ing to the remaining data points and we group them based on the answers.
Ideally, we would like to see one group with all the players who got lost,
another group with all the players who explored optimally,... However, that
is not the case. In all cases we get three or four groups containing
mixed trajectories. For example, even after removing all outliers of ques-
tion 1 - average speed we can find human Results 32 and 67 in the same
group. In Figure 4.25 the two trajectories are represented as splines of the
Voronoi equivalent paths with superimposed labels to convey the order in
which players explored the map. We can see that the two paths are ex-
tremely different, one always explores new areas, the other one gets lost and
passes through the same locations multiple times.

Similar conditions are found in other groups, which means that neither
the answers to the survey can be used to appropriately cluster the
trajectories.

50

4.6. Measure-based clustering

Figure 4.25: Splines of human Results 32 and 67.

4.6 Measure-based clustering

4.6.1 Feature normalisation

Despite its failure, the survey-based approach left us with several measures
(Section 4.5.2) that can be used as features for an agglomerative hierarchical
clustering procedure. We keep working only on the subset of trajectories
whose survey answers are available; this limits the amount of usable trajec-
tories, but on the other hand it allows us to rely on answers to the survey to
better characterise clusters. Furthermore, we focus on maps open1 and uf-
fici1 since they are the ones for which we have the highest number of samples.
Before using those measures we must solve some problems.

The first one is that each feature has its own range of possible values.
In order to solve this, we normalise the values before the clustering
phase, in this way all values are between 0 and 1.

Most of the features can be normalised without issues, but average dis-
tance between repeated positions cannot: trajectories where no position is
repeated has no value for this feature. From a conceptual point of view the
higher the average distance between repeated positions the better the trajec-
tory, so we replace all null values with 1.25×highest average distance between
repeated positions. This creates a gap among the perfect trajectories with no
repeated position and the others. After all null values have been replaced
we can apply the normalisation.

Another problem is the features has found all targets. It was not plotted
in the previous section since it can only take two values: False or True. We
decide to convert the Boolean values as 0 and 1, respectively.

51

Chapter 4. Clustering

Lastly, we choose one value for n in number of repeated positions within
repetition window n. We pick n = 2, in this way we can measure how many
times an agent has immediately backtracked.

4.6.2 Feature sets

Now we can normalise all values; once this process is completed we need to
select which features should be used by the hierarchical clustering algorithm.
We identify the following possible sets:

• Full: it uses all 9 features: average distance between repeated positions
normalised, average speed normalised, completion time normalised, dis-
tance normalised, has found all targets, number of repeated positions
within repetition window 2 normalised, percentage of critical Voronoi
groups covered, percentage of optimal exploration, and percentage of
Voronoi points covered.

• Partial: it uses a subset of features, the idea is to use those features
that might be more representative of the agent ability. For example,
if we consider the completion time we already know, thanks to L&Z’s
work, that it cannot be used to distinguish skilled players from less
skilled ones. The average speed, on the other hand, combines distance
and completion time in a way that is likely to provide a more clear dis-
tinction between non-players and FPS players that are more familiar
with the control scheme, and as such are able to move faster. This is
suggested by the graph in Figure 4.21 where those who answered 2 are
people who never played an FPS game.
The list of features is: average distance between repeated positions nor-
malised, average speed normalised, has found all targets, number of re-
peated positions within repetition window 2 normalised, and percentage
of optimal exploration.

• Custom A: this is a testing subset where we try to take the idea of the
Partial set to the extreme by keeping only: average distance between
repeated positions normalised, number of repeated positions within rep-
etition window 2 normalised, and percentage of optimal exploration.

4.6.3 Principal component analysis

In order to figure out which set of features is the one providing more struc-
ture to our samples we apply Principal Component Analysis (PCA) [6] and

52

4.6. Measure-based clustering

t-distributed Stochastic Neighbour Embedding (t-SNE) [18]. The purpose
of both techniques is to represent our data points in two and three dimen-
sional spaces. PCA analyses the n-dimensional feature space in order to
find which are the most important directions, i.e., the ones over which most
of the variance is spread, then it discards the others, inevitably losing infor-
mation but gaining the possibility of visualising the data points in the new
dimensionally-reduced space. t-SNE operates with the same goal by relying
on probability distributions in order to group similar data points close to
one another. We use the Scikit learn implementations for both PCA [19]
and t-SNE [20]. It is important to highlight that while PCA does provide
identical results if it is run multiple times with the same data points, t-SNE
does not. In Figures 4.26 and 4.27 we can see that the Custom A set is
either similar or worse than the others, thus we discard it. We report
only 2 dimensional graphs since 3 dimensional ones provide similar results.

The other two sets are both potentially valid, so we plot the same PCA
graphs with the addition of all 484 data points obtained from the grid search
(Section 2.4.4). The PCA has been performed using only human Results,
only later a transform function is applied to robot Results in order to reduce
them to the lower dimensional spaces. For this reason the positions of the
humans on the graphs are unchanged. By looking at Figures 4.28 and 4.29
we can see that the set that better maps the robot Results over the human
ones is the set Full, thus we keep it and discard the Partial one. The
r1 after the map name in the image title will be explained in Section 5.3, it
is not relevant at the moment.

4.6.4 Measure-based clustering comparisons

Now we can apply hierarchical clustering to our Full set of features. In
Section 4.2 we presented seven methods. We use all of them. In Figures 4.30
and 4.31 we can see the average method results. After the clustering is done,
we perform the Knee/Elbow analysis (KE) (Section 4.2) but this time we use
the actual centroid. In order to choose only one method we observe both the
KE graph and the dendrogram; ideally we would like few clusters with low
WSS and high BSS (Section 4.2).

We discard single link (min) since WSS and BSS are not low and
high, respectively, until we reach a high number of clusters. Furthermore,
the cluster distribution on the dendrogram is more unbalanced w.r.t. the
dendrograms of other methods; many nodes of the dendrogram separate one
trajectory from all the others instead of separating one group from another
group.

53

Chapter 4. Clustering

Figure 4.26: PCA and t-SNE - 2 dimensions - map open1.

54

4.6. Measure-based clustering

Figure 4.27: PCA and t-SNE - 2 dimensions - map uffici1.

55

Chapter 4. Clustering

Figure 4.28: PCA - humans and grid search robots - map open1.

Figure 4.29: PCA - humans and grid search robots - map uffici1.

56

4.6. Measure-based clustering

Figure 4.30: Measures-based clustering human Results - Average - map
open1.

57

Chapter 4. Clustering

Figure 4.31: Measures-based clustering human Results - Average - map uf-
fici1.

58

4.6. Measure-based clustering

Map AVG CENTR MAX MED MIN WARD WEIG
open1 8 (7) 10 (9) 9 11 (10) 5, 12, 40 5 8 (7)
uffici1 5 5 5 6 (4) 8, 21, 30 5 6 (4)

Table 4.6: Number of clusters per method.

Figure 4.32: PCA - human clusters - map open1.

We discard ward and weighted since their KE graphs have no knees
or elbows.

Average, centroid, complete link (max) and median are all promis-
ing methods, and they all suggest similar numbers of clusters, with only
minor differences as shown in Table 4.6. In Table 4.6 some values are be-
tween parenthesis, the reason is that they are not the exact values where the
knees/elbows are located, but looking at their WSS and BSS we see that
they are very close to the WSS and BSS of the exact values; this makes the
values between parenthesis particularly interesting, since it allows a slightly
smaller number of clusters while keeping WSS low and BSS high.

4.6.5 Measure-based clustering results

We choose the average method since it is the one with the lower number
of clusters. We can see how each cluster is distributed in the reduced space
in Figures 4.32 and 4.33. For open1 we opted for 7 clusters instead of 8,
while for uffici1 we kept 5. Now that we have the trajectories in each cluster
we can check the results. Differently from all previous attempts now we get
trajectories that are clustered as we expected. In the same cluster we
find both geometrically similar trajectories and different ones, however,
we cannot find together two different trajectories were one explores each
location multiple times while the other one never crosses the same spots
twice.

59

Chapter 4. Clustering

Figure 4.33: PCA - human clusters - map uffici1.

Figure 4.34: Survey answers - map open1.

As far as map open1 is concerned, in Figures 4.34 we can see how the
answers of the survey (Section 2.4.1) are distributed for all 7 clusters. Based
on those answers and on a visual inspection of the trajectories we characterise
each of the 7 clusters:

• Cl. 1 - Results 17-233: lucky gamers1 who immediately find the
target.

• Cl. 2 - Results 9-235: non-gamers2 with no sense of direction, who
do not find the target and have no confidence with the FPS control
scheme.

• Cl. 3 - Results 221-246: people3 with no sense of direction, who do
not find the target, but that are at ease with the FPS control scheme.

1Someone who plays FPS games.
2Someone who has never played FPS games, but might have played other genres.
3They includes gamers, non-gamers, and former gamers.

60

4.6. Measure-based clustering

Centroid Average
17-233 17-233
9-56 9-235 without 235

221-246 221-246
67-217 67-217
141-167 141-167
7-258 7-258
1-256 1-256 without 73

73 N/A
235 N/A

Table 4.7: Centroid vs average - open1.

• Cl. 4 - Results 67-217: non-gamers, plus one gamer, with no sense
of direction, who manage to find the target by brute-force.

• Cl. 5 - Results 141-167: gamers with no sense of direction who find
the target by brute-force.

• Cl. 6 - Results 7-258: people with an apparently good sense of
direction.

• Cl. 7 - Results 1-256: people with a variable sense of direction.

We highlight the similarities between clusters 4 and 5: the two are distinct
mainly by the type of players, non-gamers in one case and gamers in the
other, and by their completion time. This is interesting since it suggests that
either being a gamer or not does impact the performance in a noticeable way,
however, we cannot state this due to the limited cardinalities of the involved
clusters. Cluster 4 contains 4 trajectories and cluster 5 only 2, these numbers
are too low to let us draw any conclusion on this matter.

As an additional check, in Table 4.7 we compare the previous 7 clusters
against the 9 clusters obtained via centroid method. We can see that the
two are extremely similar, only the two clusters containing just one single
trajectory being different.

By following a similar approach we analyse the resulting clusters for map
uffici1; in Figure 4.35, we report the answers to the survey (Section 2.4.1).
Questions 3 and 4 concern the last map of each group, as such they are not
available for the first map. Based on those answers and on a visual inspection
of the trajectories we characterise the 5 clusters:

61

Chapter 4. Clustering

Figure 4.35: Survey answers - map uffici1.

62

4.6. Measure-based clustering

Centroid Average
146-259 33-259 without 33, 69
8-226 8-226
41-234 41-234
33-253 46-253 with the addition of 33, 69
2-257 2-257

Table 4.8: Centroid vs average - uffici1.

• Cl. 1 - Results 33-259: people capable of getting a general idea
about their surroundings; they use this idea to meticulously explore
the map in order to find the last remaining target, they do not go to
unexplored areas straight away.

• Cl. 2 - Results 8-226: non-gamers that explore only parts of the
map due to their lack of confidence with the FPS control scheme. This
results in a bad mental representation of both the map layout and the
amount of explored map.

• Cl. 3 - Results 41-234: people, but only few non-gamers, with no
sense of direction and no ability to mentally reconstruct the map from
their surroundings.

• Cl. 4 - Results 46-253: mainly former gamers1, although some
gamers and non-gamers are present too, that have a generally good
but not always precise idea about the explored environment.

