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Abstract

The last decade has seen an exponential increase in the amount of available

information thanks to the ever-growing number of connected devices and

interaction of users with online content like social media, e-commerce, etc.

While this translates in more choices for users given their diverse set of

preferences, it makes it difficult for them to explore this vast amount of

information. Recommender systems (RS) aim to alleviate this problem by

filtering the content offered to users by predicting either the rating of items

by users or the propensity of users to like specific items. The latter is known

as Top-N recommendation in the RS community and it refers to the problem

of recommending items to users, preferably in the order from most likely-

to-interact to least likely-to-interact.

RS use two main approaches for providing recommendations to users; col-

laborative filtering and content-based filtering. One of the main algorithms

used in collaborative filtering is matrix factorization which constitutes in es-

timating the user preferences by decomposing a user-item interaction matrix

into matrices of lower dimensionality of latent features of users and items.

The burst of big data has triggered a corresponding response in the

machine learning community in trying to come up with new techniques to

extract relevant information from data. One such technique is Generative

Adversarial Nets (GAN) proposed in 2014 by Goodfellow et al. which initi-

ated a fresh interest in generative modelling. Under this modelling paradigm,

GANs have shown great results in estimating high-dimensional, degenerate

distributions in Computer Vision, Natural Language Processing and various

other scientific fields. Despite their popularity and abilities in learning ar-

bitrary distributions, GANs, and more generally generative modelling, have

not been widely applied in RS.

In this thesis we investigate a novel approach that estimates the user

and item latent factors in a matrix factorization setting through the ap-

plication of Generative Adversarial Networks for generic Top-N recommen-

dation problem. We detail the formulation of this approach and show its
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performance through different experiments on well know datasets in the RS

community.







Sommario

Durante l’ultimo decennio c’è stato un aumento esponenziale nell’ammon-

tare delle informazioni disponibili, questo grazie alla crescita percepita del

numero di strumenti collegati e interazioni degli utenti con i contenuti online

come i social media, e-commerce, etc. Anche se questo significa un aumento

delle possibilità di scelta per gli utenti, dato le diverse preferenze personali,

diventa comunque difficile l‘esplorazione di tutti i dati e informazioni di-

sponibili. A questo proposito nascono i Sistemi di Raccomandazione (SR),

che hanno come obiettivo quello di ridurre questa problematica filtrando

i contenuti offerti facendo una predizione sulla valutazione dei vari item

da parte dell’utente o la propensione a preferire item specifici. Quest’ulti-

mo viene riconosciuto nelle communita di SR anche come Raccomandazioni

Top-N e si riferisce a problematiche di raccomandazioni di item agli utenti,

preferibilmente nell’ordine di interazioni maggiori a quelle meno probabili.

Per poter offrire delle raccomandazioni all’utente i SR usano due approcci

principali: quello collaborativo e l’approccio basato sul contenuto. Un terzo

approccio, quello ibrido, può essere costruito dalla combinazione dei due

precedenti. La fattorizzazione matriciale è uno degli algoritmi principali usati

nell’approccio collaborativo e consiste nell’estimazione delle preferenze degli

utenti basandosi sulla decomposizione della matrice dell’interazione utente-

item in matrice di minori dimensioni di fattori latenti di utente e item.

L’esplosione dei big data ha influenzato un’analoga risposta nella com-

munita di machine learning per quanto riguarda l’intento di trovare nuove

tecniche ed estrarre le informazioni rilevanti dai data disponibili. Una simile

tecnica è il Generative Adversial Net (GAN) proposta nel 2014 da Good-

fellow et. al, che porto alla crescita di un interesse nei confronti dei modelli

generativi. Sotto questo paradigma di modellazione, i GANs hanno dimo-

strato ottimi risultati nell’estimare distribuzioni multi-dimensionali e dege-

nere in Visione Artificiale, Elaborazione del linguaggio naturale e altri vari

campi scientifici. Nonostante la loro popolarità e abilità nell’imparare distri-

buzioni arbitrarie, i GANs e altri simili modelli, non sono stati implementati
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ampiamente nell’ambito dei RS.

L’obiettivo principale di questa tesi è quello di esplorare l’applicabilità di

un approccio nuovo nello stimare i fattori latenti di utente e item in una ma-

trice fattoriale tramite l’utilizzo dei GANs per problemi di raccomandazione

Top-N. La formulazione di questo approccio verrà descritto con dettaglio

e la performance sarà presentata tramite vari esperimenti su dataset ben

riconosciuti nell’ambito della comunita di SR.
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Chapter 1

Introduction

Before the explosion of the Internet people used to get their movie recom-

mendations from family and friends. Today it is as easy as signing up to

Netflix and watching the first 5 minutes of a movie or series to get a rec-

ommendation. It was indeed Netflix that gave Recommender Systems (RS)

the place it has nowadays in most of the products and services that we use.

The Netflix Prize competition, a competition organized by Netflix in 2006,

consisted in finding the best algorithm for estimating user ratings on var-

ious movies. RS is an information filtering technique [56] that allows the

prediction and ranking of items for users in terms of preference. RS run

underneath many popular websites; Amazon uses it to power its purchase

suggestions, Facebook for friend discovery, Twitter for personalized feed of

tweets. All these service providers tap into the information a RS provides

them in order to offer a customized user experience.

The main reasons for the proliferation of RS is the availability of user-

item data created during the interaction with RS-powered products and

user-/item-specific metadata. These two types of data power the two main

paradigms of techniques in RS: collaborative filtering (CF) and content-

based filtering (CBF). Both CF and CBF have been and still are widely

used to build recommender systems mainly because of their simplicity, ex-

plainability and straightforward implementation. They both have pros and

cons and because of this they are usually combined in a hybrid RS in order

to get the best of both paradigms.

In the context of filtering data for users, RS try to address two different

but related problems – the first one is predicting as correctly as possible

how a specific user would rate a set of items; the second one is constructing

a ranked list from a set of items for a specific user in decreasing order of

preference. This second problem is called the Top-N recommendation prob-



lem. This, due to the assumption that in most scenarios, users are mainly

interested in the items that are ranked at the top of the list.

Over the years many different algorithms have been adopted and created

for the two RS problems introduced above. One class of such algorithms is

Matrix Factorization (MF). MF approaches are model-based; they construct

a model from a user-item interaction matrix and use this model to predict

ratings. By ordering the set of items according to these predicted ratings we

can perform Top-N recommendations. MF models aim to represent users in

a much lower dimensionality than that of the user-item interaction matrix

by deriving latent factors for both items and users and predicting ratings

from the multiplication of these factors. MF techniques in RS took off during

the Netflix Prize competition and since then multiple derivatives have been

developed.

The defining feature of MF is matrix multiplication which in itself is a

linear operation. While powerful, this linearity can introduce some bottle-

necks since the relation of users to items might be much more complex and

only explained through some non-linear mapping. Such non-linearity can be

easily achieved by using Multilayer Perceptrons (MLP) with non-linear ac-

tivation functions. Deep Learning (DL), an extension of MLP-based Neural

Networks to high number of hidden layers, introduced end-to-end training

for Neural Networks and has been very successful in numerous tasks and

fields like Computer Vision, Natural Language Processing, Signal Process-

ing and recently also RS.

The success of DL has mainly been on discriminative modelling where

a model is built to discriminate between samples and is able to assign new

unseen data points the correct class. In 2014 Goodfellow et al. introduced

Generative Adversarial Networks (GAN), a new framework built on top

of Neural Networks for performing generative modelling. GANs have seen a

great interest in the ML community for their ability to generate images from

noise with a higher resolution than previous approaches. They do this by

approximating the distribution of the training data and by allowing sampling

from this learned distribution.

However, despite their clear presence in ML research, GANs have not

been widely used in RS. In this thesis we show a GAN-based recommender

system where we utilize the adversarial learning nature of GANs to learn the

latent factors instead of learning them directly from the ratings data. Our

work is based on the assumption that the representation in latent factors

that MF builds for users/items can be taken as the preference of users on

the latent factors and by analogy how much of these factors are present in

each item. Such preference can be quite complex or even degenerate and
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GANs are suited to estimate such distributions. We give the formulation

and architecture of our approach and evaluate it across multiple datasets

which are commonly used to test new RS algorithms.
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Chapter 2

State of the Art

RS are software tools and techniques providing suggestions for users on items

they might like [43]. In an ever-increasing number of choices in almost all

areas of life, be that music, books, movies, news, travel, etc. it is difficult for

users to explore new items that they might potentially like and enjoy. RS

translate this challenge into two distinct problems; item rating prediction

and item ranking. Both problems share characteristics but are fundamentally

different.

In this chapter we dive into the generic formulation of a recommendation

problem and relevant literature review. After covering preliminaries of RS we

jump into one of the most important models, namely Matrix Factorization

and finally end with literature review of Generative Adversarial Networks

and its applications in the field of RS, the topic of this thesis.

2.1 Preliminaries of a Recommender System

RS use data in order to provide helpful suggestions to users. Usually this data

comes in the form of historical user profiles, a record of items that a specific

user has interacted in the past, and item/user metadata which are individual

items’/users’ information like for example actors in a movie, loudness of a

song or user demographic data. Past user interactions, or feedback as they

are also called, can be of two types: explicit or implicit.

Explicit feedback is the clear indication of how much a user is interested

in an item [31]. This is usually expressed in terms of ratings or reviews

and is a common approach followed by many service providers like Netflix

and Amazon, where a user can specify how much they liked a movie they

watched or write a review for an item they bought. The rating systems can

vary among products and services but usually follow a scale from 1 to 5 or



from 1 to 10 (with 5 and 10 being the highest ratings respectively and 1

being the lowest rating) with a 0.5 scaling step.

While explicit feedback is straightforward it is also difficult to obtain

since it involves a direct action from the user [31]. Implicit feedback on the

other hand can be acquired indirectly throughout the usage of the RS by

the user [40, 31]. Taking as example the case of a video-on-demand (VOD)

service, a user selecting and watching a movie through this service can be

considered as an implicit feedback signaling the system that the user showed

some interest in the movie. Implicit feedback has a unary nature in that it

only indicates interaction of users with items. This poses a difficult question

regarding negative experiences from implicit feedback: if a RS does not have

feedback from a user on a specific item, is it because the user did not like

the item or because the user is not aware of the item at all?

The data consumed by RS defines the 3 different approaches that can

be used to construct a RS:

• Content-based filtering: this approach provides as recommendation

those items that are similar with items in a user’s historical profile.

In order to find similar items, item metadata are used. The reverse,

recommending users to items by using user’s metadata, can also be

applied in this context.

• Collaborative filtering: the most important approach for RS which

finds the most similar users to the current user and recommends items

that those users have rated.

• Hybrid: a combination of collaborative filtering and content-based

filtering.

2.1.1 Data Structures

Whichever the approach on top of which a RS is built, the data it consumes

usually follow a 2-dimensional matrix structure. The 3 most common data

matrices are the User Rating Matrix, the Item Content Matrix and the User

Content Matrix:

• User Rating Matrix (URM): given a set of users U and a set of

items I, the URM has a shape |U | × |I| where rows represent users

and columns represent items and each cell (u, i) is the past feedback of

user u on item i, hereafter written as rui. The items with which user u

has interacted in the past is the set Iu and users that have rated item

8



i is the set Ui. If the feedback taken into account is implicit then we

have:

rui =

{
1 if user u interacted with item i

0 otherwise

If the feedback is explicit then rui is defined within minimum and

maximum ratings. Usually users only interact with a small subset of

I thus introducing a high degree of sparsity in the URM [33]. This

matrix is key for CF approaches.

• Item Content Matrix (ICM): given a set of items I and a set of item

metadata M , the ICM has a shape |I|×|M | where rows represent items

and columns represent item metadata and each cell (i,m) is a value

that indicates that metadata m is a characteristic of item i. Each cell of

the ICM can either be binary, integer or real valued depending on the

context of the metadata. For example if we consider the genre action

as metadata m and the movie ”Top Gun” as item i then the value of

cell (i,m) in the ICM would be 1 since ”Top Gun” is an action movie.

For a romantic comedy j like ”The Proposal”, cell (j,m) would be 0.

The ICM is usually used to build CBF approaches for RS.

• User Content Matrix (UCM): given a set of users U and a set of user

metadataN , the UCM has a shape |U |×|N | where rows represent users

and columns represent user metadata and each cell (u, n) indicates that

metadata n is a characteristic of user u. Common user metadata are

user demographics like age, sex, geographical location, etc. The UCM

is also used to build CBF approaches for RS.

2.2 Recommender Systems Approaches

As discussed in 2.1 the data used defines the type of RS approach. In this

section we briefly explore the main techniques for building RS.

2.2.1 Content-based Filtering (CBF)

CBF exploits side information on items and users to provide meaningful rec-

ommendations. There are two ways to construct a CBF RS, item-based CBF

and user-based CBF. Starting from the ICM, CBF constructs a similarity

between past items of a user and other items in I through the metadata the

items share and recommends the ones with highest similarity. This similar-

ity can be described by a |I| × |I| shaped matrix, the item-similarity matrix
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SIM I . Each cell (i, j) of SIM I represents a similarity score between item

i and item j. Once this similarity matrix is built, the estimated rating of a

user u on a new item i can be computed as follows:

r̂ui =

∑
j∈Iu ruj × SIM

I
i,j∑

j∈I |SIM I
i,j |

After sorting the items in decreasing order according to this estimated rat-

ing, the first N items can be recommended.

User-based CBF on the other hand uses the UCM. In the same manner

we can construct a user-similarity matrix SIMU where each cell (u, v) de-

notes a similarity between users u and v. The estimated rating of user u on

a new item i can be computed as follows:

r̂ui =

∑
j∈Iv rvj × SIM

U
uv∑

v∈U |SIMU
uv|

Again, it suffices to sort the predicted ratings of items in decreasing order

and recommend the first N items.

CBF has some advantages with respect to CF. The most important one

is the possibility for CBF to provide personalized recommendation for cold

start users. This scenario is pretty common and represents a problem for

most of CF techniques which we will discuss in sections 2.3 and 2.4. This

usecase presents itself when we want to recommend items to users with few

to no historical interactions. While CF solely depends on these interactions

to provide meaningful recommendations, CBF can use the user-similarity

matrix (assuming we have metadata on the users) to recommend highly

rated items from those users that are most similar with the cold start user.

2.2.2 Collaborative Filtering (CF)

This thesis focuses on CF approaches. CF is the most widely used RS tech-

nique [43] and it is based on an underlying distance/similarity metric be-

tween users and items. As an example, given user u and his historical profile

on a VOD service, we want to provide some personalized movie recommen-

dations to u. If we happen to have another user v in the system that matches

to a great extent the historical profile of u we can recommend to u movies

that v has rated highly but u has not yet interacted with. CF depends en-

tirely on the historical profiles of users/items so it needs the URM as input

in order to provide recommendations. The way the URM is used inside CF

derives the two variants available – Memory-based CF and Model-based CF.
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2.2.3 Hybrid RS

A hybrid RS is the resulting combination of applying both CBF and CF

approaches to solve a recommendation problem. Since the focus of this thesis

is on CF we will not explore this approach further.

2.3 Memory-based CF

Memory-based CF approaches are some of the first techniques used in the

context of CF [43]. They work by utilizing the complete historical profile of

a specific user u when trying to find the user’s neighborhood ; a set of users

that are most similar to u. Usually memory-based CF models are also called

neighborhood models. By analogy one can also find the neighborhood of an

item i.

2.3.1 User-based

User-based CF involves computing the neighborhood of a user u, that is a

fixed number K of users that are most similar to u and use their ratings to

inference the preferences of u on the set of items I. The underlying assump-

tion is that if two users have rated the same items, they are more likely to

prefer the same items. To generated recommendations we first compute the

similarity matrix SIMU
K which is a |U | × |U | shaped matrix where each row

is sparse with only K real valued elements denoting the similarity of a user

u to all other K users. Once we have this similarity matrix we can compute

the rating of an item i by user u as follows:

r̂ui =

∑
v∈U ∧u6=v Iv[i]× SIMU

K [u, v]∑
v∈U |SIMU

K [u, v]|

where Iv[i] denotes element i in the historical profile of user v, SIMU
K [u, v]

denotes the similarity between users u and v. For the final recommenda-

tion suffices to sort in decreasing order the ratings r̂ui for each item i and

recommend them.

2.3.2 Item-based

Item-based CF on the other hand computes first the neighborhood of an

item i. Again, this means finding K most similar items for i which results

in the matrix SIM I
K with dimensions |I|× |I| where each row is sparse with

only K real valued elements denoting the similarity of an item i to all other
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K items. If items i and j are similar and user u has already rated i then we

can infer his rating on j by the similarity of both items [2]:

r̂ui =

∑
j∈I ∧ j 6=i Iu[j]× SIM I

K [i, j]∑
j∈I |SIM I

K [i, j]|

We can observe that for both user and item variants of memory-based CF

the computation of the similarity between users and items is the key com-

ponent in predicting the ratings of users on items they have not interacted

with in the past. We come across the computation of such similarities also

in CBF (section 2.2.1) so in the next section we review the main similarity

functions that can be used to compute these matrices.

2.3.3 Similarities

As anticipated in sections 2.2.1 and 2.3 we need a way to compute whether

two users/items are similar with one another. For CBF we have at our

disposal the UCM/ICM and for CF the URM. Thus each user/item lives in

n-dimensional space depending on the matrix used. The similarity functions

we will describe all take as input two n-dimensional vectors and output a

real valued scalar indicating the similarity between the vectors.

Cosine similarity

Cosine similarity measures the angle between two n-dimensional column

vectors. Given a and b the cosine similarity between them is given by:

cosine(a,b) =
aTb

‖a‖‖b‖

with aTb denoting the dot product of the two vectors and ‖ · ‖ denoting

the norm of a vector. The cosine of an angle can vary from −1 to 1 and thus

also cosine similarity ranges in [−1, 1] with −1 indicating inverse similar-

ity (parallel unit vectors but in opposite directions), 1 complete similarity

(parallel unit vectors) and 0 indicating orthogonality (no similarity).

Pearson Correlation

Pearson Correlation is a metric used to compute the linear correlation be-

tween two random variables. Given such two variables X and Y their Pear-

son Correlation is:

ρX ,Y =
cov(X ,Y )

σXσY
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Since in our usecase we want to compute the correlation between two

vectors, we can use the Pearson Correlation in the context of a population

sample, denoted by ra,b:

ra,b =

∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
√∑n

i=1(bi − b̄)2

where ā and b̄ are the respective means of vectors a and b. Just like Cosine

similarity also Pearson Correlation coefficient ranges in [−1, 1] with −1 in-

dicating total negative linear correlation, 1 total positive linear correlation

and 0 indicating no correlation at all.

Jaccard Coefficient

Jaccard coefficient is a set theoretic measure used to compute the similarity

between two finite sets. The coefficient is computed as follows:

J(A,B) =
|A ∩B|
|A| ∪ |B|

=
|A ∩B|

|A|+ |B| − |A ∩B|

where A and B are two finite sets and | · | is the set cardinality operator.

Tanimoto Coefficient

The Jaccard coefficient cannot be applied as-is to the RS usecase because

it is conceived for sets. Tanimoto coefficient [48, 44] on the other hand is a

form of Jaccard coefficient applicable to vectors:

T (X,Y ) =

∑
iXi ∧ Yi∑
iXi ∨ Yi

This coefficient is especially useful for similarity between users/items

when the feedback is implicit. Taking as example two different users iden-

tified by their implicit historical profiles we can translate the meaning of

Tanimoto coefficient as the ratio between items rated by both users versus

items rated by each user separately.

2.4 Model-based CF

Different from memory-based CF, model-based CF uses the URM to build

a model which can be then used to provide recommendations to users. Such
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models are usually built using data mining and/or machine learning ap-

proaches. We review in this section SLIM, a machine learning based tech-

nique to learning the item-item similarity matrix SIM I , and Matrix Fac-

torization as a more general framework of model-based CF.

2.4.1 SLIM

SLIM stands for Sparse Linear Methods [39]. It was introduced as a model

for the Top-N recommendation problem. Despite building a model it mimics

more the working of a memory-based CF technique. SLIM creates a model

of the item-item similarity matrix which it learns through the following

optimization criteria:

min
SIMI

1

2
‖URM − URM × SIM I‖2F −

β

2
‖SIM I‖2F + λ‖SIM I‖1

subject to SIM I ≥ 0, diag(SIM I) = 0

where ‖·‖F is the Frobenius norm of a matrix and acts as a regularizer on the

matrix, ‖ · ‖1 is the l1-norm by which sparsity is promoted and diag(·) is the

main diagonal of a matrix. This optimization is conditioned on SIM I ≥ 0

since the similarity between two items cannot be negative and diag(SIM I) =

0 because we want to avoid trivial solutions where the similarity matrix is

the identity matrix.

