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Abstract

In recent years, long short-term memory networks (LSTM), due to their sequence

learning abilities, have moved the performance frontier forward in a large variety of

machine learning (ML) application fields.

The objective of this thesis is to test their effectiveness in stock market predictions

and in the construction of an illustrative trading strategy. Specifically, the study

does not want to benchmark LSTM to show their edge over other ML models; rather,

it aims to deliver useful hints regarding managerial decisions for the implementation

of LSTM based trading systems.

In doing so, an original approach providing for different LSTM networks predicting

out-of-sample directional movements for 44 stocks in the S&P500 from November

2013 to November 2019 at different horizons is employed. It aims both to deal with

the bias by ML trading systems to focus only on returns maximization, neglecting

risk considerations, and to facilitate the identification of a forecasting horizon range

in which an investment strategy can be profitably performed.

From a data science perspective, results prove LSTM networks’ ability in recogniz-

ing proper recurrent patterns within stock price time-series: they reach peaks in

accuracy higher than 40%. From a financial one, the strategy created thanks to the

predictions by LSTM networks delivers positive profits of 78.3%.

Moreover, results challenge the standard training approach, followed also in this

thesis, regarding the employment of a dataset composed just by most recent and

strictly temporally close to the trading period observations; the evidence creates the

conditions to think about the possibility to train specific models with observations
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coming from periods characterized by market conditions as similar as possible to

the one actually playing in the market.

In conclusion, to train all models, technical indicators and macroeconomic variables

have been added to daily returns for the first time in LSTM literature, at least to

the best of our knowledge. Anyhow, tests conducted to assess the benefits deriving

from their introduction in the input features set raise doubts about their massive

use in financial literature.
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Sommario

Recentemente, le reti di memoria a lungo termine (LSTM), grazie alla capacità di

apprendimento sequenziale, hanno portato ad un incremento delle prestazioni in una

grande varietà di campi di applicazione machine learning (ML).

L’obiettivo della tesi è quello di testare la loro efficacia per la previsione del mercato

azionario e per la costruzione di una strategia di trading illustrativa. Nel fare ciò,

lo studio non intende confrontare le loro performance con modelli benchmark; vuole

piuttosto fornire indicazioni rispetto alle decisioni operative da prendere per un loro

efficace utilizzo.

Nel lavoro empirico, viene adottato un approccio originale che prevede l’utilizzo

di reti con differenti orizzonti di previsione per la predizione del movimento del

prezzo di 44 azioni appartenenti al S&P500 da Novembre 2013 a Novembre 2019.

L’approccio mira sia ad affrontare la tendenza da parte dei sistemi di trading ML

a focalizzarsi sulla massimizzazione dei ritorni, tralasciando valutazioni di rischio,

sia a facilitare l’identificazione di un intervallo di orizzonte di previsione adatto alla

creazione di una strategia di investimento ML.

Da un punto di vista data science, i risultati ottenuti dimostrano la potenzialità delle

reti LSTM nel riconoscimento di pattern all’interno di serie temporali finanziarie:

le reti raggiungono picchi di accuracy superiore al 40%. In termini di redditività, la

strategia creata offre profitti positivi del 78,3%.

Inoltre, i risultati ottenuti sfidano l’usuale approccio di training riguardante l’esclusivo

impiego di osservazioni temporalmente precedenti a quelle del periodo di trading;

evidenze fanno pensare alla possibilità di allenare i modelli con osservazioni proveni-
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enti da periodi caratterizzati da condizioni di mercato il più simili possibile a quelle

presenti durante il periodo di investimento.

Infine, per allenare tutti i modelli, sia indicatori tecnici che variabili macroeco-

nomiche sono stati inseriti nel dataset per la prima volta in letteratura, almeno per

quella che è la conoscenza dell’autore. Tuttavia, test condotti per valutare i ben-

efici derivanti dalla loro introduzione sollevano dubbi sul loro massiccio utilizzo in

letteratura.
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Executive Summary

Stock market prediction is one of the most difficult and challenging problem to solve,

not only within financial markets applications, but among all prediction problems

generally. This difficulty mainly comes from countless factors that can affect stock

price but, more importantly, from investors’ behavior. Investors’ rationality is indeed

considered the discriminant factor regarding the possibility to eventually predict the

stock market.

Two important theories have been presented in financial literature regarding

financial markets and the related possibility to predict their future movements: Ef-

ficient Market Hypothesis (EMH) and Adaptive Market Hypothesis (AMH). EMH,

supposing investors’ rational expectations, assumes markets to be efficient and con-

sequently stock prices to incorporate all past and current information. According to

EMH, past stock price movements cannot be exploited to predict future price move-

ments since future price movements will be exclusively determined by yet unknown

information. For this reason, EMH considers wasted all efforts dedicated to the anal-

ysis of financial time-series and abnormal returns impossible to be systematically

achieved from it. AMH, instead, tries to reconcile EMH with persistent evidence

of irrationality of financial markets. AMH considers indeed, under specific circum-

stances, the possibility to exploit market weaknesses (i.e. identifiable patterns) and

past stock price movements so as to obtain positive abnormal returns.

In such context, backed by evidence and afterwards by AMH, professionals in

financial markets have always tried to challenge market efficiency applying different

techniques in search of arbitrage opportunities. Particularly, in recent years, machine
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learning algorithms have emerged as promising tools to do so. Machine learning

models, in fact, have many advantages over traditional econometrics models typically

applied for the study of financial time-series: they are assumptions independent, they

are able to find patterns and irregularities as well as detecting multi-dimensional

non-linear connections in data and, finally, they have the ability to extract rules

from large sets of data.

This thesis fits into this stream since it deals with the application of a state-of-

the-art machine learning algorithm for the purpose of detecting valuable patterns to

predict stock market movement and to build a profitable equity investment strategy.

The research question of the thesis is indeed the following: is it possible to achieve

abnormal returns in equity market through the use of a recent and powerful Machine

learning technique?

Literature Review

To answer this research question, in the beginning, the thesis analyzes some of the

most promising academic researches dealing with machine learning stock market

predictions in a non-systematic literature review (Chapter 2). Proving the impor-

tant gap between academic finance and the financial industry, which already makes

extensive use of ML systems, the vast majority of such researches belongs to the

computer science field.

In any case, at first, from the review the researchers’ purpose to focus on dif-

ferent aspect of machine learning applied to financial time-series emerges: a part

of the literature is found oriented to look at ML models as supporting tools for

more traditional approaches to investment, rather than proper tools able to extract

information from a pool of data by their own; a second and most consistent part,

instead, is found focused on the development of trading systems exclusively based

on ML algorithms. Furthermore, among this second set of approaches, two subsets

are recognised: the first one dedicated to the identification of the most appropriate
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ML model, among the ones presented in computer science literature, for signal gen-

eration, while the second one more oriented on features selection so as to find the

most appropriate variables and techniques able to facilitate information extraction

by models themselves.

Even more importantly than that, the most significant evidence emerging from

the literature regards the temporal evolution of models employed for stock market

predictions. Over the last ten years indeed, it is identifiable a precise trend in lit-

erature for which researchers have passed from taking advantage of models such as

classification trees or support vector machines to extensively employing neural net-

works, extending through time, thanks to higher computational power availability,

their depth and width. The reason of this evolution has to be found in the incredible

suitability of neural networks to cope with non-linear dependencies lying among ob-

servations within the dataset. In very recent years, moreover, this trend has further

evolved starting to focus on the implementation of recurrent neural networks (RNN)

for the creation of profitable trading systems. This progress has to be attributed to

the RNN advantage, over standard neural networks, of being specifically designed

to extract information from correlated observations such as the ones in time-series.

Particularly, among the different variations of RNN, long short-term memory neural

networks (LSTM), being yet successfully employed in many fields outside finance,

have emerged as state-of-the-art algorithms so much so that they have been started

to be employed also in academic financial research.

Throughout the review, the reasons why ML financial literature today founds

its research upon LSTM networks results evident. If standard recurrent neural net-

works have represented a great evolution transforming neural networks from static

models able to incredibly approach non-linear dependencies to dynamic models able

to do the same from a sequence of correlated observations; possibly, LSTM have

moved the performance frontier set by RNN further. Fischer and Krauss (2018)

find in their empirical study how LSTM networks over-perform “classic” ML models

such as RAF and logistic regression in forecasting stock price movement. But even
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more importantly, they find LSTM to be better in forecasting and in generating an

investment strategy than deep feed-forward neural networks. Sirignano and Cont

(2019) help understanding the results uncovering evidence of non-linearity and long

memory in financial time-series. Particularly this last feature results to be the key

factor to understand LSTM suitability to financial market predictions. To prove

that, Liu and Liu (2018) find indeed how two variations of standard RNN specifi-

cally created to consider long-term dependencies such as LSTM and GRU manage

to perform better than standard RNN in their empirical research.

Machine Learning for Financial Market Predictions

Subsequently, after the literature and before the presentation of the experimental

work, the thesis tries to define a theoretical framework regarding the application

of machine learning models for financial market predictions (Chapter 3). Even if

not containing any research novelty, this attempt has to be considered an important

contribution since it merges theoretical concepts from both machine learning and

finance: until now, it has not been yet emerged a well-defined field of study com-

bining this two domains, even if their union has been reality in the business world

for many years.

The framework evidently begins defining machine learning and the related con-

cept of statistical arbitrage (Section 3.1). After that, it focuses on a detailed

description of the functioning of all the main algorithms emerged from the litera-

ture review starting from Classification Trees (Section 3.2.1), passing through Sup-

port Vector Machines (Section 3.2.2) and Feed-forward Neural Networks (Section

3.2.3) to finally arrive to Recurrent Neural Networks with an emphasis on Long

Short-Term Neural Networks. All these algorithms are treated with the aim to re-

trace the history of academic approaches so as to give the reader a clear idea of how

ML instruments have evolved in time becoming more and more suited to approach

financial time-series. Regarding LSTM networks then, the structure of long short-
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term memory cells is thoroughly analyzed so as to give reason, from a structural

point of view, for their suitability to deal with long-term dependencies.

The third aspect treated by the framework regards features selection with a syn-

thetic taxonomy of the most frequently employed predictors in financial applications

(Section 3.3). ML models indeed, requires adequate input variables to properly

work. More than that, feature selection is found to be particularly important in

financial applications since, the relations between input vector X and output Y (i.e.

stock price), do not appear always stable in time and in some case neither intuitive

as in other application fields. Since financial markets are driven by investors’ be-

havior, in fact, their irrationality and temporary cognitive biases can create strong

links between specific variables and securities’ prices only in particular market phase

or only after particular information availability. Moreover, the definition of a tax-

onomy aims then at defining a reference context in which new applicants can look

at when designing their input feature set and, at the same time, also to stimulate

the search for new possible solutions outside it. The categories presented in the

taxonomy are the following: price and volume variables, categorical data, technical

indicators, macroeconomic and commodities variables, risk variables and sentiment

variables.

The last, and probably most important, facet treated by the framework is the

difference, peculiar to ML financial applications, between data science and financial

performances of ML models (Section 3.4). In fact, there is not always a strict

relationship between classic ML performance metrics, typically used as objective

parameters to be maximised when training a ML model, and financial performance

metrics that are the real evaluation metrics for financial applications. Particularly

in classification settings, as the one employed in the experimental phase, an accurate

forecasted direction for stock market cannot be directly linked to a positive trading

performance: high volatile periods, in fact, are more profitable in this sense than low

volatility ones. This is the reason why for ML financial applications it is required to

split the validation phase into two steps: a first step more oriented to comprehend
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the statistical behavior of the model and a second one focused on the effectiveness

of predictions from a financial point of view. One of the main drawbacks related to

the computer science literature is exactly the missing financial validation of models

trained. Such studies clearly present a flaw in their consistence since they do not

prove the real advantage in employing computational expensive model for stock

market predictions from an operational point of view.

So, starting from these evidences, the framework at first covers data science

concepts such as accuracy, sensitivity, precision, F1-score and ROC; after them, it

focuses in presenting the most important investment portfolio performance metrics

(e.g. return, standard deviation, Sharpe ratio, value at risk, Omega ratio etc.).

Experimental Settings

Afterwards, thanks to the contextualization provided by the literature review and

the theoretical framework, the thesis can actually present to a conscious reader the

empirical work performed in order to answer the research question (Chapter 4).

Methodologically, differently from the majority of ML financial approaches, the

objective of the experimental work in this thesis is the definition of an investment

strategy with an horizon of five trading days (Section 4.1). In doing so, the study

further presents two main novelties with respect to the literature.

The first main novelty regards the implementation of a solution that is arbitrarily

referred as “modular classification approach”. An approach thought to deal with

the bias suffered by ML trading systems for which they tend to maximise returns,

without any consideration about the risk related to the investment strategy.

To make the investment strategy as sensible as possible to risk factors, “modular

classification approach” provides, at first, for the use of ML classification models;

classification setting, compared to regression, is indeed less biased towards more

volatile stocks: in a regression settings, stocks selected to enter in the portfolio are

the ones whose forecasted returns are higher/lower, conversely, in a classification
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approach, they are the ones having a higher probability to belong either to a positive

or negative price trend regardless of its magnitude. Secondly, the term “modular”

refers to the combination of multiple prediction models: the approach consists in

training, in addition to the “expected standard model” having a forecasting horizon

of five trading days, one additional model for each remained day prior the day in

which all positions have to be closed. This translates into different models, where

each of them can be seen as a single module of the whole trading system, trained to

predict price movements for decreasing time horizons. In our specific case, for one

week-ahead forecasting, the whole approach consists in 5 different LSTM models

predicting with a forecasting horizon ranging from five to one days-ahead.

The main rationale behind the modular approach is the following one: as the

forecast horizon h decreases, models are expected to become increasingly accurate

so that their predictions can be used both to re-calibrate positions erroneously taken

by previous models (i.e. diminish the expositions on stocks whose predicted trend

has reversed compared to the one predicted by previous model) and to exploit new

investment opportunities (i.e. take new positions based on predictions from theo-

retically more accurate models).

Moreover, and even more interestingly in terms of research, such an approach

allows to effectively test the hypothesis for which deteriorated performance are ex-

pected with increasing forecasting horizons. Such hypothesis has already been found

true in the case of many ML models extensively employed in financial research.

Even more, due to the scarcity of information regarding medium-long term in-

vestment strategies based on machine learning models, the approach it is intended

to explore, from a managerial perspective, the possibility to indicate a suitable fore-

casting horizon range in which an investment strategy can be profitably performed.

The second main novelty proposed in the thesis regards instead the extension

of the input variable set employed to train LSTM models by means of technical

indicators and macroeconomic variables. These two types of variable have been

already used to train a large variety of ML models but, to the best of our knowledge,
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not yet in the case of LSTM networks.

Clearly, the experiment, in the light of the findings from literature, to implement

the “modular approach” takes advantage of predictive power by LSTM networks

(Section 4.2). Precisely, it deals, as said, with five different LSTM classifying

observations among three different classes: positive and negative significant future

price movements and non-significant future price movements. Regarding the classes,

the introduction of the “central” one containing non-significant price movements is

to be considered an additional innovation compared to the majority of approaches

in literature.

Despite their different forecasting horizon, all five models employ the same

database to forecast future price movements (Section 4.3 and 4.4). Overall, it

is composed of daily returns, weekly returns, technical indicators (moving average,

exponential moving average, MACD, parabolic SAR, RSI, Sochastic %K and %D,

commodity channel index, average true range, Bollinger bands, Chaikin’s oscillator)

and macroeconomic variables (VIX, TED rate, US Treasury, Exchange rate US/EU)

referred to 44 stocks out of 500 composing the S&P500 index at the end of 2019.

Regarding the training process (Section 4.5), the whole dataset is subdivided

in 6 different windows each made up of a training set covering two trading years of

observations and of a validation and a trading set covering a single trading year of

observations each. In every window, for each of the five models, 5 variations differing

for the size of hidden nodes in their single hidden (5, 10, 15, 20 and 25) layer are

trained. Then, thanks to the validation set, the most appropriate one is selected to

effectively make predictions concerning the trading set.

From a financial point of view (Section 4.6), instead, the “modular approach”

actualizes in a long-short equity trading strategy. Long-short strategies are invest-

ment strategies that take long positions (i.e. buy) in stocks expected to increase

their value and short positions (i.e. sell) in stocks expected to lose value. More-

over, as a particular case of long-short portfolios, the ones built in this thesis are

dollar-neutral portfolios; they are portfolios in which the dollar amounts of both long
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and short positions, at the time of the creation of the portfolio, is equal so as to

make the initial investment for the creation of the portfolio equal to zero (excluding

transaction costs).

Experimental Results

From a data science perspective (Section 5.1), results prove LSTM networks’ ability

in recognizing proper recurrent patterns within stock price time-series: only 8 models

out of 150 during the validation phase and only 4 out of 30 during the trading phase

present an accuracy lower than the reference value of 33% (i.e. average result from a

random classifier). Moreover, during specific time periods, in terms of accuracy they

reach extremely consistent results, all significantly higher than 40%. Considering

the difficulty related to the prediction task and the limited means available to train

LSTM networks, such results can be considered particularly impressive.

Interestingly enough, data science metrics also provide evidence about the fact

that networks trained during periods of high market volatility and successively tested

with observations following the turbulent period (or the opposite) present inferior

results compared to models trained and tested in similar market conditions. This

result challenges the standard training approach, followed also in this thesis, regard-

ing the creation of a dataset composed just by most recent and strictly temporally

close to the trading period observations; the evidence, in fact, creates the conditions

to think about the possibility to train specific models with observations coming from

periods characterised by market conditions as similar as possible to the one actually

playing in the market; the approach would lie on the hypothesis that, when oc-

curring such market conditions, market anomalies are usually driven by well-known

biases whose effect on stock market could be predicted by well-prepared ML models.

In terms of profitability (Section 5.2), the strategy created thanks to the predic-

tions by LSTM networks shows its edge over selected benchmarks: during a trading

period of six years it managed to create a profit of 0.783% relative to the amount of
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money invested both for the long and short legs of the dollar-neutral portfolios (that

in our case was 1$). Other benchmarks, instead, did not manage to create any sig-

nificant result concluding the six year period with profits respectively of 0.007% by

a random guessing strategy, 0.131% by a short-term reversal strategy and -0.001%

by a “long-term ML strategy”.

Anyhow, if results in terms of profitability are positive, the downside that emerges

by all the investment strategies regards their excessive volatility. In terms of Sharpe

ratio indeed, even profitable strategies show poor overall performances during the

six-years trading period. Such result highlights the need of a specific focus required

during the design phase of a ML trading system on actions to reduce the variabil-

ity created by models’ predictions, as the execution of the “modular classification

approach” in this thesis tries to be.

In any case, it is important to mention how a general high volatility does not

nullify the whole experiment. In fact, it is noted how during limited time periods,

the main strategy is able to positively perform even in terms of profits adjusted for

the risk. This result is still extremely valuable when compared with evidences in

literature that highlight how ML models in recent time period appear unable to spot

valuable patterns in stock market time-series.

Regarding the employment of the “modular approach”, it does not return the

desired result as a possible approach to reduce the risk of the investment strategy

created by ML models. The combination of different portfolios, in fact, brings to

an increase in the volatility of the overall strategy; such result is mainly due to the

very poor performances obtained by both the portfolios h = 4 and h = 5. In any

case, the approach allows to validate the hypothesis for which models’ predictions

consistently deteriorate with increasing forecasting horizons, both statistically and

financially speaking. This evidence, from a managerial perspective, poses consistent

doubts about the possibility to use ML models for the creation of a medium/long

term investment strategy.

Finally, in spite of such not so positive results, the “modular approach” proves to
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be fruitful, as said, to evaluate models’ behaviour at different forecasting horizons,

but also to provide a reference to follow in future researches regarding the objective

of controlling the unavoidable volatility created by ML models.

In conclusion, at the end of the experimental work (Section 5.3) the robust-

ness of the whole trading system in relation to some change in decision variables

(weighting scheme 5.3.1, portfolio dimension 5.3.2, investment horizon 5.3.3 and

input features set composition 5.3.4) is tested. Particularly, the test conducted

to assess the benefits deriving from the introduction of technical indicators and

macroeconomic variables in the input features set does not provide significant and

clear evidences to justify it.

Due to a limited comparison to the case h = 1, such test does not intend to be

exhaustive so that its results do not have to be taken as overwhelming evidences.

Anyhow, it certainly raises some doubt regarding the additional information content

provided by technical and macroeconomic variables to the prediction application.

This is especially remarkable in the case of technical indicators. In fact, over simple

input variables such as price and returns, it is the category of variables most ex-

tensively employed in financial literature. It is not clear if this has to be attributed

to some objective evidence or simply to a tendency, consolidated through the years

among practitioners, to erroneously consider technical variables as functional to the

prediction process.

Finally, the second important issue that this robustness check brings to light,

crucial from a managerial point of view, is about the trade-off between the dimension

of the input features set and the computation time necessary to train the model: how

far should the feature selection process go in the search for new input variables? This

knowing that the introduction of new variables inevitably leads the model to become

more expensive from a computational point of view without providing guarantees

about an increase in performance.
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Conclusions

In the light of the evidences emerged from the experimental work of this thesis,

three promising paths to be possibly pursued emerge in conclusions (Chapter 6).

The first one regards a line of research dedicated to the study of the relationship

between data science parameters and financial performance of ML models so as to

increase the efficiency of the validation process and thus possibly increasing the ef-

fectiveness of ML investment strategies. The validation process for ML models is

indeed still performed following the ordinary heuristic methods developed by com-

puter scientists; in any case, such methods find little sense when applied to financial

predictions whose final objective regards the maximisation of financial performances

and not of data science metrics. From our results indeed, there is not evidence of a

strong correlation between data science and financial performances.

Secondly, it emerges the necessity to study effective methodologies to reduce the

unavoidable variance deriving from ML models’ predictions. As shown by results

indeed, if the profitability of LSTM investment strategies cannot be doubted, their

variability in profits results to be their most important drawback.

Finally, looking at stock market prediction from a financial perspective and not

from a computer science one, it appears questionable the approach that indiscrimi-

nately employs observations from any type of market condition provided that they

are temporally consecutive. It could be interested to create ML trading systems for

specific and well-known market flaws in order to make the model able to profit from

them when effectively spotted.

Evidently, all these promising paths should be undertaken taking advantage of

the analytic power of LSTM networks (or similar evolution of RNN such as GRU)

since, to date, they can be considered among the most advanced ML solutions to

approach long series of correlated observations.

Clearly, all these results and conclusions are emerged with at least three impor-

tant limitations that affect all the empirical work.
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At first, all the results in terms of profitability are presented without considering

transaction costs. This choice is mainly attributable to the difficulty in finding

plausible estimates regarding cost-per-trade for the US equity market for the last

10 years.

As already cited, the validation process is relegated to the number of hidden

nodes of LSTM networks due to computational constraints. This limitation probably

penalises results obtained during the trading phase but, at the same, it corroborates

results obtained, leaving a glimpse of the wide room for improvements over already

valuable results. So, overall, the parameter selection process could be viewed as too

limited and could be considered as a fragility of the whole experimental work.

Lastly, the overall trading period lasts just for six years. During a so limited time

frame, it is not possible to verify whether observed under-performance periods have

effectively been sporadic or systematic in our case. Anyhow, this decision is somehow

forced by the fact that just before 2009 (i.e. the starting year for observations

populating the database employed) financial markets experienced an unprecedented

crisis, thus during that period they behaved in a really unconventional way. So, to

balance out this turbulence period, it would have been required to further extend

observations in the database at least until 2000 causing the experiment to become

too computationally onerous in relation to the available means.
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Chapter 1

Introduction: Pattern Recognition
in Finance

Stock market prediction is one of the most difficult and challenging problem to solve,

not only within financial markets applications but among all prediction problems

generally. Compared to other type of data, time-series in financial markets are

affected by countless factors that can cause price changes and that create a high

amount of noise in the prediction task. In fact, being fundamental stock value

function of investors’ expected dividends and of a discount rate in the form

P0 =
∞∑
t=1

E(Divt)
(1 + k)t (1.1)

where k is the discount rate and Divt is the expected dividend at time t, it is

influenced by all factors that impact on these two variables such as interest rates,

company’s decisions (e.g. dividend rate, investments to be made), political decisions,

economic trends etc.

Anyhow, the high number of explanatory variables is just viewed as a secondary

issue when considering what really makes stock market predictions so hard to ac-

complish: investors’ behaviour and their reactions to the just mentioned factors are

in fact considered the causes of such a challenging task. Investors’ behaviour is

indeed the effective transmission chain between fundamental stock value (1.1) (i.e.

that reflects the intrinsic value of a company) and the effective stock price on the

market. This means that upon its rationality the exact coincidence of market value
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and fundamental value of a security depends. Clearly, if investors are rational and

so securities’ market values equal their fundamental values, there are no possibili-

ties for investors to gain from erroneous pricing. This reasoning is fundamental to

understand the two most famous theories about financial markets behaviour that

will be presented in the following section so as to outline the theoretical framework

in which this thesis lays its foundations.

1.1 Stock Market prediction: Efficient Market Hy-
pothesis vs. Adaptive Market Hypothesis

In academic literature, two important theoretical hypotheses have been built at-

tempting to explain financial markets and the related difficulty when dealing with

their future expected performance: Efficient Market Hypothesis (EMH) and Adap-

tive Market Hypothesis (AMH).

According to EMH (Malkiel and Fama, 1970), markets are efficient since security

prices fully reflect all available information resulting in past and current information

being immediately incorporated into stock prices (i.e. effective stock price always

equal to its fundamental value). To state that, EMH assumes inventors’ rational

expectations and makes different possible assumptions about information availabil-

ity. Depending on the severity of the assumption on information availability, three

different versions of the EMH can be identified: EMH strong version assumes in-

formation costs and trading costs to be always zero (Grossman and Stiglitz, 1980)

and thus no distinction between private and public information. Said differently, in

this version investors have perfect information availability. Following this version,

the share price is always an accurate projection of future cash flows of the company.

In the semi-strong version of EMH, only public information is assumed to be im-

mediately incorporated in stock price since it is the only information available for

all market participants. Finally, the weaker and economically more sensible version

of the efficiency hypothesis states that prices reflect information to the point where
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the marginal benefits of acting on information do not exceed their marginal costs

(Jensen, 1978). Thus, for the weak form of EMH, only public market information is

assumed to be incorporated into share price since the marginal costs to obtain other

public and private market information result higher than the edge deriving from the

awareness of such information.

The direct consequence of this last more viable form of EMH is that past stock

price movements cannot be used to predict future price movements: stock market

movements will be determined only by unpredictable future public market infor-

mation, as past movements have been driven by information already completely

discounted by rational investors from securities prices. In statistics terms, security

prices based on the EMH weak form follow a random walk behaviour (Malkiel, 2007)

of the form

Pt+1 = Pt + εt+1 (1.2)

meaning that changes in price from one period to the next (εt+1) are random and

unpredictable. So that the best guess for the next price can only be the current price.

The future direction of a stock, in this sense, is no more predictable than the path

of a series of cumulative random numbers. In this formulation, εt+1 incorporates all

the future and still unknown public information about a company and all random

fluctuations of the price around the intrinsic value of the stock caused by investors:

in the light of the theory, no investor is all knowing, but collectively they know as

much as can be known forming as a group the market; these individuals constantly

update their beliefs about the direction of the market and their disagreement leads

to “a discrepancy between the actual price and the intrinsic price, with the competing

market participant causing the stock to wander randomly around its intrinsic value”

(Fama, 1995).

So, ultimately, for EMH is not possible to “beat the market” since stocks are

always traded at their fair value and any past information is already reflected in

their price. The key conclusion of the theory is thus about the impossibility to

obtain abnormal returns: any effort that an average investor dedicates to analyse
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and trading securities is wasted and, although high rates of returns may be achieved,

they are on average proportional to risk.

AMH (Lo, 2004) tries to reconcile the rational EMH with irrational behavioural

economics principles (Simon, 1955): within the debate on EMH, in fact, some studies

have highlighted persistent evidence of irrationality of the whole market (French,

1980; Keim, 1983; De Bondt and Thaler, 1985; Barberis and Thaler, 2003) difficult

to be explained in terms of EMH. According to Lo, AMH can be seen as an updated

version of EMH considering the evidence of irrational behaviour observed in financial

markets. In the light of the theory, “prices reflect as much information as dictated by

the combination of environmental conditions and the number and nature of “species”

in the economy” (Lo, 2004), where by species it is intended different groups of market

participants each behaving in a common manner. Lo states that the efficiency of

the market, thus the predictability of securities’ price, depends on the number of

groups competing for scarce resources in it: the higher the number of species in the

market, the higher its efficiency and vice versa. Moreover, AMH asserts that market

efficiency is also affected by biases caused by irrational behaviours of investors that

ultimately create arbitrage opportunities. Therefore, in the light of such theory it

is possible, under specific circumstances, to exploit the weaknesses (i.e. identifiable

patterns) of the market, conversely to EMH, obtaining positive abnormal returns

from a portfolio of stocks.

In such a context, backed by evidence and afterwards by AMH, professionals in

financial markets have always tried to challenge market efficiency applying differ-

ent techniques in search of arbitrage opportunities. Particularly, in recent years,

machine learning algorithms have emerged as promising tools to do so. Due to the

rise of computation power indeed, they are gaining momentum within the finance

community as valuable tools to automatise and improve the performances of such

research.

The empirical work presented in the thesis fits into this framework: it deals with

the application of a powerful and state-of-the-art machine learning technique for
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the purpose of detecting valuable patterns to predict stock market movement and

to build a profitable equity portfolio. Clearly, evidences of positive performance

from machine learning algorithms prove market flaws querying its efficiency.

1.2 Fundamental, Technical Analysis and Machine
Learning

Before treating machine learning for financial time series prediction, anyhow, it is

important to briefly mention the classical juxtaposition between the two classical

approaches linked with securities’ value forecast in financial markets that are funda-

mental analysis and technical analysis. These approaches are important since they

express the operative response produced by investors to both AMH and EMH hy-

pothesis; in fact, fundamental analysis can be considered the natural extension of

EMH hypotheses, while technical analysis can be better understood if linked to AMH

hypotheses. Only in respect to this dichotomy, machine learning can be correctly

placed inside the set of possible techniques to face financial market predictions.

Fundamental analysis relies on the examination of business’ financial statements,

jointly with the overall state of the economy, to spot overvalued and undervalued

stocks in the market so that to increase the chances of investors of making higher-

than-market average profits. It relies on strict objective valuation methodologies

whose results strongly depend on subjective hypotheses: investors have to make

assumptions regarding expectations about all factors that will influence the profit

of a company in the future to obtain from (1.1) their guess about the fundamen-

tal value of a company. Fundamental analysis is thus linked to the weak form of

EMH hypothesis: it implies that the only way in which investors can obtain positive

abnormal returns is thanks to information asymmetry, that is a better level of infor-

mation possessed by one agent compared to the one possessed by other participants

in the market so as to produce more accurate assumptions and thus having more

precise expectations. As stated by EMH, fundamental analyst do not believe about
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the possibility to predict future market movements studying past movements.

Technical analysis, instead, relies on different premises: it assumes that all

needed information to predict future stock prices is incorporated into current and

past stock prices so that, in order to predict the future, it focuses on the analysis of

historical data to find recurrent patterns. In view of AMH theoretical framework,

this second approach works due to agents’ irrationality that creates recurrent pat-

terns in the market that, if spotted, can provide investors valuable insights to “beat

the market”. All the knowledge embedded in technical analysis, indeed, “is to iden-

tify a trend reversal at a relatively early stage and ride on that trend until the weight

of the evidence shows or proves that the trend has reversed” (Pring, 2014). From a

practical point of view, a technical approach consists in the calculation and inter-

pretation of “technical indicators” that are measures calculated from market data

(i.e. primarily price and volume) that do not rely on any specific theoretical frame-

work. They are intended as supporting tools to be used during investors’ decision

process, helping them deciding when to invest or divest in a specific financial asset.

The downside of the approach lies on the interpretation of such indicators that is

essentially heuristic: technical investment strategies depend on the experience and

acumen of each single investor in understanding what to look at.

Now, machine learning for financial market predictions relies on similar mar-

ket inefficiency assumptions made by technical analysis: agents irrationality creates

recurrent patterns in financial time-series that is possible to spot thanks to mathe-

matical models.

Mathematical models are not new to financial time-series analysis: until some

years ago, the largest part of such quantitative approaches in finance were about

econometric models as Moving Averages, ARMA, ARIMA, ARCH and GARCH. All

these regression models, with some peculiar differences, hypothesise linear dependen-

cies between the price of a securities (the dependent variable) and its lagged prices,

lagged errors and some other possible externality. However, since financial market

is a complex, evolutionary and non-linear dynamical system which interacts with
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political events, general economic conditions and agents’ expectations, econometric

approaches has not proved to perform very well in predicting securities’ prices accu-

rately. Moreover, input features used for predictions in these models have proved to

be multicollinear and relationships between factors and returns to be variable and/or

contextual. In all these circumstances econometric models have demonstrated not

to be flexible enough to adapt. Finally, econometric models require a high effort

in the validation of all the assumptions necessary to consider reliable the results.

Nonetheless, in less noisy type of prediction applications than price prediction, such

as risk measure forecasting, they have shown solid results. Due to all these reasons,

in recent years, in addition to traditional econometric approaches, complex models

coming from Machine Learning (ML) field have started to be applied for many finan-

cial applications, attempting also to predict future movements of securities’ prices

(Yoo et al., 2005).

Machine learning refers to methods and algorithms that allow machines to dis-

cover patterns without explicit programming instructions. In many fields outside

finance, machine learning algorithms have proven to be more effective than tradi-

tional statistical techniques: one of the most impressive and famous result of ML is

related to its application to the game Go, considered for long time to be an Everest

for artificial intelligence research, where AlphaGo, a Go-playing computer, man-

aged to win against one of the best human players of all times (Silver et al., 2016;

Borowiec, 2016). The advantages of such algorithms when applied to financial time

series are manifold, among the most important ones it can be certainly identified

their assumption independence: ML models indeed, have been created to deal with

noisy and non homogeneous dataset in which the validation of all the assumptions

required by classical statistical model would not be possible. Moreover, ML models

are able to find patterns and irregularities as well as detecting multi-dimensional

non-linear connections in data and, finally, they have the ability to extract rules

from large sets of data, as the ones containing financial time-series. As stated by

Heaton et al. (2017, p. 1) “applying deep learning methods to these problems [i.e.
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problems in financial prediction and classification] can produce more useful results

than standard methods in finance. In particular, deep learning can detect and exploit

interactions in the data that are, at least currently, invisible to any existing financial

economic theory”.

ML techniques have been available for a long time, Frank Rosenblatt invented a

neural network that could classify images in 1957 indeed (Rosenblatt, 1958). In any

case, the reasons why these techniques have been started to be successfully applied

in fields such as genetic, and afterwards also to financial markets, have to be ascribed

to the increased computing power, the increased data availability and the creation

of new powerful algorithms from disciplines such as computer science and statistics.

In conclusion, to summarise, the objective of the entire empirical research pre-

sented in this thesis is to answer the question: is it possible to achieve abnormal

returns in equity market through the use of a recent and powerful Machine learning

technique?. Not only financial industry, but also academia, have struggled to find

a way to answer positively to this question. Clearly, a positive answer to the ques-

tion does not only bring new knowledge about the functioning of financial markets,

but it can become source of important earnings for those who decide to keep this

knowledge private and use it to invest in the market.

It is important to underline how the answer to this question is not so connected,

as it might seem, to advancements in computer science research. Rather, it requires

a specific focus. In fact, ML financial applications differ from applications from

many other ML fields due to inconsistencies between data science performances and

financial performances by ML models. As it will be clear further in the thesis indeed,

there is not always a strict relationship between classic ML performance metrics,

typically employed as objective parameters to be maximised when training a ML

model, and financial performance metrics, real objective parameters of an investment

strategy.
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Chapter 2

Literature Review

As anticipated, the advancement in computation power and the increasing data

availability have naturally introduced Machine Learning in finance/portfolio man-

agement in recent years. However, there is still an important gap between academic

finance and the financial industry. In the business world big data is reality, while

in the financial academic literature “there is very little published management schol-

arship that tackles the challenge of using such tools, or better yet, that explores

the promise and opportunities for new theories and practices that big data might

bring about” (George et al., 2014). ML methods “are rarely considered by financial

economists who prefer econometric, often linear methods” (Hsu et al., 2016). As

highlighted by Huck (2019, p. 2), to prove this, “with the leading financial journal

“The Journal of Finance”, a search for “machine learning” until 2017 produces no

reference”.

Undoubtedly, an important reason regarding this gap has to be attributed to

the economic advantage that asymmetric information gives to the investor able to

create an effective prediction method and that keeps it private towards the mar-

ket. Once such information was public, in fact, it would be arbitraged away from

the market, preventing the opportunity to earn from it: as found by Huck (2019)

in his work “empirical results confirm a severe drop in performance of trading sys-

tems based on machine learning in the most recent years: when these tools became

more accessible” and thus an increasing number of agents started to discount from

9



CHAPTER 2. LITERATURE REVIEW

prices also this new kind of information. In a way, it is possible to state that the

increasing adoption of ML trading models are achieving to make financial markets

more efficient discounting information that previously was not possible to posses.

The second main reason regarding the gap from academic literature and business

applications is related to this increased efficiency: it is requiring more and more

powerful method to find new arbitrage opportunities to gain from. Clearly, more

powerful methods require high computation power that comes at a cost possible to

be suffered exclusively by professional investors able to earn proper returns from

their investments and research activities, as opposed to academics.

In this context, almost exclusively computer science researchers have started to

deal with the problem of prediction of financial time-series through ML models, es-

pecially in the equity market. Many algorithms and methods have been proposed

trying to achieve significant results in the prediction of time series and in most cases

to implement effective trading strategies based on the outcome of such predictions.

From a financial research perspective in any case, the problem of such computer

science literature is that in very few applications it looks for valuable business ex-

planations regarding the reasons for which a given set of inputs is used or for some

valuable information from models’ outputs confuting or verifying common investors

knowledge. For instance, a virtuous case regarding the confirmation of common

knowledge can be found in Fischer and Krauss (2018): at the end of their empirical

study, authors state how their LSTM neural network selects stocks to trade as it

was aware of some well-known capital market anomalies (e.g. their LSTM model

select stocks with below-mean momentum, short-term reversal characteristics, high

volatility and beta), without being explicitly trained to spot them.

As in many other prediction application, financial time-series predictions in lit-

erature are tackled as both regression and classification problem. In the regression

approach, the objective of the ML model is to make a punctual estimation of the

price of the security for a given horizon. This type of approach becomes really

difficult when dealing with stock prices and, in the vast majority of cases, ML mod-
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els are used to solve classification problems indeed. This is the reason why in the

following section, where a non-systematic literature review of valuable approaches

presented in literature will be provided, most of applications deal with classifica-

tion settings. Anyhow, this does not imply that is not possible to find regression

attempts in literature. For instance, Chen and Hao (2017) try to forecast the actual

closing price of two important Chinese stock market indexes as the Shanghai and

Shenzhen ones. They manage to achieve good results, even if working on forecast

of composite indexes and not on single stocks. The same attempt for a punctual

prediction of a composite index, this time the S&P500, can be found in Cai et al.

