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Abstract

We live in a world where almost everyone has access to internet, with the

number of users growing every year; more and more of them are using online

banking services actively every day, because these are easy and fast to use,

enabling payments in few seconds. In this context there are a lot of indi-

viduals trying to steal money from people with different kinds of techniques.

Fraud Detection has become a primary need for banks and financial institu-

tions, that can prevent the losses up to billions of Euros every year, both for

costumers and providers.

Aim of the thesis is to present a framework for fraud detection in the context

of credit card transactions, with a specific focus on how oversampling can

improve performance. The framework is able to address all the major prob-

lems coming from fraud detection: class imbalance, verification latency, and

concept drift. In particular we focused on the problem of class imbalance,

testing and comparing different oversampling techniques in order to balance

the dataset, including a new technique developed by us, that is based on

genetic algorithms. The dataset used is available on the Kaggle repository

[30], that contains 284.807 transactions, of which 492 frauds, spanning on a

period of 48 hours, characterized by 31 features, of which 28 of them were

anonymized to preserve the privacy of the cardholders, while the remaining

were Time, Amount, and Class.

The work was carried out during my internship at the company Technology

Reply, where I learned to use new tools that allowed me to conduct this

thesis. In our experiments we found out that in our settings, the proposed
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oversampling solutions helped fraud detection, leading to better performance

with respect to the baseline. The results are limited to the dataset we used,

but they are promising and they should be tested on different ones.







Sommario

Viviamo in un mondo dove quasi tutti hanno accesso ad internet, con il nu-

mero di utenti in crescendo ogni anno; sempre più di loro usano attivamente

servizi di online banking ogni giorno, per via della loro facilità e velocità di

utilizzo, permettendo di effettuare pagamenti in pochi secondi. In questo

contesto molti individui cercano di approfittarsene per rubare soldi con di-

versi tipi di tecniche. La Fraud Detection è diventata una priorità per banche

e istituti finanziari, che grazie ad essa può prevenire perdite di miliardi di

Euro ogni anno, sia per loro che per i loro clienti.

Lo scopo della tesi è lo sviluppo di un sistema per la fraud detection nel

contesto delle transazioni relative alle carte di credito, con attenzione par-

ticolare a come le tecniche di sovracampionamento possono migliorare le

prestazioni. Il sistema è capace di affrontare e risolvere i principali problemi

relativi alla fraud detection: sbilanciamento delle classi, latenza di verifica,

e non stazionarità dei dati. In particolare ci siamo concentrati sul problema

dello sbilanciamento delle classi, testando e comparando diverse tecniche di

sovracampionamento per bilanciare il dataset, compresa una nuova tecnica

sviluppata da noi basata su algoritmi genetici. Il dataset che abbiamo usato,

dispoibile sul sito di Kaggle [30], contiene 284807 transazioni che coprono un

periodo di 48 ore e che sono caratterizzate da 31 attributi, di cui 28 anonimiz-

zate per preservare la privacy degli utenti, mentre le restanti erano Tempo,

Ammontare della transazione, e Classe.

Il lavoro è stato svolto durante il mio periodo di stage nell’azienda Tech-

nology Reply, dove sono venuto a consocenza e ho imparato ad usare nuovi
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strumenti che mi hanno permesso di portare avanti questa tesi. Durante i

nostri esperimenti abbiamo scoperto che per le nostre impostazioni il sovra-

campionamento ha reso migliore la detezione di frodi, portando a prestazioni

migliori rispetto all’algoritmo di base. I risultati sono limitati al dataset in

nostro possesso, ma sono molto promettenti e dovrebbero essere testati su

altri dataset.







Chapter 1

Introduction

We live in a world where almost everyone has access to internet, with the

number of users growing every year; more and more of them are using online

banking services actively every day, because they are easy and fast to use,

allowing payments to be completed in few seconds. In this context there are

a lot of individuals trying to steal money from people with different kinds

of techniques. The huge amount of credit card transactions performed every

day, both in person and online, makes the users exposed to these fraudsters.

This kind of activities leads to loss of billions of Euros every year, both for

banks and for users.

Analysis of fraudulent attacks can be performed manually by investigators,

but this task is really hard since the strategies of fraudsters are becoming

more and more sophisticated, because they learn from genuine activities and

imitate these. For these reasons it is necessity for banks and financial institu-

tions to develop automated systems to detect and to prevent frauds, in order

to solve this problem. Classical fraud detection systems are based on if-then-

else rules, but they are static and can be easily tricked by fraudsters, hence

they are obsolete. The newest techniques in this field are based on machine

learning algorithms, that have some benefits. Firstly, using machine learning

makes the task automated, saving money and resources. Then, it can spot

patterns that are invisible to humans, leveraging the huge amount of data at



our disposal, finding relationships between data that can make no sense at

first sight. At last, this kind of applications can adapt easily to changes in

behaviour without a lot of human intervention.

When machine learning is used for fraud detection, there are two main prob-

lems that have to be addressed. Concept drift, that is the behavioural

changes of fraudsters, that can mislead the detector, and that have to be

solved in order to have a reliable system, and class imbalance, that is when

in a dataset we have more sample belonging to a class with respect to the

others. In our case we have two classes, genuine and fraud, and the sample

belonging to the fraud class are way outnumbered by those belonging to the

genuine class. The last problem is a very delicate one in machine learning,

because most of the algorithms perform at their best when the classes are

balanced, and they get worse performance along with the rising of the im-

balance.

The objective of the thesis is to develop a fraud detection system and to test

and compare different oversampling techniques, in order to tackle the prob-

lem of class imbalance and to understand which technique is most suited for

fraud detection’s problems. To meet this objective we developed a framework

for fraud detection based on machine learning, testing different classification

and oversampling techniques, that is able to tackle the most critic limitations

of this problem. For classification we tested random forest, extreme gradient

boosting and neural networks; for oversampling we tested random oversam-

pling, an oversampling algorithm based on generative adversarial networks, a

new algorithm called generative adversarial minority oversampling [39], and

we developed a customized algorithm based on genetic algorithms.

As already said, thanks to online banking services, there is a huge amount

of transactions performed everyday, hence for a fraud detection system there

is a huge amount of data to analyze everyday. In cases like that we talk

about Big Data, that are difficult to manage with classical techniques. For

this reason we also implemented a version of the framework in PySpark [45]

in order to give a solution able to scale on a Big Data environment.
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For the implementation of the framework we followed the one described in

[12]. This paper developes a fraud detection system able to address class

imbalance, concept drift, and the intrinsic latency between the time when

a fraud is spotted and the labeling of the corresponding transaction. Fol-

lowing their work, we considered two types of transactions: the ones that

are already labeled, that in a real setting are usually not available immedi-

ately, and the feedbacks coming from the investigators, usually available in

short times. The first set of transactions was divided by hour and stored in

datasets called delayed datasets, while the feedbacks were stored in a sep-

arated dataset called feedback dataset. The learning strategy consists in

training everyday two different classifiers for these two kinds of transactions,

and then aggregate their predictions to have the final predictions. For what

concerns the feedback dataset, we trained a random forest on the feedbacks

coming from the 7 hours prior to the training. For what concerns the delayed

datasets, we trained an ensemble of classifiers. The ensemble was formed by

8 classifiers relative to the 8 hours before the first hour of feedbacks. So,

in total, the aggregation was considering transactions coming from 15 hours

before the training. In [12] the dataset was divided by day and not by hour.

For us this was not possible, because the dataset we used was taken from

kaggle [30], and it was relative to transactions covering 48 consecutive hours.

Hence to imitate the functioning of their framework we had to work with

datasets diveded by hour.

As said before the datasets were highly unbalanced. To solve this problem

we performed oversampling on every hour dataset before using it for the

training, that means that we created synthetic samples as similar as possible

to the original transactions, until the dataset became balanced. The tech-

niques that we used were random oversampling [35], generative adversarial

networks [20], generative adversarial minority oversampling [39], and an al-

gorithm based on genetic algorithms [25] developed by us for this specific

problem.
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After the oversampling phase, the model was trained. For the classifiers rel-

ative to the delayed datasets, we tried different solutions. At first we used

random forest, as depicted in [12], then we used also extreme gradient boost-

ing and neural network. We tried different configurations for every algorithm

in order to find the best setting for our problem.

In our experiments we found out that the genetic algorithm was the over-

sampling method that achieved the best performance. For what concern the

classification technique, none clearly overperfomed the others, but the best

results were achieved using extreme gradient boosting. In an earlier phase of

our experiments we also conducted some tests on the whole dataset, without

dividing it in hours. From these experiments we found out that the model

using neural network was clearly the best, being the one that spotted the

highest number of frauds. These results, as already said weren’t confirmed

when we divided the dataset by hour and implemented the sequential learn-

ing strategy. One possible reason could have been that the dataset at our

disposal was relatively small, and neural networks’ performances increase

with the size of data available.

The main limitation of our work, as just said, is the dataset used. We used

a small dataset available on the repository of Kaggle, that is not as big as a

stream of transactions we would have in a real environment. So the natural

continuation of this work would be to test the framework on real setting,

with the implementation in PySpark.

The thesis is structured as follows:

• In Chapter 2 we give a proper background on machine learning, on the

techniques used for classification and for oversampling, as well as an

overview of generative adversarial models and of genetic algorithms.

• In Chapter 3 we formulate our research problem, we present the work-

flow schema of our experiments, and we describe our solution based on

genetic algorithms.
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• In Chapter 4 we describe the tools and software used, the architecture

of our system, and the implementation in Python and in PySpark.

• In Chapter 5 we present our dataset and the results obtained in our

experiments with the relative evaluation metrics.

• In Chapter 6 we express the main limitation of our system, the conclu-

sions, and we expose some possible paths for future research.
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Chapter 2

State of the art

In this chapter we will explore the state of the art approaches in the fields

relevant to the thesis. The chapter is organized in the following way: Sec-

tion 2.1 will give an overview of Machine Learning, with focus on some of

the most used techniques and algorithms. In Section 2.2 the architecture of

neural networks and of their history will be presented. In Section 2.3 will

formulate fraud detection problem in the contest of credit cards transactions

and illustrate some of the approaches used in the literature for the solution.

Section 2.4 will give necessary background about oversampling techniques,

and will present the ones we used in our experiments as well. In Section 2.4.3,

we will go in details about WGANs and GAMO networks, starting from the

basic GAN architecture. Finally, in Section 2.5 we will present and discuss

the family of Genetic Algorithms.

2.1 Machine Learning Background

Machine Learning is a subfield of artificial intelligence where systems try to

learn and improve from experience to solve a specific task, without being



explicity programmed for that. The learning is obtained through data ob-

servation, trying to find patterns in them in order to make better decision

in the future based on what they already saw. The primary goal is to avoid

human intervention, allowing computers to learn autonomously.

Machine learning algorithms are usually categorized as follow:

• Supervised Learning, that is the group of algorithms that exploits the

knowledge coming from labeled examples to predict future samples.

More specifically, given a training data set (x) including desired outputs(t)

D = {〈x, t〉} from some unknown function f , we try to find a good

approximation of f that generalizes well on data never seen before.

Examples of supervised techniques are regression or classification.

• Unsupervised Learning, that is the set of algorithms used when we don’t

have at disposal labels for our training data. More specifically, given a

training set without labels D = {〈x〉} we try to find previously unde-

tected patterns in the dataset. Examples of unsupervised techniques

are clustering or compression.

• Semi-supervised Learning, that is a group of algorithms that combines

supervised and unsupervised techniques. These algorithms are used

when labeled and unlabeled samples are available, trying to take advan-

tage from both. Examples of semi-supervised learning are generative

models, graph-based methods or low-density separation.

• Reinforcement Learning, that is the set of algorithms that try to learn

which action (u) to perform, interacting with the agents around, going

to the current state (x) to another one (x′), in order to maximize a

cumulative reward (r). These algorithms search for the best action by

trial and error, learning automatically the ideal behavior (called opti-

mal policy) to maximize their performance. More specifically, given a

training set D = {〈x, u, x′, r〉} we want to find the optimal policy π∗(x),

that is a sequence of actions to perform. Examples of reinforcement

learning are Markov Decision Processes or Stochastic Games.
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Figure 2.1: In here a simplified picture of the PCA result is depicted. The first principal

component is the direction that explains the largest amount of variance of the dataset,

while the second principal component is the one that explains the largest amount of

variance between the components that are horthoganal to the first one.

In the context of our thesis we used Principal component analysis to perform

feature selection in a part of our experiments, and also our dataset was

the result of a PCA transformation. Principal Component Analysis (PCA)

[52] is an unsupervised learning approach for dimension reduction, that is a

group of techniques that convert the original feature space in a different one,

allowing to make experiments on the new transformed space. This can be

useful because the new representation can be more informative with respect

to the old one on the task that has to be solved.