Once SLIM learns the similarity matrix it predicts the rating on an item

by as user in the following way:

r̂ui =
∑
j∈Iu

rujSIM
I
ij

One can observe that the rating prediction by SLIM is similar to item

memory-based CF and indeed they differ in the way the item-item simi-

larity matrix is constructed. Finally according to the predicted ratings we

can order in a decreasing order the items with which the user has not inter-

acted in the past and recommend the first N of them.

2.4.2 Matrix Factorization

Matrix factorization is the operation of decomposing a matrix into the mul-

tiplication of two other matrices. It became quite popular during the Netflix

Prize competition where the now famous Funk SVD [18] approach resulted

in very good performance compared to the other more traditional solutions.

14



In the context of RS, MF plays an important role as a generic framework on

top of which multiple algorithms are built. The two matrices resulting from

MF are considered in RS as latent factors of users and items (figure 2.1).

Figure 2.1: Matrix factorization in RS.

In RS, a perfect reconstruction of the URM matrix is not very useful be-

cause of the sparsity of the URM. If the resulting matrices reconstruct zeros

for non-rated items then it is impossible to recommend new items from this

approach. For this reason in RS almost always a truncated reconstruction

of the URM is desirable. In this case MF brings both users and items onto a

fixed dimensional space [31], the latent space, and the rating of a user u on

an item i, rui, is derived from the inner product of the corresponding latent

factors:

r̂ui = pTuqi p ∈ RK×|U |,q ∈ RK×|I|,K � min(|U |, |I|)

We describe next some of the main algorithms for MF in RS. These

algorithms were mainly used for explicit feedback but then later adapted for

implicit feedback too.

FunkSVD

FunkSVD [18] was created by Simon Funk in 2006 during the Netflix Prize

competition. It is an MF approach where the latent factors of users and

items are learned by optimizing the following regularized loss function:

min
p,q

∑
(u,i)∈O+

(rui − pTuqi)
2 + λp‖pu‖2 + λq‖qu‖2

where O+ is the set user-item pairs for which we know the rating. From the

loss function we can see that FunkSVD learns latent factors in such a way as

to reduce the Mean Squared Error (MSE) between the predicted and actual

ratings in the URM. However following this loss function resulted in high
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overfitting so additional regularizers were included in order help alleviate

this problem. FunkSVD uses stochastic gradient descent with the following

update rules:

puk ←− puk + α[(rui − pTuqi)qik − λppuk] k ∈ 1 . . .K

qik ←− qik + α[(rui − pTuqi)puk − λqqik] k ∈ 1 . . .K

PureSVD

PureSVD [15] was introduced by Cremonesi et al. in 2009 as a solution to

Top-N recommendation. It relies on the ubiquitous Singular Value De-

composition (SVD) to get the factorization of the URM. SVD reconstructs

the URM as follows:

ˆURM = MΣNT

where M is a |U | × K real orthonormal matrix, Σ is a K × K matrix

containing only the top K singular values and N is a |I|×K real orthonormal

matrix. By defining p = MΣ we retrieve the user latent factors and with

q = NT we retrive the item latent factors. In order to apply SVD the

authors in [15] impute the missing ratings in the URM with zeros and say

that in using PureSVD even imputation with other values would not affect

the performance of the algorithm. PureSVD is one of the strongest baselines

for Top-N recommendation problem. Its drawbacks are mostly related to

computational issues; even though the URM is sparse PureSVD performs

the decomposition into dense matrices thus making optimized libraries that

deal with sparse matrices not usable and this usually brings memory issues.

Weighted Regularized Matrix Factorization

Weighted Regularized Matrix Factorization (WRMF) [27] is a MF tech-

nique that is adapted for implicit feedback and uses alternating-least-squares

(ALS) [6] as a training methodology. It works by first binarizing the URM

(if not already binary):

xui =

{
1 rui > 0

0 rui = 0

Then it assigns a confidence value cui to each of the implicit ratings:

cui = 1 + αrui
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This confidence value is a way to quantify how confident the recommendation

engine is about the preference of user u on item i. Finally WRMF optimizes

the following function:

min
p,q

∑
u,i

cui(xui − pTuqi)
2 + λ(

∑
u

‖pu‖2 +
∑
i

‖qi‖2)

where λ(
∑

u ‖pu‖2 +
∑

i ‖qi‖2) is a regularizer that helps avoid overfit-

ting. In order to train the model and learn the latent factors we can apply

ALS by considering one of the latent factors matrices as constant, one at a

time, and optimizing for the other matrix. When fixing one of the matrices

in this fashion we can derive closed form solution for the other matrix. First

the authors set Cu to be a diagonal matrix of shape |I| × |I| with Cuii = cui.

Then by fixing q we can get each user’s latent factors by solving analytically:

pu = (qTCuq) + λI)−1qTCuxu (2.1)

In the same way, by setting Ci to be a diagonal matrix of shape |U | × |U |
with Ciuu = cui and fixing p we can solve for item latent factors analytically:

qi = (pTCip) + λI)−1pTCix(i) (2.2)

where x(i) is the vector denoting the preferences of all users on item i. The

training is performed by updating iteratively for each user equation 2.1 and

for each item equation 2.2 until both matrices of latent factors stabilize.

Bayesian Personalized Ranking

Bayesian Personalized Ranking (BPR) [42] is a generic optimization criteria

that explicitly tackles personalized ranking. By generic it is meant that it

can be used with different RS approaches because it only defines the final

optimization objective. BPR works based on the assumptions that users like

equally items that they have interacted in the past and also like any item

they have interacted in the past more than items they have not interacted

yet. Putting this in notation BPR says:

I+
u >u I

−
u

where I+
u denotes items user u has interacted with in the past, I−u denotes

items user u has not interacted with yet and >u is the preference operation

that implies that user u likes item on the left more than item on the right.

Starting from the URM we can build the following training set of size |U | ×
|I| × |I|:
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Ds = {(u, i, j) | i ∈ I+
u ∧ j ∈ I−u }

where the pairs (u, i, j) are such that they satisfy the operator >u.

Given parameters Θ of a RS model class, we can learn the personalized

ranking of items by maximizing the following posterior:

p(Θ| >u) ∝ p(>u |Θ)p(Θ)

Assuming that the ordering imposed by >u is independent for each user u

we can rewrite the likelihood as a product over all users:

∏
u∈U

p(>u |Θ) =
∏

(u,i,j)∈|U |×|I|×|I|

p(i >u j|Θ)1{(u,i,j)∈Ds}(1−p(i >u j|Θ))1{(u,i,j)6∈Ds}

where 1 is the indicator function. We can simplify the above formula to:

∏
u∈U

p(>u |Θ) =
∏

(u,i,j)∈|U |×|I|×|I|

p(i >u j|Θ)

under the following two properties that >u satisfies:

∀i, j ∈ I : i 6= j =⇒ i >u j ∨ j >u i (totality)

∀i, j ∈ I : i >u j ∧ j >u i =⇒ i = j (antisymmetry)

Finally we describe p(i >u j|Θ) as the probability that user u likes item

i between i and j by setting:

p(i >u j|Θ) := σ(x̂uij(Θ))

where x̂uij describes how is item i related to item j with regards to user u

and σ(·) is the sigmoid function.

The above steps describe the likelihood. For the prior we can assume a

normal distribution with mean zero and variance-covariance matrix ΣΘ =

λΘI:

p(Θ) = N(0,ΣΘ)

We can now describe the optimization criteria denoted as BPR-OPT:
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BPR-OPT : = ln(p(Θ| >u))

= ln(p(>u |Θ)p(Θ))

= ln
∏

(u,i,j)∈Ds

σ(x̂uijp(Θ)

=
∑

(u,i,j)∈Ds

lnσ(x̂uij) + ln p(Θ)

=
∑

(u,i,j)∈Ds

lnσ(x̂uij)− λΘ‖Θ‖2

2.4.3 Evaluation

Just like other ML subfield, we can understand how good the recommenda-

tion is only through specific evaluation. Evaluating RS represents a difficult

task [26] because of the final aim of the recommendations. Considering the

two recommendation problems, item rating prediction and item ranking,

they require evaluation with different metrics. On the other hand also the

different type of feedback needs to be accounted when selecting the met-

rics through which to perform the evaulation. More importantly different

domains require and give birth to different metrics [12].

Almost all recommendation engines try to optimize their suggestions

such that the user can find his/her preferred item on the top of the sugges-

tions. It makes for a poor user experience if a user gets to find an item he/she

prefers only after scrolling multiple pages of recommendations. This gives

rise to evaluation on a specific recommendation list length. In this thesis we

use a combination of accuracy and ranking metrics in order to understand

how good our proposed model behaves on different datasets and on different

recommendation list cutoffs.

Accuracy Metrics

Accuracy metrics are used to make a comparison between the users’ true

preferences on items and the items that the RS suggests. This comparison is

done per user and given as a total average. Given the two types of feedback

in RS we have different accuracy concept for each of them. If the ratings are

explicit then accuracy means for the RS to be able to predict the ratings that

users have given to items they have interacted with. On the other hand if the

feedback is implicit, accuracy takes the meaning of classification; whether

the RS is able to classify items as an item that the user would interact with

or not.
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Explicit feedback accuracy metrics When predicting items’ ratings,

usually metrics that compute a deviation of the prediction from the ground

truth are used. Some of the most common are Mean Absolute Error (MAE),

Mean Squared Error (MSE) and Root Mean Square Error(RMSE):

MAE =

∑|I|
i=1 |rui − r̂ui|
|I|

MSE =

∑|I|
i=1(rui − r̂ui)2

|I|

RMSE =
√

MSE =

√∑|I|
i=1(rui − r̂ui)2

|I|

where r̂ui is the predicted rating of user u on item i. These metrics are only

used with explicit ratings and since in this work we deal only with implicit

feedback we do not explore them any further.

Implicit feedback accuracy metrics We now go over some of the main

accuracy metrics used for RS with implicit feedback. Usually when dealing

with only implicit feedback we are interested in the ranking of the recom-

mended items and not their absolute ratings. In such cases accuracy takes

more the meaning of classification. When evaluating on a holdout set, we

want a RS model to be able to classify items in the hold out set as items that

a user would like to interact with in the future. So the problem is shifted

to a classification problem. Such classification problem in RS has only two

classes; an item is either relevant for a user or irrelevant. As is usual for

classification tasks we can build a confusion matrix as shown on table 2.1.

Recommended Not Recommended

Relevant True Positives (TP) False Negatives (FN)

Irrelevant False Positives (FP) True Negatives (TN)

Table 2.1: Confusion matrix for RS.

The values in the confusion matrix have the following meaning:

• True positives (TP): number of items that are relevant for the user

and were also recommended by the RS.

• False negatives (FN): number of items that are relevant for the user

but were not in the list of recommendations.

• False positives (FP): number of items that are irrelevant for the user

but the RS included them in the suggestions.
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• True negatives (TN): number of items irrelevant for the user and also

missing from the provided recommendations.

Two very common and popular classification metrics are precision and

recall. Precision measures the ratio of the relevant recommended items to

the total number of recommended items. Recall on the other hand measures

the ratio of relevant items included in the recommendations to the total

number of relevant items of a specific user. Formally they are expressed as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Naturally if we were to recommend to users a recommendation list equal

to the number of items in the catalogue then FN would be 0 and we would

have perfect recall. But this is a trivial solution and something that brings

poor user experience. Users are interested only on the top results of the list

of recommendations [15] and hence it makes sense to be able to recommend

relevant items at the top of the list. The notion of cutoff can thus be in-

troduced for the classification metrics presented above. Given a cutoff of K,

precision@K and recall@K retain the same meaning as before but only for

the top K items of the recommendation list. So in the case of precision@K

we are checking how many of the first K items recommended are actually

relevant items for the user and in the case of recall@K we are checking how

many of all the relevant items for a user are in the first K recommended

items.

Ranking metrics As mentioned in the previous section, users are usually

interested in seeing relevant items at the top of the list. This implies that

an important aspect of the recommendation is the final ranking of items

presented to the user. To measure the fitness of the ranking of recommen-

dations specific metrics are used [26], different from the classification ones

since they are not enough to measure RS from the viewpoint of ranking.

Consider a RS model that suggests 10 items for a user and only 2 out of

10 are relevant, placed randomly in the list of 10 items. Consider a second

RS model that again suggests 10 items out of which only 2 are relevant but

these are placed 1st and 2nd in the list of 10. If we consider only a metric

like precision, both model will result in equal accuracy. However the second

model can rank the relevant items at the top of the list and this model is

preferable to the first one.
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The following 2 ranking metrics are widely used in the RS community:

• Mean Average Precision (mAP): mAP is one of the most impor-

tant ranking metrics for RS and IR alike [35]. It is based on the metric

average-precision(AP) which is usually measured on a cutoff K:

AP@K =

∑K
i=1 precision@i · rel(r)

# relevant items

where rel(i) is the indicator function:

rel(i) =

{
1 if item at position i is relevant

0 otherwise

AP measures the average precision for each cutoff value from 1 to K if

the item at that cutoff is relevant. Finally we can get mAP@K as the

mean of average-precision@K for all users:

mAP@K =

∑
u∈U APu@K

|U |

• Normalized Discounted Cumulative Gain (nDCG) [53]: DCG

is a metric that measures a discounted weighted sum of the relevancy

of each item from the top of the recommendation list until a cutoff K.

Given again the relevancy indicator defined for mAP, rel(i), DCG is

given as:

DCG@K =
K∑
i=1

rel(i)D(i)

where D(i) is the discount factor, usually D(i) = 1
log(1+i) . Finally DCG

is normalized with the ideal DCG:

idealDCG@K =
K∑
i=1

D(i)

nDCG@K =
DCG@K

idealDCG@K

Beyond accuracy metrics Recommending to users items that are pre-

ferred by everyone does not provide the best user experience [26, 15]. So

it is important for a model to be able to recommend items that capture

the true preferences of users. Recommending only popular items results in

a non-personalized experience even though the recommendations as mea-

sured by the the previous metrics might show great performance, especially
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in datasets where ratings are highly biased towards popular items. This cre-

ates the need of evaluating RS model with other metrics beyond the ones of

accuracy and ranking. One such metric is item coverage [19]. It is defined

as the ratio of the total number of unique items recommended to all users

versus the total number of items in the catalogue. More formally, assuming

that to user u the set of Ru of items is recommended then the coverage for

user u is:

coverage(u) =
|Ru|
|I|

The coverage of a RS model is then the average of coverage(u) over all the

users:

coverage =

∑
u coverage(u)

|U |
This metric allows one to understand how good a recommender system

is able to address the popularity bias in a dataset. If the coverage of the

model is high along side other metrics that measure accuracy then one can

deduce that the model has a high accuracy while at the same time making

sure to recommend to users a large array of different items and not only a

small subset of the catalogue.

2.5 Generative Modelling

In this section and section 2.6 we investigate the application of genera-

tive modelling in RS. Generative modelling falls under the field of statistics

and machine learning as one of the major paradigms of modelling a spe-

cific problem of classification/regression, the other one being discriminative

modelling [37, 28]. Considering a classification task, discriminative classi-

fiers model the conditional class distribution p(y|x) of input variables x and

label y by minimizing an appropriate loss function. By optimizing such func-

tions discriminative modelling builds classifiers that are less domain-specific

and that have only one objective, assigning labels as correctly as possible

[28]. Taking Support Vector Machines (SVM)[14] as an example of a dis-

criminative model, they aim to maximize the margin between the decision

boundary between the sets of points belonging to 2 different classes. Gen-

erative modelling on the other hand learns a joint probability distribution

p(x, y). Given this learned joint distribution, Bayes’ rule can be used to de-

rive the conditional class distribution p(y|x) as in the case of discriminative

modelling:

p(x, y) = p(x|y)p(y) = p(y|x)p(x) =⇒ p(y|x) ∝ p(x|y)p(y)
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So by modelling the joint distribution of the variables and the label we re-

trieve much more information about the problem at hand. Such modelling

provides also the conditional distribution of the variables given the label

p(x|y) which translates in the ability of generating new data belonging to

that label. Hence the name generative modelling. The possibility of gen-

erating new data is essential for domains where getting new data is very

expensive or not even possible at all. The other very important benefit of

generative modelling is the opportunity to provide information to the model

through a prior distribution over the variables. This is very handy in cases

when for a specific usecase we have a domain expert that can drive the mod-

elling process via this prior. Despite these advantages, generative modelling

has also some drawbacks. First it requires additional work especially in the

cases when we are interested only in the conditional probability of the label

given the variables. For such cases it is usually better to use discriminative

models since they tend to provide also better results [37, 28]. Second, gen-

erative modelling might require more data to build a sound probabilistic

interpretation of the problem whereas a discriminative model might need

fewer data to model only the conditional distribution.

2.5.1 Generative Adversarial Networks

In this thesis we focus on a specific type of generative models called Gener-

ative Adversarial Networks (GAN) [22]. They were invented by Goodfellow

et. al in 2014 and since then they have found their way to multiple fields like

computer vision, natural language processing, speech processing, malware

detection, etc. [52]. In figure 2.2 we give a taxonomy of generative models

as given by [21]. In this taxonomy, GANs are part of a class of generative

models called implicit density estimating generative models.

In a nutshell a large amount of generative models are built on the frame-

work of Maximum Likelihood Estimation (MLE). Such models estimate

a probability distribution through a fixed representation parameterized by

some parameters θ. The task of the model is to learn these parameters θ

such that the likelihood of the training data is maximized. Assuming the dis-

tribution as represented by the model is pmodel(θ) and the training dataset

contains m data points x(i), then by MLE we have [21]:
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Figure 2.2: Taxonomy of generative models [21].

θ∗ = arg max
θ

m∏
i=1

pmodel
(
x(i), θ

)
= arg max

θ
log

m∏
i=1

pmodel
(
x(i), θ

)
(arg max

z
f(z) = arg max

z
log f(z))

= arg max
θ

m∏
i=1

log pmodel
(
x(i), θ

)
In order to solve for θ we require the representation of the distribution

induces by pmodel. Such models are depicted in the left site of the taxon-

omy tree in figure 2.2. They explicitly define a density function. A major

drawback of these models is the necessity for carefully defining pmodel which

usually required domain-specific knowledge. This becomes difficult when the

problem to be modelled is characterized by very high-dimensional data, like

in the case of computer vision or RS.

GANs on the other hand are part of another branch in the taxonomy

tree. They build a model representative of the distribution to be modelled

but they do this implicitly; this means that we do not have a fixed form of the

distribution like for example a normal distribution which has a certain shape

(which changes based on its parameters) but a model of the distribution with

which we can interact in a non direct way [21] like for example, sampling

25



from it.

GAN Framework

GANs are built on top of a minimax zero-sum game played by two players.

One of them is the generator and the other the discriminator. The gen-

erator’s task is to generate data that look as closely as possible to the real

training data. The discriminator’s task is to differentiate between the real

training data and synthetic data coming from the generator. The generator

is trained so that it can fool the discriminator into classifying the data it

generates as real data. Both the generator, G, and discriminator, D, are neu-

ral networks, differentiable on their input and parameters so the whole GAN

can be trained by backpropagation [45]. We give a visual representation of

GAN in figure 2.3.

Figure 2.3: A depiction of a GAN [16].

The generator network in GAN does not see the real training data during

the whole process of using a GAN. It takes as input a noise vector z sampled

from a prior distribution pz, known as the latent space, and produces a

synthetic data point in the real data space. So the function of network G

is G : G(z) → R|x| where |x| is the dimensionality of the real data. The

discriminator D on the other hand is simply a binary classifier and it trained

through supervised learning in distinguishing among real and ”fake” data.

Its function is D : D(x)→ (0, 1) [16].

Training of GAN is done through simultaneous stochastic gradient de-

scent and is show in figure 2.4. The cost function each of the networks
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Figure 2.4: GAN algorithm [22].

optimize is defined in terms of both networks parameters:

min
G

max
D

Ex∼pdata [log D(x)] + Ez∼pz
[
log
(
1−D(G(z))

)]
(2.3)

The discriminator is trying to maximize equation 2.3. When doing so D

only updates its own set of parameters and has not effect on the parameters

of the generator. On the other hand the generator is trying to minimize

equation 2.3 and it also does so by updating only its set of parameters.

We can see that G optimizes only the second term of the equation. This

means that the gradient for updating G’s parameters is coming from the

discriminator. The authors in [22] prove that for the generator to implicitly

represent the distribution of the real training data, the discriminator must

output 0.5 on any input. This means for the discriminator to be maximally

confused on the class of any data point and hence for the generator finally

able to produce data that the discriminator cannot distinguish from the real

ones. The discriminator D can be understood as trying to maximize the log-

likelihood for estimating the conditional probability of p(Y = y|x) where Y is

the random variable denoting whether x is coming from the real data or from

the learned distribution of generator, pg. Moreover the authors show that

this optimization process from the discriminator is indeed the minimization

of the Jensen-Shannon divergence between the learned distribution pg
and the real data distribution. The training process is visualized in figure

2.5.