(2012). Differently, in a classification approach the ML model is trained to predict

the trend of the price of the security. In such approach, the ML model is instructed

to guess whether the value of a security in a given point of time in the future will

have increased its value or decrease it. Most of classifications regards two classes,

one for the upward trend of the security’s price and the other one for the downward

trend.

Regarding the reasons why classification approaches are more frequent than re-

gression ones, at first it can be noted how for the purpose of implementing a success-

ful trading strategy, that in the vast majority of the cases is the actual reason why

prediction of financial time series is performed, the output of classification models

gives sufficient information for the decision process. But more importantly, the loss

in prediction accuracy while performing a regression forecast rather than a classifi-

cation one can, in many cases, be higher than the marginal gain the former approach

would bring thanks to additional information. Finally, selecting stocks through a re-

gression approach would lead to choose stocks with a high level of volatility, namely

the stocks with the highest predicted price in absolute terms, while selecting stocks

through classification approaches favors stocks more likely to belong to certain trend,

resulting most of the times in less volatile stocks selected and consequently in a lower

risk of the trading strategy.
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2.1 Practical Applications in Literature

In this section, as already explained, a non-systematic literature review is presented.

The criteria by which papers have been selected to enter in it concerns exclusively

both the willingness to briefly present different research perspective about the inter-

connection between machine learning and investment strategies and the innovative

approach of some of them towards the creation of a profitable ML trading system.

Table A.1 in Appendix presents a synthetic view of all the papers that will be

presented in this chapter.

Algorithms and application fields regarding the study of financial time series

through ML methods are numerous. As previously anticipated, the large majority

of articles dealing with stock market predictions are published in journals belonging

to the machine learning and operational research community. In some of them, ML

algorithm are presented as supporting tools for more “traditional” approaches to

investments rather than proper tools able to extract information from a pool of data

by their own. For instance, Pai and Lin (2005) examine the results produced by

the combination of a classical econometric linear model with a non-linear one. The

objective of the ML non-linear model, in this case a support vector machine (SVM)

with gaussian kernel, is to shape the variability left unexplained by an ARIMA

(0,1,0). Specifically, the one-day ahead closing price prediction Zt of the hybrid

model created is given by Zt = Yt +Nt, where Yt refers to the ARIMA forecast and

Nt to the SVM ones. While ARIMA model is directly trained to predict the one-day

ahead closing price of ten stocks with 50 predictor for each stocks, SVM, through a

non linear kernel function, is trained to represent the residuals of the ARIMA model

using as input lagged residuals of the linear model itself. A comparison between the

predictive ability of the two models used singularly and the hybrid model in terms of

MAE, MSE, MAPE and RMSE, shows how the hybrid model helps to significantly

reduce the overall forecasting errors.

Another interesting example of ML algorithm supporting a “traditional” ap-
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proach is provided by Chandrinos et al. (2018) that propose ML models as a

risk management tool, or better “as an expert advisor improving the performance

of existing trading strategies” (Chandrinos et al., 2018). In their approach indeed,

a decision tree and a deep feed-forward neural network are implemented to classify

the produced signals of a technical trading strategy (i.e. channel breakout strategy)

proposed in Chandrinos and Lagaros (2018) into “profitable” and “non profitable”

ones. The technique is applied to 5 different currency pairs and it aims at reduc-

ing the standard deviation of the original trading strategy and at improving the

correlation between total returns and the portfolio’s standard deviation. The re-

turn of the ML strategy is thus determined as the sum of returns of all the original

signals transformed into effective trades, that are all the original signals that the

algorithm classifies as “profitable”. The signals categorised as “non-profitable” are

ignored instead. The parameters for the decision tree model and the deep NN are

selected on the basis of their performance on a validation set in terms of F1-score.

In this specific application the focus is on the ability of the model in recognising

profitable signals and a high F1-score would signal the ability of the model in pre-

dicting almost all of winning trades indeed. Models are trained separately for each

of the 5 different currency pairs (i.e. GBP/USD, USD/JPY, EUR/USD, GBP/JPY,

EUR/JPY) thanks to training set of three years and then validated in a validation

set containing one year of observations. 14 different technical indicators and 5 fea-

tures related to the last five entry prices where a signal was produced by the original

technical trading strategy are used as input features. The total dataset consists in

observations from 2006 to 2016. Financial results are evaluated on a rolling window

approach starting from 2010. Annualized returns, standard deviation and Sharpe

ratio are finally calculated for each currency pair for two different type of portfo-

lios, an equally weighted and a weighted ones (with weights depending on previous

year performance). Both decision tree and NN achieve positive results: decision

tree prevents investors form significant drawdowns of the original trading strategy

reducing the variance and succeeds to improve total returns for all currency pairs.
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NN reduces the standard deviation of 4/5 pairs and increases the total return of 3

of them. The most significant achievement by NN is the elimination of almost all

of negative returns that were produced by the original channel strategy. Authors

conclude highlighting how “a noteworthy evidence of these techniques as risk man-

agement tools is their ability not only to improve negative returns but to turn most

of the losing years into profitable ones and to increase even more highly profitable

years” (Chandrinos et al., 2018, p. 14).

However, differently from a view where ML methods are seen as supporting tools

for more conventional approaches to financial time series, a consistent part of the

literature focus on the development of a trading system exclusively based on ML

algorithms. One of the most noteworthy contribution that is possible to find in lit-

erature regarding trading system exclusively based on ML model’s outputs is Huck

(2019): it manages to combine the financial, operational and computer science

perspective in one application. The combination of the three perspective is in fact

crucial to take in consideration all of the necessary aspects to build an effective fi-

nancial trading system based on machine learning. The main objective of the article

is thus to tackle concurrently the dimensions of large datasets, machine learning and

a discussion of the disagreement between EMH and the evidence reported in the ML

literature: large datasets refers to the impressive amount of financial data available

that, given recent development in machine learning, can now be implemented to spot

recurrent patterns in financial time series and to pose even more evidences against a

view of financial markets as totally efficient markets. The natural application field

for big data and machine learning in trading, according to the author, is statistical

arbitrage, a class of short-term financial trading strategies that employ mean rever-

sion models involving broadly diversified portfolios of securities. Huck justifies his

research by a lack of empirical works dealing with large datasets and state-of-the-art

ML methods. The algorithms used to implement statistical arbitrage strategies in

the study are random forests (RAF), deep belief network 1 and elastic net regres-

1Deep belief networks (Hinton and Salakhutdinov, 2006) are a particular case of neural networks
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sion 2. Such models are used to forecast the probability of the return of a specific

stock to be larger than the median return computed over all stocks in the dataset

for one-day and five-days ahead. The experiment is computed dealing with stocks

included in S&P900 index from 1990 to 2015. The complete set of all input features

includes lagged returns, dummy variables for stock identification, day of the week,

month, industry (following ICB classification), implied volatility classes based on

VIX, gold and oil price, rates of 10 years treasury and finally Fama and French fac-

tors (Fama and French, 1993) plus momentum and short-term reversal (Jegadeesh,

1990; Carhart, 1997), for a total of 592 predictors. Results are calculated among dif-

ferent dollar-neutral portfolios created including each day the 10 top and flop stocks

based on output of the different models, trained each time with different combina-

tion of input, at two different horizon (1 and 5 days) and with both 100 and 300

stocks, for a total of 40 different combinations tested. For each of the 40 different

combinations, within the testing period (1993-2015), each model is re-trained two

times per year resulting in 45 re-training per each model. Synthesised results from

the experiment are as follows:

• All model generate a positive excess return before transaction costs between

1993 and 2015 with an average annualised return of 35% compared to a market

performance of 10%. Including transaction costs, the average becomes 11%

with 6 out of 40 combinations of models-input features presenting negative

returns.

• RAF results to be the most effective technique, with all significant returns

significantly positive.

• On average, the models forecasting one day ahead perform better than the

whose main element are autoencoders. An autoencoder, in turn, is a type of artificial neural
network used to learn efficient data codings in an unsupervised manner. The aim of an autoencoder
is to learn a representation for a set of data, typically for dimensionality reduction, by training the
network to ignore noisy signals.

2Elastic net regression (Zou and Hastie, 2005) is particular case of linear regression specifically
designed to manage a large number of features and to perform dimensionality reduction.
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ones forecasting at five days.

• A substantial deterioration in performance is seen when all predictors are

included in the model compared to the cases with only lagged returns.

• After transaction costs, only 50% of the models still have a positive alpha when

evaluating the exposure of returns to common sources of systematic risk.

• In accordance with the evolutionary perspective in AMH, dividing the trading

period into 4 different sub-periods, the most recent one (2010-2015) reveals how

all techniques are not able to generate positive and economically significant

trading signals. “In some way, this confirms the efficiency of the market given

that profit opportunities are arbitraged away with the increasing popularity of

these models”(Huck, 2019, p. 10). In contrast, in the first period (1993-2000),

during which algorithms and computation power used were not available, the

returns of all model result to be really impressive.

• When including transaction costs, the inertia of each algorithm (i.e. the prob-

ability of a given stock to be selected two consecutive days), influences a lot

returns. It is computed in 20%, 60% and 40% respectively for RAF, DBN and

elastic net.

Within the scenario clearly described by Huck (i.e. ML based approaches for the

identification of statistical arbitrage investment strategies) a plethora of experimen-

tal work can be found, some of them more focused on the identification of the most

appropriate ML model, among the ones presented in computer science literature,

for signal generation. For instance, Krauss et al. (2017) test the effectiveness of

deep NN, gradient boosted tree, RAF and ensemble methods in providing signals

to create a profitable trading strategy. Regarding the three ensembles, the first one

consists in a equal-weighted ensemble that takes the predictions of the three base

models and average them; the second ensemble is based on performance, meaning

that the three predictions are weighted as a function of Gini index calculated with

16



CHAPTER 2. LITERATURE REVIEW

the AUC of each base learner as Gini = 2× (AUC − 0.5); finally, the last ensemble

weights the different predictions with the inverse of the Gini index creating a scheme

less sensitive to outliers. In the database are presented all S&P500 constituents from

December 1989 to September 2015. As input features for each different models only

lagged returns rt−k are used, where k ∈ {1, ..., 20} ∪ {40, 60, ..., 240}. The entire

dataset is divided into 23 study periods where each one is formed by 1000 days

of which 750 used for training and 250 for trading (with non-overlapping trading

periods). Within the training period, in each day the probability of each stock to

outperform the cross-sectional median in t+1 is computed; each model thus classifies

stocks based on such probability. Regarding the trading strategy, different portfolios

are built based on this ranked probabilities. In each of them the system goes long

(short) on top (flop) n stocks, with n = {10, 50, 100, 150, 200}. Main results are as

follow:

• Ensembles outperform all base models since they respect diversity and accu-

racy conditions. All three ensemble are diverse since the errors of their base

learners (i.e. three ML models whose predictions are averaged) show low cor-

relation and they are accurate since they achieve a directional accuracy higher

than 50%. Among the three ensembles, however, there are no significant dif-

ferences.

• RAF achieves better results compared to GBT, probably because it does not

suffer from overfitting and because it is robust to noisy feature spaces, as the

one of the application.

• Deep feed-forward neural network shows the worst results, in any case authors

attribute the result to the difficulty in the fine tuning process of all its hyper-

parameters. Moreover, it is found to lose efficiency when the number of its

layer are diminished.

• Increasing n leads to decreasing returns but at the same time at decreasing
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standard deviation. Regarding absolute returns the result is attributable to

the fact that within portfolios are included stocks whose prediction have a

higher uncertainty; while, regarding their standard deviation, the result is

attributable to an increasing diversification of the portfolios.

• In terms of risk, RAF shows the lowest VAR while Deep NN the highest.

Moreover, regarding ensembles, positive relation between VIX and their re-

turns are found suggesting ensembles to work better during period of high

market turmoils.

• Accounting for common sources of systematic risk, for all models it is found a

positive alpha and it is also found how returns partly load on common sources

of systematic risk suggesting an investment behavior that incorporates several

capital market anomalies from the ML model.

• A sub-division of the entire time period under scrutiny highlights how from De-

cember 1992 to March 2001 all models consistently outperform the market, in

any case during this period ML models were still not accessible by investors in

the market. The period from April 2001 to August 2008, instead, corresponds

to a period of moderation in terms of results and, in fact, during it ML models

started to be used in financial markets. During the period corresponding to

the financial crisis (from September 2008 to December 2009) the long-short

term strategy temporarily returns to perform well. Finally, the period from

January 2010 to October 2015 corresponds to a period of deterioration with

negative annualised returns after transaction costs.

• Focusing on the best results achieved by models, it emerges how they seem

able to capture relative mispricing at times of high market turmoil such as the

.com bubble in 2000, the global financial crisis in 2008 and the European debt

crisis in 2011.
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• Most important returns for every model result to be the ones corresponding

to the last 5 or 6 days.

• Algorithms are found to prefer high beta (e.g. tech industry) stocks instead

of lower beta ones (e.g. financial industry or utilities).

Differently, another type of approaches, more than concentrating on selecting

the best ML algorithm, focus on features selection. They aim at finding the most

appropriate variables and techniques so as to facilitate the information extraction

by ML models. Picasso et al. (2019) work on the twenty most capitalised stocks

listed in NASDAQ100 to combine technical and sentimental analysis to classify price

trends: the complete input vector used for all their tested algorithms is formed by

sentimental variables extracted from 2 different dictionaries presented in Loughran

and McDonald (2011) and in Cambria et al. (2015), 10 different technical indicators

and price values. RAF, SVM with gaussian kernel and NN with 4 different layers

are tested in a one week-ahead classification so as to select the most appropriate

model to be used for the implementation of an effective trading strategy. During

training and validation stages, authors adopt the following expedients to deal with

typical issues of market time series forecasting:

• To deal with the presence of unbalanced labels, that depends on the tendency

of the market to be negative (bearish) or positive (bullish) in a specific time

period, synthetic minority over-sampling technique (SMOTE) is applied to

oversample the minority class creating new synthetic observations.

• Since the main target is to select a model which is able to make correct pre-

dictions both on positive and negative samples (so as to create a long-short

trading strategy) and not only to achieve a high directional accuracy, geomet-

ric score (Gscore =
√
TPR× TNR) is used as a measure to validate different

algorithms. In this way authors aim to remove the bias coming from an un-

balanced distribution of the training set.
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• Before computing data science metrics, the observations in the dataset are di-

vided into five clusters filled with samples representing increasing percentage

changes in market price. The aim of this process is to to understand the behav-

ior of the model with different predicted trends; achieving high performance

on the cluster representing large changes in market price, is more valuable

than obtaining the same result on less relevant samples indeed.

At the end of the training and validation stages, authors select feed-forward neural

networks as reference model to create the trading strategy: the buy signal is gen-

erated if prediction NN > 0.5 + threshold and the sell one if prediction NN >

0.5 − threshold. The threshold value is calculated to consider the 75% of the pre-

dictions which are considered the most “reliable” according to the softmax output.

Data science metric shows how the dataset using sentimental variables from affective

space is more effective than the one using variables from Loughran and Mcdonald’s

dictionary. Moreover, authors, to value the informative content of price and senti-

mental data, compare results from NN trained with only sentiment variables and

technical indicator and finally with both of them: they find that “price&news”

NN clearly outperforms “price” one and that “price&news” NN shows only little

improvements when compared to “news” NN. However, “Price&news” NN shows

higher confidence in prediction than “news” NN. Regarding financial performances,

the NN-Lough-McD model shows the highest gains with “price&news” while the

NN-affective space shows the best results with only “news”. Authors attribute this

result to the inability of the NN to exploit properly the feature combination power.

In fact, due to their characteristics, the dataset built with Lough-McD dictionary

contains 151 3 inputs while the one built with affective space 611. In conclusion, the

results of this empirical work show how adding sentiment representation to standard

price features can lead to important improvements in performance. Authors finally

hypothesise how a process of fusion between price and news would allow to exploit

even better the representative power of the combined features.
3Included technical indicators and price information.
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Another example is provided by Chen and Hao (2017) that try to improve the

robustness and accuracy of a SVM and a K-nearest neighbor in forecasting the

closing price of the Shanghai and Shenzhen stock exchange indexes by weighting

the contribution of different input features. Their approach considers at first the

SVM to classify the trend of the two indexes, after that, depending on the trend

predicted, KNN is supposed to perform a punctual estimation of both the index.

The foundation of the empirical work relies on the assumption that different input

variables do not have all the same impact on the final output; if this is the case, as-

signing different weights to input features, can improve the results of the algorithm

by nudging it to focus more on the most informative inputs within the dataset.

As measure to asses the importance of each input feature and to find the weights

related to each variable, the information gain is used: suppose the training set

Ttrain = {(x1, y1), (x2, y2), ..., (xN , yN)} where yi ∈ {C−1, C+1} = {−1,+1}. C{i,D}

denotes the subset of the dataset D belonging to class Ci, where i = −1,+1, | D |

denotes the size of the dataset D and | C{i,D} | the size of the sample set C{i,D}. The

probability of a sample belonging to a class Ci can be calculated approximately by

| C{i,D} | / | D |. The expected information to classify the dataset can be expressed

by entropy as:

info(D) = −
∑

i∈{−1,+1}

| C{i,D} |
| D |

log( | C{i,D} |
| D |

) (2.1)

So, supposing Ttrain to be split on one feature Asplit into different subsetD1, D2, ...Dv,

if the summed entropies of each splits (2.2) are lower than the one in (2.1), then

the partition is good and the corresponding feature is considered to have a greater

contribution to classification

infoA(D) =
v∑
j=1

| Dj |
| D |

info(Dj) = −
v∑
j=1

| Dj |
| D |

∑
i∈{−1,+1}

| C{i,Dj} |
| Dj |

log(
| C{i,Dj} |
| Dj |

)

(2.2)

infoGain(A) =
√
info(D)− infoA(D) (2.3)

The different inputs used in the experiment comprehend index closing prices and 9

different technical indicators. The prediction about the two stock indexes is made
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at 1, 5, 10, 15, 20 and 30 days ahead. Results show how feature weighted models

perform better than standard models reducing the noise of those variable that are

not important for predictions. Nevertheless, as the forecast goes ahead in time, the

advantage of the weighted models towards standard ones diminishes.

Finally, Cai et al. (2012) start from the assumptions that in the majority of ML

applications regarding stock price forecast, models use a small number of features as

input possibly causing the model not to have enough information to make accurate

prediction due to the complexity of the stock market. At the same time, in any case,

a large number of features increases the training time and decrease generalization

performances due to a higher probability of overfitting. Therefore, the paper takes

advantage of restricted Boltzman machines 4 to extract low dimensional features

from high dimensional raw input data to be used as input features for SVM in a

regression setting. More precisely, 16 technical indicators for the S&P500 index and

for other 19 highly correlated stocks are used to train a DBN with the objective of

extracting features. Then, the extracted features and the price data of the target

stock are used as inputs of a SVM that forecasts the closing price of target stock

at next day. Price data are the only input features not transformed by DBN since

they are considered the most important ones and, if processed, forecasting accuracy

may worsen. Results of a SVM trained only with technical indicators and price

data for the S&P500 compared with the ones of a SVM trained with the same data

plus the close price of the other 19 correlated stocks, show how the former model

outperforms the latter in terms of normalised mean squared error and directional

accuracy. This indicates how generalization performance of SVM is deteriorated

when dimension of input is increasing, even though more input variables comes with

more information content. In any case, the best results are obtained by SVM trained

with extracted features from the S&P500 and 19 correlated stocks from a deep belief

network with dimension 324-150-80-20. So, results presented by authors confirm
4Restricted Boltzman machines (Salakhutdinov et al., 2007) are a two-layered artificial neural

network with generative capabilities. They have the ability to learn a probability distribution over
their set of input.
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how dimensionality reduction, in this case obtained through restricted Boltzman

machines, can improve generalization performances in case of a large number of

predictors within the dataset.

As emerged so far, looking at the publication time of the different papers and at

the ML algorithms employed by them, it can be noted a precise trend in literature

over the last ten years: researchers have passed from taking advantage of models such

as classification trees or support vector machines to extensively employing neural

networks, extending through time, thanks to an increased computational power

availability, their depth and width. The reason of this trend has to be found in the

incredible suitability of neural networks to cope with non-linear dependencies lying

among observations within the dataset. In very recent years, moreover, this trend

has further evolved focusing on the implementation of recurrent neural networks

(RNN) for the creation of profitable trading systems. This further evolution has

to be attributed to the RNN advantage, over standard neural networks and the

vast majority of ML models, of being specifically designed to extract information

from correlated observations such as the ones in time-series. Specifically, among the

different variations of RNN, long short-term memory neural networks (LSTM), being

successfully employed in many fields outside finance (e.g. image recognition), have

emerged as state-of-the-art algorithms and they have been started to be employed

also in academic financial research. The reason of their success is mainly related to

the fact that they have been specifically developed to solve the problem affecting

standard RNN related to vanishing effects of long-term dependencies. Sirignano

and Cont (2019) in their empirical work help in understanding the main reason

related to such such promising results from LSTM applied to financial predictions:

among other conclusions, indeed, they find evidence of long memory in financial

time-series. In their paper, authors start with the evidence that thanks to the

huge number of data present for market transactions, it is possible to explore the

nature of price formation mechanism (i.e. description of how market prices react

to fluctuations in supply and demand). According to authors, the reason for which
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large scale ML methods have not been extensively deployed in finance yet is that

statistical modelling of financial time series has remained asset specific and data

used for estimation are often limited to recent time window. This characteristic is

in contrast with impressive results obtained in other fields with data sets of order

of magnitude larger. If the relation between variables within financial datasets were

universal and stationary then one could potentially pool data across different assets

and time periods to use a much richer data set to estimate/train models. From such

evidences, authors aim at demonstrating effectively the universal and stationary

relationship between variables (i.e. parameters varies neither with asset nor with

time) in financial time series; to do so, they pool data across different assets and

time periods so as to use a much richer data set to train ML models. An example

of universality for financial time series is directly provided by the authors: “For

instance, data on a flash crash episode in one asset market could provide insights into

how the price of another asset would react to severe imbalances in order flow, whether

or not such an episode has occurred in its history” (Sirignano and Cont, 2019, p.

3). This same idea in fact, known as transfer learning, has been applied with great

results in image and text recognition. To demonstrate it, in the experiment authors

employ a 3-layer network with LSTM units followed by a fully connected layer of

ReLu and an output layer with softmax activation function. All the experiment is

performed in a regression setting where the objective of the prediction is the next

price move within the dataset that can considerably vary from a fraction of a second

to seconds. They use a dataset consisting in high-frequency record of all transactions

and order cancellations for approximately 100 stocks traded on NASDAQ between

1 Jan 2014 and 31 March 2017. Input features consists in a vector of state variables

(i.e. transaction and quotes) encoding the history of the order book over many

observation lags. The four main characteristics of financial time-series emerged

from the experimental work are the following ones:

• Non-linearity- A simple linear vector autoregressive model is compared with
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results of the LSTM model. Both models are trained on data coming only

from a single stock. A substantial increase in accuracy between 5% and 10%

is found when incorporating non linear effects into the LSTM over the VAR

model. The same comparison is performed with both models trained on all

stocks and, even in this case, LSTM shows a 10% higher accuracy compared

to the linear model.

• Universality- A deep NN model trained with one specific stock is compared

with one identical model trained on all stocks. Results show how the universal

model consistently outperforms the stock specific model indicating the pres-

ence of common features relevant to forecasting across all stocks. In another

test, the universal model also proves to be able to generalise to stocks that

are not part of the training dataset. Moreover, the stock specific model proves

to suffer from overfitting due to smaller training dataset, while the universal

model proves to be able to generalise being less exposed to overfitting.

• Stationarity- The model performance in term of price forecasting accuracy

is remarkably stable across time showing evidence of a stationary relationship

between order flow and price changes.

• Evidence of long memory- The out-performance of the LSTM network

compared with a standard feed-forward neural network, both trained on all

stocks, shows how the history of the input features can provide significant

additional information. Even more complex and deep NN are not found to

be able to reduce the performance gap between a static model and recurrent

model. Finally, the forecast accuracy has found to improve when the LSTM

is provided with a longer look-back period as input.

As it will be accurately explained in 3.2.3, within the family of recurrent neural

networks, it is possible to find many different variations. All of them have been

proposed to deal properly with datasets containing correlated observations. The-
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oretically, among all variations, more recent ones should be able to better extract

long-term dependencies that standard RNN, affected from vanishing/explodient gra-

dient problems, are not properly able to extract. The work of Liu and Liu (2018)

is significant in this sense since it compares a standard RNN with more recent LSTM

and gated recurrent unit networks (GRU). The study takes advantage of such mod-

els to predict the price movements of the HS300 index from Jan. 2005 to Dec. 2017

5-days ahead. Authors do not select the one-day ahead prediction since it is often

disturbed by a lot of noise. Moreover, in contrast with the majority of classification

approaches that divide the direction of stock movement using a binary classification

forecasting model (up or down), this approach creates a third class representing all

returns data that lie inside a certain threshold range around zero. This choice is

made at first to decrease effective trades that at the end, net of transaction costs,

reveal not to be profitable, and secondly because usually models struggle to mean-

ingful distinguish ups and downs when returns are close to zero. Finally, the study

focuses on a “movement trend-based data preparation” method, meaning that it

focuses on the discretization of technical indicators on the basis of the dynamic rela-

tionship between the original trend factor and the stock movement trend (e.g. when

stock price > ema10, ema10 ← 1 otherwise ema10 ← −1). Results show how the

best performance, among all combinations of models and dataset with discretised

and non-discretised data, is achieved by GRU trained with discretised data with an

accuracy of 68% compared to LSTM with accuracy of 65% and RNN 64%. More-

over, among all models, the deep and narrow structure outperforms the shallow and

wide one keeping the total number of neurons in hidden layers constant.

Another big step in machine learning research that has followed the flaws related

to standard RNN is the concept of attention mechanism (Bahdanau et al., 2015):

the theory of attention comes from evidences that many animals focus on only a

specific parts of their field of view to take adequate actions; in neural computation

this is translated by the fact that it might be sufficient to focus on most relevant

piece of information to make further neural processes, rather than using all of it.
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Practically, the idea is to let every step of a RNN pick only a part of information

to look at, from a larger collection of information. Take as example a RNN aiming

at creating a caption to describe an image, for every word it outputs it might pick

a part of the image to look at. Chen and Ge (2019) are probably the first to

apply this mechanism to financial time series through an attention based LSTM

with the objective to predict the direction of daily close price movement for stocks

in the Hong Kong stock exchange. As input features, the application uses 8 technical

indicators plus standard price features. Results from the paper on the accuracy of a

two layer LSTM followed by a dense layer and a batch-normalization layer and the

same network preceded by an attention layer show how the attention mechanism

improves the overall stock movement prediction accuracy. The AttLSTM shows

prediction accuracy improvement in 56 stocks out of 72 stocks before parameter

tuning. Even after tuning the input layer size, the batch size and the learning rate

on a validation set, where the configuration with the highest accuracy is selected,

the AttLSTM outperforms LSTM in 22 out of 28 stocks. All accuracy measures

for each different stock in the dataset range between 50% and 65%. Authors also

create a long-only trading strategy, where for each day they proportionally invest

all wealth on those stocks predicted to have positive movements by the two models:

during a period of 700 trading days, the attLSTM shows a positive total return of

almost 180% compared with 100% of LSTM and 15% of the Hang Seng Index.

To conclude the review, the remarkable application of Fischer and Krauss

(2018) regarding LSTM networks is presented. The work of the authors is really

important for a thesis aiming at examining LSTM networks and financial time-series

since, as they state, it provides “an in-depth guide on data pre-processing, as well as

development, training, and deployment of LSTM networks for financial time series

prediction tasks” (Fischer and Krauss, 2018, p. 2). Specifically, authors expand the

recent work of Krauss et al. (2017) working on the same dataset; one unexpected

finding of the previous experiment was that deep neural networks with returns of

0.33% per day prior to transaction costs under-performed gradient-boosted trees
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with 0.37% and random forests with 0.43%. The latter fact is surprising, given the

dramatically improvements that deep learning has brought in speech recognition,

visual object recognition, object detection and many other domains. One would

expect similar improvements in the domain of time series predictions. However,

as already cited, authors point out the difficulty in fine-tuning processes for deep

learning architectures. This is the reason why Fischer and Krauss focus on LSTM

networks, one of the most advanced deep learning architectures for sequence learning

tasks in this case. Moreover, differently from any other reserach presented in this

section, authors aim at drawing general rules to look into the black box of artificial

neural networks thereby trying to unveil their sources of profitability. Authors de-

cides to evaluate the performance of LSTM with a single hidden layer, 240 timesteps,

trained only with return sequences, to compare it with random forests since they

deliver virtually no tuning and good results, with deep feed forward neural networks

(with 31-31-10-5-2 neurons in each different layer) to show the relative advantage

of LSTM units and with logistic regression selected as a baseline. All benchmarks,

being static models, differently from LSTM, are trained with daily with cumulative

returns at m days with m ∈ {1, ..., 20} ∪ {40, 60, ..., 240}. Each model is trained

to forecast the probability of the price of a single stock in the dataset to be higher

or lower than the cross-sectional median of returns for all stocks at t + 1. On the

basis of the probability output, different portfolios are created going long (short) on

top (flop) k stocks, where k ∈ {10, 50, 100, 150, 200}. Main results in terms of per-

formance, within the period Jan.1993-Oct.2015 for stocks included in the S&P500

index, can be summarised as follows:

• In terms of accuracy, it is found a clear advantage for LSTM when k = 10

where it reaches the value of 54.3% against RAF reaching 53.8%, deep NN

53.7% and logistic regression with 52.2%. However, the edge is nullified from

k = 100 on.

• Portfolios created with LSTM show the highest daily returns: daily returns
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prior to transaction costs are at 0.46%, compared to 0.43% for RAF, 0.32% for

deep NN, and 0.26% for the logistic regression in k = 10. Also in case of larger

k, LSTM achieves the highest results with a single exception at k = 200 where

it is tied with RAF. In terms of annualised returns, for k = 10, LSTM achieves

a performance of 82.29% after transaction costs, RAF of 67.87%, deep NN of

24.6%, logistic regression of 7.11% and the general market of 9.25%.

• In terms of standard deviation, LSTM and RAF present similar results. In

any case, both of them exhibit much lower standard deviation than logistic

regression and deep NN.

• In terms of Sharpe ratio, LSTM has the highest performance up to k = 100

(e.g. at k = 10 LSTM has 5.83 and RAF 5). After k = 100, RAF perform

better than LSTM given low standard deviation of returns.

From this findings, authors evidence how the “LSTM networks, which are inherently

suitable for time series prediction tasks, outperform shallow tree-based models as well

as standard deep learning” (Fischer and Krauss, 2018, p. 8). Moreover, carrying

out a critical review of LSTM profitability over different time periods, the following

findings are highlighted:

• Financial performance from LSTM and RAF from 1993 to 2000 are strong.

Cumulative payouts on 1$ average invest per day reach a level of over 11$ for

the LSTM and over 8$ for the RAF until 2000. Anyhow, it is worth men-

tioning how LSTM has been introduced in late 90s and was feasibly deployed

after 2000s. Thus the exceptionally high returns may be driven by the fact

that LSTM was unknown or unfeasible for the majority of investors. Similar

arguments hold for RAF.

• In the period 2001-2009, authors find still positive returns but lowered com-

pared to the previous period. Authors states how “it seems reasonable to

believe that this period of moderation is caused by an increasing diffusion of
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such strategies among industry professionals, thus gradually eroding profitabil-

ity” (Fischer and Krauss, 2018, p. 2).

• Surprisingly, RAF performs incredibly well after 2008 compared to LSTM with

a Sharpe ratio up to 6. This results is peculiar since for all other algorithms,

as said, the return lowered over time given their implementation by an in-

creasing number of financial operators. Authors attribute the result to RAF’s

robustness to noise and outliers which play out in such volatile times. More-

over, following the literature, they explain the result in light of the particular

turmoil situation in which operator may have created relative value arbitrage

opportunities and by the fact that, in such periods, limits to arbitrage are

exceptionally high, making it hard to capture such opportunities (e.g. short

selling costs to borrow stocks may rise or returns may be limited by widening

spreads and decreasing liquidity).

• In the last period, 2010-2015, RAF loses its edge destroying more than 1$

based on an average investment of 1$ a day. Conversely, LSTM continues

to achieve higher accuracy and to maintain the capital almost constant after

transaction costs.

Finally, authors shed a light on common patterns in top and flop stocks selected by

LSTM. LSTM is found to be able to spot patterns related to well known market

anomalies by its own, none of the identified characteristics has been explicitly coded

as feature indeed:

• Flop and top stocks exhibit below-mean momentum, meaning that they per-

form poorly from day t − 240 to day t − 10 compared to the cross-sectional

mean. At day t − 9, top stocks start crashing and, by contrast, flop stocks

show increasing returns. Thus. LSTM is found to realise a sort of short-term

reversal strategy: “The LSTM network seems to independently find the stock

market anomaly, that stocks that sharply fall in the last days then tend to rise

in the next period and vice versa.” (Fischer and Krauss, 2018, p. 11).
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• High volatility stocks tend to be preferred. Among most frequently selected

stocks, it is possible to find those ones with higher Beta. Moreover, they are

also more leptokurtic than general market.

• Looking at the industry of stocks selected in the portfolios, it is possible to

observe how LSTM focuses on specific industries during specific time period

(e.g. tech sector during rising of the .com bubble in late 90s, financial sector

during the financial crisis period 2008/2009).

Based on the these common patterns, authors create a simplified rules-based trading

strategy. Specifically, they short short-term winners and buy short-term losers, and

hold the position for one day. With this transparent and simplified strategy, they

manage to obtain returns of 0.23% per day prior to transaction costs (i.e. about 50%

of the LSTM returns). In conclusion, Fischer and Krauss find how deep learning,

in the form of LSTM networks, seems to effectively constitute an advancement in

financial forecasting prediction tasks.

Summarizing, at the end of the review it results clear why financial ML liter-

ature today founds its research upon LSTM networks. Standard recurrent neural

networks have already represented a great evolution in ML financial research trans-

forming neural networks from static models able to incredibly approach non-linear

dependencies among variables, to dynamic models able to extract such non-linear de-

pendencies from a sequence of correlated observations. Possibly, LSTM have moved

the performance frontier set by RNN further. We have seen how Fischer and Krauss

(2018) found in their empirical study how LSTM networks over-perform “classic”

ML models such as RAF and logistic regression in forecasting stock price move-

ment. But even more importantly, they found LSTM to be better in forecasting

and in generating an investment strategy than deep feed-forward neural networks.

Sirignano and Cont (2019) helped understanding the results uncovering evidence of

non-linearity and long memory in financial time-series. Particularly this last fea-

ture results to be the key factor to understand LSTM suitability to financial market
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predictions. Liu and Liu (2018) found indeed how two variations of standard RNN

specifically created to consider long-term dependencies such as LSTM and GRU

managed to perform better than standard RNN in their empirical research. Finally,

it is worth to remember that the experimentation dealing with LSTM and financial

market predictions is quite new and there are not many approaches from the litera-

ture about it, especially if compared with the vast amount of researches performed

through the years dealing with other ML algorithms. Nonetheless, for instance from

Chen and Ge (2019), it appears clear how also in finance, as in other ML fields,

the following step in the research dealing with stock market predictions will have to

do with the optimization of all the processes related with information content pro-

vided to the algorithm whose attention mechanism are among the most prominent

example of it.
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Chapter 3

Machine Learning for Financial
Market Predictions

After the literature and before the presentation of the experimental work, in this

chapter the thesis aims to define a theoretical framework regarding the application

of machine learning models for financial market predictions. Even if not containing

any research novelty, this attempt has to be considered an important contribution

since it merges theoretical concepts from both machine learning and finance. Until

now, in fact, it has not been yet emerged a well-defined field of study combining this

two domains, even if their union has been reality in the business world for many

years.

The framework will evidently begin defining machine learning and the related

concept of statistical arbitrage (Section 3.1). After that, it will focus on a detailed

description of the functioning of all the main algorithms emerged from the literature

review (Section 3.2). As third aspect it will treat features selection with a syn-

thetic taxonomy of the most frequently employed predictors in financial applications

(Section 3.3). Finally, the last, and probably most important, facet treated by the

framework will be the difference, peculiar to ML financial applications, between data

science and financial performances of ML models (Section 3.4).
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3.1 Machine Learning and Statistical Learning

The creation of the term “Machine Learning” is attributed to Arthur L. Samuel, an

American computer scientist, that in his paper, working on programming a computer

to be better in playing the game of checkers than a person, wrote “Programming

computers to learn from experience should eventually eliminate the need for much

of this detailed programming effort”(Samuel, 1959). The definition has been then

transformed and nowadays Machine Learning is referred as “the scientific study of

algorithms and statistical models that computer systems use to perform a specific

task without using explicit instructions, relying on patterns and inference instead”

(Wikipedia, 2020). In particular, the field regarding the research on statistical mod-

els used by computers to perform specific actions goes under the name of statistical

learning and it includes both machine learning algorithms and classic statistical

models.

Following the line of reasoning proposed by Hastie et al. (2013, p. 16-30), the

problem of Statistical Learning, can be summarised as follows: it is supposed to

observe a quantitative response Y and p different predictors X1, X2...Xp; it is also

assumed a relationship between Y and X in the form Y = f(X)+ ε where f is some

fixed but unknown function of X1...Xp and ε is a random error term, independent

of X and with mean zero. In such a formulation f represents the systematic in-

formation that X provides about Y and, since it is generally unknown, Statistical

Learning refers to a set of approaches for estimating it. Once the estimated function

of f , represented as f̂ , is identified then it can be employed either to make prediction

or to make inference.

Focusing on prediction applications, they aim to predict Y through the estima-

tion Ŷ = f̂(x). In this formulation, at first, f̂ is often treated as a black box since it

is not concerned with the exact form of f within the model that creates it. Secondly,

f̂ is not a perfect estimate for f , thus meaning that an error is always present in

predictions. Actually, f̂ is not the only source of error in predictions; in fact, even if
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it were possible to have a perfect estimate for f , the error would be still introduced

by the presence of ε. ε refers indeed to all the quantity of information remained

unexplained by the model due to unmeasured variables or immeasurable variations.

Mathematically, the behavior of the prediction error (i.e. the difference between the

true value Y and the predicted value Ŷ ) can be understood looking at its variance:

E(Y − Ŷ )2 = E[f(X) + ε− f̂(X)]2 = [f(X)− f̂(X)]2 + var(ε) (3.1)

From (3.1) it is possible to see how, even if f(x) was equal to its estimated value

f̂(x), the irreducible error given by ε would continue to provide an upper bound on

the accuracy of the prediction of Y , always quantitatively unknown. By definition,

ε has a positive variance indeed.