PCA performs an orthogonal transformation, converting a set of correlated

features into a set of linearly uncorrelated ones, called principal components.

The principal components are defined such that the first one is the one with

largest possible variance, then all the succeeding ones are chosen as the one
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with the largest variance between the orthogonal to the previous component

(Figure 2.1). The resulting features are linear combination of the original

ones, and are all uncorrelated with each other. Now we describe the exact

procedure of the algorithm:

• Compute the mean of the data:

x =
1

N

N∑
n=1

xn (1)

• Bring the data to zero-mean (by subtracting x)

• Compute the covariance matrix:

S = XTX =
1

N − 1

N∑
n=1

(xn − x)(xn − x)T (2)

– Eigenvector e1 with largest eigenvalue λ1 is the first principal com-

ponent.

– Eigenvector ek with kth largest eigenvalue λk is the kth principal

component.

– λk∑
i λi

is the proportion of variance captured by the kth principal

component.

The projection of the original data onto the first k principal components

(Ek = (e1, ..., ek)) create a new representation of the data with less dimen-

sions:

X ′ = XEk

In the context of our thesis we used as baseline classifier Random Forest,

that is a machine learning method based on decision trees. A Decision Tree

is a supervised algorithm used both for supervised tasks, as classification or

regression, and unsupervised tasks, as clustering. It has a tree structure, and
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Figure 2.2: Basic schema of a Decision Tree.

each node of the tree represent a subset of the population we have. We start

from the root node, that represents the entire population. The root node has

to be split on one of the features of the dataset, generating two or more child

nodes, called decision nodes, that have to be split in turn. Each split can

be seen a test on an attribute, and it generates one or more branches that

are the outcome of the test. They are performed on the most informative

feature for the problem we’re facing and to do that a purity measure is used

(the most famous ones are Entropy and Gini Index ).

The procedure continue until we cannot split nodes anymore on a branch, or

a termination condition is met. The final nodes that cannot be split anymore

are called leaves, and they represent a probability distribution on the class

labels. Figure 2.2 shows the basic schema of a decision tree.
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Algorithm 1 Random Forest Algorithm

for b=1 to B do
Draw a bootstrap sample Z∗ of size N from the training data;

Grow a random forest tree Tb to the bootstrapped data, by recursively

repeating the following steps for each terminal node of the tree, until the

minimum node size nmin is reached:

• select m attributes at random from the p attributes

• pick the best split-point from the m attributes

• split the node into the child nodes

end

Output the ensemble of tree {Tb}B1 ;

To make a prediction at a new point x let Ĉb(x) be the class prediction of

the b-th random forest tree. Then ĈB
rf (x) = majority vote{Ĉb(x)}B1

Ensemble methods are methods that generate a group of classifiers, and

then predict the label of new data by aggregating the predictions of the whole

set. Random Forest [6] is an ensemble method that combines decision trees

predictors, that at each node perform the split using only a random subset

of the features. The main advantages of a random forest over a decision tree

is the reduction of overfitting and the much higher accuracy, at the cost of a

more complex algorithm and less interpretable results.

In Algorithm 1 we depict the Random Forest algorithm. Random Forest is

a bagging predictor [5]. A bagging predictor is an ensemble method that

takes predictions from different predictors and aggregates them to have the

final prediction. The aggregation is done by average in case of predicting

a numerical outcome (e.g. regression), and by majority voting in case of

predicting a class (e.g. classification). The single predictors are trained only

on a subset of the dataset, that is different for each one of them. Bagging

methods are very useful when aggregating learners for which a small change

in the training set can cause significant changes in the predictions, like it
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happens for decision trees.

Another ensemble method is boosting [48]. Boosting is a strategy where

multiple simple models (called weak learners) are sequentially combined in a

single composite model. Each weak learners is weighted with respect to the

samples that have been misclassified more frequently so far. The idea is that

the more weak models we add, the stronger the composite model becomes.

Gradient Boosting [14] is a boosting techniques that at first train a regression

predictor, and then trains each one of the following models on the residual

error of the previous ensemble on an error function. The aim is to minimize

this error function, that can be of different types and depends on the algo-

rithm we want to use. In order to minimize the function, the algorithms

makes use of gradient descent, from which it takes the name. Decision trees

of fixed size are usually used as base learners, and in this case we talk of

Gradient Tree Boosting (GTB).

In [9] the authors proposed a scalable implementation for the GTB called

eXtreme Gradient Boosting (XGBoost). XGBoost improves the basic frame-

work through some enhancements; the most important are parallelization of

the process, hardware optimization, and the use of regularization to prevent

overfitting. XGBoost has been widely used with very good performances

in data science solutions, being the approach used in most of the winning

solutions in data science competitions.

2.2 Artificial Neural Networks

An artificial Neural Network (ANN) is a classifier that tries to mimic the

functioning of the human brain. Human brain is composed by nerve cells

and neurons in very big amount, that are connected to each other creating a

network of signal transmission. Every cell sends signals to the cells they are

connected to, and when one of them reaches a certain threshold because of

the input received, it releases a signal itself to all the cells it is connected to.
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Figure 2.3: Graphical representation of a perceptron. Picture taken from [27].

An ANN works with the same principle, but instead of the neuron, it uses

the “perceptron” as basic unit (also referred as neuron). The perceptron

has a number of weighted inputs and an activation function, and when these

combined inputs exceed a certain threshold it sends a signal as output. The

output sent is defined by the activation function, and it is usually in the

range (0, 1) and (−1, 1). An example of function in the range (0, 1) is the

sigmoid activation function, that is used when we need to predict a probabil-

ity as outcome. An example of function in the range (−1, 1) is the hyperbolic

tangent activation function, that is used for classification with two classes.

The equation for a perceptron can be written as:

y = g(
n∑
i=1

wixi + b) (3)

where y is the output signal, g is the activation function, n is the number

of connections to the perceptron, wi is the weight associated with the ith

connection and xi is the value of the i-th connection, b represents the thresh-

old, that is always set to a constant value of −1. A graphical representation

can be found in Figure 2.3. The strength of this model can be seen clearly

when more perceptrons are combined and put together. The perceptrons are

disposed in layers, that are neurons at the same distance from the input neu-
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rons. All the elements of a layer takes in input the signals coming from the

elements of the previous one, they apply the weights and then they send a

signal to the next layer depending from the activation function. An artificial

neural network is a non-linear model that is composed by number of neurons,

activation functions, and the values of weights and biases, that are arranged

in a particular topology.

The layers can be of three types: input layer, that is composed by the neu-

rons that receives the input from the data; output layer, that is composed by

the neurons that gives the final result of the network; hidden layer, that is

a layer of neurons that process data coming from neurons from the previous

layer and send information to neurons in the next one.

The most simple ANN is composed by the input layer, one hidden layer, and

the output layer composed by a single neuron. In Figure 2.4 we can see a

multi-layer perceptron with four inputs, one hidden layer of five neurons, and

one output.
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Figure 2.4: Multi-layer perceptron with four inputs, one hidden layer with five neurons

and one output. Picture taken from [23].

In an ANN the learning procedure consists in updating the weights as-

sociated with the connections between the layers. This is usually achieved

by “back-propagation”. Back-propagation consists in feeding backward the

error that the network makes at the output on new examples. By iteratively

repeating this process the network can learn to discriminate trough different

classes. The learning equations are the following:

wk+1 = wk + ∆w (4)

∆w = −η · ∂E
∂w

(5)

with:

E =
N∑
n

(tn − yn)2 (6)
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y = g(
J∑
j

W j · h(
I∑
i

wji · xi)) (7)

and with t being the desired output of the network, η being the learning

rate, that is a parameter that determines the step size at each iteration of

the learning procedure, and h(·) being the activation function of the hidden

layer.

2.3 Fraud Detection

Fraud detection for credit cards transactions aims at distinguishing between

genuine transactions and fraudulent ones, and a lot of methods have been de-

veloped in the literature, using supervised [12], unsupervised, semi-supervised

[7], and reinforcement learning [49] methods.

When the problem is addressed, there are some specific challenges that have

to be faced. The main issues are class imbalance, meaning that frauds trans-

actions are way fewer than genuine ones, and concept drift, meaning that

there could be changes in the distribution of the transactions over time.

As depicted in [12], a Fraud Detection System(FDS) is typically composed

of five layers of control, that are also shown in Figure 2.5:

1. Terminal: it represent the first control layer and it performs security

checks as controlling PIN code, card status, number of attempts, and

so on. The latency of these checks must be really small, because the

response should be real time. The requests that passed all the checks

become transactions and enter the second layer, while all the others

are denied.

2. Transaction-Blocking Rules: these are if-then(-else) statements designed

by physical investigators, hence they are the expert-driven component

of the FDS. The rules analyze only the information available at the
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time of the request, without analyzing historical records. These rules

must be quick, and they should raise very few false alarms, so they

have to be very specific. An example of rule is “IF internet transaction

AND unsecured website THEN deny the transaction”.

3. Scoring Rules: these are of the same form of the previous ones, but they

operate on the vector of features of the transactions, and they assign to

each of them a score measuring how risky it is. An example of rule is

“IF internet transaction AND cardholder age > 60 AND first internet

transaction THEN fraud score = 0.95”. Also these rules are designed

by investigators, so they are limited to detect only those frauds whose

patterns are already been identified.

4. Data Driven Model (DDM): this layer estimates for each transaction

the probability of being a fraud, that will become the associated fraud

score. This is usually done by mean of a classifier trained from a set

of labelled transactions. Then the transactions with a high fraud score

generates alerts, but only some of them are reported to the investiga-

tors, usually the first k alerted, with k being a paremeter that varies

along with the avilability of the investigators. Physical investigators

are the final layer of control.

The investigators cannot interfere with the DDM, because the DDM

aims at finding frauds patterns that are beyond their experience and

that are not necessarily explicable.

5. Investigators: this is the last layer of the system and it’s composed

by professionals that are in charge of checking if an alert raised by

the previous layers is a fraud or not. Their main job is to contact

cardholders, to label alerts as ”fraud” or ”genuine” and insert them in

the FDS. These labeled transactions are called feedbacks. In practice

investigators can only check few alerts per day, so the main goal of the

DDM is to raise very precise alerts and to avoid false positives.
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Figure 2.5: The picture illustrates the layers of control in a FDS. Our role is to design

the data driven model and the alert-feedback interaction. Picture taken from [12].

In [12] Dal Pozzolo et al. address all the main problems relative to Fraud

Detection, presenting a realistic learning strategy for the detection of frauds.

The framework used in this paper is the same that we adopted in our experi-

ments, hence a detailed description of it will be provided in the corresponding

section. They assume that in a real setting not all the available transactions

are labeled at time t, because there is a latency due to the alert feedback in-

teraction, the process from a transaction creation to its labeling and inserting

in the dataset. Hence, two types of data are available: delayed samples, that

are the labeled samples that have been inserted in the dataset after a certain

amount of time and that are labeled according to investigations of the experts

or reports of the costumers; and feedbacks, that are the few transactions that

can be investigated by the professionals, that are available every day.
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The main innovation in their work is that they trained a classifier K, com-

posed by the aggregation of the posterior probability of two different clas-

sifiers: one for the delayed samples, and another for the feedbacks. This is

important because it exploits the fact that the two sets of data have differ-

ent distributions, and that investigated separately they can give additional

information for the solution.

Another important contribution of the paper is the introduction of perfor-

mance measures that are more suitable for fraud detection. Given the nature

of the problem, classic metrics as accuracy, precision or recall are not very

informative for the performance of the system. Because of the class imbal-

ance, a classifier could have really high score for these metrics, but then

result in poor performance when it comes to new samples because it focused

only on the majority class, ignoring the minority one. They argue also that

the limited time that the investigators have should be taken into account,

so the FDS should provide a small number of precise alerts, allowing them

not to waste time. For these reasons they introduced two specific measures:

alert precision Pk(t) and card precision CPk(t). The first one is defined as

the precision on the k most risky transactions; the second one address the

fact that multiple fraudulent transactions coming from the same card, should

be counted as a single correct detection, so it’s defined as the proportion of

fraudulent cards detected in the k cards controlled by the investigators.

