

Microcontroller Implementation
of Event-Based Controllers

SUPERVISOR

ALBERTO LEVA

Shakeel Haider (901458) | MS Automation & Control Engineering

Academic Year 2019-2020

PAGE 1

PAGE 2

Table of Contents

Introduction .. 12

Selection of Microcontroller .. 12

Wandstem ... 12

Industrial Point of View .. 13

Organization of thesis .. 13

Implementation of Sensor Algorithms in C++.. 15

Lebesgue Sampling ... 15

Lesbesgue Sampling Flowchart ... 16

Event Generate on delta ... 17

Sample Send on Delta Flowchart ... 17

Integrate and Fire .. 18

Integrate & Fire on Absolute Value Flowchart ... 18

Integrate & Fire on Square Value of y Flowchart ... 19

Event Triggered on Delta Time Out ... 20

Event Triggered on Delta Time Out Flowchart... 20

Base Class ... 21

Execution of Sensor Algorithms in Cpp ... 22

Inheritance .. 22

Working principle.. 22

UML Diagram of the System ... 23

Implementation of control library (1st Approach) ... 25

Introduction... 25

Controller Algorithm ... 26

Effects of Proportional, Integral and Derivative Action .. 26

Windup ... 27

Design of discrete time PID controller ... 27

PID Flowcharts.. 31

Execution of PID ... 33

Plant Transfer Function UML .. 33

PAGE 3

PID Class UML ... 34

Complete system UML .. 35

Code Structure ... 36

Implementation of control library (2nd Approach) .. 37

Introduction... 37

Active versus Sleep mode in microcontroller ... 37

Execution of PID ... 38

Overall system UML ... 38

Code Structure ... 39

Results .. 41

Introduction... 41

Clk_on_delta using PID... 41

CLK_IntAndFire_abs using PID .. 41

CLK_IntAndFire_squ using PID ... 42

CLK_Delta_TimeOut using PID .. 43

CLK_Lebesgue_uniform using PID ... 43

Observation ... 44

CLK_on_delta using e-PID ... 44

CLK_IntAndFire_abs using e-PID ... 45

CLK_IntAndFire_squ using e-PID .. 46

CLK_Delta_TimeOut using e-PID ... 47

CLK_Lebesgue_uniform using e-PID .. 48

Observation ... 49

Comparison ... 49

Clk_on_delta using PID vs e-PID .. 50

Clk_IntANDFire_abs using PID vs e-PID .. 50

Clk_IntANDFire_squ using PID vs e-PID.. 51

Clk_Delta_TimeOut using PID vs e-PID ... 51

Clk_Lebesgue_Uniform using PID vs e-PID .. 52

Overall Comparison... 53

Conclusion and Future work .. 56

PAGE 4

Introduction... 56

Power consumption ... 56

Final Remarks & Future Work... 57

Bibliography ... 58

Index ... 60

PAGE 5

Table of Figures

Figure 1 WandStem Microcontroller ... 12

Figure 2 Task division ... 13

Figure 3 Lesbesgue Sampling Flowchart ... 16

Figure 4 Send on Delta .. 17

Figure 5 Integrate & fire on abs value .. 18

Figure 6 Integrate & Fire on Square value of u .. 19

Figure 7 Event triggered on delta timeout .. 20

Figure 8 Base Class flowchart ... 21

Figure 9 overall system without control lib .. 23

Figure 10 sources of PID controller action ... 25

Figure 11 Closed loop system which proportional control .. 26

Figure 12 closed loop with proportional & integral action .. 27

Figure 13 Closed loop with proportional, integral and derivative action 27

Figure 14 Digital Control .. 28

Figure 15 Continuous VS Discrete PID simulation .. 29

Figure 16 Integral block .. 29

Figure 17 Derivative Block ... 30

Figure 18 Comparison Response ... 30

Figure 19 PID main polling method ... 31

Figure 20 PID using Interrupt .. 32

Figure 21 Plant transfer function UML .. 33

Figure 22 PID_Class UML .. 34

Figure 23 Overall System UML... 35

Figure 24 header files .. 36

Figure 25 including algorithm & PID in the main source code ... 36

Figure 26 Algo.cpp ... 36

Figure 27 Power saving ... 38

Figure 28 Complete System UML ... 39

Figure 32 algo1 response by PID ... 41

Figure 33 algo2 response by PID ... 42

PAGE 6

Figure 34 algo3 response by PID ... 42

Figure 35 algo4 response by PID ... 43

Figure 36 algo5 response by PID ... 43

Figure 37 algo1 response with e-PID ... 44

Figure 38 algo1 fine-tuned response by e-PID ... 45

Figure 39 algo2 response by e-PID .. 45

Figure 40 algo2 fine-tuned response by e-PID ... 46

Figure 41 algo3 response by e-PID .. 46

Figure 42 algo3 fine-tuned response by e-PID ... 47

Figure 43 algo4 response by e-PID .. 47

Figure 44 algo4 fine-tuned response by e-PID ... 48

Figure 45 algo5 response by e-PID .. 48

Figure 46 algo5 fine-tuned response by e-PID ... 49

Figure 47 algo1 response comparison PID VS e-PID ... 50

Figure 48 algo2 response comparison PID vs e-PID .. 50

Figure 49 algo3 response comparison PID vs e-PID .. 51

Figure 50 algo4 response comparison PID vs e-PID .. 52

Figure 51 algo5 response comparison PID vs e-PID .. 52

Figure 52 overall comparison b/w PID & e-PID .. 54

Figure 53 Power chart ... 56

PAGE 7

PAGE 8

Abstract

Feedback control algorithms are essential for the proper functioning of many industrial systems. A

lot of research in the digital feedback control field is devoted to periodic and event-based control

systems. Moreover, in a considerable number of applications, these control algorithms are

implemented in an embedded and real-time software environment, namely on microcontrollers.