Despite the theoretical grounds, training GANs is very difficult [16].
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Figure 2.5: GAN training process [22].

Some of the major problems involve:

• Discriminator loss quickly vanishing and hence providing no gradients

to the generator for the training process to progress.

• Mode collapse, the state where the generator collapses to only a mi-

nority of the modes of the distribution and hence generating the same

(or very similar) data point(s).

• The convergence of the zero-sum game is very brittle and often the

models diverge. The converge is also very susceptible to hyperparam-

eters.

Multiple works [57, 46, 5, 13] have been introduced that present different

ways to handle these problems in training GANs. These solutions range from

simple tricks in the training process to changes of the objective function for

the discriminator and generator alike.

2.5.2 Conditional GAN

GANs as introduced by [22] allow sampling from a learned distribution that

mimicks that of the real training data. Mirza et. al changed the structure of

both models in GAN to allow for conditional generation of data points [36].

They base their work on problems that are posed as one-to-many mapping.
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What this means is that for some problems, for a single input, multiple

different outputs are desirable. As an example, consider a GAN able to

generate images of different types of clothes. If we were to use vanilla GAN

then for different noise vectors z sampled from pz we would get a different

type of cloth. If we want to generate images of t-shirts then we would have to

search the latent space until the right vector noise would produce an image

of a t-shirt. However if we were to condition the GAN on the type of cloth

we want (e.g. t-shirts) then the produced images would belong to that class

but enough variations, like different fit, colors, etc., to make it look like a

real image of a t-shirt.

Figure 2.6: Conditional GAN architecture [16].

Figure 2.6 shows the architecture for the Conditional GAN (cGAN). In

cGAN, a conditioning vector c is concatenated to the noise vector of the

generator in order for the latter to generate a data point representative

of the class denoted by c. c is also used to sample real training data x

and concatenated together are inputted to the discriminator. The objective

function in a cGAN is changed to account for the conditioning:

min
G

max
D

Ex∼pdata [log D(x|c)] + Ez∼pz
[
log
(
1−D(G(z|c))

)]
(2.4)

2.6 GAN-based RS

Despite various works introducing GANs to different application domains,

they are still not very present in the RS literature. In this section we present
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two of the most important techniques that combine GANs with RS.

2.6.1 IRGAN

IRGAN [51] is the first to bring GANs in the fields of IR and RS. The

authors provide a unification of two schools of thinking for modelling in the

information retrieval process. The generative school of thinking interprets

the information retrieval process as an underlying generative model that

describes how a relevant document can be generated from a specific query:

q → d

where q is the query, d is a document and→ denotes the generation direction.

The discriminative school of thinking on the other hand assumes that for a

specific query we already have a set of documents and their relevancy score

and the resulting model is trying to understand this mapping by assuming

both the query and the documents as features:

q + d→ r

where r is the relevancy score and + denotes concatenation of features. The

authors point out that the generative school of thinking of queries and docu-

ments provides theoretically sound modelling of their features but neverthe-

less suffers from the inability to use relevancy scores that can be retrieved

from various sources. In this context they give a unification of both schools

of thinking in a minimax game inspired by GANs.

Given a set of queries {q1, . . . , qN} and a set of documents {d1, . . . , dM},
the true query relevancy distribution can be expressed as the conditional

distribution ptrue(d|q, r) over the set of candidate documents (catalogue of

items in the RS). With samples from ptrue(d|q, r) acting as training data

(ratings in RS) the authors construct two separate models:

• Generative retrieval model pθ(d|q, r) (G) whose aim is to select

documents from a pool of documents for the given query q and ap-

proximate ptrue(d|q, r).

• Discriminative retrieval model fφ(q, d) (D) whose aim is to distin-

guish relevant query-document pairs (q, d) from irrelevant ones. This

is a binary classifier just like the discriminator in a vanilla GAN.

These two models play the minimax game with the following common

objective function:
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JG
∗,D∗ = min

G
max
D

N∑
n=1

(
Ed∼ptrue(d|qn,r)[log D(d|qn)] +

Ed∼pθ(d|qn,r)
[
log
(
1−D(d|qn)

)])
where

D(d|q) = σ(fφ(d, q)) =
exp(fφ(d, q))

1 + exp(fφ(d, q))

The objective function can be understood in the following way. The dis-

criminative model D is trying to maximize the probability of seeing relevant

document d for query qn when d is sampled from the true underlying rel-

evance distribution of query. At the same time, if the document for query

qn is generated (sampled) by the generative model, D is trying to minimize

the probability of such document to be relevant. On the other hand G can

only minimize the second term of the objective function. In order to mini-

mize JG
∗,D∗ , G must select documents for qn such that D classifies them as

relevant.

IRGAN is an instance of a conditional GAN (both D and G are condi-

tioned on the query) and as such both models of IRGAN are neural net-

works. Assuming a differentiable function fφ, D can be trained by SGD.

The generative model pθ(d|q, r) performs a discrete sampling from the pool

of documents and for this reason it is not differentiable. Authors of IRGAN

make use of the policy gradient based reinforcement learning algorithm RE-

INFORCE [54] to update parameters θ of G. The selection done by G from

the pool of documents is based on a softmax function:

pθ(dk|q, r) =
exp(gθ(q, dk))∑
d exp(gθ(q, dk))

where gθ(·) is a scoring function that reflects how relevant document dk is

for query q.

IRGAN was tested in [51] in 3 different domains. One of them is also RS.

The 3 different domains differ in the way the scoring functions gθ and fφ are

defined. For RS domain both functions are implemented as a MF approach:

gθ(u, i) = fφ(u, i) = s(u, i) = bi + vTu vi

where vu, vi ∈ Rk are the latent factors for user u and item i and bi is the

bias term for item i.
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Finally the training process of IRGAN follows that of vanilla GAN where

each of the players take turn in optimizing the objective function until con-

vergence. The authors point out that this convergence is domain-specific.

2.6.2 CFGAN

CFGAN [11] takes a totally different approach in introducing GANs into RS.

CFGAN is presented as a solution for Top-N recommendation problem. The

authors of CFGAN provide evidence that the training process of IRGAN is

flawed and empirically prove it (we summarize it in section 3.1 as a natu-

ral step in deriving our model). To bypass this flawed training process the

authors of CFGAN introduce vector-wise training for GANs applied to RS.

The main idea is to consider a historical user profile as a vector and make

the generator of a GAN generate plausible deterministic historical profile

when conditioned on a specific user, instead of discrete sampling for rele-

vant items. The discriminator then is tasked with distinguishing between

generated user profiles and real user profiles. This also helps avoid using the

REINFORCE algorithm for updating the generator since with vector-wise

training both models can be trained with SGD. We give a visualization of

CFGAN in figure 2.7.

Figure 2.7: CFGAN model [11].

We explain CFGAN model focusing on the components on figure 2.7.

CFGAN is also an instance of cGAN just like IRGAN. The generator net-

work G takes as input a user conditioning vector cu, that uniquely identifies
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the user. cGAN generator takes as input also a random noise vector z but

since the user profile generation must be deterministic, this noise vector is

dropped. The generated user profiles are then used as input for the dis-

criminator alongside the real user profiles with which the discriminator D

is trained to label the ones coming from the G as fake and the ones coming

from the URM as real.

The CFGAN minimax objective is given as:

JD = −Ex∼Pdata [logD(x|c)]− Ex̂∼Pφ [log(1−D(x̂|c))]

= −
∑
u

logD(ru|cu)−
∑
u

log
(

1−D
(
(r̂u � eu)|cu

))
= −

∑
u

(
logD(ru|cu) + log

(
1−D

(
(r̂u � eu)|cu

)))
JG =

∑
u

log
(

1−D
(
(r̂u � eu)|cu

))
where JD is the objective that D minimizes, JG is the objective G minimizes,

r̂u is the generated profile for user u, cu is the user conditioning vector, eu
is a masking vector with eu = ru and � is the element-wise multiplication

operator.

Before being used as input for the discriminator, the generated profile

r̂u is masked with a masking vector eu (the real user profile). The reason

for this stems from other CF approaches where only the observed interac-

tions are used to make predictions about future interactions [11]. However

this masking operation brings a trivial solution according to the authors of

CFGAN; when dealing with implicit feedback the user profile is binary and

sparse hence the resulting vector from the multiplication of the generated

user profile r̂u with the masking vector eu will contain zero values exactly on

the items with which the user has not interacted. Thus the generator could

learn the trivial solution of generating
−→
1 (the vector containing only ones)

since it is the identity element for element-wise multiplication.

To counteract the trivial solution CFGAN introduces 3 novel CF meth-

ods. The idea behind them is the following: at the beginning of each training

iteration a portion of the non-interacted items are selected for each user and

they are assumed to be irrelevant for the user, instead of missing. Then G is

trained to output zero for these negative items in the generated user profile.

The presented methods are:

• Zero-reconstruction: non-interacted items are selected at random

33



with a specific ratio and are assumed to be irrelevant. Then the gen-

erator objective is changed to:

JG =
∑
u

(
log
(

1−D
(
(r̂u � eu)|cu

))
+ α

∑
j

(xuj − x̂uj)2

)
j ∈ NZR(t)

u =⇒ xuj = 0

where x̂uj denotes a specific element of the generated user profile, xuj
denotes a specific element of the real user profile, α is a coefficient that

weights the regularization term and N
ZR(t)
u denotes the set of items

selected as irrelevant for user u during training iteration t under zero-

reconstruction method. This new objective makes G deviate from the

trivial solution by forcing the output for irrelevant items to be zero.

• Partial masking: during each training iteration at random non-interacted

items are selected with a specific ratio. These items are assumed to be

relevant for the user and both D and G are forced to consider them

during the training with the following changed objective functions:

JD = −
∑
u

(
logD(ru|cu) + log

(
1−D

(
r̂u � (eu + ku)|cu

)))
JG =

∑
u

log
(

1−D
(
r̂u � (eu + ku)|cu

))

kuj =

{
1 if item j ∈ NPM(t)

u

0 otherwise

where N
PM(t)
u denotes the set of items selected as irrelevant for user

u during training iteration t under partial masking method.

• Combination of zero-reconstruction and partial-masking: both

previous methods are applied. The objective function of D remains

the same as for partial masking whereas the function of G changes as

follows:

JG =
∑
u

(
log
(

1−D
(
r̂u � (eu + ku)|cu

))
+ α

∑
j

(xuj − x̂uj)2

)
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Chapter 3

Model

In this chapter we describe the derivation of our proposed model. We give

again the original formulation of GAN for completeness and then proceed

with the related work that lay the necessary steps to our model. We indi-

cate the conditions and assumptions necessary for the model which we test

through several research questions presented and addressed in chapter 5.

3.1 From GAN to RS

Generative Adversarial Networks [22] are now ubiquitous in the Computer

Vision domain due to their generative modeling abilities. GANs learn im-

plicitly a probability distribution by being able to generate samples in the

data space from a noise input z sampled from a predefined distribution pz.

As introduced in section 2.5.1, GANs are composed of two players, usually

two neural networks that play a minimax zero-sum game in order to learn a

target distribution. The objective function that these two networks optimize

as given by [22] is shown below:

min
G

max
D

Ex∼pdata [log D(x)] + Ez∼pz
[
log
(
1−D(G(z))

)]
where the discriminator D is a binary classifier with the well-known sigmoid

activation function:

D(x) =
1

1 + exp(−x)

and the generator G is any neural network that maps noise input z to the

data space. As indicated in section 2.5.1 the generator network uses the

gradient from the discriminator to update its weights and generate better

samples to fool the discriminator. In Computer Vision the generator is usu-

ally tasked with producing complete images where each composing pixel of

the image can take continuous values ranging from 0 to 255.



IRGAN [51] was first to propose the application of GAN for IR and

RS. Differently from the original formulation, IRGAN uses the generator

network to generate/select item d (e.g. item ID) from a pool of items as the

most relevant for a specific user. This generation process is different from

applications of GANs in Computer vision because picking items consists in

a discrete sampling procedure. The objective function in IRGAN (in the

context of information retrieval) is given as:

JG
∗,D∗ = min

G
max
D

N∑
n=1

(
Ed∼ptrue(d|qn,r)[log D(d|qn)] +

Ed∼pθ(d|qn,r)
[
log
(
1−D(d|qn)

)])

where qn is a submitted query, r is the relevance distribution of a user over

items and pθ(d|qn, r) is the generative model G characterized by parameters

θ that learns to select document d that are most relevant for the submitted

query. Since the generator samples discrete values its update cannot be done

through gradient descent so for this reason IRGAN uses the policy-gradient

based reinforcement learning [54].

CFGAN [11] brings forward a potential issue in the optimization problem

of the discriminator of IRGAN. The aim of the algorithm is for the generator

to be able to sample items that are most likely relevant for the user. Consider

the beginning of the training procedure of IRGAN. Initially the discriminator

has to differentiate between real item IDs and fake item IDs selected by

the generator. This is easy in the beginning since the generator is not yet

optimal so it will generate IDs that the discriminator can easily detect as

not being relevant for the user. However, when approaching the optimality

of the generator, the discriminator will be presented with item IDs that are

identical to the ones already in the historical profile of the user but are

presented to the discriminator labelled as real (when the item ID is coming

from the real training data) and fake (when the item ID is coming from

the generator) at the same time. CFGAN empirically shows that training

IRGAN up to this point confuses the discriminator and deteriorates the

accuracy of the algorithm.

To solve this problem CFGAN proposes a vector-wise training for RS

where the generator G outputs real-valued vectors. In this way D can dis-

criminate between real user historical interactions and plausible historical

interactions produced by G.
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(a) IRGAN model in the first epochs of

training. The items picked by the generator

are different from the ground truth.

(b) IRGAN model near/at optimal gener-

ator. The generator picks items with the

label fake identical to those in the training

set which the discriminator has seen as real.

Figure 3.1: Discrete item generation issue with IRGAN.

3.2 GANMF

Our model, which we denote as GANMF, attemps to solve the generic Top-

N recommendation problem presented in chapter 1. We take a model-based

approach for the recommendations and structure GANMF as a matrix fac-

torization model. We task our model to learn the distribution of historical

interactions of each respective user utilizing the vector-training introduced

by CFGAN. This means for the generator to be able to produce historical

profiles that are very similar to the training data but differ in such a way

that can provide recommendations better than (comparable to) other tradi-

tional MF-based baselines. GANMF follows the original GAN formulation

and is composed of two players, a generator network G and a discriminator

network D. GAN allow the modeling of multi-modal outputs [21] where for

a specific input there might be multiple correct outputs or labels. For this

reason the input of the generator in a GAN is usually some noise from a pre-

defined distribution. By using this noise GANs can produce diverse samples

that resemble the training data. However, in our case the recommendation

must be deterministic and unique in order for it to provide the best user

experience and make it feel personalized for the users. This urges the con-

ditioning of the generation process on each user available in our training

data.
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3.2.1 Discriminator D

The discriminator in a GAN is used to differentiate the source of the data

it takes as input. As mentioned in 2.5.1 the discriminator is usually a bi-

nary classifier and in the original formulation it outputs the probability

of the input being real and not generated by G. For GANMF we take an-

other approach and model D according to the discriminator in EBGAN [57].

EBGAN was first to introduce the discriminator as an energy function where

is assigns low energy to samples in the data manifold and high energy else-

where. In this context we can think of the energy function as a hyperplane

which takes the shape of a valley near real data that come from the training

set and takes the shape of mountains near data generated by G. Just like

EBGAN, GANMF uses an autoencoder [32] as the discriminator where the

reconstruction loss acts as the energy function:

D(x) =
∥∥Dec(Enc(x)

)
− x
∥∥ (3.1)

where Enc(·) and Dec(·) are the encoder and decoder functions and || · || is

the Euclidean norm.

The rationale for using an autoencoder model as discriminator for GANMF

falls in the same line of the discussion by the authors of EBGAN. In the

original formulation the discriminator’s output is a scalar value squashed in

the range [0−1] by a sigmoid activation indicating a probability. The output

of the generator in the case of GANMF is very high dimensional; specifically

it is the length of a user historical profile |I|, which for some datasets might

be in thousands or even millions of dimensions. Updating the weights of the

generator through the gradient of a single scalar value in the discriminator

output poses difficulties for learning the generator. Consider the case when

two generated historical profiles for the same user, Î1
u and Î2

u, differ between

each other a lot but for the discriminator they are both fake profiles. The

gradient propagated back to update the weights is going to be more or less

the same for both generated profiles. Assuming I∗u to be the optimal gen-

erated profile for user u then under some distance metric (e.g. Euclidean

distance) we have:

||I∗u − Î1
u|| ≤ ||I∗u − Î2

u||
∨

||I∗u − Î2
u|| ≤ ||I∗u − Î1

u||

yet the gradient coming from the discriminator will not make this distinction

very clear. Also when training through Mini Batch Gradient Descent, having

a single value output makes the gradient for the batch highly unlikely to

be orthogonal for the individual batch samples [57]. We further explore the
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effect of the autoencoder as the discriminator through experiments in section

5.3.

Given a real data x and a user conditioning vector y (more on this in

3.2.2) the loss function for GANMF discriminator is given by the hinge loss

[57]:

LD(x, y) = D(x) +
[
m−D

(
G(y)

)]+
+ λD‖ΩD‖22 (3.2)

where [·]+ = max(0, ·), m is a positive margin, D(·) is the autoencoder recon-

struction loss as defined in equation 3.1, G(·) is the generator function, λD
is a regularization constant and ΩD is the set of parameters of the discrim-

inator. D (the discriminator, not the D(·) function) is trained to minimize

3.2. The first term denotes the reconstruction error of the autoencoder on

real user profiles. Since the reconstruction error is always positive the min-

imum of this term is 0 meaning a perfect reconstruction. The second term

involving the max operator can be summarized as:

[
m−D

(
G(y)

)]+
= max

(
0, D

(
G(y)

))
=

{
0 D

(
G(y)

)
≥ m

m−D
(
G(y)

)
D
(
G(y)

)
< m

This term tries to keep the reconstruction loss of generated user profiles

above the margin value. Since the discriminator is trying to minimize this

term also, the autoencoder’s weights are updated in such a way as to prevent

the reconstruction error falling below the margin otherwise it is penalized

by how much the error violates it. If the reconstruction loss is more than the

margin, the second term reaches its minimum at 0. Using the max operator

we achieve a higher energy value for the generated user profiles. This opera-

tor is common in training SVM where optimal class-separating hyperplane

is the one that does not violate the margin from the support vectors [14].

In GANMF m is a hyperparameter of the model which we tune through a

hold-out validation set.

The last term of LD is a L2 regularization term on the parameters of the

discriminator that helps prevent overfitting.

3.2.2 Generator G

We now detail the generator network. As stated in section 3.2, we construct

G as a conditional generator by using condition attributes that are unique

to each user. These attributes serve as the only input to a fully-connected

neural network. In [47] the authors show that a single layer autoencoder with

linear activation function in the output layer is very similar to a low-rank

MF approach. Instead of following this approach we make use of embed-

ding layers present in deep learning frameworks like Tensorflow, PyTorch,
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Keras, etc. An embedding layers is used as part of a bigger neural net-

work to map integer values to real-valued vectors. They are usually the first

layer in a multi-layer neural network and the parameters that they learn are

task-specific. We use two such embedding layers for the user latent factors

and item latent factors. In figure 3.2 we give a visual representation of the

generator network.

Figure 3.2: Generator network casted as MF-based approach with embedding layers.

Embedding layers are implemented as matrix of weights. They take as

input a row-identifier and return the weights at that row in the matrix. Since

we are utilizing only the URM and we have opted for embedding layers we

are limited to one option in regards to possible conditioning vectors. We

can use the row number in the URM respective to the user. In this case

the generator input is just an integer value in the range [1 − |U |]. In the

forward propagation phase of the training, when taking this user identifier

the network first retrieves the embeddings at that row in the user embedding

layer and then performs a vector-matrix multiplication of these embeddings

with the matrix of item embedding layer. This operation results in a vector

of dimension |I|, the length of a user profile. A clear advantage of using

embedding layers is that the number of parameters to be learned by the

generator is Θ(K× (|I|+ |U |)), similar to baselines like WRMF. Finally the

generator produces a user profile as follows:

G(y) = Σ[y, :]V
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where Σ is the matrix denoting the user latent factors and V is the matrix

denoting the item latent factors.

The generator’s job is to fool the discriminator of GANMF. While the

discriminator’s job is to increase the reconstruction loss for generated user

profiles, the generator tries to minimize the reconstruction loss:

LG(y) = D
(
G(y)

)
+ λG‖ΩG‖22 (3.3)

where G(·) and D(·) are the generator and discriminator functions respec-

tively, y is the user conditioning vector, λG is the L2 regularization coefficient

and ΩG is the set of parameters of the generator. In our experiments we set

λG = 0 because the generator is never trained directly with the real data

but with gradients coming from the discriminator. Not being able to see the

real data makes overfitting the generator difficult.