In the work a costant verification latency of δ is considered, and to process

transactions authorized at day t + 1 are considered Q days of feedbacks,

{Ft, ..., Ft−(Q−1)}, and M days of delayed samples {Dt−δ, ..., Dt−(δ+Q−1)},
where M = Q− δ.
The proposed learning strategy consist in separetely training a classifier Ft
on feedbacks:

Ft = TRAIN({Ft, ..., Ft−(Q−1)}) (8)

and a classifier on delayed samples:
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Dt = TRAIN({Dt−δ, ..., Ft−(δ+Q−1)}) (9)

and then the frauds are detected by the aggregation classifier At, that has

as posterior probability:

PAt(+|x) = αPFt(+|x) + (1− α)PDt(+|x) (10)

where α = 0.5 is the weight parameter that balanced the two contributions.

For all the classifiers used a Random Forest of 100 trees has been used. Each

tree has been trained on a balanced bootstrap sample obtained with Random

Undersampling of the majority class, in order to solve class imbalance.

In [49] they make use of reinforcement learning to tackle the problem. The

authors claim that in fraud detection they need to face a trade-off between

exploration and exploitation, where exploration consists in the investigation

of transactions with the purpose of improving predictive models, and ex-

ploitation consists in investigating transactions predicted to be risky. To

deal with this trade-off they use a Contextual Multi-Armed Bandit(CMAB)

[55].

Multi-Armed Bandit is a reinforcement learning technique where there is a

set of N arms, and to each arm is associated a reward distribution that

is unknown. The reward can be obtained in a deterministic way, meaning

that we have a single value for the reward for each arm (trivial solution); in a

stochastic way, meaning that the reward of an arm is drawn from a stationary

distribution; in an adversarial way, meaning that an adversary chooses the

reward for an arm at a given time step. In this case rt = amount(xit)× yit is

the reward obtained if arm i is investigated at time step t, with amount(xit)

being a feature of transaction i at time t that denotes its amount. They

want to maximize the cumulative reward R(τ) =
∑τ

t=1 rt collected over a

large number of steps τ . At each time step t an arm is selected and pulled,
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and a reward from its reward distribution is given to the system, that has

the goal of maximizing the cumulative reward. In the CMAB context vectors

are available at each time step, that are related to the reward obtained by

the arms. A context vector is a vector related to an element of the dataset

that contains additional information related to the reward. In this paper the

problem can be seen as a CMAB where each transaction corresponds to an

arm in the bandit problem. The problem with this formulation is that there

are too many transactions, hence the computation can be very expensive. In

order to solve the problem, the number of arms can be reduced by clustering

them. The clustering is performed by means of a Regression Tree T , whose

goal is to predict the reward ri associated with each transaction i, and in

which each leaf with the corresponding transactions is a cluster. This is done

because the tree creates branches, that can be seen as arms for our bandit

problem.

Every transaction is represented with a vector (xi, yi), where xi ∈ Rd is the

feature vector and yi ∈ {0, 1} is the class label (0 for genuine and 1 for

fraud). Various CMAB algorithm were evaluated in the paper, but the best

performing one was found to be Bootstrap Thompson Sampling (BTS), of

which we provide the pseudocode, as depicted in [49]:

Algorithm 2 BTS

Initialize J models, R(τ)← 0

for t = 1, 2, ..., τ do
xa ← feature vector for every arm a

Randomly select one model jt out of J

Play arm with highest reward predicted by jt

Observe reward r(t)

for j=1, 2, ..., J do

Update jth model using xat and r(t) w.p. 0.5

end

R(τ)← R(τ) + r(t)

end
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In [7] the authors combine supervised and unsupervised techniques in a

semi-supervised learning strategy to detect frauds. The main idea here is

to use unsupervised learning to compute different kind of outlier score for

every transaction, that is the probability for that transaction to be different

from the vast majority of the data. These scores are then aggregated with

the feature vectors of the corresponding transactions, and then supervised

learning based on Balanced Random Forest is performed on the augmented

dataset.

The types of score used are: Z-score, PC-1, PCA-RE-1, IF, and GM-1. Z-

score is defined as follows:

f∑
i=1

(
xi − µ̂i
σ̂i

)
(11)

with x ∈ Rd.

PC-1 and PCA-RE-1 are both based on Principal Component Analysis

(PCA), that transforms the original dataset X in a new representation T =

XW of d linearly uncorrelated features, called principal components. PCA

is widely used for outlier detection, and the two scores are defined as:

PC-1 = W T
1 x (12)

that is the value of the first principal component, and:

PCA-RE-1 = ‖x−WW Tx‖ (13)

that is the reconstruction error obtained by using the first component.

The score IF is based on Isolation Forest [36], and gives to each sample an

outlier score depending on the distance between the leaf node and root of

a random forest. Finally, GM-m is the density in x of a Gaussian mixture

(GM) model fit to the dataset, and m is the number of mixtures.
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The outlier score is computed with different levels of granularity: global,

where they assume that all the transactions are taken from the same dis-

tribution, local, where they assume that every cardholder has a different

behaviour, hence transactions from different cards have different distribu-

tions, and cluster, that tries to overcome both the previous method’s limit,

by clustering transaction on the card’s level, and then assuming that there

is a distribution for every cluster. The aggregation is performed with the

k-means algorithm, and the number of clusters was varying from 10 to 5000.

After the computation of the outlier scores, they were added to the other

features, and they were taken into account for the classification algorithm.

2.4 Oversampling

Class imbalance is a problem that we have when the number of data of a

specific class is really small with respect to the number of data of the other

classes. Most of machine learning algorithms are developed to give best re-

sults when the number of samples in each class is roughly equal, but when

this doesn’t happen problems may arise. There are many situations in wich

we have imbalance, such as rare diseases in medical diagnosis, oil spills in

satellite radar images, spotting unreliable telecommunication costumers, risk

management, information retrieval, intrusion detection, shuttle system fail-

ures, earthquakes and nuclear explosions, and of course credit card frauds

detection [21].

One direct solution to tackle this problem is to adopt techniques that change

the distribution of the classes. This can be done in two ways: undersamping

the majority class or oversampling the minority class. In [28] they came with

the conclusion that undersampling and oversampling techniques are very ef-

fective methods to overcame class imbalance.

In our work we focused on different oversampling techniques and how they
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perform in the classification of credit card transactions. The most used ones

are ROS, SMOTE and ADASYN.

2.4.1 ROS, SMOTE and ADASYN

With Random Oversampling (ROS) the class distribution is balanced by

random replicating examples belonging to the minority class. The examples

to be replicated are chosen randomly from the original training set, and not

from the new training set, otherwise the randomness of the selection would be

biased. Furthermore, the oversampling is done with replacement, otherwise

the members of the minority class would be over before reaching the desired

balance between classes [35]. These technique is widely used because it is

very simple and it doesn’t require too much knowledge about the dataset.

However, there are two main drawbacks in ROS: overfitting would be more

likely to occur, and it makes the learning process more time consuming when

the dataset is both large and umbalanced [28].

SMOTE [8] is an oversampling technique that creates “synthetic” samples

instead of duplicating existing ones. Each minority class example is taken

and the new samples are produced along the line segments that join the

selected point with the k nearest neighbors belonging to the same class. The

synthetic samples are generated by taking the difference between the selected

sample and the neighbor and multiplying this difference by a random number

between 0 and 1, causing the selection of a point randomly in the line segment

just described. This procedure makes the decision region of the minority

class more general. In Figure 2.6 we can see a graphical representation of the

generation.

If we consider a sample x1 with coordinates (x1a, x1b), it is the sample for

which k nearest neighbors are identified. Assume that the nearest neighbor
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Figure 2.6: In here we can see how the oversampling is performed taking into account

the point x1. The difference vectors with the k-nearest neighbors(x2, x3, x4, x5, x6) is

computed, and from those vectors, k new samples are generated(a, b, c, d, e). Picture

taken from [8].

is (x2a, x2b). Then the new sample will be generated as:

(x′a, x
′
b) = (x1a, x1b) + rand(0, 1)× (x2a − x1a, x2b − x1b) (14)

The SMOTE algorithm, as described in details in [8], is reported in Algorithm

3.
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Algorithm 3 SMOTE(T, N, k)

Input : Number of minority class samples T ; Amount of SMOTE N%;

Number of nearest neighbors k

Output: (N/100)× T synthetic minority class samples

if N < 100 then
Randomize the T minority class samples;

T = (N/100)× T ;

N = 100;

end

• N = (int)(N/100) (*The amount of SMOTE is assumed to be in inte-

gral multiples of 100*)

• k = Number of nearest neighbors

• numattrs = Number of attributes

• Sample[][]: array for original minority class samples

• newindex: keeps a count of number of synthetic samples generated,

initialized to 0

• Synthetic[][]: array for synthetic samples (* Compute k nearest neigh-

bors for each minority class sample only. *)

for i = 0 to T do
Compute k nearest neighbors for xi, and save the indices in the nnarray;

Populate(N, i, nnarray);

end

while N 6= 0 do
Choose a random number between 1 and k, call it nn. This step chooses

one of the k nearest neighbors of i;

for attr = 1 to numattrs do
Compute: dif = Sample[nnarray[nn]][attr]− Sample[i][attr];
Compute: gap = random number between 0 and 1;

Synthetic[newindex][attr] = Sample[i][attr] + gap× dif ;

end

newindex+ +;

N = N − 1;

end
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ADASYN [24] is an oversampling technique derived by SMOTE. A den-

sity distribution r̂i is used to decide the number of synthetic samples to be

generated for each sample in the minority class. r̂i measure the distribution

giving more weight to minority class examples that are more difficult to learn,

forcing the learning algorithm to focus on these data points. That’s the ma-

jor difference with SMOTE, in which the number of generated samples for

each point is equal.

The algorithm takes in input the training datasetDtr withm samples {xi, yi},
and with i = 1, ...,m. xi ∈ X, where X is the n-dimensional feature space,

and yi ∈ Y , where Y = {1,−1} is the class identity label. Then ms is defined

as the number of minority class examples and ml as the number of majority

class examples, such that ms ≤ ml and ms +ml = m.

The procedure, as described in [24], is the following:

1. Calculate the degree of class imbalance

d = ms/ml (15)

with d ∈ (0, 1]

2. If d < dth then (dth is a preset threshold for the maximum tolerated

degree of class imbalance ratio):

(a) Calculate the number of synthetic data examples that need to be

generated for the minority class:

G = (ml −ms)× β (16)

where β ∈ [0, 1] is a parameter used to specify the desired balance

level after generation of the synthetic data. β = 1 means a fully

balanced dataset is created after generalization process.

(b) For each example xi ∈ S, S being the set of samples belonging

to the minority class, find K nearest neighbors based on the Eu-

clidean distance in n dimensional space, and calculate the ratio ri

defined as:

ri = ∆i/K, i = 1, ...,ms (17)
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where ∆i is the number of examples in the K nearest neighbors of

xi that belong to the majority class, therefore ri ∈ [0, 1];

(c) Normalize ri according to

r̂i = ri/
ms∑
i=1

ri,

so that r̂i is a density distribution (
∑

i ri = 1).

(d) Calculate the number of synthetic data examples that need to be

generated for each minority example xi:

gi = r̂i ×G (18)

where G is the total number of synthetic data examples that need

to be generated for the minority class as defined in Equation (3).

(e) For each minority class data example xi, generate gi synthetic data

examples according to the following steps:

Do the Loop from 1 to gi:

i. Randomly choose one minority data example, xzi, from the K

nearest neighbors for data xi.

ii. Generate the synthetic data example:

si = xi + (xzi − xi)× λ (19)

where (xzi−xi) is the difference vector in n dimensional spaces,

and λ is a random number: λ ∈ [0, 1].

End Loop.

2.4.2 GAN and GAMO

Generative Adversarial Networks (GANs) are neural networks composed by

two components: a generator and a discriminator. The objective of the gen-

erator is to generate fake samples and try to fool its adversary. The objective
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of the discriminator is to distinguish between fake and real samples. The net-

work is determined by a minmax game, that ends when the discriminator is

not able to distinguish anymore samples produced by the generator from

samples belonging to the original dataset.

In [3] the author makes use of GANs as oversampling techniques to generate

artificial samples on a dataset of credit cards transactions, improving the

discriminatory power of the classifier. In the experiments the use of GANs

as oversampling technique is compared with ROS, SMOTE and ADASYN,

showing that GAN architectures(especially the variant called Wasserstein

GAN) produce more realistic fraudolent transactions, leading to more stable

results.

In [39] a new generative model based on GANs is developed, called Genera-

tive Adversarial Minority Oversampling.

2.4.3 Generative Adversarial Networks

In machine learning there are two main approaches for building statistical

classifiers: discriminative and generative. Discriminative models map the

samples to a class label to perform their task, and they do it by learning the

conditional probability distribution of the input data using its own features.

Generative models’ goal is to generate synthetic samples the most similar to

the original input, estimating and exploiting the joint probability distribu-

tion of the high dimensional input data.

