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Abstract 

 

Nowadays, with the fast growth of the grid penetration levels of renewable sources, 

guaranteeing the stability of the grid is becoming more and more difficult than it was in the 

past. Battery Energy Storage Systems (BESSs) are the most promising solutions for ancillary 

services provision among which Primary Control Reserve (PCR). Currently, the fastest 

BESS model is empirical model. Unfortunately, they are not enough accurate in State of 

Charge (SOC) estimation so that they are only used for the sizing of the battery pack but not 

the real time SOC monitoring. In this study, the development of an empirical BESS model 

for SOC estimation based on an experimental data of a Li-ion battery pack is proposed. The 

aim of this work is to develop a novel empirical model with high accuracy in SOC 

estimation.    

  

Keywords: Empirical BESS model; battery energy storage system; ancillary services; 

primary control reserve; 
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Sommario 

 

Oggi, con la rapida crescita dei livelli di penetrazione della rete da fonti rinnovabili, 

garantire la stabilità della rete sta diventando sempre più difficile di quanto non fosse in 

passato. I sistemi di accumulo dell'energia della batteria (BESSs) sono le soluzioni più 

promettenti per la fornitura di servizi ausiliari, tra cui la Riserva di controllo primario (PCR). 

Attualmente, il modello BESS più veloce è il modello empirico. Sfortunatamente, non sono 

abbastanza precisi nella stima dello stato di carica (SOC) in modo da essere utilizzati solo 

per il dimensionamento del pacco batteria ma non per il monitoraggio SOC in tempo reale. 

In questo studio, viene proposto lo sviluppo di un modello empirico BESS per la stima SOC 

basato su dati sperimentali di un pacco batterie agli ioni di litio. Lo scopo di questo lavoro è 

di sviluppare un nuovo modello empirico con elevata precisione nella stima SOC. 

  

Parole chiave: modello empirico BESS; sistema di accumulo dell'energia della batteria; 

servizi ausiliari; riserva di controllo primaria;
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Chapter 1  

Introduction 

 

The total renewable energy production is doubled by nine years from 2009 to 2018 [1]. 

As variable renewables grow to substantial levels, electricity systems will require greater 

flexibility. Unfortunately, most of the Renewable Energy Sources (RESs) are not 

programmable, so their generated power needs to be stored. Battery energy storage systems 

(BESSs) are a promising solution for this problem due to their inherent distributed features, 

their ability to inject and absorb power, their high-power ramping and ability to provide a 

set of different grid services. As of today, BESSs are being deployed to provide several 

different services, such as peak shaving [2], energy management of microgrids [3] and 

stochastic resources [4], [5] and frequency and voltage regulation [6], [7], [8]. By providing 

these essential services, electricity storage can drive serious electricity decarbonization and 

help transform the whole energy sector [9]. The Figure 1.1 and Figure 1.2 show Global 

electricity production in 2050. 
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Figure 1.1  Global electricity production in 2050 [10] 

 

Figure 1.2  Global electricity production by generation type [10]. 

Recent technology advancement in battery storage in general has been intensified by 

high demand for batteries in electronic devices. Structural elements indicate not only that 

continued cost reductions are likely, but also that they are strongly linked to developments 

underway in the different sectors, for example, changes in battery characteristics (chemistry, 

energy density and size of the battery packs) and the scale of manufacturing plants. Today 

most battery production is in plants that range from 3 to 8 gigawatt-hours per year 
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(GWh/year) though three plants with over 20 GWh/year capacity are already in operation 

and five more are expected by 2023.  

It is expected that by 2025 batteries will increasingly use cathode chemistries that are 

less dependent on cobalt, such as NMC 811,3 NMC 622 or NMC 532 cathodes in the NMC 

family or advanced NCA batteries. This will cause to an increase in energy density and a 

decrease of battery costs, in combination with other developments (e.g. the availability of 

silicon-graphite chemistries for anode technology). In the European Union, the Strategic 

Action Plan for Batteries in Europe was adopted in May 2018. It brings together a set of 

measures to support national, regional and industrial efforts to build a battery value chain in 

Europe, including raw material extraction, sourcing and processing, battery materials, cell 

production, battery systems, as well as reuse and recycling. In combination with the leverage 

offered by its market size, it seeks to attract investment and establish Europe as a player in 

the battery industry [11]. 

Stationary electricity storage can provide wide variety of energy services in an 

affordable manner. As the cost of emerging technologies decreases further, storage will 

become increasingly competitive, and the range of economical services it can provide will 

increase [9]. 

The structure of the thesis is outlined in the following. In Chapter 2, an introduction on 

the different types of energy storage technology and SOC models is given. In chapter 3, 

Ancillary Services Market is explained. Chapter 4 is about methodology that is used for 

modeling of the empirical model. The simulations performed with the model presented in 

Chapter 5 are presented, and in the chapter 6, the conclusion of the model and the simulations 

results are given. 
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Chapter 2  

Energy Storage Systems 

 

The main goal of this chapter is to give a background about energy storage systems, 

battery parameters, and short review of different battery models. There are several methods 

to store energy. With advancing the technologies, the number of equipment that can store 

energy in different ways are increasing. In the following, some of the most popular 

technology of storing energy is explained. 
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2.1  Different Energy Storage Technologies 

2.1.1  Ultracapacitors 

 

Figure 2.1  Ultracapcitor [12]  

An ultracapacitor is an electrochemical device consisting of two porous electrodes, 

usually made up of activated carbon immersed in an electrolyte solution that stores charge 

electrostatically. This arrangement effectively creates two capacitors, one at each carbon 

electrode, connected in series. The ultracapacitor is available with capacitances in the 

hundreds of farads all within a very small physical size and can achieve much higher power 

density than batteries. However, the voltage rating of an ultracapacitor is usually less than 
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about 3 volts so several capacitors have to be connected in series and parallel combinations 

to provide any useful voltage. 

Ultracapacitors can be used as energy storage devices similar to a battery, and in fact are 

classed as an ultracapacitor battery. But unlike a battery, they can achieve much higher 

power densities for a short duration. They are used in many hybrid petrol vehicles and fuel 

cell driven electric vehicles because of their ability to quickly discharge high voltages and 

then be recharged. But by operating ultracapacitors with fuel cells and batteries peak power 

demands, and transient load changes can be controlled more efficiently [12]. 

2.1.2  Flywheels 

   

Figure 2.2  Freewheel Layout [13], [14] 

A flywheel is a mechanical device specifically designed to convert electrical energy to 

kinetic energy (rotational energy). Flywheels resist changes in rotational speed by their 

moment of inertia. The amount of energy stored in a flywheel is proportional to the square 

of its rotational speed and its mass. The way to change a flywheel's stored energy without 

changing its mass is by increasing or decreasing its rotational speed. Since flywheels act as 



9 

 

mechanical energy storage devices, they are the kinetic-energy-storage analogue to electrical 

inductors, for example, which are a type of accumulator. 

Flywheels are typically made of steel and rotate on conventional bearings; these are 

generally limited to a maximum revolution rate of a few thousand RPM [15]. High energy 

density flywheels can be made of carbon fiber composites and employ magnetic bearings, 

enabling them to revolve at speeds up to 60,000 RPM (1 kHz) [16]. Carbon-composite 

flywheel batteries have recently been manufactured and are proving to be viable in real-

world tests on mainstream cars. Additionally, their disposal is more eco-friendly than 

traditional lithium ion batteries [17]. 

2.1.3  Fuel cells 

 

Figure 2.3  Fuel cell structure and stationary application [18]. 

Unlike traditional combustion technologies that burn fuel, fuel cells undergo a chemical 

process to convert hydrogen-rich fuel into electricity. Fuel cells do not need to be 

periodically recharged like batteries, but instead continue to produce electricity as long as a 

fuel source is provided [18].  

A fuel cell is composed of an anode, a cathode, and an electrolyte membrane.  A fuel 

cell works by passing hydrogen through the anode of a fuel cell and oxygen through the 
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cathode. At the anode site, the hydrogen molecules are split into electrons and protons. The 

protons pass through the electrolyte membrane, while the electrons are forced through a 

circuit, generating an electric current and excess heat.  At the cathode, the protons, electrons, 

and oxygen combine to produce water molecules. Due to their high efficiency, fuel cells are 

very clean, with their only by-products being electricity, excess heat, and water.  In addition, 

as fuel cells do not have any moving parts, they operate near-silently [18]. 

Advantages at a glance: 

• Low-to-Zero Emissions 

• High Efficiency 

• Reliability 

• Fuel Flexibility 

• Energy Security 

• Durability 

• Scalability 

• Quiet Operation 

 

Disadvantages at a glance: 

• Average efficiency (lower w.r.t batteries, even lower if you consider the 

efficiency of the electrolyzer, too) 

• low specific power 

• Expensive to manufacture due the high cost of catalysts (platinum) 

• Lack of infrastructure to support the distribution of hydrogen 

• A lot of the currently available fuel cell technology is in the prototype stage and not 

yet validated 

• Hydrogen is expensive to produce and not widely available 
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2.1.4  Batteries 

A battery is a device consisting of one or more electrochemical cells with external 

connections for powering electrical devices [19]. They are classified into two main groups: 

2.1.4.1  Primary Batteries 

Primary (single-use or "disposable") batteries are used once and discarded, as the 

electrode materials are irreversibly changed during discharge; a common example is the 

alkaline battery used for flashlights and a multitude of portable electronic devices [20]. In 

general, these have higher energy densities than rechargeable batteries [21]. Common types 

of disposable batteries include zinc–carbon batteries and alkaline batteries. 

