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Abstract

Nowadays, a consistent amount of sensing and actuating devices for control
systems exploit wireless communication mechanisms and use accumulators as their
primary energy source, bringing the battery lifecycle among the relevant aspects to be
considered.

One possible technique to reduce battery consumption is making these devices
execute their task — that is, transmitting samples of the process’ output or performing
a control action — “only when necessary” and remaining in a low-power state for the
remaining time. Event-based or event-triggered control techniques exploit this
principle: in these control methods, differently from the “classical” ones, a new
control action is computed and applied to the process only when its output varies from
the setpoint for more than a given threshold. It is apparent, then, that the sensing device
monitoring the process’ output has to transmit its measurement to the control system
only when certain conditions are met. Additionally, these control techniques bring in
advantages also in terms of actuator’s wear: as said before, the control action is applied
to the process only when there is the necessity to steer the controlled variable back to
its nominal state, keeping the actuator in its previous state otherwise.

This treatise firstly introduces event-based control and its background theory,
complemented with some related topics both about event triggering mechanisms and
PID control, to allow the reader to have a good overview of this technique. Then,
general pieces of information about the used programing language and software are
given to provide the necessary background for the subsequent chapters. Finally, the
treatise presents the implementation of an event-based PID controller and a
benchmarking of some event triggering mechanisms in various closed-loop systems,
each of which composed of a specific PID controller and process structure.
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Sommario

Attualmente, una consistente quantita di dispositivi di misura e attuazione impiegati
nei sistemi di controllo si basa meccanismi di comunicazione wireless e utilizza
batterie come fonte di energia primaria accumulatori, il cui tempo di vita diventa un
parametro da tenere in considerazione.

Una possibile tecnica per ridurre il consumo della batteria é fare in modo che tali
dispositivi eseguano il loro compito — ovvero trasmettere campioni dell'uscita del
processo 0 compiere un‘azione di controllo - "solo quando necessario”, rimanendo in
uno stato di basso consumo per il resto del tempo. Le tecniche di controllo di tipo
event-based o event-triggered sfruttano questo principio: esse, diversamente da quelle
"classiche", calcolano una nuova azione di controllo solo quando I’uscita del processo
varia rispetto al valore nominale per pitl di una certa soglia. E quindi evidente che il
dispositivo di misura collegato all’uscita del processo deve trasmettere la sua
misurazione al sistema di controllo solo in determinate condizioni. Inoltre, vengono
apportati dei vantaggi anche in termini di usura dei sistemi di attuazione: anche in
questo caso, I'azione di controllo viene calcolata e applicata al processo solo quando €
necessario riportare la variabile controllata al suo stato nominale, mantenendo
I'attuatore nel suo stato precedente in tutti gli altri casi.

In questa trattazione viene dapprima introdotto il controllo di tipo event-based e la
sua teoria di base, integrata con alcuni argomenti correlati inerenti sia i meccanismi di
generazione degli eventi che il controllo PID, in modo da consentire al lettore di avere
una buona panoramica di questa tecnica. Quindi, vengono fornite informazioni
generali sul linguaggio di programmazione e sul software utilizzato per dare al lettore
tutte le conoscenze necessarie alla comprensione dei capitoli successivi. Infine, il resto
della trattazione presenta I'implementazione di un regolatore PID event-based e
I’analisi del comportamento di alcuni meccanismi di generazione degli eventi in
diversi sistemi in anello chiuso, ognuno dei quali composto da un regolatore PID
specifico e un processo avente una ben determinata struttura.
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CHAPTER 1

1. Introduction

1.1. Event-Triggered Control

Nowadays, control systems are widespread, with a particular diffusion in electrical and
mechanical industries.

The main purpose of a control system is to supervise the behavior of a given plant or process —
frequently referred to as “process” or “controlled system” — to make it meet some performance
requirements, expressed in terms of settling time, maximum overshoot, maximum steady-state
error, ... In its general form, a control system is composed of an actuator, performing a control
action on the process, a sensing unit measuring its output and a control algorithm to compute
the actuator’s input basing on the measurements and the desired set-point.

X hd 8 u ¥
:O > CONTROLLER » SYSTEM »
r
~ SENSOR < -

Figure 1: General schema of a control system

e X: set-point value

e d: disturbance from the outside world

e u: calculated control signal (regulator’s output)
e y:process’ output

e ¢: error between process’ output and set-point

17



The figure above presents the block diagram of a closed-loop system in its general form: the
“system” block represents the transfer function of the controlled process, the “controller” one
is in place of the controller’s transfer function — for example a PID controller. Finally, the
“sensor” block represents the measurement process of the controlled system’s output.

Data transmission among the different blocks can take different forms. One of the most
common methods is called periodic sampling transmission, which is employed in the fixed-rate
control technique. Although based on strong theory and being a control method of simple
realization, this technique may have some drawbacks. One of them is the data transmission
efficiency: even when there is no necessity to measure the process’ output — i.e. when the
process reached a steady-state condition - the sensor transmits its samples to the controller,
occupying bandwidth unnecessarily. And, as mentioned before, this leads to premature
exhaustion of the energy source in battery-powered systems. These problems can be in some
way mitigated if different techniques, such as event-triggered control or aperiodic control, are
used [3].

By using an event-based control technique, data exchange between sensor and controller can
be limited: sensor samples are transmitted only when certain conditions are met or, in other
words, “only when necessary”. An event-based control algorithm leads to numerous benefits,
such as:

- reduced actuator wearing;
- reduced battery consumption;
- reduced computational load.