• Cl. 5 - Results 2-257: gamers or former gamers with a good sense
of direction and a good ability to reconstruct the map from their sur-
roundings. They use these abilities to go straight to the unexplored
areas, without the need to rely on a meticulous exploration.

As an additional check, in Table 4.8 we compare the previous 5 clusters
against the 5 clusters obtained via centroid method. We can see that the two
are extremely similar, 2 trajectories out of 83 are the only difference.

Based on our results we can say that hierarchical clustering with
average method and the Full set of features described in Section 4.6.2
is a viable approach to tackle the clustering of human trajectories
in a flat virtual environment with limited visibility.

1Someone who used to play FPS games.

63

Chapter 4. Clustering

4.7 Clustering conclusions

At this point we can conclude that the geometric-based metrics (Section
4.3) are an appropriate tool when dealing with the clustering of trajecto-
ries under the assumption that we want them to be clustered according
to their geometric paths. We need higher level features (Section 4.6)
if we want to successfully cluster trajectories based on the players’
ability, for example, separating the players who walk over the same loca-
tions multiple times from the players who never cross the same spots twice.
HMMs (Section 4.4) can be used to represent the behaviour of an agent, but
they have not proved successful for our clustering purposes; despite
that, they have provided new tools that will be used in the next chapter. The
survey is useful in order to get more insight on the composition of
each cluster (Section 4.6.5); it is not useful for clustering (Section 4.5),
but this may depend on the specific questions.

The 9 measures (Sections 4.5.2 and 4.6.2) have proved enough to get good
clusters, but it is likely that these results may be improved by adding
or changing one or more features. It is possible to compute new features
based on the original trajectories instead of the Voronoi equivalents, but the
sampling procedure (Section 2.4) approximated each position to the nearest
integer, thus some precision is lost and cannot be regained.

Furthermore, we assumed that the less an agent walks over the same po-
sitions, the better the exploration is. This holds true for the most extreme
cases, but it is not true for intermediate ones. By talking to some of the
testers we discover that they go back and forth deliberately to cover any
possible spot on the map; e.g., Figure 4.36. Their exploration is not opti-
mal according to percentage of optimal exploration, but actually it can be
considered optimal.

Our features work on flat maps, we expect that if the maps were
multi-floor then those features would not be appropriate. For example, if
a map had many floors and only one staircase, then that staircase would
become a bottleneck over which all agents would likely walk several times. A
similar situation can be seen in map uffici1 where the two corridors connecting
the upper part of the map with the lower part are much more likely to be
explored multiple times w.r.t. the rest of the map.

64

4.7. Clustering conclusions

Figure 4.36: Splines of Voronoi equivalent of Result 1.

65

Chapter 5

Trajectory reproduction

In this chapter we evaluate several techniques to reproduce human trajecto-
ries belonging to a cluster. Firstly, we consider simulated annealing, then we
take a closer look at the grid search where we highlight the consequences of
non-determinism in robot’s behaviour.

In order to check our results we perform some experiments using random
values, after that we try a possible improvement over grid search in the form
of a custom robot distribution exploration procedure.

Then, we expand our analysis on the robot behaviour by evaluating how
much it changes, and in turn how much the features are impacted by those
changes.

We inspect which of the clusters in Section 4.6 can be effectively repro-
duced by our robot, and we comment on the nature of the non-determinism
in the light of the information gathered in this chapter.

Lastly, we consider how hidden Markov models can be useful for our
purposes, before ending the chapter with a conclusion that sums up our
results and highlights their limits.

5.1 Robot behaviour - introduction

While bug-fixing the newly implemented functionalities in Unity (Section
3.2.2) we noticed that the behaviour of the robot was not deterministic.
At that time the extent of its non-determinism was not clear. This is an issue
that impacts over most of the considerations in this chapter. Here we briefly
mention it, we will expand it as needed in the rest of this chapter.

67

Chapter 5. Trajectory reproduction

5.2 Simulated annealing

In order to speed up the identification of the best robot parameters to imitate
a group of trajectories (Section 2.4.3), we try to look for faster alternatives to
grid search. The first attempt is to use simulated annealing. The anneal-
ing function iteratively submits a parameter combination to the objective
function. Each combination is passed to Unity which runs the robot simu-
lation and collects the Result. Once the Result is collected the Python code
working as objective function retrieves the Result, converts it to Voronoi,
computes the distance according to the specified feature set (Section 4.6.2),
and returns that distance to the annealing function. The annealing function
is implemented in SciPy (Section 4.2) [21]. However, this approach has two
problems.

The first one is that for each parameter combination we must wait for
the robot to complete its exploration, this means a worst case scenario of 8
minutes per robot. We cannot precompute all possible trajectories because
the amount of possible parameter values is no longer limited, α and β are
continuous between 0 and 1. Our main goal is to speed up the process w.r.t.
grid search, but our annealing function has a recommended maximum of 107

objective function calls. 107 is much greater than 484, which is the number
of parameter combinations in grid search (Section 2.4.4), so we are slowing
down our search for the best parameters.

The second problem is that this approach works if the distance is con-
sistent across each iteration. This is the case with the metrics (Section 4.3.1),
but it is no longer the case with the measures (Sections 4.5.2 and 4.6.1). The
issue is the normalisation step: as new robot trajectories are collected the
maximum value of a feature might increase, this variation changes the nor-
malised values, which in turn change the older distances our code has already
returned to the annealing function. Being already returned, they cannot be
changed. This prevents us from using the features in a similar fashion
w.r.t. what we did in Section 4.6.

Both problems are the reason why we discard this approach,
however, the newly implemented tools to let Python provide parameter values
to Unity, and let Unity provide Results to Python in a fully automated
fashion will be useful in Sections 5.6 and 5.7.

68

5.3. Grid search

5.3 Grid search

In Section 2.4.4 we described the grid search as implemented by L&Z; at the
end of Section 3.2.2 we defined the changes implemented during this thesis.
We perform the grid search for map open1 and uffici1. We keep the time
scale set to 1, i.e., real time, and we allow 7 robots to be active at the
same time. Theoretically any number of robots can be used, as long as it
is below the amount of possible combinations of parameters values, i.e., 484.
We choose such a low number due to hardware limitations: 7 robots is the
maximum number of robots that we can have in a map without constantly
maximising the CPU utilisation of our computer, a 2018 Mac mini with a
six cores i5 8500B CPU, an Intel UHD Graphics 630 integrated GPU, and
8 GB of RAM. The reason we do not want to constantly hit the maximum
clock is due to previous experience with Unity. Unity draws n frames per
second (fps, non to be confused with first person shooter), in order to do so it
runs all occurrences of functions Update() and FixedUpdate() in all scripts
attached to active objects inside the current scene. Those functions contain
the code that tells Unity what should be represented in the current frame.

In our case each robot has its own functions, and the higher the number
of robots, the higher the number of functions. If we set Unity to n fps it
means all functions must be completed within 1

n
seconds; with our choice of

30 fps it means a frame time of 33,3 ms. During a previous project we have
experienced situations where overshooting that value would not only degrade
performance due to stuttering, but also prevent Unity from fully executing
the code inside the functions. This could potentially change the behaviour of
the robots, thus in order to avoid introducing any potential non-determinism
we limit the number of robots to a value that our computer can
handle.

484 total parameter combinations and 480 seconds of maximum allowed
time (Section 3.2.2) mean a worst case scenario of about 65 hours, or 2 days
and 17 hours, to complete a full grid search, assuming only one robot is
used. In our case it requires about 4 hours for map open1 and about
9 hours for map uffici1. The first map requires less time since more robots
manage to find the target, thus they are able to complete their exploration
faster than in the second map. Due to the robot’s non-determinism described
in Section 5.1, we run the grid search 2 times for each map, in both occasions
the overall time is the aforementioned one. Since we have 2 rounds of grid
search for each map we distinguish them by calling them “r1” and “r2”,
we add the round number after the map name.

Once all trajectories are collected we convert them to Voronoi and we

69

Chapter 5. Trajectory reproduction

Figure 5.1: PCA and t-SNE robot Results - map open1, round 1.

extract the same features described in Sections 4.5.2 and 4.6.2. We try to
cluster them to see if we can spot any group based on the parameter
values. In Section 4.6 we decided to use average method (Section 4.2) with
set Full (Section 4.6.2), thus we use them to compute PCA and t-SNE. In
Figure 5.1 we can see PCA and t-SNE for the first round of grid search in
map open1. In Figures 5.2 and 5.3 we can see the resulting dendrograms.
By visually inspecting them we cannot find any pattern.

In Figures 4.28 and 4.29 we showed how the robot Results of grid search
arrange themselves in the reduced space. We try to visualise the values of
the parameters for each robot Result. In order to do so we assign different
transparency levels to the eleven possible values of α, we assign different
colours to the eleven possible values of β, and we assign different shapes to
the four possible values of δ. One of the resulting images is shown in Figure
5.4 alongside the original PCA. Again, we can find no group.

Since PCA images with all robot Results are quite difficult to read, we
also plot PCA with only one robot Result at a time. By comparing a
robot with the same parameters on rounds 1 and 2, we discover that
sometimes the robot is placed in the same area of the PCA graphs, other
times it is not. By looking at the trajectories we can see that they

70

5.3. Grid search

Figure 5.2: Dendrogram robot clustering - average - Full - map open1, round
1 - robot Result numbers.

71

Chapter 5. Trajectory reproduction

Figure 5.3: Dendrogram robot clustering - average - Full - map open1, round
1 - robot Result parameters.
72

5.3. Grid search

Figure 5.4: PCA - humans and grid search robots with and without robot
parameters - map open1, round 1.

Figure 5.5: PCA - humans and grid search robots with a focus on robot
Result 14 - map open1, both rounds.

differ between the two rounds, sometimes the changes are minor, other
times they are major. In Figure 5.5 we can see an example where the same
parameters led to very different trajectories, in the images we highlighted
the two robot Results with a magnifying glass.

What we have just discovered means that we cannot assume that a
parameter combination will always result in the same (good or bad)
trajectory. However, if we compare the PCA graphs of the two rounds we
can see that they are actually similar once all 484 trajectories are displayed;
an example with PCA in 2 dimensions for map open1 can be seen in Figure
5.6. What this means is that even if the robot’s behaviour is not
deterministic, we can still assume to cover more or less the same
feature space after collecting all 484 trajectories.

73

Chapter 5. Trajectory reproduction

Figure 5.6: PCA - humans and grid search robots - map open1, both rounds.

5.4 Robot behaviour - conclusions

In previous section we analysed the behaviour of the robot in order to better
understand the extent of its non-determinism. Now we focus on the Unity
implementation in order to find some of the causes.

In Section 5.3 we described how Unity works. In addition to Update()

and FixedUpdate() Unity runs several other scripts in each frame time. For
example, some events trigger functions that need to be executed. Each time a
function is triggered it is added to the list of functions to be executed during
the next frame. This means that if a timer expires and triggers a function,
that function is not executed until the computation of next frame starts.
We have multiple timers, one of them, for example, stops the exploration
after 480 seconds, while others handle the perception and decision processes
(Section 2.4.3). Each time those two timers expire in the same frame time,
their functions are scheduled on the next frame, creating a race condition.
The perception process updates the frontier, thus executing it before or after
deciding where to go next may yield a different result.