These control systems, due to their periodic nature, pose strong, non-negotiable requirements on

the implementations of their algorithms as the only way to guarantee the required control

performance. This, however, might lead to a non-optimal utilisation of the hardware resources: for

example, in a periodic digital controller a new value for the control variable is computed in every

cycle, also when the process reached steady state. This clearly results in an unnecessary resource

usage, like processor time and communication bandwidth.

This thesis analyses control algorithms applicable to embedded control systems, allowing for a

more balanced resource usage and dropping the strict requirement in terms of periodic execution.

This results also in a reduced power consumption and cost. A possible way to obtain this, can be

varying the sample frequency over time and dynamically schedule the control algorithms to

optimize over processor load. Another possibility is performing a control update only when the

controlled variable goes beyond a defined threshold

The second technique outlined, also allows to reduce the resources' utilisation in terms of

communication bandwidth. The main idea is to only execute the control algorithm when it is

necessary from a control performance point of view.

In summary, two types of control methods are analyzed experimentally. The results clearly indicate

the potential benefits of the second control method, with respect to the overall system performance

and in making trade-offs between control performance, software performance and power

efficiency.

PAGE 9

PAGE 10

Sommario

Gli algoritmi di controllo in anello chiuso sono essenziali per il corretto funzionamento di molti

sistemi industriali. Molta della ricerca nel campo del controllo digitale in anello chiuso è dedicata

ai sistemi di controllo periodici ed event-based. Inoltre, in un numero considerevole di applicazioni,

questi algoritmi di controllo sono implementati in un ambiente software di tipo embedded e in

tempo reale, in particolare su microcontrollori.

Le tecniche di controllo a passo fisso, a causa della loro natura, pongono requisiti stringenti per

quanto riguarda l'implementazioni dei loro algoritmi come unica modalità in grado di garantire le

prestazioni di controllo richieste. Ciò, tuttavia, potrebbe portare a un utilizzo non ottimale delle

risorse hardware: ad esempio, in un sistema di controllo digitale a passo fisso, viene calcolato un

nuovo valore per la variabile di controllo in ogni ciclo, anche quando il processo ha raggiunto il

punto di lavoro richiesto. Ciò comporta chiaramente un impiego di risorse non più necessarie, come

il tempo di processore e la banda di trasmissione dati.

Questa tesi analizza gli algoritmi di controllo applicabili a sistemi di controllo embedded,

consentendo un utilizzo più equilibrato delle risorse ed eliminando i severi requisiti in termini di

esecuzione periodica. Ciò comporta anche un consumo di energia ridotto. Un possibile modo per

ottenere questo può essere la variazione della frequenza di campionamento nel tempo e la

pianificazione dinamica degli algoritmi di controllo al fine di ottimizzare il carico del processore.

Un'altra possibilità è eseguire un aggiornamento del controllo solo quando la variabile controllata

supera una soglia ben definita.

La seconda tecnica delineata consente inoltre di ridurre l'utilizzo delle risorse di trasmissione dati.

L'idea principale è quella di eseguire l'algoritmo di controllo solo quando è necessario dal punto di

vista delle prestazioni di controllo.

In sintesi, vengono analizzati sperimentalmente due tipi di metodi di controllo. I risultati indicano

chiaramente i potenziali vantaggi del secondo metodo di controllo, rispetto alle prestazioni

complessive del sistema e nel bilanciamento tra prestazioni di controllo, prestazioni del software

ed efficienza energetica.

PAGE 11

PAGE 12

Chapter 1

Introduction

In this chapter we mainly discuss about the selection of microcontroller on which we want to

implement our control algorithms and why event-based controllers are important for industries.

SELECTION OF MICROCONTROLLER

To efficiently implement a real-time control system, a microcontroller must be used as hardware

platform. There is a wide variety of these devices available on the market, however the selection

process has to be very accurate and covering many aspects like its processing power, the available

hardware support for various communication protocols, etc.

In our case, the “Wandstem” platform has been selected.

Wandstem

This platform has been chosen for its main characteristics:

• High Performance

• MIOSIX OS

• Ultra-Low power consumption

The Wandstem platform is designed to be used in Wireless Sensor Network (WSN) applications

ranging from low power to high performance. The on-board microcontroller has a 48MHz 32bit

ARM CPU with memory protection, guaranteeing security and dependability of the application.