2.1.4.2  Secondary Batteries 

Secondary (rechargeable) batteries can be discharged and recharged multiple times 

using an applied electric current; the original composition of the electrodes can be restored 

by reverse current. Examples include the lead-acid batteries used in vehicles and lithium-ion 

batteries used for portable electronics such as laptops and mobile phones [20]. 
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2.1.4.3  Lithium Batteries 

        

Figure 2.4  Lithium ion battery structure [22] and Lithium battery cell [23].  

A lithium-ion battery or Li-ion battery (LIB) is a type of rechargeable battery. Lithium-

ion batteries are commonly used for portable electronics and electric vehicles and are 

growing in popularity for military and aerospace applications [24]. The lithium ions within 

a lithium ion battery migrate back and forth between the two electrodes during charging and 

discharging. The ions travel between the anode and the cathode via a separator by an 

electrolyte commonly composed a lithium salt (e.g. LiPF6) in an organic solvent. The 

electrolyte solution plays a critical role within LIBs by enabling an effective conduction of 

the lithium ions between the electrodes. Additives are commonly added into the electrolyte 

solution to improve performance, enhance stability, prevent solution degradation and 

prevent dendritic lithium formation. The prevention of dendritic lithium formation is key to 

achieving battery safety as the lithium dendrites establish a connection between the 

electrodes, causing the battery to overheat and become a potential fire hazard. The 

electrolytes and their additives are commonly used in LIBs to identify the current density, 

stability and the reliability of the final battery. The properties of the electrolyte are therefore 

critical to the overall performance of the battery. Electrolytes must possess a good ionic 

conductivity and be electrically insulating, they should have a wide electrochemical window, 

they must be inert to other battery components and they must be chemically and thermally 

stable. In addition, electrolytes of a high purity (free from contamination) help to prevent 

oxidation at the electrode and promote a good cycle life [22]. 
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This Lithium-ion Battery technology is popular because of the high energy density (high 

voltage combined with high specific capacity), high discharge rate, and high security and 

low cost [13]. 

Advantages at a glance: 

• High specific energy and high load capabilities with Power Cells. 

• Long cycle and extend shelf-life; maintenance-free. 

• High capacity, low internal resistance, good coulombic efficiency. 

• Simple charge algorithm and reasonably short charge times. 

• Low self-discharge (less than half that of NiCd and NiMH). 

Disadvantages at a glance: 

• Requires protection circuit to prevent thermal runaway if stressed. 

• Degrades at high temperature and when stored at high voltage. 

• No rapid charge possible at freezing temperatures (<0°C, <32°F). 

• Transportation regulations required when shipping in larger quantities. 

2.1.4.4  Nickel Cadmium Batteries 

        

Figure 2.5  Nickel cadmium battery structure [25] and Nickel cadmium cell [26]. 
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Invented by Waldemar Jungner in 1899, the nickel-cadmium battery offered several 

advantages over lead acid, then the only other rechargeable battery; however, the materials 

for NiCd were expensive [27]. The nickel cadmium battery consists of a nickel-positive 

electrode (cathode) and a cadmium-negative electrode (anode) in potassium hydroxide 

solution [28]. 

Developments were slow, but in 1932, advancements were made to deposit the active 

materials inside a porous nickel-plated electrode. Further improvements occurred in 1947 by 

absorbing the gases generated during charge, which led to the modern sealed NiCd battery. 

For many years, NiCd was the preferred battery choice for two-way radios, emergency 

medical equipment, professional video cameras and power tools. In the late 1980s, the ultra-

high capacity NiCd rocked the world with capacities that were up to 60 percent higher than 

the standard NiCd. Packing more active material into the cell achieved this, but the gain was 

shadowed by higher internal resistance and reduced cycle count [27]. 

Advantages at a glance: 

• Rugged, high cycle count with proper maintenance. 

• Only battery that can be ultra-fast charged with little stress. 

• Good load performance; forgiving if abused. 

• Simple storage and transportation; not subject to regulatory control. 

• Good low-temperature performance. 

• Economically priced; NiCd is the lowest in terms of cost per cycle. 

Disadvantages at a glance: 

• Relatively low specific energy compared with newer systems. 

• Memory effect; needs periodic full discharges and can be rejuvenated. 

• Cadmium is a toxic metal. Cannot be disposed of in landfills. 

• High self-discharge; needs recharging after storage. 

• Low cell voltage of 1.20V requires many cells to achieve high voltage. 
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2.1.4.5  Lead Acid Batteries 

   
Figure 2.6  Lead acid battery structure [29], [30] and Sealed lead acid battery [31]. 

Invented by the French physician Gaston Planté in 1859, lead acid was the first 

rechargeable battery for commercial use. Lead acid batteries have been used as energy 

sources commercially since 1860 [32]. LA batteries are used in every internal combustion 

engine (ICE) vehicle as a starter and typically applied for uninterrupted power supply (UPS), 

renewable energy storage, and grid storage because of their ruggedness, safe operation, 

temperature tolerance, and low cost [33], [30]. The battery consists of Pb as negative 

electrode, PbO2 as positive electrode, and H2SO4 solution as electrolyte [29], [34]. Despite 

its advanced age, the lead chemistry continues to be in wide use today. There are good 

reasons for its popularity; lead acid is dependable and inexpensive on a cost-per-watt base. 

There are few other batteries that deliver bulk power as cheaply as lead acid, and this makes 

the battery cost-effective energy storage source.  

The grid structure of the lead acid battery is made from a lead alloy. Pure lead is too soft 

and would not support itself, so small quantities of other metals are added to get the 

mechanical strength and improve electrical properties. The most common additives are 

antimony, calcium, tin and selenium. These batteries are often known as “Lead-antimony” 

and “Lead­calcium”. Adding antimony and tin improves deep cycling but this increases 

water consumption and escalates the need to equalize. Calcium reduces self-discharge, but 

the positive lead-calcium plate has the side effect of growing due to grid oxidation when 

being over-charged. Modern lead acid batteries also make use of doping agents such as 

selenium, cadmium, tin and arsenic to lower the antimony and calcium content [35]. 
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Lead acid is heavy and is less durable than nickel and lithium-based systems when deep 

cycled. A full discharge causes strain and each discharge/charge cycle permanently robs the 

battery of a small amount of capacity. This loss is small while the battery is in good operating 

condition, but the fading increases once the performance drops to half the nominal capacity. 

This wear-down characteristic applies to all batteries in various degrees [35]. 

Advantages at a glance: 

• Inexpensive and simple to manufacture; low cost per watt-hour. 

• Low self-discharge; lowest among rechargeable batteries. 

• High specific power, capable of high discharge currents. 

• Good low and high temperature performance. 

Disadvantages at a glance: 

• Low specific energy; poor weight to energy ratio. 

• Slow charge; fully saturated charge takes 14-16 hours. 

• Must be stored in charged condition to prevent sulfating. 

• Limited cycle life; repeated deep-cycling reduces battery life. 

• Flooded version requires watering. 

• Transportation restrictions on the flooded type. 

• Not environmentally friendly. 

2.2  Important parameters of a battery  

During using a battery, it is important to consider some of the most important parameters 

of a battery in order to get the highest level of safety and quality. In the following some of 

these parameters are explained:   
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2.2.1  Ageing Mechanism and safe operation 

Battery ageing, increasing cell impedance, power fading, and capacity fading origin 

from multiple and complex mechanisms. Although, the quantities that have highest  effect 

on calendar ageing are storage temperature and SoC level [36]- [37], material parameters, as 

well as storage and cycling conditions, have an impact on battery life-time and performance. 

Due to ageing mechanisms such as Solid-Electrolyte Interphase (SEI) and positive electrode 

loss in conductivity, Power fading (or efficiency fading) occurs which is a consequence of 

internal resistances increment. Another degradation related to ageing is Capacity fading. 

Many mechanisms such as SEI formation [38] causes less room for Lithium storage or 

lithium consumption and decrement in energy exchange during each cycle. All these events 

lead to capacity fading. As capacity fading and power fading originate from a number of 

various processes and their interactions, these processes cannot be studied independently and 

occur at similar timescales, complicating the investigation of ageing mechanisms. Many of 

the mechanisms responsible for battery decay and ageing can be monitored and investigated 

non-destructively by the use of impedance spectroscopy. Although the interpretation of 

impedance data is challenging and not always clear. Impedance spectroscopy, together with 

the more conventional methods of battery science, electrochemical and other, is a powerful 

tool for the investigation of ageing processes in lithium-ion batteries [39], [40]. 

Depending on the cell chemistry, both high and low state of charge may deteriorate 

performance and shorten battery life. At high temperatures, the decay is accelerated, but low 

temperatures, especially during charging, also can have a negative impact. Amongst the 

material parameters, surface chemistry plays a major role for both anode and cathode 

materials. On the cathode, phase transitions and structural changes in the bulk material 

strongly influence ageing, while changes in the bulk anode material are considered of minor 

importance only. Unfortunately, lithium-ion batteries are complex systems to understand, 

and the processes of their ageing are even more complicated [39].  
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2.2.2  End of life 

Battery End of Life is capacity fade which causes a decrement of the available capacity 

from 100% to 80% of nominal capacity of the battery. Generally speaking, end of life for a 

battery will be determined in one of three different ways depending on the product's 

manufacturer: 

2.2.2.1  Cycle life 

This refers to the total number of times that a battery can be charged and discharged. 

Manufacturers will typically include the recommended cycle life on the product's packaging 

or in other documentation available at the time of purchase. 