Each time the robot utility (Algorithm 1 page 10) checks the distances
it does so using the current position of the robot. Current means the one in
the frame where the distance computation takes place. If we explored two
times using the same parameter combination, then, due to approximations, it
would be possible that the two robots would be in slightly different positions.
These minor changes impact the distance computation, potentially changing
which frontier will be explored next. One different decision at the appropriate
time has major effects over the final Result.

All these are potential causes of non-determinism. They can be solved,
but the amount of required work is not negligible.

74

5.5. Random features

Figure 5.7: PCA - humans and random values - map open1.

5.5 Random features

We want to check if what we discovered in previous section is reasonable:
the risk is that all robot Results were displayed over the same areas of the
PCA graphs because those areas were the only ones allowed. To check if that
is the case we perform PCA using random values for all features. This ap-
proach provides several combinations, including some that are not physically
possible. All features are sampled uniformly in the interval [0; 1], with the
only exception of has found all targets which is either 0 or 1.

In Figures 5.7 we report the PCA of human Results from map open1
with 1000 and 10000 random values. These values are converted from the 9-
dimensional feature space to the reduced space the same way robot Results’
features are. In the figure we can see that there are areas covered by the
random values that are not covered by humans or robots, thus since the
robot Results were placed closer to the human ones we can conclude that
different executions of grid search do cover the same feature space.

Figure 5.8 shows the results for uffici1; we can see that even randomly
generated values are placed either in one group or in the other. This makes
us check if has found all targets is what separates the leftmost human cluster
from the rightmost one, and we find out that that is the case. The same is
true if we consider the 484 robot trajectories; we report the two non-random
PCA graphs in Figure 5.9. Looking at the robot distribution w.r.t. random
values we can see that grid search Results cover a feature space that
is closer to the human one, even though it is not as overlapped as in the
open1 case.

We can conclude that robots are placed in the PCA graphs only on some
areas because those are the actual areas covered by the features derived from

75

Chapter 5. Trajectory reproduction

Figure 5.8: PCA - humans and random values - map uffici1.

Figure 5.9: PCA - humans, and humans with grid search robots - map uffici1,
round 1.

76

5.6. Robot distribution exploration

the robots’ Results; PCA could fill some of the remaining empty areas if the
features were different. This means that PCA is a reliable tool to be
applied to our problem.

5.6 Robot distribution exploration

So far Grid search has proved to be the best alternative, we know that its
main drawback is the lengthy iteration process, and we also know that dif-
ferent explorations with the same combination of α, β, and δ does not guar-
antee a trajectory with the same qualities. We combine these two pieces of
information to devise a procedure that we called robot distribution
exploration, it is the following:

1. Select which are the human trajectories that we would like to imitate.

2. Randomly choose a total of 50 combinations of the robot parameters.

3. Use the same code of simulated annealing (Section 5.2) to provide those
combinations to Unity, this time they are all provided at once.

4. Wait for Unity to complete one robot exploration for each combination;
7 robots are enabled at the same time.

5. Collect the new 50 robot Results.

6. Compute the normalised features for both humans and robots.

7. Compute the human centroid based on the normalised features.

8. Compute the distance of each robot from the human centroid.

9. Pick the 10 best results, i.e., the ones that are the closest to the human
centroid, among all robot Results collected so far.

10. Check how many times we have performed step 11. If it has already
been done 2 times, then go to step 13.

11. For each of the 10 best Results, generate 5 new combinations of values
using Gaussian distributions. Each of the three parameters α, β, and δ
is sampled from its own Gaussian distribution whose mean is the α, β,
and δ of the best Results. The standard deviation is 0.04 for α and β,
and 0.5 for δ; they are such that we stay close to the best values, while
allowing room for exploration. Once this process ends we have 50 new
combinations.

77

Chapter 5. Trajectory reproduction

Figure 5.10: PCA - Robot distribution exploration - map open1.

12. Go to step 3.

13. Order all 150 trajectories from best to worst.

At each iteration of step 9 all trajectories are considered, including the ones
from previous iterations, and all features are normalised again from their
original values. This way, the 10 best Results can be from all iterations,
ensuring we focus more on values that have proved more successful. We are
aware that in Section 4.6 we preferred the average method over the centroid
one, however the two were very similar and for our current needs centroid is
faster.

Once the procedure is over we have 150 trajectories instead of the 484 of
the grid search, but we also have some robot trajectories that explored
the virtual environment in a similar fashion w.r.t. the provided human
trajectories. In Figure 5.10 we can see an example using human Results
145, 173, 187, 189, 215, 258 as trajectories of interest. In that figure, close
and distant identify the two halves of the robot Results based on the distances
between each trajectory and the human centroid.

The advantages of this approach are: its flexibility, all the values
used by our implementation can be changed, e.g., more or less combinations
at each step can be generated; and its speed compared to grid search.
In our tests we get an average completion time of 1.5 hour for map open1,
this means we spent 37% of the time of a full grid search (about 4 hours,
Section 5.3) to generate the 30% of the trajectories of a full grid search. The
final result is comparable, but the amount of required time is more
than halved.

78

5.7. Robot variance analysis

5.7 Robot variance analysis

Previous approach has proved useful, but we want to know how much
different robot explorations sharing the same parameter combina-
tions can be. For this purpose we manually select 10 combinations for each
map using the PCA of humans and robots. The idea is to have one combina-
tion for each area of the PCA graph. Then we run 10 explorations for each
parameter combination. At the end we compute the features for all Results
and we plot them in box plot graphs. In addition, we also plot a PCA for
each combination.

In Figure 5.11 we report a couple of features: average distance between
repeated positions and completion time. The first column shows the feature
values for all 484 Results of the grid search. The other columns show the
values for each parameter combination. For each column the combination
and its corresponding Result number are written on the horizontal axis; we
highlight Result 248 and Result 263. The former is the sixth column, i.e.,
the central one, while the latter is the one with the most compressed box.
Based on these graphs we can expect that the PCA of Result 248 will show
a much greater variance than the 263 one. That is the case, as we can see in
Figure 5.12.

Somewhat similar results can be obtained for the other map, however in
this case all features are more compressed since most of the robots do not
find all targets. Checking these new results we notice something unexpected.
As we can see in Figure 5.13 there are robots that manage to complete the
exploration before the time runs out, so they have found all targets, however
all PCA graphs are like the one in this figure: they show all robot Results
only on the rightmost macro cluster. What this means is that our statement
in Section 5.5 about the two macro cluster in map uffici1 is wrong:
they are distinguished mainly by the boolean feature has found all
targets, but not exclusively by it. This is good since it shows us that
the macro clusters do not depend only on one feature.

At the end of our experiment we can state that the degree of variation
of each feature is generally very high, this makes using Gaussian distri-
bution in step 11 of the robot distribution exploration procedure
(Section 5.6) less useful than expected, in fact, just using 150 uniformly
generated values combination is likely to be just as effective as our imple-
mentation.

79

Chapter 5. Trajectory reproduction

Figure 5.11: Box plots of variations of two features of 10 robot Results - map
open1.

80

5.7. Robot variance analysis

Figure 5.12: PCA - Robot Results 248 and 263 - map open1.

Figure 5.13: Box plots of variations of completion time of 10 robot Results
and PCA of robot Result 385 - map uffici1.

81

Chapter 5. Trajectory reproduction

5.8 Robot features analysis

In previous section we focused on the Results of several explorations with
few parameter combinations, now we focus on all 484 grid search Results.
We collect 484× 2× 2, i.e., 1936, trajectories by performing 2 rounds of grid
search for each map, then we plot the features in three types of graphs:

• Normalised features humans and robots graphs show all features
for both humans and 484 robots of one round of grid search. Features
are on the horizontal axis, for each feature humans are on the first
column, robots on the second one. The normalised values of the features
are on the vertical axis.

• Single parameter graphs show how the values of each feature are
distributed depending on each parameter. This results in three graphs
for each feature, so 27 images for each round of each map. Box plots
are used to help visualise the distribution, a line connects the mean
of each column identified by an X, two + are used on each column to
display mean± standard deviation.

• Cube helix graphs rely on the cube helix implementation of seaborn
[22] to represent variations in the values of each feature. Each feature
has an image containing four graphs, one for each value of δ, while α
and β are on the horizontal and vertical axes of each graph. The darker
the colour inside a graph, the higher the value of the feature.

5.8.1 Normalised features

Given the conclusion we reached in Section 5.3, we expect the normalised
features graphs to be similar between each round of grid search, and
that is the case, as we can see in Figures 5.14 and 5.15. Furthermore, we
can see that the feature distribution is more similar between humans
and robots for map open1, but not so much for uffici1. In Section 5.9 we
will expand on this.

It is interesting to note that some of the features cover differently inter-
vals. We can explain those differences. Starting with open1 and Figure 5.14
we can explain the different boxes in completion time with the presence of
robot trajectories that constantly keep exploring the same areas, increasing
the time needed to find the target. The speed is less relevant that it might
seem, as explained in Section 3.2.2 the robot cannot move while rotating, a
human player can. This allows humans to move at a higher average speed

82

5.8. Robot features analysis

Figure 5.14: Normalised features humans and robots - map open1, both
rounds.

83

Chapter 5. Trajectory reproduction

Figure 5.15: Normalised features humans and robots - map uffici1, both
rounds.

84

5.8. Robot features analysis

than a robot. A higher variability in the quality of the exploration can be
seen in percentage of optimal exploration which has almost the same mean
between humans and robots, but covers a broader interval of values for the
robot case. Similarly, we have more robot Results with a higher number of
repeated positions within repetition window 2. Both features can be explained
by robots exploring the environment following an extremely bad behaviour,
like going back and forth between the same two spots. We highlight the fact
that the mean of has found all targets is close between humans and
robots, even though robots are less likely to find the target.

Focusing on uffici1 and Figure 5.15 we see that the boxes representing
robots differ more from the human ones than in previous map. For example,
looking at has found all targets we can see that almost 80% of human player
did find the four targets, against the 10% of the robots. These differences
are caused by the fact that most of the robots are not able to find all targets,
and in fact their completion time is so concentrated in the upper bound that
any value below 1 is marked as outlier. This means that the policy we
are using to drive the robot exploration is not appropriate for the
multi-target map uffici1.

5.8.2 Single parameter

We compare each pair of single parameter graphs between round one and
round two of grid search. The only consistent results can be found in
the graphs of the forgetting factor δ: as its value increases so does the
memory of the robot, which in turn means that the knowledge of the map is
widened and thus the robot can explore more efficiently.

As far as map open1 is concerned, in Figure 5.16 we can see an example
of graphs for α and δ. α and β graphs are always similar to the reported one:
most of the values cover the same band, the trend of the line connecting their
means is usually different, but the variations are all concentrated in a small
band, as such they are not significant. That is not the case for δ, depending
on the feature under consideration the line connecting the means increases
or decreases, often with a much bigger variation than α or β.

Similar results can be seen for map uffici1 in Figure 5.17. In this map the
features are more compressed, but the increase or decrease of each feature
as δ changes are still evident. These changes can be seen in average speed
as well. The speed at which a robot rotate and move straight are fixed, but
as we increase the forgetting factor δ the robot remembers more and more
of the map, thus it no longer needs to rotate to travel back to previously
explored but forgotten areas because it still knows them.

85

Chapter 5. Trajectory reproduction

Figure 5.16: Perc. optimal exp. - α and δ graphs - map open1, round 1.

Figure 5.17: Perc. optimal exp. - δ graphs - map uffici1, both rounds.