As regards power consumption, in deep-sleep mode this platform is characterised by having an

average drawn current of 2.4μA, enabling years of continuous operation.

The software development for this platform is based on the Miosix OS, a versatile operating system

for embedded devices which allows to write application code in C and C++ languages and offers a

wide varied of peripheral drivers to interface with the on-board hardware.

Figure 1 WandStem Microcontroller

PAGE 13

INDUSTRIAL POINT OF VIEW

The demand for wireless control networks in the industrial context continues to grow due to their

advantages such as flexibility, straightforward installation, and low costs. There are, however, still

some prudence in widely investing in wireless solutions due to well-known concerns about the

reliability and security of the existing wireless standards and compatibility with established control

network infrastructures. This thesis discusses the eligibility and deployment aspects of wireless

controls and how the presented control technique is beneficiary in terms of power consumption.

Historically, process industry adopted new technologies cautiously. However, because energy costs

are rapidly increasing, emerges an escalating need of reducing energy consumption by means of

more sophisticated building control strategies. According to a study conducted by ARC Advisory

Group - a research and advisory firm for manufacturing, energy, and supply-chain solutions - the

worldwide market for wireless technology in industrial automation will have an annual growth rate

of 32 percent, and reached $1.1 billion in 2012.

ORGANIZATION OF THESIS

This thesis is organized as follows: in Chapter 2 the different sampling and event-triggering

mechanisms are described, in Chapter 3 is presented the implementation of a software library for

periodic control, while in the following one (Chapter 4) its event-based counterpart is presented. In

Chapter 5 the results obtained with the two control methods are compared, also in terms of power

consumption, while Chapter 6 presents the general conclusions and outlines future research work.

Figure 2 Task division

PAGE 14

PAGE 15

Chapter 2

Implementation of Sensor Algorithms in C++

The algorithms analyzed were taken from the treatise developed in a precedent thesis entitled

“Periodic event-based control with past measurements transmission and multiple control

computations”. In this work, the algorithms have been implemented in C++ language to make them

suitable for a microcontroller-based control system. For the simulation point of view, only their

C++ implementation is relevant.

LEBESGUE SAMPLING

The first technique analyses the Lebesgue sampling one. According to this technique, a sample of

the process' variable y is taken only when its value crosses a predefined level line. As a

consequence, if the value of y remains for a long time between two subsequent level lines, no event

is generated at all. On the other hand, a variation of y crossing several level lines, causes a burst of

events. Usually the level lines used for event generation are spaced uniformly requiring only a

single parameter (spacing) to characterize a Lebesgue sampler.

PAGE 16

Lesbesgue Sampling Flowchart

Figure 3 Lesbesgue Sampling Flowchart

PAGE 17

EVENT GENERATE ON DELTA

This technique is the most straightforward, as an event is triggered whenever the value Δy of the

difference between the current value of the process' variable and the one at the previous event, is

greater than a certain threshold. In some cases, two different thresholds for Δy can be used, one for

positive and one for negative values, giving rise to symmetric or asymmetric versions of this

algorithm.

Sample Send on Delta Flowchart

Figure 4 Send on Delta

PAGE 18

INTEGRATE AND FIRE

This sampling technique is similar to the previous one, with the exception that here the time integral

of Δy is compared against a given threshold. The integral is taken starting from the time instant of

the last event triggered and is reset to zero when an event occurs.

Integrate & Fire on Absolute Value Flowchart

Figure 5 Integrate & fire on abs value

PAGE 19

Integrate & Fire on Square Value of y Flowchart

Figure 6 Integrate & Fire on Square value of u

PAGE 20

EVENT TRIGGERED ON DELTA TIME OUT

The absence of triggered events generally can be attributed to two causes: the controlled process

reached a steady-state situation or, less likely, in case the transducer measuring the process' output.

However, being in the first of the above situations, does not necessarily mean that the error between

y and its reference value is zero: given the structure of the triggering mechanism, no event is

generated whenever Δy is smaller than the triggering threshold, but no check is performed on the

control error.

 The solution to problems above comes with the introduction of a timeout mechanism,

unconditionally triggering an event when a given amount of time elapses.

Event Triggered on Delta Time Out Flowchart

Figure 7 Event triggered on delta timeout

PAGE 21

BASE CLASS

This class is used internally by all the implementations by inheritance and contains all the basic

and fundamental variables. This module allows to randomly generate the value of u or to assign it

a user-defined value

Figure 8 Base Class flowchart

PAGE 22

EXECUTION OF SENSOR ALGORITHMS IN CPP

As mentioned before, all the sensing algorithms were implemented in C++ language. Before

prosecuting with the analysis, some concepts of object-oriented programming are given to the

reader to allow for a better understanding of the subsequent chapters.

Inheritance

Inheritance is one of the major concepts of object-oriented programming, allowing to define a class

in terms of another one, making easier to create and maintain an application. This also gives the

opportunity to reuse code functionalities and speeds up implementation time: when creating a class,

instead of writing completely from scratch new data members and member functions, the

programmer can make the new class inherit the members of an existing one, also called "base class".