2.2.2.2  Warrantied life 

This will usually be outlined in a specific number of years, like any other product that 

you may have. A battery with a 12-year life under warranty is typically expected to reach 

true end of life by roughly that time. 

2.2.2.3  Total energy throughput 

This is the total amount of energy that will pass through the battery over the course of 

its lifespan and this will usually be measured in megawatt-hours. 

2.2.3  Operational life 

Occasionally, manufacturers will reference end of life using a measurement called 

operational life expected. If this is present, it will usually be somewhat longer than the 

"warrantied life" measurement. At that point, the battery will no longer be covered under 
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any type of manufacturer's warranty, but it will still continue to function until about the time 

that the listed number of years have passed. 

2.2.4  State of health 

SOH is a quantifying estimation that reflects the general condition of a battery and its 

ability to deliver the specified performance compared with a fresh battery. SOH monitoring 

in batteries has a wide variety of connotations, ranging from intermittent manual 

measurements of voltage and electrolyte parameters to fully automated online supervision 

of various measured and estimated battery parameters [41]. State of health can be defined as 

the ratio of the actual capacity and the nominal capacity of the battery: 

 𝑆𝑂𝐻 = 100 ∗  
𝐶𝑎𝑐𝑡𝑢𝑎𝑙
𝐶𝑛

  [%]   (2.1) 

2.2.5  Temperature  

Lithium-ion battery performance is sensitive to temperature, while temperature 

uniformity and maximum temperature are important to thermal safety as well as aging. 

Thermal problems are possible if thermal safety measures are not taken, especially for 

charging with continuous high current. Therefore, lithium-ion batteries should be precisely 

checked and handled to avoid safety performance related problems [42]. A lot of efforts have 

been carried out to improve the charging performance from the view of charging algorithm 

and reaction mechanism analysis [43], [44].  

2.2.6  C-rate and E-rate 

A measure of the rate at which a battery can be charged or discharged is called the C-

rate. It is defined as the current through the battery divided by the theoretical current draw 
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under which the battery would deliver its nominal rated capacity in one hour. For example, 

A 1C rate means that the discharge current will discharge the entire battery in 1 hour. For a 

battery with a capacity of 100 Amp-hours, this equates to a discharge current of 100 Amps. 

A 5C rate for this battery would be 500 Amps, and a C/2 rate would be 50 Amps. Similarly, 

an E-rate describes the discharge power. A 1E rate is the discharge power to discharge the 

entire battery in 1 hour [45].  

 𝐶 − 𝑟𝑎𝑡𝑒 =  
𝐼

𝐶𝑛
        [

1

ℎ
]   (2.2) 

Where 𝐼 is the DC current in the interval, and 𝐶𝑛 is the nominal capacity of the battery. 

2.2.7  Cycles and efficiency 

There are different ways to define a battery cycle. one definition is that a cycle is a 

process that takes a battery from an initial SoC value to an equal final SoC value [46]. 

Efficiency of a cycle can be computed as follows: 

 𝜂 =  
𝐸𝑑𝑖𝑠
𝐸𝑐ℎ

∗ 100        [%]   (2.3) 

Where 𝐸𝑑𝑖𝑠 is the injected energy with a battery to the grid during discharge cycles, and 

𝐸𝑐ℎ is the absorbed energy from the grid during charge cycles. 
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2.3  Ragone Chart 

 

Figure 2.7  Ragone plot [47] 

A Ragone plot is a plot used for comparing the energy density of various energy-storing 

devices [47]. On this plot, the values of specific energy (in W·h/kg) are plotted versus 

specific power (in W/kg). Both axes are logarithmic, which allows comparing performance 

of very different devices. The amount of time (in hours) during which a device can be 

operated at its rated power is given as the ratio between the specific energy (Y-axis) and the 

specific power (X-axis). 

The Ragone plot was first used to compare performance of batteries [47]. However, it is 

suitable for comparing any energy-storage devices [48] as well as energy devices such as 

engines, gas turbines, and fuel cells [49]. 

As shown in the Figure 2.7, each equipment is suitable for a specific application. Fuel 

Cells are suitable when the load needs small amount of power for a long time (ten hours for 
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example), because they have low specific power and high specific energy. Batteries are 

perfect for normal application when a moderate power and energy is needed. They can 

normally provide power for one hour. Among the batteries, the Li ion batteries can provide 

more power and energy in respect to their mass. This is one of the most important reasons 

for their usage in small electronic device but power hungry like smartphones. The 

Combustion Engine and Gas Turbine are suitable for a load with high power and high energy 

consumption as they have the highest specific power and specific energy. Flywheels are 

being used for the fast supply of high power for a short period of time (Almost 36 sec.). 

Capacitors and ultra-capacitors are being used when a load needs very high power for a very 

short period of time (Almost for a few milliseconds). 

For electrical systems, the following equations are relevant: 
 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 =  
𝑉. 𝐼. 𝑡

𝑚
   [𝑊. ℎ/𝑘𝑔]   (2.4) 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 =  
𝑉. 𝐼

𝑚
   [𝑊/𝑘𝑔]   (2.5) 

Where 𝑉 is voltage (V), 𝐼 is electric current (A), 𝑡 is time (s) and 𝑚 is mass (kg). 

As the batteries cover wide varieties of applications, they are largely used for different 

storage solutions, in which the Li-ion batteries are recently becoming the most common 

battery for energy storage. Hence, a real data of a Li-ion battery providing PCR service is 

considered for this thesis.  

2.4  SOC Models 

In the battery management system (BMS), in order to optimize the overall performance 

of the system, it is necessary to build a lithium-ion battery model with high accuracy and 
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low computational burden. In addition, it’s important to estimate the state of charge (SOC) 

accurately for battery monitoring and usage, as the battery is a complex, closed system [50]. 

Therefore, model building and state estimation of Li-ion batteries also play a vital role in 

BMS [51]. Among all proposed models, there are three main groups which are the most 

famous ones. They are explained briefly in the following: 

2.4.1  Coulomb counting 

To date, many approaches have been developed for the estimation of battery SOC, 

among which Coulomb counting is the most popular technique [52], [53]. In this technique, 

the current is integrated over time to estimate the battery SOC. Although Coulomb counting 

is simple and easy to implement, measurement and calculation errors may be accumulated 

by the integration function, thus reducing accuracy of estimation. In addition, the SOC 

estimation obtained by this technique is highly dependent on the quality of input initial 

conditions. 

 {

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡                                                        𝑖𝑓 𝑡 = 0

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) + 
1

𝐶𝑛
. ∫ 𝑖(𝑡). 𝑑𝑡         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑡

𝑡−1

   (2.6) 

Where 𝑖(𝑡) is the DC current in the interval [t − 1, t], positive during the charging cycles 

of the battery, and 𝐶𝑛 is the nominal capacity of the battery, obtained as follows:  

 𝐶𝑛 = 
𝐸𝑛

𝑉𝑛
         [Ah]   (2.7) 

2.4.2  Voltage-based method 

This approach which is commonly used for the estimation of battery SOC is the voltage-

based method [5]. The value of SOC is determined based on a voltage-SOC lookup table, 
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where the SOC is the function of a measured open circuit voltage (OCV) of the battery. The 

relation of SOC to open circuit voltage is shown in the Equation  (2.8). However, voltage-

based methods are not very proper for Li-ion batteries because of their flat plateau of 

discharge characteristics. 

 𝑆𝑂𝐶(𝑡) = 𝑓(𝐸𝑜𝑐𝑣(𝑡))   (2.8) 

2.4.3  Physics-based methods 

These methods are widely used for SOC estimation when the accuracy is the main goal 

[54], [55]. These methods have intrinsic advantages over traditional Coulomb counting and 

voltage-based methods. For example, physics-based methods are robust to sensor error and 

are less dependent on accurate initial SOCs. In physics-based methods, the major problem 

for real-time SOC estimation is the computational complexity of the coupled partial 

differential equations (PDEs) which are used to describe the physical processes inside the 

battery. Simplification of the diffusion PDEs in the solid-phase particles has been found to 

be the key to reduce the computation time and memory requirement of the physics-based 

models. The existing methods for diffusion PDE simplification suffer from lots of 

drawbacks. For instance, the commonly used volume-averaging method can generate 

unstable equations, which may lead to unacceptable error. Projection-based methods are 

promising for the model reduction of diffusion PDEs. However, the basis function used in 

the projection can greatly influence the performance, and how to construct an optimal basis 

function has not been discussed in the literature. In addition, state filters are required when 

using a physics-based model for battery SOC estimation. Available state filter algorithms 

are effective to handle measurement noise and modeling uncertainties. However, these 

algorithms converge slowly if the initial error is high, which can cause inconvenience to 

battery users; however, in a recently published papers physics-based electrochemical model 

is proposed for Li-ion battery SOC estimation involving the battery’s internal physical and 

chemical properties such as lithium concentrations to solve the computationally complex 
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solid-phase diffusion equations of physical models [56]. An electrochemical model is shown 

in the following figure 

 

Figure 2.8  Dual-foil battery electrochemical model 

2.4.4  Equivalent circuit model (ECM) or Electrical model 

The ECM is widely applied to BMS and battery SOC estimation because it is 

computationally efficient [57], [58]. However, because the ECM is empirical in nature, it 

provides little insights into the electrochemical process inside the battery, and it cannot 

provide highly accurate results. It uses electrical circuit components, such as resistors, 

capacitors, and voltage source to build circuit networks to describe the terminal voltage of 

batteries. It can describe various dynamic behaviors of the battery accurately. It has good 

applicability and expansibility, and can be used to develop the model-based SoC estimation 

approach precisely. Fig.6 presents an ECM with n RC networks, named the NRC model 

hereafter. The model contains three parts: (i) Voltage source: it uses open circuit voltage 
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(OCV) to denote battery voltage source. (ii) Ohmic voltage cross the equivalent ohmic 

resistance 𝑅𝑖, which represents the electrical resistance from various battery components or 

with the accumulation and dissipation of charge in the electrical double layer. (iii) Dynamic 

voltage behavior and the mass transport effects: the elements of 𝑅𝐷 and 𝐶𝐷 are used to 

describe the diffusion resistance and diffusion capacitance. 𝐶𝐷𝑖 denotes the 𝑖𝑡ℎ equivalent 

diffusion capacitance and 𝑅𝐷𝑖 denotes the 𝑖𝑡ℎ equivalent diffusion resistance, 𝑈𝐷𝑖 is the 

voltage across 𝐶𝐷𝑖, i = 1, 2, 3, 4, . . . n [59]. In figure 2.9, 𝑖𝐿 denotes battery load current, 𝑈𝑡 

denotes battery terminal voltage.  