86

5.8. Robot features analysis

Figure 5.18: Cube helix - completion time and has found all targets - map
uffici1, round 1.

5.8.3 Cube helix

We focus on the cube helix graphs that proved more interesting. In Figure
5.18 we highlight the fact that for δ = 30 no robot found all 4 targets in map
uffici1, thus completion time is the maximum for all parameter combinations.
Similar results con be seen for δ = 60, where only one robot managed to find
all targets. Results improved once we move to higher δ. This is a different
way of viewing what was previously shown in Figure 5.15 in Section 5.8.1. If
we consider the second round in uffici1 we get slightly better results, but the
overall trend is the same: the policy that drives the robot movement
is not appropriate for this map.

While most of the cube helix graphs do not show visible similarities, some
of them do, as we can see in Figure 5.19. The similarities are more evident
in the graphs of open1, since that map is not filled with small rooms and
recesses which force the robot to go back and forth more often and thus
increasing the value of number of repeated positions within repetition window
2. We can clearly see a trail of darker spots among the main diagonals of all
graphs, even in the uffici1 case, despite being less evident. This means that
the parameter combinations where α + β = 1 yield trajectories where the
robot reverses the direction of the exploration much more often. Number of
repeated positions within repetition window 2 is the feature where this is more
evident, but if we look at the percentage of optimal exploration in Figure 5.20
we can still partially see this inefficient behaviour over the main diagonals.

87

Chapter 5. Trajectory reproduction

Figure 5.19: Cube helix - number of repeated positions within repetition
window 2 - both maps, both rounds.

Figure 5.20: Cube helix - percentage of optimal exploration - open1, round
2; uffici1, round 1.

88

5.9. Human trajectories reproducibility

If we look back at the algorithm that drives the robot exploration (Algo-
rithm 1 page 10) we can see that when α+ β = 1 then 1− α − β = 0, so
the coefficient that multiplies the distance between the robot and the fron-
tier becomes 0. This means that that distance is no longer considered when
deciding which frontier should be explored next, which means the robot is
allowed to waste time going back and forth between two or more
far away points.

5.9 Human trajectories reproducibility

Once the grid search is completed we collect the Results. This means we do
not need to perform a new grid search each time we look for the
closest robot trajectory to a given cluster of human trajectories.
In order to retrieve the best trajectory we check all features of all Results
from a round of grid search. We consider one robot trajectory at a time,
we compute its distance from each human trajectory, we average them and
we compare that mean with the best one found so far. We select the robot
trajectory whose average distance from the human trajectories in a cluster
is the smallest. In addition, we also select the robot trajectory which has
proved to be the closest to one of the given human Results; in this case we
provide both robot Result number and human Result number, this way it is
possible to compare robot and human.

As far as the human clusters (Section 4.6.5) are concerned, we can find an
appropriate trajectory for clusters 1, 2, 5, 6, 7 of open1; the proposed robot
trajectories for clusters 3 and 4 do not cover enough areas of the map. For
example, if we consider cluster 6 (Page 61), we get the trajectories in Figure
5.21. Compared to the trajectories in the cluster, two are shown in Figure
5.22, we can see that they are all different, but they are all equally efficient in
exploring the environment. Considering uffici1 we can find appropriate
robot Results only for clusters 2 and 5, the proposed robot trajectories
for the others do not cover enough areas, this depends not only on the
exploration policy, but also on the speed of the robot. As highlighted
in Section 5.8.1, there is a noticeable difference in the average speed between
humans and robots, this difference is proving to be a severe limitation that
prevents the robots from covering the same amount map areas as humans.
Possible solutions to this problem are: increasing the speed of the robot,
increasing the amount of time a robot is given before the exploration ends,
and changing the robot’s movement so that it can proceed while it rotates.
These solutions might no longer be needed if the exploration policy of the

89

Chapter 5. Trajectory reproduction

Figure 5.21: Robot trajectories for cluster 6, map open1.

Figure 5.22: Human trajectories from cluster 6, map open1.

robot is changed.

5.10 Hidden Markov models

5.10.1 Hidden Markov model likelihood

In Section 5.9 we described a way of selecting one robot Result from all the
collected ones, now we want to know if the logLikelihood of the HMM
can be used for the same purpose, or even to stop a robot exploration
before it reaches its end. The logLikelihood can only decrease as a tra-
jectory gets longer, so we could stop a robot when its logLikelihood is below

90

5.10. Hidden Markov models

the best value found so far. This can be done if the logLikelihood proves to
be an effective metric to identify similar trajectories.

In order to test it, we compute one HMM for each human trajectory, we
save them, then we load only the ones that take place in a specific map. We
consider one robot Result, we compute its logLikelihoods w.r.t. the loaded
HMMs and we order them from best, i.e., highest logLikelihood, to worst,
i.e., lowest logLikelihood. Once this is done we check the HMMs. We find out
that the HMMs learnt from the trajectories of the players who got lost and
covered all map are the one providing the best logLikelihoods. This means
that most of robot Results, both good and bad, are matched to the same
HMMs learnt from bad human Results; this is not what we want. This
happens because a bad Result explores the entire map, thus its HMM has
states everywhere, and as such it is able to model a robot trajectory much
better than an HMM that covers only a part of the map: as soon as the
trajectory reaches an unexplored area, the HMM model cannot cope with it
and the logLikelihood falls down.

5.10.2 Hidden Markov model samples

As mentioned at the end of Section 4.4.2, hidden Markov models can be
used to generate new trajectories. The HMM original sampling function
works, but we want more control over the final result, for this reason we
implement a custom sampling function. We select the first state using
the initial probability distribution, then we look at the transition probability
matrix without self transitions to choose the next state. Each time a state is
selected its position on the map is added to the final list to be returned. We
do not want the positions of the observations, we want the positions of the
states, which mean their x and y values identifying a precise location on the
map. We stop adding state positions either when we reach a given number
of samples or when we find all targets, we use the previously computed final
states to check that. Furthermore, we implement an additional memory
system; we are aware that this contrasts with the underlying assumptions
of HMMs (Section 4.4.1), but it has proved to be an effective solution to
solve our problem. If we sampled without this memory system, most of
the samples would get stuck in a loop that prevents them from reaching all
targets. We add a system such that each time we go from state i to state
j we decrease the transition probability aij by a decrease percentage. The
total amount that is removed is distributed to the remaining values in row i
according to their weight, at the end of this operation

∑N
j=1 aij = 1 ∀i. In

order for this system to work we must slowly restore the original values, we
do this immediately after the next state j is selected. We use an increase

91

Chapter 5. Trajectory reproduction

percentage to add/subtract what was previously removed/added. All these
steps can be summed up this way:

1. Select an initial state using the initial probability distribution.

2. Use the transition probability matrix to select the next state.

3. Partially restore those values that were previously changed.

4. Decrease the content of cell [i, j] in transition matrix and distribute it
on the same row.

5. Go back to step 2 until all targets are found or the maximum number
of samples is reached.

Once the list with all the state positions is ready we are halfway through
our process. In order to have a complete and valid trajectory we must begin
from the starting position, move through the space keeping obstacles into
account, and ending close the last target if all targets are found. The starting
point is extracted from the .txt file of the map layout (Section 2.2); each
position in the list computed by our custom sampling function is converted
to the closest Voronoi point (Section 3.2.3); if all targets are found then the
closest target to the last position is selected. Once beginning, end, and all
intermediate points are ready we use theta* to compute the shortest path
between each pair.

This approach is able to compute new trajectories much faster than
all the others, but the generated trajectories follow a combinations
of the paths learnt by the HMM, so if a certain area was never explored
then no states were defined in that area, and thus no trajectory can explore
it. Furthermore, we get a Result that contains only some of the
data w.r.t. the Results obtained via Unity. For example, we have no
completion time, and even if in this thesis we do not use the saved orientation,
it is another missing piece of data. Lastly, even if has found all targets is
True, the generated trajectory may not get close to a target unless that target
is the final one. A clear example is shown later in this section (Figure 5.24)

In Figure 5.23 we can see two trajectories generated from the same human
Results in map open1; we place one trajectory per row in the figure. We
highlight that since the HMMs are computed from scratch each time, the
first HMM has 14 states, i.e., components, while the second one has 16. This
happens because of slight variations in the learning process that change the
BIC values, thus resulting in a different number of states, as explained in

92

5.10. Hidden Markov models

Figure 5.23: HMM generated trajectories based on human Results 1, 7, 13 -
map open1.

Section 4.4.2. The central column shows the full trajectories after theta* has
been used; the rightmost images show the theta* paths and their Voronoi
equivalents.

In Figure 5.24 we report two trajectories for map uffici1. Again, we can
see that the number of states is different between the two leftmost images,
but we can also see that the decrease and increase percentages used by our
custom sampling function are very different. In Figure 5.23 they were 0.3
and 0.1 respectively, they are the same in the first row of Figure 5.24, while
in the second row they are 0.9 and 0.001. We were forced to use this extremes
values due to the map layout. An increase percentage of 0.1 means that after
10 transitions the modified value is back to its original value, this increase
was too fast for a map like uffici1 where dozens of transitions might be needed
to get back to an already visited state. If we look at the first row we can
see that we get 100 samples, but they where all in the same loop. To break
that loop we must decrease the probability of continuously selecting the same
transitions, and we must ensure that probability is not restored to its original
value too fast. We can achieve this result using 0.9 and 0.001, as shown in
the second row of Figure 5.24. In second row, central image, we can also
see that the targets at the top and at the bottom are not touched by the
trajectory, even if it has found all targets. If we look at the leftmost image

93

Chapter 5. Trajectory reproduction

Figure 5.24: HMM generated trajectories based on human Results 2, 4, 18,
61 - map uffici1.

we can see that the trajectory reaches the centres of the final states (the
small red boxes in Figure 5.24) instead of the actual targets. Lastly, we also
highlight that we have to choose 4 trajectories for this HMM, where each
trajectory has found all targets and ends in a different one, otherwise one
or more final states could not have been computed, more on this in Section
4.4.2.

5.11 Trajectory reproduction conclusions

After all the considerations in this chapter we can conclude that we do not
have a best trajectory reproduction technique that overcomes all the others.
Each one has its pros and cons, and depending on the situation a different
approach should be preferred.

If the situation allows the time for the computation of 484 Results, and
the goal is to get a robot trajectory for a continuously changing cluster of
human trajectories, then grid search is the best solution (Section 5.3). Each
time the cluster changes we look for the best already obtained robot Result
and we provide it as answer. However, since the 484 robot trajectories do
not change, after a while it is better to perform a new grid search. In the
meantime, the old 484 trajectories can be used.

94

5.11. Trajectory reproduction conclusions

If we do not have a lot of time, and the goal is to get a new trajectory
for a cluster of human trajectories, then robot distribution exploration
(Section 5.6) can compute a new trajectory for the given cluster faster than
a grid search. Furthermore, each time it is used the trajectory is different
even if the human cluster does not change.

If the goal is to focus on the areas of the map that players have already
explored, then samples generated from a hidden Markov model provides
the fastest way of getting new trajectories (Section 5.10.2); however, an auto-
mated system to find the best parameters, decrease and increase percentages,
and filter the generated trajectories based on the features of a given human
cluster, is not in place.

Grid search and robot distribution exploration are based on the existing
policy that drives the robot exploration (Section 2.4.3). As we have
reported in this chapter that policy is not appropriate for two reasons: it
is not deterministic, and it is not good enough to properly explore the map
uffici1.

