
POLITECNICO DI MILANO

School of Industrial and Information Engineering

Master of Science in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

Master’s Thesis

Training Neural Networks

With Manipulated Explanations

Plamen Pasliev
Matriculation Number: 898793

08.04.2020

Thesis supervisor:

Prof. Dr. Paolo Cremonesi

Thesis advisor:

Dr. Pan Kessel

Abstract

Machine Learning (ML) explainability is becoming an increasingly important

research topic. However, popular ML explainability approaches are not robust.

In this thesis, I adversarially train neural networks to manipulate a number of

widely-used explanation methods. A single fine-tuned model is able to manipulate

explanation methods such as Gradient, Gradient times input, Integrated gradi-

ents, Layer-wise Relevance Propagation (LRP) and Occlusion across almost any

input. I show how detecting manipulations is a challenging task and why further

development of robust explanation methods is critical.

Sommario

La spiegabilitá del Machine Learning (ML) sta diventando un argomento di ricerca

sempre piú importante. Tuttavia, i popolari approcci di spiegabilitá ML non sono

robusti. In questa tesi, addestro avversariamente le reti neurali per manipolare

una serie di metodi di spiegazione ampiamente utilizzati. Un singolo modello per-

fezionato é in grado di manipolare metodi di spiegazione come il Gradient, Gra-

dient times input, Integrated gradients, Layer-wise Relevance Propagation (LRP)

and Occlusion attraverso quasi tutti gli input. Mostro come il rilevamento delle

manipolazioni sia un compito impegnativo e perché l'ulteriore sviluppo di metodi

di spiegazione robusti sia fondamentale.

Neural Networks with Manipulated Explanations Plamen Pasliev

iv Master’s Thesis, Politecnico di Milano

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Structure of the thesis . 3

2 Background and Related Work 5

2.1 Neural Networks . 5

2.2 Explanation Methods . 6

2.2.1 Importance of Explanations 7

2.2.2 Gradient . 8

2.2.3 Gradient Times Input (GI) 9

2.2.4 Integrated Gradients (IG) 9

2.2.5 Layer-Wise Relevance Propagation (LRP) 10

2.2.6 Occlusion . 12

2.2.7 Comparison of methods . 13

2.3 Manipulated Explanations . 17

2.3.1 Adding Adversarial Noise to Input 17

2.3.2 Adversarially Training Models 18

3 Experiments and evaluation 23

3.1 Overview . 23

3.2 General Setup . 24

3.2.1 Evaluation Metrics for Visual Similarity 24

3.2.2 Vanishing Gradients . 26

3.3 Shifting Center of Mass . 27

3.4 Target Heatmap . 34

3.5 Identical Prediction Probabilities 37

3.6 Perturbation-Based Explanations: Occlusion 40

3.7 Frozen Classifier . 41

3.8 Manipulating Simpler Models . 42

Neural Networks with Manipulated Explanations Plamen Pasliev

4 Detecting manipulations 45

4.1 Noise as Input . 45

4.2 Adding Noise to Weights . 47

5 Conclusion 49

List of Acronyms 51

Bibliography 52

Appendix 57

A Shifted center of mass . 58

B Target heatmap . 63

C Added noise to weights . 66

D Occlusion . 69

vi Master’s Thesis, Politecnico di Milano

1 Introduction

Innovation in Machine Learning (ML) is happening rapidly and uncontrollably.

Algorithms are being applied to our every day lives without us even realizing it.

Industries such as healthcare [1], finance [2], agriculture [3], manufacturing [4],

retail [5] and many others are being disrupted by new ML solutions every day.

Algorithms get increasingly accurate and effective with more training data. ML

drives business decisions, processes and infrastructure while consumers receive per-

sonalized services like never before [6].

An increasing number of impactful decisions are being made by algorithms. For

example, US hospitals and insurance companies use the help of ML to decide

whether a patient needs improved medical care [7]. These decisions affect millions

of people. However, it is shown in Ref. [7] that the ML algorithm is more likely

to refer white patients than equally sick black patients. The authors claim that

racial bias reduced the number of black patients receiving improved medical care

by more than half.

Most practitioners treat ML as a black-box. A black-box system is assessed only

from the outside in terms of input/output relationship. Little interest is paid to

the internal workings of the algorithm. A common measure for success of a neural

network is output accuracy. Fully understanding ML and opening the black box

is essential for transparency and trust in ML decisions.

Algorithms such as neural networks tend to be high-dimensional, non-linear and

complex. Popular convolutional network architectures such as VGG [8] or ResNet

[9] contain tens of millions of parameters and this number can grow to billions

for larger networks [10]. Understanding the reasoning behind an ML decision can

quickly become a challenging task with such complex algorithms.

Incorrect decisions may cost lives. In the domain of computer vision and au-

tonomous driving, interpretability can be extremely valuable. For instance, if a

self-driving car causes an accident, scientists will need to figure out why the car

Neural Networks with Manipulated Explanations Plamen Pasliev

made a certain decision, who is responsible and how to prevent this mistake from

happening again. Furthermore, ML interpretability is now required by law [11].

Explanation methods such as Ref. [12, 13, 14, 15, 16, 17, 18, 19] and others have

been developed in recent years. Their ultimate goal is to explain the output deci-

sion of an algorithm in terms of the input. They highlight important input features

which contribute the most to the output classification.

Figure 1.1: Example explanation of an adversarially trained model.

Regardless of recent advances, there is a problem with current explanation meth-

ods: they are not robust! One way to manipulate explanations is through adver-

sarial input perturbations [20, 21]. The authors show how imperceptible input

2 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

perturbations can keep the classification accuracy of a model high while convinc-

ingly manipulating explanations.

Another way to manipulate explanations is through adversarial model training

[22] where the input image does not have to be perturbed. For this method, the

model is fine-tuned to produce manipulated explanations while maintaining high

classification accuracy. An example output of an adversarially trained model is

shown in Figure 1.1. This is a cause for concern because human trust cannot be

established without resistance to manipulation.

1.1 Contributions

In this thesis, I am going to manipulate the explanations produced by neural

networks used for image classification. I extend current work in several non-trivial

ways:

• Manipulations are shown to work well on popular explanation methods such

as Gradient [12], Gradient Times Input [23], Integrated Gradients [17], Layer-

wise Relevance Propagation (LRP) [13] and Occlusion [14].

• Manipulation transferability is carefully evaluated. It is shown how a single

model can manipulate all considered explanation methods.

• Explanations are manipulated to an arbitrary target explanation.

• Adversarially trained models are shown to keep their classification confi-

dences approximately constant.

• Novel manipulation detection techniques are explored.

• Model manipulation is shown to be possible if a subset of the model param-

eters are trained while the rest are held constant.

1.2 Structure of the thesis

The thesis is organized as follows. In Section 2, I discuss related explainability

research work and present the theoretical background for the thesis. In Section

3, I carefully describe the conducted experiments. I discuss and compare qualita-

tive and quantitative results of manipulated models. In Section 4, I test possible

Master’s Thesis, Politecnico di Milano 3

Neural Networks with Manipulated Explanations Plamen Pasliev

ways to detect or avoid manipulation. In Section 5, I summarize the results and

limitations of the thesis and discuss directions for future work.

4 Master’s Thesis, Politecnico di Milano

2 Background and Related Work

2.1 Neural Networks

Artificial neural networks are a set of algorithms inspired by biological neural net-

works. They are an attempt to exploit the architecture of the animal brain to

execute tasks conventional algorithms cannot.

Conventional feedforward neural networks are typically not used for image recog-

nition. Since images consist of a very high input size, a lot of neurons are

needed for computation. This issue is alleviated by using convolutional and down-

sampling/pooling layers. These layers are the foundation of the Convolutional

Neural Network (CNN) architecture. CNNs are the most frequently used and

well-performing algorithms in computer vision. Other applications include rec-

ommender systems [24], speech recognition [25] and natural language processing

(NLP) [26].

Throughout this thesis, I consider a network F : Rd → Rk that classifies an im-

age x ∈ Rd into k classes. The target label associated to image xn is represented

by a scalar tn ∈ {1, ..., k} . The predicted class K is equal to K = argmaxiF (x)i.

The parameters of the network F are denoted by w.

A crucial downside of CNNs is that their predictions are lacking straightforward

interpretability. In other words, CNNs are treated as a black-box algorithm. In-

terpretation of deep convolutional neural networks is difficult to achieve due to

their highly complex and non-linear nature. A simple yes/no answer of a classifier

is, in many cases, not sufficient. CNNs should be able to point out which parts

of the input contribute most to the network output so that human experts can

verify the classification decision. For example, if a neural network predicts a given

pathology image to be malignant, the doctor would probably want to know why

that is the case. Finding the location of a malignant tumor can be a challenging

task. Ideally, the desired location will be highlighted by the explanation method

Neural Networks with Manipulated Explanations Plamen Pasliev

since those parts of the image contribute most to the output prediction.

2.2 Explanation Methods

Explanation methods aim to answer the question why a machine learning algorithm

makes a certain decision. They help us understand the input-output behaviour of

the algorithm. There is a plethora of explanation methods available in literature

but in this thesis, I am going to focus on explanation methods in the domain of

computer vision. More specifically, understanding the relevance of a single pixel

of input image x for the output prediction F (x) of the classifier F on an image

classification task. I call the combination of relevances per pixel an explanation

map or heatmap h : Rd → Rd which has the same dimensions as the input image

x. A graph of the explanation process can be found in Figure 2.1.

Figure 2.1: Graphical representation of the explanation procedure.

6 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

2.2.1 Importance of Explanations

In this section, I will briefly discuss why explanation methods are important.