 

Figure 2.9  Schematic diagram of the NRC ECM [59] 

Electrical behavior of the NRC battery model can be expressed by Equation   (2.2). 

 

 

  (2.9) 

 For working BESS in the safe operating area (SOA), there is a BMS block which 

controls the voltage, current and temperature of the cells. SOA is a window with safe 

predefined values for the cell voltages, currents, and temperatures where a battery can 

operate continuously without any harms or damages [60]. BMS deals with an equivalent 
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circuit since it works on-line and prevents the battery from detrimental operation by 

measuring in real-time both voltage and current at terminals.  

It is noted that the symbol of battery current is positive during the discharging process 

and the symbol is negative for charging process. These electrical models can be quite simple 

as models that take into account only the static behavior or more complex ones that take into 

account the dynamic behavior as well [61]. Following are the two main subgroup of the 

model-based SoC estimation with the ECM: 

2.4.4.1  Active models 

Battery models, in most cases, are composed of a voltage source, whose terminal voltage 

is a function of the state of charge (SoC), and passive elements, as resistors and capacitors, 

to model the dynamic behavior of batteries over a certain frequency range [62], [63]. 

Moreover, these elements can also be functions of other quantities as temperature, current 

and so on. Figure 10.a shows a simple battery active model. 

2.4.4.2  Passive models 

supercapacitors are usually modelled using only passive elements as functions of 

voltage, and possibly, other quantities [64]. In fact, batteries are most of the time modelled 

as voltage sources because they are seen as dc electric generators, based on chemical 

phenomena, whilst supercapacitors are seen as large capacitors because their working is 

based on the charge accumulation phenomenon through the electric field. Even if a battery 

has chemical reactions, it is electrically equivalent to a big capacitor whose voltage is related 

to the charge accumulated in chemical way, instead of in electrical way, into the battery 

itself. For this reason, it is possible to use also for batteries passive models the same as 

supercapacitors. Figure 10.b shows a simple battery passive model. 
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Figure 2.10  (a) Active, and (b) Passive ECM 

2.4.4.3 Empirical 

It uses the experimental results of a battery pack without the consideration of cell 

information [65], [66]. The model of this method can be applied to the existing state 

estimation algorithms for batteries with ease because the model has a simple model structure 

which is considered in the trade-off between model accuracy and computational complexity. 

Battery packs usually consist of hundreds of battery cells connected in series and parallel, 

including battery packs made up of several battery modules, with each battery module 

containing multiple battery cells in series, parallel, or series-parallel configuration. Going 

from battery cell model to battery pack model is not simply aggregating cell models to make 

a pack model, because in this way not only will it introduce unnecessary computational 

requirements for system simulation, but also because some phenomena that can only be 

observed in the battery pack are ignored [67]. Significant fidelity loss will occur if 

inadequate attention is paid to the battery pack behavior, as opposed to cell-level modeling. 

Thus, it is worth investigating the construction of a battery pack model separately from the 

cell model. 

Three approaches for battery pack modeling are available in the literatures. The first 

approach is aggregating cell models in series and parallel to represent the battery pack model 

[68], [69]. This approach requires the least effort going from the cell model to pack model, 

as the only information needed is the cell configuration in the battery pack. However, serious 
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loss of fidelity can occur in the resulting battery pack model as a result of ignoring the cell 

variations, thermal unbalancing in the battery pack, etc. At the same time, in reality not all 

battery cells used in battery packs are even available to the actual system designers for 

battery cell modeling. 

The second approach is to scale the cell model into a battery pack model with one 

simplified model representing the battery pack [70], [71]. In this case, the cell discrepancy 

issues related only to the battery pack are investigated and included in the pack model. 

Compared with the first approach, the second approach is comprehensive and fast in 

simulation, which is more suitable for system level design and simulation. Nonetheless, the 

investigation of cell discrepancy and thermal distribution in a battery pack requires extensive 

time and effort, and sometimes the battery cells are not readily available to the system 

designers. 

The third approach is building a battery pack model directly on a well-built battery pack 

with a single battery model capturing the totality of the pack behavior [72], [73]. In this case, 

the characteristics of the battery cells and thermal influences on them are naturally included 

into the battery pack model, as a result of cumulative effects of cell averaging, and at the 

same time the battery model will be fast in simulation requiring comparatively little 

computational power. Another advantage of this procedure is that non-idealities known to 

exist in battery packs, such as weak cells and interconnection impedances, is captured self-

consistently at the time the battery pack model is built. This approach requires no cell-level 

details or pack configurations, and some modeling algorithms at this level are even 

independent of battery chemistry. For commercially available battery packs, this approach 

may be the only possible approach, as in this case battery tests need only be conducted at the 

battery pack level. Prerequisites for this approach include 1) the battery cells are reasonably 

well balanced with means for regular cell balancing, and 2) the battery pack should be 

effectively cooled/heated so that the battery pack does not encounter uncontrolled 

temperature variations. In other words, only when a well-designed battery system is 

available can one confidently model the battery pack as a single battery model. The issue of 
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battery cells variation has been discussed in many papers and communications [70]- [74], 

and a two-step screening process has been proposed in [70] to ensure a stable configuration 

of a battery pack, and many cell equalizations approaches have been proposed as well [75], 

[76]. Comparing the three battery pack modeling approaches discussed above, the third 

approach which builds a battery pack model directly on battery pack terminal measurements 

seems to be the most promising for system level designer. However, large modeling errors 

up to 3.1% for this battery pack modeling approach even with moderate real-world test 

regimes were reported in the literatures [72], [73], which needs to be improved for stringent 

high-fidelity system level simulations.  
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Chapter 3  

Ancillary Services Market (ASM) 

 

 

Ancillary Services (AS) is an essential element in any electricity market design. The 

Independent System Operator (ISO) relies on AS to ensure system security and reliability. 

AS usually include regulation up (Reg-Up), regulation down (Reg-Down), spinning reserve 

(Spin), nonspinning reserve (Non-Spin), voltage support, and black start. In some markets, 

AS products are broken in different categories such as 6 second raise, 6 second lower, 60 

second raise and 60 second lower, 30 minutes standby, etc. Operating reserves, i.e., 

regulation, spin and non-spin, are usually procured through competitive markets. Bidders 

submit AS bids and then the market clearing price is found as the price where supply is equal 

to demand. All offers at or below the clearing price are accepted. Voltage support and black 

start services are usually procured by resource specific agreements between the Independent 

System Operator (ISO) and the suppliers. A generator must meet certain performance criteria 

in order to be eligible for providing a specific AS. For example, a generator must be equipped 

with Automatic Generator Control (AGC) devices in order to provide regulation services. 

Furthermore, the amount of capacity that a unit can provide is limited by the unit’s operating 

characteristics, such as ramping capability. The minimum performance requirements for 
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each ancillary service are usually specified by national reliability organizations such as 

NERC (North America Reliability Council) [77]. 

3.1  Electricity Market Regulations 

The Day-Ahead Market (DAM) is an electricity market that works one day in advance 

with respect to the actual delivery time. It lets “financial” and “physical” trading. A financial 

market lets participants to buy or sell energy on the market, with no actual delivery 

obligation. A financial transfer is related to any energies that is not delivered. On the other 

side, a physical market related to any trading which is corresponded to an actual transfer of 

power. The DAM provides both financial and physical participation [78]. The DAM is an 

auction market and it is not a continuous trading market. It hosts most of the transactions of 

purchase and sale of electricity. Producers as sellers and consumers as buyers place their 

offer in an Electricity Pool, which is managed by a central entity called Power Exchange (in 

Italy, Gestore dei Mercati Energetici - GME). The Power Exchange (PX) represents the only 

counterparty for the market players, by acting as the only buyer for producers and the only 

seller for consumers [79]. Note that when buyers and sellers communicate with the PX, they 

do not know whom they are dealing with.  

3.1.1  Basic D-ahead market trading principle [80] 

-  Calculations are made simultaneously for 24 hours of supply for all bids and 

quotations. 

 -  Prices are set for each hour separately. Equilibrium price is set with the help of 

special software. 

-  Pricing principles are as follows: 

• Supply and demand curves are formed for each hour of the day in €/MWh. 

• The intersection of the curves determines the equilibrium price. 
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-  Market operator is a central contractor for all sale and purchase deals. Each 

participant either sells or buys the needed volumes of electricity from the market 

operator. 

-  In the Day-ahead market, participants make bids and offers for the purchase and 

sale of electricity respectively during one or more accounting periods (hours of the 

day). 

-  Billing and settlements under agreements are made by the market operator. 