The GANs are a particular type of neural networks, in which we estimate

generative models trough an adversarial process [20]. Two models are trained

simultaneously in the framework: a generative model G, that tries to gener-

ate synthetic samples capturing the data distribution, and a discriminative

model D, that tries to distinguish fake samples from data coming from the

original distribution. As stated in [20], the clearest modeling framework is

when the models are both multi-layer perceptrons.
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Figure 2.7: Generative Adversarial Network Model. Picture taken from [19].

We define as pg the generator’s distribution over data x. We define pz(z) as

a prior on input noise, in order to learn pg, and then we represent a mapping

to the data space as G(z; θg), where G is the multi-layer perceptron equa-

tion with parameters θg. Finally, we define D(x; θd) as the equation of the

discriminator, that outputs a single scalar corresponding to the probability

that x came from the data rather than pg. In Figure 2.7 the architecture of

a GAN is showed.

The learning procedure consists in training D in order to maximize the prob-

ability of assigning the correct label to synthetic and original samples (the

labels in this case are “fake” or “original”). Simoultaneously we train G to

minimize log(1−D(G(Z))).

This consists in practice in the following two players minimax game:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(Z)))] (20)

The game is implemented using an alternated approach, but optimizing D

completely in the inner loop is prohibitive in terms of computational power,
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and it can lead to overfitting in finite datasets [20]. The solution is to train

D for k steps, and then training G for one. In this way D is maintained near

its optimal solution if G changes slowly enough.
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Algorithm 4 Minibatch stochastic gradient descent training of generative

adversarial nets.

for number of training iteration do

for k steps do

• Sample minibatch of m noise samples (z(1), ..., z(m)) from noise prior

pg(z).

• Sample minibatch of m examples (x(1), ..., x(m)) from data generating

distribution pdata(x)

• Update the discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
i=1

[
logD

[
x(i)
]

+ log
(
1−D(G(z(i)))

)]
(21)

end

• Sample minibatch of m noise samples (z(1), ..., z(m)) from noise prior

pg(z).

• Update the generator by descending its stochastic gradient:

∇θd

1

m

m∑
i=1

log
(
1−D(G(z(i)))

)
(22)

end

The gradient-based updates can use any standard gradient-based learning

rule. The authors of [20] used momentum.

At a certain point in the training, a global optimum will be reached, that

corresponds to the point in which pg = pdata. This happens when D(x) = 1
2

and the discriminator is not able to distinguish anymore between the two
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distributions. This point in practice is hardly reached because of computa-

tional constraints.

Now we will prove what we just said, following the procedure explained in

[20].

Proposition 1. For G fixed, the optimal discriminator D is:

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(23)

Proof. The training criterion for the discriminator D, given any generator

G, is to maximize the quantity V (G,D)

V (G,D) =

∫
x

pdata(x)log(D(x))dx+

∫
z

pz(z)log(1−D(G(z)))dz

=

∫
x

pdata(x)log(D(x)) + pg(x)log(1−D(x))dx

(24)

For any (a, b) ∈ R2\{0, 0}, the function y → a · log(y) + b · log(1−y) achieves

its maximum in [0, 1] at a
a+b

. The discriminator does not need to be defined

outside of Supp(pdata) ∪ Supp(pg), concluding the proof.

The minimax game now can be expressed as:

C(G) = max
D

V (G,D)

= Ex∼pdata
[logD∗G(x)] + Ez∼pz [log(1−D∗G(G(z)))]

= Ex∼pdata
[logD∗G(x)] + Ex∼pg [log(1−D∗G(x))]

= Ex∼pdata

[
log

pdata(x)

pdata(x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)

pdata(x) + pg(x)

] (25)

Theorem 2.4.1. The global minimum of the virtual training criterion C(G)

is achieved if and only if pg = pdata. At that point, C(G) achieves the value

−log4.
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Proof. For pg = pdata, DG ∗ (x) = 1
2
. Hence, as proved before, at this value,

we have C(G) = log 1
2

+ log 1
2

= −log4. To see that this is the best possible

value of C(G), reached only for pg = pdata, observe that:

Ex∼pdata
[−log2] + Ex∼pg [−log2] = −log4 (26)

and that by subtracting this expression from C(G) = V (D∗G, G), we obtain:

C(G) = −log(4) +KL

(
pdata

∥∥∥ pdata

2 + pg

)
+KL

(
pdata

∥∥∥ pg

2 + pg

)
(27)

where KL is the Kullback-Leibler divergence(that we will expain in details in

the next section). The previous expression is known as the Jensen-Shannon

divergence between the model’s distribution and the data generating process:

C(G) = −log(4) + 2 · JSD(pdata‖pg) (28)

The Jensen-Shannon divergence is always non-negative, and it is equal to zero

only when the two distributions taken into account are equal. So we can say

that C∗ = −log(4) is the global minimum of C(G) and that pg = pdata is the

only solution, meaning that the generative model has copied the distribution

of the original data.

Now that we have described the GAN model, we will introduce the

Wasserstein GAN, that will be one of the architectures we will use in our

experiments.

2.4.4 Wasserstein GAN

The Wasserstein Generative Adversarial Network (WGAN) is an extension of

the classical GAN that uses a loss function that is correlated to the quality

of the generated samples, and that improves the stability of the learning

procedure. Let’s define elementary distances and divergences between two
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distributions Pr,Pg ∈ Prob(χ), with χ being a compact metric set (such as

the space of images [0, 1]d):

• The Total Variation (TV) distance:

δ(Pr,Pg) = sup
A∈Σ
|Pr(A) + Pg(A)| (29)

with Σ being the set of all the Borel subsets of χ.

A Borel set is any set in a topological space that can be formed from

open sets (or, equivalently, from closed sets) through the operations of

countable union, countable intersection, and relative complement.

• The Kullback-Leibler (KL) divergence:

KL(Pr‖Pg) =

∫
log

(
Pr(x)

Pg(x)

)
Pr(x)dµ(x) (30)

where Pr and Pg both admit densities because absolutely continuous,

with respect to the same measure µ defined on χ. The KL divergence

is asymmetric and infinite when Pg(x) = 0 and Pr(x) > 0

• The Jensen-Shannon (JS) divergence

JS(Pr,Pg) = KL(Pr‖Pm) +KL(Pg‖Pm) (31)

where Pm = Pr+Pg
2

.

• The Earth-Mover (EM) distance or Wasserstein-1 :

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ[‖x− y‖] (32)

where Π(Pr,Pg) is the set of all joint distributions γ(x, y) whose marginals

are respectively Pr and Pg.
In other words, γ is how much mass should be moved from x to y in

order to make the two distributions coincide, while the EM distance is

the cost we need to pay to do that.

Now we can present two theorems, formulated in [1].
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Assumption 2.4.1. Let g : Z × Rd → χ be locally Lipschitz between fi-

nite dimensional vector spaces. We will denote with gθ(z) its evaluation on

coordinates (z, θ). We say that g satisfies assumption 2.4.1 for a certain

probability distribution p over Z if there are local Lipschitz constants L(θ, z)

such that:

Ez∼pz [L(θ, z)] < +∞ (33)

Theorem 2.4.2. Let Pr be a fixed distribution over χ. Let Z be a random

variable (e.g Gaussian) over another space Z. Let g : Z × Rd → χ be

a function, that will be denoted gθ(z) with z the first coordinate and θ the

second. Let Pθ denote the distribution of gθ(Z). Then:

1. If g is continuous in θ, so is W (Pr,Pθ).

2. If g is locally Lipschitz and satisfies regularity Assumption 2.4.1, then

W (Pr,Pθ) is continuous everywhere, and differentiable almost every-

where.

3. Statements 1-2 are false for the Jensen-Shannon divergence JS(Pr,Pθ)
and all the KLs.

Corollary 2.4.2.1. Let gθ be any feedforward neural network parameterized

by θ, and pz(z) a prior over z such that Ez∼pz(z)[‖z‖] < ∞ (e.g. Gaussian,

uniform, etc.). Then Assumption 2.4.1 is satisfied and therefore W (Pr,Pθ)
is continuous everywhere and differentiable almost everywhere.

The corollary tells us that EM distance in theory is a very good choice of

distance to minimize with neural networks.

Theorem 2.4.3. Let P be a distribution on a compact space χ and (Pn)n∈N

be a sequence of distributions on χ. Then, considering all limits as n→∞,

1. The following statements are equivalent
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• δ(Pn,P)→ 0 with δ the total variation distance.

• JS(Pn,P)→ 0 with JS the Jensen-Shannon divergence.

2. The following statemets are equivalent

• W (Pn,P)→ 0.

• Pn
D−→ P where

D−→ represents convergence in distribution for ran-

dom variables.

3. KL(Pn‖P)→ 0 or KL(P‖Pn)→ 0 imply the statements in (1).

4. The statements in (1) imply the statements in (2).

The previous theorems show that:

1. EM distance is a much more sensible cost function than at least the

Jensen-Shannon divergence for the development of a GAN.

2. KL, JS, and TV distances are not sensible cost functions when learning

distributions supported by low dimensional manifolds.

Proofs for them are depicted in [1].

As we saw in Theorem 2.4.3, Wasserstein distance is nicer to optimize with

respect to Jensen-Shannon distance, but dealing with the infimum in its

equation can be tough. To avoid this problem we can differentiate W (Pr,Pθ)
by back-propagating through the Kantorovich-Rubinstein duality:

W (Pr,Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] (34)

This intuition is proved in the following theorem(depicted and proved in [1]):

Theorem 2.4.4. Let Pr be any distribution. Let Pθ be the distribution of

gθ(Z) with Z a random variable with density p and gθ a function satisfying
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Assumption 2.4.1. Then, there is a solution f : χ→ R to the problem:

max
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] (35)

and we have:

∇θW (Pr,Pθ) = −Ez∼pz(z)[∇θf(gθ(z))] (36)

when both terms are well defined.

To find the function f that solves Equation 34, we train a neural net-

work initialized with weights w ∈ W , whereW is a compact space, and then

performing back-propagation through Ez∼pz(z)[∇θfw(gθ(z))], like in a normal

GAN. In order to have the parameters w to lie in a compact space we use

weight clipping, that consists in clamping the weights to a fixed box(for ex-

ampleW = [−0.01, 0.01]l). Now we show the WGAN procedure, as proposed

in [1]:
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Algorithm 5 WGAN

Input : α, the learning rate. c, the clipping parameter. m, the batch

size. n critic, the number of iterations of the critic per genera-

tor iteration. w0, initial critic parameters. θ0, initial generator’s

parameters.

while θ is not converged do

for t = 0, ..., n critic do

• Sample {x(i)}mi=1 ∼ Pr a batch from the real data;

• Sample {z(i)}mi=1 ∼ pz(z) a batch of prior samples;

• gw ← ∇w[ 1
m

∑m
i=1 fw(x(i))− 1

m

∑m
i=1 fw(gθ(z

(i)))];

• w ← w + α ·RMSProp(w, gw);

• w ← clip(w,−c, c);

end

• Sample {z(i)}mi=1 ∼ pz a batch of prior samples;

• gθ ← ∇θ[
1
m

∑m
i=1 fw(gθ(z

(i)))];

• θ ← θ − α ·RMSProp(θ, gθ);

end

2.4.5 Generative Adversarial Minority Oversampling

In [39], the authors propose a variation of the GAN, where the is an adver-

sarial game with three players instead of two. The game is between a convex

generator G, a classifier network M , and a discriminator D to perform over-

sampling. M plays an adversarial game against the generator G, that tries

to generate fake samples that will be misclassified.

They have a training dataset X ⊂ RD, in a c-class classification problem. Let
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Pi be the prior probability of the i-th class, where i ∈ C = (1, 2, ..., c) is the

set of classes. The authors used this method as an oversampling technique

for multi-class dataset, while we used it in the context of fraud detection, so

with only two classes.

Let Xi be the set of all ni training point of class i ∈ C. They want to

train the classifier M , that outputs, for all the classes, the probability of any

x ∈ X to belong to class i. The main idea is that the classifier will learn the

boundaries between the classes by focusing on such difficult points near the

fringes of the minority class. In the same way, the generator will be helped

to generate points on those regions by the performance of M .

To avoid that G generates point that fall outside of the distribution of the

minority class, they constraint it to generate point only as convex combina-

tion of existing points belonging to that class. Hence, G can generate new

samples for class i as a convex combination of the data points in Xi:

G(z|i) =

ni∑
j=1

gi(t(z|i))xj (37)

where z is a latent variable drawn from a standard normal distribution and

xj ∈ Xi.