”Clever Hans” Predictions

Sometimes, incorrect behavior can be hidden by the neural network with correct

predictions. It has been shown [27] how an algorithm that is trained to distinguish

between huskies and wolves performs well only because it recognizes the snow in

the background of wolf images. In another example [28], a classifier recognizes fish

accurately because all fish in the dataset are being held by human hands. It has

been demonstrated that some CNNs use water and railways to recognize boats and

trains respectively [29]. In Ref. [29], these phenomena are referred to as ”Clever

Hans” predictions1. It may be extremely difficult to discover these correlations

using a black box classifier. Explanation methods can help detect biases in data

and expose the weaknesses of a classifier. Unveiling hidden structures and patterns

between data and predictions helps us understand what is going wrong with the

algorithm and how to improve it. Model interpretability can also potentially serve

as a comparison between different models with similar prediction accuracies. It

may also be expected that interpretable models are easier to improve.

Learning from Neural Networks

An interesting benefit of explanations is that humans might learn something new

from a neural network. Algorithms have access to millions of examples and can

notice patterns that may be impossible for humans to notice since they are only

capable of learning from a limited number of examples. An explanation may distil

this knowledge and output human-understandable insights, immediately available

for people to use. A related example is the AlphaGo algorithm developed by

DeepMind [30]. Expert Go players suggested that the artificial intelligence agent

performed moves and strategies which haven’t been seen before. Explanations can

potentially deliver valuable insights in many scientific domains such as biology,

chemistry and physics.

1 Clever Hans was a performing horse who lived in the late nineteenth/early twentieth
century. It could supposedly count, perform arithmetic, tell time, read, spell and
much more. Later in time, it was discovered that the horse derived the correct
answer by the questioner’s reactions and not by actually performing these mental
tasks.

Master’s Thesis, Politecnico di Milano 7

Neural Networks with Manipulated Explanations Plamen Pasliev

Compliance to Legislation

An important aspect of explanability in machine learning is compliance to legis-

lation. In 2016, the EU replaced its Data Protection Directive (DPD) with new

legislation known as the General Data Protection Regulation (GDPR). The up-

date includes a ”right to explanation” [11] which grants an individual right to

receive a human-understandable explanation for any machine learning algorithm

decision. For example, if an individual gets automatically rejected for a loan by

an algorithm, they have the right to receive a detailed explanation why that is the

case.

In the following, different explanation methods are defined:

2.2.2 Gradient

The gradient of a function quantifies the sensitivity to change of the function

output with respect to an infinitesimal change in the input. Hence, calculating

gradient heatmaps or ”saliency maps” is also called ”sensitivity analysis” [12].

This is the first and most straightforward explanation method in the family of

gradient-based explanation methods. It is computed by simply taking the partial

derivative of the classification output F (x) with respect to the input image x, i.e

hG(x) = ∇F (x) =
∂F (x)

∂x
. (2.1)

These heatmaps are computationally cheap to obtain and very easy to implement.

The only requirement is a single backward pass through the network and this is

already supported by modern neural network libraries.

For a linear model F (x) = wTx the gradient heatmap reduces to analyzing the

weights ∂wTx
∂x = w.

A problem from which the gradient method suffers is ”shattered gradients” [31],

i.e the gradient of deep neural networks resembles white noise. It might be difficult

for the human observer to derive meaningful insights about the model by analysing

noisy heatmaps.

8 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

2.2.3 Gradient Times Input (GI)

Gradient times input heatmaps can be produced by element-wise multiplication of

the gradient with the input image x [23].

hGI(x) = x�∇F (x) = x� ∂F (x)

∂x
(2.2)

In contrast to the gradient method, GI leverages the sign and strength of the input.

Similarly to the gradient heatmap, the gradient times input heatmap also requires

a single backward pass through the network and is easy to implement with just a

few lines of code.

For a linear model F (x) = wTx, the gradient times input heatmap reduces to

analyzing the weights times input:

[x�∇F (x)]i = xi
∂
∑

j wjxj

∂xi
= xiwi = [x� w]i

Gradient times input has very similar characteristics to the gradient heatmap.

Both suffer from the shattered gradient problem as the network depth increases.

2.2.4 Integrated Gradients (IG)

This method [17] aggregates the gradients of inputs lying on the straight path

between a baseline x′ and the input x. There are many possible paths between

a baseline and the input. Let γ =: [0, 1] → Rd be a path function specifying the

path from baseline y(0) = x′ to the input y(1) = x. Path integrated gradients are

computed by integrating the gradients of γ(a) for a ∈ [0, 1]

PathIntGrad(x) =

∫ 1

a=0

∂F (γ(a))

∂γ(a)

∂γ(a)

∂a
da.

A line integral of a gradient field can be computed by evaluating the endpoints

of the curve. Hence line integrals are path independent. Integrating any path

between x and x′ would yield the same result. In practice, we approximate this

integral, so the error of the approximation might differ per path. The integrated

gradient heatmap method is calculated using a straight line path function where

γ(a) = x′+a(x−x′). When we substitute this term in the above equation, we get

hIG(x) = (x− x′)�
∫ 1

a=0

∂F (x′ + a(x− x′))
∂x

da. (2.3)

Master’s Thesis, Politecnico di Milano 9

Neural Networks with Manipulated Explanations Plamen Pasliev

Choosing the correct baseline can be tricky and there is no perfect baseline which

will prevail in all cases. The authors of Ref. [17] suggest that for image classifi-

cation explanations, a good baseline would be an all-zero image or random noise.

Another approach is to average the attributions of several different noise baselines.

The integral is commonly approximated via a summation

happroxIG (x) = (x− x′)�
m∑
k=1

∂F (x′ + k
m(x− x′))
∂x

1

m
. (2.4)

Integrated gradient tries to deal with the variance of gradients and the shattered

gradient problem since it averages gradients. The computational complexity de-

pends on the step size m used for approximating the integral. Every step is asso-

ciated with a backwards pass. For a baseline x′ = 0, the approximation reduces

to

happroxIG (x) = x�
m∑
k=1

∂F (kmx)

∂x

1

m
.

With a step size of m = 1 and a baseline x′ = 0, integrated gradient is identical

to gradients times input.

2.2.5 Layer-Wise Relevance Propagation (LRP)

So far I have discussed gradient-based explanation techniques which commonly

use the gradient of the output with respect to the input. LRP [13] differs from the

these methods since it propagates the relevance of the output back to the input

without computing the gradient. LRP uses local redistribution rules to propagate

relevance backwards. For the output layer L − 1 where L is the total number of

layers, the relevances are defined as:

RL−1tK = F (x)tK ,

RL−1j 6=tK = 0,

where tK is the output neuron associated with the target class. The commonly

used ε-propagation rule of LRP is formulated as

Rli =
∑
j

xiwji∑
i xiwji + ε

Rl+1
j .

10 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

The ε-stabilizing term is used in cases where the denominator approaches zero. It

has the added property of having the same sign as
∑

i xiwji. Another version of

LRP uses an αβ-rule formulated as

Rli =
∑
j

α
xi(wji)

+∑
i xi(wji)

+
− β

xi(wji)
−∑

i xi(wji)
−R

l+1
j .

Positive weights are denoted as w+ and negative weights are denoted as w−. With

this propagation rule, we can manually control the importance of positive and

negative evidence.

Taylor decomposition

A way to decompose the differentiable output F (x) into input relevances is to use

first order Taylor approximation

F (x) ≈ F (x0) +

(
∂F (x0)

∂x

)T
(x− x0) + ε

where x0 ∈ Rd is a root point with F (x0) ≈ 0 which should lie close to x in the

input domain. In the above equation, ε denotes higher-order terms. If we consider

the first-order terms to compute the heatmap, we get

R(x) =
∂F (x0)

∂x
� (x− x0).

The nearest root x0 is usually obtained iteratively by minimizing some objective

function. If F is expensive to evaluate or differentiate, this process can be time

consuming. Furthermore, F (x0) ≈ 0 is not necessarily solvable since F can be

non-convex. The gradient approach mentioned in Section 2.2.2 can be viewed as

an instance of first-order Taylor decomposition. The function F (x) is expanded at

root point x0 infinitesimally close to the actual point x.

In Ref. [18], propagation rules are derived using the Taylor decomposition logic.

A neural network is decomposed into a set of simple functions. Instead of con-

sidering the network F as a whole, we can divide the problem into sub-parts and

consider the decomposition layer by layer. The ”Unconstrained Input Space” rule

can be formulated as

Rli =
∑
j

(wji)
2∑

i(wji)
2
Rl+1
j

Master’s Thesis, Politecnico di Milano 11

Neural Networks with Manipulated Explanations Plamen Pasliev

or redistributing relevances according to the square magnitude of the weights.

There are also z-rules, which imply constraints on the input space. In my experi-

ments, I will use the zβ-rule for propagating through the first layer. This ensures

our relevances are constrained by the lower lj and upper hj bounds of the input:

R0
i =

∑
j

x0iw
0
ji − lj(w0

ji)
+ − hj(w0

ji)
−∑

i x
0
iw

0
ji − lj(w0

ji)
+ − hj(w0

ji)
−R

1
j (2.5)

This initial relevance is propagated backwards trough all remaining layers of the

network via the z+ rule:

Rli =
∑
j

xi(wji)
+∑

i xi(wji)
+
Rl+1
j (2.6)

This rule is identical to the αβ-rule of LRP with α = 1 and β = 0. One key

distinction between the method I use and ”Deep Taylor Decomposition” used in

Ref. [18] is that they enforce an additional constraint on biases

∀j : bj ≤ 0.

This is done to ensure the existence of a root point x0 where F (x0) = 0. This

constraint is not enforced in my experiments, hence I refer to the method as LRP.

2.2.6 Occlusion

Perturbation-based explanation methods perturb part of the input features and

measure how these perturbations affect the classification output. Occlusion [14]

visualizes the probability of the correct class as a function of a rolling window

occluding part the input image. A graph of the occlusion procedure is shown in

Figure 2.2. Occluded input pixels that cause a large drop in the prediction proba-

bility of the correct class are considered important and receive a high attribution

score.