Figure 3.1 shows the procedure of finding of clearing price (cut-off price) for Day-ahead 

market: 

 

Figure 3.1  Equilibrium point for Day-ahead market [80] 

3.2  Ancillary services 

Ancillary services are support, generally referred services other than energy that to those 

are essential for ensuring the reliable operation of electric power losses, black start capacity, 

systems [81]. According to this definition, many services such as frequency regulation, 

voltage regulation, system restoration, load shedding and reserves with varying levels of 
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response time are considered as ancillary services. However, many entities such as Federal 

Energy Regulatory commission (FERC), North America Electric Reliability council 

(NERC) and Oak Ridge National Laboratory (ORNL) have developed comprehensive lists 

of ancillary services [82], [83]. These organizations are related to the USA power system 

where the nominal frequency for the power systems is 60 Hz. In Europe, the reliability 

organizations are the national regulatory authorities (NRAs). Transmission System Operator 

(TSO) is an organization responsible for transporting energy in the form of natural gas or 

electrical power on a national or regional level, using fixed infrastructure in the Europe. The 

term is defined by the European Commission. The standard for the nominal frequency for 

the power systems in Europe is 50 Hz (In the simulation of this work, 50 Hz is the nominal 

value). TSO in Europe is the same as ISO in the USA.  

The power system has metamorphosis in recent years, as a result of the steady growth 

of renewable energy sources like solar, geothermal, and wind power in the generation mix. 

Although this brings great advantage as result of its natural eco friendliness, however, unlike, 

generators, the uncontrollability of RE poses a major challenge to system operators. BESS, 

on the other hand, is greatly welcomed by system operators because of its advantage of its 

large energy storage functionality [84]. The enormousness of BESS applications includes, 

but not limited to: intermittency compensation of renewable energy, frequency regulation, 

transient stability, voltage support, frequency compensation, frequency regulation, load 

leveling, spinning reserve, uninterruptable power supply (UPS), and improvement of energy. 

Although it is most actively developed due to its colossal applications, expensive initial 

investment cost and limited lifetime are still to its commercialization. However, many such 

projects are still ongoing for frequency regulation, because of its economic viability [85]. 

Fast response due to BESS is suitable for frequency regulation and has proven to be superior 

to existing generators in recent research [86]. In the following, some of the most important 

ancillary services are explained: 
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3.2.1  Frequency regulation 

The system frequency is the heartbeat of the grid. It indicates the balance between power 

supply and demand of the system. System frequency fluctuations are caused by supply-

demand imbalance on the grid. Frequency fluctuations occurs at the instance of sudden 

power fluctuation. System frequency and demand power shows high correlation at every 

instance in time. As shown in Figure 3.2, at any given time period, system frequency depicts 

an inverse proportion with demand power. This is as a result the frequency falls when the 

demand power rises and the frequency rises when the demand power falls. So, If the balance 

between generation and demand is not reached, the system frequency will change at a rate 

initially determined by the inertia of the total system. The total system inertia comprises the 

combined inertia of most of the spinning generation and load connected to the power system 

[87]. It should be note that even though the nominal frequency of the Figure 3.2 is 60 Hz, 

the nominal frequency chosen for the simulation in this work is 50 Hz.  

 

Figure 3.2  Frequency variation vs. demand power [88] 

Low levels of rotational inertia in a power system, caused in particular by high shares of 

inverter-connected renewable energy sources (RES), i.e. wind turbines, and PV panels which 

normally do not provide any rotational inertia, have implications on the grid’s frequency 

dynamics. This can lead to situations in which traditional frequency control schemes become 

too slow with respect to the disturbance dynamics for preventing large frequency deviations 

and the resulting consequences. 
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The loss of rotational inertia, and its increasing time-variance, leads to new frequency 

instability phenomena in power systems. Frequency and power system stability may be at 

risk. If, during a system frequency disturbance, the balance between generation and demand 

is not maintained, the system’s frequency will change at a rate initially determined by the 

total system’s inertia. The total system’s inertia comprises the combined inertia of most of 

the spinning generation and load connected to the power system. The contribution of system 

inertia of a load or generator is dependent on whether the system frequency causes changes 

in its rotational speed and, therefore, its kinetic energy. The power associated with this 

change in kinetic energy is fed by, or taken from, the power system and is known as the 

“inertial response” [89]. Figure 3.3 shows the typical inertial response requirements of a 

grid. 

 

Figure 3.3  Grid inertial response [90] 

During a system frequency event the total inertial response of all electrical machines 

connected to the system determines the initial rate of change of frequency (ROCOF). 

For a robust power system (system frequency is not overly sensitive to power 

imbalances), it is extremely important that a large proportion of generation and load 

connected to the power system contributes to the system’s total inertia and then provides 

inertia response. 
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Inertial power rating and energy will depend on what is required by the network, and is 

dependent on the level of power to be supplied to the network in the instant between failure 

and adjustment of remaining plant to take up the load. The control of a large power system 

is hierarchical. In this discussion, three frequency control services (primary control, 

secondary control, and tertiary control) are explained, but our focus is on primary control 

action. 

3.2.1.1  Primary Control Reserve (PCR)  

Transient imbalances between generation and consumption induce deviations of the 

frequency. The main purpose of primary frequency control (PFC) is to react within a few 

seconds to any frequency deviation higher than ±20mHz to keep frequency variation within 

the maximum threshold (±200mHz) and re-establish the balance between produced and 

consumed energy. Currently detection of these deviations is used to tune generators (that 

participate to this primary frequency control) according to their available power reserve. The 

same control function can be implemented into the control system of the grid connected 

power converter, which is embedded in the BESS. From an economic point of view the 

interest is that the revenue from this given service is constant and warrantied [91]. 

Load frequency control (LFC) is a term applied to describe the continuous operation of 

keeping the frequency of a power system stable. The frequency of a power system is 

connected to the balancing of produced and consumed power in the way that if there is a 

surplus of produced power the frequency will rise, and if there is a lack of produced power 

the frequency will fall. It is very important that this power balance is maintained, if not the 

generators could lose synchronism, and the power system would collapse. As shown in 

Figure 3.4, LFC has a hierarchical structure with primary and secondary, and tertiary control.  
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Figure 3.4  Activation of primary, secondary, and tertiary control after a power imbalance [92]. 

PCR acts as follow: 

1. In case of under frequency, positive reserve injects power in the grid.  

2. In case of over frequency, negative reserve absorb power from grid. Actually, all 

relevant units inject less power than programmed in grid. 

The final goal for PCR is to achieve: 

 ∑𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 =∑𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑   (3.1) 

 

Which means the frequency of the grid gets its optimal initial value (50Hz or 60Hz). 

PCR is a mandatory service which has to be provided by every production units with 

apparent power greater than 10MVA. These units are called Relevant Production Units 
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(RPU). PCR is not subject to ASM, but it is remunerated according to the price of electricity 

in that zone. 

3.2.1.1.1  The BESS Controller 

In this study, designing of a new controller is not the case. Within this framework, the 

controller is only used for:  

• directly receiving the power setpoints (𝑃gridAC) from input time-series. This occurs 

during the verification, where the BESS model must operate on a cycle of the user’s choice; 

• converting frequency deviation into a power setpoint via a droop control curve. This 

occurs during the validation process, where the BESS model is tested via frequency 

regulation cycles. The droop control curve is built in the model controller based on the curve 

controlling the operation of a real battery under study while providing frequency regulation. 

It is a simplified control curve, defined in Equation  (3.2) and presented in Figure 4.5, 

featuring no dead band and a droop value of 0.69%. The utilization of a droop curve without 

a dead band could be a decrement in the test duration due to the its incrementation in energy 

flow during the test. This is suitable for the validation process since its purpose is to 

investigate the estimation error rather than the effectiveness of the control strategy. 

computed as follows: 

 𝑑𝑟𝑜𝑜𝑝 =  −

𝑑𝐹
𝐹𝑛
𝑑𝑃
𝑃𝑛

× 100       [%]   (3.2) 

where dF is the frequency deviation (in Hz), Fn is the network nominal frequency of 50 

Hz, dP is the power setpoint (in kW), and Pn is the nominal power of BESS (in kW). 
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3.2.1.2  Secondary Control Reserve (SCR) 

Secondary frequency control, also referred to as load frequency control (LFC), is the 

second level for compensating an active power mismatch. After PCR reached to its 

maximum power delivery, SCR starts and must achieve to its nominal value within 15 

minutes. If it does not, tertiary control takes over from secondary control. As opposed to 

primary control, secondary control reacts only to a disturbance in the LFC’s own control 

area in order not to change the load flows on tie-lines to other areas. It can be either 

performed manually or automatically. PCR can only interrupts deviation and reach to a 

steady-state frequency value which is higher or lower, depending on the situation, than the 

nominal value. It cannot restore frequency to the optimal nominal value. SCR causes an 

unbalance in grid for a certain period of time. It is injecting power if frequency is below the 

nominal value and absorbing power in case frequency is above nominal value. 

SCR is not mandatory, and each provider is required to have high power set points as 

the number of providers are not many. They must offer the same power band for positive 

and negative reserve: SCR is a symmetric service. In order to avoid any constraints, TSO 

given the total available quantity of PCR and calculates the total power required to restore 

the nominal value of frequency and shares it among all the providers. In Italy, the TSO 

Figure 3.5  Droop control curve for frequency regulation 
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defines each minute a signal, called Area Control Error (ACE - Livello Regolazione 

Secondaria is the Italian name), which is valid simultaneously for all providers. It represents 

the percentage of power reserve required to each production unit selected in the market [93]. 