Moreover, a class can be derived from more than one classes, inheriting data and functions from

all of them. The inheritance can take different forms, based on an access specifier. The three

possible inheritances are listed below:

Public Inheritance: When deriving a class from a public base class, public members of the base

class become public members of the derived class and protected members of the base class become

protected members of the derived class. A base class's private members are never accessible directly

from a derived class but can be accessed through calls to the public and protected members of the

base class.

Protected Inheritance: When deriving from a protected base class, public and protected members

of the base class become protected members of the derived class.

Private Inheritance: When deriving from a private base class, public and protected members of

the base class become private members of the derived class.

So, for execution we need to consider all these points in our mind.

Working principle

Our implementation is structured in a way such that there is one base class containing all basic and

fundamental variables and a simple algorithm described in the previous section. The different

sampling techniques, then, are implemented in ad-hoc subclasses, inheriting from the common base

one and eventually overriding some of its methods.

The following UML gives a complete outline of the sub classing structure.

PAGE 23

UML Diagram of the System

Figure 9 overall system without control lib

PAGE 24

PAGE 25

Chapter 3

Implementation of control library (1st Approach)

INTRODUCTION

Nowadays, many control techniques - like H2, H∞, LQ, LQG, MPC, PID,… - are eligible to be

implemented on a microcontroller. Among them, the control technique chosen for this thesis is the

PID one in virtue of its maturity and usability from the industrial point of view. PID control is by

far the most common way of implementing feedback control systems and is commonly used in both

industrial and laboratory equipment. Currently, in process control more than 95% of the control

loops are employ a PID controller structure and most of them in its PI form.

This control technique plays a relevant role also distributed control system and is often combined

with logic process control as a building block for large automation systems, like the ones for energy

production, transportation and manufacturing. The advent of microcontrollers, then, allowed to

provide additional features like automatic tuning, gain scheduling and continuous adaptation.

In this chapter concepts of PID control is discussed, as long as the methods for choosing its tuning

parameters. During the analysis of this control technique, which has a linear mathematical behavior,

an important nonlinear phenomenon has to be considered, being the actuator's saturation. This, in

combination with controllers based on an integral action, gives rise to an effect called integral

windup being detrimental for the control system's performance. This phenomenon will be discussed

in depth in the following also presenting anti-windup techniques Finally, the microcontroller-based

implementation of PID control systems will be presented.

Figure 10 sources of PID controller action

PAGE 26

CONTROLLER ALGORITHM

The PID control technique is based on the following equation:

𝑢(𝑡) = 𝐾𝑝 ∗ 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏

𝑡

0

+ 𝐾𝑑
𝑑𝑒

𝑑𝑡

where u is the control signal and e is the control error (e = w − y). The reference value, w, is also

called set-point. The control signal, then, is given by the sum of three terms: one proportional to

the error, one proportional to the time integral of it and one proportional to the derivative of the

error. The controller parameters are proportional gain Kp, integral gain Ki and derivative gain Kd.

The above equation can take the following equivalent form:

𝑢(𝑡) = 𝐾𝑝 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏

𝑡

0

+ 𝑇𝑑
𝑑𝑒(𝑡)

𝑑𝑡
)

where Ti is the integral time constant and Td the derivative time constant. The proportional part

acts on the present value of the error, the integral represents an average of past errors and the

derivative can be interpreted as a prediction of future errors. Note that the control signal u is formed

entirely from the error e without any feed forward term.

Effects of Proportional, Integral and Derivative Action

A pure proportional control is obtained setting Ti = ∞ and Td = 0 in the equation above. In this case

the steady state error is never zero and decreases with increasing gain which, however, increases

the probability of having an oscillatory response.

 Figure 12 illustrates the effects of adding the integral action, whose effect increases by decreasing

integral time Ti.

Figure 11 Closed loop system which proportional control

PAGE 27

Figure 12 closed loop with proportional & integral action

Figure 13 shows the effects of adding a derivative action: the parameters K and Ti were deliberately

chosen such that the closed-loop has an oscillatory response. Damping increases with derivative

time but decreases again when derivative time becomes too large.

Figure 13 Closed loop with proportional, integral and derivative action

Windup

Windup is a nonlinear phenomenon caused by the presence of actuator saturations when a controller

with an integral action is used. All actuators have limitations and, for a control system with a wide

range of operating conditions, it may happen that the control variable reaches the actuator limits.

When this happens the feedback loop is broken, and the system runs in open loop because the

actuator will remain at its limit independently from the process' output. If a controller with

integrating action is used, the error will continue to be integrated making integral term to become

very large. It is then required that the error has opposite sign for a long period before things return

to normality. The consequence is that any controller with integral action gives large transients when

the actuator saturates.

Design of discrete time PID controller

In the last years, analog controllers have been replaced by their digital, or discrete-time,

counterparts. As all the other digital control systems, the discrete-time PID controller requires the

usage of analog to digital converters in order to obtain numerical data from the process' output,

which is usually measured using an analog transducer. The equations used to compute a new control

action, instead, are obtained by the continuous-time ones by applying the so-called Z transform. In

the end, a digital to analog converter is required to obtain an analog signal for the process actuators.