Computing an occlusion heatmap is significantly more expensive than other ex-

planation methods. With a step size of one pixel and window size of 5x5 pixels

we need 730 forward passes on CIFAR-10 images to compute a single batch of

explanations. For ImageNet [32] images with a size of 224x224 pixels, this method

will take close to 48k forward passes to compute a single batch of explanations.

Because of this computational complexity, training models with manipulated oc-

clusion heatmaps can be a challenging task. Therefore, I only use Occlusion in

12 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

Figure 2.2: Graphical representation of the occlusion procedure.

Section 3.6.

2.2.7 Comparison of methods

There are many explanation methods in literature so it is inevitable we ask our-

selves the question: Which one is the best? It is hard to evaluate these method

empirically. There is no universal agreement what laws the explanation should

abide by. It can be challenging to distinguish between misbehaviour caused by

the model and misbehaviour caused by the attribution method. Some argue that

removing input features with high relevance should reduce evidence in the output.

Tests such as ”pixel-flipping” [13] are introduced to test this property. Feature i

with the highest relevance Ri(x) is removed from the input and the output F (x) is

recomputed. A sharp drop in the classification score implies that the explanation

method performs well and the most important features are removed before the less

important ones. The problem with this test is that images with perturbed pixels

might be unnatural. Even if the accuracy of the model drops drastically, it might

be because the model has not seen similar inputs, not because the explanation is

better or worse.

A method called Remove and Retrain (ROAR) [33] was developed to test this

hypothesis. A number of relevance estimators are considered such as gradient,

integrated gradients and smoothed gradient [16]. For each estimator, ROAR re-

places a percentage of the most important pixels with a constant value for each

Master’s Thesis, Politecnico di Milano 13

Neural Networks with Manipulated Explanations Plamen Pasliev

considered image. After that, the model is retrained on the original dataset with

the addition of the new perturbed images. Finally, the prediction accuracy of the

model is tested. It is shown that perturbing random pixels of the image achieves

the same accuracy drop after retraining as perturbing the ”most important” pixels

of images as determined by many commonly-used explanation methods. Neverthe-

less, removing relevant pixels often leads to a significant drop in accuracy. There

is an opposite approach to ROAR named KAR: Keep And Retrain. Instead of re-

moving most important features, we keep a fraction of the most important features

and replace the rest of the features with a constant value. It is found empirically

that KAR is a worse discriminator of performance of explanation methods com-

pared to ROAR.

Another proposed evaluation technique is to use human-drawn bounding boxes

[17] and count how many of the highly attributed pixels lie in the bounding box.

Bounding boxes usually ignore the context of the image. As I mentioned above,

some classifiers use the snow in wolf images or the water in boat images to make

their decision more accurate.

We can also find some desirable theoretical properties of heatmaps described in

literature:

Conservation

The conservation property [13] states that the total attribution on the input fea-

tures should be equal to the output F (x) for a target class tK :

F (x)tK =
∑
i

Rl+1
i =

∑
i

Rli = ... =
∑
i

R0
i

This implies that the sum of relevances for layer l is equal to the sum of relevances

for layer l+ 1 throughout the network. LRP satisfies this property, while gradient

approaches fail for generic functions.

Positivity

The positivity property [18] states that input features are either relevant (positive)

or irrelevant (zero).

∀i : R0
i ≥ 0

14 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

We want to make sure that the model is not attributing contradictory scores. Let x

be an input for which we have an output of F (x) = 0. A conservative explanation

technique where F (x) = R(x) should assign a relevance of R(x) = 0 for that

input. The only way we can be sure that the components of the relevance are

truly equal to zero instead of being negative and positive with the same amount

is if all relevances are positive.

Continuity

The continuity property [19] states that if two data points are nearly equivalent,

then the explanations of their predictions should also be nearly equivalent. Conti-

nuity can be quantified as the strongest variation of attribution R(x) in the input

domain

max
x6=x′

R(x)−R(x′)

‖ x− x′ ‖2
.

In Ref. [19], it is shown by a counterexample that gradient explanation methods

can be discontinuous while LRP produces a continuous transition.

Selectivity

The selectivity property [13, 19] states that the model output should correspond

to the explanation. In other words, removing highly relevant input pixels should

result in a drop in accuracy. A way to quantitatively rank explanation methods

is by performing ”pixel-flipping”. In practice, all method satisfy this property. A

comparison has been made by Ref. [19] and it is shown how the classification score

drops faster when removing features with high relevance attributed by LRP rather

than removing pixels with high relevance attributed by gradient-based heatmaps.

Sensitivity

The sensitivity property [17] states that for every input and baseline that differ

in one feature but have different predictions then the differing features should be

attributed a non-zero relevance score. Ref. [17] shows with a counter-example

how Gradients do not satisfy this property. This implies that Gradient times

input also does not satisfy this property. Integrated gradients and LRP satisfy the

”sensitivity” property.

Master’s Thesis, Politecnico di Milano 15

Neural Networks with Manipulated Explanations Plamen Pasliev

Implementation invariance

The implementation invariance property [17] states: the attribution for two func-

tionally equivalent models should be identical. Two networks are functionally

equivalent if their outputs are equal for all inputs, despite having very different

implementations. It is shown [17] that gradient-based explanation methods such

as Gradient, Gradient times input and Integrated gradients satisfy this property.

The authors also provide a counter-example how LRP does not satisfy this.

There are many more ”desirable” properties described in literature and probably

no explanation method can satisfy all of them. A comparison of the different

methods and heatmaps can be seen in Figure 2.3. The figure was generated on

images from the CIFAR-10 [34] dataset with a VGG16 [8] neural network.

Figure 2.3: Comparison of heatmaps produced by different methods

16 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

2.3 Manipulated Explanations

I already established why explanations are important for ensuring trust and trans-

parency. Heatmaps by themselves are not enough, however. We need to be certain

that they are also robust to manipulations. Manipulations can happen either by

perturbing the input or by adversarially training the model. We must differentiate

between a robust predictor and a robust explanation.

2.3.1 Adding Adversarial Noise to Input

Adversarial attacks [35, 36] are formed by applying small, worst-case perturbations

to examples from the dataset. More formally, an adversarial example xadv consists

of an image x and perturbation δx:

xadv = x+ δx

Models consistently misclassify adversarial examples with high confidence

F (xadv) 6= F (x)

Even models with different architectures and trained on different datasets often

misclassify the same adversarial example [36]. Perturbations also have the added

property of having a very small magnitude

‖ δx ‖ = ‖ xadv − x ‖ � 1.

The human eye is not suited for distinguishing between xadv and x which makes

these adversarial examples very bothersome. The mere existence of these im-

perceptible attacks suggests a critical difference between sensory information of

humans and neural networks.

In later work [20], it is shown that adversarial examples can manipulate expla-

nations

h(xadv) 6= h(x)

while maintaining the correct prediction label

argmaxiF (xadv)i = argmaxiF (x)i.

Master’s Thesis, Politecnico di Milano 17

Neural Networks with Manipulated Explanations Plamen Pasliev

Take the example mentioned in Section 2.1: if a pathology image is classified as

malignant, the doctor would like to know which parts of the image contributed

most to the decision of the algorithm. If an adversary perturbs the image, the

explanation might highlight the wrong part of the image as highly relevant. This

can be detrimental to the patient.

It is also demonstrated [21] how adversarial examples can keep the output of

the network approximately constant

F (xadv) ≈ F (x)

while the explanation can be manipulated to an arbitrary heatmap. This adver-

sarial example is computed by optimizing the loss function

L = ‖h(xadv)− ht‖2 + γ ‖F (xadv)− F (x)‖2

with respect to xadv via gradient descent. In the above equation, ht is an arbitrary

target heatmap. The authors also show how applying β-smoothing in the non-

linear layers of the neural network makes the explanations much more robust to

these perturbations. In practice, β-smoothing is done by replacing all ReLU layers

in the neural network with Softplus layers. Softplus is the smoothed version of

ReLU and the scale of smoothing is measured its the β-parameter. For more

details, I refer to Ref. [21].

2.3.2 Adversarially Training Models

In some cases, the adversary might not have access to the input but can alter the

weights of the model. In this section, I am considering such a scenario where the

model is adversarially fine-tuned such that the accuracy of the classification out-

put remains high but the heatmaps produced from various explanations methods

are manipulated. The main advantage of adversarial training compared to input

perturbations is that adversarial training manipulates all explanations across the

dataset while perturbations often manipulate a single explanation for a target im-

age.

Not only adversaries are motivated to train models with manipulated explana-

tions. Consider the example mentioned in Section 2.2.1 where an individual gets

automatically rejected for a loan by an ML algorithm. This algorithm might use

features such as race, country of origin or gender for prediction. A company might

18 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

notice such unfair biases but they might not be willing to retrain the model on a

different, unbiased, dataset. Perhaps their data shows a strong correlation between

race and bad credit score so they would be inclined to keep the racial feature when

computing loan eligibility.

What they can do instead is to fine-tune the model such that the explana-

tion hides the importance of unlawful or unfair features. In another hypothetical

example, an ML system evaluates candidates for a job position and takes their

Curriculum vitae as input. Unfair biases are possible to occur in the evaluation of

candidates. Companies can again mask explanations by adversarial training.

Previous work [22] has shown that adversarial training is possible and it works

relatively well on different network architectures and explanation methods. The

explanation methods which were manipulated are Grad-CAM [15] and a modified

version of LRP [13]. 2

Figure 2.4: VGG16 architecture

Units in the convolutional layer of the neural network are segmented into feature

maps. Each unit of a given feature map looks for the same feature in the input

but at different positions. For example, the first convolutional layer displayed in

2 The ε-rule is used for the fully connected linear layers and the αβ-rule is used for
the convolutional layers.

Master’s Thesis, Politecnico di Milano 19

Neural Networks with Manipulated Explanations Plamen Pasliev

Figure 2.4 contains 64 feature maps with height and width of 32 pixels while the

last convolutional layer contains 512 feature maps with height and width of two

pixels.