The adversarial game between M and G is the following, being pidata and

pig respectively denote the real and generated class conditional probability

distributions of the i-th class.:

min
G

max
M

J(G,M) =
∑
i∈C

Ji (38)

Ji = Ji1 + Ji2 + Ji3 + Ji4 (39)

where Ji1 = PiEx∼pidata [logMi(x)],

Ji2 =
∑

j∈C\{i} PjEx∼pjdata [log(1−Mi(x))],

Ji3 = (Pc − Pi)EG(z|i)∼pig [logMi(G(z|i))], and

Ji4 =
∑

j∈C\i(Pc − Pj)EG(z|j)∼pjg [log(1−Mi(G(z|j)))].
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We show now, as they prove in the supplement document of [39], the follow-

ing theorem:

Theorem 2.4.5. Optimizing the objective function J is equivalent to the

problem of minimizing the following summation of Jensen-Shannon diver-

gences:

c∑
i=1

JS

(
(Pip

i
data + (Pc − Pi)pig)

∥∥∥ c∑
j=1,j 6=i

(Pjp
j
data + (Pc − Pj)pjg)

)
(40)

The optimization problem in Theorem 2.4.5 tries to move the generated

distributions for each class closer to the real distributions for all other classes.

This results in generating points near the class boundaries, where it is critical

for the learning.

Nevertheless, points can still be generated in locations within the convex hull

of the corresponding class, but which don’t fall inside its distribution. For

this reason they add to the network an additional conditional discriminator,

which goal is to make sure that the new samples do not fall outside of the

actual distribution of the minority class.

The resulting network is characterized by the following three players adver-

sarial game:

min
G

max
M

max
D

Q(G,M,D) =
∑
i∈C

Qi (41)

where Qi = (Ji1 + Ji2 + Ji3 + Ji4 +Qi1 +Qi2),

Qi1 = PiEx∼pidata [logD(x|i)], and

Qi2 = (Pc − Pi)EG(z|i)∼pig [log(1−D(G(z|i)|i))].
Here we show the complete algorithm, as described in [39]:
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Algorithm 6 GAMO

Input : X, training set. l, latent dimension. b, minibatch size. u, v, (hy-

perparameters, set to dn
b
e in their implementation)

Output: A trained classification network M

Note : For flattened images there is no need to train F , i.e., F (X) can

be replaced by X

while not converged do

for u steps do
• Sample Bd = (x1, x2, ..., xb) from X, with corresponding class labels Yd;

• Update F by gradient descent on (M(F (Bd)), Yd) keeping M fixed;

end

for v steps do

• Sample Bd = (x1, x2, ..., xb) from X, with corresponding class labels Yd;

• Sample Bn = (z1, z2, ..., zb) from l dimensional standard normal distri-

bution;

• Update M and D by respective gradient descent on (M(F (Bd)), Yd)

and (D(F (Bd)|Yd), 1), keeping F fixed;

• Generate labels Yn by assigning each zj ∈ Bn to one of the c−1 minority

classes, with probability ∝ (Pc − Pi),∀i ∈ C\{c};

• Update M and D by respective gradient descent on (M(G(Bn)), Yn)

and (D(G(Bn)|Yn), 0), keeping G fixed;

• Sample Bg = (z1, z2, ..., zb) from l dimensional standard normal distri-

bution;

• Generate labels Yg by assigning each zj ∈ Bg to one of the c−1 minority

classes with equal probability. Take ones’ complement of Yg as Ȳg;

• Update G by gradient descent on (M(G(Bg|Yg)), Ȳg) keeping M fixed.

• Update G by gradient descent on (D(G(Bg|Yg)|Yg), 1) keeping D fixed.

end

end

43



2.5 Genetic Algorithms

Genetic Algorithms, which became popular thanks to John H. Holland in

1975 [25], are a class of searching algorithms that search for a nearly optimal

solution for a given problem in a solution space. The search is performed

by mimicking the genetic evolution: there is a “population” from which the

best candidates are taken and bred to form a new generation of samples.

The population is a set of possible solutions. While the algorithms is running,

new candidates are “born” in the population, while others “die”. This process

depends on the fitness function. The fitness function is a function that gives

a measure of how good a solution is for the given task, and it grows along

with the goodness of the solution.

The fundamental steps for a genetic algorithm are:

• Population Generation: generate the initial population.

Each sample of the population is called individual, and each individual

has a set of parameters(features) called genes. The set of genes is

known as chromosome. In Figure 2.8 we can see an illustration of the

population.

• Fitness Function: compute the fitness score for each chromosome in

the population. The probability that an individual will be selected for

reproduction depends on it.

The fitness function is chosen with respect to the specific problem taken

into account.

• Selection: select n chromosomes for the reproduction according to their

fitness score .

The selected chromosome are called parents, and there are many ways

to pick the best ones. The most used methods are roulette wheel selec-

tion, where the probability of being picked is proportional to the fitness

of each individual, rank selection, where the probability of being picked

is proportional to the rank of each individual, and tournament selec-
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Figure 2.8: Illustration of population, chromosomes and genes.

tion, where a random subset of the population is taken into account

and a tournament is held between the individuals.

• Crossover : mix the parents to form new individuals, with a crossover

probability.

The crossover operation consists in recombining genes of the parents in

new samples. There are various operator to perform crossover, as single

point crossover, where a random crossover point is taken at random to

split the chromosome, and the new individuals will be formed by a

part from the first parent and a part from the second one, and uniform

crossover, where genes are randomly selected from one of the parents

to create individuals.

45



Crossover works well because in selecting parents that contains good

sequences, there is a probability that the process takes the best from

each parents generating a better individual.

• Mutation: with a low mutation probability mutate some genes of the

new offspring.

Mutation is performed because with that the diversity within the pop-

ulation is maintained and premature convergence is avoided.

After the mutation step the new individuals are placed in the population

instead of the individuals with the worst fitness score.

Fitness evaluation, selection, crossover and mutation are then repeated until

a termination condition is met or a good enough solution is found.

Genetic algorithms are very versatile and customizable, and thanks to that

they can be used for a large variety of problems. All the steps of the pro-

cess can be modified and adjusted with respect to the problem, so a wide

set of implementations can be produced with respect to the problem to solve.

One of the problems that we have to face in fraud detection is class im-

balance, and one of the remedies for class imbalance is oversampling. When

we want to oversample a class we want to find samples good enough to be

assigned to that class.

As stated in [50] “Genetic algorithms are particularly useful for problems

where it is extremely difficult or impossible to get an exact solution, or for

difficult problems where an exact solution may not be required.”. With over-

sampling we don’t want an exact solution, but we want a lot of good enough

solutions in order to balance the classes, and if we define a proper fitness

function we can make use of genetic algorithm to produce samples that we

can add to the minority class. If we repeat this process until we have enough

samples, we can use genetic algorithms as an oversampling method.

In [31] we have an example of how this can be done. The authors of the paper

propose an algorithm called GenSample for oversampling the minority class

in imbalanced datasets. It was tested on 9 real-world imbalanced datasets
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and it gave good results compared to SMOTE and ADASYN.

The algorithm takes as initial population the entire minority class. The fit-

ness of a sample takes into account the type of sample(safe, boarderline, rare

or outlier), and the performance improvement achieved by oversampling it.

The fitness function is the following:

fitness(x) = β ×minority label weight+ (1− β)×∆Fscore (42)

where 0 < β < 1, minority label weight is calculated with respect of the

number of majority class samples in the k-neighborhood of x and ∆Fscore

is the change in F1 score produced by resampling x [31].

The selection is performed by picking the individual with the highest fitness

score in the minority class as first parent, while the second parents is chosen

randomly between the k nearest neighbors belonging to the minority class.

The crossover mechanism between the two parents is similar to the interpo-

lation performed in [8]. At each iteration two children are produced, each

one closer to one of the parents, following these equations:

child1 = parent1 + (parent2 − parent1)× λ (43)

child2 = parent1 + (parent2 − parent1)× (1− λ) (44)

where 0 < λ < 1.

After the reproduction and the evaluation of the fitness of the two children,

the fitter one replaces the least fit individual in the population, while the

other one is only put in the dataset because he’s not considered a good

individual for reproduction.

Finally, in the paper, they address as mutation the selection, with a small

probability, of a random individual from the population as first parent instead

of the fittest one.

The steps are performed until the balance of the classes is reached or until
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adding a new sample results in a degradation in performance.

The results presented in the paper show that this algorithm outperforms the

other oversampling techniques for most of the datasets.
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Chapter 3

Research Problem

3.1 Problem Formulation

In this section we provide a formal description of the alert-feedback interac-

tion and give a description of the classification problem we face in our work.

The goal of our research is to develop a system for fraud detection of credit

cards transactions. As stated before, the framework we used is taken from

[12]. Each transaction in the dataset is denoted as a vector {xi, yi}, where xi

is a k-dimensional feature vector associated with the i-th transaction, while

yi is the label of the i-th transaction. We have that yi ∈ {0, 1}, and we

denote transaction i as fraud if yi = 1, and as genuine otherwise.

In our framework the goal is to train a classifier K in order to predict when a

transaction is fraudulent or genuine. K is retrained every day, and we denote

with Kt−1 the classifier that has been trained on transactions available up

to day t − 1. The classifier Kt−1 is then used to classify the transactions

authorized at the following day, t. We train a classifier everyday because

in a real-world model for a FDS, data are coming as a transaction stream,

and the stream is affected by concept drift. By concept drift we mean an

online learning scenario in which the relationship between the input and the

target vector is changing over time [15]. In the case of fraud detection we



have to face this problem because fraudsters can study the real distribution

of the transactions and adapt their methods accordingly. They can change

their behaviors according to the seasonality (e.g. during Christmas period

the number of transactions is higher with respect to the rest of the year), to

new techniques for the detection, or to some particular event.

Kt−1 returns us, for every transaction xi, the posterior probability for the

transaction to be a fraud, PKt−1(1|xi). As stated before when describing a

real-world FDS, the alerted transactions are checked manually by human in-

vestigators, that have a limited amount of time every day. For this reason

only the k-th most risky transactions are alerted every day, and they are

defined as:

At = {xi ∈ Tt|r(xi) ≤ k}

where Tt is the set of transactions authorized at day t, and r(xi) ∈ {1, ..., |Tt|}
is the rank of the i-th transaction, according to its posterior probability.

The alerts, once that the investigators make their checks, are added to the

Fraud Detection Systems as feedbacks, and they are treated separately from

the rest of the transactions. In a real-world FDS, feedbacks are the only

supervised information available in the short term, and they are not repre-

sentative of the total distribution of the transactions. They are taken from

the k most risky transactions, hence they are affected by a problem known

as Sample Selection Bias [11], that is present when we choose a subset of the

data not in a randomic way.

The set of the feedbacks is modeled as follows:

Ft = {(xi, yi)|xi ∈ cards(At)}

where cards(At) is the set of cards for which at least a transaction has been

alerted.

After a certain amount of time, that in here we assume is fixed and denoted by
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δ(verification latency), the clients have spotted all the corresponding frauds,

while the non-disputed transactions are labeled as genuine, hence all the

transactions are available to the FDS with their own label. In this way at

day t all the transaction up to day t− δ are available with their labels. The

set of delayed samples is modeled as:

Dt−δ = {(xi, yi)|xi ∈ Tt−δ}

From these definitions it follows that Ft−δ ⊂ Dt−δ.

3.2 Workflow Schema

Now that we defined the scheme of our training sets, we will present the

workflow of our framework. As already stated in Section 2.3, the classifier

Kt is the aggregation of two different classifiers. One is trained exclusively on

the feedbacks, and one is trained exclusively on the delayed samples. As we

said before, this is done because the distribution of the two datasets is very

different, since the feedbacks are affected by the Sample Selection Bias, and

they depends on the performance of the classifier, while the delayed samples

are highly unbalanced in favor of the genuine class.

From the study of the literature we understood that Random Forests are the

models that achieve the best performance [4] [42] [51] for this kind of task,

so we will use this model as baseline for our classifiers, with number of trees

depending on the experiment.

The feedback classifier

Ft = TRAIN({Ft, ..., Ft−δ})

is trained on the feedbacks provided from the investigators in the last δ days.
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The delayed classifier

Dt = TRAIN({Dt−δ, ..., Dt−(δ+M−1)})

is an ensemble of M random forests, where M = Q − δ, where Q is the

time window on which the daily classifier is trained. Each random forest is

trained on the whole set of delayed samples of a specific day, and then the

results are aggregated by averaging the scores of the M classifiers. Being

Dt = {Mt−Q, ...,Mt−Q−M} the ensemble learned at day t, we have that the

posterior probability of transaction x being a fraud for the ensemble is:

PDt(1|x) =

∑t−Q
i=t−Q−M PMi

(1|x)

M
(45)

where PMi
(1|x) is the posterior probability of x being a fraud, given as out-

put from the individual classifier i.