Some of the causes of the non-determinism are deeply intertwined in how
Unity works, we reported on this in Section 5.4.

95

Chapter 6

Conclusion

In this thesis we considered various approaches to trajectory clustering and
reproduction. Differently from the most widespread cases, we did not focus
only on geometric-based clustering, but rather on higher level features ca-
pable of describing trajectories based on several qualities of the exploration
paths. After some tests we found a good solution using the features described
in Chapter 4.

Based on these features we looked for effective methods to reproduce
trajectories in a cluster. We found different alternatives, each one with its
own pros and cons. We summed them up at the end of Chapter 5. In the
same chapter we analysed the behaviour of the robot in order to understand
the extent of its non-determinism, and we provided a list of possible causes.

In the end we achieved our goal of clustering trajectories in an effective
manner, but we did not find a one-size-fits-all solution to the problem of
reproducing the trajectories belonging to a cluster.

6.1 Known issues and possible criticism

The 9 features that are currently used in the clustering procedure may not
be the best ones, in fact, we saw that in map uffici1 one binary feature splits
the collected results in two groups.

Other issues are related to the hidden Markov models: Markov and output
independence assumptions let us work with simpler models, but they do not
represent how a human being thinks. Human beings’ decisions are impacted
by past actions, so we implemented a memory system in our custom sampling
function for the hidden Markov models. This system requires two parameters
to operate, the computation of those parameters is not automated, but they
are manually chosen after some tests.

97

Chapter 6. Conclusion

Robot distribution exploration provides many Results, however the final
ordered list of Results contains bad trajectories before others that appear to
be much better. This problem does not arise for the first dozens of Results,
but it is there.

Lastly, the non-determinism of the robot behaviour proves problematic,
it prevents us from associating a stable good or bad trajectory to a given
parameter combination. Furthermore, the current policy does not allow the
robot to effectively cover the more complex map.

6.2 Future developments

Future improvements could look for different features, or different weights for
the existing ones, in order to improve the clustering capabilities. Collecting
more data for the maps in the second group (Section 2.4.1) could be useful
to apply clustering on those maps as well.

Another improvement could be related to the map layouts. As stated
in Chapter 4 our features work only on flat maps. Extending the code that
computes the features could potentially make them work in multi-floor maps.

At the moment hierarchical clustering cuts the dendrogram tree at a fixed
height. Given the non uniform distribution of the collected Results over the
various clusters, it could be useful to consider applying dynamic tree cut [23],
in order to change the height of the cut based on some factors.

In the first paragraph after the list on Page 61, we highlighted that ac-
cording to our results being a gamer or not has an impact over the final
performance. Verifying whether this statement holds true in other condi-
tions or with more samples could prove interesting.

The policy used by the robot during exploration could be changed or
improved. Alternatively, the entire robot architecture could be changed,
shifting away from the current one based on a real robot, in order to be able
to explore the virtual environment much faster.

98

Appendix A

Acronyms & definitions

In this appendix we collect acronyms and terminology used throughout this
thesis.

A.1 Acronyms

• BFR: Bradley-Fayyad-Reina.

• BSS: Between-clusters Sum of Squares.

• BIC:Bayesian Information Criterion.

• DB: DataBase.

• DBSCAN: Density-Based Spatial Clustering of Applications with Noise.

• DM: Decision Making.

• DTW: Dynamic Time Warping.

• EU: Euclidean.

• FPS: First Person Shooter or Frames Per Second.

• HMM: Hidden Markov Model.

• IP: Internet Protocol.

• KE: Knee/Elbow.

• L&Z: Simone Lazzaretti and Yuan Zhan. [2]

• LCSS: Longest Common SubSequence.

99

Appendix A. Acronyms & definitions

• OS: Operating System.

• PCA: Principal Component Analysis.

• PF: Piciarelli-Foresti. [5]

• t-SNE: t-distributed Stochastic Neighbour Embedding.

• UI: User Interface.

• UX: User Experience.

• WebGL: Web-based Graphics Library.

• WSS: Within-cluster Sum of Squares.

A.2 Definitions

The following definitions are given with the sole purpose of clarifying the
terminology used in this thesis. For this reason the following definitions are
not exhaustive and do not contain meanings beyond the needs of this work.

• Ad-block: software or browser extension that checks which content is
loaded on a webpage and prevents all advertisements from being shown.
On some occasions this type of program may interfere with other tasks,
like a data upload process.
https://en.wikipedia.org/wiki/Ad_blocking

• Centroid: n-dimensional point representing the center of a group of
n-dimensional data points. In Euclidean spaces it is the average among
all data points. [6]

• Clustroid: existing data point that is taken as cluster representative.
It can be the data point that minimises the sum of all the distances to
the other data points in the cluster. [6]

• Control scheme: the way a user is expected to interact with the game
input device in order to control a character or other game features.

• Dendrogram: tree structure where each node can be either a termi-
nation leaf or the origin of two branches that terminate in two new
nodes.
https://en.wikipedia.org/wiki/Dendrogram

100

https://en.wikipedia.org/wiki/Ad_blocking
https://en.wikipedia.org/wiki/Dendrogram

A.2. Definitions

• Firebase: development platform that offers several tools to suit the
needs of a wide variety of use cases.
https://firebase.google.com/

• First person shooter: a game where the player’s point of view is
the same experienced by the character they are controlling. The player
cannot see the entire character they are controlling, only the character’s
hands are shown on screen, usually holding one or more guns that the
player can use to shoot different types of projectiles.
https://en.wikipedia.org/wiki/First-person_shooter

• Fog of war: technique used in some video games to hide parts of the
level that are far away from the player or from the player controlled
characters. The goal is to prevent the player from seeing what is hap-
pening. Sometime the fog of war can let the player sees the orography
of the terrain but not enemies.
https://en.wikipedia.org/wiki/Fog_of_war#In_video_games

• Frames per second: number of distinct images, or frames, shown on
a display in a time interval of one second.
It can be computed as 1

frame time
.

• Frame time: amount of time an image, or frame, persists on screen
before being replaced by another image.
It can be computed as 1

frames per second
.

• Game object: fundamental object in Unity, it is a container where
components like characters, lights, code,... are placed.
https://docs.unity3d.com/Manual/class-GameObject.html

• Greedy algorithm: algorithm that selects the best local solution at
each step of its execution; for this reason it might find a local optimum
instead of the global one.

• Grid search: parameter optimisation technique that tests any possi-
ble, or specified, parameter combinations and selects the one providing
the best result.

• Heroku: platform as a service, it can be used to run the back end for
a data collection process.
https://www.heroku.com/

• Inspector: see Unity inspector.

101

https://firebase.google.com/
https://en.wikipedia.org/wiki/First-person_shooter
https://en.wikipedia.org/wiki/Fog_of_war#In_video_games
https://docs.unity3d.com/Manual/class-GameObject.html
https://www.heroku.com/

Appendix A. Acronyms & definitions

• Objective function: code in charge of computing the utility value to
be returned each time an input is given.

• Playtest: meeting in which a group of players play a game and provide
their feedback to the development team which organised the session.

• Result: when written with capital “R” it means the collected data for
one or more agents (humans and/or robots). It is often used to denote
a specific trajectory.

• Scene: see Unity scene.

• Spawn: as verb it means to appear or to be created and it is usually
associated with a spawn point or a spawn position, which is the location
where the object of interest is spawned.
As noun it means the location where the spawning action takes place.
https://en.wikipedia.org/wiki/Spawning_(video_games)

• Spline: piecewise defined function that is used to create a smooth line
connecting multiple assigned points. Once the spline is computed it
can be sampled to extract any number of points.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.

interpolate.splprep.html & https://docs.scipy.org/doc/scipy/

reference/generated/scipy.interpolate.splev.html

• Stuttering: condition that occurs when the time interval between two
consecutive frames is not constant. To the human eye this translates
into an inconsistent fluidity that detracts from the experience.
https://en.wikipedia.org/wiki/Micro_stuttering

• Theta*: algorithm able to compute a near-optimal path between two
given locations.

• Unity: game engine providing all the tools needed for development,
test and release of a vast array of game genres.
It can be download for free from https://unity.com.

• Unity inspector: window inside the Unity editor where many vari-
ables can be changed before or during the execution of a game.
https://docs.unity3d.com/Manual/UsingTheInspector.html

• Unity scene: container of environments, menus,... Usually a scene
contains one game level, but it is not mandatory.
https://docs.unity3d.com/Manual/CreatingScenes.html

102

https://en.wikipedia.org/wiki/Spawning_(video_games)
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html
https://en.wikipedia.org/wiki/Micro_stuttering
https://unity.com
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/CreatingScenes.html

A.2. Definitions

• Unity unit: unit of distance within Unity.

• WebGL: web-based technology used to deploy high visual quality
games in a compatible web browser.
https://www.khronos.org/webgl/

103

https://www.khronos.org/webgl/

Appendix B

Unity documentation

As stated in Chapter 2 and Section 3.2.2, we expanded a pre-existing Unity
project called Project Arena. In this appendix we document the additions
implemented during this thesis, more information about the robot implemen-
tation, or other elements that were not changed, can be found in Appendix
A in L&Z’s thesis [2].

The Asset folder of the project contains several subfolders, the most im-
portant ones are Scenes, Scripts, and Maps.

B.1 Scenes

Scenes contains all the scenes used by both this thesis and the previous ones.
It contains a folder called OLD with the scenes that are not used in our work;
a folder Robot Experimenting with the scenes used in our experiments, and
the scenes Start, Menu, and Error. These 3 scenes are used, respectively, to
start the human experiment, to show the main menu (i.e., title screen), and
to show an error screen if an error occurs. Typically, an error occurs when
the connection between client and server cannot be established.

The content of Robot Experimenting is split between human-related scenes,
robot-related scenes, and other test scenes not used in our experiments, for
this reason they are not listed in this documentation.

B.1.1 Human-related scenes

In addition to Start, Menu, and Error, the human experiment is composed
of the following scenes located inside the Robot Experimenting folder:

• Experimenting - Control 1 : it provides instructions to the players (e.g.,
Figure 3.1 Page 19)

105

Appendix B. Unity documentation

• Experimenting - Tutorial : it is the tutorial map mentioned at the end
of Section 2.4.1.

• Experimenting - Test1 : it is the single target map scene, whether open1
or uffici2 depends on which map group the player chose (Section 2.4.1).

• Experimenting - Test2 : it is the multi target map scene, whether uffici1
or open2 depends on which map group the player chose (Section 2.4.1).

• Experimenting - Survey : it is the scene where the player answers the
survey (Section 2.4.1).

These scenes are the ones selected at build time in order to create the ap-
propriate game build. Note that even if in the Unity editor it is possible
to launch any of the previous scenes, in order to correctly load them either
Start or Experimenting - Control 1 should be the starting scene.

B.1.2 Robot single target & multi target scenes

Robot experiments take place inside the Unity editor, so we do not compile a
game build to run those experiments. Inside the Robot Experimenting folder
we have two robot-related scenes: Experimenting - Robot Single Target and
Experimenting - Robot Multi Target, the former is for single target maps,
the latter is for multi target maps. In order to select which map to load we
must provide its .txt file in the property Text File Path of SL Map Manager
component in SL Map Manager game object under SL Divise Map game
object.

In both scenes the two most important game objects are ExplorationIter-
ator and Robot. They contain several scripts that will be explained in Section
B.2:

• ExplorationIterator game object:

– ExplorationIterator script.