Summarizing, the goal of Statistical Learning methods for predictions is thus to

find a function f̂ such that y ≈ f̂(x) for any observation (x, y) by teaching/training

a specific model with the support of a given set of observations (X, Y ).

As we have anticipated, statistical learning includes both traditional statistical

models and more recent machine learning ones. Despite some similarities, they are

really different. The first important distinction between them resides in the dimen-

sion of the set of observations (X, Y ): ML applications usually deals with a massive

sample with high dimensionality (i.e. Big Data), while classical statics with smaller

datasets and fewer attributes. The second difference is that classical statistics is

“model driven” meaning that the model definition relies on strong assumptions on

data such as normality, no multicollinearity, homoscedasticity etc. This type of ap-

proach is particularly useful when data are scarce and there is a good knowledge on

their underlying structure. At the opposite, Machine Learning is not assumption

dependent, its approach is heavily reliant on data itself and makes few assumptions

on the problem structure.

In Machine Learning literature different models have been proposed to deal with

prediction problems. It is possible to categorised them following three main criteria:

their functional structure, their objective and the way in which they are trained.
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Parametric and non-parametric models The first important distinction that

can be made is the difference between parametric and non-parametric models. Para-

metric models involve assumptions about the functional form of f , so that the prob-

lem of estimating f is reduced to estimate a set of parameters. When dealing with

parametric models, it is really important the choice about the number of param-

eters that influences the flexibility of the model. The trade-off is between a too

flexible models (i.e. model with many parameters) that can lead to a phenomenon

known as overfitting, that will be better explained later, where f̂ picks up the noise

ε instead of the real signal, and a rigid model not able to approximate correctly

the true relationships between features and observed outputs. On the contrary, in

non-parametric models there are no explicit assumptions about the functional form

of f . Their major advantage resides in avoiding the possibility that the functional

form used to estimate f̂ is very different from the true f , creating a model that will

fit poorly the data. On the opposite, non-parametric approaches suffer of the dis-

advantage of requiring large amount of observations to obtain an accurate estimate

for f .

Regression and classification approach Another important difference is the

one regarding regression and classification approaches. Problems with a quantita-

tive response are referred as regression problems, while problems with a qualitative

response (i.e. a response that takes on value among one of k different classes) are

referred as classification problems. Most of the time, the same algorithm can be ap-

plied either to a regression problem and to a classification problem with very little

tuning.

Supervised, unsupervised and reinforcement learning Finally, the last im-

portant distinction in Machine Learning models is the one among supervised, un-

supervised and reinforcement learning approaches. Supervised learning approaches

are the ones presented so far, in which for each observation of the predictor measure-

ment(s) Xi is present an associated response measurement Yi. In this approach the

aim of prediction is to fit a model that relates the response Y to the predictors X. In
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any case, it is also possible to deal with unsupervised learning approaches where for

each observation Xi there is no associate response Yi. The term “unsupervised” thus

refers to the lack of a response variable that can supervise the analysis, directing the

training process. Finally, reinforcement learning can be considered a particular case

of unsupervised approaches since it does not require labelled data. In this approach

the learning system observing the environment, select and perform actions. From

its action, it gets rewards or penalties based on a well defined policy and, basing on

these feed-backs, the system is able to learn the best strategy to interact with the

environment maximising its rewards.

Since the application presented in Chapter 4, as the majority of application

dealing with financial time-series, refers to a supervised approach, throughout the

rest of the chapter only supervised approach will be addressed so that the term

ML model will always indicate a supervised approach. Nonetheless, reinforcement

learning is proving to produce incredible results in fields such as robotics and it is

starting to be used even for financial applications (e.g. Almahdi and Yang, 2019).

Supervised Learning

Every supervised learning approach can be decomposed in three separated phases:

learning in-sample, testing out-of-sample and predicting.

In the learning in-sample phase, the model selected requires to be trained with

a specific training set. This learning phase is crucial, since during this process the

model is set to reproduce, as accurately as possible, the real function f from the

information that it has been able to extract from observations in training set. The

training process is a sensible part of any ML application: it must be controlled the

trade-off between the construction of a model able to generalise the relations found

in the training dataset without losing in accuracy of its forecast. In fact, there is

the risk of a model adapting itself to be perfect in delivering a response for the data

inside the training set but then found totally unable to do the same for observations

never seen before. So, the attention during this phase must be directed towards
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the control of the empirical relations learned during the training process to be really

general for the whole population and not specific for observations inside the training

set.

To verify the universality of the model, during the testing out-of-sample phase,

the model is usually required to predict on an unseen set of observations called test

set. Through specific measures of error, in this phase the capability of the model

not to be specific to the training data is verified.

Focusing on the trade-off concept, it is usually referred as the variance-bias trade-

off ; through a mathematical proof, it is possible to show that the expected error of

a model can be always decomposed into the sum of three fundamental quantities:

bias, Variance and an irreducible error as

Err(x) = Bias2 + V ariance+ Irreducible Error (3.2)

Bias refers to the difference between the average prediction of our model and the

correct value which we are trying to predict (i.e. it refers to the error introduced

by approximating a real-life problem by a much simpler model), variance is the

variability of model prediction for a given data point (i.e. the amount by which f̂

would change if estimated using different training data; theoretically the estimate

for f should not vary between different training sets) and irreducible error is the

error related to the presence of ε. Equation (3.2) tells us that in order to minimise

the expected test error (i.e. error obtained during the testing out-of-sample phase)

it is necessary to select a method that simultaneously achieves low variance and

low bias: models with high bias will pay very little attention to training data and

will oversimplifies the real relationship between input features and output, while

models with high variance will pay a lot of attention to training data and will not

generalise on data that they have never seen before. So, this second phase results

to be important to verify bias and variance measures.

The usual shape of training and test error related to model complexity (depend-

ing on the model, it can be related to many other parameter concerning the training
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Figure 3.1: Test and training error as a function of model complexity

process) is illustrated in figure 3.1. The key aspect to look at is how the training

error decreases whenever the data are tried to be replicated more accurately. At the

same time, however, with too much fitting the model adapts itself too closely to the

training data and it becomes unable to generalise: we can see how the test sample,

over a certain degree of complexity, start increasing while the training sample is

always decreasing.

Finally, from bias-variance trade-off that both the concepts of underfitting, that

happens when a model is unable to capture the underlying pattern of data (model

with high bias and low variance), and overfitting, that happens when a model cap-

tures the noise along with the underlying pattern in data (model with low bias

and high variance) derives. Figure 3.2 gives an easy graphical interpretation of the

bias-variance trade-off in linear regression.

Measuring the test error requires to leave out a part of the available observations

from the training process. The problem in doing so is that machine Learning meth-

ods tend to perform worse when trained on fewer observations. So, splitting the

entire dataset into two parts, training the model on the first part and measuring a
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Figure 3.2: Linear regression models with polynomials of increasing order, from 1 to 16. Data are
generated from the function represented by the blue line plus a white noise. Black dots represent
training set on which the models have been trained and red dots represent the test set. It is possible
to see how models of first and second order clearly underfit data and models from the ninth order on
overfit data.

test error on the second one might bring to overestimate the test error for the same

model fit on the entire dataset. For this reason, methods such as cross-validation

are used not to lose valuable information in the training phase and at the same

time to have a good measure of out-of-sample accuracy/precision. Anyhow, such

methodologies are not relevant for time-series: for time-series observations there is

the constraint of time that impose to maintain the data in a chronological sequence

since they are correlated; methodologies such as cross-validation would require to

shuffle observations and use more recent data in training set and older data as test
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set. This is the reason why in the application presented in this thesis a training win-

dow approach will be applied; anyhow, its functioning will be accurately presented

in Chapter 4.

As last step, once a model has been found to have adequate levels of both variance

and bias, thus not suffering neither from overfitting not from underfitting, the last

phase concerns the prediction of values we are effectively interesting to forecast and

that will probably influence our decision process.

3.2 Machine Learning algorithms in financial ap-
plications

After the briefly introduction about basic statistical learning concepts provided in

the previous section, in this section the main ML algorithms applied in literature

to deal with financial time series forecasting will be presented. The order in which

they will be presented wants to retrace the temporal development of the differ-

ent solutions applied: over the time, as emerged from literature review, thanks to

increasing computer power, more powerful algorithm have been implemented in lit-

erature to deal with financial time-series forecasting until reaching solid results in

recent years. Among the first applications, the most frequent models implemented

have been Classification Trees (3.2.1) and Support Vector Machines (3.2.2). After

them, the research has started to shift its focus towards Neural Networks (3.2.3)

due to their ability to map non-linear dependencies among data and to their im-

pressive results in other machine learning application fields. However, the real jump

in performance regarding financial time-series has occurred with Recurrent Neural

networks (3.2.3) specifically designed to deal with correlated data. In particular,

in the last couple of years, Neural Networks with Long-Short term memory cells

(LSTM), a powerful variation of standard recurrent neural networks, have moved

the performance frontier forward. The last part of the section will pay particular

attention to LSTM since such algorithm has been selected to create an investment
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strategy for the experiment performed in Chapter 4.

All the algorithms will be presented in their classification setting, since this is

the same setting decided to adopt for the application presented in Chapter 4.

3.2.1 Classification Trees

Decision trees are among the first ML models used to deal with stock market predic-

tions due to their simplicity. Specifically, among all the different algorithms proposed

for the creation of trees, random forests and boosting are the two variations that

have had the higher success in financial literature especially due to their robustness

to noisy feature space. This is the reason why they will be extensively presented in

this subsection.

Decision trees are methods that divide the predictor space (i.e. the set of all

possible values for X matrix) into different and non-overlapping regions and, for

every observation that falls into the same region, make the same prediction. They

can be applied both in regression and classification problems. In both cases, to

predict the output given certain features, the portion of the predictor space in which

the observation lies must at first be identified; then, in a regression problem, the

response the model gives equals the mean of responses in the training set for that

particular region, while, in a classification problem, the predicted class refers the

most commonly occurring class of training observations within the region.

The search for the optimal predictor space splitting is performed during the

training phase through the support of a cost function (e.g. Residual sum of squares

for regression and Gini index or cross-entropy for classification): for every step of the

process, among all possible splits, the one decreasing the cost the most is selected.

Figure 3.3 shows the typical form of a classification tree.

Random Forests

Random forests (Breiman, 2001) are variations of simple decision trees relying on

the concept of bootstrap and the related one of bagging.
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Figure 3.3: Example of a possible classification tree for Carseats dataset. The dataset contains sales
of child car seats at 400 different stores. Class “No” refers to stores with less than 8000$ sales, class
“Yes” to stores that exceeded 8000$ sales. At a given internal node, the label (of the form Xj < tk)
indicates the left-hand branch, while the right hand corresponds to Xj ≥ tk. The categorical variable
“ShelveLoc” refers to the quality of the shelving location for the car seats at each site and takes three
values: Bad, Medium and Good. The variable “Age” refers to the average age of the local population
and “prices” to the price the company charges at each location.

Bootstrap (Tibshirani and Efron, 1993) is a statistical tool that can be used

to quantify the uncertainty associated with a given estimator or statistical learning

model. The technique is based on the creation of different random samples from an

original dataset with replacement (i.e. a given observation in the original dataset

can be randomly selected more than once to enter in the nth bootstrapped sample).

The method requires each bootstrapped sample to have the same size of the original

dataset. The core idea behind the method is that, from the bootstrapped samples,

it is possible to estimate any aspect of the distribution of any measure computed

in the training set examining, over the N replications of the original sample, its
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behaviour.

The idea of bootstrapped samples has been recalled by a method called Bag-

ging, algorithm that can be considered the forefather of Random Forests, to reduce

the variance of statistical learning method. Bagging (Breiman, 1996) relies on the

property for which, given a set of N independent observations each with variance

σ2, the variance of the mean of the observations is σ2/N : to reduce the variance,

and hence increase the accuracy, of a statistical learning method, Bagging builds

many training sets from the original dataset (i.e. bootstrapped samples) and trains

a separate prediction model for all the different bootstrapped sets; once all mod-

els are trained, it averages the predictions of each different model. Averaging the

prediction of many weak learners, bagging manages to reduce the variance of the

forecasts without affecting the expectations of predicted values. In the light of the

bias-variance trade-off 3.2, bagging reduces the expected error related to the pre-

diction by diminishing the variance and keeping at the same time the bias constant
1.

Random forests algorithm, while being very similar to bagging, provides an im-

provement over it focusing on the creation of decorrelated trees to be averaged.

Bagging indeed suffers from the bias associated with the high probability that the

same strong predictor is used most of the times by bagged trees in the top split (i.e.

predictions of bagged trees are all strongly influenced by a single strong predictors

thus being very similar). In a similar situation, the predictions of all trees would

result to be highly correlated thus canceling the benefit of the average: the variance

would be higher than σ2

N
indeed. So, random forests correct this bias by forcing each

split to consider a random subset of admissible predictors for each split: on average

in RAF (p−m)/p of the splits do not even consider the strong predictor (where m is

the number of predictors available for the split a p the total number of predictors).

The strengths of RAF are that the algorithm hardly overfit the training data

1The expected value of the mean of all predictions is equal to the mean of expected values of
each single prediction indeed, as E( 1

N

∑N
i=1 xi) = 1

N

∑N
i=1 E(xi)
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as the number of uncorrelated trees increases and that it works well in presence of

multicollinearity 2. Moreover, RAF does not require too high processing capabilities

and it requires minimum parameters tuning. The only parameters required by the

algorithm are the number of decorrelated trees, influencing the trade-off between

computational costs and marginal improvement in performance after each additional

tree, the max depth of the tree (i.e. the number of leafs at which each tree must stop

its training process), the value m of admissible parameters at each split (usually set

as √p, where p is the total number of parameters in the database, following Hastie

et al. (2013)) and the cost function used to create the split in the trees.

These characteristics help understand why RAF has been among the first pop-

ular algorithm for financial time-series prediction, a notoriously noisy and prone to

overfitting application. Even nowadays, RAF is used as challenging benchmark for

state-of-the-art ML algorithms since it has proved over the year to deliver impressive

results if compared to its inner simplicity.

Boosting

Similarly to RAF, boosting starts from the same assumption of bagging: the predic-

tions of many “weak” classifiers (i.e. classifier whose error rate is only slightly better

than random guessing) can be used to create a “strong” predictor. The difference is

that, in Boosting, trees are grown sequentially and not simultaneously. In fact, each

tree employs information from previously grown trees. Moreover, Boosting does not

involve bootstrap sampling since each tree is fit on a modified version of the original

dataset.

The two main boosting algorithms found in financial literature are AdaBoost

and Gradient Boosting. AdaBoost was firstly proposed by Freund et al. (1996),

then it has been generalised in Gradient Boosting by Friedman et al. (2000).

The main difference between the two lies in the way they create weak learner to

2Phenomenon in which one predictor variable can be predicted by the other input variables
with high degree of accuracy

45



CHAPTER 3. MACHINE LEARNING FOR FINANCIAL MARKET
PREDICTIONS

Algorithm 1 AdaBoost.M1. (Friedman et al., 2001, p. 339)
1: Observation weights wi are initialised at 1

N
, with N =Number of observations

in the dataset.
2: For m = 1 to M :

a Fit a classifier Gm(x) to training data using wi
b Compute

errm =
∑N
i=1wiI(yi 6= Gm(xi))∑N

i=1wi
(3.3)

c Compute
αm = log((1− errm)/errm) (3.4)

d Set
wi ← wi · [αm · I(yi 6= Gm(xi))] (3.5)

3: Output

G(x) = sign[
M∑
m=1

αmGm(x)] (3.6)

be added to form a strong learner: Adaptive Boosting (AdaBoost) changes the

sample distribution by modifying the weights attached to each of the instances,

while Gradient Boosting trains the weak learner on the remaining errors of the

strong learner. Both models, in any case, try to model the weak learners to be able

to improve performance in an area of the feature space where they do not perform

well.

The AdaBoost algorithm for classification presented in 1996, called Adaboost.M1.,

is presented in Algorithm 1 while Gradient Boosted one is presented in Algorithm

2.

Starting with AdaBoost, as anticipated, it modifies data at each boosting step

applying weights to each training observations. Initially, all weights are set to

1/N , while for each successive iteration, observations misclassified by the classifier

have their weight increased in (3.5), whereas for those that were correctly classified

weights are decreased. Each successive classifier is thereby forced to concentrate on

observations missed by previous models.
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Algorithm 2 Gradient Boosting (Hastie et al., 2013, p. 322)
1: All the predictors f̂ are set at f̂ = 0 for all observations in the dataset. In this

way residuals ri = yi.
2: For b = 1 to B:

a Fit a tree f̂ b with d splits to the training data (Xi, ri)
b Update f̂ adding a shrunken version of the new tree

f̂(x)← f̂(x) + λf̂ b(xi) (3.7)

c Update residuals
ri ← ri − λf̂ b(xi) (3.8)

3: The final output of the boosted model will be

f̂(x) =
B∑
b=1

λf̂ b(x) (3.9)

Gradient Boosting, instead, fits a tree using current residuals, rather than the

effective outcome Y, as response. Each fitted tree is added to a total decision

function in (3.7) in order to update residuals in (3.8). The updated residuals, will

be then used in (2.a) to fit the following tree. By fitting small trees to residuals,

f̂ is slowly improved in areas of the feature space where it does not perform well.

This is the reason why in Boosting the construction of each tree strongly depends

on trees that have already been grown and the reason why, instead of fitting a single

large decision trees to data, the boosting approach is said to “learn slowly”.

Like RAF, boosting algorithms requires few parameters to be set: the num-

ber of trees b (with the difference that here, unlike bagging and RAF, a too large

value can bring to overfitting), the shrinkage parameter λ that controls the rate at

which boosting learns and the number of splits per each tree d. Boosting, in both

AdaBoost and Gradient Boosting version, has proved to posses impressive computa-

tional scalability (i.e. it can handle thousands of predictors), to have high capacity

to deal with irrelevant inputs and to tend to perform better when handling data of

mixed type (i.e. continuous and categorical). Finally, as RAF, generalised boosting
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classifiers have a good level of interpretability: it can provide a ranking of variable

influences and their marginal effect on the response.

Boosting algorithms, as opposed to RAF, are rarely employed for financial appli-

cations nowadays. They have never shown impressive performance when applied to

financial time-series prediction indeed, especially in terms of financial performances.

3.2.2 Support Vector Machines

Along with random forests, support vector machines gained a lot of popularity

among the first machine learning finance applications in literature. Before the mas-

sive implementation of neural networks, in fact, SVM have been selected when deal-

ing with stock price time-series due to their inner ability to look for non-linear

decision boundaries within the feature space.

Support Vector Machines (Ben-Hur et al., 2001) algorithm lies on the simple

concept of maximal margin classifier and further extend it. The maximal margin

classifier is a method to classify data through the maximal margin hyperplane, that

is the separating hyperplane for which the margin (i.e. the minimal perpendicular

distance from training observations and a separating hyperplane that divides the

feature space in two parts) is largest (Figure 3.4).

Given the definition, it is demonstrable that the functional form of the maximal

margin hyperplane depends only on the nearest observations to the plane within the

training set, the ones which lies on the maximum margin, and not on the others:

looking at figure 3.4, the position of the hyperplane represented depends only on

the three squared points lying on the dashed maximum margins. If these points

were moved, then the hyperplane would move as well. This is the reason why these

points are called support vectors since they define the position of the maximal margin

hyperplane. Now, the problem with Maximal Marginal Classifier is that it works

only if data can be perfectly and linearly separable by a hyperplane. Moreover, the

maximal margin classifier is extremely sensitive to change in a single observation,

risking to overfit the training data.
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Figure 3.4: Example of a maximal margin classifier

So, the natural extension of maximal margin classifier is called support vector

classifier. It accounts for the possibility of the two classes in training data not to be

perfectly separable and it can be considered the forefather of SVM. In mathematical

terms, the support vector classifier can be written as a maximization problem of the

form:

max
β0, β1, ..., βp, ε1, ..., εn

M (3.10a)

s.t.
p∑
j=1

β2
j = 1, (3.10b)

yi(β0 + β1xi1 + β2xi2 + ...+ βpxip) ≥M(1− εi), (3.10c)

εi ≥ 0, (3.10d)
n∑
i=1

εi ≤ C (3.10e)

Where C is a non-negative tuning parameter, M is the width of the margin which we

want to make as large as possible and εi are slack variables which allow observations
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to be on the wrong side of the margin or hyper-plane (i.e. “soft classifier” approach).

From its functional form, it is possible to observe how the classifier controls the

position of training observations in the feature space on the basis of the sign in the

left side of equation (3.10c): it is easy to understand that the classifier correctly

classifies the ith observations if yiβXi > 0 (while when yiβXi > M , it means that

the observation concurrently lies on the right side of the plane and at a distance

larger than the margin).

In any case, up to this point, the problem results the same of the one of maximal

margin classifier. The novelty is introduced by the presence of ε. It accounts for this

model for the possibility for observations to lie on the wrong side of the hyperplane.

In fact, when εi ≥ 0, then the ith observation is on wrong side of the margin and when

εi ≥ 1, ith observation is on wrong side of the hyper-plane. However, the possibility

for the classifier to wrongly classifies observation is bounded by the tuning parameter

C: it bounds the sum of the εi and sets the tolerance level for misclassification.

Larger values of C indicate larger tolerance. Importantly, C controls the bias-

variance trade off: higher C indicates a higher margin (i.e. many observations

violate the margin) and therefore a higher number of support vectors, resulting in

a more biased but less variable model.

However, also this model presents a limitation: even with the extensions related

to ε and C, the linear boundary hypothesis persists. It can be easily understood why

this still results a strong limitation for the algorithm from the example in Figure

3.5: suppose to have a dataset as the one in the left figure and to train a support

vector classifier from it. From the right image, it can be seen how such a classifier

will perform poorly in properly separating the data.

Finally, Support vector machines comes to solve the problem of linear bound-

aries: they enlarge the feature space to deal with nonlinear decision boundaries

through the use of the so-called kernels. The kernel is a function applied on each

data instance to map original observations into a higher-dimensional space so as

to make them as much as possible linearly separable. In this enlarged space the
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Figure 3.5: Example of a support vector classifier employed to classify observations from a dataset that
requires non-linear boundaries.

algorithm looks for a linear boundary that, when re-mapped in the original feature

space, will not result clearly linear.

Mathematically, kernels are different type of functions that are used to transform

the linear boundary in (3.10c) in a non-linear one, taking advantage of a mathemat-

ical property for which the solution of the problem (3.10a) regards only the inner

product of the observations. SVM can be written as the same maximization problem

of the support vector classifier with the exception of (3.10c) that, with kernel, is

transformed in:

f(x) = β0 +
∑

βiK(x, xi) (3.11)

Where K(x, xi) represents the selected kernel.

Said that, certainly the most important decision to be taken when dealing with

SVM is the type of kernel to be employed. Among the most successful kernels in

financial applications, it is possible to find polynomial kernel (3.12), radial basis

kernel (3.13) and sigmoid kernel (3.14):

K(x, xi) = (1 +
p∑
j=1

xijxi′j)d (3.12)

K(x, xi) = exp(−γ
p∑
j=1

(xij − xi′j)2) (3.13)
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K(x, xi) = tanh(αxTy + c) (3.14)

The optimization of parameters such as d in (3.12), γ in (3.13) or α in (3.14) in

kernel functions is usually performed through a grid search, where performances

achieved by SVM using different values for such parameters are compared and the

best one is selected. Figure 3.6 shows how when dealing with the previously pre-

sented database (Figure 3.5), SVM with radial kernel is able to correctly classify

basically all observations.

Figure 3.6: SVM with radial kernel applied to the dataset from figure 3.5

Since dynamics of financial time-series are strongly non-linear, it is intuitively

understandable why, in theory, SVM with non-linear kernel functions have been ex-

tensively employed with financial time-series. Moreover, SVM, compared to other

classifiers, are designed to minimise the structural risk, while other techniques are

based on the minimization of the empirical risk; that is, SVM seeks to minimise

an upper bound of the generalization error rather than minimizing training error.

This makes them less vulnerable to overfitting than other methods; the solution of
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the optimization problem (3.10a) is unique and absent from local minima indeed.

Finally, SVM is easy to modify and it is able to handle high-dimensional data. In

any case, it requires long time to be trained since it has a large computational com-

plexity that depends on the kernel function and it suffers in terms of computational

scalability, lack of interpretability and ability to handle irrelevant inputs and data

of mixed type.

3.2.3 Neural Networks

Briefly, neural networks are a family of ML models intended to stimulate the behav-

ior of biological systems composed of neurons. They are oriented graphs consisting

of nodes, which in the biological analogy represent neurons, connected by arcs,

which correspond to synapses. The history of neural networks starts around 1950

when perceptrons were presented. Perceptrons networks then have evolved into feed-

forward neural networks and after them, in the last years recurrent neural networks,

along with one of its famous variant LSTM, were proposed.

Even in ML financial applications, as in many other fields, the passage towards

the family of neural networks algorithms has been natural after the first imple-

mentations especially, as just explained, taking advantage of classification trees and

support vector machines. Neural networks have in fact led to a breakthrough in

various fields of machine learning applications especially due to their ability to map

non-linear dependencies among variables and due to their scalability.

This is the reason why they will be accurately explained throughout the section,

in particular we will follow their evolution from static models (NN) to dynamic

models (RNN) until presenting one neural networks’ state-of-the-art variation that

is LSTM networks. The evolution from static to dynamic models has been indeed

crucial in terms of accuracy of stock market predictions since it has equipped net-

works to learn not just from static single observations, as the models presented so

far, but from long-term sequences of highly correlated data.

Nowadays, among the most promising financial applications, we can find the
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ones achieved through the implementation of long short-term memory networks

able to achieve impressive results if compared to the ones obtained by classification

trees, support vector machines and even standard feed-forward neural networks.

Anyhow, it is possible to understand their functioning only once the functioning

and limitations of both feed-forward neural networks and recurrent neural networks

are clear.

Perceptrons

To start talking about Neural Network, it is important to start from the concept of

perceptron (Rosenblatt, 1958). A perceptron is an operator that takes several binary

inputs (i.e. explanatory variables) x1, x2... and produces a single binary output. To

produce the output, it uses weights wi that show the importance of the respective

inputs to the output. The neuron’s output, either 0 or 1, is determined by whether

the weighted sum ∑
j wjxj is greater or not than a threshold value ϑ, being the

threshold a real number. So, perceptrons differentiate one from another on the basis

of their weights and threshold value.

Expressing the condition about the output to be 1 in this form ∑
j wjxj −ϑ ≥ 0,

it is possible to understand why the value ϑ (i.e. the treshold value) is referred as

“bias”: it gives a measure of the easiness to get the perceptron to output a 1.

Figure 3.7 graphically shows how a perceptron works: it takes as input values

X and returns as output f(X). Supposing the values of weights and bias already

determined, the computation of f(X) is performed through the following steps:

• The weighted linear combination of explanatory variables X is calculated and

the bias is subtracted from it:

z = w1x1 + w2x2 + ...+ wnxn − ϑ (3.15)

• The output f(x) is then obtained by applying the activation function g(z) to

the value calculated in (3.15):

f(x) = g(w1x1 + w2x2 + ...+ wnxn − ϑ) (3.16)
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Figure 3.7: Operations performed by a single perceptron to create an output f(X) from X input.

In the case of perceptron, the activation function g(z), as can be easily imagined,

is equal to the unit step function returning a value of 1 if (3.15) is positive and 0

otherwise.

Such a functioning will be helpful to understand how a neuron in feed-forward

neural networks works.

Feed-forward neural networks

A feed-forward neural network (NN) deals with an evolved type of neurons com-

pared to perceptrons, even if they show many similarities. The significant difference

between the two operators lies in the use by neurons in NN of an activation function

g(x) that, instead of returning a binary output 0 or 1, returns a continuous value.

This difference is important since makes the output f(x) of the operator more sen-

sitive to small changes in weights or bias. For instance, one of the most well-known

activation function in NN is the sigmoid function that is defined as:

σ(z) = 1
(1 + e−z) (3.17)

Where z refers to the quantity in (3.15).
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To understand how such a function differs from the behavior of a unit step

function, look at Figure 3.8 that graphically shows the difference between the two

activation functions. For extreme values the behavior of a sigmoid neuron closely

approximates the behaviour of a perceptron: suppose z = ∑
j wjxj − ϑ is a large

positive number, then e−z ≈ 0 and so σ(z) ≈ 1; on the other hand, if z is very

negative, then e−z →∞ and σ(z) ≈ 0. However, when z = ∑
j wjxj−ϑ is of modest

size there is a substantial deviation from the perceptron’s behaviour; it is precisely

in this range that the NN neuron becomes sensible to small changes of weights and

bias.

Figure 3.8: Comparison between a sigmoid function (in red) and a unitary step function (in blue).

In any case, sigmoid function, even if certainly among the most frequently used,

is not the only activation function that is possible to use to increase the sensibil-

ity of the operator. The possibilities for the choice of the activation function are

indeed numerous. Among other frequently employed functions we can find ReLu

and hyperbolic tangent (tanh). The choice of the activation function results to be

very important since, as we will see when treating backpropagation, it can heavily

influence the performance of a model.

Now, same as perceptrons, such sensible neurons do not seem promising in per-

forming any type of analysis if taken singularly. In fact, they become incredibly

powerful when connected one with each other forming networks and passing in-

formation one from another. The appearance of a networks of neurons connected

between them through different arcs forming a feed-forward neural network is shown
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in Figure 3.9. The figure expresses the way in which information is passed trough

the networks: arcs identify the output of neurons flowing from input nodes to out-

put node(s) to be finally transformed in f(x). Every arc from the figure can be

thus taught as the means by which the information arrives at each node from the

previous layer: the X vector expressed in (3.15) for a neuron in such a network is

formed by all the outputs of nodes in previous layer directly connected with the

neuron itself through an arc; moreover, weights in (3.15) are associated to these arcs

signaling the magnitude by which information is amplified or reduced when passed

trough them.

Figure 3.9: Example of neural network. In the network the nodes look like they have multiple output,
in fact they are still single output; the multiple output it is just a way to indicate that the output is
used as the input to other several nodes. Moreover, weights are associated with the input arcs, while
each node is associated with a distortion coefficient (i.e. bias).

Figure 3.9 also clarifies in the identification of the three different type of layers

to be possibly found in NN:

• Input nodes - Input nodes receive as inputs the values of explanatory at-

tributes for each observation. Usually, the number of input nodes is equal to
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the number of explanatory variables.

• Hidden nodes - Hidden nodes apply transformations to the input values

inside the network. Each node is connected to incoming arcs that can come

either from other hidden nodes or from input nodes, and it is connected with

outgoing arcs either to output nodes or to another level of hidden nodes.

• Output nodes - Output nodes receive connections from hidden nodes and

return an output value that corresponds to the prediction of the response

variable.

Particularly, among these three layers, another crucial decision regarding the design

of a neural network is about the size of hidden layers and the size of neurons in

each of them. In fact, the size of input nodes directly depends on the dimension of

the input vector, while the size of the output nodes is determined by the predicting

application selected. Unfortunately, there is no optimization processes to support

such decisions, if anything, during years, many heuristic rules have been created to

help the search of a quasi-optimal configurations. Usually, the final decision about

hidden layers’ numerousness and their density is performed through a grid search

of possible values: the NN model is trained and tested on a validation set (i.e. a

separate set from the training and test one) for different settings of parameters and

the final configuration is taken looking for the best performance among such models

variations.

Once that the structure of a network (e.g. size of hidden layers and nodes, acti-

vation function) has been defined, it becomes crucial to understand how the network

can learn to recognise patterns from training data to be then able to replicate them

for previously unseen observations. Such a process, also known as training process,

in the case of NN is related to the sequential adjustment of all the weights and biases

within the network.

During the training phase, in fact, all the weights related to each arc and all the

biases related to each node are optimised in order to find the best value that better
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represent, given input vectors, the associated output. To make so, after weights

are randomly initialised, in the beginning of the training process the network start

to sequentially examine observations in the training set and, through the current

values of weights and biases, it calculates the weighted sum of all signals entering in

each neurons until arriving to the form the final output f(x). Then, once the output

f(x) is found, an error measure accounting for the difference between the true value

of yi and the values predicted by the network is calculated. After it, values of biases

and weights in the network are modified by a local minimization process and, again,

the process restart calculating f(x). Such a loop continues for some time until a

stop condition is reached. Possibly, thanks to the minimization process, the error

measure is decreased at ever step of the process making the networks as capable

as possible to reproduce the relations presents in training observations (i.e. so as

to make the output of the Neural Network f(x) as similar as possible to the target

vector of the training set Y ).

Such an error minimization process, just briefly presented, is performed through

a descent algorithm, a variant of the gradient method that in the case of neural

networks it is commonly called backpropagation algorithm. In calculus the

gradient descent method is an optimization algorithm employed to find the local

minimum of a function. Its name derives from the fact that the algorithm defines

its search direction by the gradient of the function to be minimised, since it takes

advantage of the property for which the gradient of a function calculated in a specific

point indicates the direction of fastest increase of the function itself. In the specific

case of neural networks is intuitive to understand that the method, at every iterative

step, aims at calculating the partial derivative of the cost function (i.e. the error

function previously presented) respect to weights and biases in the network to define

its search direction.

Since backpropagation algorithm will be crucial to understand the evolution of

NN, in the following lines its main passages will be formally explained. At first, to

understand its functioning, it is crucial to understand the mathematical passages
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to arrive defining the partial derivatives of the cost function in relation to all the

biases and weights in the network.

Imagine a NN with L layers and a cost function C (i.e. the function defining the

error previously explained) where the index j indicates one specific neuron in the

lth layer; with the aim of finding the partial derivatives of the cost function respect

to each weight and bias in the network, we start calculating the partial derivatives

in the output layer L respect to weighted sum z in each neuron as (3.15):

δLj = ∂C

∂zLj
(3.18)

Relationship (3.18) expresses the degree at which, changing the specific value of the

jth zlj in layer l and leaving all other zlj the same, it is possible to diminish the cost

function C. Taking advantage of the chain rule from calculus, it is then possible to

re-express the same partial derivative in respect to the output f(x) defined in (3.16):

δLj =
∑
K

∂C

∂f(x)Lk
∂f(x)Lk
∂zLj

(3.19)

where the sum is calculated over all neurons k in the output layer. Clearly, depending

the output f(x)Lk only on the weighted input zLj for the jth neuron when k = j, (3.19)

can be simplified to:

δLj = ∂C

∂f(x)Lj
∂f(x)Lj
∂zLj

(3.20)

Then, assuming the activation function g in (3.16) to be a sigmoid:

δLj = ∂C

∂f(x)Lj
σ′(zLj ) (3.21)

Now, through the chain rule it is also possible to rewrite any partial derivative of any

layer δlj = ∂C
∂zl

j
in terms of the partial derivative of the following layer δl+1

k = ∂C

∂zl+1
k

:

δlj = ∂C

∂zlj
=

∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=

∑
k

∂zl+1
k

∂zlj
δl+1
k (3.22)

Where the last term, knowing that zl+1
k = ∑

j w
l+1
kj σ(zlj)− ϑl+1

k , is:

∂zl+1
k

∂zlj
= wl+1

kj σ
′(zlj) (3.23)
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Substituting into (3.22), we got:

δlj =
∑
k

wl+1
kj δ

l+1
k σ′(zlj) (3.24)

Finally, it is demonstrable how the quantities of interest ∂C
∂bl

j
and ∂C

∂wl
jk

are equal to:

∂C

∂blj
= δlj (3.25)

∂C

∂wljk
= f(x)l−1

k δlj (3.26)

Once understood how, taking advantage of the chain rule, it is possible to calcu-

late all the partial derivatives of the cost function respect to weights and biases in the

network, the steps in which the backpropagation algorithm computes the gradient of

the cost function (i.e. the matrix with all the partial derivatives of the cost function

respect to every weight and bias in the network) should be easily comprehended in

Algorithm 3.

Algorithm 3 Backpropagation algorithm
1: Input: it is calculated the corrisponding activation f(x)1 for the input layer.
2: Feedforward: for each l = 2, 3, ..., L the quantities zl and f(x)l = σ(zl) are

computed.
3: Backpropagation: From the quantities in (3.21), quantities in (3.24) are com-

puted.
4: Output: The gradient ∇C of the cost function is computed through (3.25)

and (3.26).

Finally, at the end of the backpropagation algorithm the gradient of the cost

function is computed. As said, it identifies the direction of fastest increase of the

cost function in a given point thus meaning that, when multiplying its opposite for a

small and positive parameter η (known as learning rate), it will identify a movement

of the point defined by the current values of all weights and biases in the direction

which does the most immediately decrease the cost function C. This is exactly the

way in which the descent algorithm works in fact: in every iteration sums the vector

of changes ∆v

∆v = −η∇C (3.27)
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to the vector containing weights and biases possibly moving in the direction that

decrease the most the cost function.

As emerged from all the passages related to the functioning of backpropagation,

the parameters necessary for the algorithm to properly work are the cost function

C and a value for the learning rate η. Regarding C, in regression applications, the

measure of fit used to update weights and biases in the network is usually given by

sum of squared errors:

C(θ) =
K∑
k=1

N∑
i=1

(yik − fk(xi))2 (3.28)

While for classification, either the squared error or the cross-entropy functions is

used, where cross entropy is defined as:

C(θ) = −
K∑
k=1

N∑
i=1

yiklogfk(xi) (3.29)

Even the choice of the cost function, as the one of activation function, can influence

the training process of the model. There exist many techniques through which is

possible to modify the cost function and improve the learning process (e.g. L1, L2

regularization).

What it has been presented so far, in any case, regards the operations performed

by the descent algorithm in a single iteration. As we have said, descent algorithms

are iterative processes that in the case of NN tend to adjust weights and biases of

a small quantity hopefully moving towards a local minimum of the cost function.

So, the reiteration of the whole process comes with the definition of two additional

important parameters: number of epochs and batch size.

The number of epochs refers to the times in which an entire dataset is passed

forward and backward throughout the network in Algorithm 3. In fact, the training

process can last until the number of epochs has reached a predetermined value given

as input parameter or a stopping condition is verified (e.g. as input parameter can

be given a specified value of patience referring to maximum number of iterations in

which the cost function is allowed not to diminish before the training procedure is

stopped).
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Batch size is, instead, directly related with the idea of stochastic and mini-

batch gradient descent, that are variations of gradient descent employed to speed

up learning process. In the standard version of the gradient descent algorithm, also

known as bacth gradient descent, all the training data are taken into consideration

to take a single step. This means that for every observation the cost function and its

gradients are calculated and finally the average of the gradients of all the training

examples is taken to update parameters as in (3.27). The problem of such approach

is that to take one single step, it is necessary to calculate the gradient for all the

data in the dataset. This, especially for large datasets, is not efficient. To deal

with such issue and to decrease training time, two variants of the gradient descent

algorithm are frequently applied when training NN: stochastic gradient descent and

mini-batch gradient descent. Stochastic gradient descent calculates in every step

the gradient using just a single observation to update weights and biases while mini-

batch gradient descent neither uses all the dataset at once nor a single observation; it

uses a batch of a fixed number of training examples called mini-batch and it updates

weights and biases in the network using the mean gradient in this mini-batch as:

w′k = wk −
η

m

∑
j

∂CXj

∂wk
(3.30)

b′l = bl −
η

m

∑
j

∂CXj

∂bl
(3.31)

where m refers to the number of the training observations Xj within the mini-batch

(in batch gradient descent the same calculation is performed, with the only difference

that m refers to all observations within the training set). So, returning to the batch-

size parameter, it refers exactly to the size m of the mini-batch, in case mini-batch

gradient descent would be chosen as method to update networks’ variables.