3.2.3 Single-sample class conditioning

As stated in section 3.2, GANMF at its core is a cGAN of the type presented

in [36]. Usually the condition input in a cGAN is a label or class associated

with the data sample passed to the generator in order to condition the

generation process but also to the discriminator so it can judge the realness

of the data sample given the label. Applications of cGAN usually involve

datasets with multiple classes where for each single class there are hundreds

or thousands of samples from the training set. This allows the discriminator

to learn not only the source of the samples it receives but also a relation

between the sample and its label.

We experimented with a binary classifier discriminator (as per the origi-

nal formulation of GAN) where the input was the concatenation of a real/generated

profile with the conditioning vector representing the user of the profile. We

faced a peculiar problem with this version of GANMF; the user latent fac-

tor resulting from the training where very similar with one another and the

quality (see evaluations) of the recommendations was very poor. However,

considering that for every single user we only have one real historical profile

this finding is not a surprise. Generalizing the input-target relation from a

single data point per label is highly unlikely.

To alleviate this problem and further improve the accuracy of the recom-

mendations we follow an approach called feature matching from [46]. Feature

matching is presented as a technique to stabilize the training procedure of

GANs and also avoid mode collapse (see section 2.5.1). During training, the

generator might trick the discriminator very easily by finding a sample that

the discriminator cannot distinguish from the real data and always generate
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that particular sample or minor variations of it. Usually this single sample

need not even be recognizable as a meaningful data point in comparison

with the dataset at hand (e.g. if generating images of handwritten digits

the output of the generator could be a tower in a black background which

might resemble the digit one and hence the reason the discriminator can-

not distinguish it but is entirely not related to what we are expecting from

the generator). Feature matching changes the objective of the generator to

not deceive the discriminator but match real data statistics by using the

following loss term: ∥∥∥Ex∼pdata f(x)− Ez∼pz(z) f
(
G(z)

)∥∥∥2

2

where f(·) is the activation of an intermediate layer of the discriminator,

G(·) is the generator function, and || · ||22 is the Euclidean norm squared.

We incorporate this technique in GANMF as a way to enforce condition-

ing the generating process. The conditioning vector in GANMF is necessary

for the generator in order to retrieve the user latent factors. However, the

generating process could still be stuck by discarding the information in the

conditioning vector and by finding a specific user profile that deceives the

GANMF discriminator (when reconstructed in the discriminator, the loss

is the same as the average loss of all real user profiles). Such profile can

very easily be a historical profile with interactions on only the most popular

items given the popularity bias of RS datasets (see section 4.6). To force the

generator to learn user-specific latent features we change the previous loss

of the generator to the following:

LG(x, y) = β D
(
G(y)

)
+ (1− β)

∥∥∥ l1(x)− l1
(
G(y)

) ∥∥∥2

2
+ λG‖ΩG‖22 (3.4)

where l1 is the activation of the hidden layer of the autoencoder (discrimi-

nator, see section 3.2.1), D(·) and G(·) are the discriminator and generator

functions respectively, x and y are a real user profile and the correspond-

ing conditioning vector respectively and β is a weighting term that decides

the balance of the generator between deceiving the generator and matching

the hidden layer activations. The last terms is the L2 regularization term of

parameters ΩG of the generator controlled by the coefficient λG.

The second term of LG takes the form of another autoencoder incor-

porating the generator and the encoder part of the discriminator. Given

real user profile x and its corresponding conditioning vector y we first re-

trieve the hidden layer activation of the discriminator for x, l1(x). Then we

generate a plausible user profile for y, G(y). We retrieve the hidden layer

activation of the discriminator for G(y), l1(G(y)). If the generated profile
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is indeed suitable for the user denoted by y then we should have that l1(x)

and l1(G(y) must be close to each other by some distance metric (here we

use the Euclidean distance squared as [46]).

Figure 3.3: Architecture of GANMF.

3.3 Differences to IRGAN and CFGAN

We briefly summarize the differences between GANMF and the two GAN-

based models presented in section 2.6. Compared to IRGAN, GANMF does

not use the discrete sampling approach for selecting relevant items during

training and inference phase but relies on the vector-wise training proce-

dure of CFGAN. Different from CFGAN, GANMF uses an autoencoder as

discriminator in order to provide richer gradients to the generator. In con-

strast with both CFGAN and IRGAN, GANMF uses a discriminator not

conditioned on the user profile it tries to reconstruct. However it enforces

conditioning through the application of feature matching loss that is added

to the generator. Finally the generator of GANMF still performs a linear

MF operation whereas the profile generation process in CFGAN is by con-

struction non-linear. Nevertheless GANMF still provides better performance

than CFGAN, as shown in chapter 5.
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3.4 Training

3.4.1 Update rules

Figure 3.3 depicts the full GANMF model. Since we are using the vector-

training approach from CFGAN, we can bypass the policy-gradient based

reinforcement learning used by IRGAN and train the complete model end-

to-end by Gradient Descent (GD) [45]. The update rule for GD is given

by:

wk+1 = wk − µ ∂L
∂wk

(3.5)

where wk are the parameters of the model at time k, µ is the learning rate

and L is the loss function the model is trying to optimize. The update rule

of GD is identical for every neural network, what changes is the partial

derivative of the loss function. Among the variations of gradient descent we

use minibatch GD since it allows for higher degree of parallelism compared

to stochastic GD and in this way we can make use of graphical processing

units (GPUs) for training.

The discriminator network of GANMF is composed of an autoencoder

incorporating two parts, the encoder and decoder models. The functions

denoted by each of them for a user profile x (a column vector) are the

followings (in vector notation):

Enc(x) = h(bE + ΘEx)

Dec
(
Enc(x)

)
= g
(
bD + ΘDEnc(x)

)
= g
(
bD + ΘD

(
h(bE + ΘEx)

))
where bE and bD are the encoder and decoder bias vectors respectively, ΘE

and ΘD are the encoder and decoder parameters respectively and h· and

g(·) are activation functions.

Given as input a batch of real profiles x and conditioning vectors y, the

value of the loss LD (3.2) is:

LD(x,y) =
1

|B|
∑
i∈B

[∥∥∥Dec(Enc(xi))− xi

∥∥∥2

2
+

max

(
0,m−

∥∥∥∥Dec(Enc(G(yi)
))
−G(yi)

∥∥∥∥2

2

)]
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In order to update the parameters of the discriminator we have to com-

pute the partial derivatives of the loss with respect to each of its parameters.

For ease of reading we write LD as the sum of two terms and calculate the

partial derivatives separately for each of them:

LD =
1

|B|
∑
i∈B

A+ C

∂LD
∂{bD,bE ,ΘD,ΘE}

=
1

|B|
∑
i∈B

∂

∂{bD,bE ,ΘD,ΘE}
(A+ C)

We leave the full derivation steps of the above partial derivatives in the

appendix A.1 for the interested reader.

We focus now on the update rules for the generator network. The loss

function LG (3.4) is also composed of two terms so we split this loss too:

G(y) = Σ[y, :]V = Σ[y]V

LG(x,y) = β D
(
G(y)

)
+ (1− β)

∥∥∥ l1(x)− l1
(
G(y)

) ∥∥∥2

2

= β

∥∥∥∥Dec(Enc(G(y)
))
−G(y)

∥∥∥∥2

2

+ (1− β)
∥∥∥Enc(x)− Enc

(
G(y)

)∥∥∥2

2

= β A+ (1− β)B

∂LG
∂{Σ, V }

=
1

|B|
∑
i∈B

β
∂A

∂{Σ, V }
+ (1− β)

∂C

∂{Σ, V }

Again, we leave the full derivation steps of the partial derivatives of LG in

appendix A.2 for the interested reader.

3.4.2 Early Stopping

Early stopping is a regularization technique that helps prevent overfitting

[55]. When training machine learning models, given enough expressiveness

the model can learn the training data perfectly thus being able to reduce

the loss to its minimum value. However when such fully trained models are

used in inference phase their performance drops. This phenomenon is termed

overfitting and when it occurs the model’s generalization ability suffers since

it learns to memorize the training data and their noise. Early stopping is a

simple mechanism used to stop the training operation before it reaches the

overfitting of the model. The metrics by which the training is stopped are
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the sames ones used for evaluating the final model but they are computed

during the training phase on a validation set. If the loss on the training

set is dropping and hence the performance is increasing but in the same

time the performance of the model on the validation set starts to decrease

then we have reached the stopping point of the training. A by-product of

early stopping is a reduction on the total wall time of the training process

(especially during hyperparameter tuning) if the evaluation process is not

very expensive. Suppose we were to run training for 100 epochs with early

stopping executed every 5 epochs with 2 consecutive worse validation scores

and the process is stopped after 40 epochs. This means that on epoch 30 the

validation score has registered its highest value. On epoch 35 the validation

score has been lower than the one registered on epoch 30. On epoch 40, for

a second time, the validation score has been lower than the best registered

one and the training is stopped. The final model is the one denoted by

the parameters of the highest validation score. In this way we stopped the

training process midway and saved the time it would take to train fully

and with worse performance (figure 3.4). We incorporate early stopping in

our training procedure in the way described above; we run early stopping

evaluation every 5 epochs and allow 2 consecutive worse evaluations on the

validation set.

Figure 3.4: A depiction of the effect of early stopping on training. The dataset used is

Movielens 100K, trained fully for 100 epochs and evaluated with MAP@5. The single

blue dot represents the test set performance of the model trained with early stopping

and the single red dot the test set performance without early stopping. We can see that

the performance of training w/o early stopping continues improving until around epoch

60. However, if we were to train the model with early stopping we would have stopped

before epoch 40 because the performance on the validation set after this point ceases

to improve thus saving wall time when training and also making sure the final model is

one that most probably will have higher performance on a holdout set.
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The updating of the discriminator and generator is done according to

the vanilla GAN implementation; first we update the parameters of the

discriminator and then the parameters of the generator. Algorithm 1 details

the steps of the training procedure.
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Algorithm 1: GANMF Training
Input : set of users U, training URMtr, validation URMval, margin m,

reconstruction coefficient β, D learning rate µD, G learning rate µG,

batch size B, early stopping allowedWorse

Output: trained G model that can generate historical user profiles

1 initialize(bE, bD, ΘE, ΘD, Σ, V )

2 noWorse ← 0

3 numIterations ← |U|
|B|

4 while stopping condition not met do

5 for iter in numIterations do

// Discriminator learning

6 u ← sampleBatch(U)

7 fakeProfiles ← generateBatchProfiles(u)

8 realProfiles ← URMtr [u ]

9 LD ← compute(realProfiles, fakeProfiles) (eq. 3.2)

10
∂LD

∂bE , ∂LD

∂bD , ∂LD

∂ΘE , ∂LD

∂ΘD ← compute(LD, bE, bD, ΘE, ΘD)

11 bE , bD, ΘE , ΘD ← update(bE, bD, ΘE, ΘD, ∂LD

∂bE , ∂LD

∂bD , ∂LD

∂ΘE , ∂LD

∂ΘD ,

µD) (section 3.4.1)

// Generator learning

12 u ← sampleBatch(U)

13 fakeProfiles ← generateBatchProfiles(u)

14 realProfiles ← URMtr [u ]

15 LG ← compute(realProfiles, fakeProfiles) (eq. 3.4)

16
∂LG
∂Σ

, ∂LG
∂V
← compute(LG, Σ, V )

17 Σ, V ← update(Σ, V , ∂LG
∂Σ

, ∂LG
∂V

, µG) (section 3.4.1)

18 end

// Early Stopping

19 performance ← evaluate(G, URMval)

20 if isWorse(bestMAP, performance) then

21 noWorse ++

22 else

23 bestMAP = performance

24 noWorse ← 0

25 end

26 if noWorse > allowedWorse then

27 break

28 end

29 end
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Chapter 4

Datasets

In this chapter we describe the datasets we used to perform the experiments

detailed in chapter 5. Since all of the considered algorithms make use of

only the URM we consider only parts of the datasets that are composed of

interactions and disregard additional information like user/item information.

We detail in the next section the procedure we followed to standardize the

datasets. The following sections show the statistical information of each

dataset along with the distribution of all user historical profiles and their 95th

percentile. Finally we report popularity bias of each dataset through metrics

like Gini Index since it is an important characteristic when considering CF

approaches.

4.1 Dataset preparation

All datasets are hosted in URLs of the research lab that gathered them. The

preparation procedure is identical for each dataset. Upon downloading the

data we transform them in a CSV file where each row denotes a user-item

interaction with 3 mandatory elements – user ID, item ID and rating in

dataset-specific range – if the data is not already in this format. Then we

convert these interactions into a sparse URM matrix of implicit ratings of

dimensions |U | × |I| where U is the set of users and I is the set of items

read from the CSV file. We follow the approach used in [27] to binarize the

URM by setting a cell of the matrix to 1 if there is an interaction between

the user and the item denoted by the matrix cell and 0 otherwise.

Recommender systems, just like machine learning more generally, have

two steps towards their evaluation. The first one is the training phase, the

second is the testing phase. In order to perform both phases we divide each

dataset into two mutually exclusive sets for training and testing. In order for



the evaluation to be as unbiased as possible we perform only the final scoring

of the algorithms with the test set. During the training phase we have to

also account for the tuning of various hyperparameters of the algorithms so

an additional set is required, different from the training and test set. We

secure this validation set from the training set and we detail this process in

section 5.1.

Each row of the URM represents user preferences over the items. Each

user interacts with a different number of items and extreme cases of inter-

action with only 1 or 2 items make it difficult to be allocated in the 3 splits.

For this reason we remove from the initial URM all users that have inter-

acted with only one item. We call this resulting matrix the full URM. For

the users that have interacted with 2 items, we include one interaction in

the training set and one in the test set. Users with more than 2 interactions

are separated into training and test set following the ratio 4:1 respectively.

This separation is done per user profile, e.g. if a user has interacted with 10

items, at random we assign 8 of those interactions to the training set and

leave 2 in the test set. The statistics in subsequent sections are based on the

full unprocessed datasets.

4.2 MovieLens

MovieLens[24] datasets are released by GroupLens Research lab from the

University of Minnesota. They come in several versions identified by the

number of user-item interactions available in each one. These versions are

MovieLens 100K, 1M, 10M, 20M and 25M. In this thesis work we consider

only MovieLens 100K and 1M due to computational constraints.

4.2.1 MovieLens 100K

Movielens 100K is the smallest dataset from MovieLens and the most dense

containing 100000 interactions from 943 users on 1682 movies putting its

density at 6.3%. The dataset has been constructed in such a way as to

contain only users that have rated at least 20 items. The most active user

has rated a maximum of 737 movies whereas all users on average have rated

106 movies. Ratings are in the range [1 − 5] with a step of 1. Table 4.1

summarizes the dataset.

4.2.2 MovieLens 1M

MovieLens 1M is another version of MovieLens that we used to evaluate

the algorithms. As the name suggests it has around 1 million interactions

50



Interactions 100000

Density 6.3%

Users 943

Items 1682

Avg. interactions 106.04

Min. interactions 20

Max. interactions 737

Table 4.1: MovieLens 100K dataset statistics

Figure 4.1: MovieLens 100K: distribution

of per-user number of interactions

Figure 4.2: MovieLens 100K: distribution

of 95th percentile number of interactions
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from 6040 users on 3706 items. This translates in a matrix density of 4.47%.

These interactions are explicit ratings of users given to different movies in

the range [0 − 5] with a step of 1. The average number of interactions per

user is 165.6. The dataset has been put together following MovieLens 100K;

only users with at least 20 rated movies have been included. The maximum

number of interactions is 2314. The dataset is summarized in Table 4.2.

Interactions 1000209

Density 4.47%

Users 6040

Items 3706

Avg. interactions 165.6

Min. interactions 20

Max. interactions 2314

Table 4.2: MovieLens 1M dataset statistics

Figure 4.3: MovieLens 1M: distribution of

per-user number of interactions

Figure 4.4: MovieLens 1M: distribution of

95th percentile number of interactions

4.3 CiaoDVD

CiaoDVD dataset[23] is hosted by LibRec1 which is a Java-based library for

Recommender Systems. The authors have crawled the entire catalogue of

DVDs from the website dvd.ciao.co.uk. The dataset contains ratings in

the range [1 − 5] by 17615 users on 16121 for a total of 72345 ratings. The

dataset has a density of 0.025%, much sparser than all the other datasets we

1https://www.librec.net/datasets.html
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considered. The average number of ratings’ per user is 4.11, the minimum

is 1 and the maximum number of ratings is 1106.

Interactions 72345

Density 0.025%

Users 17615

Items 16121

Avg. interactions 4.11

Min. interactions 1

Max. interactions 1106

Table 4.3: CiaoDVD dataset statistics

Figure 4.5: CiaoDVD: distribution of per-

user number of interactions

Figure 4.6: CiaoDVD: distribution of 95th

percentile per-user number of interactions

4.4 Delicious

Delicious[9] dataset is obtained by the Delicious social bookmarking system

and was released in the 2nd International Workshop on Information Het-

erogeneity and Fusion in Recommender Systems. It contains tuples of the

form (user, bookmark, tag) denoting tags users put to bookmarked URLs.

To construct the URM required to test our algorithms we keep only the

pairs (user, bookmark) as implicit interactions. There are in total 104799

interactions between 1867 users and 69223 bookmarks. The density of the

URM matrix is 0.081% and the mean number of tagged bookmarks per user

is 56.13. This dataset also has users with only one interaction as the min-

imum number of interactions per user. Table 4.4 summarizes the dataset
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statistics.

Interactions 104799

Density 0.081%

Users 1867

Items 69223

Avg. interactions 56.13

Min. interactions 1

Max. interactions 95

Table 4.4: Delicious dataset statistics

Figure 4.7: Delicious: distribution of per-

user number of interactions

Figure 4.8: Delicious: distribution of 95th

percentile per-user number of interactions

4.5 LastFM

LastFM[9] is another dataset made available in the 2nd International Work-

shop on Information Heterogeneity and Fusion in Recommender Systems. It

contains music artist listening information from almost 1900 users for 17632

unique artists in the format (user, artist, listeningCount) where listening-

Count represents how many times the user listened to the specific artist. For

our evaluations we consider only the pairs (user, artist) as implicit feedback.

The URM from this dataset is 0.28% dense with 92834 pairs. On average

a single user has listened to 49.07 different artists with a maximum of 50

and every user has listened to at least 1 artist. Table 4.5 summarizes the

statistical information of LastFM dataset.
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Interactions 92834

Density 0.28%

Users 1900

Items 17632

Avg. interactions 49.07

Min. interactions 1

Max. interactions 50

Table 4.5: LastFM dataset statistics

Figure 4.9: LastFM: distribution of per-

user number of interactions

Figure 4.10: LastFM: distribution of 95th

percentile per-user number of interactions
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4.6 Dataset popularity bias

The effect item popularity has on RS is well known in the RS and IR com-

munities [7]. In [15] the authors show that a very small percentage of the

total items in datasets like MovieLens 1M and Netflix [8] are attributed a

large portion of all interactions. More specifically they show that 33% of the

ratings are on 1.7% and on 5.5% of the items in Netflix and MovieLens 1M

datasets, respectively. Such distribution of the total ratings of a datasets is

also known by the name long-tail distribution [3, 15] and we follow [15] in

denoting the most rated items (the ones that account for 33% of the total

ratings) as short-head items. Figure 4.11 depicts the long tail distribution

of dataset MovieLens 1M.

Figure 4.11: The long tail distribution of the ratings of MovieLens 1M. The x-axis shows

the percentage of items in decreasing order of number of ratings per item.

In order to compare the popularity bias between datasets we can use the

Gini coefficient/index [20]. It was initially introduced as a way to quantify

the income (or wealth) distribution in a population sample. We can adapt

this metric to our domain by assuming the number of ratings to be the

amount of wealth of each item. In this way Gini coefficient can give us an in-

sight on the distribution of the ratings among the items. This index is tighly

related to a graphical representation of the inequality in income/wealth, the

Lorenz curve. This curve maps the cumulative percentage of people from

the population sample to their cumulative wealth. A uniformly distributed

income is obtained by the line y = x, the 45◦line with respect to the horizon-

tal axis. A deviation from this line indicates a skewed distribution of income

and more informally an inequality between the population income. When

referring to the Gini index in relation to the Lorenz curve [34], this index

56



Figure 4.12: The inverse Lorenz curve for each of the considered datasets. The x-axis

shows the percentage of items ordered in decreasing order according to the number

of ratings. The y-axis shows the cumulative number of ratings for a specific portion

of items. The blue dashed line is the curve of equal distribution of ratings among the

items in any of datasets. The dash-dotted black vertical line shows the threshold (33%)

for the short-head items. For 5 out of 6 datasets, items in this threshold account for

more than 80% of the total ratings.

measures the area between the Lorenz curve of the population sample and

the curve indicating a uniformly distributed income. The range of the index

is in [0 − 1] with low values showing a tendency toward equal distribution

and high values a high inequality.