With respect to the “classical” control systems, event-based ones have one extra component,
called event generator, and responsible for determining when new samples of the process’
output have to be sent to the controller. Then, the control structure comes in two forms, event-
triggered control, and self-triggered control. The difference between those two structures is that
event-triggered control is reactive and triggers event-based on the measurement of process’
output. On the other hand, in self-triggered control systems, events are generated based on a
prediction of the signal evolution, according to its previous values [2].

18



The block diagram shown before, in the event-based control case, becomes the following [8]:

[controller) (actuator) dt) (sensor)

y
witn)| Control signal | ¥{tx) [ Control input | “{%) y(t)
= z Plant
computation generator generator

Sensing event

A

! |
re a7} T
yltr) : VYlds)
I
I
1

_‘/" -x—_
/’/ - \\\
—————————————————— Koo Nebwork, = ===samisEssza

A\d-\‘___/x./

Figure 2 Block diagram of the event-based control system

In the figure above, the involved signals are:
e w(th): control system set-point;

e U(th): control signal calculated from previous values of the process’ output and current
values of the set-point;

e u(t): continuous-time control action applied on the process by the actuator;
e y(t): continuous-time process’ output;

e d(t): disturbances acting on the process;

y(t): samples of process’ output, according to the event-triggering mechanism.

The blocks in the above scheme are:

e Controller: here, an input for the actuator is calculated based on the actual process’
output - sampled according to the event generation rule - y(tc) and the set-point w(ts).

e Actuator: here, the discrete-time control signal u(tn) is converted to a continuous-time
control action u(t) applied to the process.

¢ Plant: the controlled system.

e Sensor: in this block, the output of the system y(t) is sampled and its value is analyzed
according to the event generation rule.
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CHAPTER 2
2. Event Triggering Mechanisms

In this chapter, some event-triggered mechanisms will be analyzed. These are constant send on
delta, relative send on delta, integral sampling, send on energy and symmetric send on delta.

2.1. General Send on Delta rule

According to this rule, the event triggering law is:

_(Lliflx;s —x(®)| =06
S = {Oiflxis —-x(t)| <6

(2.1)
where:

e S(t): triggering function;

e X(t): the current value of the observed variable;

e Xs: reference value, namely the one assumed by the observed variable the last time an
event was triggered;

e o: event-triggering threshold, also referred to as “dead-band”.

The triggering rule is the following: if the absolute value of the difference between the reference
value xis and the current value x(t) exceeds the threshold, the conditions to generate an event
are met.

21



In the following figure a graphical view of the rule behavior is provided [1]:

fin Iy k

Figure 3: Send on Delta graph

There are many types of send on delta method, but in this project, constant dead-band send on
delta method and relative send on delta method will be focused.

2.1.1. Constant Dead Band method

Here, the value for the dead band A is kept constant. Then, when the value recently sent is to
exceed the dead band, the system changes the output.[4]

[0, [u; (e + Alif [, ()] < A

[, (£ £ Alif [y (£)] = A (2.2)

()l € {

The consistency between the sent value and the current value is guaranteed by this formula.
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2.1.2. Relative Dead Band method

This method differs from the constant dead-band one by the way in which the dead band is
computed. The dead band is given by the following equation:

Dy, ()= € * luy ()] (2.3)
Where:
e ¢:scale factor;
e u;: control signal;
e A: dead band threshold.

In the practice, a minimum value for the dead band Amin is given to prevent A having an
infinitesimally small value. This happens because, around the origin, the control signal u, tends
to become infinitesimally small [5].

A > Anin (2.4)

T
-

value A,

relative
deadband ¢

deadband

e
a4

~.. - asymmetric deadband
I close to the origin
|

—
-

0 Amin |signal to transmit| ||
Figure 4: Definition of relative dead-band
In this case, the send function is:

[0: |ul(t’)| + Amin]iflul(t’)l < Amin

e {[lul<t')| £ 80, 0) ()1 2 B

(2.5)

2.2. Integral Sampling method

The send on delta algorithms might have some difficulties in detecting the presence of
oscillations or a steady-state error if their value is smaller than the dead band. In these cases,
the usage of the energy sampling error gives more accurate results [6].
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In the integral sampling method, an event is generated when the time integral of the difference
between the currently observed value and the previous one becomes greater than a given, and
constant, threshold.

s

[ I P—

Figure 5: Integral sampling of energy

Where the equation used to compute the error is:

[ (x(®) = x(ti))de = € 2.6)

2.3. Send on Energy method

This method differs from the previous one by computing an area instead of an error. It also
keeps the same benefits brought about by the integral sampling method with respect to the send
on delta ones.

fttf_l(x(t) —x(ti-y)) dt = ¢ (2.7)
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The following figures, taken from [6], give a visual comparison between integral sampling and
send on energy methods against the send on delta ones:

e et EEE
|
“
|
i
--H---r-
|
|
I

NE—-—

Figure 6: Simulation with send on delta method
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Figure 7: Simulation with integral sampling of energy method

It can be noticed that, when the steady-state error is smaller than the send on delta threshold,
the control system cannot detect and correct the residual error, while the system using the
integral sampling method does.
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2.4. Symmetric Send on Delta method

Symmetric send on delta method (SSOD) belongs to the family of send on delta methods [7].
Here, the triggering mechanism is similar to the one of a relay with hysteresis. An example of
which is represented in the following figure:

state
{phenotype)

state -~

Bi-stability
interval

| Bi-stabiliy 1 input
range {environment]