The scale for the ACE signal is a number between 0 and 100 [94]. 

 {

∆𝑃 = ∆𝑃𝑆𝐶𝑅            𝑖𝑓 𝐴𝐶𝐸 = 100
∆𝑃 = 0                        𝑖𝑓 𝐴𝐶𝐸 = 50
∆𝑃 = −∆𝑃𝑆𝐶𝑅             𝑖𝑓 𝐴𝐶𝐸 = 0

   (3.3) 

3.2.1.3  Tertiary Control Reserve (TCR) 

It also known as manual frequency restoration reserve (mFRR), frequency restoration 

reserves (FRR), and replacement reserves (RR). In case of necessity, tertiary control reserves 

are manually activated within 15 min by the TSO. It is primarily activated to free secondary 

reserves in a balanced situation, but also to support secondary control after a large incident 

to restore the frequency to the nominal value and prevent the need of primary control. 

Tertiary control reserves have to run until the generation is re-scheduled to fit the new system 

situation [92]. 

In Italy, this service is centrally coordinated by Terna and traded on Ancillary Services 

Market. It requires slower but longer action (as shown in Figure 3.4); hence, it has a slow 

ramp and a large energy output. 

3.2.2  Voltage Control 

Distribution networks have not been designed to cope with power injections from 

Distributed grid (DG), therefore the proliferation of DG on the electric networks results in a 

number of adverse impacts, including voltage variation, degraded protection, altered 

transient stability, bi-directional power flow and increased fault level, the voltage variation 
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has been addressed as the dominant effect [95]. Typically, one of the most severe situations 

is that voltage magnitude at the proximity of DG exceeds the statutory limits during 

maximum power output from DG and minimum power demand from the network. Here the 

network experiences the largest reverse power flow and large voltage change which affects 

the network safety and stability. 

Distribution network operators (DNOs) are responsible for operating the network within 

statutory limits. The voltage variation problem can be solved by either network, generator 

or load operational changes (utilizing the existing infrastructure) or network asset upgrades 

[95]. The network and generator operational changes, such as DG power curtailment, may 

conflict with contractual policies (“first on last off”) between DNOs and DG. Whilst the 

network asset upgrades, such as reinforcement of networks, require significant investments 

on the distribution networks. DNOs need to justify the cost in terms of revenue benefit [96]. 

3.2.3  System Restoration 

The objectives of restoration are to enable the power system to return to normal 

conditions securely and rapidly, minimize losses and restoration time, and diminish adverse 

impacts on society. Many non-structured methods and technologies and object-oriented 

expert system have been employed in making restoration schemes to address the above 

objectives, but the establishment and maintenance of a knowledge base of past restorations 

remains a bottleneck [97]. 

Wind and solar power as clean and renewable energy are significantly adopted but they 

are inherently volatile, intermittent and random. Therefore, an improper handling of certain 

partial failures can easily lead to accidents and severe chain reactions, and thus may cause 

large-scale/extensive blackout eventually. Large-scale blackout risks still exist and are 

inevitable, although a great amount of work has been done to make power systems resilient 

against outages [98]. A proper restoration plan can effectively mitigate the negative impact 
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on the public, the economy, and the power system itself. Research on how to restore the 

power system quickly and effectively after outages is of vital significance.  

Power system restoration after a partial or complete collapse is quite a complex process. 

Many factors need to be considered including the operating status of the system, the 

equipment availability, the restoration time and the success rate of operation. It needs not 

only a large amount of analysis and verification, but also decisions made by dispatching 

personnel. Power system restoration is a multi-objective, multi-stage, multi-variable and 

multi-constraint optimization issue, and is full of non-linearity and uncertainty. It can be 

described as a typical semi-structured decision-making and it is difficult to obtain a complete 

solution [99]. 

3.3  BESS for Ancillary Services Provision 

In the Nordic Network, the TSOs aim at keeping the frequency between 49.9 and 50.1 

Hz. This has proven to be increasingly difficult, and as seen from Figure 3.6, the number of 

frequency incidents (minutes spent outside 49.9 and 50.1 Hz) has increased concurrently 

with installed wind power capacity over the last decade. It is confirmed by Statnett, the 

Norwegian TSO, that the increasing amount of intermittent energy resources is part of the 

reason for the decreasing control performance, along with a heavier loaded network and an 

increasing amount of bottlenecks, which at times excludes some of the resources from 

participating in LFC [100]. There have been many suggestions to how LFC can be improved 

to better cope with these challenges. In some literatures, loads are included in LFC [101], 

[102], while [103] concentrated on effective energy storage. BESS can absorb energy during 

periods of high frequency and dispatch energy during periods of low frequency. A fairly 

complex control algorithm is required to ensure that the BESS is capable of performing either 

function when required [90]. 

Energy support for frequency management is short in nature and many solutions are 

based on super- and ultra-capacitors. Ultra-capacitors are well-suited to supply as such a 
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pulse of power. The reason is obvious: high energy discharge capability and long life. 

Synthetic inertia generation using ultra-capacitors has been demonstrated successfully on 

grids such as in island networks [104], and the extension to micro-grids and larger smart 

grids using DESS is a distinct possibility which has been considered by numerous networks, 

but super capacitors are more expensive and unmatured technology compared to BESS. 

Therefore, most of the stationary energy storages are based on BESS especially Li-ion 

batteries. 

 

Figure 3.6  Number of frequency incidents per month [105] and installed wind power capacity in the 

Nordic system [106]. 

While battery energy storage technologies can cover a wide spectrum of applications, 

ranging from short-time power quality support to hours-long energy management, the supply 

of primary control reserve has been identified as the application with the highest value for 

the owner of the BESS. The focus is on short-duration storage technologies which can be 

used to assist in primary frequency control. Storage technologies that suit such applications, 

typically grid-scale batteries, can respond at a much faster rate than the mechanical actions 

of traditional governor controls and blade pitch or wind turbine speed control mechanisms. 

However, economic concerns suggest that such storage will be very limited in the amount 
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of power it can provide [107]. According to all aforementioned reasons, a Li-ion BESS is 

investigated for this study.  
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Chapter 4  

Methodology 

 

 

Many stakeholders, governments, and researchers are interested in simulating the real 

behavior of BESS. As already explained, several models of electrochemical, electrical, and 

empirical models are already developed for SOC estimation, but most of them are based on 

ideal characteristic of the batteries. Hence, they are not based on the real behavior of a 

battery, and in reality, they show a big error in SOC estimation. One the common models 

for SOC estimation is electrical model. It deals with voltage and current as the inputs of the 

Battery management system (BMS). It is less accurate than electrochemical model, but faster 

in simulation elapsed time. If the monitoring and controlling of electrical parameters is not 

required, empirical models can be a good option. They employ past experimental data for 

estimating the future behavior of BESS. Polynomial functions are usually used as empirical 

models [108]. Empirical models have already successfully used for SOC estimation. They 

not only have estimated the behavior of the battery with an acceptable accuracy, but also 

decreased the computational effort tremendously in compared to the electrical model [6]. In 

this study, a novel empirical model based on lumped elements characterized by parameters 

estimated via an experimental campaign is developed instead of using polynomial functions. 
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The main outcome of such strategy would be a more realistic SOC estimation model. The 

main elements of this model are explained in the following. 

4.1  Empirical Model for PCR provision 

The developed model is shown in the Figure 4.1. It is made of two main blocks which 

are PCR controller and BESS Empirical model. They are designed in Simulink. 

 

Figure 4.1  Empirical Model for PCR Provision 

4.2  PCR controller 

A Controller makes the BESS operation strategy in runtime. It receives frequency profile 

of the grid as the inputs. It calculates the power setpoint requested from the grid to the BESS 

(𝑃𝑔𝑟𝑖𝑑𝐴𝐶) as the output and deliver it to the BESS block. The sampling rate of the output can 

be configured by user. The reason for using this block is to prepare the power profile so that 

the system can provide an ancillary service which is PCR for this study; for example, scaling 

the sampling rate of data from second to hour for analyzing services in hour timescale. 
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4.3  BESS Empirical model 

The battery pack is the main core of the BESS model. The BESS overall efficiency 

(𝜂𝐵𝐸𝑆𝑆) varies with 𝑃gridAC and SOC. The efficiency of the operation highly depends on the 

requested power and on the amount of energy available in the battery at each moment, 

because of the electrochemical structure of batteries. Our model calculates an overall 

efficiency instead of two separately calculated efficiencies for power conversion and for 

battery cycling. This choice has two main reasons. First, without compromising the accuracy 

of the model, its complexity decreases. Second, utilization of higher accuracy of AC 

measurements. Inside the BESS empirical model block is shown in the Figure 4.2.  

 

Figure 4.2  BESS model 

4.3.1  BESS model 

The BESS model consists of Overall efficiency, Capability curve, SOC update, and 

Efficiency computation blocks. Its subblocks are shown in the Figure 4.3. In the following, 

all Different blocks are explained in detail. 
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Figure 4.3  BESS Model Subblocks 

4.3.1.1  Overall efficiency 

As shown in the Figure 4.4, this block has a main block named BESS efficiency. The 

overall storage and conversion process efficiency is the main outcome of the experimental 

campaign. The 𝜂𝐵𝐸𝑆𝑆 is computed as a function of 𝑃gridAC and SOC. It is obtained as an 

outcome of a test [109]. The 𝜂𝐵𝐸𝑆𝑆 is the ratio between energy injected and energy absorbed 

through cycles. The related curve of the 𝜂𝐵𝐸𝑆𝑆 is illustrated in Figure 4.5, obtained from a 

linear interpolation of the experimental outcomes on the domain.  