The daily datasets are extremely unbalanced since the fraudulent trans-

actions are way outnumbered by genuine transactions. Also the feedback

datasets could be affected by imbalance in the opposite way, but we didn’t

focus on them in this thesis. Class imbalance leads traditional machine learn-

ing methods to focus their attention on samples belonging to the majority

class, resulting in very poor performance on the minority class. We try to

solve this problem by performing oversampling of the minority class on the

delayed datasets.

In practice, at every day t, the transactions authorized are stored in a new

dataset for the corresponding day, and on this dataset oversampling is per-

formed before training the corresponding model. We compare in our work

different oversampling methods (already described in Section 2.4): ROS,

SMOTE, WGAN oversampling, GAMO oversampling and oversampling with

Genetic Algorithm. Additionally, we propose a new oversampling technique
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based on genetic algorithms. In the comparison we also add a framework in

which we don’t perform any kind of oversampling, leaving the dataset as it

is.

At day t, after the training of Ft on the feedback collection and of Dt on the

oversampled daily datasets, we aggregate the results of the predictors in an

unique classifier, Kt, that gives us the posterior probability of transaction x

being a fraud, as:

PKt(1|x) = αPFt(1|x) + (1− α)PDt(1|x) (46)

where 0 < α ≤ 1 is the weight parameter that balances the contribution of

both the classifiers. In our experiments we chose α = 0.5, that corresponds

to the average between the two predictions. The aggregate classifier Kt is

then tested on Tt, that is the set of transactions authorized at day t.

From Figure 3.1 we can better understand how the workflow pipeline of our

system works. Every day an ensemble of Random Forests is trained on the

set of Delayed Datasets, and a Random Forest is trained on the Feedback

Dataset. The two scores obtained are then aggregated and used to compute

the final predictions. Then, the 100 most risky transactions are checked by

the investigators, and once this operation is done they will replace the feed-

backs relative to the oldest day in the Feedback Dataset.
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Figure 3.1: Daily Workflow Schema. Every day two models are trained, an ensemble

of Random Forests for the Delayed Datasets and a Random Forest for the Feedback

Dataset. Then the results are aggregated and the predictions are made. The 100 most

risky transactions are then checked from the investigators, and then the feedbacks are

added to the Feedback Dataset for the following day.

3.3 Genetic Algorithm Solution

In this section we present the oversampling algorithm we developed based on

genetic algorithms. This algorithm is the one that gave us the best perfor-

mances overall in the experiments. This is probably due to the fact that this

method has been created specifically for our problem, exploiting the charac-

teristics of our dataset.

Now let’s analyze how this algorithm was developed based on the steps of a

genetic algorithm:

• Population Generation: the initial population in our case is formed

by the fraudulent transactions in the dataset. Considering how we

developed our solution, the oversampling was performed for each hour

dataset, hence the initial population is different for everyone of them.

• Fitness Function: the fitness function is based on the feature impor-

tance computed in [18]. As we can see from Figure 3.2, the most
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important features are V 14, V 4, V 10, V 17 and Time. The importance

of the features is obtained with XGBoost, that provides a method to

compute it. The importance is calculated for each attribute for every

single tree as the amount of improvement in the performance that an

attribute split point gives. Then the feature importance are averaged

across the decision trees.

The formula of the fitness functions is the following:

fitness(x) = w1 × x(V 14) + w2 × x(V 4) + w3 × x(V 10)

+w4 × x(V 17) + w5 × x(Time)
(47)

where wi is the weight relative to the i-th feature on the Fscore, com-

puted as:

wi =
Fscorei∑5
j=1 Fscorej

(48)

The weight is computed only on the features taken in consideration for

the computation of the function.

• Selection: the selection for the mating partners is done through the

fitness function. The parents will be the best four chromosomes ac-

cording to their fitness. In some of the datasets there were less than

four frauds, hence it was not possible to choose four parents. To solve

the problem the original frauds from the previous dataset were added

to the ones of the current dataset.

• Crossover : the operator we choose for crossover is the single point

crossover. Having 30 features, we took 15 from the first parent, and

the rest from the second one. The crossover was performed on four

couples from the parents, formed by the first with the second, the

second with the third, the third with the fourth, and the fourth with

the first. From each mating two children were formed, one for each

possible combination.

• Mutation: the mutation was performed by adding a random value in

the interval (−1, 1) to a random attribute of the offsprings.
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Figure 3.2: Feature Importance. The picture is taken from [18]

After each iteration of the genetic algorithm the children that are fitter

than the worst individuals in the original population are added both to the

dataset and to the population for the next round of the genetic algorithm.

The algorithm is stopped when the desired balance is reached, in our case

when the number of frauds is equal to the number of genuine transactions.

This algorithm gave us competitive results for the problem we considered,

resulting in the best performance overall.
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Chapter 4

Experiments

In this section we will describe the details of our implementation and of our

experiments with the tools and the software we used, as well as an imple-

mentation in PySpark, to leverage Big Data.

4.1 Tools And Software

All our experiments have been written in Python 3.6 [46], one of the most

used programming languages for machine learning application, using Jupyter-

Lab [29], a web-based interface to handle Python notebooks.

To implement our solution, we mainly made use of the following libraries:

• Pandas, that is a library used for data manipulation and analysis, of-

fering data structures for numerical tables and time series, and a set of

operations and functions to manipulate them. We used Pandas widely

to deal with DataFrame objects and to perform operations on them.

[38]

• MatPlotLib, that is a multi-platform data visualization library in Python

for 2D plots of arrays, built on NumPy arrays and designed to work



with the broader SciPy stack. We used MatPlotLib to create most of

our plot and graphics. [26]

• SciKit-Learn, that is one of the most widely-used Python libraires for

data science and machine learning. It provides you with many opera-

tions and algorithms, and it’s built on NumPy, SciPy and MatPlotLib.

We used SciKit-Learn for the implementation of our machine learning

algorithms(e.g. Random Forest) and for the computation of metrics of

relevance. [41]

• NumPy, that is a library that adds support for arrays and matrices, and

that provides us with mathematical functions to operate on these ob-

jects. We used NumPy mostly when dealing with arrays in the GAMO

implementation. [40]

• Tensorflow, that is an end-to-end open source platform for machine

learning. We used it to support the develepement of our neural network

architectures. [37]

• Keras, that is a high-level neural networks API, capable of running on

various platforms. We used it on top of Tensorflow, and we used it to

develop our neural network architectures. [10]

For the PySpark [45] implementation, we made use of the platform DataBricks

[13], a platform for big data processing founded by the creators of Apache

Spark [54]. We used a cluster available with the Community Edition of

DataBricks, with 15.3 GB of memory and 2 cores, optimized for machine

learning applications.

The libraries we used, apart from the ones already described, were mainly

two:

• pyspark.sql, a class of algorithm for SQL and DataFrame implementa-

tion, that we mainly used for the creation and the manipulation of the
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dataframes, and the operations on them. [2]

• pyspark.ml, a DataFrame-based machine learning API. We used this

libraries to implement our classifications methods. [44]

4.2 Architecture Schema

As we can see from Figure 4.1, these are the main components of our archi-

tecture:

• the Datalake, that is the centralized repository of our architecture. This

component allows us to store structured and unstructured data at any

scale. For the nature of our problem, in a real setting, we would have a

massive and continuous stream of data, making this solution ideal for

our needs. The Datalake communicates with most of the other modules

of the architecture, sending and receiving data.

• the Data Preprocessing module, that is the module responsible for the

preprocessing of the data. The operation performed by this module

can be data cleaning, data editing, feature aggregation and all the

operation related to the preprocessing part. The Data Preprocessing

module takes data from the Datalake and returns them cleaned.

• the Delayed Datasets, that we already described in the previous chap-

ter, are the datasets relative to the transactions of the set of days taken

into account for the ensemble of classifiers, for which we already have

labels. This module communicates with the Datalake to take the trans-

actions of interests, and with the Oversampling module and with the

Delayed Classifier.

• the Oversampling module, that is responsible for the oversampling op-

eration on the Delayed datasets, that are higly unbalanced. The op-

erations perfromed depend on the oversampling technique used. This
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module takes the data from the Delayed Datasets and return the rela-

tive balanced datasets.

• the Delayed Classifier, that is the ensemble of classifier for the labeled

data coming form the Delayed datasets. This module performs the

training on the labeled data and the predictions on the test set for every

classifier in the ensemble and then aggregate their results. It takes the

data from the Delayed Datasets and it returns the final predictions to

the Aggregate Predictor.

• the Feedback Classifier, that is the classifier used for the feedbacks, that

as already explained are the transactions checked by investigators. This

module performs the training on the feedbacks and the predictions on

the test set. It takes the data from the Feedback Datasets and it returns

the predictions to the Aggregate Predictor.

• the Aggregate Predictor, that is the modules responsible for the aggre-

gation of the two types of predictions and of the computation of the

relevant metrics for the evaluation. The aggregation is done by aver-

aging the two results coming from the Delayed Classifier and from the

Feedback Classifier. This module, after the aggregation part, send the

predictions to the Feedback Collector.

• the Feedback Collector, that is the module that has to check the pre-

dictions made by the classifier, correct them if necessary and update

the Datalake with the labels. This component also has to check the

100 most risky transactions, in order to update the Feedback Dataset.

This module takes the predictions from the Aggregate Predictor and it

returns the results of the operations to the Datalake and the Feedback

Dataset.

• the Feedback Dataset, that is the dataset relative to the feedbacks,

relative to the most risky transactions checked by investigators relative
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Figure 4.1: Architecture of the System. As we can see from this picture the architecture

is composed of various components that communicate between each other in order

to guarantee the right workflow of the execution. In this picture we can see the

dependences between the modules and how they interact with each orther.

to the previous few days. This module takes the data from the Feedback

Collector and then is asked for them from the Feedback Classifier.

• the Data Visualization module, that is the module responsible for the

production of charts, plots, and graph relative to the data coming form

the Datalake, that is the only component of the architecture that com-

municates with it.

In Figure 4.2 we can see an example of how the different components in-

teract at runtime between each other. As we can see the process starts with

the data preprocessing from the data in the Datalake and the subsequent

division in daily/hourly dataset. The next step is the Delayed Dataset com-

ponent taking the dataset from the Datalake and performing oversmapling on

them. Then the Aggregate Classifier asks for the predictions to the Delayed

and the Feedback classifiers. The last one has to take it from the Feddback
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Figure 4.2: Sequence Diagram.

Dataset, and then both the classifiers perform the training and return the

results to the Aggregate Classifier. At last, the final predictions and the

metrics are computed, and the feedbacks are sent to the Feedback Collector,

that sends the 100 most risky transactions to the Feedback Dataset and the

whole set of the feedbacks to the Datalake. Then, eventually, dashboards

and visualization plots are computed if needed.
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4.3 Implementation Of The Proposed Solu-

tion

As already said in the previous section, we conducted our set of experiments

on a dataset available on the Kaggle Repository [30].

The first experiments were done considering the whole dataset without im-

plementing it into the framework as done later.

Before running any algorithm there was a step in which we converted the

Time variable from seconds elapsed from first transaction to time of day in

hour. This was done because otherwise almost every sample would have had

a different value. This kind of features can lead to bad performance on de-

cision trees, because at some step they could split on this feature with high

probability, even if it is not informative at all, being different for almost every

transaction.

The procedure in this part, after dealing with the feature ”Time”, has been

the following: 1) the dataset has been split in train set and test set, taking

respectively 80% and 20% of the data(splitting separately fraud and genuine

transactions); 2) the train set, that contains 227452 genuine transactions and

393 fraudulent ones, has been over-sampled in order to make it balanced; 3)

a random forest has been trained on the train set and tested on the test set;

4) performance metrics have been computed.

Different over-sampling techniques have been used in this phase: ROS, over-

sampling with WGAN, oversampling with GAMO, and oversampling with

our Genetic Algorithm. The results have been compared between each other

and then also with the results of the experiments without the over-sampling

phase.

In this phase we didn’t implement the Alert Precision and Recall on the top

100 risky transactions(referred later as Top100 Precision and Top100 Re-

call), that has been implemented later, being these just an explorative stage

of our work.

For what concerns the experiments using ROS, the procedure has been triv-
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Figure 4.3: In this plot we can see the real distribution of the samples with respect to

the generated ones at the first iteration of the learning algorithm. As we can see the

generation is done with very poor quality, being one pig cluster of data.

ial, since the python library imblearn [34] provides us with a method for

doing so, while in using WGAN and GAMO oversampling we had to do

some background work. Finally for what concerns the Genetic Algorithm

the implementation was the one described earlier (DA CONTROLLARE).