– InputReader script.

• Robot game object:

– Robot script.

– RobotMovement script.

– RobotProgress script.

– RobotPlanning Theta Star script.

– RobotDMUtilityCloseWall script.

106

B.2. Scripts

B.2 Scripts

Scripts contains the folders with the C# code; some of the scripts are no
longer used, but they are still in these folders. In particular, we focus on on
the following scripts (each script is preceded by the folder containing it):

• Connectivity/IPManager : it is in charge of getting the IP address of
the client running the game. It relies on https://api.ipify.org, if it
does not work it tries http://icanhazip.com. If none of these works,
then we assume there is no internet connection, thus the Error scene
is loaded.

• Connectivity/RobotConnection: it is in charge of uploading the human
Result to Firebase Realtime Database, in order to do so, its property
DB Url must be set to https://projectName-randomValues.firebaseio
.com/Results/, more on this in Section C.1. It works using a free third
party HTTP and REST client downloaded from https://assetstore.

unity.com/packages/tools/network/102501.

• Connectivity/SurveyUploader : it is in charge of uploading the survey
answers to Firebase Realtime Database, in order to do so, its property
DB Url must be set to https://projectName-randomValues.firebaseio
.com/Surveys/, more on this in Section C.1. It works using a free third
party HTTP and REST client downloaded from https://assetstore.

unity.com/packages/tools/network/102501.

• Entities/Player : it is the main script in charge of the player interac-
tions. Some of the properties are inherited from a previous work (Sec-
tion 2.2), we focus only on those there are relevant for our work. Sec-
onds To Wait specifies the amount of time, in seconds, before the player
exploration is automatically terminated, we set it to 480 as said in Sec-
tion 3.2.2. In Section 3.2.2 we described the distance-based sampling, it
is implemented in this script and it requires two parameters: Distance
Type, which specifies if the distance should be considered as the direct
air distance from the latest saved position (Air Distance), or as the ac-
tual walked distance from the latest saved position (Walked Distance);
Distance Interval Between Saves, which is the distance threshold from
latest save point above which the current position and rotation of the
player are saved, it was called n in Section 3.2.2. We used Distance
Type = Walked Distance and Distance Interval Between Saves = 3,
but since 3 has proved to be too high (Section 4.3.3) in future works
it might be changed.

107

https://api.ipify.org
http://icanhazip.com
https://assetstore.unity.com/packages/tools/network/102501
https://assetstore.unity.com/packages/tools/network/102501
https://assetstore.unity.com/packages/tools/network/102501
https://assetstore.unity.com/packages/tools/network/102501

Appendix B. Unity documentation

• Entities/Robot : it is the main robot script, it coordinates all the other
robot-related scripts. Some of its properties are not used in our work,
but others are: Numb Ray is the number of rays shot by the robot’s
proximity sensors (Section 2.4.3); Time For Scan is the time interval
between two perception processes (Section 2.4.3), Time For Decision is
the time interval between two decision processes (Section 2.4.3), these
two values are used by the timers mentioned in Section 5.4. As far
as Distance Type and Distance Interval Between Saves are concerned,
they are the same described in Entities/Player.

• Entities/RobotMovement : it is in charge of moving the robot. The
move forward or rotate behaviour described in Section 3.2.2 is imple-
mented here. The values of speed and rotationSpeed can be set only in
code, they are not exposed in the inspector.

• Entities/RobotProgress : it is in charge of saving the progress as the
agent explores. If the agent is the robot, data are saved locally in a
JSON file, then they are converted to a .txt file once the exploration
of the corresponding robot is over. If the agent is the player, once
the exploration is over, data are uploaded to the Firebase Realtime
Database by RobotConnection.

• Libraries/InputReader : it checks the folder Assets/Inputs looking for
files containing the parameters to be used by ExplorationIterator ; the
names of the files must be the numbers of the iterations, starting from
1. It works under the assumption that each file contains only three
numbers, two floats and one int, that represent the values of α, β, and
δ index, which is the index use to choose the forgetting factor in the
corresponding list in ExplorationIterator, δ index is not the actual value
of the forgetting factor δ.

• RobotDecisionMaking/RobotDMUtilityCloseWall : it implements the pol-
icy described in Section 2.4.3.

• RobotPlannings/RobotPlanningThetaStar : it implements the theta* al-
gorithm used by the robot to reach its destination (Section 2.4.3).

• Singletons/ExplorationIterator : it is in charge of handling the robot
exploration. If its property Parameters Selection is set to Grid Search,
then it performs the grid search using the values specified in the proper-
ties Min Alpha, Min Beta, Max Alpha, Max Beta, Alpha Increment and
Beta Increment. The possible values for the forgetting factor δ can be
found in the C# code. Otherwise, if its property Parameters Selection

108

B.3. Maps

is set to Read From File, it asks InputReader for the values of α, β, and
δ. If no values is given, then it waits secondsBetweenChecksForNew-
Values before asking again. The remaining properties are: Number Of
Robots, which specifies the maximum number of robots that can be
deployed simultaneously, its value cannot exceed the total amount of
combinations in the grid search or the amount of values InputReader
can provide when the simulation starts; Exp Time Scale, which speci-
fies the time scale of the exploration, we set it to 1 as said in Section
3.2.2; Seconds To Wait, which specifies the amount of time, in seconds,
before a robot exploration is automatically terminated, we set it to 480
as said in Section 3.2.2.

B.3 Maps

Maps contains the .txt files with the map layouts (Section 2.2). The subfolder
City Style Map contains the files open1.map.txt and open2.map.txt, while the
subfolder Star Style Map contains the files uffici1.map.txt and uffici2.map.txt.
Note that the file extension .txt is not shown in some of Unity UI. These .txt
files are the ones assigned to Text File Path of SL Map Manager component
in SL Map Manager, as stated in Section B.1.2.

109

Appendix C

Firebase documentation

Firebase is a Google-owned platform that offers several tools to suit the needs
of a wide variety of use cases. The official Firebase website can be reached
at https://firebase.google.com.

After creating a Google account, we can access the Firebase console. In
the console it is possible to create a new project, once the project is created
all Firebase tools become available. For our purposes, we focus on two tools:
Realtime Database and Hosting.

C.1 Firebase realtime database

Realtime Database can be found in the Database menu. Once a new Realtime
Database is created, an associated url is created too; the format should be
similar to https://projectName-randomValues.firebaseio.com. This url is the
one that must be used in RobotConnection and SurveyUploader in Unity in
order to make the upload process work, more on this in Section B.2.

New information can be added using PUT requests to the database url
followed by the subdomain where the information should be placed. The
information is sent as JSON, a commonly used file format when exchanging
data between a client and a server. In our case the database has 2 main
branches: Results and Surveys. The former contains the data related to
the explorations, the latter the answers to the surveys. Each Result has
a unique identifier: YYYY-MM-DD--HH:MM:SS:mmm--6RandomDigits. If
two Results with the same identifier are uploaded, then the older one is
overwritten by the newer one. We created the identifier in order to minimise
this possibility, furthermore, we do no have traffic spikes that could result in
several Results being uploaded at the same time. The date in the identifier
is the precise time, up to the milliseconds, at which the exploration ended.

111

https://firebase.google.com

Appendix C. Firebase documentation

Survey follows the same principles, but its identifier is the same used by the
Result of the latest played map. Instead of PUT, POST requests can be used
to avoid overwriting, but by doing so, the identifiers would be completely
randomised.

A Realtime Database has an associated set of rules that can be used to
regulate the access to the database. The following code represents the rules
in place during our collection process:
"rules": {

".read": false,

".write": false,

"Results": {
".read": false,

".write": true

},
"Surveys": {

".read": false,

".write": true

}
}
These rules prevent any read from the database, and allow new information
to be written only in the subdomains Results and Surveys of our database-
associated url. This system is not secure, any input on those two subdomains
is accepted without any check. Since our data collection process was kept
relatively private, we decided to focus our time on other aspects, assuming
no player would try to attack us. The official Firebase Realtime Database
documentation provides more information about how to implement stricter
security measures, it is available at https://firebase.google.com/docs/

database/security. Once the data collection process is over we change the
rules, replacing the true with false.

In order to download the collected Results and Surveys we go to the
Firebase console, then Database, then we click on the icon with three dots
in the upper right corner of the box, then select “Export JSON”. This can
be done at any time, in fact, we periodically downloaded them before the
collection process was over, in order to evaluate the Results collected so far.

C.2 Firebase hosting

We created a Hosting instance for our project, then we used Unity to gen-
erate the files needed in order to run a WebGL version of our game. We
put those files inside the public folder created using the Firebase CLI (Com-

112

https://firebase.google.com/docs/database/security
https://firebase.google.com/docs/database/security

C.2. Firebase hosting

mand Line Interface). Updated instructions about how to install the CLI,
connect it to Firebase Hosting, and deploy the game, can be found in the
official documentation available at https://firebase.google.com/docs/

hosting. Inside the Hosting web interface we can find the website of that
specific Hosting instance, it is something similar to https://projectName-
randomValues.web.app. This is the url that must be provided to the testers.
In case of need, it is possible to restore older versions of the files in the Host-
ing public folder via Firebase Hosting web interface. Once the data collection
process is over, we use the CLI to deploy an updated public folder contain-
ing only the file 404.html, which is used to show a 404 error page to anyone
who opens the aforementioned link. This file is automatically generated by
Firebase when the project is created. In case of need, it can be modified, for
example to change the message shown when the 404 error page is reached.
When the CLI asks if we want to use a Firebase Database we must answer
affirmatively, this way a file database.rules.json containing the same rules
specified for the Realtime Database is created.

113

https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting

Appendix D

Python documentation

We have a dozen Python files, so we explain each one in its own section.
Each file contains a first part with the functions that are expected to be
used directly, these functions start with “My” so that they can be easily
distinguished; in the remaining part of the file the actual implementation
and some utility functions can be found. In this appendix we comment only
on the first part; in any case, inside the files, almost all functions are preceded
by a comment explaining their purpose.

Italic is used to identify parameters or functions when they are not written
in bold.

D.1 Metrics updated.py

This file is an updated version of the file written by L&Z. It contains the
following functions:

• MyComputeVoronoiDistMatrixForPathsInSelectedMap(): it
computes the Voronoi distance matrix for all the paths in mapToAna-
lyze, which is the parameter where we specify which of the four maps
should be taken into consideration.

• MyAmountOfResultsForEachMap(): it provides the amount of
available Results for each map.

D.2 FirebaseAdapter.py

This file only purpose is to convert the JSON file downloaded from the Fire-
base Realtime Database into several .txt files, one for each Result and survey.
It contains the following function:

115

Appendix D. Python documentation

• MyFirebaseToTxtConverter(): it performs the conversion from
JSON to .txt assuming pathOfFileDownloadedFromFirebase specifies
the path to the JSON file, and resultsDirectoryPathOriginals specifies
where the output .txt files should be placed.

D.3 Voronoi.py

This file contains the code to compute the Voronoi points and the Voronoi
equivalent paths. It contains the following functions:

• MyVoronoiFilteredPoints(): it provides the Voronoi points for a
map after removing those that are inside walls. mapName is the map
under consideration.

• MyVorEquivalentAllPaths(): it computes the Voronoi equivalent
paths for all the paths in the folder specified by resultsDirectoryPathO-
riginals, i.e., where the .txt files generated by MyFirebaseToTxtCon-
verter() are located.