PAGE 28

The block diagram below shows a closed-loop system having a digital controller, evidencing the

converters mentioned before:

Figure 14 Digital Control

As regards the PID controller's equation, the application of the Laplace Transform to the time-

domain equation presented in the previous paragraph lead to the following one, in the frequency

domain:

 𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑆
+ 𝐾𝑑 ∗ 𝑠

Then, is a common practice to modify the derivative term to a low-pass filter to make the control

variable less susceptible to noise:

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑆
+

𝐾𝑑 ∗ 𝑁

1 + 𝑁
𝑠⁄

The continuous-time equation above can be discretised using three methods, namely forward Euler,

backward Euler and the trapezoidal ones.

Given a sampling period Ts, the integral term can be represented in discrete from as:

𝐾𝑖∗𝑇𝑠

𝑍−1
 or

𝐾𝑖∗ 𝑇𝑠∗𝑍

𝑍−1
 or

𝐾𝑖∗𝑇𝑠

2
∗

𝑍+1

𝑍−1

Where the first term comes from the usage of the forward Euler method, the second one from

backward Euler and the last one from Trapezoidal one.

Similarly, the derivative term is discretised in the following way:

𝑁(𝑍−1)

𝑍−1+𝑁∗𝑇𝑠
 or

𝑁(𝑍−1)

(1+𝑁∗𝑇𝑠)𝑍−1
 or

𝑁

(1+𝑁∗𝑇𝑠)∗ 𝑍+1/2(𝑍−1)

It is apparent that, for all terms above the sampling period has an effect on the integral and gains.

PAGE 29

For example, using the backward Euler method to obtain the discrete-time representation of a PID

controller leads to:

𝐶(𝑧) = 𝐾𝑝 +
𝐾𝑖 ∗ 𝑇𝑠 ∗ 𝑧

𝑧 − 1
+

𝐾𝑑 ∗ 𝑁 ∗ (𝑧 − 1)

(1 + 𝑁 ∗ 𝑇𝑠) ∗ 𝑧 − 1

In the following a comparison between continuous-time and discrete-time realistions of the same

controller is given. The controlled process consists of a DC motor with a low-pass filter at its input.

The discretisation step has been set to 0.01s.

Figure 15 Continuous VS Discrete PID simulation

The images below show the integral and derivative blocks of the controller:

Figure 16 Integral block

PAGE 30

Figure 17 Derivative Block

The results are shown below: the step responses from the continuous (green color) and discrete (red

color) time realizations match almost exactly.

Figure 18 Comparison Response

PAGE 31

PID Flowcharts

The periodic calling of the function performing the control update can be realized following two

different approaches: the first one is based upon a polling mechanism, while the second makes use

of system interrupts. The first approach is intended to be called from the main application code that

updates both the error variable and the PID error state variable.

The flow chart above shows the PID controller implementation using the polling mechanism:

Figure 19 PID main polling method

PAGE 32

On the other hand, in the interrupt-based approach, the function computing a new control update is

called by an interrupt service routing usually triggered by a periodic timer.

The flow chart below summarizes this approach:

Figure 20 PID using Interrupt

PAGE 33

EXECUTION OF PID

In our simulation environment, the process has been assumed to have a first-order transfer function:

𝑌(𝑠)

𝑈(𝑠)
=

µ

(1 + 𝑠 ∗ 𝜏)

Where u is input and y the output.

• 𝜏: pole's time constant.

• µ: gain

Plant Transfer Function UML

The following UML diagram shows the implementation of the class representing the process

transfer function. The class' constructor takes as input all the parameters and assign them to the

corresponding class members, while the transfer function equation is stored and evaluated in a

dedicated function.

Figure 21 Plant transfer function UML

PAGE 34

PID Class UML

For the controller, a dedicated class has been made, keeping some of the parameters in private

member functions. The constructor of this class allows to specify the regulator's tuning parameters,

while a separate function allows for the computation of a new value for the control variable that is,

allows to perform a control step.

Figure 22 PID_Class UML

PAGE 35

Complete system UML

To give the reader a complete picture of the code structure, a summarizing UML diagram has been

made. This diagram connects the one shown in figure 9 with the ones describing the structure of

the controller and process classes and specifies for a main class governing the behavior of the

various parts.

Figure 23 Overall System UML

PAGE 36

Code Structure

The complete codebase has been subdivided in different source files, each of which is related to a

particular functionality, as shown below.

Figure 24 header files

The five different sampling algorithms all inherit from a common base class and there is a dedicated

header file for all of them. There is also a separate header file for the class representing the PID

controller. This structure allows to select the sampling method to use by including the

corresponding header file in the main application source code, as shown below:

Figure 25 including algorithm & PID in the main source code

Figure 26 Algo.cpp

PAGE 37

Chapter 4

Implementation of control library (2nd Approach)

INTRODUCTION

In the previous chapters we have discussed the effects of proportional, integral, and derivative

control and analyzed the continuous and discrete time realizations of the PID controller, also

comparing their performance.