To better understand why stochastic gradient descent and mini-batch gradient

descent speed up the learning process: just suppose to have a training set of 1000

observations and a mini-batch size of 50 observations. With a gradient descent

algorithm, for every of the 1000 observations, the gradient of the cost function
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Figure 3.10: Gradient descent in a one-dimensional quadratic criterion with different learning rates. If
η < ηopt, the algorithm will certainly converge but training can be needlessly slow. If η = ηopt, a single
learning step suffices. If ηopt < η < 2ηopt, the system oscillates around the local minimum but then
will slowly converge. If η > 2ηopt, the algorithm will diverge.

would be computed 1000 times and then weights updated; while, with mini-batch

gradient descent, the process would require only 1000/50=20 gradient calculation

to updates weights and biases.

Despite being by far the most employed method to train NN, backpropagation

requires to deal with several downsides. The first issue is related to the fact that

optimization process heavily depends on the initial parameters choice. The second

issue is related to the choice of the learning rate η: it must be at the same time

small enough to respect local approximation of the function and, at the same time,

it must be large enough to make the gradient descent algorithm to converge (i.e. to

reach a local minimum of the cost function) in a reasonable time (Figure 3.10). In

practice, η can be chosen to be decreasing in time through a procedure called adap-

tive learning rate. Moreover, the biggest issue related to backpropagation is known

as vanishing/exploding gradient but it will be treated when presenting recurrent

neural networks.

Concluding with a final consideration about feed-forward neural networks, one

major disadvantage of NN is that if not set properly, when having too many nodes

and layer, they can easily overfit training data. To deal with such problem a reg-

ularization technique called dropout is often applied. Ordinarily, as explained, the

network is trained forward-propagating X through the network and then backprop-
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agating to determine the contribution to the gradient. Applying dropout, this pro-

cess is modified since for each update of parameters (i.e. for each iteration of the

backpropagation algorithm) part of hidden nodes in the network are randomly and

temporarily deleted. The number of hidden nodes to be temporarily deleted is an

additional parameter to be provided to the model. Heuristically, dropout is simi-

lar to training different NN and finally averaging them, and due to this reason the

dropout procedure is similar to average the effects of a very large number of different

networks: the different networks will overfit data in different ways, but, hopefully,

the net effect of dropout will be to reduce overfitting.

To recap, Neural Networks refers to a lot of possible network structures. Thus,

a large effort is necessary to setup correctly the parameters that determines the

network structure, the so called Hyperparameters. Among hyperparameters we can

find: the number of hidden layers and units, cost function, activation functions,

learning rate, number of epochs or a stop condition related to the learning process

and batch size and eventual regularization techniques. The optimization of all these

parameters sometimes can result onerous, even because there are no deterministic

optimization methods, and this can result to be a limitation for the performances

of the model.

Recurrent Neural Networks

Recurrent Neural Networks (RNN) (Rumelhart et al., 1986) are an evolution of feed-

forward Neural Network. To understand why they have been created, it is possible

to make an analogy with human thinking: people, when reading, understand each

word based on the understanding of previous word and not discarding everything

away starting thinking from scratch for every term (it is said that thoughts have

persistence). Recurrent Neural Networks tries to simulate the same mechanism

thanks to loops in them allowing information to persist (as in Figure 3.11). Their

introduction have finally evolved machine learning from static to dynamic models

able to take in consideration the history of data and not only a picture in a given time
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frame. Clearly, such an evolution results to be meaningful for dataset containing

correlated observations, as certainly financial time-series are.

Figure 3.11: Recurrent neural network.

The loops present within the networks make the comprehension of RNN more

difficult than NN. However, they are not so different from standard feed-forward

neural networks. In fact, RNN can be thought of as a multiple copies of the same

network (i.e. same weights and biases), each passing a message to successor as

represented in Figure 3.2.3.

Figure 3.12: Recurrent neural network “unrolled”.

Their chain-like nature reveals how RNN are intimately related to sequences.

The information passed from previous networks can be viewed as the memory of the

model and RNN decisions can be seen as influenced by what the model has already

learnt from the past. Standard feed-forward NN remember things too, but only

things learnt during each single iteration in training. While RNNs learn similarly
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while training and, in addition, they remember things learnt from prior inputs while

generating outputs. Outputs produced by RNN are influenced thus not only by

weights applied on inputs like in NN, but also by a hidden state vector h(t − 1)

(Figure 3.13) representing information based on prior inputs and outputs. This

means that the same input at time t could produce a different output depending

on previous inputs in the series. It is now easy to understand why these type of

networks are particularly useful when dealing with time-series data: when there is

information in the sequence of data, RNN can use it to perform tasks that feed-

forward networks cannot.

Formally, RNN is a NN specialised for processing a sequence of input data x(t)

where the time step index ranges between a given interval. The length of this

interval depends on the type of application: suppose you want to care about a

sequence of three words in a sentence, then t ∈ {1, 2, 3}. The length of the interval

directly influences the dimension of the model: referring to Figure 3.13, the network

is unrolled into n subsequent networks, where n refers to the number of element in

t.

Figure 3.13: Representation of all the different variables and parameters of a RNN model

Looking at Figure 3.13 we can also describe all the components of a recurrent

neural network model:

• x(t) is the input vector belonging to a given sequence taken at time step

t ∈ {1, ..., n}.
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• h(t) represents the hidden state at time t and acts as memory of the network.

It is calculated as (3.32) from the current input x(t) and the previous time

step’s hidden state.

• Matrix U parametrises inputs to hidden connections, matrix W hidden-to-

hidden recurrent connections and matrix V hidden-to-output connections. All

these weights (U, V,W ) are shared between all different “unrolled networks”

across t.

• o(t) refers to the output of the network at every time step.

So, from all the components emerges how the forward pass, that in NN is repre-

sented as (3.16), in RNN can is represented by the following two equations:

h(t) = Wh(t−1) + Ux(t) − ϑ (3.32)

O(t) = g(V h(t) − ϑ) (3.33)

Regarding the training process, in such a network, the total loss function for

a given sequence of x(t) values paired with a sequence of y(t) values is then just

the sum of the losses over all the time steps, over all the “unrolled networks”. The

gradient computation, that also in the case of RNN is employed to update networks

weights and biases, then involves performing a forward propagation pass moving

left to right through the graph in Figure 3.13 followed by a backward propagation

pass moving right to left through the same graph. The backpropagation algorithm

follows the same logic of the one used in ANN; the only difference is given by the

fact that parameters are shared by all time steps in the network, so that gradient

at each output depends not only on the calculations of the current time steps, but

also the previous steps. Thus, in the calculation of the gradient has to be accounted

the contribution of the h(t− 1) term.

Figure 3.13 shows a so called many-to-many configuration, in which for each time

step t the RNN predicts a different output value Ot. However, it is straightforward
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Figure 3.14: Representation of different possible RNN configurations. Rectangles indicate a network
layer. Red ones refers to input layers, green ones to hidden layers and blue ones output layers. The
sub-figure on the left refers to a standard feed-forward neural networks.

to think at several variations of such configuration, presented in Figure 3.14. They

simply derives from different configurations of period in which the model takes

observations and predicts outputs.

Anyhow, although RNN have presented in ML history an evolution towards NN

as regards the study of correlated observations, they suffer from a major problem:

vanishing/exploding gradient (Hochreiter, 1998). This problem affects also NN but,

as it will be clear, in the case of RNN it becomes even more cumbersome since it

affects their ability to effectively deal with long-term dependencies.

As previously explained, in the backpropagation algorithm weights and biases

in the network are adjusted in an iterative way calculating the gradient of a cost

function. This translates in having each weight and bias adjustment to be propor-

tional to the partial derivative of the cost with respect to the weight/bias itself as

δlj = ∂C/∂wlj or δlj = ∂C/∂blj. Now, vanishing/exploding gradient problem refers

to the fact that the gradient in Neural Network is unstable, meaning that it tends

to become too big (i.e. explode) or become too small (i.e. vanish) in earlier layers

affecting the learning process: the gradient coming from the deeper layers (i.e. the

ones closer to the output) have to go through continuous multiplications as in (3.24),

and as it approaches the earlier layers, if it is small (< 1), it shrinks exponentially

until it vanishes, oppositely if it too large (> 1) it gets larger and larger.
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Figure 3.15: Analogy between gradient descent algorithm and the law of motion for a ball that has to
move towards the bottom of a valley.

A vanishing gradient would then increase dramatically computation time since

the backpropagation algorithm in such situation, at every iteration, would adjust

weights and biases of a too little quantity; at the opposite, exploding gradient would

cause the algorithm not to reach a local optimum of the cost function since it would

adjusts parameters by a too large amount never approaching the local minimum.

To make this even more clear, just think at the gradient descent as a method to

define the law of motion of a ball; the objective of the gradient descent is to move

the ball at the bottom of the valley (i.e. cost function) in which it is found (Figure

3.15). The direction of the next movement of the ball is defined by the gradient

δlj and, oversimplifying, the magnitude of its movement by the length ‖ δlj ‖. In

a vanishing gradient situation, being ‖ δlj ‖ too small, the ball would require too

many movements to reach the bottom of the valley; while, in an exploding gradient

problem, where ‖ δlj ‖ is too big, there would be the risk that the ball would continue

to oscillate around the minimum never reaching it because of “low sensitivity” in
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movements.

As said, the Vanishing and exploding gradient problems is already relevant in

Deep NN (i.e. networks with multiple hidden layers). But, it can have an even

larger impact in the case of RNN, and this is the reason: let’s assume the input

sequence of RNN to be a 20-word sentence of the form “I was born in Italy, ... I

speak Italian fluently”. In the the example, the network, in order to predict the word

“Italian”, would need information from the word “Italy”. The problem is that the

term “Italy” and “Italian” occurs to relatively at the beginning and at the end of the

sentence. Unfortunately, when this distance is wide enough, RNNs struggle to learn

such dependency (i.e. Long-term dependencies) due to vanishing/exploding gradient

problems that affect the updating process of W (3.13) matrixes. This problem has

been explored deeply by Bengio et al. (1994) and it is solved by LSTM cells.

Long Short-Term Memory

The description of LSTM networks follows Olah (2015). LSTM networks belong to

the class of Recurrent Neural Networks. They have been introduced by Hochreiter

and Schmidhuber (1997) and have been further refined, e.g. by Gers et al. (2000) and

Graves and Schmidhuber (2005). LSTM networks have been specifically designed to

learn long-term dependencies and to overcome the vanishing or exploding gradient

problem affecting standard RNN: in standard RNN, hidden state activations are

influenced by the other local activations closest to them (i.e. Short-term memory),

while LSTM networks have been equipped with an activation state that can preserve

also information over long distance, hence the name Long Short-Term Memory. Said

in other terms, the main difference between LSTM and RNN is that the former has

been equipped with cells able to decide whether to keep the existed memory over

long time periods, while traditional RNN cells overwrite their content at each time

step. In the last few years LSTM networks have been incredibly successful when

applied to problems such as speech recognition, translation, image captioning etc.

As explained, all recurrent Neural Networks have the form of a chain of repeating
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modules. In standard RNN, the repeating module has a very simple structure, for

example a single tanh layer as in Figure 3.16. LSTMs also have this chain structure,

Figure 3.16: Structure of a standard RNN with hyperbolic tangent activation function.

but repeating module, instead of having a single activation function layer, it has four

(Figure 3.17). As all Neural Networks, LSTM is composed of an input layer, one

Figure 3.17: Structure of a LSTM network.

or more hidden layers and an output layer. Its peculiarity resides in hidden layers

consisting of so-called memory cells. These cells are, in fact, the key to understand

the suitability of LSTM networks in effectively facing long-term dependencies.

72



CHAPTER 3. MACHINE LEARNING FOR FINANCIAL MARKET
PREDICTIONS

Looking at a single memory cell, the key to the model is the cell state (i.e.

horizontal line running through the top of the diagram in Figure 3.17). The memory

cell has indeed the ability to either remove or add information to the cell state

through structures called gates. Gates are composed out of a sigmoid function and

a pointwise multiplication operation 3. Each LSTM cell has three of such gates that

uses to control the cell state; at every timestep t, each gate is presented with the

input xt, the output ht−1 of the memory cell at the previous time step and the cell

state ct−1.

Figure 3.18: Focus on “forget gate” in a LSTM cell.

i. The first operation performed by the cell is to decide what information to

remove from the cell state derived from the previous step Ct−1 (Figure 3.18).

This decision is taken by the so called forget gate. The forget gate looks at

ht−1 and xt and outputs a number between 0 and 1 for each value of the cell

state Ct−1. A value of 1 represents a “keep this information” while a value of

3All red points in figures represent pointwise operations. Pointwise operations refers to op-
erations in which each value in each matrix’s cell is considered as a scalar and it is multi-
plied/summed/divided/subtracted to another cell’s value with same index.

73



CHAPTER 3. MACHINE LEARNING FOR FINANCIAL MARKET
PREDICTIONS

0 represents a “get rid of this information”. Formally, we have that:

ft = σ(Wf [ht−1, xt] + bf ) (3.34)

where Wf refers to a weight matrix.

Figure 3.19: Focus on “input gate” in a LSTM cell.

ii. The following operation is related to the input gate that decides what new

information has to be stored in the cell state (Figure 3.19). The input gate

specifically decides which values has to be updated and a concurrent tanh

layer creates a vector of new candidate values that could be potentially added

to the state. The combination of these two thus forms the update to the state

cell. Formally:

it = σ(Wi[ht−1, xt] + bi) (3.35)

c̃t = tanh(Wc[ht−1, xt] + bc) (3.36)

Then, both ft and itc̃t simultaneously update the old cell state Ct−1. The

update is made by multiplying the old state by ft, forgetting things decided
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to forget earlier, and then adding new information through itc̃t (Figure 3.20).

Formally:

Ct = ftCt−1 + itc̃t (3.37)

Figure 3.20: Focus on the update of the cell state in a LSTM cell.

iii. Finally, the output of the cell is calculated in output gate (Figure 3.21). First,

a sigmoid function decides which part of the cell state has to be outputted.

The signal exited from the sigmoid is then multiplied by the cell state passed

from a tanh function. Formally,

ot = σ(Wo[ht−1, xt] + bo) (3.38)

ht = ottanh(Ct) (3.39)

Taking the example made with RNN regarding the prediction of the word “Italian”

within the phrase “I was born in Italy,... I speak Italian fluently”, the cell state

might include the gender of the present subject, so that the correct pronouns can

be used. When a new subject is seen, the model wants to forget the gender of the
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Figure 3.21: Focus on “output gate” in a LSTM cell.

old subject: this is the task of the forget gate, that remove the old gender, and the

input gate that actually add the new gender information. Finally, regarding the

output gate, it might want to output information relevant to a verb, in case this is

what is coming next. For example, whether the subject is singular or plural, so that

it is possible to know what form a verb should be conjugated into.

Such structure of memory cells obviously comes with a disadvantage: LSTM

networks, compared to all the models presented so far, are the most computationally

expensive. Just to have a clue of the the number of weights and biases to be

optimized during a training process, they can be calculated as:

4ki+ 4k + 4k2 = 4(ki+ k + k2) = 4(k(i+ 1) + k2) (3.40)

where k denotes the number of hidden units of the LSTM layer and i the num-

ber of input features. 4ki refers to the dimension of the four weight matrixes

Wo,Wi,Wc,Wf , 4k to the dimension of the four bias vector bo, bi, bc, bf and finally

4k2 to the weight matrixes applied to the outputs at previous timesteps.

Finally, it is worth mentioning that the LSTM is not the only successful variant

proposed for RNN even if in this thesis it has been extensively treated since it
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has been selected to conduct the empirical work presented in Chapters 4 and 5.

Among other RNN variants, Gated Recurrent Unit networks (GRU) (Cho et al.,

2014) stands out. Greff et al. (2016) offers a nice comparison of most popular RNN

variants proposed in computer science literature.

3.3 Feature Selection in Financial Applications

Until now, the mechanisms of the most important models used in financial literature

has been presented following their temporal development. However, the selection of

the most suitable model is clearly not enough to build a successful ML application.

As explained, in fact, ML models require input features to find f̂ so as to predict

output values: the higher the quality of the information delivered by such features,

the higher the performances that the model will be able to deliver. It is thus per-

ceivable why the process to select a subset of the most relevant attributes in the

data set for predictive modelling is crucial and it is referred as feature selection.

Feature selection becomes even more important in financial applications since,

when dealing with them, the relations between input X and output Y , in our case

stock price, do not appear always stable in time and in some case neither intuitive.

In other fields, feature selection process is found to be more straightforward: take

as example a model for the prediction of heart disease in patients that presents a

chest pain. Features to be used appear at least understandable even for non-experts;

they will certainly be the age and sex of the patients, a cholesterol measurement

and probably other heart and lung function measurement. Moreover, with high

probability, the relationship between the disease and these features, within a certain

range of variability, will remain stable across time; there is no reason to think that a

person with specific characteristic and chest pain is diagnosed with an heart disease

today and he will not in a month.

Oppositely, since financial markets are driven by investors’ behavior, their ir-

rationality and temporary cognitive biases can create strong links between specific
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variables and securities’ prices only in particular market phase or only after partic-

ular information availability. Just think at the so-called herd instinct bias defining

a situation in which people act like everyone else without considering the reason

why. In finance it is referred as the phenomenon in which investors follow what

they perceive other investors are doing, rather than their own analysis. An investor

exhibiting herd instinct will decide to make the same or similar investments based

almost exclusively on the perception that many other investors are doing the same

with that precise market conditions (e.g. Lux, 1995; Bikhchandani and Sharma,

2001). Herd instinct has a history of starting large, unfounded market rallies and

sell-offs often based on a lack of fundamental support to justify either; for instance,

it has been a significant driver of the dotcom bubble of the late 1990s and early

2000s.

It is clear then how, in the moment in which agents are biased, they manages to

change standard market relationships for a given time-frame. And this is the actual

reason why financial market predictions requires even more focus on feature selection

process than many other applications. To summarize, variability and contextuality

of features can be considered among the main reasons of the challenges related to

feature selection in financial time-series prediction.

Due to all these reasons, the synthetic taxonomy of the most frequently employed

predictors in financial applications presented in this section aims then at defining a

reference context so as to facilitate new applicants when designing their input feature

set and, at the same time, also to stimulate the search for new possible solutions

outside it. The following subsections will tackle indeed, without the intention to be

exhaustive, the six main clusters of features identified to be typically employed in

financial market predictions within academic research: price and volume variables,

categorical data, technical indicators, macroeconomic and commodities variables, risk

variables and sentiment variables.
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3.3.1 Price and Volume related Variables

Evidently, the most intuitive variables to be used in financial market predictions are

market price data. Usually they are employed with a daily frequency and they come

in this form: close, high, low and open price). These prices refer respectively to

the price of the security at market closure time, the highest daily price, the lowest

daily price and the price at market opening. Then, another measure that usually is

related with them is volume that refers to the amount of transactions for a specific

security occurred in a specific time-frame.

However, carefulness is required when dealing with these type of data: comparing

historical stock prices or volumes to those of the present day does not accurately

reflect performance indeed. In fact, stock price is mainly affected by supply and

demand of market participants but sometimes it changes due to some corporate

actions, such as stock splits, dividends or rights offerings. In all these cases, to be

comparable, prices in different time periods need to be adjusted.

Some actions (e.g. stock splits or right offering) change the number of outstand-

ing shares in the market, thus affecting the value of the single stock and keeping

unchanged the value of the company. Think about a company with 100 outstanding

shares whose value is 50$ each that decides to split them by a factor of 2. After

the split the company will have 100 × 2 = 200 outstanding shares and, remaining

the value of the company the same 100× 50$ = 5000$, the new value of each share

will be 5000$/200 = 25$. Clearly this change in price is not related to a decreased

perception of the fundamental value of the company by investors but just to a tech-

nical decision. Thus an accurate analysis has to take into consideration an adjusting

factor to properly compare price observations before and after the corporate action.

Similarly, some others actions like dividends cyclically affect share price in proxim-

ity of the day in which they are distributed since investors start buying the stock

knowing they will gain an earning soon. Also in this case an appropriate adjustment

factor is required.
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Once these type of data are adjusted, then it is possible to compare market

observations in different time periods. Moreover, the adjustment makes possible the

calculation of lagged returns that, without any doubt, are the most used types of

input features in financial time-series analysis. They are defined as:

Rm,s
t = P s

t

P s
t−m
− 1 (3.41)

where s refers to the single stock and m to the time lag.

3.3.2 Categorical Data

Categorical data are represented in ML models through dummy variables that are

binary variables that activate (i.e. take the value 1) if a certain condition occurs and

remain inactive (i.e. take value 0) otherwise. Categorical variables are mainly used

as input features in financial time series applications to identify peculiar character-

istics referring to stock specific behavior or patterns that occur only within a subset

of stocks, for example within a specific industry. Think for instance at the already

cited .com bubble, the anomaly in that case was confined to the tech industry.

In the case of an introduction of dummy variables for the identification of stock

specific behavior, it is required to add a new variable for every different stock within

the dataset so as to linearly increase the amount of predictors, proportionally to

their amount within the dataset. This is the reason why this choice sometimes can

result to be excessively onerous in terms of computation time.

The identification of industry specific behavior is performed with the same logic

even if it requires the introduction of way less amount of variables within the dataset.

Moreover, regarding the categorization of stocks into different industries, many pos-

sibilities exist: the most frequently employed refer to classification benchmarks pro-

vided by third parties such as the Industry Classification Benchmark (ICB) launched

by Dow Jones in 2005 that divides the market into 10 sectors within the macro-

economy or the Global Industry Classification Standard (GICS) that consists of 11

industry sectors.
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Sometimes dummy variables are also employed to represent days of the week or

months. This decision has to be accounted to the intent to spot some particular

behavior of the market in specific period of the week or the year caused by par-

ticular investors’ biases. For instance, DellaVigna and Pollet (2009) use a Friday

dummy based on the argument that investors are distracted by the upcoming week-

end in their study dealing with post earnings announcement drift (i.e. a particular

phenomenon caused by behavioral irrationality of investors).

In any case, there could be infinite possible categorical variables to be used in

stock-price prediction and this section do not want to be exhaustive in this sense.

Anyhow, it is worth mentioning, how, from a statistical point of view, in a traditional

time series framework the introduction of dummy variables would open several issues

(e.g. dummy variable trap, multicollinearity, sparse predictors etc.). Such issues

are not found as much as risky in the case of ML models, since ML models have

demonstrated to be able to deal with such issues efficiently on their own. Rather,

the main problem that this type of variables create in ML applications, regards

the relation between the number of observation in the dataset and the number of

predictors: in case the number of predictors exceeded the number of observations

indeed, there would be difficulties during the training procedure. Even so, this is

not usually the case with financial time-series.

In conclusion, the focus when taking a decision about the introduction of dummy

variables/categorical variables within the set of predictors must be on the trade-off

between the increase in prediction accuracy and a proportional increase in compu-

tational time due to increasing number of model’s parameters.

3.3.3 Technical Indicators

As anticipated in 1.2, “technical analysis is the study of market action, primarily

through the use of charts, for the purpose of forecasting future price trends” (Murphy,

1999), where the term market actions (or “price actions”) refers to the two principal

sources of information available to technician that are price and volume.
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Technical analysis, also known as charting, has been a part of financial practice

for many decades, but it has not received the same level of academic acceptance as

more traditional approaches such as fundamental analysis. The main reason for that

is certainly related to the highly subjective nature of the approach. The technical

type of analysis bases its effort on three main premises:

1. It is founded on a study of price actions. Price and volume indeed reflect

shifts in supply and demand and, as basis of all economic forecasting, if de-

mand exceeds supply, prices should rise; on the opposite, prices should fall.

Technicians use this simple statement to arrive at the conclusion that if prices

are rising, demand must exceed the supply and fundamental must be bullish

while if prices fall, fundamentals must be bearish. The only particularity is

that the term fundamentals in this case regards all that factors can affect the

price, including psychological factors clearly not taken into consideration by

fundamental analysis. In any case, technicians are not interested in under-

standing the reasons why prices rises or fall; it is not useful since they believe

that everything that can affect market price is ultimately reflected in market

price. In some way, even if it could sound contradictory, they believe market to

be efficient discounting all the fundamentals; but, differently from fundamen-

tal analysis, technical analysts does not believe that knowing all the reasons

why market can go up or down is necessary for the forecasting process.

2. The concept of “trend” is essential to the technical approach. The whole

purpose of charting (i.e. display on graphs all the information relative to)

price and volume information of a market is to identify trends in early stages

of their development for the purpose of trading in the direction of those trends

until they reverse.

3. The last premise is about the value of time: for technical analysis if patterns

have worked well in the past, it is assumed that they will continue to work well

in the future. Technical analysis is based on the study of human psychology
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that ultimately tends not to change. The consequence of such concept, in

contrast with EMH, is that the key to understand the future lies in studying

the past.

After these premises the main difference between fundamental analysis and technical

analysis appears more clear: while technical analysis focuses on the study of market

actions, the fundamental approach examines all relevant factors affecting price to

determine the intrinsic value of a market; finally, depending on the current intrinsic

value, the market is valued overpriced or oversold so as to be be respectively sold

or bought. Fundamentalists have always to know the “why”, while technician con-

centrates only on the effects. Moreover, technician states that the problem of the

fundamental approach is that, at the beginning of important market moves, it does

not explain what the market seems to be doing. This is caused by the fact that when

the known fundamentals have already been discounted by the market, the market

reacts to other unknown fundamentals.

Now, based on these premises, technical analysis is practically founded on the

study of indicators commonly referred as technical indicators. Technical indicators

refers to the tools used by technical analysts to analyze historical data and to spot

trend in the market. They are mathematically based tools and they are built using

price and volume information. They can be used either as standalone instruments or

in combination either with each other or with other chart information as support for

traders’ decision-making process. The main criticism that is moved against technical

indicators, and technical analysis in general as anticipated, is that their interpre-

tation is highly subjective and, even if in specific situation many technicians may

have the same interpretation about market movements, each investor performing

technical analysis could realize a different strategy. Each technician indeed creates

his own strategy, that is a definitive set of rules that specifies the exact conditions

under which trades are established, managed and closed based on the signals pro-

vided by technical indicators. The reason of this diversity resides in the fact that

the set of rules by technicians is built completely heuristically: each investor, based
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on his experience, finds a personal way to objectively determine entry/exit points

and other management rules based on his interpretation of information provided by

technical indicator.

Summarizing, technical analysis deals with subjective interpretations of objective

parameters (i.e. price/volume charts along with technical indicators): technical

indicators do not create trading signals on their own since they require specific rules

that in turn depend on the experience, the trading style and the risk tolerance of each

investor; these rules, when gathered, form the personal investor’s trading strategy.

One famous anecdote can explain how, however, once the experience has helped

a trader to create his own effective rules, the application of such rules becomes

really easy to implement: Covel (2009) in his book “The complete turtle trader”

describes how in 1983, the famous commodity trader Richard Dennis conducted an

experiment to prove he could teach people to become great traders. According to

the experiment, the so-called turtles (i.e. the trainees), with a real account to trade

and applying a precise strategy, succeeded to earn an aggregate sum of over 100$

million dollars in the following four years.

Among technical indicators, a growing number of them are publicly available for

traders; anyhow, many traders also develop their own unique indicators. Indicators

can be classified in different ways. As first possibility, they can be clustered according

to the speed at with which they react to events in the market. Following this

criterion, we can find:

• Leading indicators - are used to predict future events, usually they show a

signal of a certain movement before the market actually does so. As drawback

sometimes they could give false signals. They are normally combined with

other leading indicators to increase the speed of signal detection.

• Coincident indicators - generate signals at the same time price action has

started to move in the direction shown by the indicator.

• Lagging indicators - are observable measures that moves or changes direc-
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tion after a change is occurred in a target variable of interest. They are useful

as confirmation of trends and changes in trends.

The second way in which technical indicators can be clustered is according to the

function they exert on charts. Following this criterion we can find find:

• Trend indicators - measure the direction and strength of a trend smoothing

out a certain measure over a certain period of time. Inside the category of trend

indicators, it is worth mentioning moving averages since they are considered

among the most versatile and widely used technical indicators. A moving

average is an average of a certain body of data, where the term “moving”

refers to the fact that it is calculated using a fixed amount of data that moves

forward with each new trading day. As example, a 10-days moving average is

calculated using the total of the last 10 day’s closing price/volume/etc. The

property of the indicator is to smooth out observations by filtering out the

noise related to random short-term fluctuations.

• Momentum indicators - momentum measures the velocity of price changes

as opposed to the actual price levels themselves. Market momentum is mea-

sured by continually taking price differences for a fixed time interval. Momen-

tum indicators thus help identify the speed of price movement by momentum

over time. Graphically, they appear as a line below the price chart that os-

cillates as momentum changes; a divergence between price and momentum

indicator usually can signal a change in future prices.

• Volatility indicators - measure the rate of price movement, regardless of

the direction. They provide useful information about the range of buying and

selling points that take place in a given market and help traders determine

situations where the market may change direction.

• Volume indicators - measure the strength of a trend or confirm a trad-

ing direction based on some form of averaging or smoothing of transaction
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volumes. They rely on the assumption that strongest trends usually appear

while volumes are increasing.

In the following table some of the most frequently used technical indicator will be

presented along with their formula and description:

Table 3.1: Table representing most used technical indicators in ML
applications along with their formula and description. In formulas
Ht, Lt, Ot, Pt refers respectively to high, low, open and close price at
time t.

Trend indicators
Indicator Formula Description

Simple Moving
Average SMAt = 1

k

∑0
i=−k+1 xt+i

Simple average of xt over a
defined number of periods
k.

Exponential Moving
average EMAt = xt × k + EMAt−1 × (1− k)

Weighted MA giving more
importance to recent data:
weights decrease exponen-
tially as observations be-
come more distant in the
past.

Moving Average
Convergence
Divergence

MACD = EMAfast − EMAslow

MACD is compared with
a EMA of the MACD it-
self (called “signal line”).
The most important sig-
nal is generated by the in-
tersection of the two lines:
traders may buy when
MACD crosses above the
signal line and sell when
the opposite happens.

Parabolic Stop and
Reverse SARt = SARt−1 + α(EP − SARt−1)

EP (extreme point) is
a record that represent
the highest (lowest) value
reached by the price dur-
ing a positive (negative)
trend. α represents the
acceleration factor, usu-
ally initialised at 0.01 for
stocks. It is increased by
0.02 each time a new EP
is recorded, up to a max
value (usually 0.2). On
a chart, the indicator ap-
pears as a series of dots, if
the dot is below the price
it is considered a bullish
signal and vice versa.
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Momentum indicators
Indicator Formula Description

Relative Strength
Index

Ut = closet − closet−1
Dt = closet−1 − closet

RSk = meankUt/meankDt

RSI = 100− 100/(1 +RS)

RSI measures evaluates
overbought or oversold
conditions of a security re-
turning a value that be-
tween 0 and 100. Usu-
ally, a value over 70 sig-
nals an overvalued condi-
tion while a value below 30
indicates an undervalued
condition. K indicates the
time periods where U (i.e.
gain) or D (i.e. losses) are
calculated.

Rate of Change ROC = ( Pt−Pt−k

Pt−k
)× 100

It measures the % change
in price in a given pe-
riod of time. It is plotted
against zero: a negative
value indicates a negative
momentum (i.e. decreas-
ing price) and vice versa.
The indicator can signal
overbought/oversold lev-
els when compared to past
extreme values it reached
before the price reversed.

William’s %R %R = (max[t−k;t](Hi)−
Pt)/(max[t−k;t](Hi)−min[t−k;t](Li))

The indicator oscil-
lates between 0 and
100 and measures over-
bought/oversold levels.
It indicates where the
current price is, relative
to the largest range oc-
curred in a past time
frame. A value under 20
signals the security to be
overbought, while a value
over 80 signals an oversold
situation.
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Stochastic %K %K = Pt−min[t−k;t](Li)
max[t−k;t](Hi)−min[t−k;t](Li) × 100

The theory behind the in-
dicator states that in a
market trending upward,
prices will close near the
high and vice versa. %K is
thus used to predict price
turning points by com-
paring the closing price
of a security to its price
range. A transaction sig-
nal is usually generated
when the %K line crosses
through the %D one.

Stochastic %D fast%D = SMAk(%K)
slow%D = SMAk(fast%D)

%D is uses jointly with
%K: the buy signal occurs
when the %K line rises
above %D and the sell one
when %K falls below %D.

Commodity Channel
Index

TP = (H + L+ C)/3
MeanDev =

∑t
i=t−k

|SMAT P−T Pi|
(k+1)

CCI = T P−SMAk(T P )
0.015×MeanDev

CCI normally should sug-
gests to sell when its value
is inferior to -100 and
to buy when it is larger
than 100; positions should
be closed when the value
enters within the neutral
range [-100, 100]. The in-
terval [t − k, t] has to be
set at 1/3 of the length of
the past observed cycles.

Volatility indicators
Indicator Formula Description

Average True Range
TR = max[(H − L), | H − P |,

| L− P |]

ATR = SMAk(TRi)

ATR measures market
volatility by decomposing
the entire range of an
asset price for a specific
period. The indicator
is usually used as exit
method on whatever entry
decision.
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Bollinger Bands
TP = (H + L+ P )/3

Bandup = SMAt−k,t)(TP )+
m× σ(t−k,t)(TP )

Bandlow = SMAt−k,t)(TP )−
m× σ(t−k,t)(TP )

Bollinger bands consist in
two lines plotted m stan-
dard deviation away from
a SMA. Many traders be-
lieve the closer the price
move to the upper band,
the more overbought the
market, and the closer the
prices move to the lower
band, the more oversold
the market. The squeeze
is another important sig-
nal defining a moment in
which bands come closer
together: it signals low
volatility and it is con-
sidered a potential sign
of future increased volatil-
ity and possible opportu-
nities.

Volume indicators
Indicator Formula Description

William’s A/D CMFV = (P−L)−(H−P )
H−L × V olume

A/Dt = A/Dt−1 + CMFV

It measures whether a
stock is being accumu-
lated or distributed us-
ing price and volume info.
It aims at finding diver-
gences between the price
and the volume flow. As
example, if price is rising
but the indicator is falling,
this indicates how buy-
ing (accumulation) vol-
ume might not be enough
to support the price, so a
price decline is expected.

On Balance Volume
OBVt = OBV t− 1 + ∆t

∆t =


V olume if closet > closet−1

0 if closet = closet−1

−V olume if closet < closet−1

The rationale behind the
indicator is that when vol-
ume increases without a
significant change in price,
the price will eventually
jump upward or down-
ward. Traders are in-
terested in the nature of
movements of OBV over
time.
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Chaikin’s Oscillator COt = EMAk(A/D)− EMAk′(A/D)

EMAk′ refers to an aver-
age over a longer period
compared to EMAk. The
indicator oscillates around
the zero line. Gener-
ally, buying pressure is
stronger when the indica-
tor is positive and vice
versa.

Volume Rate of
Change V ROC = V olt−V olt−k

V olt−k
× 100

The indicator is used with
the supposition that al-
most every significant pat-
tern is accompanied by a
sharp increase in volume,
and VROC shows exactly
the speed at which volume
is changing.

In recent years, with the advent of ML models for financial time series pre-

diction, technical indicators have been extensively employed as input features in

different models. The expectation behind their use is to let the ML models to find

dependencies between technical indicators and behavior of the time-series and trend

formation by themselves; the rationale is to use objective instruments that in spe-

cific applications have demonstrated to be successful, letting their subjective and

profitable interpretation to be found by the algorithm. As analogy, it is similar to

think at the ML model as an inexperienced trader that creates his own experience

about how to read the evolution of specific technical measures in relation to securi-

ties prices by a trial and error approach. Models, in such a view, are thus employed

to relate specific behavior of technical measures to the path of specific security’s

prices without being explicitly trained to do it.

3.3.4 Macroeconomic and Commodities Variables

Stock prices are strongly influenced by the environment in which companies operate;

in this sense it is worth to recall from (1.1) how the value of a company depends

by all the variables that can affect both future earnings of the company itself and
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the discounted rate. Under this rationale, factors such as macroeconomic, risk vari-

ables or variables related to commodities are sometimes implemented as ML input

features.

Macroeconomic Variables

The macroeconomic environment, in which both investors and companies operate,

strongly influences stocks’ prices; macroeconomic variables influence both returns of

the company, thus expected cash flows, and the discount factor k (Equation (1.1)).

Regarding the discount factor, it depends on the risk premium that is the excess

return that investors expect from the stock market over a risk-free rate. So, for

instance, unanticipated changes in the risk-free interest rate influence k that in turn

influence stock prices. Moreover, uncertainties on feature macroeconomic scenarios,

like the ones caused by the trade war between US and China or by the actual Covid-

19 pandemic, can have an influence on the risk perceived by investors affecting the

risk premium and indeed the expected returns. Moreover, even the expected rate

of inflation, a typical macroeconomic measure, influence nominal rates of interest

and nominal expected cash flow. Regarding expected cash flows instead, think

for example at the real consumption changes that gives information about changes

in indirect marginal utility of real wealth of consumers that in turn can influence

first revenues and then earnings of companies. Chen et al. (1986), testing whether

innovations in macroeconomic variables are rewarded risks in the stock market, state

that “stock returns are exposed to systematic economic news”.

Regarding the use of macroeconomic variables in ML financial literature, for

sure, the two most frequently used macroeconomic variables are interest rates and

exchange rates:

• Interest rates - The level of interest rates in different markets is typically

reflected in government bond rates at different maturities. There are several

view that describe how interest rates can affect stock prices. One view asserts

that, since stock prices are determined by expected dividends and interest
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rates, any surprises in monetary policy are likely to influence stock prices

directly via the interest-rate channel or, indirectly, through changes in the

determinants of dividends. Another view suggests that an expansionary mon-

etary policy, by raising asset prices, lowers their expected returns and thus

depresses the stock market. This occurs because rising equity prices are con-

sidered a possible signal of future inflation, which would trigger subsequent

counter action. Unfortunately, there is not a single and consistent framework

that describes the nature of the interaction(s) between monetary policy and

the stock market.