• MyVorEquivalentIntervalPaths(): it computes the Voronoi equiv-
alent paths for all the paths whose Result numbers are greater than
the resultNumber (resultNumber = 0 means all Results).

• MyVorEquivalentMultiplePaths(): it computes the Voronoi equiv-
alent paths for all paths in the specified list files.

• MyVorEquivalentSinglePath(): it computes the Voronoi equivalent
path only for the path in file. The legend position in the final figure
can be shown by enabling showLegend, and its position can be changed
using lengendPosition.

• MyRobotVorEquivalentIntervalPaths(): it computes the Voronoi
equivalent paths for all the robot paths whose Result numbers are
greater than the given resultNumber (resultNumber = 0 means all Re-
sults). No legend is added to the figure. The Result files are assumed to
be in the folder specified before this function declaration in Voronoi.py.

D.4 MetricsClustering.py

This file contains the logic to perform the metric-based clustering (Section
4.3). It contains the following functions:

116

D.5. ClustersDrawer.py

• MyMetricClustering(): it performs the clustering; it contains sev-
eral functions calls, one for each metric (Section 4.3.1). Each call per-
forms the clustering using all 7 methods (Section 4.2).

• MyKneeElbowAnalyzer(): it performs the Knee/Elbow analysis on
clusters.

D.5 ClustersDrawer.py

This file contains the code to draw several trajectories, each one with its own
colour, in one unique figure. It did not prove useful to effectively visualise
the clusters, so it was discarded. It contains the following function:

• MyDraw(): it automatically draws the paths in the given clusterTo-
Draw.

D.6 CriticalPoints.py

This file is used to compute the critical Voronoi points, the critical Voronoi
groups, and the critical Voronoi equivalent paths. It contains the following
functions:

• MyGetVoronoiCriticalPointsEquivalent(): it computes the criti-
cal Voronoi equivalent paths for each human Result whose number is
greater or equal to startingValue. shouldShowLegend specifies if the leg-
end should be add to the final figure, lengendPosition specifies where
the legend should be located.

• MyGetGroupedCriticalPoints(): it computes the critical points
and groups for the map specified in mapUnderConsideration. distance
is the distance within which two critical points are considered part of
the same group. shouldGetADifferentFigureForEachCriticalGroup can
be set to True in order to generate a separate figure for each group.

D.7 HMM.py

This is the file containing the code to perform the HMM computations de-
scribed in Sections 4.4.2 and 5.10.2. It contains the following functions:

• MyGetSplineFiguresWithSurvey(): it generates the figures of the
splines of the requested inputFileNumbers, with the answers to the

117

Appendix D. Python documentation

survey added in the title. If no survey is found for a Result number,
then that Result is ignored. splineColor specifies the colour of the
spline, divValue specifies the interval of points after which a label is
placed on the spline, inputFileType specifies to which type of Results
inputFileNumbers refers to, e.g., Original, Voronoi, VorCriticalPoints,
RobotVoronoi.

• MyGetHMMForResults(): it computes the HMM for the trajec-
tories specified in inputFileNumbers. inputFileType specifies to which
type of Results inputFileNumbers refers to.

• MySaveHMMForSingleResult(): it saves an HMM for each of the
requested Result in inputFileNumbers. inputFileType specifies to which
type of Results inputFileNumbers refers to.

• MyGetSampleTrajectoryFromHMM(): after learning an HMM
using the trajectories specified in inputFileNumbers, it uses that HMM
to get samples. inputFileType specifies to which type of Results input-
FileNumbers refers to.

• MyGetLogLikelihoodForRobotResult(): it computes the logLike-
lihood of the specified robotResultsToBeConsidered w.r.t. all the HMM
available for map mapUnderConsideration.

Other values, like the decreasePercentage and increasePercentage mentioned
in Section 5.10.2, can be changed in ActualHMMCode([...]).

D.8 HMMClustering.py

This file was supposed to be used to perform the clustering based on the
HMM logLikelihoods, as described in Sections 4.4.3 and 5.10.1. It contains
the following functions:

• MyScoreResultUsingSavedHMM(): it computes the logLikelihood
for the specified resultToBeConsidered w.r.t. each HMM model whose
number is in HMMFileNumbers. inputFileType specifies to which type
of Results resultToBeConsidered refers to.

• MyGetHMMBasedClusters(): it computes the result of the hierar-
chical clustering of the given list of Results resultsList. inputFileType
specifies to which type of Results resultsList refers to.

118

D.9. SurveyGraphs.py

D.9 SurveyGraphs.py

This file contains the code to draw the graphs for the various survey questions
(Section 2.4.1), which means it contains the code to compute the measures
of a group of Results (Section 4.5.2). Its functions are the following:

• MyDrawGraphs(): it contains all the necessary function calls to
draw all the graphs of the survey. It is possible to use it to ease the
graph drawing.

• MyResultFilter(): it filters, e.g., all Result numbers from map open1,
based on the groups of Results obtained via MyDrawGraphs(); these
groups must be put in listOfList.

• MyResultSorter(): it returns one sorted list containing all the ele-
ments from the four separated input lists.

• MyGetRobotResultMeasures(): it computes the measure file of
robots Results for the map specified in mapName.

• MyGetMixedResultMeasures(): it computes the measure file of
the robots in indicesOfRobotNumbersOfInterest and the humans in map
mapName.

D.10 MeasuresClustering.py

This file contains the code used in Sections 4.6, 5.3, 5.5, and 5.9. It contains
the following functions:

• MyMeasureClustering(): it performs the measure-based clustering
and draws the corresponding PCA and t-SNE graphs. robotResultsTo-
BeConsideredInMixedCase is the list, often made up of only 1 element,
of robot Results to be clustered with human Results if measureSource is
set to MeasureSource.Mixed, otherwise it is ignored; mapToBeConsid-
ered specifies the map under analysis; alternativeToBeUsed specifies
which set of features to consider among the ones defined in Section
4.6.2; measureSource specifies which is the source of the data among
Human, Robot, and Mixed, i.e., humans and robots; roundNumber spec-
ifies which round of grid search should be considered; useRobotParam-
etersAsLabel can be enabled to replace the numbers of the robot Re-
sults with the corresponding values of the parameters α, β, δ (it works
only when measureSource is set to MeasureSource.Robot). With mea-
sureSource set to MeasureSource.Robot, the code performs the measure

119

Appendix D. Python documentation

clustering of all robot Results without any human Result. If neces-
sary MyGetRobotResultMeasures() in SurveyGraphs.py can be used to
generate the robot measure files.

• MyMeasureAllSingleRobotClustering(): it performs the cluster-
ing of all robot Results, one at a time, with all human Results. It
is the same as calling MyMeasureClustering() with measureSource set
to MeasureSource.Mixed, while assigning one robot Result number at
a time to robotResultsToBeConsideredInMixedCase. mapToBeConsid-
ered specifies the map under analysis; alternativeToBeUsed specifies
which set of features to consider among the ones defined in Section
4.6.2; roundNumber specifies which round of grid search should be con-
sidered.

• MyBestRobotTrajectoryForCluster(): it checks all grid search
robot Results, and returns the ones that are the closest to humanTraj,
which is the list of human Results under consideration. It implements
the procedure used in Section 5.9. mapToBeConsidered specifies the
map under analysis; alternativeToBeUsed specifies which set of features
to consider among the ones defined in Section 4.6.2; roundNumber spec-
ifies which round of grid search should be considered.

• MyPCAHumanClusters(): it performs PCA with humans, and it
colours each human cluster with a different colour (Figures 4.32 and
4.33 Page 59). The Results contained in each cluster are automatically
gathered based on the specified information. numberOfClusters is the
cardinality of the cluster; hierachicalClusteringMethod is the method
(Section 4.2) whose clusters are the ones to be considered; should-
DrawSingleHumanHighlightFigures can be enabled so that, in addition
to the overall PCA, the code will drawn one PCA for each human Re-
sult while highlighting its Result number. mapToBeConsidered speci-
fies the map under analysis; alternativeToBeUsed specifies which set of
features to consider among the ones defined in Section 4.6.2.

• MyPCAHumansAndRobots(): it performs PCA with humans and
then adds robots to the figures. mapToBeConsidered specifies the map
under analysis; alternativeToBeUsed specifies which set of features to
consider among the ones defined in Section 4.6.2; roundNumber speci-
fies which round of grid search should be considered.

• MyPCARandomValues(): it performs PCA with humans and then
adds random feature values to the figures. mapToBeConsidered speci-
fies the map under analysis; alternativeToBeUsed specifies which set of

120

D.11. TrainingAlgorithms.py

features to consider among the ones defined in Section 4.6.2; amountOf-
RandomSamplesToBeConsidered specifies how many samples should be
generated, each sample has as many random values as the features in
alternativeToBeUsed.

• MyDrawHistogramsForHumanClusters(): it draws histograms for
each cluster, showing the answers to the survey for all the humans in
each cluster (this code assumes all humans Results in the clusters have
a corresponding survey). numberOfClusters is the cardinality of the
cluster; hierachicalClusteringMethod is the method (Section 4.2) whose
clusters are the ones to be considered; mapToBeConsidered specifies
the map under analysis; alternativeToBeUsed specifies which set of
features to consider among the ones defined in Section 4.6.2.

• MyGetHasFoundAllTargetsForHumans(): it returns a list of True
and False for each human cluster, indicating whether each human has
found all targets or not. numberOfClusters is the cardinality of the
cluster; hierachicalClusteringMethod is the method (Section 4.2) whose
clusters are the ones to be considered; mapToBeConsidered specifies
the map under analysis; alternativeToBeUsed specifies which set of
features to consider among the ones defined in Section 4.6.2.

• MyGetHasFoundAllTargetsForRobots(): it returns a list of True
and False for each robot in listOfRobots in map mapToBeConsidered in
grid search round roundNumber. The Boolean value indicates whether
the robot has found all targets or not.

For all previous functions in this file, more settings can be changed in the
“# Settings” section of the file; e.g., repetitionWindowSize, which specifies
the window size n used by the measure number of repeated positions within
repetition window n (Section 4.5.2); or percentageToBeUsedWhenReplacing-
UnavailableValue, which is used when computing average distance between
repeated positions normalised, it is the 1.25 used in Section 4.6.1.

D.11 TrainingAlgorithms.py

This file contains the code of the procedures described and/or used in Sections
5.2, 5.6, and 5.7. It contains the following functions:

• MyAnnealing(): it performs the parameter values exploration based
on annealing algorithm (Section 5.2). humanResultsToBeConsidered
specifies the Results the robot should imitate; alternativeToBeUsed

121

Appendix D. Python documentation

specifies which set of features to consider among the ones defined in
Section 4.6.2; maxObjFuncCalls is the maximum number of objective
function calls mentioned in Section 5.2.

• MyRobotDistributionExploration(): it implements the robot dis-
tribution exploration described in Section 5.6. humanResultsToBeCon-
sidered are the Results the robot should imitate; maxNumberOfValues
is the amount of combinations generated by the uniform sampling pro-
cess, and it is also the maximum number of robots allowed in Ex-
ploration Iterator, more on this in Appendix B; amountOfValueTo-
BeKept specifies how many of the best combinations must be kept for
the next iteration; amountOfNewValuesForEachCombination specifies
how many new combinations of α, β, and δ must be generated for each
best combination; amountOfGaussianIterations specifies how many it-
erations using Gaussian distribution samples should take place; alter-
nativeToBeUsed specifies which set of features to consider among the
ones defined in Section 4.6.2. There is no need to specify a mapUnder-
Consideration since it is inferred from humanResultsToBeConsidered,
assuming all values in humanResultsToBeConsidered come from the
same map as the first one.