We use the Gini index as a way to quantify how skewed is the distribution

of ratings [38] in each of our datasets and depict this with the inverse Lorenz

curve in figure 4.12. We can clearly see from the figure that a small portion

of items holds a great majority of total ratings. 20% of items in both LastFM

and CiaoDVD account for more than 75% of the ratings and for 4 out of 5

datasets, 33% of the items account for more than 80% of the total ratings

with only Delicious dataset not showing a high degree of popularity bias.

Finally we give the Gini index for each dataset in table 4.6.

Dataset ML100K ML1M Ciao LastFM Delicious

Gini Index 0.63 0.63 0.65 0.73 0.25

Table 4.6: Gini index for the considered datasets.
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Chapter 5

Experiments

In this chapter we detail the experimental setup along with the experiments

we ran to evaluate our model. In the first experiment we compare GANMF

with baseline models on every dataset presented on chapter 4. As a second

experiment we perform an ablation study on some parts of the model with

the aim of understanding whether the design choices laid out in chapter 3

actually describe its performance. The experiments are designed to answer

the following research questions:

1. How does GANMF compare to other traditional MF and neighborhood-

based baselines?

2. How does GANMF compare to CFGAN which also uses vector-wise

training within the GAN framework?

3. How does the choice of using an autoencoder as a discriminator affect

the performance of GANMF?

4. How effective is feature matching in enforcing conditional generation

of user historical profiles?

5. What is the effect of using Deep Neural Networks (DNN) for both

discriminator and generator of GANMF?

5.1 Implementation details & Experimental Setup

We implemented our model using Python programming language [49], ver-

sion 3.6. Since the input to a RS is usually a URM or UCM/ICM we had

to deal with sparse matrices and sparse vectors. To help in computations

involving such objects we used scientific libraries like Numpy [50] and Scipy



[30]. SVD computation for one of the baselines was calculated with the li-

brary Scikit-learn [41]. To implement GAN-based and neural network models

we used the well-known Tensorflow framework [1], version 1.12. Tensorflow

builds a computational graph for the neural network and performs automatic

differentiation so we did not need to implement the complex gradients by

hard coding them. For some of the baselines we used the framework written

by Maurizio Ferrari Dacrema1 in the context of the Recommender Systems

course of Master of Science degree at Politecnico di Milano.

All the experiments were performed on a single machine with a 2-core In-

tel G4560 CPU, 8GB DDR4 Ram and an NVIDIA GTX 770 4GB GPU. The

full code of the experiments and all the results can be found at bitbucket.

org/ervindervishaj/tesi.

Hyperparameter Tuning

One of the experiments we perform is the comparison of GANMF with

other baselines across a variety of metrics (see section 2.4.3) at different

cutoffs. Our model and every baseline have additional parameters beside

the ones that take part in the learning process. These special parameters

are usually called hyperparameters and for every different value of each of

them the learning process is a complete separate problem. We use bayesian

optimization [29, 4] to find the hyperparameters of each model. Bayesian

optimization is a technique used to optimize black-box functions; functions

whose first and second derivatives we cannot obtain and thus cannot make

use of approaches like gradient descent and quasi-Newton methods [17] and

are very expensive in terms of time and obtaining evaluations at different

points. Bayesian optimization builds its own internal model, a surrogate, of

the function we are trying to optimize. This surrogate takes the form of a

Gaussian Process (GP) Regressor and its parameters are updated with each

new evaluation of the function.

In this thesis we applied bayesian optimization through the Python li-

brary Scikit-optimize [25] which provides functions for GP and random-

search function optimization. Both these functions take in a set of hyper-

parameters along with their respective value ranges, e.g. regularization co-

effient α in the range [10−6, 0]. For each algorithm we optimized mAP@5

on a holdout set and we ran 50 evaluations where the first 10 were random

evaluations in order for GP to construct a prior for the functions.

1https://github.com/MaurizioFD/RecSys_Course_AT_PoliMi
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Dataset splitting

In order to achieve fair comparison among all involved algorithms it is impor-

tant for them to be trained and evaluated on the same training, validation

and test sets. Initially each full URM is built as explained in section 4.1,

i.e. only users with at least 2 ratings are included in the full URM. Then

we reserved 20% of the user-item interactions as a test set on which the fi-

nal performance of the algorithms is evaluated. In order to assess how good

each set of candidate values for the hyperparameters of a model is, we need

a holdout validation set on which to evaluate the model with the selected

hyperparameters. To accomodate this optimization process we reserved 25%

of the remaining 80% of the user-item interactions for the validation set. At

this point in the splitting of the initial dataset, we are left with 60% of the in-

teractions. This would constitute our training set but we need to account for

some of the algorithms that need early stopping mechanism (section 3.4.2).

We reserved only 15% of the training set interactions as an early stopping

validation set and all the remaining data is used to train the models for the

optimization process. Figure 5.1 visualizes the whole splitting process.

Figure 5.1: Dataset splitting process for hyperparameter optimization and final training

and testing. Starting from the full URM the purple arrows indicate a split of the initial

dataset. Orange arrows indicate an interaction of the algorithm with the datasets during

hyperparameter optimization. Green arrows indicate an interaction of the algorithm with

the datasets for the final training and testing.
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5.2 Comparison with baselines

In this section we focus on our first and second research questions. In chap-

ter 3 we presented our model GANMF as a MF approach which utilizes a

discriminator to learn the latent factors of both users and items with the

aim of solving the top-N recommendation problem. In this first experiment

we are interested in comparing GANMF with more traditional approaches

mainly built on top of MF technique, one GAN-based model and a nearest-

neighbor machine learning technique, all of which are used for the same

recommendation problem. As baselines we include the following algorithms:

• Top-popular, non-personalized approach that recommends the most

popular items and that will serve as a bottom baseline.

• PureSVD [15].

• Matrix factorization with the BPR [42] training criterion.

• WRMF [27].

• SLIM [39] with BPR [42] training criterion.

• CFGAN [11] user-based.

• CFGAN [11] item-based.

We have intentionally omitted IRGAN [51] algorithm from our com-

parison because the authors of CFGAN show that it performs worse than

CFGAN. Also, more importantly, IRGAN’s training phase is characterized

by the REINFORCE algorithm which is very expensive in terms of compu-

tation.

In analogy with CFGAN, our model also has two training modes; a

user-based mode and an item-based mode. We evaluate both methods and

separately optimize and compare each of them along with the other base-

lines. As a standard GANMF model we use the model with a single layer

autoencoder with linear activations as discriminator and with 2 em-

bedding layers as generator. The final generated historical profile from

the generator is the usual matrix multiplication of the embedding layers, a

linear operation employed by the traditional MF technique.

In the subsequent sections we discuss the results of the algorithms eval-

uated on the test set of each dataset separately. We compare the algorithms

on the basis of 5 metrics at 4 different cutoffs; we report the precision, re-

call, nDCG, mAP and item coverage on cutoffs of 5, 10, 20 and 50 (section
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2.4.3). We chose these metrics since they provide a good analysis for the

algorithms in both prediction accuracy (precision and recall) and ranking

accuracy (nDCG and mAP). The different cutoffs give us an indication how

the algorithms behave with increasing recommendation list length. Cover-

age metric can give us some insights on how capable is each algorithm in

handling item popularity bias of the datasets.

5.2.1 MovieLens 100K

We present the results for MovieLens 100K in tables 5.1, 5.2, 5.3 and 5.4.

The results for cutoff 5 show that MF-based approach PureSVD performs

better than the other models. Interestingly both PureSVD and WRMF per-

form better than the machine learning neighborhood approach SLIM-BPR.

The difference between PureSVD and SLIM-BPR and can be explained to

some degree by the coverage metric; SLIM-BPR covers in its recommen-

dations almost 5% of all the available items, thus providing a very narrow

recommendation to all users. PureSVD and WRMF are able to surpass the

precision of SLIM-BPR while at the same time offering a much higher cover-

age both at 16%, most probably finding the right items to recommend also

to users that are not only interested in the most popular items given this

dataset’s popularity bias as indicated by a Gini index of 0.63 (section 4.6).

This argument is further supported by the higher recall of both MF-based

models. Somewhat disappointingly MF-BPR performs slightly better than

the non-personalized approach on some of the metrics.

PureSVD perform also better than both GAN-based models with GANMF-

i ranking 2nd in all the metrics. In table 5.1 we also give the relative change

of GANMF-i to the best performing model. We can observe that GANMF

is able to compete pretty well in all metrics, being within [0.1% − 1.6%] of

the results of the best model at cutoff 5. The other variant, GANMF-u, has

a performance comparable to WRMF however providing less item coverage.

Both GANMF model can surpass SLIM-BPR in all recommendation met-

rics while at the same time providing almost 3 times as much item coverage.

Both models also are very close to one another with GANMF-i performing

slightly better at the cost of 1% less coverage.

On the other hand, comparing the GAN-based models we see that GANMF

variants provide better performance than CFGAN variants in all metrics be-

side item coverage. The difference in results between user-based variants is

greater than between item-based variants. A large gap in performance can

be seen also between CFGAN variants, something that is not observed for

GANMF models. Something to be pointed out is the high coverage both
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CFGAN models exhibit, twice as much when compared to GANMF and

MF-based approaches. We believe this is due to the CF methods used by

CFGAN. As mentioned in section 2.6.2, CFGAN uses zero reconstruction

regularization and partial masking as a way for the generator to be able

to reconstruct more accurate user/item profiles. Zero reconstruction, as im-

plied by the name, aims to reconstruct a portion of the sparsity of the profile.

Using this additional loss for the generator CFGAN learns to zero out in

the generator output the items that the user has not interacted with. If we

consider a user that has previously rated not so popular items, when his/her

profile is processed by the generator, it learns to give a 0 score to popular

items. Given enough users that like less popular items, the item coverage of

the generator is increased.

Continuing the discussion with the results at cutoffs 10, 20 and 50 we

can see that both PureSVD and GANMF-i perform almost identical to one

another, also in terms of item coverage. Both methods have a slight advan-

tage over WRMF we can see that the same arguments hold also for longer

recommendation lists. WRMF shows stronger prediction accuracy compared

to PureSVD while the latter has a slightly better ranking accuracy as mea-

sured by mAP. GANMF variants still perform better than CFGAN even in

longer recommendation lists.

Overall in this dataset GANMF is able to provide comparable results

with PureSVD and slightly better than both WRMF and SLIM-BPR. Mor-

ever both GANMF variants can surpass CFGAN models while the latter

can provide much better coverage.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

Top popular 0.2165429 0.0708332 0.0977239 0.1449216 0.0172414

PureSVD 0.4201485 0.1424799 0.2102587 0.3512042 0.1599287

WRMF 0.4053022 0.1355566 0.2002147 0.3331628 0.1593341

MF-BPR 0.2021209 0.0859918 0.1155711 0.1426535 0.0368609

SLIM-BPR 0.366702 0.1293142 0.1872001 0.2996604 0.0487515

CFGAN-u 0.2462354 0.0815232 0.1177102 0.1778296 0.3061831

CFGAN-i 0.3546129 0.1253011 0.1759757 0.275205 0.313912

GANMF-u 0.3959703 0.1360042 0.1928307 0.3210631 0.146849

GANMF-i 0.4197243 0.1421869 0.2068968 0.3481637 0.137931

Relative Change -0.10% -0.21% -1.60% -0.87% -53.22%

Table 5.1: Results for cutoff 5 on MovieLens 100K. Higher values are better. Best results

are in bold. Relative change reports the difference between best GANMF variant and

best performing baseline, with negative values denoting worse performance of GANMF.
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Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

Top popular 0.1969247 0.1207682 0.1368754 0.1166896 0.029132

PureSVD 0.3551432 0.2275842 0.2759503 0.2893783 0.2098692

WRMF 0.3511135 0.2230234 0.2675774 0.2781397 0.2057075

MF-BPR 0.1686108 0.1322022 0.1496186 0.1124854 0.0618312

SLIM-BPR 0.2971368 0.196986 0.2385696 0.2360697 0.0766944

CFGAN-u 0.2174973 0.14153 0.1624927 0.1419956 0.3929845

CFGAN-i 0.3034995 0.207585 0.2365852 0.223579 0.3876338

GANMF-u 0.3371156 0.218114 0.255901 0.2628942 0.1967895

GANMF-i 0.3565217 0.2282473 0.2729096 0.288402 0.1920333

Relative Change 0.39% 0.29% -1.10% -0.34% -49.92%

Table 5.2: Results for cutoff 10 on MovieLens 100K. Higher values are better. Best

results are in bold. Relative change reports the difference between best GANMF variant

and best performing baseline.

Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

Top popular 0.1549841 0.1703185 0.1706868 0.0959901 0.048157

PureSVD 0.2859491 0.3480285 0.3500764 0.2532081 0.2788347

WRMF 0.2821845 0.3445215 0.3414857 0.2424792 0.283591

MF-BPR 0.1384942 0.2085422 0.1929 0.1036458 0.1070155

SLIM-BPR 0.2373277 0.2993396 0.3008329 0.20232 0.1165279

CFGAN-u 0.181018 0.2238151 0.2125324 0.1238725 0.4845422

CFGAN-i 0.2461294 0.3198261 0.3043358 0.1973178 0.4583829

GANMF-u 0.2734358 0.3321748 0.3272267 0.2303143 0.2758621

GANMF-i 0.2827678 0.3406212 0.3432445 0.2487557 0.2526754

Relative Change -1.11% -2.13% -1.95% -1.76% -43.07%

Table 5.3: Results for cutoff 20 on MovieLens 100K. Higher values are better. Best

results are in bold. Relative change reports the difference between best GANMF variant

and best performing baseline.
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Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

Top popular 0.1164581 0.2954592 0.2357702 0.0923372 0.1010702

PureSVD 0.1934252 0.5372567 0.4478853 0.2436833 0.4203329

WRMF 0.1904348 0.532496 0.4380601 0.233905 0.4268728

MF-BPR 0.1003606 0.3389586 0.2548068 0.1074788 0.2128419

SLIM-BPR 0.1594486 0.4625969 0.3832263 0.1915255 0.1837099

CFGAN-u 0.1346978 0.3978162 0.296069 0.1243592 0.6070155

CFGAN-i 0.1710498 0.5021467 0.3971656 0.1967767 0.5648038

GANMF-u 0.1834571 0.5169792 0.4205572 0.2200193 0.4173603

GANMF-i 0.1931495 0.5375202 0.4434139 0.2400581 0.3989298

Relative Change -0.14% 0.05% -1.00% -1.49% -31.24%

Table 5.4: Results for cutoff 50 on MovieLens 100K. Higher values are better. Best

results are in bold. Relative change reports the difference between best GANMF variant

and best performing baseline.

5.2.2 MovieLens 1M

MovieLens 1M is the second MovieLens dataset that we test our algorithm

on. We give the results on the test sets on tables 5.5, 5.6, 5.7 and 5.8.

In this dataset our model performs better than all other baselines in all

metrics with precision 4-5% better in all cutoffs and mAP approximately

8% on average better than the second best performing baseline, SLIM-BPR.

Moreover GANMF-i beside the higher performance has also higher coverage

than SLIM-BPR and is second only to WRMF. WRMF on the other hand

performs better than PureSVD on all metrics and cutoffs. MF-BPR also in

this dataset struggles to match the performance of top-popular approach.

Compared to CFGAN-u, GANMF-i’s metrics at cutoff 5 are approxi-

mately 3 times better. In comparison with CFGAN-u all the metrics at cut-

off 10 of GANMF-i are approximately one order of magnitude higher, even

at a very similar coverage@5. GANMF-u on the other hand surpasses both

CFGAN models at an even higher coverage@10. Differently from MovieLens

100K but in line with CF algorithms, CFGAN-i has much lower coverage

than CFGAN-u indicating that the former is biasing its recommendations

towards more popular items than the later. This is evident also when consid-

ering the performance of the non-personalized baseline where better results

are observed on all metrics compared to both CFGAN-u and CFGAN-i. Also

differently from GANMF variants, CFGAN-i and CFGAN-u results seems

to differ a lot between them on the same metric and cutoff.

We bring to attention also the traditional MF-based approaches. MF-

BPR as in MovieLens 100K performs on par with the non-personalized base-
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line with only slight improvements on recall and nDCG metrics. PureSVD

and WRMF perform similarly to one another with WRMF having better

prediction accuracy and PureSVD better ranking according to mAP@5 and

mAP@10 metrics. Also, the discrepancy between these two algorithms in-

creases with increasing recommendation list cutoff. Compared to GANMF-i

variants both models perform worse. The coverage at cutoff 5 of WRMF is

the highest of all considered algorithms and that could explain the drop in

performance. However its coverage is only 2% greater than that of GANMF-

u whose performance is equally higher. In table 5.7 and 5.8, different from

the previous cutoffs, we can see that coverage of GANMF-u is slightly higher

than that of WRMF while still maintaining both higher prediction and rank-

ing accuracy. Finally we see that both traditional MF-based models and

GANMF perform similarly in MovieLens 1M as in MovieLens 100K. We re-

call from section 4.6 that both these datasets have the same Gini index and

hence the same bias toward popular items in terms of ratings.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

Top popular 0.214404 0.0419873 0.0706967 0.1544478 0.0118726

PureSVD 0.3995364 0.0923932 0.1500131 0.3272192 0.1200756

WRMF 0.4009272 0.0997203 0.1572062 0.3202506 0.2199137

MF-BPR 0.2181457 0.0439298 0.074034 0.1574015 0.069347

SLIM-BPR 0.4140397 0.1068285 0.1668732 0.3346971 0.1775499

CFGAN-u 0.0417219 0.0104807 0.0152957 0.0202545 0.1173772

CFGAN-i 0.1834768 0.0352682 0.0621318 0.1331042 0.053157

GANMF-u 0.4320199 0.1083758 0.1692069 0.3539966 0.2026444

GANMF-i 0.4323179 0.1053124 0.1690019 0.358333 0.1392337

Relative Change 4.41% 1.45% 1.40% 7.06% -7.85%

Table 5.5: Results for cutoff 5 on MovieLens 1M. Higher values are better. Best results

are in bold. Relative change reports the difference between best GANMF variant and

best performing baseline.

5.2.3 CiaoDVD

We present in this section the results on the CiaoDVD dataset. This is the

sparsiest dataset used in this work with a density at 0.025%. Its full URM has

a square-ish shape of 17615 users × 16121 items and the Gini index is 0.65,

so ratings are biased toward popular items. Results on this dataset, tables

5.9, 5.10, 5.11 and 5.12, show WRMF as the top performer. SLIM-BPR

comes as the best second algorithm. However we can see that SLIM-BPR’s

coverage is the greatest among all 4 different cutoffs with almost 5-6 times
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Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

Top popular 0.1837417 0.0681797 0.0945611 0.1173533 0.017809

PureSVD 0.3434272 0.1488452 0.1995704 0.262581 0.1654074

WRMF 0.3472351 0.1624667 0.2104642 0.259208 0.2701025

MF-BPR 0.1861921 0.0739437 0.1000572 0.1177731 0.1214247

SLIM-BPR 0.3528808 0.1712493 0.2209655 0.2680273 0.2420399

CFGAN-u 0.0373013 0.0170446 0.0208279 0.0136246 0.1896924

CFGAN-i 0.1527649 0.0579876 0.0821061 0.0963071 0.0812196

GANMF-u 0.3702483 0.1742579 0.2252712 0.28728 0.264436

GANMF-i 0.372351 0.1692659 0.2243996 0.2916971 0.1826767

Relative Change 5.52% 1.76% 1.95% 8.83% -2.10%

Table 5.6: Results for cutoff 10 on MovieLens 1M. Higher values are better. Best results

are in bold. Relative change reports the difference between best GANMF variant and

best performing baseline.

Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

Top popular 0.1561921 0.1151276 0.1271463 0.0918708 0.0302213

PureSVD 0.282798 0.2299902 0.2566088 0.2158214 0.2182947

WRMF 0.2898593 0.2517595 0.2722827 0.2187244 0.3297356

MF-BPR 0.1534354 0.1189983 0.1311217 0.0904318 0.220993

SLIM-BPR 0.2872765 0.2586859 0.2808407 0.2234922 0.3262277

CFGAN-u 0.0421275 0.0381151 0.0345674 0.0117824 0.293578

CFGAN-i 0.1230215 0.0908527 0.1050038 0.0721666 0.1219644

GANMF-u 0.3053808 0.2653345 0.2885205 0.2417735 0.3416082

GANMF-i 0.304404 0.2552169 0.2852354 0.2422803 0.2417701

Relative Change 5.35% 2.57% 2.73% 8.41% 3.60%

Table 5.7: Results for cutoff 20 on MovieLens 1M. Higher values are better. Best results

are in bold. Relative change reports the difference between best GANMF variant and

best performing baseline.
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Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

Top popular 0.114394 0.2008153 0.1755463 0.0743705 0.0631409

PureSVD 0.2040563 0.3817655 0.3427192 0.1890541 0.3224501

WRMF 0.2114934 0.4140289 0.3642318 0.199202 0.4384781

MF-BPR 0.1126325 0.2121367 0.1819059 0.0740611 0.4541284

SLIM-BPR 0.2028411 0.410478 0.3664565 0.2000196 0.4589854

CFGAN-u 0.0392384 0.0873179 0.0599086 0.0123139 0.5010793

CFGAN-i 0.0904007 0.1565923 0.1422478 0.0584476 0.2363734

GANMF-u 0.2184503 0.4275134 0.3809177 0.2164192 0.4695089

GANMF-i 0.2166623 0.4125733 0.3749247 0.2142928 0.3537507

Relative Change 3.29% 3.26% 3.95% 8.20% -6.30%

Table 5.8: Results for cutoff 50 on MovieLens 1M. Higher values are better. Best results

are in bold. Relative change reports the difference between best GANMF variant and

best performing baseline.

that of WRMF and hence provides more diverse recommendations. WRMF

performs also better than PureSVD.

In regards to GANMF we can see from the results that GANMF-i is the

third best model beating PureSVD in all metrics at all cutoffs with greater

coverage for the item-based variant. GANMF-s coverage is also 2-3 times

greater than that’s of WRMF.

We compare now the GAN-inspired models. Both CFGAN variants have

lower coverage than GANMF, which reaches almost twice the coverage on

some cutoffs. Despite this we also see both GANMF versions beating all

metrics of both CFGAN models. Interestingly the CFGAN variant with

greater coverage, CFGAN-i, performs better than CFGAN-u. The reverse

behavior is observed for GANMF where the best performing variant has the

highest coverage.

5.2.4 LastFM

LastFM, different from the other datasets seen so far, is a music dataset.

However not surprisingly, as a music datasets it also shows high item pop-

ularity bias [10] also indicated by its Gini index of 0.73. Its full URM has

shape 1900 users × 17632 items, so almost 10 times more items than users.

We were expecting this disparity between the length of user and item profiles

to show on the performances of our GANMF variants. However as we can

see from the results on tables 5.13, 5.14, 5.15 and 5.16 both GANMF-u and

GANMF-i produce similarly accurate recommendations. The performance

of our model is the highest among all baselines including WRMF and SLIM-
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Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

Top popular 0.0093078 0.0301836 0.0218311 0.0173683 0.0008684

PureSVD 0.0122181 0.0352304 0.0259442 0.0206842 0.0714596

WRMF 0.0169376 0.0504526 0.0363511 0.0284788 0.0362881

MF-BPR 0.0079969 0.0251085 0.0188852 0.0151641 0.0012406

SLIM-BPR 0.015915 0.048574 0.0355339 0.0284408 0.2934681

CFGAN-u 0.0101206 0.0328725 0.0230227 0.0180462 0.0011786

CFGAN-i 0.0104615 0.0285493 0.0205241 0.0153599 0.0578128

GANMF-u 0.01387 0.0420354 0.0298209 0.0230707 0.0535947

GANMF-i 0.0128736 0.0356792 0.0267557 0.0214877 0.1059488

Relative Change -18.11% -16.68% -17.96% -18.99% -63.90%

Table 5.9: Results for cutoff 5 on CiaoDVD. Higher values are better. Best results are

in bold. Relative change reports the difference between best GANMF variant and best

performing baseline.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

Top popular 0.0076691 0.0492416 0.0284671 0.0196393 0.0015508

PureSVD 0.0097273 0.0548152 0.0330951 0.022942 0.1050803

WRMF 0.0132931 0.0788733 0.0465245 0.0317792 0.0560759

MF-BPR 0.0062271 0.0382356 0.023579 0.0166721 0.0021711

SLIM-BPR 0.0119428 0.0703845 0.0434444 0.03079 0.3987966

CFGAN-u 0.0078526 0.0502189 0.0291485 0.0200167 0.0017989

CFGAN-i 0.0089932 0.0498985 0.02824 0.0179044 0.0869673

GANMF-u 0.011366 0.0648433 0.0381765 0.0258148 0.1134545

GANMF-i 0.0100026 0.0533817 0.0333071 0.0234155 0.1547671

Relative Change -14.50% -17.79% -17.94% -18.77% -61.19%

Table 5.10: Results for cutoff 10 on CiaoDVD. Higher values are better. Best results

are in bold. Relative change reports the difference between best GANMF variant and

best performing baseline.
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Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

Top popular 0.0060304 0.0748749 0.035647 0.0213848 0.0029155

PureSVD 0.0076691 0.0837869 0.0414224 0.024936 0.1387011

WRMF 0.0103173 0.1162985 0.0573421 0.0344711 0.0868432

MF-BPR 0.0047063 0.057897 0.0289933 0.0179722 0.004032

SLIM-BPR 0.008908 0.1020194 0.0524146 0.032958 0.5131195

CFGAN-u 0.0064696 0.0818359 0.0378881 0.0222032 0.0032256

CFGAN-i 0.0075905 0.0837763 0.0378648 0.0202608 0.1277216

GANMF-u 0.0085212 0.0945504 0.046718 0.0279302 0.2396253

GANMF-i 0.0076036 0.080545 0.0410068 0.0251971 0.2177284

Relative Change -17.41% -18.70% -18.53% -18.98% -53.30%

Table 5.11: Results for cutoff 20 on CiaoDVD. Higher values are better. Best results

are in bold. Relative change reports the difference between best GANMF variant and

best performing baseline.

Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

Top popular 0.0044048 0.1385646 0.0494453 0.0235451 0.005955

PureSVD 0.0050944 0.1347948 0.0530028 0.0267462 0.2078035

WRMF 0.0065836 0.1813807 0.0719227 0.0367931 0.1476335

MF-BPR 0.0032853 0.1010213 0.0383544 0.0193877 0.0089945

SLIM-BPR 0.0059518 0.1600545 0.0656625 0.0349981 0.6520687

CFGAN-u 0.0044992 0.1408453 0.0506728 0.0241884 0.0066373

CFGAN-i 0.0054457 0.1482506 0.0523911 0.0226197 0.2256064

GANMF-u 0.0055926 0.1492362 0.0592024 0.0299301 0.4378761

GANMF-i 0.0050236 0.1251562 0.0513823 0.0267774 0.3358973

Relative Change -15.05% -17.72% -17.69% -18.65% -32.85%

Table 5.12: Results for cutoff 50 on CiaoDVD. Higher values are better. Best results

are in bold. Relative change reports the difference between best GANMF variant and

best performing baseline.
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BPR which on the previous datasets appeared to be the strongest among

our selected baselines. GANMF achieves also higher coverage along all cut-

offs compared to MF-based algorithms. PureSVD’s coverage on this dataset

is one of the lowest we have seen in this work by this algorithm, only 0.76%

on a recommendation length of 5. Both variants of GANMF have higher

coverage than the other baselines besides CFGAN-i and ranking accuracy

according to mAP is consistently 7% higher than the next best performing

baseline WRMF.

CFGAN models are both weaker compared to GANMF variants in all

metrics and cutoffs. CFGAN-u has a slightly better performance compared

to CFGAN-i but that comes at the cost of a quarter of the coverage of

the former. Both CFGAN models are also less accurate in both prediction

and ranking compared to traditional MF-approaches and also compared to

SLIM-BPR. CFGAN-u has a very comparable performance with PureSVD

and also a much higher coverage of at least a factor of 3.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

Top popular 0.0771762 0.0397706 0.0579687 0.0523638 0.0010209

PureSVD 0.2022293 0.1033268 0.1472857 0.1505213 0.0076565

WRMF 0.245966 0.1258021 0.1788593 0.1847563 0.0227427

MF-BPR 0.1130573 0.0584839 0.0846587 0.0855603 0.0068058

SLIM-BPR 0.220276 0.1124237 0.1615952 0.1664171 0.0352768

CFGAN-u 0.1954352 0.1009801 0.1432142 0.1405215 0.029662

CFGAN-i 0.1928875 0.0992035 0.1372855 0.1358475 0.08201

GANMF-u 0.2607219 0.1338915 0.1914327 0.2009306 0.038623

GANMF-i 0.2562633 0.1318541 0.1867868 0.1935747 0.044578

Relative Change 6.00% 6.43% 7.03% 8.75% -45.64%

Table 5.13: Results for cutoff 5 on LastFM. Higher values are better. Best results are

in bold. Relative change reports the difference between best GANMF variant and best

performing baseline.

5.2.5 Delicious

We report the performances on the last dataset, Delicious, in the tables 5.17,

5.18, 5.19 and 5.20. We found these results peculiar because differently from

the other datasets, WRMF performs substantially better than PureSVD;

almost 7 times better across metrics Prec@5, Rec@5 and nDCG@5 and

almost 10 times in mAP@5. WRMF performs better than all other baselines

but at a less steep difference. We can see that SLIM-BPR provides higher

coverage@5 than WRMF at 2% difference but it comes at the cost of 30% of
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Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

Top popular 0.0662951 0.0680608 0.0777387 0.0382397 0.001588

PureSVD 0.1512739 0.1526964 0.1819721 0.1042772 0.0107191

WRMF 0.186518 0.1890005 0.2231374 0.1303702 0.0309097

MF-BPR 0.0841295 0.0860107 0.1039224 0.0582924 0.0126475

SLIM-BPR 0.1664013 0.1689499 0.2011444 0.1144614 0.0593807

CFGAN-u 0.1492569 0.1524582 0.1792991 0.0981531 0.0397573

CFGAN-i 0.1507431 0.1549922 0.1759522 0.097336 0.1110481

GANMF-u 0.1937898 0.1968786 0.2356293 0.1391564 0.0565449

GANMF-i 0.1937367 0.1973378 0.2326003 0.1357974 0.0623866

Relative Change 3.90% 4.41% 5.60% 6.74% -43.82%

Table 5.14: Results for cutoff 10 on LastFM. Higher values are better. Best results are

in bold. Relative change reports the difference between best GANMF variant and best

performing baseline.

Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

Top popular 0.0488057 0.0993311 0.0946814 0.0391824 0.0024387

PureSVD 0.1052548 0.2123528 0.2145312 0.1063918 0.0161071

WRMF 0.129034 0.2608253 0.2623477 0.1335815 0.0426497

MF-BPR 0.059448 0.1206518 0.1229142 0.0587035 0.0223457

SLIM-BPR 0.1166932 0.2366589 0.2379893 0.1167282 0.0952246

CFGAN-u 0.1085456 0.2198224 0.2161836 0.1028526 0.0560912

CFGAN-i 0.1087049 0.2222522 0.2125373 0.1020133 0.1487069

GANMF-u 0.1360934 0.2754476 0.278796 0.1437082 0.085583

GANMF-i 0.1360138 0.2757899 0.2755811 0.1405968 0.0896098

Relative Change 5.47% 5.74% 6.27% 7.58% -39.74%

Table 5.15: Results for cutoff 20 on LastFM. Higher values are better. Best results are

in bold. Relative change reports the difference between best GANMF variant and best

performing baseline.
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Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

Top popular 0.0341083 0.1725694 0.1258099 0.0447256 0.0047074

PureSVD 0.0632272 0.3184067 0.2602294 0.1195382 0.0266561

WRMF 0.075414 0.3816908 0.3141909 0.1500941 0.0681715

MF-BPR 0.0395966 0.2003551 0.1569982 0.0660411 0.0498525

SLIM-BPR 0.0695223 0.3517537 0.2875025 0.1312701 0.1794465

CFGAN-u 0.0642994 0.3250405 0.2614986 0.1161981 0.0971529

CFGAN-i 0.0642887 0.3260986 0.257554 0.115265 0.2247051

GANMF-u 0.0795117 0.4014345 0.3330374 0.1612095 0.1620349

GANMF-i 0.0796178 0.4019249 0.3300618 0.1581174 0.1544918

Relative Change 5.57% 5.30% 6.00% 7.41% -27.89%

Table 5.16: Results for cutoff 50 on LastFM. Higher values are better. Best results are

in bold. Relative change reports the difference between best GANMF variant and best

performing baseline.

the ranking accuracy according to mAP@5. MF-BPR achieves much better

results than top-popular recommender but far from WRMF or SLIM-BPR.

GANMF-u, the best performing among GANMF variants, performs al-

most 4 times better than PureSVD at cutoffs 5 and 10 but has a lower

advantage at cutoff 20 and 50. Even though it presents the highest cover-

age over all recommendation list lengths it performs at half the accuracy

of WRMF in all metrics at cutoff 5. We came across another interesting

result when comparing GANMF and SLIM-BPR. In table 5.17 we can see

that SLIM-BPR provides better recommendation and ranking accuracy than

GANMF-i at a comparable coverage. However in the results of the next cut-

offs GANMF performs better and between cutoffs its results are more stable

with the recall@10 close to double that of recall@5 given the increase in cov-

erage. We can thus say that SLIM-BPR is more susceptible to the popularity

bias because even though it experiences approximately the same increase in

coverage, its performance decreases with longer recommendation lists.

Comparing GANMF to CFGAN we see for the first time than CFGAN

variants perform better than GANMF’s in some metrics like precision, recall

and nDCG. However GANMF-i reports better ranking accuracy through

mAP@5 and mAP@10 also considering the twice as high coverage.

5.3 Ablation Study

In this section we focus on research questions 3, 4 and 5. We dissect our

model GANMF in order to understand whether there is some causal con-

nection between its components and the results presented in section 5.2. We
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Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

Top popular 0.0021786 0.0009668 0.0012767 0.0010004 0.00013

PureSVD 0.0360566 0.0158643 0.0216547 0.0249088 0.0551406

WRMF 0.2565359 0.1174365 0.1504931 0.2165255 0.0796412

MF-BPR 0.0139434 0.011767 0.0116898 0.0102059 0.0078442

SLIM-BPR 0.1556645 0.0711403 0.1023254 0.1486908 0.0999379

CFGAN-u 0.1496732 0.0660646 0.0867188 0.1144944 0.0482065

CFGAN-i 0.0004357 0.0001679 0.0002649 0.0002542 0.0191266

GANMF-u 0.1383442 0.0549645 0.0777383 0.1189397 0.1041995

GANMF-i 0.120915 0.0501615 0.0684077 0.1032746 0.0914436

Relative Change -46.07% -53.20% -48.34% -45.07% 4.26%

Table 5.17: Results for cutoff 5 on Delicious. Higher values are better. Best results are

in bold. Relative change reports the difference between best GANMF variant and best

performing baseline.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

Top popular 0.0020153 0.002054 0.0018988 0.0007785 0.0001878

PureSVD 0.0454248 0.0381012 0.0378445 0.0257323 0.1085766

WRMF 0.2267974 0.1959225 0.2095796 0.1932031 0.1413692

MF-BPR 0.0099129 0.0170848 0.0145766 0.0084955 0.0118602

SLIM-BPR 0.0964597 0.0898005 0.1149212 0.092658 0.1703191

CFGAN-u 0.1353486 0.1159111 0.1235349 0.099101 0.088121

CFGAN-i 0.0002179 0.0001679 0.0002649 0.0001452 0.0335727

GANMF-u 0.1251634 0.0952886 0.1096041 0.1021225 0.180807

GANMF-i 0.1150327 0.0901394 0.0996606 0.0922297 0.1641073

Relative Change -44.81% -51.36% -47.70% -47.14% 6.16%

Table 5.18: Results for cutoff 10 on Delicious. Higher values are better. Best results are

in bold. Relative change reports the difference between best GANMF variant and best

performing baseline.
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Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

Top popular 0.001988 0.0034133 0.0027562 0.0006951 0.0004189

PureSVD 0.0639706 0.0974176 0.0741175 0.0390156 0.1980845

WRMF 0.147195 0.2503321 0.2416519 0.1730376 0.2203747

MF-BPR 0.0083878 0.0259708 0.0187067 0.008566 0.0196178

SLIM-BPR 0.0621187 0.1147779 0.1283582 0.0758196 0.2591769

CFGAN-u 0.104793 0.1754949 0.1583063 0.0992318 0.1482022

CFGAN-i 0.0001906 0.0004379 0.0003876 0.0001177 0.0616414

GANMF-u 0.0946351 0.1418546 0.1381279 0.0921853 0.2819294

GANMF-i 0.0958061 0.1456018 0.1337833 0.0889318 0.2610982

Relative Change -34.91% -41.84% -42.84% -46.73% 8.78%

Table 5.19: Results for cutoff 20 on Delicious. Higher values are better. Best results are

in bold. Relative change reports the difference between best GANMF variant and best

performing baseline.

Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

Top popular 0.0015033 0.0063785 0.0040758 0.0007879 0.0009101

PureSVD 0.0492702 0.1914322 0.1181371 0.0536321 0.3080046

WRMF 0.0728105 0.308557 0.2677807 0.1853322 0.3798737

MF-BPR 0.0074074 0.04619 0.0270562 0.0097744 0.0438583

SLIM-BPR 0.0289434 0.1308242 0.1364398 0.0777533 0.340826

CFGAN-u 0.0561002 0.2370797 0.1856272 0.1113201 0.2359331

CFGAN-i 0.0001743 0.0007427 0.000538 0.0001243 0.1159441

GANMF-u 0.055915 0.2201512 0.1728492 0.1032774 0.4228797

GANMF-i 0.0566231 0.2326523 0.1707571 0.0998884 0.3675946

Relative Change -22.23% -24.60% -35.45% -44.27% 11.32%

Table 5.20: Results for cutoff 50 on Delicious. Higher values are better. Best results are

in bold. Relative change reports the difference between best GANMF variant and best

performing baseline.
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recall from chapter 3 that two defining components of GANMF are the au-

toencoder acting as the discriminator and incorporation of feature matching

loss for the generator with the aim of helping class conditioning. We perform

an ablation study on these two components which we detail in the next two

sections. Finally on section 5.3.3 we compare the standard GANMF model

with a version of it where we use DNN for the discriminator and generator.

5.3.1 GANMF with binary classifier discriminator

For this experiment we drop the autoencoder discriminator and replace it

with the binary classifier network used in vanilla GAN and in the CFGAN

model. We call this model biGANMF. This new discriminator takes as input

a user/item profile and outputs a single value in the range [0− 1] denoting

the probability that the seen input is coming from the real training data.

We perform the experiment with unchanged generator architecture coupled

with feature matching loss. As user/item features we use the learned fea-

tures in the last layer of the discriminator before the binary output (see

figure 5.2). BiGANMF is optimized just like the standard GANMF model;

bayesian optimization is used to determine the number of layers, the num-

ber of units per layer and the activation function of each layer of the new

discriminator. The optimization is applied to the whole model and not only

the discriminator. The discriminator loss function is now defined as in the

vanilla GAN:

max
D

Ex∼pdata [log D(x)] + Ez∼pz
[
log
(
1−D(G(z))

)]

MovieLens 100K

We present the results of biGANMF versus the standard GANMF model on

MovieLens 100K in tables 5.21, 5.22, 5.23 and 5.24. As we can see, biGANMF

performs worse than the autoencoder GANMF by a significant margin in all

metrics and all cutoffs, at around 40% worse. After 50 bayesian optimization

evaluations the best performing biGANMF-u was the model whose discrim-

inator had 1 layer with 1024 units and a linear activation function. An in-

teresting result is the relation between the coverage and the performance of

biGANMF variants. In the standard GANMF the variant with the best per-

formance is the one with the lowest coverage, albeit a small difference. The

reverse is seen for biGANMF where biGANMF-u has approximately 4 times

the coverage of biGANMF-i yet still performing better. Thus biGANMF-u
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Figure 5.2: GANMF with binary classifier discriminator. The feature matching loss is

optimized with features coming from the last fully connected layer of the discriminator

before the final output.
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is able to recommend a larger pool of items and still recommend those items

to the right users compared to biGANMF-i.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

GANMF-u 0.3959703 0.1360042 0.1928307 0.3210631 0.146849

GANMF-i 0.4197243 0.1421869 0.2068968 0.3481637 0.137931

biGANMF-u 0.2434783 0.0782224 0.1124793 0.1722632 0.0802616

biGANMF-i 0.1978791 0.0494344 0.0800853 0.1410166 0.020214

Relative Change -41.99% -44.99% -45.64% -50.52% -45.34%

Table 5.21: Results for cutoff 5 on MovieLens 100K. Higher values are better. Best

results are in bold. Relative change reports the difference between best biGANMF

variant and best performing GANMF variant.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

GANMF-u 0.3371156 0.218114 0.255901 0.2628942 0.1967895

GANMF-i 0.3565217 0.2282473 0.2729096 0.288402 0.1920333

biGANMF-u 0.2067869 0.1273371 0.1508587 0.1323419 0.1224732

biGANMF-i 0.1615058 0.0792526 0.1048993 0.101738 0.0356718

Relative Change -42.00% -44.21% -44.72% -54.11% -37.76%

Table 5.22: Results for cutoff 10 on MovieLens 100K. Higher values are better. Best

results are in bold. Relative change reports the difference between best biGANMF

variant and best performing GANMF variant.

Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

GANMF-u 0.2734358 0.3321748 0.3272267 0.2303143 0.2758621

GANMF-i 0.2827678 0.3406212 0.3432445 0.2487557 0.2526754

biGANMF-u 0.1685578 0.1996495 0.1950765 0.1105033 0.1884661

biGANMF-i 0.1343584 0.1276293 0.1374063 0.08097 0.0612366

Relative Change -40.39% -41.39% -43.17% -55.58% -31.68%

Table 5.23: Results for cutoff 20 on MovieLens 100K. Higher values are better. Best

results are in bold. Relative change reports the difference between best biGANMF

variant and best performing GANMF variant.

MovieLens 1M

We give in tables 5.25, 5.26, 5.27 and 5.28 the results of biGANMF on Movie-

Lens 1M. We see a similar pattern to Movielens 100K with the GANMF per-

forming again substantially better. The best results are split between the

variants of GANMF since both of them are performing quite similar with
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Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

GANMF-u 0.1834571 0.5169792 0.4205572 0.2200193 0.4173603

GANMF-i 0.1931495 0.5375202 0.4434139 0.2400581 0.3989298

biGANMF-u 0.1180276 0.3185704 0.2564102 0.1033315 0.3258026

biGANMF-i 0.1001697 0.2393149 0.194118 0.0728119 0.1254459

Relative Change -38.89% -40.73% -42.17% -56.96% -21.94%

Table 5.24: Results for cutoff 50 on MovieLens 100K. Higher values are better. Best

results are in bold. Relative change reports the difference between best biGANMF

variant and best performing GANMF variant.

negligible differences albeit GANMF-u’s higher item coverage. biGANMF

performs on average 35% than GANMF on all metrics and cutoffs. The re-

sulting best biGANMF model is the one with 1 hidden layer of 581 units and

a ReLU hidden activation function. We note here the tendency of biGANMF

model to work better with shallow discriminator just like in MovieLens 100K.

Different from the previous dataset, the disparity in item coverage between

the biGANMF variants is bigger at a factor of approximately 5.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

GANMF-u 0.4320199 0.1083758 0.1692069 0.3539966 0.2026444

GANMF-i 0.4323179 0.1053124 0.1690019 0.358333 0.1392337

biGANMF-u 0.1977815 0.0351879 0.0614358 0.1434128 0.0132218

biGANMF-i 0.3024503 0.061469 0.1051042 0.2323213 0.1168376

Relative Change -30.04% -43.28% -37.88% -35.17% -42.34%

Table 5.25: Results for cutoff 5 on MovieLens 1M. Higher values are better. Best results

are in bold. Relative change reports the difference between best biGANMF variant and

best performing GANMF variant.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

GANMF-u 0.3702483 0.1742579 0.2252712 0.28728 0.264436

GANMF-i 0.372351 0.1692659 0.2243996 0.2916971 0.1826767

biGANMF-u 0.1741722 0.0598876 0.0843955 0.11023 0.0205073

biGANMF-i 0.2624834 0.1029214 0.1420329 0.1815342 0.1621695

Relative Change -29.51% -40.94% -36.95% -37.77% -38.67%

Table 5.26: Results for cutoff 10 on MovieLens 1M. Higher values are better. Best results

are in bold. Relative change reports the difference between best biGANMF variant and

best performing GANMF variant.
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Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

GANMF-u 0.3053808 0.2653345 0.2885205 0.2417735 0.3416082

GANMF-i 0.304404 0.2552169 0.2852354 0.2422803 0.2417701

biGANMF-u 0.1474172 0.0998068 0.1131748 0.0857512 0.0364274

biGANMF-i 0.2203725 0.1665832 0.1871483 0.1458388 0.2309768

Relative Change -27.84% -37.22% -35.14% -39.81% -32.39%

Table 5.27: Results for cutoff 20 on MovieLens 1M. Higher values are better. Best results

are in bold. Relative change reports the difference between best biGANMF variant and

best performing GANMF variant.

Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

GANMF-u 0.2184503 0.4275134 0.3809177 0.2164192 0.4695089

GANMF-i 0.2166623 0.4125733 0.3749247 0.2142928 0.3537507

biGANMF-u 0.1083609 0.1741139 0.1567217 0.0681944 0.0769023

biGANMF-i 0.1616821 0.2857345 0.2557555 0.1242929 0.3602267

Relative Change -25.99% -33.16% -32.86% -42.57% -23.28%

Table 5.28: Results for cutoff 50 on MovieLens 1M. Higher values are better. Best results

are in bold. Relative change reports the difference between best biGANMF variant and

best performing GANMF variant.

CiaoDVD

Tables 5.29, 5.30, 5.31 and 5.32 summarize the results of biGANMF on

CiaoDVD dataset. In this dataset the performance of both variants of bi-

GANMF falls behind a lot compared to standard GANMF. We observe at

least 40% worse performance compared to the best GANMF variant in all

metrics. A peculiar second observation and a possible explanation for the

performance of biGANMF is the very low coverage. Coverage@5 is only 0.1%

of the total item catalogue. Our explanation for this is a possible mode col-

lapse of the generator of both variants to recommending only most popular

items. This is supported also by the coverage of the non-personalized top-

popular approach which is very close to the coverage of biGANMF. We note

here that CiaoDVD is the dataset with the lowest density and a Gini index

of 0.65. The best biGANMF-i’s discriminator had 5 hidden layers with linear

activation function and 1024 units each.

LastFM

We summarize the results of biGANMF on LastFM dataset on the tables

5.33, 5.34, 5.35 and 5.36. Also on LastFM, biGANMF has much lower per-

formance than standard GANMF. We also include the top-popular rec-
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Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

Top popular 0.0093078 0.0301836 0.0218311 0.0173683 0.0008684

GANMF-u 0.01387 0.0420354 0.0298209 0.0230707 0.0535947

GANMF-i 0.0128736 0.0356792 0.0267557 0.0214877 0.1059488

biGANMF-u 0.0064761 0.0213594 0.0170405 0.0141438 0.0009925

biGANMF-i 0.001075 0.0033913 0.0019349 0.0013056 0.0008064

Relative Change -53.31% -49.19% -42.86% -38.69% -99.06%

Table 5.29: Results for cutoff 5 on CiaoDVD. Higher values are better. Best results are

in bold. Relative change reports the difference between best biGANMF variant and best

performing GANMF variant.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

Top popular 0.0076691 0.0492416 0.0284671 0.0196393 0.0015508

GANMF-u 0.011366 0.0648433 0.0381765 0.0258148 0.1134545

GANMF-i 0.0100026 0.0533817 0.0333071 0.0234155 0.1547671

biGANMF-u 0.005021 0.0327005 0.0210368 0.0154138 0.0017989

biGANMF-i 0.0006948 0.0037171 0.0020925 0.0013258 0.0016748

Relative Change -55.82% -49.57% -44.90% -40.29% -98.84%

Table 5.30: Results for cutoff 10 on CiaoDVD. Higher values are better. Best results

are in bold. Relative change reports the difference between best biGANMF variant and

best performing GANMF variant.

Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

Top popular 0.0060304 0.0748749 0.035647 0.0213848 0.0029155

GANMF-u 0.0085212 0.0945504 0.046718 0.0279302 0.2396253

GANMF-i 0.0076036 0.080545 0.0410068 0.0251971 0.2177284

biGANMF-u 0.0040115 0.0508702 0.0260647 0.0165922 0.0035978

biGANMF-i 0.0005768 0.0061517 0.002785 0.0014816 0.0031015

Relative Change -52.92% -46.20% -44.21% -40.59% -98.50%

Table 5.31: Results for cutoff 20 on CiaoDVD. Higher values are better. Best results

are in bold. Relative change reports the difference between best biGANMF variant and

best performing GANMF variant.
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Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

Top popular 0.0044048 0.1385646 0.0494453 0.0235451 0.005955

GANMF-u 0.0055926 0.1492362 0.0592024 0.0299301 0.4378761

GANMF-i 0.0050236 0.1251562 0.0513823 0.0267774 0.3358973

biGANMF-u 0.0025485 0.0770503 0.0318737 0.017419 0.008064

biGANMF-i 0.0005794 0.0131116 0.004367 0.0016863 0.0077539

Relative Change -54.43% -48.37% -46.16% -41.80% -98.16%

Table 5.32: Results for cutoff 50 on CiaoDVD. Higher values are better. Best results

are in bold. Relative change reports the difference between best biGANMF variant and

best performing GANMF variant.

ommender in the above tables. We can see that both biGANMF-i and

biGANMF-u fall short on the performance compared to top-popular rec-

ommender, however they have higher coverage. Between best GANMF and

best biGANMF we can see a factor of 2-3 better performance for GANMF.

The best biGANMF-u model used a discriminator with 1 hidden 4-unit layer

with linear activation.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

Top popular 0.0777125 0.0400469 0.0583715 0.0527276 0.0010209

GANMF-u 0.2607219 0.1338915 0.1914327 0.2009306 0.038623

GANMF-i 0.2562633 0.1318541 0.1867868 0.1935747 0.044578

biGANMF-u 0.0720807 0.0367051 0.0488659 0.040436 0.0012477

biGANMF-i 0.0820594 0.0418584 0.0563792 0.0494882 0.0070327

Relative Change -68.53% -68.74% -70.55% -75.37% -84.22%

Table 5.33: Results for cutoff 5 on LastFM. Higher values are better. Best results are in

bold. Relative change reports the difference between best biGANMF variant and best

performing GANMF variant.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

Top popular 0.0662951 0.0680608 0.0777387 0.0382397 0.001588

GANMF-u 0.1937898 0.1968786 0.2356293 0.1391564 0.0565449

GANMF-i 0.1937367 0.1973378 0.2326003 0.1357974 0.0623866

biGANMF-u 0.0619427 0.0631484 0.0673429 0.0296739 0.001985

biGANMF-i 0.0620488 0.0636028 0.0714914 0.0340902 0.0119102

Relative Change -67.98% -67.77% -69.66% -75.50% -80.91%

Table 5.34: Results for cutoff 10 on LastFM. Higher values are better. Best results are

in bold. Relative change reports the difference between best biGANMF variant and best

performing GANMF variant.
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Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

Top popular 0.0488057 0.0993311 0.0946814 0.0391824 0.0024387

GANMF-u 0.1360934 0.2754476 0.278796 0.1437082 0.085583

GANMF-i 0.1360138 0.2757899 0.2755811 0.1405968 0.0896098

biGANMF-u 0.0474257 0.0959869 0.0852117 0.0313648 0.0036865

biGANMF-i 0.0460456 0.0936367 0.087913 0.0352168 0.0191697

Relative Change -65.15% -65.20% -68.47% -75.49% -78.61%

Table 5.35: Results for cutoff 20 on LastFM. Higher values are better. Best results are

in bold. Relative change reports the difference between best biGANMF variant and best

performing GANMF variant.

Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

Top popular 0.0341083 0.1725694 0.1258099 0.0447256 0.0047074

GANMF-u 0.0795117 0.4014345 0.3330374 0.1612095 0.1620349

GANMF-i 0.0796178 0.4019249 0.3300618 0.1581174 0.1544918

biGANMF-u 0.0333439 0.1683531 0.1161281 0.0370809 0.0075431

biGANMF-i 0.031518 0.16029 0.1163866 0.0406224 0.0374319

Relative Change -58.12% -58.11% -65.05% -74.80% -76.90%

Table 5.36: Results for cutoff 50 on LastFM. Higher values are better. Best results are

in bold. Relative change reports the difference between best biGANMF variant and best

performing GANMF variant.
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Delicious

We see a repeating pattern on the performance of biGANMF also on Deli-

cious dataset. biGANMF’s performance is several orders of magnitude worse

than GANMF and almost 0 across all metrics. The coverage is also very low

and the fact that this dataset has a Gini index of 0.25, thus a more moderate

long tail distribution, makes it difficult for biGANMF with a low coverage

to perform well because there is not a steep bias toward popular items. Both

biGANMF models perform worse even than top-popular recommendations.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

Top popular 0.0021786 0.0009668 0.0012767 0.0010004 0.00013

GANMF-u 0.1383442 0.0549645 0.0777383 0.1189397 0.1041995

GANMF-i 0.120915 0.0501615 0.0684077 0.1032746 0.0914436

biGANMF-u 0.0006536 0.0002183 0.0003706 0.0003758 0.0001878

biGANMF-i 0.0007625 0.000345 0.0004438 0.0005792 0.0002311

Relative Change -99.45% -99.37% -99.43% -99.51% -99.78%

Table 5.37: Results for cutoff 5 on Delicious. Higher values are better. Best results are

in bold. Relative change reports the difference between best biGANMF variant and best

performing GANMF variant.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

Top popular 0.0020153 0.002054 0.0018988 0.0007785 0.0001878

GANMF-u 0.1251634 0.0952886 0.1096041 0.1021225 0.180807

GANMF-i 0.1150327 0.0901394 0.0996606 0.0922297 0.1641073

biGANMF-u 0.0004902 0.0003036 0.0004467 0.0002095 0.0003612

biGANMF-i 0.0003813 0.000345 0.0004438 0.0002896 0.0004334

Relative Change -99.61% -99.64% -99.59% -99.72% -99.76%

Table 5.38: Results for cutoff 10 on Delicious. Higher values are better. Best results

are in bold. Relative change reports the difference between best biGANMF variant and

best performing GANMF variant.

In this experiment we compared GANMF with other strong and well-

known CF-based baselines. GANMF performed on par with and even ex-

ceeded the baselines on selected datasets. This shows that we can use GANs

to learn better latent factors for users and items while still using a linear

MF approach. Morever, GANMF scored better than CFGAN on all datasets

except Delicious.
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Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

Top popular 0.001988 0.0034133 0.0027562 0.0006951 0.0004189

GANMF-u 0.0946351 0.1418546 0.1381279 0.0921853 0.2819294

GANMF-i 0.0958061 0.1456018 0.1337833 0.0889318 0.2610982

biGANMF-u 0.0002996 0.0003944 0.0004992 0.0001392 0.0006645

biGANMF-i 0.0003813 0.0005645 0.0005872 0.0002735 0.0007512

Relative Change -99.60% -99.61% -99.57% -99.70% -99.73%

Table 5.39: Results for cutoff 20 on Delicious. Higher values are better. Best results

are in bold. Relative change reports the difference between best biGANMF variant and

best performing GANMF variant.

Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

Top popular 0.0015033 0.0063785 0.0040758 0.0007879 0.0009101

GANMF-u 0.055915 0.2201512 0.1728492 0.1032774 0.4228797

GANMF-i 0.0566231 0.2326523 0.1707571 0.0998884 0.3675946

biGANMF-u 0.0002505 0.0010525 0.0007765 0.0001594 0.0016035

biGANMF-i 0.0003813 0.0013978 0.0009869 0.0003445 0.0017624

Relative Change -99.33% -99.40% -99.43% -99.67% -99.58%

Table 5.40: Results for cutoff 50 on Delicious. Higher values are better. Best results

are in bold. Relative change reports the difference between best biGANMF variant and

best performing GANMF variant.

86



5.3.2 Effect of feature matching loss

In this section we investigate how much effect does the added feature match-

ing loss have on the performance and eventually on the conditioning of the

generator. The way we perform this experiment is by using the standard

GANMF and fixing the hyperparameter values to the ones found during

the optimization phase (see section 5.1). The only hyperparameter we mod-

ify is the feature matching coefficient in equation 3.4; we train again both

GANMF variants with feature matching coefficient ranging from [0−1] with

a step of 0.2. A value of 0 means that we are turning off feature matching

loss whereas a value of 1 means we are only using feature matching loss

and disregarding gradients coming from the discriminator. Finally we visu-

alize the similarity between the generated profiles of every user in order to

understand how much feature matching helps in reducing this similarity.

MovieLens 100K

We give in figures 5.3 and 5.4 the plots of the metrics at every cutoff of

GANMF trained with different values for the feature matching coefficient.

We see clearly that a value 0.2 provides the best recommendation accuracy.

An important insight is the sharp decrease of the performance of GANMF for

the value 1, which is the case when we neglect completely the discriminator.

(a) Cutoff 5 (b) Cutoff 10

(c) Cutoff 20 (d) Cutoff 50

Figure 5.3: Effect of feature matching loss on GANMF-u performance on MovieLens

100K.
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(a) Cutoff 5 (b) Cutoff 10

(c) Cutoff 20 (d) Cutoff 50

Figure 5.4: Effect of feature matching loss on GANMF-i performance on MovieLens

100K.

MovieLens 1M

We see again a similar situation for the dataset MovieLens 1M, figures 5.5

and 5.6. For the item-based variant of GANMF depending only on the gra-

dient coming from the discriminator makes it difficult to learn to generate

plausible item profiles. We recall here the shape of the full URM of Movie-

Lens 10, 6040 users × 3706 items. Without the help from feature matching

the generator needs to rely on only 3706 item profiles to learn to generate

6040 dimensional ”fake” profiles. This is a limited number of profiles for

the discriminator to give the right amount of information to the generator

when considering that, as mentioned in 3.2.2, each generated profile should

be unique to each user.

CiaoDVD

On CiaoDVD dataset, figures 5.7, 5.8, we see an interesting pattern on the

effect of feature matching. First, not using feature matching at all deteri-

orates the performance of both variants of GANMF. Secondly, for greater

cutoffs the effect of this additional loss on most of the metrics seems to be

very low. From section 5.2 we saw that GANMF does not score very high

on CiaoDVD and we believe the problem of the performance and also the

behavior of feature matching is the high sparsity of CiaoDVD. Nonetheless,

we still can observe that a combination of both discriminator and feature
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(a) Cutoff 5 (b) Cutoff 10

(c) Cutoff 20 (d) Cutoff 50

Figure 5.5: Effect of feature matching loss on GANMF-u performance on MovieLens

1M.

(a) Cutoff 5 (b) Cutoff 10

(c) Cutoff 20 (d) Cutoff 50

Figure 5.6: Effect of feature matching loss on GANMF-i performance on MovieLens

1M.
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matching loss provides the best accuracy.

(a) Cutoff 5 (b) Cutoff 10

(c) Cutoff 20 (d) Cutoff 50

Figure 5.7: Effect of feature matching loss on GANMF-u performance on CiaoDVD.

(a) Cutoff 5 (b) Cutoff 10

(c) Cutoff 20 (d) Cutoff 50

Figure 5.8: Effect of feature matching loss on GANMF-i performance on CiaoDVD.

LastFM

In figures 5.9 and 5.10 we can see that the behavior of feature matching on

LastFM supports our claims on feature matching for MovieLens 1M. The
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full URM of LastFM has dimensions 1900 users × 17632 items. GANMF-u’s

discriminator is trained with 1900 real profiles where each profile is approxi-

mately 10 times as long as the available profiles. Adding featuring matching

drastically helps recommendations. However considering the reverse learning

problem that GANMF-i is used for. Its discriminator is trained on 17632 real

profiles with each profile 1900 users long. Even in this case feature matching

helps but after a certain point it does not affect anymore learning.

(a) Cutoff 5 (b) Cutoff 10

(c) Cutoff 20 (d) Cutoff 50

Figure 5.9: Effect of feature matching loss on GANMF-u performance on LastFM.

Delicious

Delicious dataset, in figures 5.11 and 5.12, shows us in some way the same

underlying pattern of the combination of feature matching with the GAN

adversarial loss seen in LastFM. Delicious dataset has a shape of 1892 users

× 69223 items, a difference by a factor of approximately 36. On GANMF-u,

adding feature matching helps the recommendation accuracy to the point

that, for all cutoffs, a better performance is achieved with only feature

matching. However the effect of increasing the weight of feature matching

beyond the value 0.2 is small compared to going from without feature match-

ing to feature matching weighted by 0.2. On the other hand for GANMF-i a

combination between both losses brings the best performance especially in

the shorter recommendation list lengths.

We have shown empirically that joining the GAN adversarial loss func-
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(a) Cutoff 5 (b) Cutoff 10

(c) Cutoff 20 (d) Cutoff 50

Figure 5.10: Effect of feature matching loss on GANMF-i performance on LastFM.

(a) Cutoff 5 (b) Cutoff 10

(c) Cutoff 20 (d) Cutoff 50

Figure 5.11: Effect of feature matching loss on GANMF-u performance on Delicious.
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(a) Cutoff 5 (b) Cutoff 10

(c) Cutoff 20 (d) Cutoff 50

Figure 5.12: Effect of feature matching loss on GANMF-i performance on Delicious.

tion with feature matching loss for the generator helps the generator learn

to produce more plausible user/item profiles and eventually increases the

recommendation accuracy. Finally we are also interested in how successful

is feature matching in conditioning the generator to produce user/item-

tailored, ”fake” profiles. In order to investigate this, we first optimized the

standard GANMF-u without feature matching. Then generated user profiles

and computed the cosine similarity between each pair of users. We give in

figure 5.13 the heatmaps of the similarity for each dataset and the respective

mean and standard deviation of the similarities.