• Exchange rates - Hau and Rey (2006) suggest that foreign exchange and

equity markets should be negatively correlated because of portfolio rebalanc-

ing. To understand why, consider an European portfolio manager with money

invested in Europe. When the European stock market rises relative to the

US, the manager is overweight with European equities and, to return to a

neutral position, sells European positions and then sells the euro proceeds for

US dollars. The sale of euro for dollars causes the euro to depreciate at the

same time that the European stock market is outperforming. Moreover, many

studies seem to state evidence of statistically significant exchange rate impact

on stock index returns (e.g. Zarei et al., 2019).

However, they are not the only types of variable employed in financial appli-

cations. Even if less frequently, other variables are seldom employed in financial

research: Huang et al. (2016), addressing the response of US stock market to fluc-

tuations in oil prices, exchanges rates and US real interest rates, report “higher

correlation coefficients and magnified impulse responses and variance decomposition

when real interest rates become negative in early 2009. U.S. stock markets respond,

in the more recent period, positively to increases in oil price shocks (expectations of

world economic recovery), negatively to an appreciation of the USD against major

currencies (trade falls and thus GDP growth, reducing company earnings), and also
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negatively to real interest rates (according to the present value model)” (Huang et al.,

2016). Such findings introduce to the second type of variables sometimes employed

in ML applications that are commodities variables.

Commodities variables

Commodity and stock returns are usually not intended to have strict and direct

relationships. Stock price is determined by discounted future cash flows while com-

modities are more determined by short-term demand and supply shocks. In any

case, in the long run both stock and commodity prices are expected to move in a

similar direction as both are linked to future economic performance. Black et al.

(2014) argue in favour of a long-run relationship between stock prices and a general

commodity price index. If any, however, the relationships between commodities and

stocks returns should be negative, in fact, in portfolio setting, commodities are often

seen as a preferred investment when equity performance is weak.

Among commodities, the most frequently employed as predictors are certainly

gold and oil. About gold, the usual perception is that it is a safe-haven asset asset

and that investors demand it as a hedge against macroeconomic shocks. However,

from 2000 to 2013, it can be noted how such hypothesis in not confirmed by a

significant drop in the price of gold. Caliskan and Najand (2016) suggest instead

how gold is used by short-term investors as a temporary asset during stock market

fluctuations, therefore driving the demand for gold even when the market is on

the rise. Such theory states that “short-term contrarian investors sell the winning

portfolios (that is, sell high) and herd to gold; conversely, when they find losing

portfolios, they liquidate their gold position to buy these portfolios (that is, buy low)”

(Caliskan and Najand, 2016). Authors then find evidence of a correlation between

stock market and the price of gold: when the market generate higher negative returns

the price of gold decreases.

Regarding oil, the effects of oil shocks on stock markets are likely to vary con-

siderably across different countries depending on their production and consumption

93



CHAPTER 3. MACHINE LEARNING FOR FINANCIAL MARKET
PREDICTIONS

of oil reserves. For instance, with the same conditions, net exporters (importers) of

oil are likely to benefit (suffer) from price hikes. Many studies have been conducted

on the relationship between stock market and oil price: Jones and Kaul (1996) in-

vestigating about the reaction of the U.S. stock market to oil shocks find “that stock

prices rationally reflect the impact of news on current and future real cash flows”

(Jones and Kaul, 1996) but they also find “no evidence of fads and/or market over-

reaction” (Jones and Kaul, 1996); Kilian and Park (2009) find that the response of

aggregate stock returns may differ depending on the cause of the oil price shock.

“The negative response of stock prices to oil price shocks is found only when the

price of oil rises due to an oil-market specific demand shock such as an increase in

precautionary demand driven by concerns about future crude oil supply shortfalls. In

contrast, crude oil production disruptions have no significant effect on cumulative

stock returns. Finally, higher oil prices driven by an unanticipated global economic

expansion have persistent positive effects on cumulative stock returns within the first

year of the expansionary shock” (Kilian and Park, 2009).

3.3.5 Risk Variables

Equity risk refers to the financial risk involved holding equity in companies through

the purchase of stocks. The perception of such risk by investors clearly affects stocks

price through the above mentioned risk premium.

The typical measure of risk used in finance is the standard deviation of a secu-

rity’s price over a predetermined number of periods. The issue when using standard

deviation is that it is calculated on past data while stock price is related to future

expectations. In fact, the effective risk affecting stock price depends on expectations

of investors in the market more than past level of volatility by a specific stock or by

the whole market.

This is the reason why, especially for prediction application, the research about

leading risk indicators is crucial. Commonly, as most famous approximation of the

expectations about risk perceived by investors in financial markets the volatitlity
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index (VIX) is employed. VIX is a measure of implied volatility (i.e. expected

volatility of underlying asset implicitly assumed in pricing options) provided by the

Chicago board options exchange (CBOE), of a wide range of options based on the

S&P500 index. It is also probably the most employed as predictor in ML application

to model the risk perceived by the market in different periods of time. VIX is

founded on the assumption that, conditional on the option-pricing model, implied

volatility derived from option prices should represent the market’s best prediction

of the underlying asset’s future volatility accounting for all relevant information.

Different researches have demonstrated the positive correlation between VIX index

and future market volatility Becker et al. (e.g. 2006); VIX is known as “investor

fear gauge” (Whaley, 2000) since high levels of VIX coincided with high degrees of

market turmoil in the past.

Summarizing, VIX reflects investors’ best prediction for the next 30 calendar

days about market volatility: theoretically a high VIX should reflect increased in-

vestor fear, while a low VIX investors’ comfort. During period of market turmoil,

the VIX increases reflecting the panic demand for put options as hedge against de-

clines in stock portfolios; while during bullish period, the lower fear is reflected in

less need to hedge risks. VIX is also supposed to be a leading indicator for stocks’

returns since it is expected to signal future market movements: it has been observed

how high levels of VIX often coincide with market bottoms and seems to signal

“oversold” markets. Under this light, traders could take long positions in the mar-

ket anticipating an increase after VIX’s peak. For instance, Banerjee et al. (2007)

find that “VIX variables significantly affect returns for most portfolios, with the re-

lationship stronger for high beta portfolios” (Banerjee et al., 2007) after studying the

relationship between future returns and current implied volatility and after having

examined portfolios sorted on book-to-market equity, size and beta.

Another frequent indicator used in financial market, directly related to credit

risk, is the Ted spread. Ted spread measures the difference between the interest
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rates on interbank loans and on short-term US government debt:

Ted = 3-month LIBOR rate− 3-month T-bill interest rate (3.42)

This indicator signals perceived credit risk (i.e. risk of default of the counterpart)

in the general economy. It is calculated, indeed, as the difference between risk free

rate (T-bill) and LIBOR that reflects the credit risk of lending to commercial banks.

The linkage between Ted-spread and financial markets resides in liquidity prob-

lems caused by an increased perceived credit risk in the market. Liquidity in finan-

cial market refers to the possibility for an investor to quickly execute a trade at a

price near the fundamental value and it clearly influences the price of stock in the

market. However, agents appointed to provide liquidity such as market makers and

other traders, to do so, could need to raise capital in primary market against the use

of collaterals. So the market value of assets used as collateral, along with the per-

ceived credit risk, plays an important role in funding liquidity (i.e. the willingness of

financiers to provide loans). So, an increased credit risk could decrease market liq-

uidity that in turn decreases the value of collaterals in the market decreasing funding

liquidity and so on. Now, the Ted spread is a widely employed measure of funding

liquidity. Boudt et al. (2017) find how “the dynamic model linking market liquid-

ity to funding liquidity changes when the TED spread surpasses a 48 bp threshold,

whereby the impact of market liquidity on funding liquidity becomes significantly less

stabilizing than in the regime with TED spreads below 48 bp” (Boudt et al., 2017)

and they conclude saying that “the Ted spread should be considered an informative

market barometer for liquidity regimes in equity markets” (Boudt et al., 2017).

3.3.6 Sentiment Variables

Investors’ sentiment in finance refers to “investors’ attitude or feeling toward a par-

ticular security, which tends to be revealed through an event (such as an earnings

announcement) or price movement of the security traded in the market” (Kim and

Kim, 2014). Following rational risk-based asset pricing models, there would not
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be a significant impact of investors’ sentiment on asset pricing: prices reflect the

discounted value of expected future cash flows and, even if some investors were not

rational, their irrationality would be quickly offset by arbitrageurs. In contrast, be-

havioural finance believe that investors’ sentiment, as in retail demand, may cause

prices to deviate from their underlying fundamental value. Precisely, when sentiment

rises, noise investors (i.e. impulsive and non completely rational traders) increase

their investment allocations to risky assets, and this sentiment-driven demand for

assets drives prices above the fundamental values of these assets. After periods of

high sentiment, prices revert to the fundamental values. This mechanism implies

that investors’ sentiment is negatively related to subsequent stock returns.

To assess whether investor-generated content can help predict stock returns,

based on the hypothesis just cited, specific procedures to convert unstructured qual-

itative information into structured quantitative sentiment variables have been cre-

ated. Sentiment variables thus refer to variables that is possible to use as input

in ML models as proxies about investors’ sentiments to make guesses about future

market movements. In financial literature, the majority of approaches deals with

textual variables (e.g. news and social media and Internet message boards) as to

extract sentiment information. Renault (2017) distinguishes two ways that can be

followed for Textual sentiment analysis: dictionary-based classification and machine

learning classification. Dictionary-based classification consists in computing a senti-

ment variable by counting the number of positive words and the number of negative

words in a document using a predefined list of signed words (i.e. dictionaries). For

example, imagine “nice” and “smart” to be considered as positive words and “ugly”

and “unpleasant” as negative. Then, each time in a sentence is found a positive

(negative) term a +1 (-1) score is assigned. So, the sentence “Francesca is a beau-

tiful and smart lady, but sometimes she is really unpleasant” would receive a score

of 1 + 1− 1 = +1. There are three main possibilities to create such lexicons:

• Pure expert view in which it is created from scratch a list of positive and neg-
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ative words, based on the knowledge and expertise of the application domain.

• Two-step procedure in which a list of words can be generated by analyzing a

set of unclassified documents and then each word is manually classified by an

expert.

• Two-step procedure where from a set of pre-classified document (positive and

negative documents) a list of words is extracted and then it is measured each

term’s frequency in each class of document. Words are finally categorised

based on specific frequency thresholds.

Such an approach is clearly easy to implement, but it suffers from the fact that it

is necessary to develop field-specific dictionaries for each domain of research since a

word can have different meaning based on the context. Moreover, these approaches

use a equal weighting-scheme where each word is supposed the same explanatory

power. One example of a dictionary specifically created for financial applications is

the one presented in Loughran and McDonald (2011) that contains different lists of

Constraining, Litigious, Negative, Positive, Uncertainty, Superfluous and interesting

words. Picasso et al. (2019) is an example of application that use such lists to

extract sentimental features for its ML model. The second method, machine learning

classification, consists instead in training a ML model with pre-classified documents

and in automatically classifying words into different classes. The advantage of this

second method is that ML techniques, as opposed to dictionaries, can also provide

answers to the weighting procedure and to the non-independence of words in a

sentence. However, this approach requires a sufficiently large training set of manually

labelled document that is not always easy to create and its results significantly

depends on the ML algorithm used and on its tuning process.

Once a method for the extraction of sentimental variables have been selected, it

is necessary to select the types of documents used to extract sentimental variables.

Many solutions can be applied: for instance, Picasso et al. (2019) uses news on

specific stocks published from selected newspapers, Renault (2017) analyses posts
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taken from Stock-Twits, a social network similar to twitter but specifically created

for traders where they can post messages.

3.4 Model accuracy and Trading Performances

The evaluation of a data science model might be difficult when applied to the fi-

nancial domain, especially in classification settings: an accurate forecasted direction

for stock market cannot be directly linked to a positive trading performance since

in terms of financial results, periods with high volatility are more important than

period with low volatility. Even if ML models present high accuracy indeed, port-

folio return can be low. Therefore, in ML financial researches, in addition to the

validation of standard data science metrics, the validation of the pertinence of the

model by simulating effective investment strategies results fundamental.

This is the reason why for ML financial researches a proper validation phase is

always divided into two different steps: the first step has to take into account metrics

more related to the machine learning domain so as to understand the statistical

behavior of the model; however, since promising results in terms of ML metrics

are not directly associated to positive financial performances, in a second step, it

is necessary to define a trading strategy and to evaluate the model looking at the

performance of such a strategy built on model predictions. Assessment measures

for this second step clearly regards the traditional measures adopted for portfolio

performances. During the first phase, the power of the proposed classifier is proved;

during the second one, the real effectiveness of predictions is demonstrated.

In academic literature, as highlighted in Chapter 2, among the studies that

employ machine learning techniques to forecast stock price movement, only a few

exhibit empirical results of a trading performance obtained through forecasts from

models. Such studies highlight a flaw in their consistence: they do not prove the

real advantage, from an operational point of view, deriving from the employment of

computational expensive model for stock market predictions.
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Starting from these assumptions, in the next two sections, the most frequently

employed measures to asses the performances both from a data science perspective

(Section 3.4.1) and from a business perspective (Section 3.4.2) will be presented.

Regarding the data science perspective, it will focus on suitable measures for a

classification problems since the empirical work presented in Chapter 4 deals with

one of it. The review in these following sections does not aspire to be exhaustive,

but rather it aims to sketch a proper methodological framework to validate ML

application for financial market predictions from an academic research perspective.

3.4.1 Machine Learning Performance Metrics (classification)

Accuracy The first and most intuitive evaluation metrics for a classification problem

is accuracy:

Accuracy = Number of correct predictions

Total number of predictions made
(3.43)

It can provide useful information of model’s capabilities in case the number of sam-

ples in each class is equally distributed (i.e. when the problem is said to be a

balanced classification problem). If this is not the case, classification accuracy can

give false sense of having achieved great results. Imagine a case in which in our

database we have 96% of samples belonging to class 1 and 4% belonging to class 2;

a model could achieve a 96% accuracy by simply predicting every training sample

belonging to class 1. Such behaviour from a model would cause a lot problems when

cost of misclassification for the smaller class is very high: imagine if class 1 refers

to patients that do not suffer a recurrence of cancer and class 2 that do. A model

with 96% accuracy that classifies all patients as “no recurrence” would send home

people incorrectly thinking their cancer is not going to reoccur.

Confusion Matrix Confusion matrix comes into play to solve the bias that accu-

racy can create in case of unbalanced sample. It is, in fact, a matrix from which it

is possible to describe the complete performances of a classification model. Suppose
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a two class problem 4, confusion matrix will appear like this:

Table 3.2: Confusion matrix example. The actual size of the database will be P +N = P ′ +N ′.
ac

tu
al

va
lu

e
Prediction outcome

p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

From the matrix, it is possible to individuate four different important measures:

• True positives- Number of observations correctly predicted as positive (“p”)

by the model.

• True negatives- Number of observations correctly predicted as negative (“n”)

by the model.

• False positives- Number of observations predicted as positive (“p”) when in

reality they were negative (“n′”) (also referred as type 1 error).

• False negatives- Number of observations predicted as negative (“n”) when

in reality they were positive (“p′”) (also referred as type 2 error).

From such matrix, it is straightforward to understand that accuracy can be cal-

culated as Accuracy = TP+TN
P+N . However, besides accuracy, many other measures

containing more detailed information can be measured from confusion matrix. They

are, moreover, really useful when dealing with unbalanced classification problems.
4It is important to mention that confusion matrix, and all the measures that follow derived

from it, can also be calculated in the case of a classification problem presenting more than two
classes. In this section for simplicity, the two-class problem is treated.
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Sensitivity Referring to the above mentioned case of the classification model for

cancer re-occurrence predictions, we would be interested in the ability of the model

to spot all the relevant positive cases (i.e. “recurrence”) within the dataset. This

objective is equivalent to the maximisation of the sensitivity of the model that is

calculated as:

Sensitivity = True Positives

True Positives+ False Negatives
(3.44)

Sensitivity thus can be seen as of a model’s ability to recognise all observations of

interest within a dataset.

However sensitivity per itself does not solve all problems related to unbalanced

classification problem; in fact, from (3.44), if in the example our model labelled all

patients as “recurrence”, sensitivity would be equal to 1 and one could be tempted

to think to have a perfect classifier. Obviously, this would not be true, in fact

sensitivity is always in trade-off with precision.

Precision Precision measures the ability of a classification model to identify only

relevant data points. It is calculated as:

Precision = True Positives

True Positives+ False Positives
(3.45)

So, a cancer model with sensitivity equal to 1 obtained classifying all observations as

“recurrence” would have a precision of 0.04 signaling a problem in the construction

of the model.

F1 score In some cases, it is desirable to maximise either sensitivity and precision at

the expense of other metrics. In our example, it is desirable to have a sensitivity near

1 (i.e. find all patients for follow-up examinations), but, since follow-up examinations

are costly, it is desirable to have also high precision. The right measure thus to take

into consideration both the measures is F1-score:

F1 = 2× Precision× Sensitivity
Precision+ Sensitivity

(3.46)

From a mathematical point of view, F1-score is calculated as an harmonic mean of
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sensitivity and precision that in comparison to a simple average punishes extreme

values of either one of its two components.

Specificity Specificity is the last important measure that can be extracted from

confusion matrix. It follows the same idea of sensitivity, but it is focused on correct

true negative predictions and not true positive ones:

Specificity = True Negatives

True Negatives+ False Positives
(3.47)

Receiver Operating Characteristic Curve Another important instrument to

measure the performance of a classification model is ROC curve. It shows the true

positive rate (i.e. sensitivity) and false positive rate (i.e. probability of false alarm

or 1-specificity) relationship changes as the threshold of the model for identifying a

“positive” in the model is changed.

True Positive Rate = True Positives

True Positives+ False Negatives
(3.48)

False Positive Rate = False Positives

False Positives+ True Negatives
(3.49)

Two are the important ROC curve characteristics to look at: the top-left corner and

the “steepness” of the curve. The the closer the ROC curve to the top-left corner

of the graph the better the model. Ideally, in fact, the top left corner of the plot

should represent a model with a false positive rate of 0, and a true positive rate of 1.

The “steepness” of ROC curves is also important since a steep curve would signal a

model able to maximise the true positive rate without increasing the false positive

rate indeed.

ROC curve is really helpful especially when comparing different classifiers: a

model with a ROC curve more on the left respect to the curve of a benchmark model

is considered to be a better classification model for the reasons just explained.

Area Under the ROC Curve From the name of such indicator it is pretty straight-

forward to understand what AU-ROC represents: AU-ROC refers to the area under

the ROC curve of a specific classification model. It is a measure of the ability of a

model to distinguish between different classes. An excellent model has a AU-ROC
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Figure 3.22: ROC curve example. The diagonal grey line represent a random classifier. The blue line
represent the result effectively obtained by a classification model.

near 1 which means it has a good measure of separability, while a bad model typ-

ically has an AU-ROC close to 0. So the larger the area under the ROC (i.e. the

more closed the ROC to the top-left corner of the graph) the better the classifier

and viceversa. As from the ROC, also from different AU-ROC it is possible to easily

compare the performances of different classifiers.

3.4.2 Financial Performance Metrics

Unfortunately, being the research combining both the financial and computer sci-

ence domains not so developed as others, proper measures able to provide synthetic

information about the performance of a model both from a data science perspective

and a financial one have not been developed yet. This forces the validation process

to be, as said, literally split in two completely separated parts. As we have already
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seen, the first part validates the model following the common measures adopted by

computer scientists; anyhow such data science measures are usually not found to

be particularly correlated with financial performances. This is the reason why the

second part of the validation process result to be crucial, especially from a business

viewpoint. In fact, a ML classification model achieving high accuracy and, at the

same time, losing money would not be able to justify the research effort necessary

to create it.

So, to properly carry out the financial validation of a ML model, it the definition

of a precise trading strategy built upon the predictions of the model itself cannot

be overlooked. Usually, such strategy has the form of a statistical arbitrage strategy

consisting in the creation of long-short or long-only portfolios formed by stocks

selected on the basis of a ranking of probabilities provided by the model. The

definition of the investment strategy is, in fact, preparatory for the calculation of

profitability and risk measures related to the strategy itself.

In the remaining part of the section some of these measures will be presented.

Due to its more easily quantifiable nature, only two measure of profitability will be

exhibited; while regarding the risk perspective, a higher number of measures will be

necessary due to the less quantifiable nature of risk itself. Besides, to map all the

characteristics of the distribution of returns different risk measures are necessary

since, as we will see, each of them focus on single specific aspects of it.

Portfolio Returns Portfolio returns refers to the percentage gain or loss realised

by an investment portfolio containing different types of investments. Return of a

portfolio can be simply calculated as:

Rett = Portfolio V aluet
Initial Investmentt=0

− 1 (3.50)

In case of multi-periods investments, a common practice is to annualised returns so

as to make them comparable across other portfolios and potential investments. The

annualised return is calculated as the geometric average amount of money earned

by the investment over a specified time period: it shows the amount of money that
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could have been earned over a year in case of compounded returns.

Annualised Return = (1 + Cumulative return)
365

Hold period − 1 (3.51)

Profit & Loss Portfolio returns as expressed in (3.50) cannot be calculated in

case of dollar-neutral long-short portfolios. Such type of portfolios are particularly

exploited in case of ML classification trading systems since they allow to combine

both stocks in a long position whose price is expected to rise and stocks in a short

position whose price is expected to fall without investing money at t = 0. This is

possible thanks to the fact that the portfolio is built so that the amount of money

spent for the long positions equals the amount of money received from the sale

of short positions. In such a case the denominator of (3.50) is 0 indeed. This is

the reason why usually for such portfolios, profit&loss is employed as a measure of

profitability and it is calculated as:

P&Lt = Profits from sale short positionst− Costs from closure short positionst

(3.52)

Standard Deviation Standard deviation of returns is generally employed in finance

as a proxy of risk. It express a statistic measure of the dispersion of a dataset in

relation to its mean:

σt =
√∑n

i=1(xi − x̄t)2

n− 1 (3.53)

Standard deviation returns information about the historical volatility of a specific

investment. The greater this measure for a security or portfolio, the greater the

price range in which the value of the security/portfolio moved during the considered

time frame and the greater the uncertainty (i.e. risk) suffered by the investor in

holding that specific position.

Maximum Drawdown Maximum drawdown is a measure of downside risk over

a specified time period expressing the maximum percentage observed losses from a

peak to a bottom, before a new peak is reached.

MDD = Trough value− Peak V alue
Peak V alue

(3.54)
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It only measures the size of the largest loss trend without taking into consideration

the frequency of losses over the whole time period examined. Moreover, it does not

indicate the time to recover from the losses. For these reasons, it can be considered

an indicator focused on capital preservation.

Sharpe Ratio The Sharpe ratio measures the profitability of an investment ad-

justed for its risk.

Sharpe ratio = Rt

σt
(3.55)

The Sharpe ratio gives information about how well the return of an asset remunerate

the investor for the risk taken, it is thus a more complete performance measure than

simple returns. In financial markets, in fact, returns must be always compared with

the risk suffered by the investor since typically they are positive related: high returns

and low risk suffered highlights great capabilities by the investor and vice versa.

Moreover, Sharpe ratio is particularly useful when comparing the performance of

different portfolios: the measure shows whether a portfolio’s returns have been due

to good investment decisions or a result of a too higher risk suffered; an investment

is considered to be a good investment compared to other investments if its returns

have not come with excessive additional risk taken indeed.

To better isolate the risk suffered by the investor, as variation of the original

formula, at the numerator in (3.55) it is possible to subtract the risk-free rate from

returns to better isolate excess returns delivered by the investment.

Sortino Ratio Sortino ratio, similarly to Sharpe ratio, measures the risk adjusted

return of an investment. It is a modification of the Sharpe ratio since it penalises

only those returns falling below a specified target, while Sharpe ratio penalises upside

and downside volatility equally. It is calculated as:

Sortino ratio = Rt − Target
Downside Risk

(3.56)

DR =
√

T

lim
−∞

(T − x)2f(x)dx (3.57)
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Where f refers to the distribution of annuals returns, x to the random variable

representing returns and T to the target returns. With respect to the downside

risk, as said, it focuses on the negative part of the volatility of the investment: it is

observable from (3.57) how it is calculated not taking as reference averages returns

but the minimum acceptable return T (usually represented by those of risk-free

securities).

From (3.57), it emerges how Downside Risk measures the downward deviations

of the yield of the security in relation to a selected minimum acceptable yield, thus

expressing that part of volatility not appreciated by the investor: the greater the

downward deviation of the yields of the securities compared to the expected return

of the investor, the greater DR. It is worth mentioning that in case of a positive

deviation the downside risk value would be capped to be 0.

Calmar Ratio Calmar ratio is another possible measure of return adjusted for

risk. The risk measure employed to adjust returns for this measure is maximum

drawdown. This is the reason why, compared to Sharpe ratio, such measure is more

sensitive to extreme losses.

Calmar ratio = Rt

MDD
(3.58)

Omega Ratio The omega ratio is another risk-return performance measure fre-

quently employed for portfolios or investment strategies. This measure is employed

to asses whether the returns distribution is asymmetric thus signaling, in such a

case, a possible ability/inability of the investor in creating the investment strat-

egy. Basically, omega ratio calculates the area under the cumulative distribution

function of returns of the portfolio/investment strategy before and after a threshold

referred as minimum acceptable return (MAR). The area preceding MAR mea-

sures the observed probability of having disappointing results from the investment

strategy, while the one following MAR measures the observed probability of having

positive returns from it. Finally, Omega simply express the ratio between these two
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integrals. Mathematically:

Omega(r) =
∫∞
r (1− F (x))dx∫ r
−∞ F (x)dx (3.59)

where F refers to the cumulative distribution function of the returns and r refers to

the minimum acceptable return (MAR).

Value at Risk VaR is an absolute measure representing the risk of experiencing

a loss from an investment. It estimates how much an investment might lose, given

normal market conditions, in a specified time period under specified probability

thresholds. The measure, as the other risk measure presented, relies on the calcula-

tion of the distribution of returns of the investment. Once the distribution has been

estimated, VAR is calculated as that value for which a loss greater than it is at most

p probable, while a loss smaller than it is at least 1 − p probable. For instance, if

a portfolio of stocks has a one-week 1% VAR of 5$ million, this means that there is

0.01 probability that the portfolio will lose more than 5$ milion value in one-week

with no trading occurring in the meantime.

Figure 3.23: Example of value at risk supposing a normal distribution of returns.

From figure 3.23, where distribution of returns is supposed to be normal, the
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VaR calculation would be equal to:

V aR = µ+ σN−1(α) (3.60)

Where µ refers to the mean of returns, σ to their standard deviation and α measures

the percentile desired regarding the VAR measure.

Conditional Value at Risk The main problem of VaR is that it does not provide

information about the level of financial risk once surpassed the VaR threshold. Con-

ditional VaR (also called expected shortfall) solves this problem since it quantifies

the amount of tail risk of a specific investment. Mathematically, cVaR is calculated

as the average of the returns values that fall beyond VAR:

cV ar = 1
1− c

∫ V AR

−1
xp(x)dx (3.61)

where p(x)dx refers to the probability density of getting a return x and c to the cut-

off point of VAR. Since cVaR is derived from the calculation of VaR, the assumptions

of VaR (e.g. shape of the distribution of returns, cut-off level, periodicity) strongly

affect its value.

Benchmark Naive Trading Strategy Finally, trading strategies based on ML

model outputs are typically benchmarked with naive strategies. Such benchmark

process is performed to check whether eventually positive results of the implemented

strategy are due to ML model ability to extract additional information from data

or they are due to results attributable to specific positive market conditions.

The most common type of benchmark strategy employed is a buy and hold strat-

egy that is a passive investment strategy in which an investor buys stocks and holds

them for a predefined period regardless of fluctuations in the market. Another

common naive benchmark trading strategy regards the use of market indexes for

the markets taken into consideration to build the trading portfolio (e.g. S&P500,

DJIA). In any case, possible choices are almost unlimited, and many other pos-

sibilities are applicable; it is reported one of them just for example: Fischer and

Krauss (2018) asses the financial performance of 100.000 sampled portfolios created
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in the sense of Malkiel’s monkey throwing darts at the Wall Street Journal’s stock

page (Malkiel, 2007). They sample 10 “long” stocks and 10 “short” stocks without

replacement for each of their main strategy trading day forming a portfolio. Then,

they evaluate the mean average daily return of this combined portfolios repeating

the process 100.000 times. Finally, they compare the average daily return of such

100.000 random portfolios with their main trading strategy performance.
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Chapter 4

Experimental Settings

As presented in Chapter 1, the research question of the thesis is the following one:

is it possible to achieve abnormal returns in equity market through the use of a

recent and powerful Machine learning technique?. In order to contextualise this re-

search question, Chapter 2 presented a review containing different research perspec-

tive about the interconnection between machine learning and investment strategies

within academic literature and Chapter 3 presented a theoretical framework re-

garding the application of machine learning models for financial market predictions.

From now on, Chapter 4 and 5 will instead present all the details related to the

experimental work implemented to effectively answer the research question. Par-

ticularly, Chapter 4 will present the methodological structure of the experimental

work of this thesis necessary to understand the results presented in Chapter 5.

Differently from the majority of ML approaches presented in Chapter 2, the

objective of the experimental work in this thesis is the definition of a suitable ML

approach able to create profitable equity portfolios with an investment horizon longer

than one day. Specifically, the horizon selected for the experiment is five trading

days (i.e. one week).

The study presents two main novelties with respect to the literature. The first

main novelty regards the implementation of a solution that in this thesis will be

arbitrarily referred as “modular classification approach”: the reason why in liter-

ature it is not so frequent to find approaches creating investment strategies with
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longer than one day horizons has to be attributed to a general degradation of ML

model performance when the object of their forecasting is moved forward in time;

the objective of this application is thus intended, as it will be clear, to test the

truthfulness of such observation even in the case of a state-of-the-art ML algorithm

as LSTM networks. At the same time, such solution is intended to improve the

financial performance of the whole trading strategy taking advantage of the entire

set of information available from data.

The second main novelty proposed regards instead the extension of the input

variable set employed to train LSTM models by means of technical indicators and

macroeconomic variables. These two types of variable have been already used to

train a large variety of ML models but, to the best of our knowledge, not yet in the

case of LSTM networks.

4.1 Main Forecasting Idea

One of the biases suffered from trading systems based on supervised ML models

is that trading strategies built from the outputs of such models tend to maximise

returns, without any consideration about the risk of the investment. Usually, stocks

that enter in the portfolio are the ones considered most likely to move in a specific

direction given current and past information. The model itself is learned to relate

all the input features to the likelihood, and sometimes also to the magnitude, of a

specific stock price to move in a specific direction. Within such approaches indeed,

risk considerations can be only performed ex-post when computing risk measures.

Differently, this is not always true for reinforcement learning approaches. For in-

stance, Almahdi and Yang (2017) propose an unsupervised approach in which the

model, through a trials and errors algorithm, is learned to pick stocks (i.e. to gen-

erate buy/sell signals) so as to maximise risk adjusted measures as Sharpe ratio or

Calmar ratio.

The absence of risk perception by ML models becomes particularly cumbersome
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when the forecasting horizon gets larger than hours or days. In such cases, if riskier

stocks are frequently selected by models, they could at first make the investor suffer

an undesired level of risk, secondly, they could easily erode all the profits previously

created by the portfolio. To make matters worse, it has been observed, as said, that

models that predict at longer horizons often show disappointing performances in

terms of forecasting accuracy.

Since the objective of the empirical work in this thesis is to create a successful

ML trading strategy with an horizon longer than one day, to face these problems,

it has been decided to adopt the previously mentioned modular classification

approach. As it sounds evident from the name, it provides for the use of ML

classification models; the classification setting has been selected since, compared to

regression, is less biased towards more volatile stocks: in a regression settings, in

fact, stocks selected to enter in the portfolio are the ones whose forecasted returns

are higher/lower, conversely, in a classification approach, they are the ones having

a higher probability to belong either to a positive or negative price trend regardless

of its magnitude.

The term “modular”, instead, refers to the combination of multiple prediction

models in an attempt to account for risk mitigation: imagine to have a single model

forecasting price movements on each Monday for the following one and a trading

strategy that, based on such forecasts, creates an equity portfolios to hold for the

entire week. A standard approach would not allow the investor to adjust his expo-

sition in the meantime, forcing him not to exploit new information coming from the

market in the following days before the closure of all the positions. Conversely, the

approach proposed in this thesis aims to create an effective medium-term trading

strategy that, through the use of different ML models, takes advantage of the whole

information available during the whole week not only to maximise returns but also

to lower risks. Practically, continuing with our example, in addition to the first

model trained to forecast one week ahead (or any other time period desired by the

investor), the “modular approach” consists in training one additional model for each
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Figure 4.1: Graphic representation of the modular approach in case of one-week ahead forecasting.
Each week, for each different day, a different model is used to forecast the price movement of each
stock in the database for the first day of the following week.

remained day prior the day in which all positions have to be closed. This translates

to different models, where each of them can be seen as a single module of the whole

trading system, trained to predict price movements for decreasing time horizons: in

our specific case of one week-ahead forecasting, there will be a model h = 5 trained

to predict with a five-days horizon, a model h = 4 trained with a four-days horizon,

a model h = 3 trained with a three-days horizon, a model h = 2 trained with a

two-days horizon and a model h = 1 trained with a four-days horizon (Figure 4.1).

The main rationale behind the modular approach is the following one: as the

forecast horizon h decreases, models are expected to become increasingly accurate

so that their predictions can be used both to re-calibrate positions erroneously taken

by previous models (i.e. diminish the expositions on stocks whose predicted trend

has reversed compared to the one predicted by previous model) and to exploit new

investment opportunities (i.e. take new positions based on predictions from theo-

retically more accurate models).
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Moreover, and even more interestingly in terms of research, such an approach

allows to effectively test the hypothesis for which deteriorated performance are ex-

pected with increasing forecasting horizons. Such hypothesis has already been found

true in the case of many ML models extensively employed in financial research.

Even more, due to the scarcity of information regarding medium-long term in-

vestment strategies based on machine learning models, such approach is intended to

explore from a managerial perspective the possibility to suggest a suitable forecasting

horizon range in which an investment strategy can be profitably performed. In this

sense, even a disappointing performance from one or more of the models within the

experiment would bring valuable information in drawing general conclusion about

the effectiveness of specific settings.

Finally, from an investment perspective, it is important to specify that the “mod-

ular approach” actualises in a long-short equity trading strategy. Long-short strate-

gies are investment strategies that take long positions (i.e. buy) in stocks expected

to increase their value and short positions (i.e. sell) in stocks expected to lose value.

This decision refers to the possibility, from a research perspective, to evaluate the

ability of the various models to recognize not only observations belonging to a single

class, as it would have happened in the case of a long-only trading strategy, but two.

In any case, details about the constructions of the equity portfolios will be given in

the specific section.

4.2 Machine Learning Model Selection

For the construction of the “modular approach”, it has been decided to adopt LSTM

networks to predict stock price movements for all the five different forecasting hori-

zons. In fact, LSTM networks, as explained in 3.2.3, are among the most advanced

modification of recurrent neural networks: as RNN, they are specifically designed to

take advantage of information included in time series, but, conversely to standard

RNN, they are optimised to deal with long-term dependencies. Moreover, applica-
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tions regarding the use of LSTM networks for financial time-series predictions are

relatively new compared to the vast literature about classification trees, SVM and

NN. Finally, compared to other powerful approaches such as GRU, LSTM remains

computationally expensive but still feasible with standard hardware configurations.

Specifically, being h the the number of days ahead in which the LSTM network

classifies price movements, in this experimental work h ∈ {1, 2, 3, 4, 5}. Anyhow,

despite different forecasting horizon, for all these models it has been decided to

use the same input features set, obviously with the only exception regarding target

output. About target output, in fact, depending on the model each observation in

the training set has been associated to a given class in relation to its future return

at horizon h:

Retsh = P s
t+h
P s
t

− 1 (4.1)

where s refers to a specific stock and h to the forecasting horizon. However, to pre-

vent models to give a buy or sell signal on non-significant stocks’ movements, thus

producing a losing trade net of transaction costs, instead of assigning observations to

two different classes, it has been decided to assign them to three different ones: the

first class containing all positive movements larger than a predefined upper thresh-

old, the second class containing all negative movements lower than a predefined

lower threshold and, finally, the third class containing all movements considered not

significant as to stay within the upper and lower threshold.

if Retsh > threshold up s ∈ class 1

if Retsh < threshold down s ∈ class −1

Otherwise s ∈ class 0

Regarding the threshold values for the classes, it has also been decided to make

them different depending on the forecasting horizon of the associated model. Start-

ing from an estimation of transaction cost per trade, the threshold values for the

h = 5 model has been set equal to 5 × Transaction Costs, the ones for the h = 4

model to 4 × Transaction Costs and so on. This decision has been taken due in
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accordance with the risk management objective of the modular approach previously

presented. In fact, it accounts for the return in h days to be higher than the trans-

action costs that would be originated from an extreme situation in which every day

the exposure of a specific security was adjusted. For instance, imagine the situation

in which the h = 5 LSTM returns a buy signal for the ith stock so that the first day

of the current week the ith stock is bought; the second day the same signal is given

by the model so that the exposure on the ith stock is increased; the third day the

model, at the opposite, outputs a sell signal for the ith stock so that the exposure is

decreased and so on. If this happens, each day transaction costs on that particular

stock are paid. To prevent losses from a situation like this, it is crucial for the model

to signal only stocks that in the following h days can return a profit higher than the

maximum possible value of transaction cost to be paid.

Clearly, as it already emerged, such “modular” strategy involves high transaction

costs. Anyhow, it is important to remember that it has been created having as main

objective a possible way to reduce the variability of returns generated by ML models

predictions and, at the same time, as a strategy able to provide information about

different behaviours of LSTM models predicting at different horizons. The focus on

these two dimensions, more interesting from an academic point of view, then has

penalized the optimization of the strategy towards transaction costs.

Regarding the estimation of transaction costs per each trade (bid-ask spread

+ brokerage fees), the highly conservative measure of 0.2% a day has been used.

Considering our database starting in 2009, this choice is even more conservative than

the one made by Huck (2019). He deals indeed with observations from 1990 to 2015

and he hypothesises transactions costs of 0.2% per day averaging higher transaction

costs of the nineties (i.e. about 0.3%) with lower ones of more recent periods for

highly liquid American stocks.

In conclusion, this choice translates into the following thresholds selected per

each observation in each of the 5 different models:
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h = 5 threshold up = 1.0% threshold down = −1.0%

h = 4 threshold up = 0.8% threshold down = −0.8%

h = 3 threshold up = 0.6% threshold down = −0.6%

h = 2 threshold up = 0.4% threshold down = −0.4%

h = 1 threshold up = 0.2% threshold down = −0.2%

4.3 Database

Regarding the composition of the database, stocks from the S&P500 index have

been selected. This choice is a standard one when testing the effectiveness of ML

models in spotting patterns for financial time series: it includes highly liquid and

capitalised stocks traded on a market (i.e. the American one) considered remarkably

efficient. Due to computational feasibility reasons, among the 500 stocks included

in the index at the end of 2019, 4 stocks per each of the 11 industries sectors of

the GICS taxonomy have been selected for a total of 44 stocks. Among the same

sector, as far as possible, stocks have been selected to be heterogeneous in terms of

sub-industry.