Let yk be the classification score of image x for a fixed target class k before

the softmax layer. Grad-CAM is an explanation method which is computed by

taking the derivative of yk with respect to feature maps C ∈ RC,H,W of a target

convolutional layer, which is usually the last convolutional layer of the network.

Here C,H, and W denote the number of channels, height and width of the feature

maps C respectively. The mean value of the gradient is used for obtaining the

feature map importance weight akf

akf =
1

HW

H∑
i

W∑
j

∂yk

∂Cfij
,

where Cfij labels the components of the feature maps Cf . The parameter akf cap-

tures the importance of feature map f for target class k. Using these importance

weights, we obtain the final Grad-CAM heatmap by performing a linear combina-

tion of the results

Grad-CAM(x)k = ReLU(
∑
f

akfC
f) ∈ RH,W

The problem with this method is that the obtained heatmaps have the same shape

as the target convolutional layer. For a VGG16 model trained on the ImageNet

[32] dataset for example, Grad-CAM would produce a 14 x 14 heatmap if the

target layer is the last convolutional layer. Then this heatmap is upsampled to

match the dimensions of the input. For a VGG16 model trained on the CIFAR-10

dataset the heatmap size would be 2x2 pixels. Such a low-resolution heatmap

cannot show the precise input-pixel importance like gradient or LRP methods. It

can only highlight large regions.

The authors of Ref. [22] test different attacks associated to different penalty

terms in the network’s objective function. They take models, pre-trained for high

classification accuracy, and optimize the loss function L:

L(D, F) = LC(D, F) + λLF (D, F)

20 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

with respect to the model parameters w via gradient descent. LC is the standard

cross entropy classification loss, which is defined as

LC(D, F) =
1

n

n∑
i=1

− log

(
exp(F (xi)ti)∑
j exp(F (xi)j)

)
(2.7)

=
1

n

n∑
i=1

−F (xi)ti + log(
∑
j

exp(F (xi)j)). (2.8)

In general terms, this means we would like the highest possible prediction proba-

bility for sample xi for target class ti. λ is the trade-off parameter between the two

losses, D is the training dataset, F is the neural network and LF is the penalty

loss. For example, one can choose a loss LF reducing relevances of the top k pixels

with the highest original relevance. In this case, the penalty term would then be

LF =
1

n

n∑
i=1

∑
j∈Pi,k

h(xi)j .

Here Pi,k denotes the set of k pixels with the highest relevance for data point

xi computed on the original model before fine-tuning. h(xi)j is the j-th pixel of

the heatmap produced for image xi. There are three other objectives which the

authors are optimizing for: shifting the center of mass of heatmaps, highlighting

a particular section of heatmap and swapping the explanation of two target classes.

Ref. [22] has a number of limitations however. First, for training and evaluation

of their experiments they use LRPT . This is a modified version of LRP which

computes the relevances until a target layer T . It uses the same propagation rules

as conventional LRP discussed in Ref. [13]. In Ref. [22] the target layer is the last

convolutional layer. The relevances of that layer are then upsampled to the di-

mensions of the input. This is identical to Grad-CAM where the backpropagation

is effectively done until a target layer. The weights of a large majority of layers

are ignored so the explanation of LRPT becomes less reliable.

Furthermore, LRPT produces heatmaps with the same shape as Grad-CAM.

Both methods suffer from the problem where the explanation map has a very

small resolution hence the explanations are not precise. The authors claim it is

easier to manipulate LRPT heatmaps rather than LRP heatmaps. They only try

using LRPT and Grad-CAM heatmaps during model training. For evaluation they

Master’s Thesis, Politecnico di Milano 21

Neural Networks with Manipulated Explanations Plamen Pasliev

additionally show heatmaps computed by the GradientT method. GradientT is

the gradient of the output with respect to a target layer T . In their case, T is again

the last convolutional layer of the network. Again, this method is very similar to

Grad-CAM. It suffers from low resolution heatmaps and ignores the large major-

ity of layers of the network. They avoid training with the GradientT objective

because it produces noisy heatmaps. The authors also evaluate their models on

standard LRP but the results they show in the paper do not seem convincing.

In the next chapter, I am going to extend this work and show that adversarial

training allows standard LRP explanations to be manipulated in a persuasive

manner. All of the manipulated heatmaps will have the same dimensions as the

input image which allows for very precise manipulations. Beyond LRP, I will

manipulate gradient-based methods such as Gradient, Gradient times input and

Integrated gradients as well as perturbation-based explanation methods such as

Occlusion [14].

22 Master’s Thesis, Politecnico di Milano

3 Experiments and evaluation

3.1 Overview

In this chapter, I will manipulate the explanations of multiple different neural net-

works while maintaining high classification accuracy. Throughout the experiments

I am minimizing the loss function

L(F,D) = LC(F,D) + λLM(F,D)

where F is the model, D is the data set, LC(F,D) is a classification loss term,

LM(F,D) is the manipulation loss term and λ denotes the trade-off parameter

between the two losses. I train models with different variations of the LC loss term

and the LM loss term.

Two different classification loss terms LC are used in the following experiments.

Initially, in Sections 3.3 and 3.4, I use the cross entropy loss defined in Equation

2.7. Optimizing this objective allows the model to maintain high classification ac-

curacy. Later, in Section 3.5, I use the mean squared error between the prediction

probabilities of the model before manipulation and the prediction probabilities of

the model after manipulation as classification loss. This is done so that the output

of the network remains constant.

I perform two different manipulation attacks associated with different manipu-

lation loss terms LM in the objective function. In Section 3.3, the center of mass

of explanations is shifted towards the corner. In Section 3.4, I manipulate expla-

nations to an arbitrary target heatmap.

In Section 3.6, I test how well the models manipulate perturbation-based expla-

nation methods. In Section 3.7, I manipulate explanations by training the convo-

lutional part of the model while freezing the weights of the classifier. In Section

3.8, I adversarially train a simpler neural network performing binary classification

on non-image data.

Neural Networks with Manipulated Explanations Plamen Pasliev

3.2 General Setup

The experiments in this chapter are conducted on a neural network with the

VGG16 [8] architecture. The dataset used for experiments is CIFAR-10 [34]. It

consists of 60K images split in ten classes with 6k images per class. The size of each

image x ∈ RC,H,W is 3x32x32 pixels. The train/test split is 50k/10k respectively.

The image pixel intensities are normalized by subtracting the mean pixel intensity

of the data set and dividing by the standard deviation of the pixel intensity of the

data set.

Because of the small pixel size of the images, it could be challenging even for a

human agent to correctly classify each image. Manual classification attempts have

been conducted for CIFAR-10 [37]. The achieved human accuracy is around 94%.

Image classification model

I initially train a VGG network solely for high classification accuracy. This is my

baseline model denoted as Facc. I use explanations generated on this baseline model

for comparison to models with manipulated explanations. The objective function

that is minimized during training is the cross entropy loss defined in Equation 2.7.

VGG network is trained for 350 epochs. I use SGD [38] with momentum value

µ = 0.9 . I use an adaptive learning rate lr as a function of the epoch:

lr =

0.1, if 0 < epoch ≤ 150

0.01, if 150 < epoch ≤ 250

0.001, if 250 < epoch ≤ 350

After training, this model achieves a top-1 classification accuracy of 92.46% on the

test set.

3.2.1 Evaluation Metrics for Visual Similarity

In the following experiments, I am going to use these evaluation metrics to quan-

titatively compare the visual similarity between generated heatmaps and target

heatmaps. Similar methods are used in Ref. [21, 39].

24 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

Mean Squared Error (MSE)

Let p, q ∈ RH,W be two images where W and H stand for the width and height of

the image respectively. The mean-squared error (MSE) for two images is defined

as

MSE(p, q) =
1

WH

W∑
i=1

H∑
j=1

(pij − qij)2 . (3.1)

Low MSE indicates high similarity between images.

Pearson Correlation Coefficient (PCC)

Pearson correlation coefficient [40] measures the linear correlation between two

variables. For the two-dimensional images p and q with width W and height H

PCC is defined as

PCC(p, q) =

∑W
i=1

∑H
j=1(pij −mp)(qij −mq)√∑W

i=1

∑H
j=1(pij −mp)2

√∑W
i=1

∑H
j=1(qij −mq)2

(3.2)

where mp and mq are the mean pixel intensities for images p and q respectively.

The correlation value is bounded by

PCC(p, q) ∈ [−1, 1]

where PCC = 0 implies no correlation. A score of one implies exact linear positive

correlation while a score of minus one implies exact linear negative correlation.

Structural Similarity Index (SSIM)

SSIM [41] integrates three equations that measure luminance similarity, contrast

similarity and structure similarity of two images. SSIM is computed on a window

sliding over two images. The equation used to calculate SSIM for two windows p

and q of common size is

SSIM(p, q) =
(2mpmq + C1)(2σpq + C2)

(m2
p +m2

q + C1)(σ2p + σ2q + C2)
, (3.3)

Master’s Thesis, Politecnico di Milano 25

Neural Networks with Manipulated Explanations Plamen Pasliev

where mp and mq stand for the mean pixel intensity of p and q. With σp and σq
I denote the standard deviation of the pixel intensity of p and q. C1 and C2 are

constants added for stability when the denominator approaches zero. High values

of SSIM indicate high similarity. The similarity score is bound by

SSIM(p, q) ∈ [−1, 1]

where SSIM = 0 implies no structural similarity. An SSIM score of one implies

perfect positive structural similarity while an SSIM of minus one implies perfect

negative structural similarity.

3.2.2 Vanishing Gradients

For the gradient-based manipulation experiments, the heatmaps are computed by

taking the gradient of the output with respect to the input image. I compute the

manipulation loss LM(F,D) based on those heatmaps and, for optimization, the

derivative with respect to the model weights is taken. Hence, the second derivative

of the model output needs to be calculated.

The default VGG16 architecture uses rectification (ReLU) non-linearities [8].