For WGAN oversampling we have have followed a procedure similar to the

one described in [18]. In particular we have used widely the GAN 171103

repository, for the creation and the training of the GAN models, and for the

generation of the synthetic data. The procedure has been the following:

1. Create WGAN model(discriminator and generator).

2. Train on the fraudulent transactions for 500 steps.

3. Generate fraudulent transactions in order to make the dataset balanced.

In Figure 4.3 and in Figure 4.4 we can see how the generation of the data

changes after various iterations of the learning algorithm. At first it is really

poor, resulting in one big cluster of points, while going on with the learning

the model begins to capture the distribution of the data, and the generation

improves its quality.
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Figure 4.4: In this plot we can see the real distribution of the samples with respect

to the generated ones at the 500th iteration of the learning algorithm. As we can see

the generation is more precise, and it is starting to capture the real distribution of the

data.

For what concerns GAMO oversampling, we used the code provided with [39],

available at the GitHub page of the author [16]. In particular we made use

of the modules dense net and dense suppli, in order to create the model and

generate the data, while we have re-adapted the code in dense gamo main

in order to make it work with data that are not pictures, given that the one

provided was specifically developed for dataset of images. The procedure has

been the following:

1. Initialize the model creating generator, discriminator, and additional

classificator(multi-layer perceptron).

2. Train the model for 5000 steps.

3. Generate fraudulent transactions in order to make the dataset balanced.

After the oversampling phase, performed after that the dataset has been split

into train set and test set, the generated samples have been concatenated to

the original transactions in the train set. Then a Random Forest with a

variable number of trees has been trained on the train set and then tested
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on the test set. The number of trees has been chosen depending on the over-

sampling algorithm employed.

In [17] the author showed the distribution of the features for genuine and

fraudulent transactions after that these have been normalized, as we can see

in Figure 4.5. We can see how for most of the features genuines and frauds

can be easily distinguished, while for some of them there are some overlap-

ping. For this reason we decided to perform a set of experiments excluding

these overlapped features. The features that have been excluded are V 13,

V 15, V 22, V 24, V 25 and V 26. Excluding these features didn’t show signif-

icant improvement in the performances, but on the contrary, they worsened

them, as we can see in Table 5.1.

The experimental setting was further improved in this phase by imple-

menting at first the Top100 metrics, and then the framework as the authors

described in [12], that we will depict in detail in Chapter 5.

For the metrics, the procedure was straightforward. Random Forests are

probabilistic models, hence they provide you with the probability of a sam-

ple from the test set to be in a specific class. The probability given as output,

in our case, is the probability for the transaction to be a fraud. In order to

evaluate our results on the 100 most risky transactions, we ordered the trans-

actions in descending order by the output probability, and then computed

the metrics on the first 100 transactions for what concerns Top100 Precision

and Top100 Recall, while on the whole test set for what concerns AUC.

The last step for this set of experiments was the implementation of the frame-

work for the validation of our results. The first thing we did was the division

of the dataset in daily transactions. The Kaggle dataset we used for this was

composed of a set of transactions covering 48 hours, making it impossible to

divide it on a daily basis. To overcome this limitation, we divided the dataset

on an hour basis in order to keep the functioning unaltered. The result of
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Figure 4.5: The distribution of the data by feature and class shows us how for most

of the features the two classes can be easily separated, while for some of them(V13,

V15, V22, V24, V25, V26) there is a marked overlapping that could affect predictions.

Pictures taken from [18].

this division was a set of 48 dataset, one for every hour covered, on which

we tested the framework.
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We choose as hyperparameters of our framework M = 8 and δ = 7, hence we

have Q = M + δ = 15. At the beginning of the training we didn’t have any

feedback for this phase, because no prediction has been performed yet. To

initialize the feedback collection, 8 random forests have been trained on the

first 8 hour datasets, and tested separately on every dataset from the ninth

to the fifteenth, since we set as hyper-parameter the number of hours for the

feedback dataset equal to 7.

Once that the initialization step was concluded our training procedure started.

At every step of the learning process we trained our model on the feedback

dataset, that contains feedbacks for the last 7 hours of transactions, and on

the delayed datasets relative to the last 8 hours before the start of the feed-

backs.

The random forests relative to the deleyed datasets have been applied af-

ter oversampling has been performed on each dataset, and the results have

been compared with each other and with the results obtained without over-

sampling. The oversampling methods we used are ROS, GAN, GAMO and

Genetic Algorithm.

For the oversampling procedure one problem that we met was the absence

of fraudulent transactions in some specific hours. This was problematic be-

cause when we didn’t have any fraudulent case, we couldn’t use any sample

as examples for the generative methods, making it impossible to perform

oversampling. To overcome this problem we appended to the dataset the

fraudulent transactions of the original dataset relative to the previous hour.

This worked well since the transactions appended were close enough in time

to the relative hour to be considered in the same dataset.

Testing is performed at every step of the learning procedure on the hour after

the hour of the last feedback of the collection, and at the end of the procedure

the results of every hour are averaged together to get the final performance.

The metrics used in this phase of our experiments were Top100 Average Pre-

cision, Top100 Average Recall, Average AUC and Average Detection Rate.

We couldn’t make use of the Card Precision metric as they did in [12] since

68



in the Kaggle dataset the data are anonymized, and we didn’t have any in-

formation regarding the cardholders or about the numbers of the cards.

After this phase was concluded, we conducted more experiments on the Ge-

netic Algorithm oversampling, given that it gave us the best results, as we

can see from Table 5.3.

We performed tuning experiments on the random forests relative to the de-

layed datasets in order to improve our performances.

We made the tuning by hand, trying different settings for the parame-

ters, reaching the best performances for this settings: n estimators = 60,

max features = 10, max depth = 10, criterion = entropy for the Ge-

netic Algorithm oversampling, and n estimators = 60, max features = 15,

max depth = 10, criterion = gini for GAMO(we invite to consult [47] for

the documentation relative to random forests and their attributes).

We also changed the classifiers for the ensemble on the delayed datasets. We

tried to use Neural Networks and XGBoost [9], and to compare their results

with the one already obtained.

For what concerns Neural Networks, after a tuning phase we found our best

solution in a network composed from 1 input layer, 11 dense hidden layers

and 1 output layer. The hidden layers had respectively 20, 40, 60, 80, 100,

120, 140, 160, 120, 80 and 40 neurons. Between the fourth and the fifth layer

we inserted a dropout layer, with dropout rate of 0.2. All the layers had

Scaled ELU [33] as activation function, except for the output layer that used

the sigmoid function. The optimizer used was AdamOptimizer [32] and the

loss function binary cross-entropy. We also tried different settings for the

number of epochs and for the batch size, achieving the best results for 50

epochs and a batch size of 200.

In the experiments with XGBoost the best setting was: learning rate = 0.1,

n estimators = 200, max depth = 7 and min child weight = 3(we invite to

consult [53] for the documentation relative to XGBoost and its attributes).

The parameters were found through tuning by hand, performing various ex-
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periments. XGBoost was the classifier that reached the best performances in

terms of AUC, with this particular setting being the best ever for this part

of our activity, as we can see in Table 5.4.

For both algorithms, the tuning of the parameters has been performed on the

whole dataset, and the settings that achieved the best scores were then used

on the framework. For what concerns neural network, on the framework’s

experiments different number of epochs and batch size were tested.

4.4 PySpark Implementation

In this section we will describe the Spark ecosystem and why it is widely

used for machine learning applications, and we will present our PySpark im-

plementation.

Spark [54] is an open source framework for distributed computing that can

process operation on very large datasets very quickly. This is done through

the usage of cluster computing, meaning that it can use resources from many

processors all together for its operations, that are divided in multiple jobs.

The jobs are managed by a centralized unit, the driver, that schedules the

code in multiple tasks and distributes them to one or more nodes, where they

are executed by one or more executors.

Some of the most used programming languages(e.g. Python, Java, Scala and

R) are supported by Spark, and are furnished with libraries for different tasks

like SQL, streaming and machine learning. For this reason Spark is a solution

really easy to start with, that is able to scale up to Big Data environments

on a vary large scale and that is able to tackle a lot of machine learning

problems.

We chose to include Spark in our experiments because of the nature of our

problem: in a real world application there would be millions of incoming

transactions every day, and with traditional machine learning techniques it

would be difficult to manage this huge amount of data. On the contrary,

with the usage of Spark we can easily scale up to a Big Data context, as it
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is in our case, without a dropout in computational performances.

As already stated, for our Spark implementation we used Databricks, that

is a cloud based Apache Spark cluster service developed by the creators of

Spark, that offers scalable clusters and access to all Spark modules. It is also

provided with a cluster manager, a jobs scheduler, and it has data visualiza-

tion capability, reason why it is widely used in machine learning applications.

In Databricks we can use notebooks in either Scala, Python or SQL. Given

that we developed our solution in Python, we used this kind of notebook

with the support of PySpark to implement it. PySpark is a Python API to

support Apache Spark, and we chose to use it mainly because of its natural

integration with Python code, that was the language we used for our previous

experiments. We used it also because of the presence a dedicated library for

machine learning applications, furnished with the most used algorithms and

techniques.

For what concerns the practical implementation, what we did was to con-

vert the Python code we already wrote in PySpark in the parts in which it

was required. We used PySpark for the operations on the datasets and for

the classification task relative to the delayed datasets. For the classification

relative to the feedbacks, Spark was not used since the length of the dataset

was fixed and not high enough to appreciate the enhancement in the per-

formances. For what concerns the oversampling part, PySpark doesn’t have

built-in methods for that, hence it was done through the imblearn library as

in the normal implementation.

The main difference between the normal implementation and the PySpark

implementation is the type of DataFrame used: in the first one we used Pan-

das DataFrame, while in the second one we used PySpark DataFrame. The

main difference between these two types of DataFrame is that in Pandas they

are stored in memory, while in PySpark they are distributed on your cluster.

It follows that PySpark DataFrame can leverage a bigger amount of data.

They are also more difficult to manipulate, and most of the work was about
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how to translate operations from Pandas.

For the classification part we tested only the Random Forest implemen-

tation. We made use of the library for classification available with PyS-

park(pyspark.ml.classification). The main difference between this implemen-

tation and the one with sklearn is the type of data that can be passed to

the functions. While with sklearn you can pass a DataFrame directly, with

PySpark this is not possible and the dataset has to be vectorized first. This

basically means that every record has to be transformed in a vector of fea-

tures to be passed to the classifier fro training and testing.
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Chapter 5

Results And Evaluation

5.1 Dataset

In our work we conducted a first set of experiments on a dataset available on

the Kaggle Repository [30]. The dataset has been provided by the Machine

Laarning Group of the Université Libre de Bruxelles. It contains 284, 807

transactions, with 492 frauds, that account for 0.172% of the total. Figure

5.1 shows us the distribution of the two classes, which are very skewed in

favor of the genuines.

All the features of the original space, except for “Time” and “Amount”, have

been transformed through a PCA. They are called V1, V2, ..., V28, and they

are the result of the transformation, in form of numerical inputs.

“Time” represents the seconds elapsed between a transactions and the first

one in the dataset, “Amount” is the amount of the transactions, while all

the other features are kept secret for confidentiality issues. The labels of the

transactions is denoted by the feature “Class”, which is equal to 1 if it’s a

fraud and equal to 0 otherwise.

The dataset has been mainly used for experiments at the beginning of the

work in order to assess the metrics, the techniques and the framework. For

the framework, given the limited number of days that the dataset covers, we



Figure 5.1: The doughnut plot above shows us that the distribution of the classes is

skewed for the Kaggle dataset. As we can see fraudulent transactions are only the

0.17% of the total transactions.

made experiments on an hour base, instead of a daily base.

5.2 Metrics

For a classification task the basic units to compute performance metrics are:

• True Positives (TP): fraudulent transaction correctly classified as fraud

• True Negatives (TN): genuine transactions correctly classified as gen-
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uine

• False Positives (FP): genuine transaction misclassified as fraud

• False Negatives (FN): fraudulent transactions misclassified as genuine

True Positives, True Negatives, False Positives and False Negatives are

usually aggregated together in the confusion matrix. The confusion matrix

is a table that allows the visualization of the performances of an algorithm.

As we can see from Figure 5.2, the rows of the matrix represent the samples

belonging to the different classes, while the columns represents the samples

predicted to belong to a certain class. In the case in example, denoting the

label 1 with the positive class, we have that on the top-left there are the True

Negatives, on the top-right the False Positives, on the bottom-left the False

Negatives, and on the bottom-right the True Positives.