Here, an alternative approach is presented, whose key point lies on having the controller not

computing a new value for the control action even when steady state error is zero, allowing for

savings both in terms of energy and bandwidth. In this implementation, when the controlled process

reaches steady state, the microcontroller on which the control system is hosted is put in a deep-

sleep mode, keeping active only a small set of its peripherals. The microcontroller is then put back

in active mode whenever the value of the error becomes different from zero.

ACTIVE VERSUS SLEEP MODE IN MICROCONTROLLER

In many embedded applications the processor does not need to run continuously, and peripherals

are idle for most of the time. The overall power consumption, then, can be lowered by taking

advantage of various “sleep” modes available for the microcontroller.

The most common sleep modes are the following:

• Power Down Mode

• Power Save Mode

• Idle Mode

In Power Down mode everything is shut down, including the clock source. In Power Save mode

everything is turned off except a real-time clock running from a crystal oscillator which keeps track

of time. Idle mode is a shallow sleep mode where only parts of the device are shut down, leaving

the other ones running. These different sleep modes allow to have great flexibility in shutting down

any part of the microcontroller that is not necessary for the current task. The amount of power that

can be saved depends on the sleep mode being used.

PAGE 38

Figure 27 Power saving

Since a microcontroller can spend substantial amounts of time inactive, it is important to consider

power consumption in sleep modes as well as active power consumption. Many designers use a

power budget methodology to determine the average power consumption and to calculate the

battery requirements. Although a great attention is paid to active power consumption, the level of

importance to be attributed to a given power saving mode depends on the time spent with the

microcontroller in that operating mode and on the duty cycle between them and active mode.

For example, in applications like thermostats, keyless entry, or security systems the processor

spends most of its time in an idle state. In these applications, sleep mode may have the greatest

influence on the overall power consumption, and it will be the most important parameter to be

considered.

EXECUTION OF PID

According to the previous considerations, the PID controller has to be implemented differently

from the methodology outlined in the previous chapters making the controller run intermittently.

Suppose that the control system starts with the microcontroller in running mode and executing

some control steps: whenever the controlled variable reaches steady state, it is apparent that control

intervention is no more required thus, the execution of the control algorithm is stopped and the

microcontroller is, possibly, put in a deep sleep mode. However, some parts are kept active and

monitoring the process' output variable in order to wake up the control system whenever is

necessary.

For the simulation of this technique, the same process structure and the same controller and process

C++ class' structures of Chapter 3 were used.

Overall system UML

The UML diagram for the overall system according to the implementation presented in this chapter,

is shown in figure 28. Comparing this diagram with the one of Figure 23, emerges that, here, the

function of the PID class computing a new control action is no more called directly from the main

class block, but from within one of the sampling algorithms. This makes the complete program

computing a new control action only when the process' output diverges from its steady-state value

for more than a prescribed amount, as detected by one of the sampling algorithms presented in the

previous chapters.

PAGE 39

Figure 28 Complete System UML

Code Structure

The source code has been structured in a way similar to the one described in Chapter 3, to which

the interested reader is addressed.

PAGE 40

PAGE 41

Chapter 5

Results

INTRODUCTION

In this chapter the results coming from the application of each of the sampling approaches described

in Chapter 2, with both the control structures of Chapters 3 and 4, are presented and discussed.

Finally, a comparison between the two control approaches is made, drawing conclusions about

which of the two is the best in terms of energy savings and response time.

CLK_ON_DELTA USING PID

In this case the sampling method used is the "send on delta" one, applied to the always-active PID

control structure. Blue line is the set-point, while the red one is the process' output variable.

Figure 29 algo1 response by PID

CLK_INTANDFIRE_ABS USING PID

In this case the sampling method used is the "integrate and fire" one where the integral is computed

on the absolute value of the error, coupled with the always-active PID control structure.

PAGE 42

Figure 30 algo2 response by PID

CLK_INTANDFIRE_SQU USING PID

In this case the sampling method used is the "integrate and fire" one where the integral is computed

on the squared value of the error, coupled with the always-active PID control structure.

Figure 31 algo3 response by PID

PAGE 43

CLK_DELTA_TIMEOUT USING PID

Here the "send on delta" method is used, extended with the timeout mechanism and with the

always-active PID control structure.

Figure 32 algo4 response by PID

CLK_LEBESGUE_UNIFORM USING PID

Here the "Lebesgue sampling" method is used, together with the always-active PID control

structure.

Figure 33 algo5 response by PID

PAGE 44

OBSERVATION

Analyzing the time responses, we can conclude that the PID control algorithm is correct: the profile

of the response is smooth and the settling time small. The behavior of the second form of the control

algorithm, the one described in Chapter 4, is now studied keeping the same process structure of the

tests shown before and the same sampling techniques.

CLK_ON_DELTA USING e-PID

Here the sampling method is the "send on delta one" and the control algorithm is executed only

when an event is triggered.

Figure 34 algo1 response with e-PID

With respect to the previous case, here the closed-loop system's response is not very satisfactory.

The controller tries to reach the set-point, but there is some oscillatory behavior of the controlled

variable and a greater settling time.