Figure 8: An example chart of hysteresis relay

While here the behavior of the SSOD method is presented:

Vi) 1 B

A v(t)

Figure 9: Behavior of SSOD control system

The triggering function of this method is [9]:

v (t) = ssod(v(t); A B) (2.8)
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CHAPTER 3

3. Implementation of Controller and Event
Triggering Algorithms

In this project, programming an object-oriented PID control has chosen as a starting point of
the implementation. As a next milestone, the implementation of the PID controller with a
similar approach used for previous PID controller implementation in the LabVIEW
environment was decided. As a final step of this project, applying event-triggered control
methods to a system with usage of the PID controller implemented is aimed. In related parts,
some complementary information about the programing language, environment, and approach
used in this project will be given.

3.1. Implementation of PID Controller in C++
Language with Object-Oriented Approach

3.1.1. C++ Programming Language and Object-Oriented
Programming Approach

C++ programming language is one of the most used programming languages. It was been
developed as an extension of C programming language but on the other hand, it is designed to
be more efficient and more flexible language but also able to provide high-level features for the
programming world. One of those features is that it makes the usage of the classes and objects
available.

Object-oriented programing is a programming paradigm used in different programming
languages besides C++ and based on two fundamental concepts, which are objects and classes.
Classes define specific data types, each of them having a given set of variables and methods
acting on them. On the other hand, an object is an instance of classes.

27



3.1.2. Implementation of OOP PID Controller

This section presents the classes, methods, and objects used to describe an object-oriented PID
controller implementation. The requirements for the implementation are:

- Get some parameters, essentially the set-point and ones for regulator tuning, from user
input;

- Update the aforementioned parameters whenever requested by the user;

- Store the old set-point and tuning parameters to give the user the possibility to revert to
the latest known situation whenever is necessary;

- Compute the values for the controlled variable according to the given set-point and
tuning parameters.

The design of the algorithm can be summarized as follows:

To be able to get user input data and store them, the PID class contains some ad-hoc
variables. The following figure shows the class definition and its properties:

Figure 10: PID class

Some other additional data types have been defined, also:

pid struct

Figure 11: PID struct data type

Figure 12: tf struct
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The functions to update and revert parameters are:

change pid params(pid struct &active params, pid struct &inactive params)

change tf params (t &activ & arams)

Figure 14: Revert functions

While the ones used to compute a new control action are:

calculate(pid_struct
isa pid struct(pid struc

isa TFZ struct(tf struct

Figure 15: Calculation functions

In the “isa_pid_struct” method, the tuning variables for the PID controller are computed starting
from the parameters given by the user. Similarly to “isa pid struct”, the function
“isa_tfz_struct” function updates its variables according to the given parameters. These
methods are then used in the “calculate” one, where simulation is done.

The reader can find the full listing of the program in the appendix section at the end of this
document.

29



Additionally, the flow chart of the implemented algorithm is presented here:

creation of dummy
pid object

h 4
requesting the initial
parameters of pid
from user

condition = true

l v
\ falze
>

is condition true

switch

update pid —

updatetf

revert old pid

revert old if

start calculation

condition = false

end

Figure 16: Flow chart of OOP PID
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3.2. Implementation of The OOP PID in LabVIEW
Environment

3.2.1. LabVIEW Environment

LabVIEW is a graphical environment that allows users to create virtual systems and their user
interfaces. The differences between software like LabVIEW and programming languages like
C++ are illustrated in the following.

A graphical design environment, allows users to design a system through the use of system
blocks or subfunctions without having to write code. Moreover, creating a user interface using
a given programming language can be tricky and require many lines of code, while this is not
true for graphical design software.

When LabVIEW is started, two different windows are presented to the user: one named “front
panel” and one containing the block diagram and the overall design, also called “vi”. In the
front panel, the user can place an input and/or output items like numeric input, valve, button,
etc., while the block diagram is used to place the functional information describing the
program’s behavior. To make the program modular, the project structure can be partitioned in
different submodules. For example, in this project, instead of creating a PID controller and the
transfer function into one vi, it was preferable to divide it into two submodules.

Here is reported an example of the front panel and the block diagram:
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Figure 17; Front panel and block diagram in LabVIEW environment
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3.2.2. Implementation of OOP PID Controller

This part of the design followed an approach similar to the one described in the previous section.

A structure called cluster in LabVIEW, very similar to the C++ structs is used to get and store
the parameters given by the user. After giving the input to the system, the user should select an
operation, like “update parameters”, “revert parameters”, “start the calculation”. According to
the selected operation, the algorithm runs the related function. The complete structures of both

the controller and the process are reported in the appendix section.

The following image shows the blocks associated with the “calculate” function:
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Figure 18: Calculation case
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In the calculation block, there are the sub-blocks responsible for the calculation of PID
variables, like the control signal, and transfer function variables, like process’ output and
generating the input signal.
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CHAPTER 4

4. Implementation of Event Triggering
Algorithms

This chapter describes the LabVIEW implementation both of each of the triggering mechanisms
discussed in chapter two and of the overall control loop.