This choice, besides being taken to study potential biases from the model towards

some peculiar industry, is related with the purpose to create a “universal” model 1

as defined in Sirignano and Cont (2019).

The 44 stocks selected to form the final database are presented in the following

table:

1Universality refers to the ability of the model to uncover universal features that are common
across all different type of stocks.
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Table 4.1: Table listing all the 44 stocks presented in the database.
Stocks are subdivided following the GICS taxonomy.

Ticker Symbol Name of the Company GICS sub-industry

Information Technology

AAPL Apple
Technology

Hardware, Storage &
Peripherals

ACN Accenture IT Consulting &
Other Services

INTC Intel Corp. Semiconductors

MSFT Microsoft Corp. Systems Software

Energy

CVX Chevron Corp. Integrated Oil & Gas

XOM Exxon Mobil Corp. Integrated Oil & Gas

HAL Halliburton Co. Oil & Gas Equipment
& Services

OKE ONEOK Oil & Gas Storage &
Transportation

Materials

DD DuPont de Nemours Inc. Specialty Chemicals

BLL Ball Corp. Metal and Glass
Containers
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FCX Freeport-McMoRan Inc. Copper

LIN Linde plc. Industrial Gases

Industrial Sector

MMM 3M Company Industrial
Conglomerates

AAL American Airlines Group Airlines

CAT Caterpillar Inc.
Construction

Machinery & Heavy
Trucks

UNP Union Pacific Corp Railroads

Consumer Discretionary

AMZN Amazon.com Inc. Internet and Direct
Marketing Retail

F Ford Motor Automobile
Manufacturers

MCD McDonald’s Corp. Restaurants

NKE Nike Apparel, Accessories
& Luxury Goods

Consumer Staples

WMT Walmart Hypermarkets and
Super Centers

KO Coca-Cola Company Soft Drinks
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MDLZ Mondelez International Packaged Foods and
Meats

PG Procter & Gamble Personal Products

Health Care

BSX Boston Scientific Health Care
Equipment

HUM Humana Inc. Managed Health Care

JNJ Johnson & Johnson Pharmaceuticals

MRK Merck & Co. Pharmaceuticals

Financials

NDAQ Nasdaq, Inc. Financial Exchange
Data

AXP American Express Co Consumer Finance

BAC Bank of America Corp Diversified Bank

BRK.B Berkshire Hathaway Multi-Sector Holding

Communications Services

VIAC ViacomCBS Movies &
Entertainment

DIS The Walt Disney Company Movies &
Entertainment
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GOOGL Alphabet Inc Class A Interactive Media &
Services

EA Electronic Arts Interactive Home
Entertainment

Utilities

ED Consolidated Edison Electric Utilities

NI NiSource Inc. Multi Utilities

ATO Atmos Energy Corp. Gas Utilities

XEL Xcel Energy Inc. Multi Utilities

Real Estate

CBRE CBRE Group Real Estate Services

WELL Welltower Inc. Health Care REITs

AMT American Tower Corp. Specialised REITs

DRE Duke Realty Corp. Industrial REITs
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Practically, for each of the 44 stocks, in the time period starting on 4th Novem-

ber 2009 and ending on 15th November 2019 the following daily data have been

downloaded from the Yahoo Finance platform 2:

• Open price (Ot)

• High price (Ht)

• Low price (Lt)

• Close price (Pt)

• Volume of transactions (Vt)

• Close price adjusted for any corporate action (P adj
t )

Moreover, as explained in section 3.3, when comparing price information in dif-

ferent periods it is necessary to adjust them for corporate action. For this reason,

not only close prices, but also open, high and low prices have been immediately

adjusted deriving the adjustment factor directly from P adj
t :

k = P adj
t

Pt
(4.2)

Oadj
t = k ×Ot (4.3)

Hadj
t = k ×Ht (4.4)

Ladjt = k × Lt (4.5)

Where k is the adjustment factor directly provided by P adj
t .

Then, all the input features that will be presented in the following section (4.4) have

been calculated using these adjusted prices.

2https://finance.yahoo.com/
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4.4 Input Features

As highlighted in 2.1, the majority of LSTM applications developed so far in lit-

erature aim at extracting information only from price features (e.g. returns, high-

frequency record of all transaction in the order book). This tendency has to be

attributed to the inner ability of LSTM to dynamically recognise patterns in time-

series data compared to other static ML model without memory. Theoretically,

these latter models, provided with the same data, should not be able to extract

even a comparable level of information.

Moreover, another reason is certainly related with the objective of decreasing

training time, given that LSTM networks are much more computational expensive

compared to static models given the same number of input variables 3, in many

applications secondary features have been dropped out from explanatory variables

set.

Thus, besides the idea of a modular approach, the second novelty of the experi-

ment here presented is the inclusion in the input features set of technical indicators

and macroeconomic variables to test whether they can bring additional information

in pattern detection issues or, on the opposite, they only add noise to the prediction

application.

Regarding technical indicators, as described in 3.3.3, they are intended as in-

dicator calculated from price features aiming at enhancing the decision process of

investors helping them to spot early trends or price reversal. Their effectiveness

when included among explanatory variable set of a recurrent network is doubtful

since, in some way, they might tend to replicate the task of the LSTM model (i.e.

spot trend patterns in time-series data) but forcing the model to focus to some

arbitrarily selected measure instead to the whole content of information directly

included in prices and volume. Moreover, they are not based on any theoretical

3Take as example a NN and a LSTM network both with input layer, a single hidden layer of 10
units each and an output layer of 3 units: in the first case the backpropagation algorithm has to
optimise 143 parameters while in the second case 873, 6.1 times more!

125



CHAPTER 4. EXPERIMENTAL SETTINGS

framework but refer to heuristic rules sometimes consolidated in beliefs of investors

throughout time. However, oppositely, the LSTM model looking at their temporal

evolution could spot new patterns that it would not have been able to spot just pro-

vided with simple price features: with due propositions, technical indicators could

be taught as having the same function of the output of attention mechanisms that

aim at helping algorithms to focus on the most pertinent piece of information to

improve performance. Results presenting the effectiveness of providing LSTM with

synthetic data can be found in Chen and Ge (2019).

Regarding macroeconomic variables, Huck (2019) highlights how in his experi-

mental work random forests, deep belief networks and elastic net regression seem

not able to extract valuable information from such data. It is important to specify,

however, how even an advance models like DBN, does not have the ability to deal

with correlated observations as LSTM. The use of macroeconomic time series in

this application, thus, has to do with the hypothesis that from the study of their

temporal evolution could come more important insights than the ones coming from

static relationships found by the above mentioned models.

Said that, the complete list of 20 input features is here presented:

Table 4.2: Complete list of 20 input features employed for the 5 differ-
ent LSTM notworks in the experiment. The parameter for technical
indicators have been selected using values suggested in literature. VIX
index has been downloaded from Yahoo Finance site 6 while TED rate,
US treasury rates and US/EU exchange rate from FRED site 7.

Input Feature Formula

Daily Return Ret1t = (P adj
t /P adj

t−1)− 1

Weekly Return Ret5t = (P adj
t /P adj

t−5)− 1

Simple Weekly
Moving Average SMA5

t (P adj) = 1/5 ∑4
i=0 P

adj
t−i

Exponential Weekly
Moving Average EMA5

t (P adj) = P adj
t × 2

6 + EMA5
t−1(P adj)× 4

6

126



CHAPTER 4. EXPERIMENTAL SETTINGS

Moving Average
Convergence
Divergence

MACD12,26
t (P adj) = EMA12

t (P adj)− EMA26
t (P adj)

Signal Line SL9
t = EMA9

t (MACD12,26
t (P adj))

Parabolic Stop and
Reverse SAR0.01,0.2

t = SAR0.01,0.2
t−1 + α(EP − SAR0.01,0.2

t−1 )

Relative Strength
Index RSI14

t = 100− 100/(1 +RS14
t )

Stochastic %K %K14
t = Padj

t −min[t−13,t](L
adj
t )

max[t−13,t](H
adj
t )−min[t−13,t](L

adj
t )
× 100

Stochastic Fast %D fast%D3
t = SMA3

t (%K)

Stochastic Slow %D slow%D3
t = SMA3

t (fast%D)

Commodity Channel
Index CCI20

t = TPt−SMA20
t (TP )

0.015×MeanDev20
t

Average True Range ATR14
t = SMA14

t (TRt)

%Bollinger Band %BBand20,2
t = (P adj

t −Band20,2
low )/(Band20,2

up −Band
20,2
low )

Chaikin’s Oscillator CO12,26
t = EMA12

t (A/D)− EMA26
t (A/D)

CBOE Volatility
Index (VIX) V IXt

Daily Return VIX RetV IXt = (V IXt − V IXt−1)− 1

TED Rate TEDt = Libor3m − US Treasury3m

US Treasury 10y-3m US10y3m = Treasury10y − Treasury3m

Exchange Rate
US/EU US/EUt ($)
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At the end of the calculation of all the different features, the final dimension of

the database accounts for 2489 observations (from 2526) for each of the 44 different

stocks, covering the time period from 22th December 2009 to 12th November 2019.

Therefore, overall, the total number of observations observed in the experiment by

LSTM networks accounts for 2489× 44 = 109.516.

4.5 Training Process

All five LSTM networks employed in the experiment share the same structure: input

layer formed by 20 neurons8, a single hidden layer populated by a variable number of

memory cell units and a dense output layer formed by three neurons9. In addition,

after the hidden layer, a dropout regularization is applied meaning that a fraction

of input units is randomly dropped at each update during training process. Such

regularization aims to reduce the risk of overfitting. The selected dropout value is 0.1

as in Fischer and Krauss (2018) where authors observe how “higher dropout values

go along with a decline in performance” (Fischer and Krauss, 2018). As activation

function in the last layer, the softmax function 10 is used. The most important

characteristic of softmax function is that it outputs values between 0 and 1 that,

when summed over the whole layer, equal to 1. This means that, in our specific

case, the three values returned by the output layer can be seen as probabilities

predicted by the model that the return in h day of the ith stock belongs to the class

k. The final predicted class of the model in this way depends on the one among the

three output neurons showing the highest probability. Following Fischer and Krauss

(2018), the length of the look-back period has been set to 240 days. This choice

influences the way in which input matrix for the models is built and its dimension:

8The number of neurons in the input layer is always equal to the number of input features.
9The number of neurons in the output layer corresponds to the number of classes in which data

are divided.
10The softmax function is an activation function similar to the sigmoid one. It is frequently used

in the output layer since it normalises a K dimensional vector z of arbitrary real values into a K
dimensional vector σ(z) whose components sum to 1. In other words, the values returned by the
output layer can be seen as a probability vector.
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Figure 4.2: Graphic representation of the construction of input sequences for LSTM networks with a
look-back period of 240 days (Both feature vector and sequences are shown transposed). In a “many
to one configuration” it is clear from the image how the first 239 observations of every stock are not
associated with any predicted value. For instance, referring to sequence1, the model predicts the price
movement for the observation 240 + h.

Figure 4.2 shows how the different sequences taken as input by LSTM have been

formed. Finally, referring to Figure 3.14, a “many to one configuration” has been

chosen, meaning that every model of the experiment returns a single prediction just

for the last observation of each input sequence containing 240 days information.

The direct consequence of this choice regards the first 239 days of every stock in the

dataset for which no value is predicted, but that result to be in any case crucial for

the prediction task.

As emerged, the only structural difference among all models trained in the exper-

iment regards the number of hidden nodes composing the single hidden layer, that,

due to computational restrictions, has been the only optimized parameter through a

validation process. During each training process, indeed, 5 different configurations

of the model in terms of number of nodes in the hidden layer have been trained

and then validated on a different dataset. As number of neurons in hidden layer,

the following values have been tested: 25, 20, 15, 10, 5. The criterion selected to
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identify the best parameter among the 5 tested has been the geometric average:

G− score =
√
Sensitivity(−1) × Sensitivity(1) (4.6)

where

Sensitivity(−1) = True Positive(−1)

True Positive(−1) + False Negative(−1)
(4.7)

(4.8)

Sensitivity(1) = True Positive(1)

True Positive(1) + False Negative(1)
(4.9)

Similarly to Picasso et al. (2019), a geometric average has been preferred over accu-

racy since, in case of unbalanced training samples, it better takes into account the

ability of the model to recognise all significant observations (i.e. those included in

both “1” and “-1” classes). As it can be seen, such measure balances the proportion

for both the sensitivity of the classes incorporating significant price movements as

Sensitivity(−1) and Sensitivity(1). In fact, to achieve a high value of Gscore both

sensitivity must be high and assuring to correctly evaluate a model in making correct

predictions even when dealing with unbalanced samples.

For each of the 5 different horizons’ training processes, a sliding training window

approach has been adopted: it involved the subdivision of the whole time-series

into a series of overlapping training-validation-trading sets so as to simulate real-life

trading and to validate the model through frequent out-of-sample datasets. Sliding

windows is a standard technique employed when approaching time-series since classic

techniques that do not preserve the time order of observations in the data set, such

as cross validation, cannot be evidently used to validate models. The term “sliding”

refers to the fact that, when passing from one period to another, all the three

sets (i.e. training, validation and trading) move forward of the same length of the

trading set maintaining their dimension. In this way the temporal relation between

observations is preserved and, at the same time, overlapping trading periods are

prevented.
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Figure 4.3: Graphic representation of the sliding training window approach. The first box represents
the 239 observations per each stock required by the LSTM model and depending from the look-back
period selected, the second one refers to the training set, the third one to the validation set in which
the hidden layer numerousness is decided and finally the fourth one refers to the trading set.

In our specific case, excluding from the calculation the first 239 observations per

each stock necessary for the training process of the first model and dependent on

the look-back period selected, the technique has consisted in subdividing the 2250

observations per stocks into 6 different periods/windows containing each a training,

a validation and a trading set. Regarding the dimension of these sets, every training

set was composed of 500 observations (i.e. approximately two trading years) coming

from all the 44 different stocks in the data set plus 239 observations depending

on the look-back period selected, accounting for a total of 44 × (500 + 239) =

32516 observations. The same for the validation set and trading set composed of

approximately one year of trading observations (i.e. 250) plus 239 observations

concerning with the look-back period to be multiplied by the 44 different stocks

within the dataset as 44× (250 + 239) = 21516.

The whole mechanism adopted is well represented by Figure 4.3 that also shows

why, overall, within the dataset 6 different windows/periods are emerged.

Summarizing, accounting for both the modular approach and sliding windows,
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the empirical work has required to train overall 5 V ariations×6 Periods×5Horizons =

150 different LSTM networks.

About the remaining hyperparameters common to all 150 training processes: the

mini-batch size has been set at 250, the number of epochs at 40 per each stock and

thus 44 × 40 = 1760 for the whole training set; categorical cross-entropy has been

used as loss function and, finally, RMSprop as optimiser.

It is worth mentioning how input features within each training set have been

standardised as follows:

stdXs,v = xs,vi −ms,v

ss,v
(4.10)

where the index s refers to the 44 different stocks, the index v to the 20 input

features, the index i to the 2489 observations and finally ms,v and ss,v to the mean

and standard deviation of observed values for a specific input variable of a stock.

To maintain the same proportions, also the validation set has been standardised

in the same way calculating the mean and standard deviation for the same amount of

observations of the training set (i.e. 739). For this reason, in the calculation of each

mean and standard deviation of each validation set the 250 additional observations

preceding the look-back period have been also included.

Both data preparation and handling have been entirely conducted in R (R De-

velopment Core Team, 2011), relying on package “TTR” (Ulrich, 2019) for the

calculation of technical indicators. The LSTM networks have been developed with

Keras (Allaire and Chollet, 2019) on top of Google Tensorflow (Allaire and Tang,

2019).

In conclusion, the pseudo-code representing the process used to train and validate

all the six LSTMs in each of the five different horizons is presented in Algorithm 4.

4.6 Trading Simulation

From Figure 4.3 it can be understood how from a database initially containing

observations for 10 years, the trading strategy has been effectively implemented

132



CHAPTER 4. EXPERIMENTAL SETTINGS

Algorithm 4 Models training over the entire dataset
1: Indexes start train, end train, start validation and end validation are initialised

at respectively 240, 739, 740, 989.
2: The vector first layer={25, 20, 15, 10, 5} is created.
3: For p in 1 : 6:
4: For i in 1 : 5
5: For j in 1 : 44

a From the database containing all the 2489 daily observations
per each stock, the ones index in the interval [(start train-
239):end train] for the jth stock are extracted to form the training
set.

b The training set is standardised after the calculation of ms,v and
ss,v.

c If j = 1, the LSTM model is defined having number of neurons
in the hidden layer as first layer [i], a mini-batch size of 250, a
look-back period equal to 240, a dropout value after the hidden
layer of 0.1, a softmax activation function for the output layer
and categorical cross-entropy as loss function. If j 6= 1, the step
is skipped.

d The model is trained over 40 epochs on the jth stock. At the end
of each epoch, network’s hidden states are initialised.

A From the database containing all the 2489 daily observations
per each stock, the ones index in the interval [(start validation-
239):end validation] for the jth stock are extracted to form the validation
set.

B The validation set is standardised after the calculation of ms,v and
ss,v (m and s are calculated within the set indexed [(start validation-
(239+250)):end validation]).

C The following measures are calculated based on the predictions of
the trained model on the observations included in the validation set:
Sensitivity0,−1,1, Precision0,−1,1, Specificity0,−1,1, F10,−1,1, Accuracy
and G− score.

• start train, end train, start validation and end validation indexes are all
increased by 250.

for approximately 6 years (i.e. 250× 6 = 1500 trading days), specifically from 26th

November 2013 to 12th November 2019. During this time period, in each window for

each horizon, the LSTM that has obtained the highest G−score in the validation set
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has been employed to predict price movement for observations in the trading set and

thus to effectively implement the proposed trading strategy. In accordance with the

validation step and to preserve the experiment from look-ahead bias, observations in

the trading set have been standardised using the same mean and standard deviation

calculated in the validation set.

As already anticipated, the predictions all models have been used to implement

a statistical arbitrage long-short trading strategy (Jacobs and Levy, 1993) with an

horizon of one week. Long-short strategies are investing strategies that aim to ben-

efit from both rising and falling prices deriving from inefficient pricing. Such type

of strategies, mainly adopted by hedge funds, first of all broaden investment oppor-

tunities, since account also short positions, and, moreover, they manage to alter the

sensitivity to market movements by shifting the balance of long and short positions.

This second characteristics is an important advantage of long-short strategies that

may bring to the creation of more diverse and less volatile portfolios when compared

to long-only strategies that have 100% exposure to the market. In any case, it must

be taken into account when adopting a long-short strategy to face significant losses

that, in some cases, can exceed the principal amount invested.

As a particular case of long-short portfolios, the ones built in this experiment

have been dollar-neutral portfolios: dollar-neutral long-short portfolios are portfolios

in which the dollar amounts of both long and short positions, at the time of the

creation of the portfolio, is equal so as to make the initial investment for the creation

of the portfolio equal to zero (excluding transaction costs). The construction of

dollar-neutral portfolios requires the proportion of each stock selected to enter in

the equity portfolio to depend on its price at time t; this is made clear in Algorithm

5 where all the exact passages implemented for the calculation of the amount of

stock necessary to create such dollar-neutrals portfolios are provided.

Figure 4.4 graphically describes the process of portfolio formation in Algorithm

5.

As it can be additionally noted from the explanation of the portfolio formation
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Algorithm 5 Portfolio formation at horizon h at time t
1: Among the stock predicted to belong to class “1” (“-1”) at time t by LSTM at

horizon h, the 5 ones with the highest probability to belong to such class are
selected to enter in the portfolio h. If less then 5 stock are predicted to belong
to class “1” (“-1”) for that day, all of them will be selected. If for one of the two
classes, no predictions are made, on that day no trades will be executed.

2: Assuming the total quantity to be invested in long (short) positions to be equal to
1, this quantity is subdivided among the stocks selected to enter in the portfolio
through a weighting scheme proportional to the probability of each to stock to
belong to its class as:

w
l(s)
i,h = 1×

Prob
l(s)
i,h∑

i Prob
l(s)
i,h

(4.11)

Where i refers to the ith stock among the set of stocks selected to enter in the
portfolio, h to the forecasting horizon, l(s) refers to a parameter for a stock within
the long-side (short-side), Probi to the output of the softmax function of the LSTM
at horizon h referred to the ith stock and wi to the fraction of the total quantity to
be invested in the ith stock.

3: Finally, the quantity of the stock to be bought (sold) is easily found looking at
the adjusted closing price of the ith stock at time t as:

q
l(s)
i,h =

w
l(s)
i,h

P
adj,l(s)
i

(4.12)

Where P adj
i refers to the adjusted closing price of ith stock at time t and qi to the

total quantity of the ith stock to be bought (sold).

from Algorithm 5, the weighting scheme selected for the securities within the port-

folio has been proportional to the confidence of the ML model regarding the ith

stock belonging to a specific class (expressed by the output of the softmax func-

tion). Moreover, regarding the size of the portfolios, it has been decided to keep a

maximum value of 5 stocks to enter in a long position and 5 in a short position for

each day. About this decision, no optimization process or suggested value from lit-

erature have been employed; rather, the value has emerged from a heuristic process

aiming to solve the trade-off between the selection of a too large value eliminating

any discrimination performed by LSTM and a too small value penalising diversifica-

tion and possibly increasing volatility of the investment strategy. Thus, a maximum
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portfolio dimension equal to the 22.7% (i.e. 10 out of 44) of the whole set of stocks

in the dataset emerged as a fair value. Nevertheless, due to its subjective selection,

the robustness of “maximum portfolio dimension” parameter has been also tested

in Chapter 6.

Figure 4.4: Graphic representation of a generic portfolio formation at horizon h at time t

Now, in case the empirical approach had been developed as in most cases in the

literature, the explanation regarding the construction of the trading strategy would

have ended here. A standard statistical arbitrage approach with an horizon of one

week would indeed have required the creation of a long-short dollar-neutral portfolio

five trading days before the closure of all positions and nothing else. However, in this

particular approach this is not enough. In fact, it results important to understand

also how during each week of the trading period, the predictions coming from all

the five different models have been gathered to follow the intention of the “modular

approach”.

In a real world context, the behaviour of the “modular approach”, in the days

following the first one where the portfolio is initially created, would actualised in

the following possible actions:

• If there was already a long position on stock i and its price was expected to
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significantly increase in the next h days (with 0 < h < 5 in our case), the

exposition on that stock would be increased.

• If there was already a long position on stock i and its price, differently from

previous predictions, was expected to significantly decrease in the next h days,

part of the stocks in the portfolio would be sold. In the case the quantity

suggested to be sold by the approach exceeds the quantity already in the

portfolio, it would be taken a short position exclusively related to the exceeding

quantity 11.

• If there was already a short position on stock i and its price was expected to

significantly decrease in the next h days, the exposition on that stock would

be increased.

• If there was already a short position on stock i and its price, differently from

previous expectations, was expected to significantly increase in the next h days,

part of short positions would be closed. In the case the quantity suggested to

be bought by the approach exceeds the quantity already short in the portfolio,

it would be taken a long position exclusively related to the exceeding quantity
12.

• If there was no exposition on stock i yet and its price was expected either to

significantly increase or decrease in the next h days, it would be either taken

a long or short on that stock depending on the output of the model.

Actually, in this experimental approach to make actionable the process just pre-

sented, it has not been created a single portfolio to be adjusted for the following
11Imagine a situation in which, from previous days, 5 shares of stocks 1 are present in the

portfolio. Imagine, the ML model at time t to suggest to go short on 6 shares. In a real-world
situation, all the 5 shares would be sold and it would be taken a short position on a single share
of stock 1.

12Imagine a situation in which, from previous days, a short position on 5 shares of stocks 1 is
present in the portfolio. Imagine, the ML model at time t to suggest to go long on 6 shares. In a
real-world situation, the short position would be completely closed and it would be bought a single
share of stock 1.
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days as just explained, but rather five, one per each day before the closure of all the

positions on the first day of the following week. In this way, the decisions taken in

every single day have directly influenced the portfolio formation for that day with-

out affecting any previously created portfolio. For instance, if on the first day of the

week the model decided to go long on stock i and during the second one to go short

on the same stock, within the portfolio corresponding to the first day we fond long

positions for the ith stock while within the portfolio corresponding to the second day

we found short positions for the ith stock.

Although the decision to create a completely separated portfolio for each day of

the week may seem peculiar, assumed no transaction costs it has not influenced the

results obtained; even better, it has allowed to simplify calculations and to quantify

the partial results related to single forecasting horizons. From a profitability per-

spective indeed, both the real world example and the approach effectively employed

can be considered completely equivalent. In fact, summing all the positions taken

by each singular portfolio on every stock i is equivalent to adjust single positions in

a unique portfolio. To prove this, imagine a case where a long-short dollar-neutral

strategy is implemented in a market composed by two stocks with no transaction

costs. Imagine also a ML model suggesting the investor each week in time t − 3,

t− 2 and t− 1 (e.g. Monday, Tuesday, Wednesday) to take the following positions

to be hold until time t (e.g. Thursday):

Long Short

h = 3 +2 stock 1 (15$ each) −3 stock 2 (10$ each)

h = 2 +1 stock 1 (14$ each) −2 stock 2 (7$ each)

h = 1 +2 stock 2 (6$ each) −1 stock 1 (12$ each)

h = 0 stock 1 = 15$ each stock 2 = 10$ each

The weekly Profit/loss deriving from a strategy accounting for a single portfolio
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Figure 4.5: Graphic representation of the five portfolio created at different horizons per each week in
the “modular approach”.

adjusted daily would be calculated as:

For stock 1 P&L = −2× 15$− 1× 14$ + 1× 12$ + 2× 15$ = −2$

For stock 2 P&L = +3× 10$ + 2× 7$− 2× 6$− 3× 10$ = +2$

For Portfolio P&L = −2$ + 2$ = 0$

For such a short time period, values are not actualized.

While the weekly P&L deriving from 3 independent portfolios created at h = 3,

h = 2 and h = 1, all closed in h = 0, would be calculated as:

For Long sides Profits = 3× 15$ + 2× 10$ = 65$

For Short side Losses = −1× 15$− 5× 10$ = −65$

For Portfolio P&L = +65$− 65$ = 0$

For such a short time period, values are not actualized.

As it can be seen, without considering transaction costs (or considering them

equal for both long and short trades 13) the P&L of the two approaches is always

the same. This is the reason why the simplification of independent portfolios made in
13This assumption is frequently made in applications in academic literature since a precise esti-

mation of all transaction costs related with trades is difficult to be made.
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this experiment has not influenced results: in the next chapter financial performance

will be presented considering a situation with no transaction costs indeed.

Moreover, the creation of different portfolios has been preferred because it has al-

lowed to easily verify the contribution of the different LSTM predicting at decreasing

forecasting horizons to the total profit/loss obtained during the entire week.

In any case, it is worth highlighting how in the example in h = 1 the two

approaches behaves differently: the first one sells a single unit of stock 1 from the

3 present in the portfolio and close 2 of the 5 short positions taken on stock 2;

the second one, without affecting the positions taken in h = 3 and h = 2, goes

long on two additional units of stock 2 and short on a single unit of stock 1. Such

differences become relevant when considering asymmetric transaction costs; in real

transactions, in fact, costs related to short-selling tend to be higher than the ones

related to long positions. Under this circumstances, the second approach would

generate higher transaction costs.

In conclusion, Figure 4.5 graphically synthesises how the single portfolios created

(as in Figure 4.4) in each trading week throughout the 6 years period have been

merged to form the final trading strategy. The Figure also helps to finally understand

how weekly P&L of the “modular approach” have been calculated:

Portfolio h = 5 P&L5 = ∑
i q
l
i,5 × P

adj,l
i −∑

i q
s
i,5 × P

adj,s
i

Portfolio h = 4 P&L4 = ∑
i q
l
i,4 × P

adj,l
i −∑

i q
s
i,4 × P

adj,s
i

Portfolio h = 3 P&L3 = ∑
i q
l
i,3 × P

adj,l
i −∑

i q
s
i,3 × P

adj,s
i

Portfolio h = 2 P&L2 = ∑
i q
l
i,2 × P

adj,l
i −∑

i q
s
i,2 × P

adj,s
i

Portfolio h = 1 P&L1 = ∑
i q
l
i,1 × P

adj,l
i −∑

i q
s
i,1 × P

adj,s
i

Total weekly return P&Lweek = P&L5 + P&L4 + P&L3 + P&L2 + P&L1

ql
i,h and qs

i,h refer to Algorithm 5. All P adj
i refers to the first day of the following

week in which all the positions taken by the five portfolios are taken.
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Experimental Results

In this chapter, all the results obtained employing the approach presented in Chapter

4 will be provided. Initially the focus will be on data science metrics (Section 5.1),

thereafter, the attention will shift towards the financial performance of the different

LSTM models (Section 5.2). Finally, with the aim of further providing useful hints

regarding managerial decision for an effective implementation of LSTM networks for

stock market predictions, in Section 5.3 the robustness of LSTM networks’ perfor-

mance against specific decision variables (i.e. portfolio weighting scheme, portfolio

dimension) will be verified.

All the results that will be shown have been achieved thanks to the computation

power of a “t2.2xlarge” Ammazon Web Service instance 1. The LSTM networks

provided by the training process and presented in Section 4.5, have been trained

indeed on the CPU of such machines. The time occurred to train all the networks

is reported in Table C.1.

5.1 Data Science Results
Premise About Future Returns Distribution

As already specified, after every training stage, each model has been validated out-

of-sample on a validation dataset so as to select the best network configuration to be

used within the following trading phase. As criterion to select the most appropriate
1https://aws.amazon.com/it/ec2/instance-types/t2/
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model, the G-score measure has been selected instead of accuracy. Among the

already mentioned reasons of such choice, one of them was about the presence of a

non-homogeneous distribution of observations regarding the three different classes in

the dataset. As can be seen from Table B.1, this is actually the case of our database

where for all the five horizons there is a prevalence of observations belonging to

class “1” (referring to positive and significant price movements). This prevalence

can be mainly attributed to the positive trend that has affected the S&P index

during the six-years time period considered (Figure 5.1). Always from Table B.1,

Figure 5.1: Uptrend of the S&P index within the time period considered in the analysis.

in any case, this prevalence do not appear an essential issue in terms of training

process: the numerousness of the smaller classes can be still considered significant

to be identified by LSTM models especially in h = 5, h = 4 and h = 3. In h = 2,

the size of observations belonging to class “0” (i.e. negative and significant price

movements) start decreasing and exclusively in h = 1, in the majority of cases, it

results to be lower than 16%.

Moreover, when examining the results from the table, a secondary issue can
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emerge: the peculiar distribution of observations among classes in h = 1 (i.e. most

of observations in the two extreme classes and few in the central one) could suggest

a bimodal distribution of future returns. To confute such hypothesis and to verify

the distribution of future returns to be as normal as possible, a graphical test has

been performed. The test immediately shows how the bimodal hypothesis can be

rejected for all horizons, especially for h = 1 (Figure B.1 and Figure B.6). Rather,

from plots of distributions of future returns in Appendix (Figure B.1 to B.10) it is

possible to verify how, as expected, returns appear neither to be normally distributed

due to fat tails, but rather leptokurtic (e.g. Figure 5.2 shows an example of fat

tails distributions that characterizes all returns within the dataset at all different

horizons).

Figure 5.2: Example of Q-Q plot for returns within the experiment. In the specific case the image
represent returns distribution belonging to the first window’s training set for database h = 5.

Evidences

The premises about the numerousness and the distribution of future returns within

the three classes is important in order to comment the results achieved by the

different models during the validation phase. They have been decomposed depending

on the forecasting horizon of the model that has generated them:
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• (h=5) From Table C.6 in appendix it is possible to observe how the majority

of the models, apart partially the ones in the last two training windows, are

not sensible to the class “0”. This result, for the case h = 5, cannot be

attributed to the low number of observations within such class. In fact, the

number of observations in both classes “-1” and “0” are comparable but, in any

case, all models result to be much more sensible to the first one. Instead, the

result can be more easily attributed to the inability of the model to recognise

clear patterns to distinguish significant from not significant price movements.

Moreover, an additional difficulty by the models could come from the fact

that class “0” contains observations showing both positive and negative, even

if not significant, price movements. On the opposite, the sensitivity for the

other two most important classes “-1” and “1” looks satisfactory. It can be

further noted how precision for class “-1” is frequently lower than the one for

class “1”; such result could be instead attributed to the lower numerousness

of class “-1” compared to the one of class “1” (the assumption is that lower

numerousness comes with fewer possibilities by the model to train on a specific

price movement and ultimately poor performance).

In terms of accuracy, taking as reference the performance of a random classifier

(i.e. 33%), at least one model in each training window, with the exception of

the fifth one, reaches a significant result of minimum 37%. In terms of G-

score, the worst performances are accounted in the two most recent training

windows with values lower than 50%. It is peculiar to note how in the fifth

training window, for the model “20/5”, the G-score criterion selects a model

with an accuracy lower than the reference value of 33% (i.e. 32.5%). In this

specific case indeed, in terms of accuracy the model is clearly penalised by its

non-sensitiveness to observation belonging to class “0” but at the same time

it results to be the best one in recognising observations of both classes “-1”

and “1”, the ones that effectively maximise profit if correctly identified.
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• (h=4) Results for h = 4 models can be found in Table C.5. From the Table,

the same considerations about the sensitivity of the models regarding the class

“0” made for h = 5 can be replicated for h = 4: models are not able to recognise

non-significant price movements, especially in the first 4 training windows.

In terms of accuracy, in each window it is possible to find models showing

valuable results ranging from 38.4% to 40.6% with the exception, as in h = 5,

of the fifth window. Actually, as it becomes clear when examining all the

results among all horizons, within the fifth window all models experience a

drop in performance. In calendar time, observations belonging to the fifth

training set start on 24th November 2014 and end on 16th November 2016.

Within such period, more precisely between June 2015 to June 2016, stock

prices experienced a decline in their value globally. From Figure 5.1 it is

visible how S&P index suffered temporarily losses as a result of some events

that frightened investors as the slowing growth in the GDP of China, a fall

in petroleum prices, the Greek debt default in June 2015, the effects of the

end of quantitative easing in the United States in October 2014 and the 2016

United Kingdom European Union membership referendum, in which Brexit

was voted upon. Theoretically, such a period should have been the perfect

period for a ML model to spot patterns revealing market inefficiencies due to

a higher level of irrational conducts of investors. However, when looking at the

time boundaries of the different training windows, it emerges how all models

within the fifth window have been trained with observations covering the whole

period of market turbulence while being validated on a validation set with

totally different market conditions: Table B.1 shows how the numerousness

of observations significantly changes (i.e. significant decrease of observations

belonging to class “-1”) from training to validation set within the fifth training

window indeed due to above mentioned change in market condition occurred

between the two periods covered by training and validation set. The hypothesis

regarding the under-performance of all models within the fifth window is thus
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related to the impossibility of models to spot valuable patterns in out-of-sample

observations being themselves trained on too dissimilar market conditions.

Finally, always regarding the fifth window, sensitivity and precision highlight

the increasing bias of models for class “1” along with the decreasing complexity

of the networks.

A similar biased behaviour is also observed for models within the third window

where, even if the overall level of accuracy reached seems satisfactory, from

measures of sensitivity -1 and sensitivity 1, it is possible to prove how results

are flawed: as number of nodes in the hidden layer decreases, LSTMs start

predicting all observations as belonging to class “1”; sensitivity -1 decreases

until 7.1% while sensitivity 1 increases until 94.8% along the window indeed.

A similar trend can be noted also for all other 4 horizons thus toughening

the hypothesis above mentioned of too dissimilar market conditions between

the training and validation set. In calendar time, in fact, the period in which

all models of the third window are validated starts on 24th November 2014

and ends on 19th November 2015 thus covering the initial part of the market

turbulence of 2015-2016. Also in this case, from the numerousness of the

different classes within each dataset, it is possible to note a substantial increase

among the number of observations populating the class “-1” from the training

to the validation set attributable to the negative trend affecting the equity

market from June 2015.

A final evidence to support the hypothesis for which from too dissimilar market

conditions among training and out-of-sample data comes poor performances

by the models, originates from results within the fourth window. During

such time period, LSTM models achieve higher performances compared to

other time period, among all horizons, in terms of accuracy and even more

importantly in terms of G-score: in the light of the hypothesis, this peak

in performance could be explainable by the fact that observations belonging

to the 2015-2016 market turbulence are present both in the trading and in
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the validation set of the window. The training set, indeed, starts on 26th

November 2013 and it ends on 19th November 2015, including the first part

of the “anomaly” period, while the validation set starts on 20th November

2015 and it ends on 16th November 2016, including the second part of it.

Such over-performance, in the case the hypothesis is proven, would be even in

accordance with the expectation of higher performances of ML models during a

period of high market turbulence in which the irrationality of investors creates

significant arbitrage opportunities, provided that the model has been trained

with observations for similar turbulence periods.

Finally, for all the remaining windows, sensitivities of “1” and “-1” classes

appear satisfactory and, as in h = 5, even in h = 4 models result to be more

precise for class “1” than for class “-1”.

• (h=3) From Table C.4 it is possible to see how LSTM models in h = 3 achieves

higher performances when compared to larger horizons in terms of G-score,

particularly in the first two windows. The fourth window, in accordance with

other horizons, results to be the one where models achieve higher performances

both in terms of accuracy, reaching 42,7%, and G-score, with all 5 LSTMs

reaching at least a value of 53.4%.

The high accuracy values, all above 40%, of the third window are biased by

the fact all five models tend to predict most of the observations as belonging

to class “1” and by the fact that validation set tends to be more unbalanced

than in h = 5 and h = 4. To prove this, the majority of models in this window

achieve poor G-score values: “25/3” 37.7%, “10/3” 35.8% and “5/3” 29.6%.

Finally, it is worth noting how models in the fifth window, that result to be

the only ones sensitive to class “0”, achieves the worst performance in terms

of both accuracy and G-score.

• (h=2) From Table C.3, we see how all models in h = 2 are totally unable to

recognise observations from class “0” due to the low number of observations
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belonging to it. Models in the third window behave as in all other horizons

predicting the majority of observations as belonging to class “1”. Almost

every model has an accuracy around 40% with the exception, as expected by

the hypothesis about changing market conditions previously cited, of models

in the fifth window that range around 37%. Finally, the same considerations

made for all other horizons regarding precision and biased model within the

second window can be done.

• (h=1) From Table C.2 it is clear how also models in h = 1 have no sensitiv-

ity regarding observations in class “0”. Such low sensitivity in any case was

expected due to the particular above mentioned distribution of observations

within the three classes. The lowest accuracy among all windows is reached

within the fifth one. In particular, the model “10/5”, with a performance of

38,9%, result to be the worse for h = 1; it is interesting to highlight how this

performance if compared to the ones achieved by models predicting at longer

horizon looks noteworthy. It appears thus evident how, as expected, better

prediction performance seem associated with shorter forecast horizons.