There is a problem when using ReLU non-linearities and computing second order

derivatives. Consider an arbitrary ReLU layer that takes the output yl of layer l:

ReLU(yl) = max(0, yl) =

{
0, if yl ≤ 0

yl, if yl > 0

The first order and second order derivative of this function are:

ReLU ′(yl) =

{
0, if yl ≤ 0

1, if yl > 0

ReLU ′′(yl) = 0.

This fundamental property of ReLU to have a second derivative of zero makes

optimization very difficult. Now consider a SoftPlus layer that takes the output yl
of layer l:

SoftPlusβ(yl) =
1

β
∗ ln(1 + eβyl)

26 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

The first and second order derivatives are therefore

SoftPlus′β(yl) =
eβyl

eβyl + 1

SoftPlus′′β(yl) =
β eβyl

(eβyl + 1)2
.

SoftPlus is a very close approximator of ReLU for β → ∞. SoftPlus also has

a non-zero second order derivative. Visual representation of ReLU and SoftPlus

functions can be found in Figure 3.1. I decided to use VGG16 with SoftPlus

non-linearities during training and switch back to ReLU during evaluation. The

β-parameter dictates the smoothness of the approximation. We also see that for

large β, the second derivative of SoftPlus is very close to zero. It can be challenging

to find a suitable β-value which approximates ReLU well-enough but also enables

efficient optimization. After experimenting with different values, I got my best

results with β = 20.

Figure 3.1: Plots of ReLU and SoftPlus functions

3.3 Shifting Center of Mass

In this section, I will shift the center of mass (COM) of explanations. Four models

will be trained, each manipulating a different target explanation method. I will

also measure how well the manipulation applies to other explanation methods dif-

ferent from the target method.

Master’s Thesis, Politecnico di Milano 27

Neural Networks with Manipulated Explanations Plamen Pasliev

The center of mass of an image x represents the weighted mean position across

all dimensions. I use pixel intensities as weights. For a two-dimensional image

x ∈ RW,H , it can be calculated in the following way

COM(x) =
1

Mx

W∑
i=1

H∑
j=1

xij [ij] ∈ R2

where Mx is the sum of all pixel intensities of x, xij is the pixel intensity of pixel

(i, j) and [ij] are the coordinates of pixel (i, j). An illustration of center of masses

across images can be found in Figure 3.2.

Figure 3.2: Center of mass across images and heatmaps

I use Euclidean distance (ED) to evaluate how well the center of mass of expla-

nations is shifted. Smaller distance between center of masses of images indicates

higher degree of similarity.

For two points p, q ∈ R2 the equation for ED is

ED(p, q) =
√

(p0 − q0)2 + (p1 − q1)2 . (3.4)

I choose to manipulate the heatmaps in such a way that their center of mass

shifts towards the top-left corner. To make this possible, I define a target COM

of tcom = [0, 0]. The total loss is therefore

28 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

L(F,D, tcom, λ) = LC(F,D) + λLM(F,D, tcom)

where LC(F,D) is the cross entropy loss defined in Equation 2.7. The manipu-

lation loss is

LM(F,D, tcom) =
1

N

N∑
n=1

‖COM(hn), tcom‖2

where N is the size of the training set and hn is the heatmap of the n-th image.

For each image xn, the COM of heatmap hn is calculated. Then I measure the

euclidean distance between the generated center of mass and the target center of

mass tcom.

Let Fcom be a model trained for accuracy and manipulated ”center of mass”

explanation. During a single epoch of the training procedure, the algorithm iter-

ates through the whole train dataset. The training dataset is split in mini-batches

containing 256 images each. L is optimized with respect to the weights of the

neural network.

Random grid search [42] was used for hyper-parameter tuning. I found a λ value

of 0.008 to balance the magnitudes of the two losses well. Furthermore, I use the

Adam optimizer [43] with learning rate of 5 · 10−5 and default β1, β2 parameters.

Pseudocode can be found in Algorithm 1.

Shifting center of mass of gradient heatmaps

For the first experiment, I manipulate the gradient heatmaps defined in Equation

2.1. Let this model be FGcom.

I loaded Facc and started training with the added LM objective. The training

procedure ran for 200 epochs in total. A plot displaying the error throughout

epochs can be found in Figure 3.4. After the training procedure was completed,

the model FGcom was evaluated on all 10k CIFAR-10 test images. A mean LM of

0.865 was measured across the test dataset. This implies that the COM of gradient

explanations was on average less than one pixel away from the top left corner of

images. The model maintained high classification accuracy of 91.8%.

Master’s Thesis, Politecnico di Milano 29

Neural Networks with Manipulated Explanations Plamen Pasliev

Algorithm 1 Train model with ”center of mass” objective. x̂, t̂x and ĥx stand

for batches of images, true labels and heatmaps. The method get heatmaps takes

a model and images as input and returns the corresponding heatmaps. I imple-

mented four different versions of this method, one for each type of explanation

which I try to manipulate.

1: procedure Training(Fcom, D, tcom, λ)

2: for x̂, t̂x ∈ D do

3: LC ← CrossEntropyLoss(Fcom(x̂), t̂x)

4: hx̂ ← get heatmaps(Fcom, x̂)

5: LM ← ‖COM(hx̂), tcom‖2
6: L ← λ · LC + (1- λ) · LM
7: g ← ∇wL
8: w ←AdamWeightUpdate(w, g, lr)

Figure 3.3: Heatmaps produced by FGcom.

FGcom was also evaluated on Gradient times input, Integrated gradients and LRP.

I found that they all have been manipulated successfully. Heatmaps produced by

FGcom are shown in Figure 3.3. More image examples and comparison to the origi-

nal model are shown in Appendix A. To make sure these manipulations apply to

other images and not only the ones shown on the figure, I measured the mean ma-

nipulation loss LM over the whole test set. Results are shown in Table 3.1. These

scores demonstrate that the results displayed in Figure 3.3 are not cherry-picked.

FGcom does not only manipulate all test samples but also different explanation

methods while maintaining high classification accuracy.

Shifting center of mass of ”Gradient times input” heatmaps

For the second experiment in this section, I manipulate ”Gradient times input”

(GI) heatmaps defined in Equation 2.2. I call this model FGIcom.

30 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

Figure 3.4: Loss across epochs for FGcom (top) defined in Section 3.3 and FGth (bot-

tom) defined in Section 3.4.

Again, the baseline model Facc was loaded and the training procedure was

started with the added center of mass manipulation objective LM. The train-

ing procedure ran for 200 epochs. This method achieved worse evaluation results

on GI heatmaps compared to FGcom on test images. The manipulation loss for GI

heatmaps for the FGIcom model was 1.834 with classification accuracy of 91.3%. The

algorithm seemed to memorize the train data and perform worse on the test set.

Heatmaps generated from FGIcom are shown in Figure 3.5. More image examples

and comparison to the original model are shown in Appendix A. All evaluation

results are shown in Table 3.1. This objective works well on different explanation

methods but is slightly worse than FGcom.

Master’s Thesis, Politecnico di Milano 31

Neural Networks with Manipulated Explanations Plamen Pasliev

Model Accuracy Gradient LM GradInput LM IntGrad LM LRP LM
Facc 92.4 22.15 22.02 22.02 22.70

FGcom 91.8 0.865 1.054 1.114 8.481

FGIcom 91.3 1.867 1.834 1.962 9.823

F IGcom 91.6 20.945 20.858 1.472 21.656

FLRPcom 91.45 21.17 20.95 21.16 0.59

Table 3.1: Manipulation loss of models across different explanation methods.

Figure 3.5: Heatmaps produced by FGIcom.

Shifting center of mass of ”Integrated gradient” heatmaps

For the third experiment, I manipulate integrated gradient (IG) heatmaps defined

in Equation 2.4. I denote this model as F IGcom.

The procedure is the same as for the other explanation methods described above.

The baseline model Facc is loaded and fine-tuned. Integrated gradient requires

multiple backward passes to compute an explanation. In Section 2.2.4 I showed

how the integral is approximated via a summation and the step size parameter m

dictates the number of backward passes we are going to need for each explanation.

There is an inherit trade-off between computational cost and how accurate the

integral approximation is. A step size of eight was chosen during training and 100

during evaluation.

This model was trained for 100 epochs with a reduced batch size of 64. The

manipulation loss of F IGcom for IG heatmaps on the test set is 1.472 with classification

accuracy of 91.64%. Slightly better than FGIcom and a little worse than FGcom. This

model could not manipulate other explanation methods. Heatmaps generated from

F IGcom are shown in Figure 3.6. More image examples and comparison to the original

32 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

Figure 3.6: Heatmaps produced by F IGcom.

model are shown in Appendix A. Evaluation results are shown in Table 3.1.

Shifting center of mass of LRP heatmaps

For the fourth experiment of this section, I manipulate LRP heatmaps defined in

Equation 2.6. I denote this model as FLRPcom .

Computing an LRP explanation is computationally cheap. The pre-trained

model Facc was loaded and trained for 200 additional epochs. The resulting model

had dramatically manipulated LRP heatmaps with a mean manipulation loss of

LM = 0.59. This model did not manipulate other explanation methods. Heatmaps

generated from FGILRP are shown in Figure 3.7. More image examples and compar-

ison to the original model are shown in Appendix A. Evaluation results are shown

in Table 3.1.

Figure 3.7: Heatmaps produced by FLRPcom .

In summary, using the gradient heatmap during training for FGcom manipulates

all considered gradient-based methods better than the other models while ma-

nipulating LRP during training for FLRPcom performed excellent on the test set for

Master’s Thesis, Politecnico di Milano 33

Neural Networks with Manipulated Explanations Plamen Pasliev

LRP. I decided to test the limits of manipulation. In the next section I will try to

manipulate explanations such that they reproduce an arbitrary image.