4.1. Event Generator

This block is responsible for creating events used to update the measurement of the process
output. The front panel and the block diagram of this vi are shown below:

Event period Event Output state
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[=]|Rising edge || T ——— J activeted °I> Event period ]

L s iring edge selection

Figure 20: Event generator vi’s front panel and block diagram

Through the front panel, the user can select the edge, rising or falling, in which an event is
generated and specify the sampling period of the event generator. In the program, the triggering
of an event is assigned to a Boolean value, also shown in the front panel as a led indicator.

4.2. PID Controller

In this block, the program receives the set-point and the tuning parameters from the user and
computes the controller’s variables, including the control signal. A dedicated section in the
control panel allows the user to set the tuning parameters and read the current regulator status.
Additionally, the regulator’s control panel is equipped with an input box that allows setting the
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sampling period, a button to give step-shaped set-point and another numeric input box to set its
amplitude.

Eim BEm

Figure 21: PID cluster

4.3. Transfer Function

This block represents the process’ transfer function. The user, through input boxes on the front
panel, can specify the transfer function coefficients and choose the discretization method used
to obtain its discrete-time representation.

Figure 22: Transfer function cluster

4.4. Sensor

This block is responsible for getting new samples of the process’ output whenever an event is
triggered or to keep its output to the last sample acquired otherwise.
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4.5. Triggering Mechanisms

4.5.1. Constant Send on Delta

According to the equation described in chapter two, this block updates its output whenever the
current process’ output exceeds the dead band, keeping it unchanged otherwise.
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Figure 23: Constant send on delta subvi’s block diagram

4.5.2. Relative Send on Delta

In this block, when the dead band is exceeded, the program takes a sample of the process’ output
and verifies if it is in the dead band whose equation has been described in chapter two. If the

difference between the signals exceeds the dead band, the output is updated and kept unchanged
otherwise.
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Figure 24: Relative send on delta subvi’s block diagram
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4.5.3. Integral Sampling on error

In this block the value of integral, described by equation (2.6), is compared with the given dead
band: if its value exceeds the threshold, an event is generated and the integral is reset to zero.
On the other hand, if the integral value lies inside the dead band, the program simply updates

its value.
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Figure 25: Integral sampling subvi’s block diagram
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4.5.4. Energy Send on Delta

This method performs similarly to the previous one, except for the fact that the square of the
error is used.
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Figure 26. Send on energy subvi’s block diagram
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4.5.5. Symmetric Send on Delta
This block implements the symmetric send on delta algorithm, as described in chapter two.
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{exceed=1:
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}

{exceed=1;
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}
else{db=db:

exceed=0}

Figure 27: Symmetric send on energy subvi’s block diagram
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CHAPTER 5

5. Simulations and Experiments

5.1. Simulation of PID Controller

This chapter firstly presents the results obtained with the control loop both developed in the
C++ language and the LabVIEW environment. Then, the event triggering mechanisms
described in the previous chapters are benchmarked using two different process structures.
Finally, the PID controller will be tuned on each of the process structures and the behaviors of
the closed-loop systems are given.

5.1.1 PID Controller implemented with C++ language

In this test the process had the following structure:

1
10s+1

G(s) = (5.1)
While the transfer function of the PID controller, in its general formulation, is:
1
F(s) = K, (1 Fo STy) (5.2)

with the following parametrisation:

L] Kp = 20,
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During the test, the set-point followed the shape shown below:

Set Point

And, in the following figures, the graphs for both the control signal and the process output are

reported:
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Figure 28:Set point given in the C++ environment
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Figure 29: Control signal in C++ environment
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System output in C++
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Figure 30: System output in C++ environment
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5.1.2. PID Controller implemented in LabVIEW
environment

The PID controller and the process transfer function used were the same used in the C++
version, as long as the controller tuning and the set-point profile.

The following figures report the results, namely the values assumed by the control variable and
by the process’ output:
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Figure 31: Control signal in Labview environment
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System output in LabVIEW
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Figure 32: System output in Labview environment

5.2. Simulation of Event Triggering Mechanisms

After having tested the correct behavior of the controller implementation in both their
implementations, a validation of the event triggering mechanisms was performed.

The tests were carried out using two different process structures: a slow first-order system and
a second-order system having an oscillatory output. The PID controller, then, was tuned on

each of the process’ transfer functions.

5.2.1 Control of the first-order system

For this case, the process’ transfer function was assigned the following equation:

G(s) = — (5.6)

14+20s
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To which corresponds the following open-loop step response:

Amplitude
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Figure 33: Open-loop of the 1% system step response

The PID controller used in this case is:

C(s) = K, (1 + ﬁ)

with the following parametrisation:

o Kp = 283,

o Ti=0.143;

180

(5.7)

Then, all the event triggering mechanisms were tested using a value of 0.01 both for the dead
band value and the sampling period. In the following graphs the responses of the closed-loop
system with the different event triggering mechanisms are reported.
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Figure 34: Output of the 1%t order system using constant dead-band method
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Figure 35: Output of the 1% order system using relative dead-band method
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Figure 36: Output of the 1t order system using integral sampling method
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Figure 37: Output of the 1%t order system using send-on-delta method
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The following table summarizes the results, reporting the settling time and the number of events
generated, complemented with the ISE and IAE figures of merit:

Table 1: The results of the benchmarking the event triggering mechanisms with the given system above

ISE IAE Settling time(s) # of event
Constand 0.050 0.104 0.58 31
dead-band
Relative dead- 0.056 0.112 0.71 304
band
Integral 0.080 0.142 0.62 19
sampling
Send on delta 0.119 0.207 0.89 11
Symmetric - - - -
send on delta