• MyPCAFromOutcomeFileOfRobotDistributionExploration():
it performs PCA using as input the file OutcomeOfRobotDistribution-
Exploration.txt generated by RobotDistributionExploration(). This file
is expected to be in the current working folder, i.e., the folder contain-
ing this code. alternativeToBeUsed specifies which set of features to
consider among the ones defined in Section 4.6.2.

• MyRobotVarianceAnalysis(): it performs explorationToBeDone-
ForEachParameterCombination amount of explorations for each robot
parameter combination identified by the robot numbers in robotNum-
bersWhoseParameterCombinationsShouldBeConsidered. Then, it col-
lects the data and draws the figures showing the variance of each mea-
sure. These figures are the same that can be obtained using MyRobot-
VarianceAnalysisGraphsDrawer() and MyPCAFromOutcomeFileOfRo-
botVarianceAnalysis(). alternativeToBeUsed specifies which set of fea-
tures to consider among the ones defined in Section 4.6.2; roundNumber
specifies which round of grid search should be considered; mapUnder-
Consideration specifies which map should be considered.

• MyRobotVarianceAnalysisGraphsDrawer(): it draws box plot
and PCA figures for the Results of MyRobotVarianceAnalysis(). Note:

122

D.12. FeaturesAnalysis.py

files Measures-robot on demandN.txt must be the same generates by
MyRobotVarianceAnalysis(), and robotNumbersWhoseParameterCom-
binationsShouldBeConsidered must be the same used by MyRobotVari-
anceAnalysis() to generate the Measures-robot on demandN.txt files.
alternativeToBeUsed specifies which set of features to consider among
the ones defined in Section 4.6.2; roundNumber specifies which round
of grid search should be considered. There is no need to specify ma-
pUnderConsideration since it is inferred from mapNames in Measures-
robot on demand1.txt.

• MyPCAFromOutcomeFileOfRobotVarianceAnalysis(): it draws
PCA figures for the Results of MyRobotVarianceAnalysis() or MyRobot-
VarianceAnalysisGraphsDrawer(), depending on which one was exe-
cuted last. alternativeToBeUsed specifies which set of features to con-
sider among the ones defined in Section 4.6.2; roundNumber specifies
which round of grid search should be considered. There is no need to
specify a mapUnderConsideration since it is inferred from humanRe-
sultsToBeConsidered in OutcomeOfRobotVarianceAnalysis.txt, assum-
ing all values in humanResultsToBeConsidered come from the same
map as the first one.

Note about how to use the code to transfer data between Python and Unity
(from the beginning of TrainingAlgorithms.py file): “This code provides
Unity with the parameters for each iteration by placing files in parame-
tersFilesDestination, then it uses the trajectories generated by Unity, and
stored in unityResultsFilesFolder, to evaluate the quality of each parameter
combination. This code must start first, while in Unity the Parameters Se-
lection in the inspector of Exploration Iterator must be set to Read From
File. The maximum number of robots allowed in Unity is 1 if annealing is
used; it is maxNumberOfValues otherwise.” More information can be found
in Appendix B.

D.12 FeaturesAnalysis.py

This file contains the code to draw all the graphs described in Section 5.8.
It contains the following functions:

• MyDrawAllGraphs(): it contains the function calls to draw all vari-
ations of all graphs that the following functions can draw.

• MyFeaturesNormalisedRobotsOnlyGraph(): it draws box plots
showing the distribution of all possible feature values after the nor-

123

Appendix D. Python documentation

malisation (Section 5.8.1). It works only for grid search robots or for
both grid search robots and humans in map mapUnderConsideration.
shouldAddHumans specifies if the human Results should be considered;
roundNumber specifies which round of grid search should be considered.

• MySingleParameterGraphs(): it draws 3 box plots for each feature,
showing the distribution of the values of that feature for each possible
value of robot parameters α, β, δ (Section 5.8.2). mapUnderConsider-
ation specifies which map should be considered, roundNumber specifies
which round of grid search should be considered.

• MyCubeHelixGraphs(): it draws one figure for each feature; each
figure contains 4 graphs showing the distribution of the values of that
feature over the robot parameter space (Section 5.8.3).

124

Bibliography

[1] Jiang Bian, Dayong Tian, Yuanyan Tang, and Dacheng Tao, “A survey
on trajectory clustering analysis”, arXiv e-prints, p. arXiv:1802.06971,
Feb 2018.

[2] Simone Lazzaretti and Yuan Zhan, “Simulating human behaviour in
environment exploration in video games”, Master’s thesis, Scuola di
Ingegneria Industriale e dell’Informazione, Dipartimento di Elettron-
ica, Informazione e Bioingegneria, Politecnico di Milano, Academic Year
2017/2018.

[3] Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton
Fookes, “Soft + Hardwired attention: An LSTM framework for human
trajectory prediction and abnormal event detection”, Neural Networks,
vol. 108, pp. 466–478, 2018.

[4] Brendan Morris and Mohan Trivedi, “Learning trajectory patterns by
clustering: Experimental studies and comparative evaluation”, IEEE
Conference on Computer Vision and Pattern Recognition, pp. 312–319,
2009.

[5] Claudio Piciarelli and Gian Luca Foresti, “On-line trajectory clustering
for anomalous events detection”, Pattern Recognition Letters, vol. 27,
no. 15, pp. 1835–1842, 2006.

[6] Mohammed J. Zaki and Wagner Meira Jr., Data Mining and Analysis:
Fundamental Concepts and Algorithms, Cambridge University Press,
2014.

[7] SciPy, https://scipy.org.

[8] SciPy cluster hierarchy linkage, https://docs.scipy.org/doc/scipy/
reference/generated/scipy.cluster.hierarchy.linkage.html.

125

https://scipy.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html

Bibliography

[9] Dan Jurafsky and James H. Martin, Speech and language processing: an
introduction to natural language processing, computational linguistics,
and speech recognition, 2nd Edition, Prentice Hall series in artificial
intelligence. Prentice Hall, Pearson Education International, 2009, Ap-
pendix A available online at https://web.stanford.edu/~jurafsky/

slp3/A.pdf.

[10] Brendan Tran Morris and Mohan Manubhai Trivedi, “Trajectory learn-
ing for activity understanding: Unsupervised, multilevel, and long-term
adaptive approach”, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 33, pp. 2287–2301, 2011.

[11] Tomáš Vintr, Zhi Yan, Tom Duckett, and Tomáš Krajńık, “Spatio-
temporal representation for long-term anticipation of human presence in
service robotics”, International Conference on Robotics and Automation
(ICRA), pp. 2620–2626, 2019.

[12] Tomáš Krajńık, Tomáš Vintr, Sergi Molina, Jaime Pulido Fentanes,
Grzegorz Cielniak, Oscar Martinez Mozos, George Broughton, and Tom
Duckett, “Warped hypertime representations for long-term autonomy
of mobile robots”, IEEE Robotics and Automation Letters, vol. 4, pp.
3310–3317, 2019.

[13] Mikel Vuka, Erik Schaffernicht, Michael Schmuker, Victor Hernandez
Bennetts, Francesco Amigoni, and Achim J. Lilienthal, “Exploration
and localization of a gas source with mox gas sensors on a mobile robot
— a gaussian regression bout amplitude approach”, ISOCS/IEEE In-
ternational Symposium on Olfaction and Electronic Nose (ISOEN), pp.
1–3, 2017.

[14] hmmlearn, https://hmmlearn.readthedocs.io.

[15] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman, The Ele-
ments of Statistical Learning: Data Mining, Inference, and Prediction,
2nd Edition, Springer Series in Statistics. Springer, 2009.

[16] Matplotlib pyplot boxplot, https://matplotlib.org/3.2.0/api/_as_

gen/matplotlib.pyplot.boxplot.html.

[17] SciPy stats norm, https://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.norm.html.

126

https://web.stanford.edu/~jurafsky/slp3/A.pdf
https://web.stanford.edu/~jurafsky/slp3/A.pdf
https://hmmlearn.readthedocs.io
https://matplotlib.org/3.2.0/api/_as_gen/matplotlib.pyplot.boxplot.html
https://matplotlib.org/3.2.0/api/_as_gen/matplotlib.pyplot.boxplot.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html

Bibliography

[18] Laurens van der Maaten and Geoffrey Hinton, “Visualizing data using
t-SNE”, Journal of machine learning research, vol. 9, pp. 2579–2605,
Nov 2008.

[19] Scikit-learn PCA, https://scikit-learn.org/stable/modules/

generated/sklearn.decomposition.PCA.html.

[20] Scikit-learn t-SNE, https://scikit-learn.org/stable/modules/

generated/sklearn.manifold.TSNE.html.

[21] SciPy optimize dual annealing, https://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.dual_annealing.html.

[22] seaborn cube helix, https://seaborn.pydata.org/examples/

cubehelix_palette.html.

[23] Peter Langfelder, Bin Zhang, and Steve Horvath, “Defining clusters
from a hierarchical cluster tree: the dynamic tree cut package for R”,
Bioinform., vol. 24, no. 5, pp. 719–720, 2008.

127

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://seaborn.pydata.org/examples/cubehelix_palette.html
https://seaborn.pydata.org/examples/cubehelix_palette.html

	Abstract
	Sommario
	Thanks
	Introduction
	Previous work
	Goals
	Pre-existing Unity project
	Testing environment
	Data collection
	Human data collection
	Conclusions on human Results
	Robot structure
	Robot data collection
	Data processing
	Conclusions on robot Results

	Goals and state of the the art
	Goals
	State of the art
	Clustering
	Additions to previous work
	Voronoi

	Clustering
	Data collection
	SciPy
	Metric-based clustering
	Metric definitions
	Preliminary results
	Metric-based clustering results

	Hidden Markov model based clustering
	Definitions
	HMM implementation
	HMM-based clustering

	Survey-based clustering
	Critical Voronoi points and groups
	Measures
	Survey-based clustering results

	Measure-based clustering
	Feature normalisation
	Feature sets
	Principal component analysis
	Measure-based clustering comparisons
	Measure-based clustering results

	Clustering conclusions

	Trajectory reproduction
	Robot behaviour - introduction
	Simulated annealing
	Grid search
	Robot behaviour - conclusions
	Random features
	Robot distribution exploration
	Robot variance analysis
	Robot features analysis
	Normalised features
	Single parameter
	Cube helix

	Human trajectories reproducibility
	Hidden Markov models
	Hidden Markov model likelihood
	Hidden Markov model samples

	Trajectory reproduction conclusions

	Conclusion
	Known issues and possible criticism
	Future developments

	Acronyms & definitions
	Acronyms
	Definitions

	Unity documentation
	Scenes
	Human-related scenes
	Robot single target & multi target scenes

	Scripts
	Maps

	Firebase documentation
	Firebase realtime database
	Firebase hosting

	Python documentation
	Metrics_updated.py
	FirebaseAdapter.py
	Voronoi.py
	MetricsClustering.py
	ClustersDrawer.py
	CriticalPoints.py
	HMM.py
	HMMClustering.py
	SurveyGraphs.py
	MeasuresClustering.py
	TrainingAlgorithms.py
	FeaturesAnalysis.py