At the end of the training and the following validation process, the parameter se-

lection regarding the number of neurons populating the hidden layer has been per-

formed following as criterion the G-score. Table 5.1 reports the result of such selec-

tion process. The first important notation about the selection regards the absence

of the prevalence of one preferred configuration over the others. As visible also

from Table 5.2, it is present heterogeneity among the selected hidden nodes values

overall. However, looking at each singular window (i.e. looking at model predicting

at different horizons with exactly the same training input data), always from Table

5.1 it is possible to recognise a precise preference by the third window for more

complex configurations; this finding is in line with results previously presented as

they showed how simple configurations within the training window were not sensi-

tive towards negative price movement observations. The same consideration can be
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Table 5.1: Number of hidden nodes selected per each model in every training window per each different
horizons using as criterion the G-score obtained in the validation set.

Window h=5 h=4 h=3 h=2 h=1
1 15 5 10 25 5
2 10 5 5 5 20
3 25 20 15 20 15
4 20 10 15 25 10
5 20 25 5 20 15
6 5 15 5 15 25

Table 5.2: Absolute and percentage preference for possible network configurations at the end of the
validation process.

Hidden Nodes Times Selected Percentage %
5 8 27%

10 4 13%
15 7 23%
20 6 20%
25 5 17%

made also for the fifth window with the exception of the h = 3 horizon. Finally, it

is worth mentioning how the use of G-score as selection criteria in place of accuracy

has brought 14 times over 30 to a different configuration preferred.

Finally, at the end of the parameter selection phase, LSTM models have been

effectively implemented to make prediction for all the observation within various

trading sets. Their results are presented in Table C.7 from which it is possible to

draw the following considerations:

• As already found within the different validation sets, also in the trading sets

all models result absolutely unable to distinguish observations belonging to

class “0”. The only exception is given by the model “5/6” in h = 5, in any

case the result cannot be considered statistically significant.

• As in validation sets, precision is higher for class “1” than for class “-1”.
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• In h = 1 and h = 2, all models achieve a performance higher than the reference

value of 33%. The worst performance among them is achieved by the model

“25/4” in h = 2 with 35.9%.

• It is found an under-performance of all models within the fourth window of all

trading sets. The reason, as previously explained for the validation process,

lies in the presence of part of the observations of the 2015 turmoil within the

training set and the absence of them within the trading set. In particular,

the worst performances are reached by both “10/4” and “20/4” models in

h = 4 and h = 5 that are found to achieve a lower accuracy than a random

classifier, respectively 30.5% and 25.3%. It is clear from all sensitivity values

how such under-performances are due to a bias in favor of class “-1”. The

bias intensifies with increasing forecasting horizons: in h = 5 the sensitivity

for class “1” reaches 6.6% with a precision of 39.7% while having for the class

“-1” respectively 76.5% sensitivity and 22.5% precision. In this framework, the

model “10/4” predicting at t+1 is the only one that is found not to excessively

suffer from unbalanced datasets within the fourth window suggesting how,

generally, models predicting at lower forecasting horizons are able to spot more

solid patterns than all others. This is further confirmed by all high accuracy

values reached among all windows in h = 1.

• The same under-performance of the fourth window is verified within the fifth

one, especially for h = 5, h = 4 and partially for h = 3. Also in this case it has

to be attributed to the presence within the training set of all the observations

belonging to the market turbulence of 2015-2016 and to the absence in the

trading set.

• It is clear from accuracy results how performance deteriorates as forecasting

horizon increases. This result was in any case expected and it is the reason

for which a “modular approach” has been selected: the hypothesis has been to

test whether the possible identification of market movements in advance com-
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pared to the most common ML investment strategies could improve financial

performance. In terms of data science evidence, results do not seem to support

such choice. Even if some model in h = 5 managed to reach consistent results

(e.g. “10/2” and “25/3”).

• In terms of G-score, no clear pattern among windows is recognised. How-

ever, as in the case of accuracy, but less clearly, performances deteriorate as

forecasting horizon increases.

Overall, the different models have produced results in line with expectations in

terms of data science metrics: it has been highlighted a pronounced deterioration

in performance with increasing forecasting horizon and a difficulty of the different

models in recognising non-significant price movements. Both results were somehow

expected in any case.

During specific time period, models trained-tested on too dissimilar market con-

ditions have demonstrated to under-perform in relation with their usual behaviour.

In the next section it will be clear if such issue have also affected the financial per-

formance of the trading strategy. Regarding this point, it is worth mentioning how

the trading period in the experiment lasts for only six years and how, in such a short

period of time, it is possible that a particular condition of the market influences the

results of the whole strategy. The focal point in any case must be that, in the long

period, the assumption behind the whole experimental work (i.e. market conditions

among different sets are similar) is verified most of the times so as to hopefully nul-

lify possible under-performances during peculiar volatile periods. In this thesis, the

limited length of the trading period has been dictated by the limited computational

capacity and by time constraints. Moreover, there would have been required partic-

ular attention to lengthen the trading period as the period immediately preceding

the one examined included the 2008 crisis.

As conclusive observation, that possibly opposes to the one referring to too

dissimilar market conditions, it is noted a general degradation of results when passing
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from the validation set to the trading one. This could be possibly attributed to the

long validation period (i.e. one year) that has distanced the live trading period from

the training period. From a raw comparison of accuracy and G-score achieved by

models within the different trading sets and within validation sets, the benefit of a

so long validation process is not clear indeed: accuracy reached in each window of

the trading set results higher than the mean of accuracy reached in the same window

by the five LSTM variation in the validation set only in 12 cases out of 30; when the

same comparison is made with G-score, only in 9 cases out of 30 the performance has

been improved. This result questions the real effectiveness of the validation process,

or, even better, it gives evidence of how the length of the validation process should

be accurately selected so as to be long enough to provide statistically significant

results but at the same time not to excessively distance the trading period from

the training one. Saying this, it is worth mentioning how in the experiment, due

to computational constraint, the grid search applied during the validation process

exclusively aimed at finding the optimal number of hidden nodes. Such search could

be thus considered limited since it does not include many other parameters related

to the training process as learning rate, number of epochs etc.

5.2 Financial Results

As already anticipated, this section presents results from the different LSTM net-

works trained from a financial perspective. In terms of profitability, all the re-

sults will be expressed by Profit&Losses. Dealing with dollar neutral portfolios

indeed, the initial investment to create each portfolio accounts for 0$ preventing

from the usual calculation of returns. The P&L obtained from every portfolio will

be thus referred to the difference between the incomes related to the sale of all

the long positions and the costs related to the closure of all the short positions.

However, in our experiment such P&L can be considered as similar measures to

returns, in fact they can be thought as the percentage gain related to the invest-
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ment accounted for the strategy for both the long and short side of the portfolio

(that in this experiment amounts to 1$). In addition to profitability, also the risk

profile of every strategy/portfolio will be examined through the calculation of the

standard deviation of weekly returns, the annualised Sharpe ratio (calculated as

(mean(weekly returns)/std. dev.(weekly returns)) ×
√

50), the maximum draw-

down, the omega ratio having a loss threshold equal to zero and the value at risk at

99% confidence level.

5.2.1 Global Approach

In terms of profitability, the “modular approach” presented in the previous chapter

provides a profit over the 6-years period of 0.783. Figure 5.3 shows graphically

the P&L of the strategy over the whole trading period composed by 300 trading

weeks. Referring to the six different trading sets, in the graph they correspond to

fifty trading weeks each. This means that every fifty trading weeks the result of the

trading strategy has been achieved by different LSTM models. As it can be noted,

in the periods corresponding to the first, the third, the fourth and the sixth training

window models manages to significantly increase the profit of the strategy. On the

opposite, in the other two windows, the performances of the models are poor.

If these findings are compared with Table C.7, profitability seem to be par-

tially decorrelated with data science metrics: trading periods with high accuracy

or G-score does not have necessarily brought to higher profits and vice versa. For

instance, within the second window, the periods in which in terms of accuracy all

models highly perform among all horizons, the strategy records profits close to zero;

oppositely, the fourth window corresponds to the one with the worst performances

in terms of accuracy for all horizons (the LSTMs in h = 4 and h = 5 even perform

worse than a random classifier) and, despite this, the strategy records positive prof-

its during it. Table 5.3 help quantifying more precisely such observation: during

the first 50 trading window the profits of the strategy are equal to 0.247, during

the third 0.434, during the fourth 0.277 and during the sixth 0.329; oppositely, dur-
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Figure 5.3: Graphic representation of profits and losses deriving from the modular approach described
in Chapter 4.

ing the second window they are just 0.025 and during the fifth window the losses

amount to -0.530. It is worth mentioning how, in reality, also the profits achieved

during the last window would have been negative without the spike obtained during

week 299. Oppositely, in the other three positive windows the results appear to

be much more consistent and not related to any extraordinary single performance.

Such results will be however better examined when the overall performance of the

trading strategy will be decomposed into its elementary components, that are the

profits obtained by the five portfolios at different h.

From a risk perspective, the results of the strategy are presented in Table 5.4.

The first consideration that can be immediately drawn from the table, that is also

perceivable from the P&L Figure, is that the strategy records very high levels of
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Table 5.3: Table representing half-yearly P&L and cumulative P&L during each of the 12 semesters
accounted for the “modular approach” presented in Chapter 4.

Semester Half-yearly P&L Cumulated P&L
1 0,302 0,302
2 -0,056 0,247
3 -0,090 0,157
4 0,115 0,272
5 0,242 0,514
6 0,192 0,707
7 0,040 0,746
8 0,237 0,983
9 -0,178 0,806

10 -0,352 0,454
11 0,232 0,686
12 0,097 0,783

Table 5.4: Risk performance of the trading strategy based on the “modular approach” presented in
Chapter 4. “Avg.ret” refers to the mean of weekly profits achieved by the strategy, “Std.Dev” to their
standard deviation, “Sharpe Ratio” to the annualised ratio of the previous measures, “Max Drawdown”
to the maximum drawdown experienced during the whole trading period, “Omega” to the omega ratio
calculated having the loss threshold equal to zero and finally “VaR” to the value at risk with confidence
level of 99%.

Avg.Ret Std.Dev Sharpe Ratio Max Drawdown Omega VaR
0,0026 0,0487 0,3788 0.6161 1.1565 -0.1105

volatility: the performance in terms of annualised Sharpe ratio is indeed very poor.

Although during some weeks the strategy manages to create significant positive

profits, at the same time it suffers from large drawdowns that, in turn, lower the

mean of returns and increase the standard deviation. At this stage of the analysis,

however, it is not yet possible to understand by which elementary portfolio, and

thus which LSTM, such losses come from. Overall, it can be noted how the omega

ratio is higher than 1 meaning that the probability of experiencing a profit during

a trading week has been higher than the one related to a loss for the “modular

approach” throughout the period examined.
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Figure 5.4: Graphic representation of rolling annualised Sharpe ratio calculated for profits obtained from
trading strategy originated with the “modular approach” presented in Chapter 4. The rolling window
over which the Sharpe ratio has been calculated is formed by observations coming from 50 trading weeks
shifting forward one week ahead at every step. In such a framework, in the graph are represented 251
different measures of Sharpe ratio covering the whole trading period (e.g. the first measure obtained
from profits from week 1 to week 50, the second one from week 2 to week 51 and so on).

However, being the results presented in Table 5.4 too synthetic, a further analysis

has been conducted: the Sharpe ratio has been brake down by calculating it over

a rolling window containing 50 weekly profits and moving forward a single week

at every step. The aim of this decomposition refers to the aim to check whether

the synthetic value of profits adjusted for the risk suffered have been the result

of an overall mediocre performance over the whole trading period or the average

of positive and negative periods. Figure 5.4 gives credit to the second hypothesis:

it is possible to observe superior performance by the strategy in terms of profits

adjusted for the risk during a consistent time period (i.e. during the second and
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third trading year); during this period indeed, the Sharpe ratio records values higher

than 1 most of the times. Such result could not appear impressive by many people,

but comparing them with the literature and keeping in mind that they have been

achieve in extremely recent time periods, they can be considered extremely valuable.

In addition, the graph shows how the real under-performances of the strategy have

been registered around week 50 and after week 200 during which the Sharpe ratio

has always been negative and where it even dropped up to values lower than -1.

5.2.2 Strategy Decomposition

To investigate the causes of the observed flaws in the strategy, since the final result of

the investment approach was achieved merging 5 different portfolios created thanks

to the predictions of just as much LSTM models, the final profit of the investment

strategy has been decomposed into its elementary components.

From this decomposition (Figure 5.5), in terms of profitability, surprisingly it

turns out that more than 50% of the total profits of the strategy are produced by

the portfolio h = 1. It is less surprising, instead, the ranking among the different

models: as in the case of data science metrics, models forecasting at shorter horizon

are found to achieve better performances. In fact, h = 2 and h = 3 models reaches

positive profits too, while h = 4 and h = 5 models end the 6 years trading period

with small but still negative profits.

In any case the most important finding, always from Figure 5.5, regards the

evidence that the portfolio built upon prediction of LSTM at t + 1 results to be

most stable among the five portfolios. All portfolios, in fact, are able to create

profits in specific time periods but only the h = 1 portfolio manages to avoid large

losses able to erode all the positive results previously achieved. From Table 5.5,

that decomposes the results of the different portfolios forming the modular strategy

in each of the 12 different semesters of the trading period, it can be noted how the

largest loss recorded during a semester for h = 1 model amounts to -0.075 while the

ones recorded by all the other four portfolios are all much larger: -0.130 for h = 2,
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Figure 5.5: Comparison of profits and losses deriving from the modular approach and from the three
different benchmarks described in Chapter 5.

-0.121 for h = 3, -0.141 for h = 4 and -0.295 for h = 5.

Regarding the under-performances periods in terms of profitability previously

highlighted for the global strategy (i.e. during the second, the fifth and the sixth

years of trading), it emerges from both the previous table and graph how they seem

particularly correlated with the trend of the h = 5 portfolio: it records large losses

just before week 50 and during the last two years of trading (i.e. the same period

in which the “dynamic Sharpe ratio” showed the worst results). Moreover, even in

the case of h = 5 portfolio, it is important to observe how profitability does not

seem particularly related neither to G-score measure nor to accuracy in Table C.7;

such portfolio registered indeed neutral profits both during a positive period where
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Table 5.5: Table representing the comparison of half-yearly P&L achieved by all the portfolios forming
the “modular strategy” presented in Chapter 4 and by the overall modular trading strategy during the
12 semesters composing whole trading period. The profit of the modular strategy, for construction, is
given by the sum of profits from all models at different h.

Semester h=1 h=2 h=3 h=4 h=5 Modular strategy
1 0,017 0,008 0,190 -0,010 0,098 0,302
2 0,061 0,080 -0,035 -0,058 -0,105 -0,056
3 -0,075 -0,130 0,103 -0,021 0,033 -0,090
4 0,120 0,057 -0,121 0,169 -0,109 0,115
5 0,264 0,041 -0,069 -0,141 0,148 0,242
6 -0,071 -0,069 0,004 0,123 0,204 0,192
7 0,017 0,056 0,068 -0,067 -0,035 0,040
8 0,003 0,037 0,044 0,093 0,060 0,237
9 0,005 0,031 -0,028 -0,133 -0,053 -0,178

10 0,018 -0,086 0,049 -0,038 -0,295 -0,352
11 0,106 0,146 -0,054 0,007 0,026 0,232
12 -0,026 0,134 0,002 0,072 -0,084 0,097

LSTM reached 50.9% and a negative one with 22.4% in terms of G-score.

In addition to such observations, the strategy decomposition also allows to ana-

lyze the performance peaks and depressions recorded by portfolios during particular

weeks (e.g. the peak by portfolio h = 1 during week 107); in fact, they stand out

enough to deserve more accurate analyses. At first, during the analysis it has been

controlled if they could have been generated by some extraordinary event: for in-

stance, the surprising profit achieved by the portfolio h = 1 during the fifth semester

is attributable to the profit of 0.2055 obtained during week 107; during such week,

portfolio h = 1 was indeed short on a single company, Freeport-McMoRan Inc.,

whose stock price passed from 5.26$ to 4.19$ losing 20.3% of its value in a single

day. However, this was the only observed case in which a peak/depression could

have been explained by such an abnormal situation; for example, regarding both

the profits recorded by h = 2 and h = 3 during the penultimate week of trading,

they are not affected by any particular event but simply by an accuracy of 100%

reached by the model for all the 10 stocks within the portfolio. In the same way,
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looking for some singular event able to explain all other peaks and depressions reg-

istered by the different portfolios (i.e. the initial peak of h = 3, the instantaneous

crash by h = 5 before week 250 etc.), no clear evidence has appeared so much to

conclude that these results may depends exclusively on the variability in prediction

accuracy of the different models. As further proof supporting such hypothesis, it

must be observed how the spikes in profitability registered by the different portfo-

lios are not aligned; if they were aligned for a specific time period, this would have

suggested some singular market behaviour or event recognised by models indeed.

Secondly, it has been checked whether such peaks and depressions could have

been generated by excessively correlated stocks selected by LSTM during a partic-

ular week or by a low numerousness of alternatively the long or short leg of the

portfolio 2. At first, it has been created Table D.1 providing a synthetic view about

numerousness and correlation among different portfolios at different h. However,

this synthetic view does not highlight any significant abnormal behaviour from any

of the examined portfolios: the average number of stocks selected every week and

the average correlation do not appear significantly different from all the ones in all

other horizons. Regarding industries, it is striking to observe how stocks belonging

to the tech sector have been the least chosen by models in all horizon. In any case,

it has not been possible to spot any meaningful and evident correlation between

industries preference and other explanatory variable able to explain such behaviour

from the models.

Therefore, since synthetic measures did not give enough information, the evo-

lution over time of the size and correlation of the decomposed strategy has been

examined more in depth for five elementary portfolio. For all horizons indeed, both

correlation and numerousness of each single portfolio have been graphically over-

lapped with its P&L so as to spot potential recurrent patterns. Figure 5.6 shows

2In fact, it must be remembered that, despite the limit imposed with respect to the maximum
size of the portfolio equal to 10 (5 for the long side and 5 for the short side), if the model classified
less than 5 shares for a class during a specific week, the portfolio for that week would have been
less numerous.
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Figure 5.6: Comparison between the evolution of numerosness and correlation of stocks within both
the long and short legs of the portfolio h = 1 and the profitability of the portfolio itself. Obviously,
correlation is equal to 1 when in the portfolios is present a single stock and to 0 when none stock is
in it. Red boxes highlight strong results possibly driven by low numerousness of the portfolio while
green boxes highlight periods in which low numerousness have clearly not brought to an increase in
P&L volatility.

the visual analysis performed for the portfolio h = 1 (in appenix it is possible to

find the ones for all other h from Figure D.1 to D.4).

As can be noted from the figure, correlation appears constant throughout the

whole trading period (excluding weeks in which it is equal to 1 that represent a

particular case ascribable to the actual size of the portfolios). This evidence therefore

does not support the hypothesis for which particularly positive or negative results in

terms of profitability from the strategy could be ascribed to highly correlated stocks

present in the portfolio during a particular week. This result can be considered

undoubtedly positive since highly correlated portfolios comes with high associated

161



CHAPTER 5. EXPERIMENTAL RESULTS

risk. In fact, imagine a week in which LSTM goes long on 4 stocks belonging to the

same industry affected by a particularly positive event in the meantime; evidently,

the strategy would incredibly benefit from such investment. Anyhow, such behaviour

would not be positive for the model, since in the same way such a highly correlated

portfolio could also have lost the same amount in the case in which the industry was

affected by a particularly negative event.

Rather, from all graphs it appears how sometimes periods of high volatility

in terms of P&L could have been influenced by the size of the portfolios: during

periods in which LSTM has not been able to individuate at least 5 different stocks to

select for alternatively the long or short side of the portfolio, its P&L registers some

spike/depression. It could be objected to this statement that the smaller actual

size of the portfolios directly influences their correlation that in turn affects possible

spikes or depressions, so that high correlation is the real cause for them. And this

would be true. Anyhow, it must be clear that from a managerial perspective these

two causes are deeply different. For instance, a problem related to the size of the

portfolio could be easily solved increasing the number of the stocks in the database

at the expense of longer training time: in this way the model would have higher

chances to find at least five stocks belonging to the less populous class for that

week. A solution which, instead, would not be so easy to find in the case of a model

systematically creating highly correlated portfolio even when fulfilling the maximum

allowed dimension.

Despite this, results do not provide a clear evidence of a systematic component

in the negative relation between numerousness of portfolios and their volatility:

in the image for h = 1, red boxes highlight strong results possibly driven by low

numerousness, while green boxes highlight periods in which low numerousness does

not clearly bring to an increase in P&L volatility; as it can be seen, it is possible to

find both of them in it. In conclusion, it cannot be affirmed overall that situations of

low numerousness of portfolios have necessarily been the cause of such high levels of

volatility of the global strategy. So that, probably, the causes of the high volatility
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are way more difficult to be identified.

Looking at Figure D.1, D.2, D.3 and D.4 for all other horizons, the same con-

siderations can be drawn: the correlation is constant throughout the whole trading

period and sometimes numerousness is found to be low when the volatility of the

portfolio is high.

Finally, looking at risk performance measures (Table 5.6), at first they confirm

the stability of h = 1 portfolio: the maximum drawdown is really low compared

to other strategy and, at the same time, omega is quite high compared to other

models. Moreover, such measures highlight how the total result obtained by the

Table 5.6: Risk performance of elementary portfolios forming the trading strategy accounted for the
“modular approach” presented in Chapter 4. “Avg.ret” refers to the mean of weekly profits achieved
by each portfolio, “Std.Dev” to their standard deviation, “Sharpe Ratio” to the annualised ratio of the
previous measures, “Max Drawdown” to the maximum drawdown experienced during the whole trading
period, “Omega” to the omega ratio calculated having the loss threshold equal to zero and finally
“VaR” to the value at risk with confidence level of 99%.

Avg.Ret Std.Dev Sharpe Max Drawdown Omega VaR
h=1 0,0015 0,0160 0,6478 0,0932 1,4555 -0,0356
h=2 0,0010 0,0155 0,4636 0,1865 1,2022 -0,0350
h=3 0,0005 0,0192 0,1886 0,3111 1,0775 -0,0441
h=4 0,0000 0,0199 -0,0041 0,2723 0,9983 -0,0462
h=5 -0,0004 0,0254 -0,1036 0,4340 0,9597 -0,0593

global strategy is worse than the results of some of its elementary components.

The combination of the five different portfolios, indeed, worsen the performance of

the two single best portfolios that are h = 1 and h = 2; this is particularly clear

examining standard deviation and max. drawdown.

Especially from these last observations, the “modular approach” is thus revealed

as a useful approach to highlight the ability of LSTM model to forecast stock market

movement at different horizons rather than as a proper approach to create profitable

investment strategies.

Anyhow, having the same purpose as for the global strategy, the Sharpe ratio

has been decomposed and calculated over a rolling window even for all the five
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elementary portfolios. As it can be noted from Figure 5.7, the only portfolio that

Figure 5.7: Graphic representation of a rolling annualised Sharpe ratio calculated for profits obtained
from the five portfolios forming the trading strategy originated with the “modular approach” presented
in Chapter 4. The rolling window over which the Sharpe ratio has been calculated is formed by
observations coming from 50 trading weeks shifting forward one week ahead at every step. In such
a framework, in the graph are represented 251 different measures of Sharpe ratio covering the whole
trading period (e.g. the first measure obtained from profits from week 1 to week 50, the second one
from week 2 to week 51 and so on). For an increase readability, results between 0 and +1 have been
partially darkened.

in two different period consistently reaches a Sharpe ratio higher than 1 is h = 1

(i.e. in the second and sixth year of trading). For all other portfolios, their presence

in the “positive zone” appears sporadic and not consistent. On the opposite, it can

be noted consistent disappointing performances from all the other four portfolios,

especially for h = 5 during the last two years of training, h = 4 during the second

half of the trading period and h = 3 during the second and last year of trading.
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Benchmarking

In conclusion, the global investment strategy has been compared with specific bench-

marks so as to effectively understand the ability of LSTM models.

Due to the decision about the construction of dollar-neutral portfolios, the pre-

sented strategy could not be compared with simple buy-hold strategy, for instance

with a long-only strategy holding all the 44 stocks within the portfolio for the whole

trading period or even with the S&P500 index itself. Such strategies, in fact, would

have required a positive initial investment and would have implicitly considered a

compound interest (i.e. the reinvestment of all the profit made from time t = 0

during the whole trading period).

For this reason, to evaluate the results just presented, three different dollar-

neutral long-short benchmark strategies have been arbitrarily created as follows:

Benchmark(1) For each of the five different forecasting horizons, 100 random pre-

diction models have been created and the P&L deriving from their

forecasts have been averaged. Portfolios at different horizons have

been created, exactly in the same way as in the main strategy,

by picking maximum 5 stocks long and 5 short. The only differ-

ence from the main strategy refers to the weighting scheme of the

stocks within the different portfolios that has been selected to sub-

divide the total investment equally among all the different stocks

(referring to (4.11), wl(s)i,h = 1
5 = 0.2).

Benchmark(2) Regarding the second benchmark, it has been adopted a short-

term reversal strategy: among all 44 stocks in the database, it has

been taken a long position on those ones with a negative return

during the past five days and a short position on those ones with

a positive return during the past five days. Differently from the

original strategy, this benchmark accounts for only a single long-

short portfolio with one-week horizon created on the first day of the
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week and closed after 5 trading days (i.e. one week). Finally, the

weighting scheme has been selected to subdivide the investment

equally among shares selected both for the long and short leg of

the portfolio.

Benchmark(3) For the third benchmark, as example of a non-frequent re-balancing

strategy, the prediction of the h = 5 model have been employed

semiannually so as to create a dollar-neutral long-short portfolio

with an investment horizon of six month. Also in this case, as

in Benchmark 2, all the 44 stocks have entered in the portfolio:

the ones predicted to belong in the class “0” have been equally

subdivided in both classes “-1” and “1”. Finally, the weight-

ing scheme has been selected to subdivide the investment equally

among stocks both on long and short legs of the portfolio.

Figure 5.8 graphically compares the profits of the original trading strategy with

profits of the three different benchmarks. From the image, it is visible that the

number of periods in which the main investment strategy performs better than

its benchmarks is very high. Such a result is a valuable proof to certify that the

performance of our trading strategy does not derive from particular positive market

conditions or due to some favourable coincidence, but due to the inner ability of

LSTM to recognise specific patterns in price time-series. If it were not so, one would

not recognize such a clear over-performance of the strategy in question.

In Table 5.7 it is even possible to directly compare P&L of each strategy during

the 12 semesters in which the whole trading period can be subdivided. From both

the table and the graph, it is visible how both Benchmark 2 and 3 manages to create

profits only in very limited time periods, oscillating for the rest of the time around

the neutral line of the x-coordinate; benchmark 1, instead, results neither to create

profits nor to create losses during the whole trading period. Given such behaviours,

it would have been difficult to extract some particularly useful insights to further
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Figure 5.8: Comparison of profits and losses deriving from the modular approach and from the three
different benchmarks described in Chapter 5.

comment performances from risk measures calculated over the whole trading period.

This is the reason why Table 5.8 provides just the comparisons between the global

strategy and benchmark 3 from week 50 to week 150 and between the global strategy

and benchmark 2 from week 200 to week 300. These are the only two periods in

which benchmarking strategies appear able to provide some positive result indeed.

Both the comparisons highlight once more how the original strategy, even if

presenting a clear superiority in terms of profitability over its benchmarks, suffers

from very high levels of volatility. Standard deviation, max. drawdown and value

at risk for the period under scrutiny clearly highlight it.
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Table 5.7: Table representing the comparison between half-yearly P&L achieved by the original strategy
presented in Chapter 4 and half-yearly P&L obtained by the three benchmark models created along the
12 semesters composing the whole trading period.

Semester Modular Benchmark 1 Benchmark 2 Benchmark 3
1 0,302 -0,001 -0,039 -0,050
2 -0,056 -0,013 -0,015 0,037
3 -0,090 0,018 0,002 0,020
4 0,115 -0,018 0,033 0,145
5 0,242 -0,001 0,005 0,043
6 0,192 -0,005 0,037 -0,073
7 0,040 -0,005 -0,023 -0,085
8 0,237 0,000 -0,010 0,014
9 -0,178 0,022 0,008 -0,093

10 -0,352 0,000 0,064 -0,004
11 0,232 0,027 0,076 0,033
12 0,097 -0,015 -0,007 0,012

5.3 Robustness Analysis

In this section it will be presented the conclusive part of the experimental work

where it has been decided to focus the attention on the robustness of the whole

trading system in relation to some change in decision variables (i.e. weighting scheme

5.3.1, portfolio dimension 5.3.2, investment horizon 5.3.3 and input features set

composition 5.3.4). Such a robustness analysis has been pursued to direct its effort

in discovering useful observations from a managerial perspective regarding a decision

making process dealing with the construction of an effective LSTM trading system.

5.3.1 Weighting Scheme

As explained in chapter 4, the results obtained by the main strategy have been

achieved through the construction of portfolios adopting a weighting scheme pro-

portional to the confidence of each LSTM model in assigning a given stock to a

specific class (expressed by the output of the softmax function). To test the validity

of this choice, such results have been compared with the results obtained by a similar
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Table 5.8: Comparison of risk performance by the original trading strategy based on the “modular
approach” presented in Chapter 4 and its benchmarks. “Avg.ret” refers to the mean of weekly profits
achieved by the strategy, “Std.Dev” to their standard deviation, “Sharpe Ratio” to the annualised ratio
of the previous measures, “MDD” to the maximum drawdown experienced during the whole trading
period, “Omega” to the omega ratio calculated having the loss threshold equal to zero and finally
“VaR” to the value at risk with confidence level of 99%.

Avg.Ret Std.Dev Sharpe MDD Omega VaR
Modular
(50-150)

0,0033 0,0522 0,4586 0,3570 1,1952 -0,1174

Bench.3
(50-150)

0,0014 0,0176 0,5499 0,1389 1,2253 -0,0392

Modular
(200-300)

-0,0021 0,0556 -0,2702 0,6161 0,9000 -0,1307

Bench.2
(200-300)

0,0004 0,0152 0,2033 0,1668 1,0820 -0,0348

strategy selecting the 5 top and flop stocks subdividing the total invested quantity

of 1$ equally among them (e.g. with five stocks on each leg of the portfolio, the

individual invested quantity wl(s)i,h from Algorithm 5 is 0.2$ per each of them).

The results from both the strategies are plotted in Figure 5.9: it is visible how the

strategy providing for equal-weighted portfolios manages to achieve higher profits

than the original one providing for portfolios with a weighting scheme proportional

to the confidence of LSTM’s predictions. Such result, in the beginning, might be

unexpected: a system that takes advantage of a partial level of information performs

better than a similar one that employs it all.

However, in order to investigate the reasons of this outcome, at first, it is im-

portant to remember how the confidence expressed by the softmax output function

in classification networks is related to the probability that a given stock on a given

day belongs to a specific class according to its expected price trend. There are no

considerations from the model regarding the magnitude of such trends indeed, and

LSTM networks in this experiment are not an exception: they are not equipped to

analyze also the volatility of the different stocks within the dataset.

In sight of this, it is possible to state that, normally, an equal-weighted strategy is
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Figure 5.9: Comparison of profits and losses deriving from the modular approach adopting the weighting
scheme described in Chapter 5 and the same modular approach creating equal weighted portfolios.

expected to cause more volatile stocks to be less preferred in terms of impact on the

total composition of the portfolio compared to a confidence weighted strategy. This

due to a LSTM tendency to be less confident on forecasts for more volatile stocks

(i.e. lower confidence is equivalent to a smaller output by the softmax function that

in turn diminishes wl(s)i,h from Algorithm 5).

Moreover, even if obvious, when a model correctly predicts the price movement

for more volatile stocks, this usually results in higher profits than the ones obtained

from a correct prediction of less volatile ones.

So, from these observations, it is straightforward to conclude it is possible to face

two opposite situations when comparing these different weighting schemes: model’s

forecasts on more volatile stocks are less accurate than the ones for less volatile stocks
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to the point that a confidence weighted strategy performs better than an equally-

weighted one in terms of profitability. Anyhow, clearly, it could easily happens the

opposite; namely, model’s forecasts on more volatile stocks are less accurate than

the ones for less volatile stocks thus resulting in higher losses for the confidence

weighted strategy. This second case would explain why, in this experiment, the

“equally weighted” portfolios reached a higher profitability than the “confidence

weighted” ones. However, as anticipated, from such explanation derives that the

over-performance of one method over the other in terms of profitability cannot be

systematic: it depends on whether the correct predictions by the model have been

concentrated more on volatile stocks or not; unfortunately, this aspect cannot be

known in advance but it only depends on inner characteristics of the model itself

and of the time-series.

The evidence that the over-performance is not systematic clearly emerges also

from our comparison: as it can be seen in Figure 5.10, over-performance in terms

of profitability by “equally weighted” portfolios is not methodical during the whole

trading period. From such observations, it is thus not possible to declare that a

strategy providing for “equally weighted” portfolios always return higher profits

than the same one providing for “confidence weighted” portfolios.

So, from a managerial point of view, the main conclusion regarding the weighting

scheme to be adopted for the investment strategy is that it is not possible to make an

optimal choice among the two weighting scheme presented in terms of profitability

since profits coming from both of them do no follow a predictable pattern.

Table 5.9: Risk performance of the trading strategy based on the “modular approach” presented in
Chapter 4 with “equally weighted” portfolios. “Avg.ret” refers to the mean of weekly profits achieved
by the strategy, “Std.Dev” to their standard deviation, “Sharpe Ratio” to the annualised ratio of the
previous measures, “Max Drawdown” to the maximum drawdown experienced during the whole trading
period, “Omega” to the omega ratio calculated having the loss threshold equal to zero and finally
“VaR” to the value at risk with confidence level of 99%.

Avg.Ret Std.Dev Sharpe Ratio Max Drawdown Omega VaR
0,0032 0,0484 0,4620 0,6000 1,1939 -0,1093
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Figure 5.10: Weekly difference in profits between “confidence weighted” portfolio and “equally
weighted” portfolio.

The only highly predictable implication to look at, that comes from preferring

an “equally weighted” portfolio to a “confidence weighted” one is, as explained, the

higher propensity of the former to allocate a higher part of the total investment to

more volatile stocks. An example of this is provided by Table 5.10 that shows the

composition of the five different portfolios during week 162 (i.e. the one resulting in

the largest positive difference between profitEW and profitCW in Figure 5.10) for

both the confidence weighted and the equal weighted strategy. In the last column of

the table it is presented an average of the weekly volatility from the past 10 weeks

of the stocks selected to enter in the portfolio weighted through the percentage

composition of the portfolios both on long and short side. Be careful: this measure

is not the volatility of the portfolio, but simply a synthetic measure to prove how
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Table 5.10: Table representing the distribution of the total invested quantity (1$) among stocks forming
both the long and short legs of the 5 portfolios for both the weighting schemes presented during week
162. “Volatitlity10w” refers to the weekly standard deviation of the specific stock during the past ten
weeks while the column “Load” refers to the weighting average of percentages and volatility. Pay
attention: “Load” measure does not express the variance of the portfolios, it wants simply to express
the load of both weighting schemes on volatile stocks.

Stock1 Stock2 Stock3 Stock4 Stock5 Load

h=1

L
% CW port. 19,16 18,29 17,74 25,41 19,4 1,3938
% EW port. 20 20 20 20 20 1,4440
Volatility10w 0,85 2,56 1,51 0,81 1,49

S
% CW port. 19,66 19,64 19,99 19,92 20,79 1,8538
% EW port. 20 20 20 20 20 1,8540
Volatility10w 2,31 1,77 1,97 1,29 1,93

h=2

L
% CW port. 19,8 20,6 19,2 20,6 19,8 7,9953
% EW port. 20 20 20 20 20 8,0500
Volatility10w 0,82 2,24 1,99 2,48 32,72

S
% CW port. 19,64 19,9 20,36 20,5 19,6 1,8591
% EW port. 20 20 20 20 20 1,8580
Volatility10w 2,78 1,68 0,82 2,87 1,14

h=3

L
% CW port. 46,25 26,84 26,9 1,7884
% EW port. 33,3 33,3 33,3 1,6450
Volatility10w 2,38 1,61 0,95

S
% CW port. 20,5 19,77 19,81 20,1 19,8 1,9268
% EW port. 20 20 20 20 20 1,9320
Volatility10w 0,92 3,71 1,37 2,87 0,79

h=4

L
% CW port. 100 2,3200
% EW port. 100 2,3200
Volatility10w 2,32

S
% CW port. 19,7 19,8 21 19,88 19,62 12,4926
% EW port. 20 20 20 20 20 12,5740
Volatility10w 1,53 33,1 2,45 24,18 1,61

h=5

L
% CW port. 26,35 23,55 22,77 7,83 19,5 1,4086
% EW port. 20 20 20 20 20 1,4320
Volatility10w 1,24 0,83 2,25 1,54 1,3

S
% CW port. 20,2 19,8 19,9 19,9 20,2 7,5399
% EW port. 20 20 20 20 20 7,5700
Volatility10w 2,81 2,43 2,23 29,8 0,58

173



CHAPTER 5. EXPERIMENTAL RESULTS

“equally weighted” portfolios load more on volatile stocks. From the column it

emerges how only in a single case over ten the synthetic measure results to be

higher in the case of the “confidence weighted” portfolio.

Finally, in terms of the overall strategy performance, looking at risk metrics,

it can be noted how results by “equally weighted” strategy do not differ so much

from the original ones (Table 5.9). Only Sharpe ratio appears influenced by higher

average returns in the former case.

5.3.2 Portfolio Dimension

As reported in Chapter 4, for each portfolio composing the main strategy, the max-

imum number of stocks selected to enter both in the long and short side has been

set to five: basing on the ranking provided by the softmax output function of each

LSTM model, each week the top five stocks for both classes “1” and “-1” have been

selected to form the different portfolios. Clearly, in the case in which the model for

that specific week had predicted less than five stocks for one of the two classes, they

would have been all selected; finally, if no stocks had been predicted to belong to a

particular class, for that week no portfolio would have been formed.

This section wants to investigate the robustness of the strategy subject to changes

regarding the maximum portfolio dimension parameter. In particular, the compari-

son that will be presented regards the results provided by the original strategy (i.e.

max. portfolio dimension equal to 5) and the ones by four similar strategies having

a value for maximum portfolio dimension respectively equal to 1, 3, 10 and 15.