It was also observed that the closed-loop system was not stable when events were generated
using the symmetric send-on-delta rule. In conclusion, according to the results reported, the
constant dead-band method proved to be the most suitable one.
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5.2.2 Control of the second-order system

In this case, the process’s transfer function is:

G(s) = —22 (5.10)

$2+0.2s5+1

having the following open-loop step response:
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Figure 38: Open-loop step response of the 2" order system

The PID controller used had the following equation:

F(s) = K, (1 +—+ 5Ty) (5.11)

with this parametrization:

o Kp=7.76;
e Ti=7.13;
e T4=0.002;

Also, in this case, a value of 0.01 both for the dead band value and the sampling period was

used. The following graphs present the responses of the closed-loop system with the different
event triggering mechanisms.
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Figure 39: Output of the 2" order system using constant dead-band method
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Figure 40: Output of the 2" order system using relative dead-band method
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Figure 41: Output of the 2™ order system using integral sampling method
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Figure 42: Output of the 2™ order system using send-on-delta method
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system output with ssod method
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Figure 43: Output of the 2" order system using symmetric send-on-delta method

As in the previous case, the results are summarized in the table below:

Table 2: The results of the benchmarking the event triggering mechanisms with the given system above

ISE IAE Settling time(s) # of event
Constand dead- 1.3235 3.8442 24.2 65
band
Relative dead- 1.2495 3.7672 26.1 160
band
Integral 1.3794 3.8808 25.5 35
sampling
Send on delta 1.5031 4.5217 23.7 10
Symmetric send 1.6370 4.1100 20.2 14
on delta
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5.2.3. Benchmark Processes of Astrém and Hagglund

Up to this point, commonly used transfer functions and PID controllers were used to test the
event triggering methods. Besides them, other test cases are offered by K.J. Astrém and T.
Hégglund [12].

Before proceeding, a remark has to be done: PID regulator has four tuning parameters, whereas
the majority of the processes have transfer functions with more than three parameters. In these
situations, having a correctly tuned PID controller is very difficult [10]. To overcome this, the
real process is approximated with a first-order plus dead time transfer function, whose
parameters are computed using the method of areas starting from step response of the real
process [11]. Then, once the FOPDT models were obtained, the parameters for the controller
to be used with each process were computed using the internal model control technique.

5.2.3.1. Systems with multiple coincident poles

The general transfer function of these systems is:

1

G(s) = o (5.15)
where n=1,2,3...
In this project three transfer function structures were considered:
1
G:1(8) = 55y (5.16)
1
G2(8) = 75 (5.17)
1
G3 (S) - (1+S)3 (5'18)

After having obtained the equivalent FOPDT transfer functions, the event triggering
mechanisms were benchmarked.
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The step responses and the disturbance rejection performances of each event-triggering
mechanisms for the first system are reported below:
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Figure 45: Step responses for the triggering mechanisms for G2
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And here the ones for the third:
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Figure 46: Step responses for the triggering mechanisms for G3
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The following tables summarize the results above, reporting the settling time, the number of
events triggered and the IAE and ISE figures of merit for each process structure and each

triggering mechanism.

Table 3: The results for the first variation of the system with multiple equal poles

6. (s) Constant Relative Integral SOD | SSOD
S) = — g

1 G +1) deadband deadband | Sampling

Settling time(s) 5.3 5.34 4.5 9.7 4.4

Number of transactions for settling 34 46 26 16 109

Disturbance rejection time(s) 3.2 3.2 5.5 4.6 3.3

Number of transactions for disturbance 26 54 15 8 38

rej.

Integral absolute error 1.695 1.770 1.884 1.705 | 1.767
Integral square error 1.154 1.291 1.173 0.937 | 1.193
Table 4: The results for the first variation of the system with multiple equal poles

G, (5) Constant Relative Integral SOD | SSOD
S)=——— .
2 (1+s)2 deadband deadband | Sampling
Settling time(s) 11.9 11.7 12.8 13 475
Number of transactions for settling 49 100 26 21 440
Disturbance rejection time(s) 7.04 6.06 7.7 7.6 6.5
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Number of transactions for disturbance 19 65 10 8 22
rej.

Integral absolute error 2.794 2.732 2.917 3.75 16.12
Integral square error 1.769 1.584 1.609 2.06 8.39
Table 5: The results for the third variation of the system with multiple equal poles

Ga(s) Constant Relative Integral SOD | SSOD
S) = — g
3 (1+5)° deadband deadband | Sampling
Settling time(s) 17 15.9 17.2 26.7 37.6
Number of transactions for settling 67 155 33 24 300
Disturbance rejection time(s) 12.8 9.9 114 19.2 10
Number of transactions for disturbance 14 75 11 8 22
rej.
Integral absolute error 2.801 2.821 2.813 2.918 6.56
Integral square error 4.296 4.287 4.516 517 12.1
5.2.3.2. Fourth-order systems
The general transfer function for this process is the following:
G(s) = : (5.19)
5) = GrD(astD(@Zs+D(@ds+1) '
where a = 0.1,0.2 ...
In this project, three different parametrizations will be used:
Gy(s) = - (5.20)
188) = D015+ D025+ (0. 135+ 1) '
Go(s) = ; (5.21)
285) = 3D (0254 D(0.2254 (0235 +1) '
1
G3(s) = (5.22)

(s+1)(0.35+1)(0.325+1)(0.335+1)