We can clearly see from the heatmaps that for all the datasets we are able

to reduce the average similarity between the generated profiles of any two

users when we incorporate feature matching loss for the generator. More-

over, not including feature matching loss on some of the datasets, we are

presented with an average similarity of almost 1, meaning that the generator

is producing the same ”fake” profile for all users.

5.3.3 GANMF with DNN components

In the previous sections of this chapter we have shown that our standard

GANMF model, with a linear MF operation performed by the generator,

can outperform traditional RS approaches on some datasets and CFGAN

on almost all datasets we tested them on. As a final experiment we want

to understand whether extending the standard GANMF model to use DNN
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(a) MovieLens 100K w/o feature matching.

Mean: 0.9995351, Std: 10−3.

(b) MovieLens 100Kw/ feature matching.

Mean: 0.48735228, Std: 0.2251461

(c) MovieLens 1M w/o feature matching.

Mean: 0.9563655, Std: 0.0037879287.

(d) MovieLens 1M w/ feature matching.

Mean: 0.37644428, Std: 0.19592425

(e) CiaoDVD w/o feature matching. Mean:

0.14036298, Std: 0.07149107.

(f) CiaoDVD w/ feature matching. Mean:

0.04443381, Std: 0.1101416

(g) LastFM w/o feature matching. Mean:

0.99140006, Std: 0.00073062413.

(h) LastFM w/ feature matching. Mean:

0.12330822, Std: 0.17331722

(i) Delicious w/o feature matching. Mean:

0.0840853, Std: 0.07278927.

(j) Delicious w/ feature matching. Mean:

0.0017516246, Std: 0.07453684

Figure 5.13: Feature matching conditioning on the user generated profiles.
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components for the discriminator and generator, can provide further perfor-

mance increments compared to the standard version. To conduct this ex-

periment we substitute the single-layer-linearly-activated autoencoder with

a deeper autoencoder. We also substitute the generator with an MLP. In

this new version, which we call DeepGANMF, the generator does not use

anymore embedding layers so we are constrained to use another type of con-

ditioning vector for the generator. We take here the approach of CFGAN

and utilize the complete real user profiles as conditions for the generator.

With this two new components, we optimize again each variant (user and

item based) of DeepGANMF for each of the datasets. In the following sec-

tions we give the comparison of DeepGANMF with the standard GANMF

on all datasets.

MovieLens 100K

We give in tables 5.41, 5.42, 5.43 and 5.44 the results for DeepGANMF.

We can observe that both standard GANMF variants perform much better

than DeepGANMF on all metrics and on all cutoffs. A very interesting result

though is the coverage of DeepGANMF-u. On cutoffs 5 it is 56% of the total

items, the highest seen by any model in this thesis at this cutoff. At cutoff

50, the coverage reaches 99%. almost the complete catalogue of items. Also

the other variant shows higher coverage than GANMF on all cutoffs. Also

the performance of DeepGANMF-i is not that much lower when compared

with GANMF, considering the higher coverage. At cutoff 50, coverage for

DeepGANMF-i is 54% whereas GANMF-i covers only 40% of the items.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

GANMF-u 0.3959703 0.1360042 0.1928307 0.3210631 0.146849

GANMF-i 0.4197243 0.1421869 0.2068968 0.3481637 0.137931

DeepGANMF-u 0.1005302 0.0214772 0.0352384 0.0659971 0.559453

DeepGANMF-i 0.3230117 0.0997668 0.1495498 0.2539148 0.1872771

Table 5.41: Results for cutoff 5 on MovieLens 100K. Higher values are better. Best

results are in bold.

MovieLens 1M

We give the results of DeepGANMF on MovieLens 1M in tables 5.41, 5.42,

5.43 and 5.44. Also in this version of MovieLens, GANMF variants perform

much better than DeepGANMF in all metrics and cutoffs. The same ob-

servation can be made for DeepGANMF-u, still achieving great coverage at
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Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

GANMF-u 0.3371156 0.218114 0.255901 0.2628942 0.1967895

GANMF-i 0.3565217 0.2282473 0.2729096 0.288402 0.1920333

DeepGANMF-u 0.0846235 0.0359723 0.0476395 0.0472484 0.7419738

DeepGANMF-i 0.2836691 0.167003 0.2025917 0.2088889 0.2431629

Table 5.42: Results for cutoff 10 on MovieLens 100K. Higher values are better. Best

results are in bold.

Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

GANMF-u 0.2734358 0.3321748 0.3272267 0.2303143 0.2758621

GANMF-i 0.2827678 0.3406212 0.3432445 0.2487557 0.2526754

DeepGANMF-u 0.0721633 0.0633654 0.0648731 0.0355798 0.89239

DeepGANMF-i 0.2326087 0.2587212 0.2614043 0.1798248 0.3418549

Table 5.43: Results for cutoff 20 on MovieLens 100K. Higher values are better. Best

results are in bold.

Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

GANMF-u 0.1834571 0.5169792 0.4205572 0.2200193 0.4173603

GANMF-i 0.1931495 0.5375202 0.4434139 0.2400581 0.3989298

DeepGANMF-u 0.0553128 0.1190691 0.0945475 0.0280326 0.9869203

DeepGANMF-i 0.1622481 0.4150829 0.3433792 0.1692178 0.5410226

Table 5.44: Results for cutoff 50 on MovieLens 100K. Higher values are better. Best

results are in bold.
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all cutoffs. Different from GANMF, where both user and item variants have

very close scores across metrics, DeepGANMF shows quite some difference

among variants.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

GANMF-u 0.4320199 0.1083758 0.1692069 0.3539966 0.2026444

GANMF-i 0.4323179 0.1053124 0.1690019 0.358333 0.1392337

DeepGANMF-u 0.1804305 0.0436618 0.0733999 0.1237536 0.6799784

DeepGANMF-i 0.1030132 0.0189744 0.0322978 0.0716291 0.0752833

Table 5.45: Results for cutoff 5 on MovieLens 1M. Higher values are better. Best results

are in bold.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

GANMF-u 0.3702483 0.1742579 0.2252712 0.28728 0.264436

GANMF-i 0.372351 0.1692659 0.2243996 0.2916971 0.1826767

DeepGANMF-u 0.142202 0.0652266 0.0922406 0.0833942 0.8367512

DeepGANMF-i 0.090447 0.0328512 0.0447229 0.054566 0.1082029

Table 5.46: Results for cutoff 10 on MovieLens 1M. Higher values are better. Best

results are in bold.

Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

GANMF-u 0.3053808 0.2653345 0.2885205 0.2417735 0.3416082

GANMF-i 0.304404 0.2552169 0.2852354 0.2422803 0.2417701

DeepGANMF-u 0.106697 0.0933383 0.1116552 0.0599598 0.9368591

DeepGANMF-i 0.0760844 0.0543757 0.0599065 0.0420953 0.1737723

Table 5.47: Results for cutoff 20 on MovieLens 1M. Higher values are better. Best

results are in bold.

Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

GANMF-u 0.2184503 0.4275134 0.3809177 0.2164192 0.4695089

GANMF-i 0.2166623 0.4125733 0.3749247 0.2142928 0.3537507

DeepGANMF-u 0.0719338 0.1452663 0.1407886 0.0499875 0.9905559

DeepGANMF-i 0.1616821 0.2857345 0.2557555 0.1242929 0.3602267

Table 5.48: Results for cutoff 50 on MovieLens 1M. Higher values are better. Best

results are in bold.
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CiaoDVD

The results of DeepGANMF on CiaoDVD, the sparsiest dataset, are shown

on tables 5.49, 5.50, 5.51 and 5.52. Even on this dataset we see GANMF

having better results than DeepGANMF. Also the coverage of the best

performing GANMF variant, GANMF-u is the highest. The best scoring

DeepGANMF is the item-based version with performance at 50% that of

GANMF-u. However the user-based version of DeepGANMF performs much

worse, more than an order of magnitude worse than the item-based version.

Also its coverage is more than 2 orders of magnitude smaller than GANMF-i.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

GANMF-u 0.01387 0.0420354 0.0298209 0.0230707 0.0535947

GANMF-i 0.0128736 0.0356792 0.0267557 0.0214877 0.1059488

DeepGANMF-u 0.0004195 0.0012839 0.0012123 0.0010728 0.0006823

DeepGANMF-i 0.0057944 0.0190632 0.0136923 0.0109967 0.0104832

Table 5.49: Results for cutoff 5 on CiaoDVD. Higher values are better. Best results are

in bold.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

GANMF-u 0.011366 0.0648433 0.0381765 0.0258148 0.1134545

GANMF-i 0.0100026 0.0533817 0.0333071 0.0234155 0.1547671

DeepGANMF-u 0.000236 0.0012899 0.0012194 0.0010616 0.0014267

DeepGANMF-i 0.0045621 0.0310584 0.0177842 0.0123537 0.0206563

Table 5.50: Results for cutoff 10 on CiaoDVD. Higher values are better. Best results

are in bold.

Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

GANMF-u 0.0085212 0.0945504 0.046718 0.0279302 0.2396253

GANMF-i 0.0076036 0.080545 0.0410068 0.0251971 0.2177284

DeepGANMF-u 0.0002032 0.0018843 0.0013991 0.0010962 0.0026673

DeepGANMF-i 0.0036117 0.046804 0.0222357 0.0134368 0.0446002

Table 5.51: Results for cutoff 20 on CiaoDVD. Higher values are better. Best results

are in bold.

LastFM

Tables 5.53, 5.54, 5.55 and 5.56 show the results of DeepGANMF on LastFM,

the only music dataset in this thesis. GANMF variants in this dataset per-

form very similar, something that we found interesting when comparing
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Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

GANMF-u 0.0055926 0.1492362 0.0592024 0.0299301 0.4378761

GANMF-i 0.0050236 0.1251562 0.0513823 0.0267774 0.3358973

DeepGANMF-u 0.0005244 0.0148079 0.0043573 0.001566 0.006017

DeepGANMF-i 0.0024489 0.0764839 0.0286444 0.0143492 0.1111594

Table 5.52: Results for cutoff 50 on CiaoDVD. Higher values are better. Best results

are in bold.

GANMF with the traditional MF baelines. Also DeepGANMF variants score

close to one another but with the user variant coming on top. However its

performance is still almost 3-4 times worse than that of GANMF-u, the

best model among the 4. However DeepGANMF-u’s coverage is the highest,

with a ratio of 3 compared to GANMF-u’s coverage. We also observe that in-

creasing the recommendation list length, also the coverage of DeepGANMF

changes a lot whereas GANMF-s coverage increases very little.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

GANMF-u 0.2607219 0.1338915 0.1914327 0.2009306 0.038623

GANMF-i 0.2562633 0.1318541 0.1867868 0.1935747 0.044578

DeepGANMF-u 0.0992569 0.0504045 0.0697229 0.067152 0.0359006

DeepGANMF-i 0.0677282 0.035634 0.0513143 0.0522775 0.0924456

Table 5.53: Results for cutoff 5 on LastFM. Higher values are better. Best results are

in bold.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

GANMF-u 0.1937898 0.1968786 0.2356293 0.1391564 0.0565449

GANMF-i 0.1937367 0.1973378 0.2326003 0.1357974 0.0623866

DeepGANMF-u 0.0697983 0.0710499 0.0841033 0.0441018 0.1079855

DeepGANMF-i 0.0483546 0.0506163 0.0616444 0.0359391 0.1600499

Table 5.54: Results for cutoff 10 on LastFM. Higher values are better. Best results are

in bold.

Delicious

We report the results of DeepGANMF on Delicious dataset on tables 5.57,

5.58, 5.59 and 5.60. We see a peculiar result from DeepGANMF-u, a score

of almost 0 in all cutoffs. We suspect this is due to a mode collapse of the

network or a divergence of the minimax game played by the two models. Still

when compared to the other variant, GANMF scores higher in all metrics
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Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

GANMF-u 0.1360934 0.2754476 0.278796 0.1437082 0.085583

GANMF-i 0.1360138 0.2757899 0.2755811 0.1405968 0.0896098

DeepGANMF-u 0.0437367 0.0887454 0.0938563 0.0423348 0.2682623

DeepGANMF-i 0.0327229 0.067643 0.0709883 0.0358842 0.2684324

Table 5.55: Results for cutoff 20 on LastFM. Higher values are better. Best results are

in bold.

Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

GANMF-u 0.0795117 0.4014345 0.3330374 0.1612095 0.1620349

GANMF-i 0.0796178 0.4019249 0.3300618 0.1581174 0.1544918

DeepGANMF-u 0.0214013 0.1080092 0.1022785 0.0438043 0.5764519

DeepGANMF-i 0.0203185 0.1048153 0.0866545 0.039331 0.4769737

Table 5.56: Results for cutoff 50 on LastFM. Higher values are better. Best results are

in bold.

and cutoffs, with a ratio of almost 5 on precision and almost 6 on recall.

The coverage of DeepGANMF-i is also much lower than that of GANMF at

all cutoffs.

Algorithm Prec@5 Rec@5 nDCG@5 mAP@5 Cov@5

GANMF-u 0.1383442 0.0549645 0.0777383 0.1189397 0.1041995

GANMF-i 0.120915 0.0501615 0.0684077 0.1032746 0.0914436

DeepGANMF-u 0 0 0 0 0.0011268

DeepGANMF-i 0.009695 0.0034395 0.0047121 0.0062981 0.0247461

Table 5.57: Results for cutoff 5 on Delicious. Higher values are better. Best results are

in bold.

Algorithm Prec@10 Rec@10 nDCG@10 mAP@10 Cov@10

GANMF-u 0.1251634 0.0952886 0.1096041 0.1021225 0.180807

GANMF-i 0.1150327 0.0901394 0.0996606 0.0922297 0.1641073

DeepGANMF-u 0.0000545 0.0000363 0.0000269 0.0000054 0.0017769

DeepGANMF-i 0.0147059 0.0104842 0.0101901 0.0076004 0.0486977

Table 5.58: Results for cutoff 10 on Delicious. Higher values are better. Best results are

in bold.

The previous experiment showed some interesting results that persisted

across metrics and datasets. Given the added expressiveness that non-linearities

bring into a model, especially with DNN, we were surprised to see empir-

ically that substituting the single-layer autoencoder with a deeper autoen-
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Algorithm Prec@20 Rec@20 nDCG@20 mAP@20 Cov@20

GANMF-u 0.0946351 0.1418546 0.1381279 0.0921853 0.2819294

GANMF-i 0.0958061 0.1456018 0.1337833 0.0889318 0.2610982

DeepGANMF-u 0.0000272 0.0000363 0.0000269 0.0000036 0.0019647

DeepGANMF-i 0.0187636 0.025334 0.0197045 0.011027 0.0850873

Table 5.59: Results for cutoff 20 on Delicious. Higher values are better. Best results are

in bold.

Algorithm Prec@50 Rec@50 nDCG@50 mAP@50 Cov@50

GANMF-u 0.055915 0.2201512 0.1728492 0.1032774 0.4228797

GANMF-i 0.0566231 0.2326523 0.1707571 0.0998884 0.3675946

DeepGANMF-u 0.0000109 0.0000363 0.0000269 0.0000036 0.0019936

DeepGANMF-i 0.0125708 0.0415393 0.0281336 0.0139134 0.1201624

Table 5.60: Results for cutoff 50 on Delicious. Higher values are better. Best results are

in bold.

coder and also changing the linear MF of the standard GANMF generator

to a more complex and deeper generator did not bring any improvement

in the score of GANMF. On the contrary, it worsened the performance for

all the datasets. A second interesting result was the almost 100% coverage

of DeepGANMF on the densiest datasets. A possible further investigation

would be exploring a greater number of hyperparameter optimizations given

the greater number of hyperparameters to explore.
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Chapter 6

Conclusions

In the previous chapters we presented a new MF approach, GANMF, based

on the GAN framework. While relatively new in the RS community, we

showed that learning the user and item latent factors in a MF setting through

GANs is possible and such approach can provide comparable and in some

cases even better results than other, more traditional and established MF

approaches. We also compared this new approach with one of state of the

art techniques model-based techniques that builds a model for the item-item

similarity matrix, SLIM.

Together with the baselines, PureSVD, WRMF, MF-BPR and SLIM-

BPR, we tested GANMF on different well-known datasets in the RS com-

munity and evaluated all models’ performances with accuracy and ranking

metrics. GANMF was positioned as a strong candidate technique for build-

ing MF-based CF recommenders. Moreover on datasets like MovieLens 1M

and LastFM, GANMF outperforms all other baselines providing even greater

item coverage. This indicates that GANMF can provide richer recommen-

dations by suggesting a broader spectrum of items.

We compared GANMF also with CFGAN, another GAN-based recom-

mender that uses the same vector-wise training as GANMF. Even though

CFGAN uses nonlinearities in its generator to produce plausible user/item

profiles, GANMF with its linear MF operation performed better and, at

selected datasets, led with substantial improvement in both accuracy and

ranking metrics. The only dataset where CFGAN proved to be better than

GANMF was Delicious.

We introduced GANMF as a GAN where the discriminator role is played

by a shallow autoencoder taking queues from EBGAN. As explained in sec-

tion 3.2.2, cGANs are trained with multiple data samples for each category

with which the model is conditioned. This is not feasible in RS where for



each user/item we only have one historical profile. To account for this we

included an additional loss term for the generator, the feature matching loss.

Differently from the rationale of [46], we used feature matching to enforce

conditioning on the generation process. We performed an ablation study to

understand the importance of these component in the overall architecture

and we empirically showed that they are important for achieving the best

performance out of GANMF.

We can conclude that GANs and in particular our new approach, can be

used to build robust RS models. We expect that in the future, generative

modelling will play a more substantial role in the field of RS.
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[10] Celma, Ò., and Cano, P. From hits to niches? or how popular

artists can bias music recommendation and discovery. In Proceedings

of the 2nd KDD Workshop on Large-Scale Recommender Systems and

the Netflix Prize Competition (2008), pp. 1–8.

[11] Chae, D.-K., Kang, J.-S., Kim, S.-W., and Lee, J.-T. Cfgan: A

generic collaborative filtering framework based on generative adversar-

ial networks. In Proceedings of the 27th ACM international conference

on information and knowledge management (2018), pp. 137–146.

[12] Chen, C.-W., Lamere, P., Schedl, M., and Zamani, H. Recsys

challenge 2018: automatic music playlist continuation. In Proceedings of

the 12th ACM Conference on Recommender Systems (2018), pp. 527–

528.

[13] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,

I., and Abbeel, P. Infogan: Interpretable representation learning by

information maximizing generative adversarial nets. In Advances in

neural information processing systems (2016), pp. 2172–2180.

[14] Cortes, C., and Vapnik, V. Support-vector networks. Machine

learning 20, 3 (1995), 273–297.

[15] Cremonesi, P., Koren, Y., and Turrin, R. Performance of recom-

mender algorithms on top-n recommendation tasks. In Proceedings of

the fourth ACM conference on Recommender systems (2010), pp. 39–46.

[16] Creswell, A., White, T., Dumoulin, V., Arulkumaran, K.,

Sengupta, B., and Bharath, A. A. Generative adversarial net-

works: An overview. IEEE Signal Processing Magazine 35, 1 (2018),

53–65.

[17] Frazier, P. I. A tutorial on bayesian optimization. arXiv preprint

arXiv:1807.02811 (2018).

106



[18] Funk, S. Netflix Update: Try This at Home. https://sifter.

org/~simon/journal/20061211.html, 2006. [Online; accessed 1-April-

2020].

[19] Ge, M., Delgado-Battenfeld, C., and Jannach, D. Beyond

accuracy: evaluating recommender systems by coverage and serendipity.

In Proceedings of the fourth ACM conference on Recommender systems

(2010), pp. 257–260.
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Appendix A

Parameter Update Rules

A.1 Update rules for the discriminator

We continue in this section the derivations for the update rules for the

parameters of the discriminator of GANMF as described in 3.2.1.
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The partial derivative of both A and B (both column vectors) with re-

spect to matrices ΘD and ΘE cannot be written in a matrix form so we

show the partial derivatives of each element of A and B:

∂

∂ΘD
kl

Aj = 2
(
Dec

(
Enc(xi)

)
− xi

)
j

∂

∂ΘD
kl

(
Dec

(
Enc(xi)

))
j

= 2
(
Dec

(
Enc(xi)

)
− xi

)
j
g′
(
bD + ΘD

(
Enc(xi)

))
j
δjkEnc(xi)l

where δij is the Kronecker delta with:

δij =

{
0 i 6= j

1 i = j

In a similar fashion we have:
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A.2 Update rules for the generator

We continue in this section the derivations for the update rules for the

parameters of the generator of GANMF as described in 3.2.2.
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We give the partial derivatives of term C for user and item latent factors:
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