 
Figure 4.4  Overall efficiency 
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Figure 4.5  The curve of the 𝜂

𝐵𝐸𝑆𝑆
 

The system efficiency is generally high (around 90%). The 𝜂𝐵𝐸𝑆𝑆 heavily depends on 

the amount of the requested power from the battery, for example, at low power, power 

conversion system (PCS) losses increase dramatically and the efficiency sharply decreases. 

At high power, phenomena inside the electrochemical cells are responsible to diminish a bit 

the efficiency. The best situation which causes the highest 𝜂𝐵𝐸𝑆𝑆 is SOC close to 50%. 

Efficiency is implemented in the model as a Lookup table (LUT). The LUT is presented in 

Table 4.1. 

Table 4.1  BESS efficiency lookup table as implemented in the model 

𝜼𝑩𝑬𝑺𝑺 SOC [%] 

𝑷𝐠𝐫𝐢𝐝𝐀𝐂 [per unit] 

 

0.00 

0.05 

0.09 

0.18 

0.36 

0.54 

0.72 

0.90 

1.00 

0 

0.540 

0.540 

0.842 

0.818 

0.926 

0.895 

0.868 

0.861 

0.861 

15 

0.540 

0.540 

0.842 

0.818 

0.926 

0.895 

0.868 

0.861 

0.861 

50 

0.550 

0.550 

0.842 

0.931 

0.947 

0.931 

0.922 

0.896 

0.896 

85 

0.480 

0.480 

0.787 

0.896 

0.917 

0.927 

0.908 

0.859 

0.859 

100 

0.480 

0.480 

0.787 

0.896 

0.917 

0.927 

0.908 

0.859 

0.859 
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4.3.1.2  Capability curve 

The BESS model features a capability curve block for the active power of the battery. It 

is shown in Figure 4.6. In order to safely absorb or inject different levels of power by battery, 

capability curve block is limiting the charging power when the SOC is getting higher than 

96% or discharging power when the SOC of the battery is getting lower than 4%. This 

process is implemented by two one-dimensional lookup tables, one for Charging cycles and 

the other one for discharging cycles, plus a saturation dynamic block. This saturation block 

bounds the range of the battery power into an acceptable value by using the upper and lower 

limits. The Capability lookup tables are implemented in graphical forms which are presented 

in Figure 4.7.  

 

 

Figure 4.6  Capability curve block 
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Figure 4.7  Capability lookup tables 

4.3.1.3  SOC update 

This block receives c-rate as an input and deliver the SOC as an output. It made up of 

gain, memory and saturation blocks. The value of the input c-rate is changed into hour in 

percent with the gain blocks. Then, this value subtracts from the value comes from memory 

block through a feedback to give the SOC. The memory block keeps the value of the SOC 

of the last sample [time: t-1], and sum it with current value of the SOC variation [time: t] to 

calculate the current SOC. At the end, this SOC bounds to a new value between SOC 

maximum and SOC minimum. All these blocks are illustrated in Figure 4.8.     
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Figure 4.8  SOC update 

4.3.1.4  Efficiency computation 

The efficiency of the BESS is the ratio of the output power of the BESS (𝑃𝐵𝐸𝑆𝑆), and the 

requested power from the grid 𝑃𝑟𝑒𝑞. It is formulated as follow for each single moment: 

 𝜂𝐵𝐸𝑆𝑆 =

{
 
 

 
 
𝑃𝑟𝑒𝑞

𝑃𝐵𝐸𝑆𝑆
             𝑃𝑟𝑒𝑞 > 0;

0                     𝑃𝑟𝑒𝑞 = 0;

𝑃𝐵𝐸𝑆𝑆
𝑃𝑟𝑒𝑞

             𝑃𝑟𝑒𝑞 < 0;

   (4.1) 

 

According to the upper formula, the 𝜂𝐵𝐸𝑆𝑆 is implemented in Figure 4.9. The final value 

for the 𝜂𝐵𝐸𝑆𝑆 is the mean value of all data collected in this block.  
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Figure 4.9  Efficiency computation 

4.4  Validation 

In order to evaluate the proposed model, some validation calculations are needed to be 

investigated. There are two errors with the name of “SOC estimation error” and “Energy 

estimation error” that clarify the accuracy of the model in terms of SOC and energy delivery. 

Additionally, calculation of the energy flow is another important parameter. They are 

explained in the following: 

4.4.1  SOC estimation error 

SOC estimation error (𝑒𝑆𝑂𝐶) is defined as the difference between the real SOC (𝑆𝑂𝐶𝑟𝑒𝑎𝑙) 

after reaching a stationary state (retrieved as a function of OCV using SOC-OCV curve) at 

the end of the test and SOC estimated by model (𝑆𝑂𝐶model) at the end of the simulation. 

This term shows the deviation of the estimated final SOC by model from the real battery 

SOC at the end of the test. 

 𝑒𝑆𝑂𝐶 = 𝑆𝑂𝐶𝑟𝑒𝑎𝑙 − 𝑆𝑂𝐶𝑚𝑜𝑑𝑒𝑙      [%]    (4.2) 
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4.4.2  Energy estimation error 

This term provides a dimensionless figure of the estimation error with respect to the total 

energy exchanged with the grid within a test. Energy estimation error (𝑒𝐸) is defined as the 

ratio between 𝑒𝑆𝑂𝐶  multiplied by nominal energy (𝐸𝑛𝑜𝑚) and the total absolute value of 

energy flown during verification test, obtained integrating on time the absolute value of 

power injected or absorbed AC-side. 

 𝑒𝑆𝑂𝐶 =
(
𝑒𝑆𝑂𝐶  .  𝐸𝑛𝑜𝑚

100 )

∫|𝑃𝑔𝑟𝑖𝑑𝐴𝐶|. 𝑑𝑡
 . 100       [%]   (4.3) 

4.4.3  Energy flow 

It provides the amount of energy flows, absorbed or injected, through the system during 

the test. It is defined as the difference between the initial SOC of the battery and its final 

value at the end of the test, multiplied by the nominal energy of the battery. 

 𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑙𝑜𝑤 = (𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙). 𝐸𝑛𝑜𝑚      [𝑀𝑊ℎ]   (4.4) 
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Chapter 5  

Results 

 

 

In this study, the model investigated by the real charge/discharge data obtained from an 

experimental campaign [109]. 𝑃𝑛 and 𝐸𝑛 are given as initialized parameters of the BESS to 

the simulation. They are useful in the construction of the control strategy since it is 

convenient to define the power setpoints as a function of 𝑃𝑛 [per unit]. furthermore, the 

model uses both power setpoints and c-rates. The energy-to-power ratio (EPR) is used to 

transform from one quantity into the other one. 

The overall efficiency is calculated via the BESS efficiency lookup table, and then the 

SOC is estimated based on the injected or absorbed energy flow by the BESS. The basic 

assumption here is that the battery operates symmetrical in both charge and discharge cycles 

so that the 𝜂𝐵𝐸𝑆𝑆  is equal in the charging and discharging cycles. 

The model described in chapter 4 is implemented on a workstation with Intel® Core i7-

4790 processor, 16 GB of ram, 1 TB hard drive, 64-bit windows 10 pro operating system, 

and MATLAB Simulink R2019a. This software can simulate the ancillary services provided 
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to the grid by the BESS, operational efficiency of the BESS, energy flow through the grid, 

SOC estimation, and power limitations for safe operation of the BESS during all processes.  

5.1  Validation of the model 

In order to evaluate the developed empirical model, it is compared both with an electrical 

model, and the real SOC of the battery obtained from the practical experiment. For the tests, 

three different data sets are used as frequency trends. They are applied to the models to 

analyze their accuracy in terms of SOC estimation during PCR provision. The initial SOC 

for each test is different (low, medium, and high SOC).  These three different SOC are 

selected for the test in order to check the behavior of the models with different initial value 

as SOCs. The results of all tests are provided in the following: 

For all tests the nominal power (𝑃𝑛) and nominal energy (𝐸𝑛) are considered equal to 1 

MW, 2.28 MWh respectively. The nominal frequency of the power system for this work is 

considered 50Hz. The initial SOC of the battery for low, medium, and high SOC is 24.40%, 

52.10%, and 80.95% respectively. The number of samples for the low SOC is 177855, which 

equals to 49hours and 24minutes. It means that the battery was under the test for 49hours 

and 24minutes, and the sampling rate was each second. The number of samples for each of 

the medium and high SOC is 86477, which equals to 24hours. The frequency trend, power 

setpoint, SOC evolution of the models and the comparison with respect to the SOC retrieved 

by the SOC-OCV curve at the end of the test (blue stars) are shown in the Figure 5.1, Figure 

5.2, Figure 5.3.  
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5.1.1  Low initial SOC 

 
Figure 5.1  Frequency trend, Power setpoint, and SOC estimation with models during PCR 
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5.1.2  Medium initial SOC 

 
Figure 5.2  Frequency trend, Power setpoint, and SOC estimation with models during PCR 
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5.1.3  High initial SOC 

 
Figure 5.3  Frequency trend, Power setpoint, and SOC estimation with models during PCR 
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The results of the validation tests for the two models compared with real battery test are 

shown in Table 5.1, Table 5.2, Table 5.3. 