After having obtained the equivalent FOPDT transfer functions, the event triggering

mechanisms can be benchmarked.
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The step responses and the disturbance rejection performances of each event-triggering
mechanisms for the first system are reported below:

4th order system, 1t case

System resp of system with Cd System resp of the system with Rd
1 = — — 1 —e————— - —

Zos Zos

E 3

E[IE EDE’

s s

B o4 %04

& &

~
e

e

0 5 0 15 20 F 30 0 5 10 15 20 2
time time
System resp of the system with IS System resp of the system with SOD

10 — —_— 1 = . — — —
fnﬂﬁ It :éDE -
3 3
gosf £ 08
5 ]
204 2 0.4
w v

e

e

3
@
8
i
e
n
]
i
@
&
&
B

System resp of the system with SSOD

System output

Figure 47: Step responses of the triggering mechanisms for G1

Here are the results for the second process structure:
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Figure 48: Step responses of the triggering mechanisms for G2
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And, finally, the ones for the third:
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Figure 49: Step responses of the triggering mechanisms for G3
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The following tables summarize the results above, reporting the settling time, the number of
events triggered and the IAE and ISE figures of merit for each process structure and each

triggering mechanism.

Table 6: The results for the first variation of the fourth-order system

G,(s) Constan | Relative | Integral | SO | SSO
1 t deadban | Samplin | D D
= deadban d
G+DG*01l+DE*012+ D503 g J

Settling time(s) 6.7 6.3 7.4 9.6 | 955

Number of transactions for settling 32 65 19 20 926

Disturbance rejection time(s) 4.3 4.1 4.1 6.4 4.2

Number of transactions for disturbance rej. 24 35 16 11 26

Integral absolute error 1.733 1.678 2.013 2.51 | 32.05
1

Integral square error 1.153 1.154 1.198 1.31 | 16.38
1
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Table 7: The results for the second variation of the fourth-order system

G,(s) Constan | Relative | Integral | SO | SSO
1 t deadban | Samplin | D D
= deadban d g
(s+D(s*021+1)(s*x 022+ 1)(s*0.234

Settling time(s) 7.6 7.9 9.9 9 84.9

Number of transactions for settling 41 65 22 16 850

Disturbance rejection time(s) 4.2 4.3 9.2 6.6 4.2

Number of transactions for disturbance rej. 22 62 15 12 32

Integral absolute error 2.029 2.00 2177 3.03 | 29.5

Integral square error 1.226 1.295 1.241 1.80 | 15.03
1

Table 8: The results for the second variation of the fourth-order system
G5(s) Constan | Relative | Integral | SO | SSO
1 t deadban | Samplin | D D
= deadban d g
(s+1D(s*031+1)(s*x032+1)(s*0334

Settling time(s) 5.4 5.4 6.3 75 | 404

Number of transactions for settling 35 60 20 14 386

Disturbance rejection time(s) 5.3 6.3 5.6 7.2 6.1

Number of transactions for disturbance rej. 22 70 13 8 28

Integral absolute error 2.271 2.207 2.374 2.52 | 14.17
2

Integral square error 1.501 1.481 1.543 150 | 75
5
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CHAPTER 6

6. Conclusion

In this project, triggering mechanisms for event-based control were described. First, the
theoretical information about those mechanisms such as constant dead-band algorithm, relative
dead-band algorithm, integral sampling algorithm, send-on-delta algorithms, and symmetric
send-on-delta algorithm are given. Then, the design of object-oriented PID implementation in
the C++ language and LabVIEW environment was described also giving complementary
information about the C++ language and LabVIEW environment.

Following the implementation of a PID controller in both the C++ and LabVIEW environment,
one of the event triggering methods according to the theory given in the previous chapters was
discussed. As a final step of this project, the implemented triggering algorithms were tested,
analyzing and discussing the results obtained.

As a result of the tests, the constant dead-band triggering method can be considered the
preferable method in general: even though other methods have smaller values of the number of
events triggered, from the control point of view, this method is more efficient than the others.
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CHAPTER 7
7. Appendix

Main function of the Object-Oriented C++ implementation:

#include
#include
#include

std
pid_struct pid params_struct
tf _struct tf params_struct

pid_struct inactive pid_params
tf_struct inactive_tf params

pid_struct active_pid_params
tf_struct active_tf_params

main() {
pid dataPID1( )

dataPID1 = dataPIDl.initialize initial pid_parameters(dataPID1)

condition =
(condition){
cout
cout
cout
cout
cout
cout
cout
cout

option
cin option
std
pid_struct pid_params_struct
tf_struct tf_params_struct

pid_struct inactive_pid_params
tf_struct inactive_tf_params

pid_struct active_pid_params
tf_struct active_tf params

main() {
pid dataPID1( )

dataPID1 = dataPIDl.initialize initial pid parameters(dataPID1)
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condition =
(condition){
cout
cout
cout
cout
cout
cout
cout
cout

option
cin option
(option) {

dataPIDl.change pid params(active pid_params
inactive _pid_params)
dataPIDl.change tf params(active tf params, inactive_ tf params)
dataPID1.return_old_pid()
dataPIDl.return_old tf()
dataPIDl.calculate(active pid params, active_ tf params)
condition =
cout
(option) {
dataPIDl.change pid params(active pid_params
inactive_pid_params)

dataPIDl.change tf params(active tf _params, inactive_ tf params)

dataPID1.return_old pid()

dataPID1.return_old tf()

dataPIDl.calculate(active pid _params, active_ tf params)

condition =




“PID” C++ class:

#include
#include
#include

std

pid_struct pid_params_struct
pid_struct inactive_pid_params
pid_struct active_pid_params
tf_struct tf_params_struct
tf_struct inactive_tf params
tf_struct active tf params

pid: :pid( K _Ti _Td _N ) e
_CSmax _CSmin Ts mu _T) :K(_K) (_Ti)

(_Td),N(_N),b(_b),c(_c) (_CSmaxS (_CSmin) ) (_mu),T(_T)
{
cout endl
cout

pid_params_struct. get K()
pid_params_struct. = get Ti()
pid_params_struct. = get_Td()
pid_params_struct. get N()
pid_params_struct. get b()
pid_params_struct. get _c()
pid_params_struct. = get Csmax()
pid_params_struct. = get Csmin()
pid_params_struct. get Ts()

pid_params_struct.
pid_params_struct.
pid_params_struct.
pid_params_struct.

tf_params_struct.
tf_params_struct.
tf_params_struct.

cout

tf_params_struct.
tf_params_struct.
tf_params_struct.

pid: :~pid(){}

pid::isa_pid struct(pid_struct &pidparamsStruct)

DSpP,DPV,DP,DI,D,DD,DCS
(pidparamsStruct.
DSP = pidparamsStruct. -pidparamsStruct.




pidparamsStruct.
pidparamsStruct.

DP

DI
pidparamsStruct.
ct.

D —_
(pidparamsStruct.
ct.
DPV))/(pidparamsStruct.

DD

DCS

pidparamsStruct.

)
}

(pidparamsStruct.

pidparamsStruct.

(pidparamsStruct.

pidparamsStruct.
pidparamsStruct.
pidparamsStruct.
pidparamsStruct.
pidparamsStruct.

pid_params_struct

*pidparamsStruct.
-pidparamsStruct.

*pidparamsStruct.
*pidparamsStruct.

-pidparamsStruct.
*(pidparamsStruct. *DSP-DPV)

/pidparamsStruct. *(pidparamsStru

)

+pidparamsStruct. *pidparamsStru
*DSP -

*pidparamsStruct. )

*(pidparamsStruct.
+pidparamsStruct.

D-pidparamsStruct.
DP+DI+DD
pidparamsStruct.

pidparamsStruct.

pidparamsStruct.

>pidparamsStruct. ) pidparamsStruct.

<pidparamsStruct. ) pidparamsStruct.

pidparamsStruct.
pidparamsStruct.
pidparamsStruct.
D

pidparamsStruct

pid::isa TFZ_ struct(tf_struct &params_tf)

X

X =
(params_tf.

params_tf. =
params_tf.

)
params_tf.
params_tf.
tf _params_struct

*(params_tf.

*params_tf.

+params_tf. ))/(params_tf. +params_tf.

/(params_tf. +params_tf. )*(x+params_tf.
X
params_tf.

params_tf

pid::calculate(pid_struct params _pid, tf_struct params_tf)

nSteps

Ts
t

k
nSteps
Ts params_pid.
(k=

t k*Ts
params_pid.

k<nSteps; k++)




params_pid. =
params_pid. ram(t-1) - ram(t-5) - * pam(t - )+
)+ stp(t - )
params_pid. params_tf.
isa_pid_struct(params_pid)
params_tf. = params_pid.
isa TFZ_struct(params_tf)
cout t
params_pid.
params_pid.
params_pid.
params_pid.
params_pid.
params_pid.

}

pid pid::initialize initial pid_parameters(pid null pid) {

cout endl

cout endl
K int;cin>>K_int

null pid.set K(K_ int)

cout<<null pid.get K()

cout endl
Ti int; cin Ti int

null pid.set Ti(Ti_int)

cout endl
Td_int; cin >>Td_int

null pid.set_Td(Td_int)

cout endl
N_int; cin N_int

null pid.set_N(N_int)

cout endl
b_int; cin b_int

null pid.set b(b_int)

cout endl
c_int; cin c_int

null pid.set_c(c_int)

cout endl
Csmax_int; cin Csmax_int

null pid.set Csmax(Csmax_int)

cout endl
Csmin_int; cin Csmin_int

null pid.set Csmin(Csmin_int)

cout endl
Ts_int; cin >>Ts_int

null pid.set Ts(Ts_int)

cout
mu_int;cin>>mu_int

null pid.set mu(mu_int)

cout
T int;cin>>T_int

null pid.set T(T int)

pid dataPID1 = null_pid

tf_params_struct. = dataPID1l.get Ts()
tf params_struct. = dataPID1l.get T()
tf params_struct. = dataPID1l.get mu()




pid_params_struct. dataPID1.get K()
pid_params_struct. = dataPIDl.get Ti()
pid_params_struct. = dataPIDl.get Td()
pid_params_struct. dataPID1l.get N()
pid_params_struct. dataPIDl.get b()
pid_params_struct. dataPID1l.get_c()
pid_params_struct. = dataPID1.get Csmax()
pid_params_struct. = dataPID1.get Csmin()
pid_params_struct. = dataPIDl.get Ts()

inactive_pid_params = pid_params_struct

inactive_tf params = tf_params_struct

active pid_params = pid_params_struct

active_tf_params = tf_params_struct
dataPID1

pid::change_pid_params(pid_struct &active_params, pid_struct

&inactive params) {
answer

cout endl

cin inactive_params.

cout endl

cin inactive_params.

cout endl

cin inactive_params.