3.4 Target Heatmap

In this section, I am going to manipulate explanations in such a way that they

reproduce an arbitrary target heatmap. I am going to train two models. One

will aim to manipulate gradient-based explanations and the other will manipulate

LRP explanations.

Figure 3.8: Examples of target heatmaps.

Target heatmaps were generated in MS Paint and used during training. Exam-

ples of target heatmaps can be found in Figure 3.8. In this section, I will minimize

the objective function

L(F,D, th, λ) = LC(F,D) + λLM(F,D, th)

where LC(F,D) is the cross entropy loss defined in Equation 2.7. The manipu-

lation loss LM is the mean-squared error between the heatmap hn generated for

the n-th image of the training set N and the target heatmap th

LM(F,D, th) =
1

N

N∑
n=1

MSE(hn, th).

34 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

To measure baseline similarity between explanations and the target heatmap I

loaded the Facc model and calculated the manipulation loss for different explana-

tion methods across the test set. Results are shown in Table 3.2.

A model trained for accuracy and manipulated ”target heatmap” explanation

is denoted as Fth. The algorithm iterates through the dataset which is split in

batches of 256 images. Images and target heatmaps are normalized such that the

sum of pixel intensities for each image xn is equal to one

∀n :

W∑
i=1

H∑
j=1

(xij)n = 1

L is optimized with respect to the weights of the neural network. Again, random

grid search was used for hyper-parameter tuning. A λ-value of 0.8 was found to

deliver good results. I used the Adam optimizer [43] with an initial learning rate

lr of 5.10−5. The pseudocode can be found in Algorithm 2.

Algorithm 2 Train model with ”target heatmap” objective

1: procedure Training(Fth, D, th, λ)

2: for x̂, t̂x ∈ D do

3: LC ← CrossEntropyLoss(Fth(x̂), t̂x)

4: hx̂ ← get heatmaps(Fth, x̂)

5: LM ← MSE(hx̂ , tĥ)

6: L ← λ · LC + (1- λ) · LM
7: g ← ∇wL
8: w ←AdamWeightUpdate(w, g, lr)

Manipulating gradient-based heatmaps to target image

For the first experiment in this section, I manipulate gradient-based heatmaps. I

call this model FGth. The target heatmap used during training is the cross shown

in Figure 3.8.

Master’s Thesis, Politecnico di Milano 35

Neural Networks with Manipulated Explanations Plamen Pasliev

Figure 3.9: Heatmaps produced by FGth. Gradient-based methods are manipulated

while LRP seems unchanged.

I loaded the baseline model Facc and trained it for 1050 additional epochs. De-

tailed information about loss throughout epochs can be found in Figure 3.4.

Heatmaps produced by FGth can be found in Figure 3.9. More image examples and

comparison to the original model are shown in Appendix B. Similarly to FGcom, this

model manipulates gradient times input and integrated gradient heatmaps. Unlike

FGcom however, this model does not manipulate LRP heatmaps. The mean MSE,

PCC and SSIM between generated explanations and the ”cross” target heatmap

was measured. Results are shown in Table 3.2. The quantitative results suggest

that the manipulation works across the whole test set. Low MSE or high PCC and

SSIM scores suggest high similarity. When comparing the scores of Facc and FGth,

we see that the LRP values do not change much while all other heatmap types are

manipulated.

Manipulating LRP heatmaps to target image

For the second experiment in this section, I manipulate LRP heatmaps. I denote

this model as FLRPth . The target heatmap again is the cross shown in Figure 3.8.

The training procedure is identical to FGth. I loaded the baseline model Facc and

trained it for an additional 1050 epochs. A comparison of heatmaps generated by

this model can be found in Figure 3.10. More image examples and comparison to

the original model are shown in Appendix B. We can see that FLRPth manipulates

LRP heatmaps well. The manipulation did not apply to gradient-based methods.

When comparing the performance of Facc and FLRPth we see that the LRP scores

change drastically while those of gradient-based explanation methods remain al-

most unchanged. Mean MSE, PCC and SSIM between generated explanations

36 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

Figure 3.10: Heatmaps produced by FLRPth . This model only manipulates LRP

explanations.

from FLRPth and the cross target heatmap can be found in Table 3.2.

In summary, I trained two models that manipulate explanations to a ”cross”

image. The first model, FGth, manipulates gradient-based explanation methods.

The second model, FLRPth , manipulates LRP explanations. These manipulations

work across the whole CIFAR-10 test data set.

3.5 Identical Prediction Probabilities

In this section, the explanation of Facc is manipulated while maintaining the pre-

diction probabilities of the model constant. This is useful because it implies that

manipulation would also work for multi-label classification problems. We should

differentiate between keeping the winning class of the model the same

argmaxiF (x)i = argmaxiFacc(x)i

and keeping the prediction probabilities of the model identical

F (x) ≈ Facc(x) .

The loss function I will minimize is

L(F, Facc,D, th, λ) = LC(F, Facc,D) + λLM(F,D, th)

where the classification loss is

LC(F, Facc,D) =
1

N

N∑
n=1

MSE(F (xn), Facc(xn))

Master’s Thesis, Politecnico di Milano 37

Neural Networks with Manipulated Explanations Plamen Pasliev

Evaluation of heatmaps generated by Facc
Gradient Gradient Times Input Integrated Gradient LRP

Accuracy 92.460 92.460 92.460 92.460

MSE 5.27 · 10−6 6.015 · 10−6 6.20 · 10−6 4.59 · 10−6

PCC 0.162 0.132 0.133 0.211

SSIM 0.099 0.172 0.172 0.068

Evaluation of heatmaps generated by FGth
Gradient Gradient Times Input Integrated Gradient LRP

Accuracy 91.560 91.660 91.660 91.660

MSE 1.702 · 10−6 2.73 · 10−6 2.68 · 10−6 4.23 · 10−6

PCC 0.798 0.661 0.678 0.273

SSIM 0.389 0.523 0.482 0.038

Evaluation of heatmaps generated by FLRPth

Gradient Gradient Times Input Integrated Gradient LRP

Accuracy 91.480 91.480 91.480 91.480

MSE 5.109 · 10−6 5.819 · 10−6 5.826 · 10−6 2.148 · 10−6

PCC 0.157 0.125 0.132 0.733

SSIM 0.058 0.134 0.111 0.443

Table 3.2: Evaluation of heatmaps generated by different models. MSE, PCC and

SSIM measure the mean distance/similarity between heatmaps and the

”cross” target heatmap.

38 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

and the manipulation loss is

LM(F,D, th) =
1

N

N∑
n=1

MSE(hn, th).

L is optimized with respect to the parameters w of the neural network F . Pseu-

docode can be found in Algorithm 3.

Algorithm 3 Train model with ”target heatmap” objective and identical predic-

tion probabilities to the original model

1: procedure Training(Fipp, Facc, D, th, λ)

2: for x̂, t̂x ∈ D do

3: LC ← MSE(Fipp(x̂), Facc(x̂))

4: hx̂ ← get heatmaps(Fipp, x̂)

5: LM ← MSE(hx̂ , tĥ)

6: L ← λ · LC + (1- λ) · LM
7: g ← ∇wL
8: w ←AdamWeightUpdate(w, g, lr)

I trained a model that manipulates gradient explanations while maintaining its

prediction probabilities constant. This model is denoted as FGipp. I trained FGipp for

1350 epochs.

Manipulation scores are shown in Table 3.3. Quantitative results are compared

to the results of the baseline model Facc and the model with manipulated gradient

heatmaps FGth.

I tested the mean classification error LC across the test set for FGipp and FGth.

The resulting prediction probabilities of FGipp on the test set were extremely close

to the prediction probabilities of Facc with

LC(FGipp, Facc,D) =
1

N

N∑
n=1

MSE(FGipp(xn), Facc(xn)) ≈ 0.007 .

Master’s Thesis, Politecnico di Milano 39

Neural Networks with Manipulated Explanations Plamen Pasliev

Facc FGth FGipp
Accuracy 92.460 91.560 91.660

Classification loss 0 0.0146 0.007

MSE 5.277 · 10−6 1.702 · 10−6 1.47 · 10−6

PCC 0.162 0.798 0.830

SSIM 0.099 0.389 0.445

Table 3.3: Evaluation of classification loss and heatmaps generated from Facc, F
G
th

and FGipp.

This error is around twice as small as the prediction probabilities of FGth where the

objective was to keep the winning class constant

LC(FGth, Facc,D) =
1

N

N∑
n=1

MSE(FGth(xn), Facc(xn)) ≈ 0.0146 .

Figure 3.11: Heatmaps produced by FGipp.

Heatmaps produced from FGipp can be found in Figure 3.11. We see that the

heatmaps generated from FGipp manipulate gradient explanations greatly, generat-

ing better results than the FGth model. Likely, this is due to the fact that FGipp was

trained for more epochs.

3.6 Perturbation-Based Explanations: Occlusion

I used a 5x5, all-zero patch with a step size of one pixel. Therefore, the output

heatmaps had spatial resolution of 27x27 pixels. With a step size of one pixel

40 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

we need 730 forward passes on CIFAR-10 images to compute a single batch of

explanations.

Figure 3.12: Occlusion heatmaps produced by different models.

I tested if the adversarially trained models, FGcom and FGth, can also manipulate

occlusion explanations. Results are displayed in Figure 3.12. More image examples

are shown in Appendix D. It is evident that, although the models were optimized

to manipulate gradient heatmaps, they are also able to manipulate perturbation-

based methods.

3.7 Frozen Classifier

I tested whether a manipulation would be possible if we do not train the parameters

of the whole network but only a subset of them. The VGG network architecture

shown in Figure 2.4 can be split into two sections: a convolutional part and a

classifier. The convolutional part consists of all convolutional and pooling layers

of the network. There are 13 convolutional layers in total. The classifier consists

of the final 3 fully-connected linear layers.