Table 5.1  Result comparison of the three cases for low SOC 

Low SOC (24.40%) 

 Electrical model Empirical model Real battery 

Elapsed time ≈ 4m 06sec ≈ 23sec ≈ 49h 24m 

Estimated Final SOC [%] 6.5735 10.8177 9.80 

SOC variation [%] 17.8265 13.5823 14.60 

Energy flow [kWh] 406.44 309.67 332.88 

Model efficiency [%] 73.35 76.75 --- 

𝑒𝑆𝑂𝐶 [%] 3.2265 ­1.0177 0 

𝑒𝐸 [%] 22.10 ­6.9703 0 

 

As shown in Table 5.1 (Test for Low SOC), the elapsed time for the empirical model is 

much less than the electrical model. SOC variation term shows that the empirical model has 

a lower difference between initial SOC and final SOC which causes smaller energy flow. In 

term of estimated final SOC, the empirical model reaches a closer value to the real battery 

SOC. Thus, it leads to a lower SOC estimation error (𝑒𝑆𝑂𝐶) in compared to electrical model. 

Its energy estimation error (𝑒𝐸) is also lower than the electrical model, because of lower SOC 

error. The SOC error and energy estimation error are negative for the empirical model 

because of its higher estimated final SOC than the real battery SOC. Additionally, the overall 

efficiency of the empirical model is higher than the electrical one. The overall efficiency of 

both models is limited as the battery was requesting low power for a long time during the 

tests. This situation is called non-convenient area, in which the efficiency of the PCS 

(Inverter + Transformer) is lower than when they provide higher power. 
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Table 5.2 (Test for High SOC) shows the same result in terms of time consumption for 

the models, but this time electrical model shows a better energy estimation error in compared 

to the previous test. It still has a higher error value than the empirical model. For this test, 

the empirical model gets better results in all parameters. 

Table 5.2  Result comparison of the three cases for medium SOC 

Medium SOC (52.10%) 

 Electrical model Empirical model Real battery 

Elapsed time ≈ 1m 58sec ≈ 12sec ≈ 24h 00m 

Estimated Final SOC [%] 22.1558 25.2683 24.40 

SOC variation [%] 29.94 26.83 27.70 

Energy flow [kWh] 682.63 611.72 631.56 

Model efficiency [%] 73.63 77.44 --- 

𝑒𝑆𝑂𝐶 [%] 2.24 ­0.87 0 

𝑒𝐸 [%] 8.08 ­3.14 0 

 

Table 5.3  Result comparison of the three cases for high SOC 

High SOC (80.95%) 

 Electrical model Empirical model Real battery 

Elapsed time ≈ 3m 19sec ≈ 12sec ≈ 24h 00m 

Estimated Final SOC [%] 88.55 88.5434 88.25 

SOC variation [%] ­7.6 ­7.59 ­7.3 

Energy flow [kWh] 173.28 173.05 166.44 

Model efficiency [%] 74.48 74.25 --- 

𝑒𝑆𝑂𝐶 [%] ­0.3 ­0.29 0 

𝑒𝐸 [%] ­4.11 ­3.97 0 
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Finally, Table 5.3 shows that with increasing the initial SOC, the electrical model 

becomes more accurate, but even in this case (High SOC) which is not favorable because of 

its vicinity to the high limitation area, its results are very close to the empirical mode. So, 

what is the benefit of using electrical model, spending a lot of time for simulation, and finally 

achieve the same result or worse than the new proposed empirical model? 

From the previous tests, it is not exactly clear how these two models are in terms of time 

consumption. So, it is better to do a test for both periods of 1 day and 1 year. For this test a 

frequency profile with a duration of 1 year is generated and both models are tested with it. 

The results verified that the empirical model is almost 10 times faster than the electrical 

model.  

Table 5.4  Evaluation of time consumption for electrical and empirical models. 

 Electrical model Empirical model 

Elapsed time 
1 day ≈ 1m 58sec ≈ 12sec 

1 year ≈ 11h 48min ≈ 1h 13min 

Ratio of elapsed time  9.83 
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Chapter 6  

Conclusion 

 

 

 

In this work, the feasibility of a Battery Energy Storage System in providing frequency 

services to the electrical network has been investigated in the framework of the Ancillary 

Services Market. In particular, this work is focused on single service provision, Primary 

Control Reserve. 

The development, validation, and verification of an empirical Li-ion BESS model based 

on experimental data. One of the drawbacks for empirical models is the lower accuracy in 

compared to electrochemical and electrical models, but for providing different services such 

as PCR, SCR, TCR, and integration with RES in the grid, a high degree of accuracy is 

inevitable. So, the main goal of this work was to check if it is possible to increase the 

accuracy of empirical models in terms of SOC estimation. The solution suggested here was 

to implement an efficiency calculation block based on the real behavior of a Li-ion battery 

instead of using Polynomial functions. The related characterized data of the battery behavior 

is extracted from [109].  
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For the comparison, a passive Electrical model is used. According to the results, the 

proposed Empirical model not only is 10 times faster than Electrical model, but also has a 

closer estimated final SOC to the real battery than the electric model. Thus, it has a lower 

SOC estimation error (𝑒𝑆𝑂𝐶) and energy estimation error (𝑒𝐸) in compared to electrical 

model. In addition, the Empirical model has a higher accuracy as well. For all 

aforementioned reasons, the proposed Empirical model is more robust than the Electrical 

model. It should be note that the battery was used in a non-convenient area, requesting low 

power for a long time. Efficiency of the PCS (Inverter + Transformer) is low in that area and 

limit the overall efficiency of the BESS model. 

Some limitations or approximations are accepted in order to provide a procedure 

applicable by the BESS operator with reasonable timing and effort. As the designing of a 

new controller was not under the scope of this work, a basic controller with simplified droop 

curve is used.  The reason for the utilization of a droop curve without a dead band was a 

decrement in the test duration due to the its incrementation in energy flow during the test. 

So, for future work it is better to develop a new droop curve, and test the model with the new 

controller. 
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Appendix  

Appendix A: Experimental setup of the BESS 

The BESS tested in the experimental campaign is a Li-ion BESS for stationary 

application present in JRC’s Smart Grid and Interoperability Laboratory (SGILab) in Ispra 

(Italy) [110]. The BESS layout is shown in Figure 6.1. 

 

Figure 6.1  BESS scheme with measurement boxes position [109]. 

A Li-ion nickel-manganese-cobalt (NMC) battery pack of nominal energy (𝐸𝑛) of 570 

kWh and a nominal power (𝑃𝑛) of 250 kW, whose datasheet is presented in Table 6.1. The 

system was installed in an external container (Figure 6.2 a) and was made up of 144 battery 

modules clustered in 12 racks (Figure 6.2 b). The system had a DC-side protection 
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switchboard. At the end of life (EoL), the BESS is guaranteed for a minimum 𝐸𝑛,𝐸𝑜𝐿, and 

𝑃𝑛,𝐸𝑜𝐿 of 450 kWh and 225 kW. 

 

Table 6.1  Battery pack essential datasheet [109]. 

Cell 

Technology 

Capacity [Ah] 

Voltage Range [V] 

 
Li-ion 

68 

3.1 to 4.1 

 

Module 

Capacity [kWh] 

Voltage Range [V] 

 
3.97 

49.6 to 65.5 

 

System 

Design Capacity [kWh]  

Nominal Power [kW]  

Cells 

Modules  

Racks 

Minimum Voltage [V]  

Nominal Voltage [V]  

Maximum Voltage [V]  

Nominal Current [A] 

 
571.9  

250 

2304  

144  

12 

595.2  

700.8  

787.2  

357.0 
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Figure 6.2  The BESS setup: battery container (a), racks (b), SCADA (c), switchboard and feeder (d). 
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List of Acronyms 

 

AC 

AGC 

AS 

ASM 

BESS 

BMS 

BoL 

DAM 

DB 

DER 

DG 

DNO 

DoD 

DR 

EIS 

EoL 

Alternate Current 

Automatic Generator Control 

Ancillary Services 

Ancillary Services Market 

Battery Energy Storage System 

Battery Management System 

Beginning of Life 

Day-Ahead Market 

Dead Band 

Distributed Energy Resources 

Distributed Generation 

Distribution Network Operators 

Depth of Discharge 

Demand Response 

Electrochemical Impedance Spectroscopy 

End of Life 
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EPR 

EV 

FACTS 

FCR 

FERC 

FRR 

GME 

HV 

ISO 

Li-ion 

LIB 

LFC 

LUT 

LV 

MV 

NERC 

OCV 

ORNL 

PCR 

PDE 

PFR 

PV 

PX 

Reg-Up 

Reg-Down 

Energy to Power Ratio 

Electric Vehicle 

Flexible Alternating Current Transmission System 

Frequency Containment Reserves 

Federal Energy Regulatory Commission 

Frequency Restoration Reserves 

Gestore Dei Mercati Energetici 

High Voltage 

Independent System Operator 

Lithium-Ion Battery 

Lithium-Ion Battery 

Load Frequency Control 

Lookup Table 

Low Voltage 

Medium Voltage 

North America Reliability Council 

Open Circuit Voltage 

Oak Ridge National Laboratory 

Primary Control Reserve 

Partial Differential Equations 

Primary Frequency Regulation 

Photovoltaic 

Power Exchange 

Regulation Up 

Regulation Down 
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RES 

ROCOF 

RPM 

RR 

SCR 

SEI 

SFR 

SOA 

SoC 

SoH 

TCR 

TFR 

TSO 

UPS 

Renewable Energy Sources 

Rate of Change of Frequency 

Revolution Per Minute 

Replacement Reserves 

Secondary Control Reserve 

Solid-Electrolyte Interphase 

Secondary Frequency Regulation 

Safe Operating Area 

State of Charge 

State of Health 

Tertiary Control Reserve 

Tertiary Frequency Regulation 

Transmission System Operator 

Uninterruptible Power Supply 
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