From this emerges that the tuning of the regulator has to be slightly modified in order to

accommodate for the differences in its execution. The re-tuned controller, then, has been tested

again with the results shown in Figure 38. In this case, the controller was effectively active for 462-

time instants, while its fixed-step counterpart remained active for 800-time instants.

PAGE 45

Figure 35 algo1 fine-tuned response by e-PID

CLK_INTANDFIRE_ABS USING e-PID

Here the sampling method is the "integrate and fire" with the integral computed on the absolute

value of the error and the control algorithm is executed only when an event is triggered.

Figure 36 algo2 response by e-PID

As in the previous case, the on-demand execution of the controller lead to oscillatory response and

an enlarged response time. After a proper re-tuning, whose results are shown in Figure 40, the

PAGE 46

behavior of the closed-loop system is satisfactory. In this case, the controller code was executed

for 548-time instants, with respect to the 800 taken by the fixed-rate implementation.

Figure 37 algo2 fine-tuned response by e-PID

CLK_INTANDFIRE_SQU USING e-PID

Here the sampling method is the "integrate and fire" with the integral computed on the squared

value of the error and the control algorithm is executed only when an event is triggered.

Figure 38 algo3 response by e-PID

PAGE 47

As in the previous case, the on-demand execution of the controller lead to oscillatory response and

an enlarged response time. After a proper re-tuning, whose results are shown in Figure 42, the

behavior of the closed-loop system is satisfactory. In this case, the controller code was executed

for 472-time instants, with respect to the 800 taken by the fixed-rate implementation.

Figure 39 algo3 fine-tuned response by e-PID

CLK_DELTA_TIMEOUT USING e-PID

Here the sampling method used is the "send on delta" complemented with a timeout mechanism

and the control algorithm is executed only when an event is triggered.

Figure 40 algo4 response by e-PID

PAGE 48

As in the previous case, the on-demand execution of the controller lead to oscillatory response and

an enlarged response time. After a proper re-tuning, whose results are shown in Figure 44, the

behavior of the closed-loop system is satisfactory. In this case, the controller code was executed

for 462-time instants, with respect to the 800 taken by the fixed-rate implementation.

Figure 41 algo4 fine-tuned response by e-PID

CLK_LEBESGUE_UNIFORM USING e-PID

In this case the "Lebesgue sampling" method is used, and the control algorithm is executed only

when an event is triggered.

Figure 42 algo5 response by e-PID

PAGE 49

Also, in this case the system has an enlarged response time, however the oscillatory behavior is

reduced. After a proper re-tuning, whose results are shown in Figure 46, the behavior of the closed-

loop system is satisfactory. In this case, the controller code was executed for 554-time instants,

with respect to the 800 taken by the fixed-rate implementation.

Figure 43 algo5 fine-tuned response by e-PID

OBSERVATION

Analyzing the results, it can be concluded that the on-demand control computation took roughly

one half of the time steps when compared to the fixed-step control technique. As pointed out in the

previous chapters, this allows for relevant savings both in terms of energy and transmission

bandwidth.

COMPARISON

A side-by-side comparison between the two techniques for control computation is now presented

with the aim of fining which one performs better in terms of performance and power efficiency.

In all the comparison graphs the blue line represents the set-point, the red dashed one the output

response of the fixed-rate closed-loop system, the yellow line the output response of the event-

based control system and, finally, the purple one the output response of the event-based control

system after the PID controller tuning has been refined.

PAGE 50

Clk_on_delta using PID vs e-PID

Figure 44 algo1 response comparison PID VS e-PID

In this case the fixed-rate controller gave the best performance. The fine-tuned event-based

realization, however, has a response profile very similar but consumes roughly half the CPU time.

In a tradeoff perspective among power and performance, this latter technique allows to achieve

both a good closed-loop response and important power savings.

Clk_IntANDFire_abs using PID vs e-PID

Figure 45 algo2 response comparison PID vs e-PID

PAGE 51

In this case the closed-loop response is almost equal for the fixed-rate and event-based realizations.

The event-based one, however, requires roughly one half of the time steps used by the fixed-rate

one.

Clk_IntANDFire_squ using PID vs e-PID

Figure 46 algo3 response comparison PID vs e-PID

In this case the closed-loop response is almost equal for the fixed-rate and event-based realizations.

The event-based one, however, requires roughly one half of the time steps used by the fixed-rate

one.

Clk_Delta_TimeOut using PID vs e-PID

Also, here the closed-loop response is almost equal for the fixed-rate and event-based realizations.

The event-based one, however, requires roughly one half of the time steps used by the fixed-rate

one.

PAGE 52

Figure 47 algo4 response comparison PID vs e-PID

Clk_Lebesgue_Uniform using PID vs e-PID

The usage of "Lebesgue sampling" method resulted to have a little impact on the performance of

the event-based control algorithm, which gave a closed-loop response comparable to the one of the

fixed-step one.

Figure 48 algo5 response comparison PID vs e-PID

PAGE 53

Overall Comparison

In all the five cases, the fine-tuned event-based control technique gave results comparable to the

ones given by the fixed-rate one, if not equal. The former, however, brings in significant advantages

in terms of processor time and, consequently, drawn power.

The overall comparison of each algorithm is shown below.