Starting from these units, performance metrics are computed in order to

evaluate and compare different algorithms. The most used are:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

FalsePositiveRate(FPR) =
FP

FP + TN

Recall is also called True Positive Rate(TPR).

As stated in Section 2.3, these metrics are not suited for evaluating perfor-

mances in fraud detection tasks. In the case of accuracy, given that frauds

are usually around 1% of the total transactions, we can achieve really high
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Figure 5.2: Confusion Matrix. In here we can see that for that specific classification

task, on a total of 100 samples, there were 83 positive samples, of which 79 have been

predicted correctly and 4 have been predicted wrongly, and 17 negative samples, of

which 11 have been predicted correctly and 6 have been predicted wrongly.

scores also for classifiers that classify everything as genuine, but our goal is

to identify the very few fraudulent activities. In the case of precision and

recall, instead, they are not good indicators because in a real-world setting

investigators can check only few, high risky, transactions, so we’re not in-

terested in the performance on the whole test set, but we want to focus on

alerting the smallest possible number of false positive, but very accurate.

For these reasons we assess our results in terms of alert precision Pk(t), that

is defined as:
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Pk(t) =
|TPk(t)|

k

with TPk(t) = {(xi, yi)|xi ∈ At, yi = 1}, is the proportion of fraud in the

alerted transactions at day t.

In a real-world scenario when an investigator contacts a cardholder, he checks

up for all the recent transactions. For this reason, the alert precision should

be measured in terms of cards rather than transactions, in a way such that

multiple fraudulent transactions coming from the same card count as a single

detection [12]. Unfortunately in our work we couldn’t do it because the data

were anonymized and we didn’t have any information on cards or cardholders.

where C1
t is the set of fraudulent cards alerted at day t.

In [51] and [43], they assess the area under the ROC curve (AUC) as one

of the most used performance measures for fraud-detection problems. The

Receiving Operator Characteristic [22] is a graphical representation that plots

TPR against FPR at various discrimination threshold settings, in order to

detect how good a model is at binary classification. The AUC is the area

under this curve, with a maximum of 1, and the larger the area, the better the

model. In Figure 5.3 we can see two models compared with respect to their

AUC, and we can see that none of them consistently outperform another,

but that one is better for certain threshold and one for others.

In our setting this measure can be interpreted as the probability that a

classifier ranks frauds higher than genuine transactions.

Another metric that we used for our evaluation of the performance was

the Detection Rate, that is the percentage of detected fraudulent transactions

over the total:

DR(t) =
|TPk(t)|

TP (t) + FN(t)
(49)

This equation is similar to the Recall measure, but it’s not the same. The

difference is that the numerator is relative to the first k alerted transactions,
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Figure 5.3: AUC. In this pictures we can see two models, M1 and M2. The dashed

diagonal line is equivalent to random guessing, and its AUC is 0.5. Every model with

an AUC lower than 0.5 is useless since it’s worse than random guessing. In our case

we can see how our two models are not constantly over-performing another, but that

M1 is better when we have small FPR, while M2 is better when we have large FPR.

In fraud detection the first model would be better, because we aim at a model with

small FPR.
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Method Precision Recall AUC

No OS 0.8988 0.8080 0.9336

No OS without overlapping features 0.9294 0.7979 0.9336

ROS 0.9195 0.8080 0.9385

ROS without overlapping features 0.9080 0.7979 0.9385

WGAN 0.8863 0.7878 0.9412

WGAN without overlapping fea-

tures

0.9058 0.7777 0.9283

GAMO 0.9058 0.7777 0.9384

GAMO without overlapping features 0.9176 0.7878 0.9284

GA 0.9404 0.7979 0.9384

GA without overlapping features 0.9294 0.7979 0.9383

Table 5.1: Performance of the different methods used on the whole dataset.

while the denominator is relative to the whole dataset taken into account.

5.3 Results

We will now present and discuss the results obtained in our first set of ex-

periments. The results can give us useful insights on the advantages of a

method against another one when the experiments have been performed on

the whole dataset and when they have been performed on the framework

implementation. Even if we consider the small amount of data available, the

results can be meaningful since they take into account real transactions, and

they were achieved implementing a framework able to scale up with more

data.

As we can see from Table 5.1, the results of the different methods are

similar, but there are some small changes in performances. In particular we

notice that excluding the features with overlapping distributions between the

two classes led to a better precision overall, but also to a decrease in recall
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Method Precision

Top100

Recall

Top100

AUC

No OS 0.9080 0.9634 0.9284

ROS 0.9186 0.9518 0.9335

WGAN 0.9069 0.9629 0.9327

GAMO 0.9101 0.9506 0.9336

GA 0.9404 0.9753 0.9384

Table 5.2: Performance of the different methods used on the whole dataset for Top100

metrics.

and AUC. Furthermore, the only metric used in here and also taken into

consideration for our analysis is the AUC metric, and we can notice that the

best performance was obtained by the method using WGAN as oversampling

technique.

In Table 5.2 are reported Top100 Precision, Top100 Recall and AUC

when the experiments were done considering the whole dataset. We can see

in here that oversampling techniques gave some boost on the performance

on the classification task, with an AUC score that is better than the basiline

for every method. We can see from the table that the best results for all the

metrics taken in consideration are achieved by the oversampling by use of

Genetic Algorithm. For the other methods we can see that ROS and GAMO

are better than WGAN in Precision and AUC, while the latter overcome the

others in Recall.

As already explained previously, the last step in these set of experiments was

to implement our framework model. We implemented and tested it using

ROS, WGAN oversampling, GAMO oversampling, GA oversampling, and

no oversampling.

In Table 5.3 the results of these experiments are shown. As we can see the

best results overall are achieved with GA oversampling. In particular this

method showed competitive results for all the metrics, with the second best

detection rate of 63.95%. The use of ROS and GAMO architecture for over-
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sampling leads to the worst performances in Detection Rate, even if they

show good results in Precision and AUC. WGAN oversampling gave very

bad results in terms of Precision and AUC, but a Detection Rate of 65.74%,

the best registered for this phase. This can be explained because with this

high precision there were a lot of false positive identified, leading to very good

performances in identifying the frauds, with the drawbacks of alerting a lot

of genuine transactions. As already said in the previous chapters, this can

be a problem in real world settings, since we want to alert few transactions,

but very precise.

From the results relative to this phase we can see how Random Oversam-

pling gave us the worst results overall, especially for Detection Rate where it

spotted only the 53.44% of the fraudulent transactions. The best scores were

reached by GA oversampling, that was the one leading to the most balanced

results for all the metrics, with the best scores for both AUC and Detection

Rate. We can also see that considering our framework, WGAN oversampling

gives promising results, leading to the second best Detection Rate score, with

the side effect of low precision. For what concerns GAMO oversampling, the

results in terms of AUC were the second best, while the other metrics were

worse with respect to the others methods.

Method Precision

Top100

Recall

Top100

AUC DetRate

No OS 0.9218 0.7881 0.9340 0.6334

ROS 0.9431 0.6759 0.9225 0.5344

WGAN 0.8206 0.7966 0.9215 0.6583

GAMO 0.8444 0.7527 0.9360 0.6207

GA 0.9016 0.8152 0.9394 0.6783

Table 5.3: Performances of the different methods used on the framework architectures

for Top100 metrics.
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In Table 5.4 we report the best results for the tuning phase of our exper-

iments. As we can see all the experiments brought some improvement with

respect to the ones without tuning. In particular we can see how the com-

bined use of Random Forest and Genetic Algorithm led to an improvement

of almost 2% in AUC.

We can see how also after the tuning phase the Genetic Algorithm over-

sampling has better results than the GAMO oversampling, confirming the

good performances of this customized method. In particular, the best results

have been achieved for the combined use of Genitic Algorithm and XGBoost

classifier, reaching an AUC score of 96.2%, that is the best score for our

experiments on this dataset.

Method Precision

Top100

Recall

Top100

AUC DetRate

GAMO + RF 0.8491 0.8363 0.9369 0.6887

GA + RF 0.9091 0.8445 0.9567 0.7117

GA + NN 0.8531 0.7336 0.9485 0.6042

GA + XGB 0.8813 0.8240 0.9620 0.7001

Table 5.4: Performances for the relevant metrics after tuning of Random Forest, Neural

Networks, and XGBoost. For what concerns the neural network, we trained it for 50

epochs with a batch size of 200.

The use of neural networks led to worst results within the experiments

on Genetic Algorithms, bust still better than the ones obtained before the

tuning phase. For what concerns neural networks, this results are in contrasts

with what we saw in the tuning experiments involving the whole dataset. As

we can see in Figure 5.4, on the best run(from which we took the network’s

specifics for the experiments on the framework) the algorithm alerted 93

frauds out of 99 on the test set, leading to an AUC of 96.97%, that is the

best result achieved on the whole dataset.

On the experiments we conducted on the framework settings these results
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Figure 5.4: Confusion Matrix and AUC plot for the best iteration of the neural net-

work’s experiments on the whole dataset with Genetic Algorithm oversampling. As we

can see this run was able to recognize as fraudulent 93 transactions on 99, while with

the others methods the alerted transactions were never more than 83

wasn’t confirmed, and even if the scores were very good, they were lower

than the one with other classification methods that performed worse on the

whole dataset. This could have happened because, even if the dataset used

was the same, in the framework setting the transactions available at each

hour were not enough for the training of the neural network, that didn’t

have enough samples to learn his task, given that the dataset was divided in

order to get the hourly set.
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Chapter 6

Conclusions And Future

Reasearch

In this thesis we presented a framework for fraud detection using machine

learning techniques for classification and oversampling techniques to tackle

the class imbalance problem. The major goal of our work was to compare dif-

ferent oversampling techniques to see which one performed better and to see

when they improve the performances with respect to the baseline implemen-

tation, that is the one without oversampling. The oversampling techniques

we used were ROS, GAN oversampling, GAMO oversampling, and oversam-

pling with genetic algorithms.

Our analysis were conducted on a dataset available on the Kaggle repository

[30], and it followed a precise pipeline. At first the dataset was divided by

hours, obtaining 48 different datasets. Then two classifiers were trained, one

relative to transactions that were already labeled, available with a delay of

7 hours in our experiments, and one relative to the feedbacks provided from

the investigators, that are relative to the transactions alerted at one hour, in

our case the 100 most risky transactions with their true label.

The first classifier was an ensemble of classifiers, one for each of the first 8

hours for which all the labels were available, while the second was a random



forest that took as samples the feedbacks coming from the first 7 hours be-

fore the current one. Then, the results were aggregated and tested on the

following hour. This procedure has been carried on for the whole dataset,

hence for 48 hours, and then the results for every hours have been averaged

to obtain the final results. Then the 100 most risky transactions were taken

to compute the evaluation metrics: Top100 Precision, Top100 Recall, AUC

and Detection Rate. After the computation of the metrics, these transactions

were stored in the feedback collection, while the oldest were discarded.

In our experiments oversampling was demonstrated to improve performances

for fraud detection, and the best results were obtained with the oversampling

technique based on genetic algorithm, while there was no classifier that per-

formed clearly better than the others. For what concerns AUC XGBoost

obtained the best results, with a score of 96.2% and a detection rate of 70%;

for what concerns Precision, the best results were obtained with the classic

Random Forest, with a score of 90.9% and a detection rate of 71.2%. Neural

Networks didn’t perform well on the divided dataset, while they performed

the best when we were considering the whole dataset. This inconsistency in

the data can be explained by the small amount of data that was fed to the

neural networks in the framework implementation, that could have led to

bad performances.

The main limitation of our work was the size of the dataset we worked on.

As we already said it was taken from the Kaggle repository, and it contains

credit card transactions covering 48 hours. This period was enough to make

our experiments, but the results are limited to the dataset we considered.

Another limitation was that the features were all anonymized except for

”Time” and ”Amount”, so we didn’t have any information on them, and we

couldn’t perform any feature engineering step on them.

The future step of research for this work could be to test the implementa-

tion on a larger dataset, with features of which we have knowledge about.

This could give us a hint on the effectiveness of the solution in a real world

scenario, and the possibility of feature engineering could help us improve the
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performance. Also the oversampling based on genetic algorithm could be

improved with knowledge on the features we have at disposal. Our solution

is based solely on the feature importance given by the XGBoost algorithm,

while with different features this could be improved and transformed in some-

thing more explainable and effective.

In conclusion, we have shown that oversampling improved the performance

of fraud detection for the dataset we used, and we think that it should be

tested on a bigger dataset in order to evaluate the performances on a dataset

more similar to a real world environment.
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