The weights of the fully-connected linear layers were frozen. This means that

during backpropagation these weights will not be updated. I used gradient heatmaps

in the objective function. I call this model as FGfc. The same training procedure

as Algorithm 2 was executed and run for 1050 epochs. The results can be found

Master’s Thesis, Politecnico di Milano 41

Neural Networks with Manipulated Explanations Plamen Pasliev

Heatmaps generated with Gradient

Facc FGth FGfc
Accuracy 92.460 91.560 91.570

MSE 5.277 · 10−6 1.702 · 10−6 2.59 · 10−6

PCC 0.162 0.798 0.654

SSIM 0.099 0.389 0.280

Table 3.4: Evaluation of heatmaps generated by the gradient explanation method

on Facc, F
G
th and FGfc.

at Table 3.4. Heatmaps produced from FGfc can be found in Figure 3.13.

Figure 3.13: Heatmaps produced by FGfc.

It is evident that heatmaps can still be manipulated in this way but the error

drops faster when we are training the whole network. I conducted more exper-

iments such as freezing the whole convolutional section of the model, freezing

various subsets of layers of the network and training a single layer but the results

were not satisfactory. The error does not seem to go down when I try to train five

or less layers. I managed to manipulate the explanations by training the first ten

convolutional layers of the network.

3.8 Manipulating Simpler Models

To show that manipulations are possible not only for computer vision problems, I

trained a neural network on the Census dataset for adult income [?]. The predic-

42 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

tion task was to determine whether a person makes over 50K a year. The features

I used were ’Age’, ’Years of study’, ’Capital gain’, ’Capital loss’, ’Work hours per

week’, ’Race’ and ’Gender’. Since ’Race’ and ’Gender’ are categorical, they were

one-hot-encoded. The train set includes over 32K data points and the test set

consists of over 16K data points.

The neural network architecture had 2 linear layers with ReLU non-linearity

and 100 neurons in each layer. SoftMax was applied after the last linear layer.

The loss function was cross entropy defined in 2.7 and the optimizer of choice was

Adam [43] with learning rate of 0.001.

After 200 epochs, our model achieved classification accuracy of 83.4%. The gra-

dient explanation method described in Equation 2.1 was used to derive the input

feature importance. A visual representation of the feature importance is shown

in Figure 3.14. We can see that racial and gender features have notable importance.

I also trained the exact same model for 200 epochs without unfair features. The

achieved classification accuracy dropped to 82.1%. Seeing these results, we can

be fairly certain that race or gender have predictive power in the context of our

problem.

Finally, I adversarially-trained the first model which used all features. I used

the same method as the Target Heatmap attack described in Section 3.4. The

target explanation was the original feature importance for continuous features

in combination with an importance score of zero for categorical features. The

model was fine-tuned for 100 additional epochs. The achieved classification ac-

curacy remained 82.7%. A visual representation of the feature importance of the

adversarially-trained model is shown in Figure 3.15. We can see that, although the

importance score of unfair features is near zero, the model utilizes their predictive

power to make a more accurate decision.

Some of the models discussed in this section manage to manipulate all considered

explanation methods across the whole test set. We see that manipulations are

powerful and can potentially be harmful to ML. We also saw that manipulations

can happen across different ML domains. In the next section, I will discuss possible

ways of detecting manipulations.

Master’s Thesis, Politecnico di Milano 43

Neural Networks with Manipulated Explanations Plamen Pasliev

Figure 3.14: Feature importance before manipulation.

Figure 3.15: Feature importance after manipulation.

44 Master’s Thesis, Politecnico di Milano

4 Detecting manipulations

In this section, I examine scenarios where adversarial model manipulation may be

detected or prevented. In Section 4.1, I test if manipulations work on randomly

generated input images. In Section 4.2, I test if manipulation works if we add

noise to the weights of models.

4.1 Noise as Input

One might argue that the manipulations discussed so far only work on the CIFAR-

10 data set and do not apply to other images. To test this, I generated 10k random

image samples from a Gaussian distributionN (0, 1) and used those as input for my

models. Examples of explanations generated by Facc, F
G
com and FGth on the random

input are shown in Figure 4.1. The manipulation scores over all 10k samples are

shown in Table 4.1. We see that, even though this input comes from a completely

different distribution than the CIFAR-10 images, the explanations are still greatly

manipulated.

Figure 4.1: Explanation generated with Gaussian noise as input by Facc, F
G
com and

FGth

Neural Networks with Manipulated Explanations Plamen Pasliev

Gradient heatmaps generated with Gaussian noise as input.

Facc FGcom FGth
COM ED 22.48 2.40 -

TH MSE 4.993 · 10−6 - 1.92 · 10−6

TH PCC 0.138 - 0.769

TH SSIM 0.033 - 0.336

Table 4.1: Evaluation of heatmaps generated by the gradient explanation method

on Facc, F
G
com and FGth with random noise as input. The COM ED is

measured for Facc and FGcom. The target heatmap (TH) similarity is

measured for Facc and FGth.

Gradient heatmaps generated with Gaussian noise as input.

Facc FGcom FGth
MSE 1.249 · 10−6 9.216 · 10−6 1.101 · 10−6

PCC 0.233 0.975 0.763

SSIM 0.158 0.996 0.672

Table 4.2: Mean heatmap similarity between heatmaps shown in Figure 4.1 with

heatmaps produced by Facc, F
G
com and FGth with random noise as input.

A potential way to detect manipulations is to leverage the usage of random noise

as input. Manipulated explanations seem to be very similar to each other while

explanations generated by Facc vary across different input. I compared heatmap

similarity between the heatmaps shown in Figure 4.1 and 100 other heatmaps

produced by the same models with different instances of random noise as input.

Results are shown in Table 4.2. PCC and SSIM scores show that heatmaps gen-

erated by FGcom and FGth are highly similar across different inputs.

Naturally, this detection method would not work for all attacks. Some attacks,

such as lowering the relevance of top-k pixels, can still produce dissimilar expla-

nations across different input. We would need more information about the type of

attack in order to detect it.

46 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

4.2 Adding Noise to Weights

It is known that detecting adversarial perturbations is possible if we additionally

perturb the input with some Gaussian noise [44]. Since in my experiments I fine-

tuned the model parameters, perhaps if I add noise to the weights of the model,

that might also reveal manipulation.

I evaluated the models after adding Gaussian noise to the weights to see how

that would affect manipulation. In Figure 4.4, it is visualized how adding noise

with different variances changes the behaviour of the models. The drops in ac-

curacy of Facc, F
G
com and FGth are very similar for the same levels of added noise.

The explanations generated by FGcom and FGth with added noise can be found in

Figures 4.2 and 4.3. More image examples and comparison to the original model

are shown in Appendix C. We can see that the manipulation is still significant

after we increase levels of noise. This suggests that detecting models with manip-

ulated explanations can be quite difficult. Currently, the only way we can detect

manipulations is if we have access to the original model or if we have knowledge

of the expected attack.

Figure 4.2: Heatmaps produced by FGcom with added Gaussian noise N (0, 0.02) to

the model parameters.

These models not only manipulate all explanation methods considered in this

thesis, but also work on almost any input. Beyond that, it seems difficult to detect

such manipulations. These results seem concerning. Adversarial model training

has the potential to overcome the fairness and transparency that the explanation

methods promise.

Master’s Thesis, Politecnico di Milano 47

Neural Networks with Manipulated Explanations Plamen Pasliev

Figure 4.3: Heatmaps produced by FGth with added Gaussian noise N (0, 0.01) to

the model parameters.

Figure 4.4: Adding noise sampled from a Gaussian distribution with zero mean

and different variances to the weights of the model.

48 Master’s Thesis, Politecnico di Milano

5 Conclusion

As ML algorithms become more important in society, so does interpreting their

decisions. ML explainability is a promising way we can achieve fairness, account-

ability and transparency in this field. Policy makers are realizing this and regula-

tions such as GDPR [11] introduce new laws which give people the right to request

explanations for a decision made by an algorithm.

An increasing amount of biased ML algorithms have been discovered recently.

In Ref. [7], it was shown that millions of black patients are at a disadvantage

because of their race. Other cases of biased algorithms are found in predictive pol-

icy systems [45], skin tones in pedestrian detection [46] and gender bias in STEM

career ads [47]. Explanation methods might be the key to unlocking the black box

of ML and unveiling these biases. Many explanation methods have been developed

in recent years trying to solve this problem.

Robustness of explanations is still an issue, however. Some companies might find

strong correlations between unlawful features and the output of their algorithms.

They might want to mask explanations rather than not use those features. There

is a need for reliable detection of models trained with manipulated explanations.

In this thesis, I manipulate the explanations of models in two distinct ways: I

shift the center of mass of explanations and manipulate explanations to an ar-

bitrary target heatmap. All manipulations are done while keeping the winning

class approximately constant. I also manipulate models where their prediction

probability distribution is kept constant. Manipulations are carefully evaluated

and both quantitative and qualitative results are shown. I consider three gradient-

based explanation methods, Gradient, Gradient times input and Integrated gradi-

ent, one propagation-based explanation method, LRP, and one perturbation-based

method, Occlusion. All these explanation methods were manipulated successfully.

Each model is tailored to manipulate a target explanation method but we also saw

that, in some cases, manipulating one method translates to the manipulation of

multiple different explanation methods. Manipulation can be achieved by optimiz-

Neural Networks with Manipulated Explanations Plamen Pasliev

ing a subset of the model parameters rather than all of them. Finally, we saw that

the manipulations work on almost any input and detecting manipulations can be

a challenging task.

In the scope of this thesis I did not thoroughly investigate the theoretical reasons

why manipulations are possible and work so well. Another limitation of this work

is that all of the models have the same underlying network architecture: VGG16.

Nevertheless, Ref. [22] already shows that adversarial manipulation works on dif-

ferent popular network architectures.

Future research topics include investigation of adversarial model training. In

Section 2.2.1, I highlighted the importance of explanations and how trust and

transparency are essential in deep learning. The fact that there is almost no work

present in the area of adversarial model training can be concerning. Moreover,

robust explanation methods which are not susceptible to model manipulation or

input perturbations is also an important future research direction. Another way to

extend this work is to train models with manipulated explanations applied to other

domains such as natural language processing, speech recognition or recommender

systems.