cout endl

cin inactive_params.

cout endl

cin inactive_params.

cout endl

cin inactive_params.

cout endl

cin inactive_params.

cout endl

cin inactive_params.

cout endl

cin inactive_params.

cout

cin answer
(answer == ) {
swap(active params, inactive_params)
active pid_params = active params
inactive_pid params = inactive_params

cout active_pid_params.
active_pid_params.

active pid params.
active pid params.
active_pid_params.
active_pid_params.
active pid_ params.
active pid params.
active pid params.

inactive_pid_params.
inactive pid params.




inactive_pid_params.
inactive_pid_params.
inactive_pid_params.
inactive_pid_params.
inactive_pid_params.
inactive_pid_params.
inactive_pid_params.
endl

cout<<active_tf params.
active_tf _params. endl
cout<<inactive tf_params.
inactive_tf params. endl;}

(answer == ) {cout

{cout

pid::change_tf params(tf_struct &active_params, tf_struct &inactive params)

cout endl
cin>>inactive_tf_ params.
cout endl
cin>>inactive_tf_params.

answer

cout

cin>>answer
(answer == )

swap(active_params,inactive_params)
set_mu(active tf params. )
set_T(active_ tf params. )

(answer == ) {cout
{cout endl;}

active_tf params = active_params
inactive_tf params = inactive_params

cout active_tf_params.
active_tf_params. endl

cout inactive_tf params.
inactive_tf params. endl

}

pid_struct pid::return_old pid()
{

swap(active pid params,inactive pid_params)
cout active_pid_params.
active_pid_params.
active pid_ params.
active pid params.
active pid params.
active_pid_params.
active_pid_params.
active pid params.




active_pid_params.

inactive_pid_params.

inactive_pid_params.
inactive_pid_params.

inactive_pid_params.

inactive_pid_params.
inactive_pid_params.

inactive_pid_params.
inactive_pid_params.
inactive_pid_params.

}

tf_struct pid::return_old_tf()

{
swap(active_tf params, inactive_ tf params)
cout active_tf params.
active tf params. endl
cout inactive_tf_params.
inactive_tf_params. endl

pid::stp( t) { t>=0?1: }

pid: :ram( t) { t*stp(t); }

pid::get K(){
pid::get Ti(){
pid::get Td(){
pid::get N(){
pid::get_b(){
pid::get c(){
pid::get_Csmax(){
pid::get _Csmin(){
pid::get_Ts(){
pid::get_SP(){
pid::get _SPo(){
pid::get PV(){
pid::get_PVo(){
pid::get_Do(){
pid::get_CS(){
pid::get _CSo(){
pid::get TR(){
pid::get_t(){
pid::get_k(){
pid::get mu() {
pid::get T() {
pid::get u() {
pid::get_uo() {
pid::get_xo() {
pid::get_y() {
pid::get TS(){

pid::set_K( K_new)

= K_new
cout




pid::set_Ti( Ti_new)
= Ti_new

cout endl

pid::set Td( Td_new)

= Td_new
cout endl

pid::set N( N_new)

= N_new
cout

pid::set_b(
= b_new
cout

pid::set_c(

endl

pid::set_Csmax( CSmax_new)

= CSmax_new

endl

::set _Csmin( CSmin_new)

= CSmin_new

pid::set_Ts(

= Ts_new
cout

pid::set SP(

=SP_new; }
pid::set_SPo( SPo_new)

=SPo_new; }
pid::set PV(




=PV_new; }
pid::set_PVo(

=PVo_new; }
pid::set_Do(

=Do_new; }
pid::set_CS(

=CS_new; }
pid::set_CSo(

=CSo_new; }
pid::set TR(

=TR_new; }
pid::set_t(

=t_new; }
pid::set k(

=k_new; }
pid::set_TS(

=TS_new; }
pid::set_mu(

=Mmu_new
cout

pid::set T(
=T_new
cout

pid::set_u(
= u_new
cout

pid::set_uo(
=Uo_new
cout

pid::set_xo(
=X0_new
cout

PVo_new)

CSo_new)




Header file of the “PID” class:
#ifndef
#tdefine

#include
#include

pid_struct

tf_struct

calculate(pid_struct, tf_struct)
isa_pid_struct(pid_struct &)
isa TFZ_struct(tf_struct &)

change_pid_params(pid_struct &active_params, pid_struct
&inactive params)




change_tf_params (tf_struct &active params,tf_struct &inactive_params)

pid _struct return_old pid()
tf _struct return_old_tf()

pid initialize initial pid_parameters(pid datanull)

stp( t)
ram( t)

get K()
get Ti()
get Td()
get N()
get b()
get _c()
get Csmax()
get Csmin()
get _Ts()
get SP()
get SPo()
get PV()
get PVo()
get Do()
get CS()
get CSo()
get TR()
get _t()
get k()
get TS()
get mu()
get T()
get _u()
get_uo()
get_y()
get xo()

set K( K_new)

set Ti( Ti_new)

set _Td( Td_new)

set N( N_new)

set b( b_new)

set_c( Cc_hew)
set_Csmax( Csmax_new)
set_Csmin( Csmin_new)
set_Ts( Ts_new)
set_SP( SP_new)
set_SPo( SPo_new)

set PV( PV_new)
set_PVo( PVo_new)
set_Do( Do _new)
set_CS( CS_new)
set_CSo( CSo_new)

set TR( TR_new)
set_t( t _new)
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