At first, risk performance results for all the possible values tested are presented

in Table 5.11. The first important observation that stands out from the different

measures in table regards the ability of the original strategy to reach the best trade-

off between profitability and risk. Moreover, as might be expected, data also show

how diversification in portfolios reduces the risk of the related strategy: standard

deviation, max. drawdown and value at risk all diminished with increasing number

of stocks within the portfolio. This last observation becomes even more evident when
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Table 5.11: Risk performance of the trading strategy based on the “modular approach” presented
in Chapter 4 with different values of maximum portfolio dimension (“P.Dim”). “Avg.ret” refers to
the mean of weekly profits achieved by the strategy, “Std.Dev” to their standard deviation, “Sharpe
Ratio” to the annualised ratio of the previous measures, “Max Drawdown” to the maximum drawdown
experienced during the whole trading period, “Omega” to the omega ratio calculated having the loss
threshold equal to zero and finally “VaR” to the value at risk with confidence level of 99%.

P.Dim Avg.Ret Std.Dev Sharpe Max Drawdown Omega VaR
1 0,0014 0,0733 0,1336 0,7190 1,0517 -0,1688
3 0,0000 0,0545 -0,0050 0,7547 0,9981 -0,1265
5 0,0026 0,0487 0,3788 0,6161 1,1565 -0,1105

10 0,0013 0,0432 0,2194 0,5986 1,0892 -0,0991
15 0,0014 0,0404 0,2365 0,5627 1,0980 -0,0924

looking at boxplots in Figure 5.11 that present the distribution of weekly returns

for each different value of maximum portfolio dimension tested.

Finally, looking at the P&L behaviour over the whole trading period from Fig-

ure 5.12 three important focal point for eventual decision processes, even if not

particularly unexpected, can be highlighted:

• All the P&L follow the same trend, even if the strategy accounting for a

maximum portfolio dimension equal to 1 suffers from a tremendous exposure

on the variability in accuracy of LSTM predictions. It can be noted how

this last strategy creates notable losses during the first two years of trading if

compared to the ones created by all the other strategies; but at the same time it

can be noted how it easily recovers from them in very little time. As previously

specified, this result highlight how selecting only a single stock associated with

the highest softmax output value, choice that in theory should bring to achieve

the highest accuracy, does not necessarily brings positive results results from

a financial perspective; rather it exacerbates the volatility already observed in

previous section.

• Strategies accounting for a high number of stocks within portfolios suffer from

the opposite problem. The large number of positions taken for a very high

175



CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.11: Boxplots showing the distribution of weekly P&L from the trading strategy based on the
“modular approach” presented in Chapter 4 with different values of maximum portfolio dimension.

portion of the total number of stocks within the dataset causes the inclusion

in portfolios of those ones on which the decision by the model has been taken

almost randomly (i.e. softmax output just slightly bigger than 0.33). In some

days indeed, it is not unusual the algorithm cannot find any recognised pattern

for a specific stock so as to make a poor prediction for it. Clearly, the larger the

dataset, the lower the impact of this issue on top/flop n stocks selected by the

system. At the same time, startegies with high values of “maximum portfolio

dimension” highlight how a proper numerousness of portfolios is necessary

to lower the unavoidable volatility deriving from LSTMs predictions clearly

underlined in the previous section.
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Figure 5.12: P&L deriving from “modular approaches” with different values of maximum portfolio
dimension.

• The highest profits are provided by the original strategy with a maximum

portfolio dimension of 5. This result suggests how, depending on the dimen-

sion of the initial database (i.e. in this experiment equals to 44 stocks), it

is necessary to balance the maximum portfolio dimension so as to increase

the diversification thus lowering volatility but at the same time avoiding the

inclusion within portfolios of stocks uncertainly classified by models. For in-

stance, in the case of maximum portfolio dimension equal to 15, every week

each portfolio selected the 68% of stocks under scrutiny. In such situation

the discriminatory power of the LSTM is particularly limited by the fact that

the strategy takes a position on almost all available stocks. In the case of

maximum portfolio dimension equal to 5, instead, this percentage becomes
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23%.

5.3.3 One-Day Ahead Investment Strategy

Due to the fact that in all the experiments conducted, portfolios h = 1 always

performed better than all other in terms of financial performance, it has been decided

to test the a trading system exclusively predicting at t + 1 for all the 1500 days

composing the trading period. Thus, on each day each day a portfolio containing

the top and flop 5 stocks has been created having an investment horizon of 1 day.

As for the original strategy, during the days in which the model did not predict any

stock in alternatively class “1” or “-1” no portfolio has been created.

Figure 5.13 shows the P&L of such strategy presenting both a weighting scheme

proportional to the confidence of the model’s predictions and an equal weighting

scheme. In terms of profitability over the whole trading period, the strategy adopting

a confidence weighting scheme clearly outperforms the original modular strategy.

Moreover, in the case of the strategy adopting an equal weighting scheme, it reaches

basically the same results of its modular strategy. This result is really important

since it shows the clear superiority of LSTM predicting at shorter horizons and

the lack of need to train in every training window 5 different LSTM models each

predicting at a different horizon. All the strategies are, in fact, evidently comparable

since all of them require the system to take the same number of positions every day;

the only difference lies in the time horizon for which they do it.

Looking at risk metrics (Figure 5.12) and comparing them with results obtained

by the original modular strategy, it is possible to understand how the most important

improvement achieved by the strategies investing one-day ahead regards the lower

level of risk suffered by them. The maximum drawdown suffered by the orginal

modular strategy result to be three times higher than the same strategy investing

only at t+ 1. Finally, Sharpe ratio increases considerably compared to the modular

approach implementing both a confidence weighted scheme and an equal weighted

scheme.
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Figure 5.13: Comparison of profits and losses deriving from LSTM predicting at t+ 1 both adopting a
weighting scheme proportional to the output of the softmax activation function and a scheme providing
for equal weights for all the stocks within each side of the portfolio.

From a managerial perspective thus, evidences seem to recommend the use of

LSTM networks for short investment horizons. However, due to the limited com-

parison performed, it is recommended to make further examinations; many other

networks settings, input variables, training parameters can be employed indeed.

5.3.4 Extended Input Feature Set

As conclusive analysis, the advantages derived from the introduction into the input

features set of technical indicators and macroeconomic variables have been tested.

To make so, due to time constraint and computational limitations, it has just been

trained and tested LSTM networks predicting at t + 1, taking advantage only of

daily returns time-series. Technical indicators and macroeconomic variables have
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Table 5.12: Risk performance of the “one-day ahead trading strategy”. “Avg.ret” refers to the mean of
weekly profits achieved by the strategy, “Std.Dev” to their standard deviation, “Sharpe Ratio” to the
annualised ratio of the previous measures, “Max Drawdown” to the maximum drawdown experienced
during the whole trading period, “Omega” to the omega ratio calculated having the loss threshold equal
to zero and finally “VaR” to the value at risk with confidence level of 99%.

W.Scheme Avg.Ret Std.Dev Sharpe Max Drawd. Omega VaR
Confidence 0,0030 0,0319 0,6661 0.2001 1.3674 -0.0710

Equal 0,0031 0,0318 0,6928 0,1960 1,3820 -0,0708

thus been eliminated from the original input feature set. Moreover, due to the same

constraints, even the validation phase has been dropped: as number of hidden nodes

populating the hidden layer ,the same parameter selected for the models employing

as input the entire dataset have been used.

Surprisingly from Table E.1 that presents data science results it can be noted

how, especially for the first two training windows, the models trained with the

simpler dataset manages to achieve higher accuracy. In any case, when comparing

results in terms of G-score, the simpler model is found to over-perform the complex

one exclusively for the first two training windows. In all the other ones, it manages

to reach very poor performances due to a clear bias towards class “1”. This bias is

important since it suggests the following hypothesis: the higher level of information

present in the original database makes models more robust from biases thus making

them less prone to oversimplify the reality and, as it emerges from results, to “over-

predict” observations for a certain class. Unfortunately, such hypothesis could not

be further verified.

Looking, instead, at the financial performance of the simplified model (Figure

5.14), and comparing it with the one of the LSTM trained with the original dataset,

it stands out how data science results are not particularly informative for the under-

statement of the ability of the model in generating profits over the time. For instance,

it is not possible to observe higher profits for the strategy with the smaller dataset

during the first two years as G-score measures would suggest. Besides, during the
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Figure 5.14: Comparison of profits and losses deriving from LSTM predicting at h = 1 trained both
with the original database and with a database containing only daily returns. Both portfolios adopt a
weighting scheme proportional to the output of the softmax activation function of the output layer.

last three years it would be expected a drop in performance for the strategy adopting

the simpler dataset that has not occurred. Finally, from the graph the model with

the original dataset is observed to obtain higher profits. Thus, from these observa-

tions the advantage in economic terms deriving from employing technical indicators

and macroeconomic variables does not result clear although in financial literature,

especially the former indicators, they are extensively employed.

Even in terms of risk metrics (Table 5.13), the superiority of LSTM trained with

the original dataset is not evident. In conclusion, the analysis conducted has not

provided strong evidence of over-performance from a financial perspective due to

the introduction of technical indicators and macroeconomic variables within input

features.
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Table 5.13: Risk performance of the “one-day ahead trading strategy” obtained by LSTM networks
trained only with daily returns. “Avg.ret” refers to the mean of weekly profits achieved by the strategy,
“Std.Dev” to their standard deviation, “Sharpe Ratio” to the annualised ratio of the previous measures,
“Max Drawdown” to the maximum drawdown experienced during the whole trading period, “Omega”
to the omega ratio calculated having the loss threshold equal to zero and finally “VaR” to the value at
risk with confidence level of 99%.

Avg.Ret Std.Dev Sharpe Max Drawd. Omega VaR
0,0023 0,0253 0,6430 0.2552 1.2885 -0.0564

It is important to remember how this comparison does not intend to be exhaus-

tive so that its results do not have to be taken as overwhelming evidences. Anyhow,

they certainly raise some doubt regarding the additional information content pro-

vided by technical and macroeconomic variables to the prediction application. This

is especially true in the case of technical indicators, as said. In fact, over simple input

variables such as price and returns, they are the category of variables most exten-

sively employed in ML financial literature. It is not clear if this has to be attributed

to some objective evidence or simply to a tendency, consolidated through the years

among practitioners, to erroneously consider technical variables as functional to the

prediction process. It would be interesting to further study it.

The second important issue that this robustness check brings to light, crucial

from a managerial point of view, is about the trade-off between the dimension of

the input features set and the computation time necessary to train the model: how

far should the feature selection process go in the search for new input variables?

This knowing that the introduction of new variables inevitably leads the model to

become more expensive from a computational point of view without any strong

evidence about an increase in performance.
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Conclusions

Firstly, this thesis has tried to define a theoretical framework regarding the ap-

plication of machine learning models for financial market predictions. In the thesis

indeed, it has been covered the temporal evolution of the main ML algorithms tested

in academic financial literature; moreover, the most frequently employed input fea-

tures and the most important performance metrics frequently employed in financial

literature have been presented. This first part, even if not containing any novelty, has

to be considered an important contribution since it has merged theoretical concepts

from both machine learning and finance: until now, it has not been yet emerged a

well-defined field of study combining this two domains, even if their union has been

reality in the business world for many years indeed.

After that, in the experimental section, the thesis has tried to understand the

ability of machine learning in properly spotting recurrent patterns in equity market

for stock market predictions. LSTM networks have been selected as ML reference

model to spot such patterns due to their quite recent presentation to the machine

learning community and their still limited application in financial market predictions

literature, if compared to other ML models. Moreover, their ability to deal with

correlated observations and with long-term dependencies makes them perfect for

such types of prediction problems. Such models have been tested on the U.S. equity

market, more precisely on 44 stocks belonging to the S&P500 at the end of 2019,

employing observations from 2009 to 2019.
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All the experimental work has been carried out having as final objective the pre-

sentation of useful recommendations for managerial decision processes dealing with

the construction of a profitable illustrative investing strategy founded on LSTM

networks’ predictions. The approach has thus been business oriented: the imple-

mentation of the so-defined “modular strategy” has allowed to test the effectiveness

of LSTM predicting at different forecasting horizons, besides the fact that it has

allowed to test a possible approach to reduce the risk of the investment strategy.

The main results from the empirical work can be summarised as follows:

• LSTM networks have shown their ability in recognising proper recurrent pat-

terns within stock price time-series. This ability has been clearly expressed by

data science results: only 8 models out of 150 validated (i.e. 3 for h = 3, 2

for h = 4 and 3 for h = 5) and only 4 out of 30 during the trading phase (i.e.

1 for h = 4 and 3 for h = 5) presented an accuracy lower than the reference

value of 33%. Considering the difficulty related to the prediction task and the

limited means available to train LSTM networks, such results can be consid-

ered particularly impressive. Moreover, during specific time periods, accuracy

for LSTM models reached extremely consistent results, all significantly higher

than 40%.

• At the same time, always from data science results, it has emerged the inability

of LSTM models in recognising stocks presenting non-significant future price

movements (i.e. observations belonging to class “0”). The innovative choice to

subdivide the entire dataset into three different classes instead of two, there-

fore, does not immediately appear to be a profitable one; at least taking into

consideration the input features set used in this experimental work, LSTM

models have not been able to correctly differentiate small price movements,

both positive and negative, from large and profitable ones. In any case, this

result must not be taken as an absolute evidence of the uselessness of a third

“central” class since this class could have been beneficial allowing the model
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to identify more clearly the two extreme classes outdistancing them by a clear

margin. Particularly, it would be interesting in future researches to possibly

validate such hypothesis since in this thesis it has not been possible. Finally,

it must be observed how poor performances was expected and how, from a

managerial perspective, observations belonging to class “0” are less interesting

to be identified.

• In terms of profitability, the strategy created thanks to the predictions by

LSTM networks has shown its edge over selected benchmarks: during a trading

period of six years it managed to create a profit of 0.783% relative to the

amount of money invested both for the long and short legs of the dollar-

neutral portfolios (that in our case was 1$). Other benchmarks, instead, did

not manage to create any significant result concluding the six year period

with profit respectively of 0.007% by a random guessing strategy, 0.131% by a

short-term reversal strategy and -0.001% by a “long-term ML strategy”. This

result have proven the potentiality of LSTM networks also from a financial

perspective. Moreover, it has rejected the hypothesis of positive financial

results obtained by the main startegy due to favourable market conditions;

in fact, if this had been the case, the selected benchmarks would also have

achieved comparable financial results.

• If results in terms of profitability were positive, the downside emerged by all

the investment strategies based on LSTM predictions regards their excessive

volatility. In terms of Sharpe ratio indeed, even profitable strategies have

shown poor overall performances during the trading period. This evidence

highlights the need of a specific focus during the design phase of a ML trading

system on actions to reduce the variability created by models’ predictions, as

the execution of the “modular classification approach” in this thesis was. In

any case, for instance, when examining the evolution of Sharpe ratio through

time, it has been noted how during limited time periods the main strategy has
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been able to positively perform even in terms of profits adjusted for the risk

(i.e. Sharpe ratio consistently higher than 1). This result is still extremely

valuable when compared with evidences in literature that highlight how ML

models in recent time period appear unable to spot valuable patterns in stock

market time-series (e.g. Huck, 2019).

• As it emerged from data science results, LSTM networks trained during periods

of high market volatility and successively tested with observations following

the turbulent period have shown inferior results compared to models trained

and tested in similar market conditions (the same has been observed for mod-

els trained during non-turbulent periods and tested on turbulent ones). This

result challenges the standard training approach, followed also in this thesis,

regarding the creation of a dataset composed just by most recent and strictly

temporally close to the trading period observations; such an approach aims

indeed to always train models with most recent time-series, lying on the as-

sumptions that newer observations will behave as much as most recent past

ones. In any case, the evidence just presented creates the conditions to think

about a possible different approach when dealing with financial time series:

assuming recurrent patterns in the market created by recurrent investors’ be-

havioural biases, it could be valuable the creation of specific models trained

with observations coming only from specific market conditions during which

specific biases came into play; the approach would lie on the hypothesis that,

during such market conditions, market anomalies are usually driven by well-

known biases whose effect on stock market could be predicted by well-prepared

ML models.

• The “modular approach”, implemented as a possible approach to reduce the

risk of the investment strategy created by ML models, has not returned the

desired results. The combination of different portfolios taking advantage of

new information available from the market, in fact, has brought to an increase
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in the volatility of the overall strategy; such result has been mainly due to

the very poor performances obtained by both the portfolios h = 4 and h = 5.

In any case, the approach has allowed to validate the hypothesis for which

models’ predictions consistently deteriorate with increasing forecasting hori-

zons. This evidence, from a managerial perspective, poses consistent doubts

about the possibility to use ML models for the creation of a medium/long

term investment strategy. Even if, it is worth to remind the limited validation

process employed that, if extended, could especially bring models predicting

at longer horizons to achieve more consistent results. Finally, in spite of such

not so positive results, the “modular approach” has resulted fruitful, as said,

to evaluate models’ behaviour at different forecasting horizons, but also to

provide a reference to follow in future researches regarding the objective of

controlling the unavoidable volatility created by ML models caused by some

of their structural characteristics.

• Robustness analysis regarding the weighting scheme for portfolios has high-

lighted the impossibility to select the best configuration possible a priori.

The only highly predictable implication emerged from preferring an “equally

weighted” portfolio to a “confidence weighted” one is, as explained, the higher

propensity of the former to allocate a higher part of the total investment to

more volatile stocks. In any case, this evidence does not imply that the final

strategy will result more volatile.

• Robustness analysis regarding the portfolio dimension has shown how, de-

pending from the number of stocks presented in the database, it is necessary

to validate such parameter in order to find the optimal trade-off between a

high value facilitating diversification, thus lowering volatility, and a low value

helping to avoid the inclusion within portfolios of stocks uncertainly classified

by the ML model, thus lowering profits.

• The introduction of technical indicators and macroeconomic variables in the
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input features set has represented a novelty for the literature. Unfortunately,

due to time constraint, there was no possibility to test the overall impact on

the original strategy of this introduction in relation to an input set containing

only daily returns. In any case, the single result obtained for h = 1 has not

shown significant and clear advantages for the model trained with extended

input features set, if not a higher robustness for LSTM models to a bias for

class “1” evident from data science metrics. Further tests should be conducted

to properly assess the potential benefits deriving from the introduction of these

variables within the input features set.

• There have not been evidences of a strong correlation between data science

results and financial performances: during periods in which models presented

high values of accuracy or G-score not necessarily the trading strategy has

been profitable. This missing evidence poses an important issue related to the

training and validation process of ML models in financial applications. Models’

parameters in this experimental work, as in all others in literature, have been

validated taking as decision variable a data science metrics (i.e. G-score), but

financial results have later shown how such measure was not so correlated with

financial performances. In many other ML application fields, the objective

variable can be easily related to one or more data science metrics so that the

problem can be reduced to a maximization/minimization of such metrics; in

financial applications, the financial performance (i.e. returns and risk) is not so

easily associable to any data science metrics instead, as highlighted, causing

the validation process to become really difficult to be efficiently performed.

This issue is particularly cumbersome for classification settings: imagine a

model correctly classifying 4 out of 5 stocks, thus having 80% accuracy; it

could easily lose money in the case in which the single wrongly classified stock is

the one presenting the largest loss/gain. At the same time, regression settings

could partially solve this issue at the expenses of a lower precision that, equally,
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could nullify all the gains related to the possession of a an estimate of the

magnitude related to the price movement.

• From a comparison of accuracy and G-score achieved by models within the

different trading sets and within validation sets, the benefit of the valida-

tion process is not clear. The validation phase, in this study as in all other

in literature, has been employed for consistency with the ML approach. A

plausible reason regarding the difference in performance could be attributed

to the fact that, in this experiment, training set and trading set have been

separated by one year of observations. This large difference in time among

the two could have caused the degradation in performance due to too evident

change in market condition. In any case, it is worth mentioning how in the

experiment, due to computational constraint, the grid search applied during

the validation process exclusively aimed at finding the optimal size of hidden

nodes. Such a search could be considered limited since it did not include many

other parameters related to the training process such as learning rate, number

of epochs etc.

Summarizing, the contribution of the thesis to the literature has been firstly in

the formalization of the mixed knowledge from both machine learning and finance

necessary to understand this recent approach to financial market predictions possible

thank to the development of computer science; secondly, the thesis has highlighted

evidence regarding the ability of LSTM networks to provide profitable results even in

a context in which the efficiency of financial markets seems increased and arbitrage

opportunities diminished due to an extensive use of ML solutions; finally, the thesis

has tried to draw useful recommendation from a managerial point of view for an

effective application of LSTM networks dealing with stock market predictions.

It is important when looking at the results, in any case, to be aware of all the

limitations that have affected the experimental work:

• All the results in terms of profitability have been presented without consider-
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ing transaction costs. This choice has been taken considering the difficulty in

finding plausible estimates regarding cost-per-trade for the US equity market

for the last 10 years. Moreover, it must be added the fact that, dealing with a

long-short investing strategy, for a correct estimation it would have been nec-

essary to differentiate cost estimates for both long and short trades; if in the

case of former ones it is in any case possible to find some rational estimation,

for the latter a realistic estimation is nearly impossible to be performed. It

must be taken into consideration moreover how the study focuses on the “mod-

ular approach” as a possible approach to reduce the risk associated with the

investment strategy and this is the reason why in terms of transactions costs

it did not result very efficient, accounting for a lot of portfolio adjustments.

• As already cited, the validation process has been relegated to the number

of hidden nodes of LSTM networks due to computational constraints. Many

other parameters have been then omitted from a possible grid search having

in mind that, for instance, the inclusion of just a single possible value for

any other parameter of the model would have doubled the overall training

time of the whole approach. This limitation had probably penalised results

obtained during the trading phase but, at the same, it has corroborated results

obtained, leaving a glimpse of the wide room for improvements over already

valuable results. Moreover, also the long time distance (i.e. one year of trading

observations) separating the training period from the trading one could have

negatively influenced results. So, overall the parameter selection process could

be viewed as too limited and could be considered as a fragility of the whole

experimental work.

• The length of the overall trading period has just been of six years. Dur-

ing this period, it has been visible how models’ performances during limited

time periods have presented disappointing results, also in the case of the most

profitable investment strategies. However, in general terms, a temporal under-
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performance cannot be considered a problem since the underlying idea driving

a ML trading system is that under-performing periods are unavoidable but, if

limited and less numerous than over-performing periods, they will not consis-

tently affect the final result. Clearly, during a so limited trading period, it has

not been possible to extensively verify whether such under-performance peri-

ods have effectively been sporadic or systematic in our case. It is important

to say that the choice regarding six years trading period has been somehow

forced by the fact that just before 2009 (i.e. the starting year for observations

populating the database employed) financial markets experienced an unprece-

dented crisis, thus during that period they behaved in a really unconventional

way. So, to balance out this turbulence period, it would have been required

to further extend observations in the database at least until 2000 causing the

experiment to become too computationally onerous in relation to the available

means.

In conclusion, regarding future works dealing with LSTM and financial market pre-

dictions, it is possible to highlight three promising paths to be possibly pursued in

the light of the results obtained from this thesis:

1. Starting from the evidence about LSTM networks’ ability to spot recurrent

patterns in financial time-series, it should be further studied the relationship

between data science parameters and financial performance of ML models so

as to increase the efficiency of the validation process and thus possibly increas-

ing the effectiveness of the investment strategies. The validation process for

ML models is indeed still performed following the ordinary heuristic methods

developed by computer scientists; in any case, such methods find little sense

when applied to financial predictions whose final objective regards the max-

imisation of financial performances and not of data science metrics. This gap

becomes even more cumbersome in the case of classification settings.

2. It should be studied effective methodologies to reduce the unavoidable variance
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deriving from ML models’ predictions. As shown by results indeed, if the prof-

itability of LSTM investment strategies cannot be doubted, their variability

in profits results to be their most important drawback.

3. The vast majority of ML applications in literature are extensively developed

for a large quantity of financial data indiscriminately from any characteristic

of the market or any particular flaw affecting the market in a specific time

period. This approach is mainly attributable to the fact that, basically, all

the literature to date comes from computer science field. Approaching the

problem from a financial perspective instead, it could be interested creating

ML trading systems for specific and well-known market flaws in order to make

the model able to profit from them when effectively spotted. In such approach,

all the design decisions regarding the structure of the ML models, the training

process etc. would be guided by the characteristic of the anomaly itself. This

approach would be at the opposite from the one experimented in this thesis,

and in the vast majority of the ones in literature: you do not control which

well-known market anomaly the model has been able to recognise by itself,

but you train your model to become extremely accurate in recognizing the

effects of a specific behavior by investors on stock price movements (i.e. you

train your model not on temporally closer observations to your trading period,

but on observations from most similar market periods to your trading one).

Clearly, this way requires as a prerequisite a very good knowledge of financial

markets and investors’ behaviour.

Evidently, all these promising paths should be undertaken taking advantage of the

analytic power of LSTM networks (or similar evolution of RNN such as GRU) since,

to date, they can be considered among the most advanced ML solutions to approach

long series of correlated observations, as it resulted from evidences presented so far.
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Table A.1: Synthetic table of all the papers cited in Chapter 2

Paper
Objective of the

experimental work
ML

models
Database Type of prediction

(Trading strategy)
Results

Pai and
Lin
(2005)

Finding a solution for NN train-
ing: backprogagtion often con-
verges to local minimum because
of the tremendous noise and com-
plex dimensionality of stock mar-
ket data.

ARIMA

SVM
(gaussian)

Daily closing price of Ten
stocks and 50 different pre-
dictors from each company.

Actual closing price
predicted at t+1 in a
regression setting.

The hybrid model can significantly reduce the
overall forecasting errors made by the each
individual model.

Chandrinos
et al.
(2018)

ML models are implemented as
risk management tools with the
aim of preventing investor from
losses generated by an existing
technical trading strategy: classi-
fication of the produced signals of
a technical trading strategy into
profitable and non-profitable ones.

Decision
Trees

Deep NN

Five currency pairs dur-
ing 2006-2016. Input vari-
ables: 14 Technical indi-
cators (SMA, RSI, accel-
eration, MACD, stochas-
tic oscillator, momentum,
Bollinger band, ROC) and
price related variables.

Classification of ev-
ery signal generated
by the channel break-
out trading strategy
(The trade is effec-
tively performed only
if the signal is classi-
fied as ”profitable”).

DT prevent investors form significant drawn-
downs of the original trading strategy, reduc-
ing also its variance. They succeed in improv-
ing total returns for all currency pairs. NN re-
duce the standard deviation of 4/5 pairs and
increase the total return of 3 of them. Par-
ticularly, NN manage to improve almost all
of negative returns produced by the original
strategy.

Huck
(2019)

The main objective of the article is
to tackle concurrently the dimen-
sions of large datasets, machine
learning and a discussion of the
disagreement between EMH and
the evidence reported in the ML
literature. The natural applica-
tion field for big data and ma-
chine learning in trading, accord-
ing to the author, is statistical ar-
bitrage, a class of short-term fi-
nancial trading strategies that em-
ploy mean reversion models.

Random
Forests

Deep
Belief

Networks

Elastic
Net Re-
gression

All stocks part of the S&P
900 from 1990 to 2015. In-
put variables: lagged Re-
turns, dummy var. for
stock identification, day of
the week and month, ICB
sectors, VIX, lagged gold
and oil returns, Fama and
French factors, 10y Trea-
sury.

Classification setting
forecasting at both
t+ 1 and t+ 5 whether
the return of the
specific stock will
be larger than the
cross-sectional mean
of returns (Stocks
selected to enter in the
portfolio each day are
the top and flop 10).

Random forest appears to be the most effec-
tive forecasting technique. Models forecasting
at t + 1 performs better than the ones fore-
casting at t+ 5 and models trained only with
lagged returns perform better than the ones
trained with the whole set of predictors. In
most recent periods algorithms are not able to
generate significant trading signals confirming
the evolutionary perspective of AMH: arbi-
trage opportunities have been eliminated by
increasing popularity of ML methods among
investors.
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Krauss
et al.
(2017)

The paper, using only lagged re-
turns, wants to find which of the
different algorithms tested gives
the best performance. More-
over, through variable importance
and regression wants to under-
stand which are the most impor-
tant variables, patterns and sys-
tematic sources of risks that ma-
chine learning models are able to
extract from data in order to cre-
ate positive returns.

Deep NN

Gradient
Boosted
Trees

Random
Forests

Ensembles

S&P500 index constituents
from Dec1989 to Sep2015.
Input variables: from
prices vectors, returns are
computed over different
time periods as rt−k =
(Pt/Pt−k) − 1, where k ∈
{1, ..., 20}U{40, 60, ..., 240}.

Classification setting
forecasting at t + 1
whether the return
of the specific stock
will be larger than
the cross-sectional
mean of returns
(Stocks selected each
day to enter in the
portfolio are the top
and flop k, with k ∈
{10, 50, 100, 150, 200}).

Increasing k leads to decreasing returns and
directional accuracy. Ensembles outperform
all base learners. Both tree based models per-
form better than deep NN, in any case authors
highlight the difficulty in training such meth-
ods. NN lose efficiency when the number of
layers is diminished. All models present pos-
itive alpha. Moreover, returns partly load on
common sources of systematic risk suggest-
ing an investment behaviour that incorporates
several capital market anomalies. Algorithms
seem to capture relative mispricings at times
of high market turmoil.

Picasso
et al.
(2019)

The paper aims at combining
technical and fundamental analy-
sis through a classification model
using as inputs both technical in-
dicators and sentiment of news ar-
ticles.

Random
Forests

SVM

NN

Price-series of the 20 most
capitalised company of
the NASDAQ100 from
03/07/2017 to 14/06/2018
and features obtained from
news related to specific
stocks within the dataset
obtained from two different
dictionaries.

Trend classification
with one week hori-
zon (Trading signals
on the basis of neu-
ral network output:
Buy if prediction >
0.5 + TSH and
Sell if prediction <
0.5− TSH)

NN trained with both price and news predic-
tors clearly outperform NN trained only with
price series. NN trained with both price and
news predictors, instead, show only little im-
provements when compared to the NN trained
only with news data.

Chen
and Hao
(2017)

The paper tries to improve the
robustness and accuracy of ML
model by weighting the contribu-
tion of each different input fea-
ture. It assumes that different in-
put variables do not have all the
same impact on the final output
and it aims to nudge the algorithm
to focus more on the most infor-
mative inputs within the dataset.

SVM

KNN

Shangai and Shenzen stock
exchange composite index
from 31 Oct 2008 to 31
Dec 2014. Input variables:
price, volume, returns and
9 technical indicators (MA,
EMA, MACD, volume ra-
tio, RSI, OBV, momentum
index, AR, BR).

Regression setting pre-
dicting for both in-
dexes 1, 5 , 10, 15, 20
and 30 days ahead.

The weighting process of features improves
the results if compared with a model trained
with non-weighted input variables; it man-
ages to reduce the effect of those variable that
are not so informative for the final prediction
task.

Cai
et al.
(2012)

The paper wants extract low di-
mensional features from high di-
mensional raw input data and use
them to make prediction about fi-
nancial time-series.

Deep
Belief

Network

SVM

Data related to the S&P500
index from 01/03/2000 to
02/22/2011. Input vari-
ables: prices and technical
indicators for the index and
for other 19 highly corre-
lated stocks.

Regression setting
where SVM predicts
the actual closing
price of S&P500 in
t+ 1.

Generalization performance of SVM is deteri-
orated when dimension of input is increasing,
even though more input variables comes with
more information content. However, results
confirm how dimensionality reduction can im-
prove generalization performances in case of a
large number of predictors within the dataset.
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Sirignano
and
Cont
(2019)

According to authors, large scale
ML methods have not been de-
ployed in finance because statis-
tical modelling of financial time-
series has remained asset specific
and databases are often limited to
recent time windows. They want
to prove how, in reality, relations
between variables and price time-
series are universal and stationary
so as to pool data across different
assets and time periods and take
advantage of a much richer dataset
to estimate models.

LSTM High-frequency record of
all transactions and order
cancellations for approxi-
mately 100 stocks traded
on NASDAQ between 1 Jan
2014 and 31 March 2017.

Regression settings
where the LSTM
predicts the next
price move; the time
interval between two
consecutive obser-
vations within the
dataset is not constant
but it varies consider-
ably from a fraction of
a second to seconds.

The paper find evidences in financial time se-
ries data of: Universality the model trained
on all stocks outperforms stock-specific mod-
els, even for stocks not in the training sample,
showing that features captured are not stock-
specific. Stationarity model performance is
stable across time, even for observations out-
side the sample. Evidence of long memory in
price formation including order flow history
as input, even up to several hours, improves
prediction performance. Generalization the
model extrapolates patterns related also to
stocks not included in the training sample.

Liu and
Liu
(2018)

The study focuses on a move-
ment trend-based data prepara-
tion method. It focuses on tech-
nical indicators, and it discretises
them following specific rules per
each indicator based on their fi-
nancial meaning. Moreover, it
compares RNN with their most
successful variations.

RNN

LSTM

GRU

HS300 index from Jan 2005
to Dec 2017. Input vari-
ables: technical indica-
tors (EMA, MACD, RSI,
stochastic %k and %D,
OBV, AD, ATR) converted
into discrete values.

The model classifies
the 5-days ahead
movement of the index
(daily Long-short
portfolios created
based on outputs
of the classification
performed by different
models).

Results show how the best performance,
among all combinations of models and
datasets, is achieved by GRU trained with dis-
cretised data with an accuracy of 68% com-
pared to LSTM with accuracy of 65% and
RNN 64%. Moreover, among all models, the
deep and narrow structure outperforms the
shallow and wide one keeping the total num-
ber of neurons in hidden layers constant.

Chen
and Ge
(2019)

The paper wants to apply atten-
tion based LSTM on Honk Kong
stock exchange data and compare
it with results achieved by stan-
dard LSTM.

LSTM

Attention
Mecha-

nism

Hong Kong market
data from 1/01/2005
to 31/12/2017. Input vari-
ables: prices and technical
indicators (ROC, EMA,
MA, MACD, RSI, VROC,
Bollinger bands, volume
MA).

Models predict the
price movement of
each stock in the
database in t + 1
(Daily long-only trad-
ing strategy for all
stocks predicted to
have a positive trend
by the model).

The superiority of the model with the atten-
tion mechanism is demonstrated: the LSTM
model with attention mechanism shows higher
prediction accuracy over the simple LSTM
model in 56/72 stocks. In terms of financial
performance, this model shows also the higher
returns compared to the simple LSTM.
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Fischer
and
Krauss
(2018)

The paper wants to compare re-
sults from LSTM networks with
random forests since it delivers
virtually no tuning and usually de-
livers good results and because it
is a powerful benchmark for in-
novative machine learning algo-
rithm, with deep neural network,
to show the relative advantage
over a model without memory,
with logistic regression that is con-
sidered a baseline to derive the in-
cremental value-add of LSTM in
comparison to a standard classi-
fier.

LSTM

Random
forest

Deep NN

Logistic
Regres-

sion

S&P500 index constituents
from Dec1989 to Sep2015.
Return Sequences for
LSTM: for each stock
a sequence of 240 daily
return. Input variables for
benchmarking algorithms:
lagged Returns with lag in
{1, ..., 20} U {40, 60, ...,
240}.

Models forecast the
probability of each
stock to outperform
the cross sectional me-
dian in t + 1, making
use of info in t (For the
portfolio construction,
the strategy goes long
on top k stocks and
short on flop k forming
dollar-neutral Long-
short portfolios. k ∈
{10, 50, 100, 150, 200}.

LSTM shows better performance than other
models: it reaches an accuracy of 54.3% when
k = 10 and daily returns, prior transaction
costs, of 0.46%. The second best model is
RAF with 53.8% accuracy and 0.43% daily re-
turns. From 2001 to 2009, period in which ML
models started effectively to be implemented
in the market, the performances start decreas-
ing for all models. Surprisingly, RAF perform
incredibly well during the 2008 financial cri-
sis with a sharpe ratio equal to 6. Conversly,
from 2010 to 2015 RAF is found to destroy
value while LSTM maintains capital constant
after transaction costs.
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APPENDIX B. FUTURE RETURNS DISTRIBUTION

Figure B.1: Graphic representation of distribution of future returns at t+ 1 within all the training sets
belonging to different training windows in dataset h = 1.

Figure B.2: Graphic representation of distribution of future returns at t+ 2 within all the training sets
belonging to different training windows in dataset h = 2.
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Figure B.3: Graphic representation of distribution of future returns at t+ 3 within all the training sets
belonging to different training windows in dataset h = 3.

Figure B.4: Graphic representation of distribution of future returns at t+ 4 within all the training sets
belonging to different training windows in dataset h = 4.
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Figure B.5: Graphic representation of distribution of future returns at t+ 5 within all the training sets
belonging to different training windows in dataset h = 5.

Figure B.6: Graphic representation of distribution of future returns at t + 1 within all the validation
sets belonging to different training windows in dataset h = 1.
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Figure B.7: Graphic representation of distribution of future returns at t + 2 within all the validation
sets belonging to different training windows in dataset h = 2.

Figure B.8: Graphic representation of distribution of future returns at t + 3 within all the validation
sets belonging to different training windows in dataset h = 3.
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Figure B.9: Graphic representation of distribution of future returns at t + 4 within all the validation
sets belonging to different training windows in dataset h = 4.

Figure B.10: Graphic representation of distribution of future returns at t + 5 within all the validation
sets belonging to different training windows in dataset h = 5.
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APPENDIX D. FINANCIAL RESULTS

Figure D.1: Comparison between the evolution of numerosness and correlation of stocks within both
the long and short legs of the portfolio h = 2 and the profitability of the portfolio itself. Obviously,
correlation is equal to 1 when in the portfolios is present a single stock and to 0 when none stock is
in it. Red boxes highlight strong results possibly driven by low numerousness of the portfolio while
green boxes highlight periods in which low numerousness have clearly not brought to an increase in
P&L volatility.

Figure D.2: Comparison between the evolution of numerosness and correlation of stocks within both
the long and short legs of the portfolio h = 3 and the profitability of the portfolio itself.
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Figure D.3: Comparison between the evolution of numerosness and correlation of stocks within both
the long and short legs of the portfolio h = 4 and the profitability of the portfolio itself.

Figure D.4: Comparison between the evolution of numerosness and correlation of stocks within both
the long and short legs of the portfolio h = 5 and the profitability of the portfolio itself.
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the
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List of Abbreviations

Abbreviation Description
ML Machine Learning
kNN K-Nearest Neighbors
RAF Random Forests

AdaBoost Adaptive Boosting
GBT Gradient Boosted Trees
SVM Support Vector Machine
DBN Deep Belief Networks
NN Feed-Forward Neural Networks

RNN Recurrent Neural Networks
GRU Gated Recurrent Unit Networks

LSTM Long Short-Term Memory Networks
S&P Standard and Poor
EMH Efficient Market Hypothesis
AMH Adaptive Market Hypothesis
GICS Global Industry Classification Standard
CBOE Chiacago Board Options Exchange
LIBOR London Interbank Offered Rate

ICB Industry Classification Benchmark
VIX Cboe Volatility Index
MAE Mean Absolute Error
MSE Mean Squared Error

MAPE Mean Absolute Percentage Error
RMSE Root Mean Square Error
VAR Value At Risk
TPR True Positive Rate
TNR True Negative Rate

AU-ROC Area under Receiver Operating Characteristic Curve
ROC Receiver Operating Characteristic Curve
MDD Maximum Drawdown
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