50 Master’s Thesis, Politecnico di Milano

List of Acronyms

ML Machine learning

CNN Convolutional neural network

ED Euclidean distance

PCC Pearson correlation coefficient

SSIM Structural similarity index

MSE Mean squared error

IG Integrated gradients

GI Gradient times input

LRP Layer-wise relevance propagation

SGD Stochastic gradient descent

Adam Adaptive moment estimation

COM Center of mass

TH Target heatmap

CE Cross entropy

IPP Identical prediction probabilities

FC Frozen classifier

Bibliography

[1] M. van Hartskamp, S. Consoli, W. Verhaegh, M. Petkovic, and A. van de

Stolpe, “Artificial intelligence in clinical health care applications: Viewpoint,”

Interactive Journal of Medical Research, vol. 8, p. e12100, Apr 2019.

[2] X. Zheng, M. Zhu, Q. Li, C. Chen, and Y. Tan, “Finbrain: When finance

meets ai 2.0,” 2018.

[3] A. Goldstein, L. Fink, and G. Ravid, “A framework for evaluating agricultural

ontologies,” 2019.

[4] J. Lee, J. Singh, and M. Azamfar, “Industrial artificial intelligence,” 2019.

[5] J.-C. Shi, Y. Yu, Q. Da, S.-Y. Chen, and A.-X. Zeng, “Virtual-taobao: Virtu-

alizing real-world online retail environment for reinforcement learning,” 2018.

[6] J. R. J. Reinsel, David; Gantz, “Data age 2025: The evolution of data to

life-critical,” 2017.

[7] Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, “Dissecting racial

bias in an algorithm used to manage the health of populations,” Science,

vol. 366, pp. 447–453, 10 2019.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” 2015.

[10] A. Trask, D. Gilmore, and M. Russell, “Modeling order in neural word em-

beddings at scale,” 2015.

[11] B. Casey, A. Farhangi, and R. Vogl, Rethinking Explainable Machines: The

GDPR’s ’Right to Explanation’ Debate and the Rise of Algorithmic Audits in

Enterprise. Berkeley Technology Law Journal, Vol. 34, 2019.

Plamen Pasliev Neural Networks with Manipulated Explanations

[12] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional net-

works: Visualising image classification models and saliency maps,” 2013.

[13] S. Lapuschkin, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and

W. Samek, “On pixel-wise explanations for non-linear classifier decisions by

layer-wise relevance propagation,” PLoS ONE, vol. 10, p. e0130140, 07 2015.

[14] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional

networks,” 2013.

[15] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Ba-

tra, “Grad-cam: Visual explanations from deep networks via gradient-based

localization,” 2016.

[16] D. Smilkov, N. Thorat, B. Kim, F. ViÃ c©gas, and M. Wattenberg, “Smooth-

grad: removing noise by adding noise,” 2017.

[17] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep net-

works,” 2017.

[18] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller, “Ex-

plaining nonlinear classification decisions with deep taylor decomposition,”

Pattern Recognition, vol. 65, p. 211â222, May 2017.

[19] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting and un-

derstanding deep neural networks,” Digital Signal Processing, vol. 73, p. 1â15,

Feb 2018.

[20] A. Ghorbani, A. Abid, and J. Zou, “Interpretation of neural networks is frag-

ile,” 2017.

[21] A.-K. Dombrowski, M. Alber, C. J. Anders, M. Ackermann, K.-R. Müller,

and P. Kessel, “Explanations can be manipulated and geometry is to blame,”

2019.

[22] J. Heo, S. Joo, and T. Moon, “Fooling neural network interpretations via

adversarial model manipulation,” 2019.

[23] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features

through propagating activation differences,” 2017.

Master’s Thesis, Politecnico di Milano 53

Neural Networks with Manipulated Explanations Plamen Pasliev

[24] A. van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music

recommendation,” in Advances in Neural Information Processing Systems 26

(C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-

berger, eds.), pp. 2643–2651, Curran Associates, Inc., 2013.

[25] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,

“Convolutional neural networks for speech recognition,” Audio, Speech, and

Language Processing, IEEE/ACM Transactions on, vol. 22, pp. 1533–1545,

10 2014.

[26] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep

learning based natural language processing,” 2017.

[27] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explain-

ing the predictions of any classifier,” 2016.

[28] F. Hohman, H. Park, C. Robinson, and D. H. Chau, “Summit: Scaling deep

learning interpretability by visualizing activation and attribution summariza-

tions,” 2019.

[29] S. Lapuschkin, S. WÃldchen, A. Binder, G. Montavon, W. Samek, and K.-

R. Müller, “Unmasking clever hans predictors and assessing what machines

really learn,” Nature Communications, vol. 10, Mar 2019.

[30] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,

and D. Hassabis, “Mastering chess and shogi by self-play with a general rein-

forcement learning algorithm,” 2017.

[31] D. Balduzzi, M. Frean, L. Leary, J. Lewis, K. W.-D. Ma, and B. McWilliams,

“The shattered gradients problem: If resnets are the answer, then what is the

question?,” 2017.

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A

Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[33] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, “Evaluating feature

importance estimates,” 2018.

[34] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech.

rep., 2009.

54 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

[35] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, “Intriguing properties of neural networks,” 2013.

[36] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing ad-

versarial examples,” 2014.

[37] A. Karpathy, “Lessons learned from manually classifying cifar-10,” 2011.

[38] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of

initialization and momentum in deep learning,” in Proceedings of the 30th

International Conference on International Conference on Machine Learning

- Volume 28, ICML’13, pp. III–1139–III–1147, JMLR.org, 2013.

[39] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim,

“Sanity checks for saliency maps,” 2018.

[40] W. Kirch, ed., Pearson’s Correlation Coefficient, pp. 1090–1091. Dordrecht:

Springer Netherlands, 2008.

[41] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: From error visibility to structural similarity,” IEEE TRANSAC-

TIONS ON IMAGE PROCESSING, vol. 13, no. 4, pp. 600–612, 2004.

[42] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-

tion,” J. Mach. Learn. Res., vol. 13, p. 281â305, Feb. 2012.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

2014.

[44] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. Wang, “Detecting adversarial

image examples in deep neural networks with adaptive noise reduction,” IEEE

Transactions on Dependable and Secure Computing, p. 1â1, 2019.

[45] S. J. Richardson, R. and K. Crawford, “Dirty data, bad predictions: How civil

rights violations impact police data, predictive policing systems, and justice.,”

2019.

[46] B. Wilson, J. Hoffman, and J. Morgenstern, “Predictive inequity in object

detection,” 2019.

Master’s Thesis, Politecnico di Milano 55

Neural Networks with Manipulated Explanations Plamen Pasliev

[47] A. Lambrecht and C. Tucker, “Algorithmic bias? an empirical study into ap-

parent gender-based discrimination in the display of stem career ads,” SSRN

Electronic Journal, 01 2016.

56 Master’s Thesis, Politecnico di Milano

Neural Networks with Manipulated Explanations Plamen Pasliev

Appendix

A Shifted center of mass

Figure .1: Manipulation of model FGcom (bottom) compared with baseline model

Facc (top).

58 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

Figure .2: Manipulation of model FGIcom (bottom) compared with baseline model

Facc (top).

Master’s Thesis, Politecnico di Milano 59

Neural Networks with Manipulated Explanations Plamen Pasliev

Figure .3: Manipulation of model F IGcom (bottom) compared with baseline model

Facc (top).

60 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

Figure .4: Manipulation of model FLRPcom (bottom) compared with baseline model

Facc (top).

Master’s Thesis, Politecnico di Milano 61

Neural Networks with Manipulated Explanations Plamen Pasliev

62 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

B Target heatmap

Figure .5: Manipulation of model FGth (bottom) compared with baseline model Facc
(top).

Master’s Thesis, Politecnico di Milano 63

Neural Networks with Manipulated Explanations Plamen Pasliev

Figure .6: Manipulation of model FLRPth (bottom) compared with baseline model

Facc (top).

64 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

Master’s Thesis, Politecnico di Milano 65

Neural Networks with Manipulated Explanations Plamen Pasliev

C Added noise to weights

Figure .7: Adding Gaussian noise N (0, 0.02) to the model parameters of model

FGcom (bottom) compared with baseline model Facc (top).

66 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

Figure .8: Adding Gaussian noise N (0, 0.01) to the model parameters of model FGth
(bottom) compared with baseline model Facc (top).

Master’s Thesis, Politecnico di Milano 67

Neural Networks with Manipulated Explanations Plamen Pasliev

68 Master’s Thesis, Politecnico di Milano

Plamen Pasliev Neural Networks with Manipulated Explanations

D Occlusion

Figure .9: Occlusion heatmaps for different models.

Master’s Thesis, Politecnico di Milano 69

	Introduction
	Contributions
	Structure of the thesis

	Background and Related Work
	Neural Networks
	Explanation Methods
	Importance of Explanations
	Gradient
	Gradient Times Input (GI)
	Integrated Gradients (IG)
	Layer-Wise Relevance Propagation (LRP)
	Occlusion
	Comparison of methods

	Manipulated Explanations
	Adding Adversarial Noise to Input
	Adversarially Training Models

	Experiments and evaluation
	Overview
	General Setup
	Evaluation Metrics for Visual Similarity
	Vanishing Gradients

	Shifting Center of Mass
	Target Heatmap
	Identical Prediction Probabilities
	Perturbation-Based Explanations: Occlusion
	Frozen Classifier
	Manipulating Simpler Models

	Detecting manipulations
	Noise as Input
	Adding Noise to Weights

	Conclusion
	List of Acronyms
	Bibliography
	Appendix
	Shifted center of mass
	Target heatmap
	Added noise to weights
	Occlusion