PAGE 54

Figure 49 overall comparison b/w PID & e-PID

By observing the responses in the plot, we can say that the response of all-time active PID and e-

PID is almost same.

PAGE 55

PAGE 56

Chapter 6

Conclusion and Future work

INTRODUCTION

In this chapter we obtained results are analyzed and discussed basing on control performance and

power consumption, the latter being a key parameter in a low-power environment.

POWER CONSUMPTION

Due to the fact that the power requirements of embedded systems vary depending upon both

hardware and software specifications, let us define a general criterion to evaluate power

requirements of proposed system with respect to present solutions.

Basing on the assumption that the microcontroller is normally kept in a stand-by or power-off mode

and activated only when an event is triggered, we can consider power consumption to be directly

proportional to the number of events generated Hence, we can use the number of triggered events

as the evaluation parameter when making comparisons.

If we make a power consumption chart according to the value of computation steps taken by each

controller, we can easily find the most energy efficient algorithm.

Figure 50 Power chart

According to the results of the previous chapter and to the power chart above, the fixed-rate PID

controller has the maximum power consumption, but it also provides the best response. On the

other hand, fine-tuned event-based controllers consume less power but provide as well as good

800 800 800 800 800

462

548
472 462

554

338

466
405

319 303

0

100

200

300

400

500

600

700

800

900

Algo-1 Algo-2 Algo-3 Algo-4 Algo-5

Power Chart

All Time Active PID Fine Tuned e-PID e-PID

PAGE 57

response. Finally, the non-optimized version of the event-based controllers have low power

consumption but also bad closed-loop responses.

FINAL REMARKS & FUTURE WORK

In this thesis work, a PID control library has been written following two different approaches,

detailed in Chapters 3 and 4. Then, a deep analysis of their behavior has been performed in order

to determine which approach among the two gives the better closed-loop response and allows for

significant energy savings.

From the simulations emerged that the fixed-rate PID controller gives the best control response but

it also implies a huge power consumption by requiring the host microcontroller to be always active.

Event-based methods led to significant power savings but come at the cost of a degraded closed-

loop response. More in detail, an enlargement of the threshold for event triggering leads to lower

power consumption but at the cost of a poor response. Increasing the threshold allows to have better

response profiles, however it implies a large power consumption.

For future work one can implement advanced control techniques and analyze their consumed

power-vs-response trade-off model. If a good trade-off exists, one can obtain an advanced control

system with reduced power consumption.

PAGE 58

Bibliography

[1] SEVA, S. (2019). Periodic event-based control with past measurements transmission and

multiple control computations. Design, analysis, and FPGA implementation.

[2] El-Sharif, I., Hareb, F., & Zerek, A. (2014). Design of discrete-time PID controller. In

International Conference on Control, Engineering & Information Technology (CEIT'14) (pp. 110-

115).

[3] Valenti, C. (2004). Implementing a pid controller using a pic18 mcu. Microchip Technology.

[4] Åström, K. J. (2002). Control system design lecture notes for me 155a. Department of

Mechanical and Environmental Engineering University of California Santa Barbara, 333.

[5] Holberg, A. M., & Saetre, A. (2006). Innovative techniques for extremely low power

consumption with 8-bit microcontrollers. Atmel White Paper.

[6] Scilab.org. 2020. Discrete-Time PID Controller Implementation | Www.Scilab.Org. [online]

Available at: <https://www.scilab.org/discrete-time-pid-controller-implementation>.

[7] Shenton, A. T., & Shafiei, Z. (1994). Relative stability for control systems with adjustable

parameters. Journal of guidance, control, and dynamics, 17(2), 304-310.

[8] Åström, K. J., & Hägglund, T. (1984). Automatic tuning of simple regulators with specifications

on phase and amplitude margins. Automatica, 20(5), 645-651.

[9] Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. trans.

ASME, 64(11).

[10] Ho, W. K., Hang, C. C., & Zhou, J. (1997). Self-tuning PID control of a plant with under-

damped response with specifications on gain and phase margins. IEEE Transactions on Control

Systems Technology, 5(4), 446-452.

PAGE 59

PAGE 60

Index

A

algorithms, 8, 15, 21, 22

Algorithms, 15

C

Clk, 41, 42, 43, 44, 45, 46, 47, 48

Conclusion, 56

control library, 25, 37

D

Derivative, 26, 30

discrete, 27, 28, 30, 37, 58

E

energy, 25, 56

e-PID, 50, 51, 52, 54

event-based, 8, 15, 58

F

flowchart, 21

Flowchart, 16, 17, 18, 19, 20

future, 26, 57

I

Implementation, 0, 15, 25, 37, 58

Inheritance, 22

Integral, 26, 29

M

Microcontroller, 0, 12

MIOSIX, 12

O

OS, 12

overall, 8, 23, 37, 53, 54

P

PID, 25, 26, 27, 29, 31, 32, 33, 34, 36, 37, 38, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 58

Plant, 33

Proportional, 26

S

structure, 35

U

UML, 22, 23, 33, 34, 35, 38, 39

W

Wandstem, 12

WandStem, 12

Windup, 27

