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Abstract

The thesis deals with the analysis and implementation of numerical algorithms for
fault reconstruction in geophysical applications. We represent a portion of the Earth’s
crust as a bounded elastic body with a buried fault surface, along which slip occurs.
A discontinuous Galerkin method is analyzed for the direct problem, presenting both
theoretical and numerical results. In the second part of the work, we establish uniqueness
for the problem of determining simultaneously the fault surface and the slip field from
boundary measurements and we prove a theoretical stability estimate. Finally, we propose
a reconstruction algorithm and we confirm its efficiency with numerical tests.
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Introduction

Inverse boundary value problems appear every time we want to determine internal
properties of a medium (e.g. conduction, stiffness, density) from observations on its
boundary. Such problems lie at the heart of scientific progress and technological
development and have applications in medical imaging, nondestructive testing of materi-
als, seismology, underground prospection to mention but a few.
The mathematical modelling of the forward problem, that is of the data formation
process, is based on partial differential equations (PDEs) or systems of PDEs.
The inverse problem then consists in reconstructing the unknown parameters or sources
in the PDE from boundary measurements of the solution of the PDE itself. In general,
these parameter estimation problems are highly nonlinear and ill-posed in the sense
of Hadamard (cf. [1]): small errors in the data may cause incontrollable variations in
the unknowns. This feature makes an analysis of these instabilities crucial, in order
to get reliable reconstructions. In view of the many applications, this leads to the
search of appropriate methods to contain such instability. One way is by introducing
mathematically suitable but physically relevant, a-priori assumptions on the unknown
parameters so that one can mitigate the ill-posedeness, for example restricting the class
of admissible parameters to a subset of a finite dimensional space.

Here, we consider the two dimensional version of an inverse problem with applications
in geophysics related to a model of buried faults in the Earth crust, see for instance [2],
[3] and [4], and we analyze the slip conditions between different subduction zones, as
in Figure 1. More precisely, the physics of our problem is modeled using the equations
of elastodynamics, which have been massively investigated due to their capability to
simulate seismic scenarios. The forward problem consists in finding the elastic displace-
ment in the Earth’s crust induced by the slip along the fault, while the inverse problem
consists in determining the fault and the slip on the fault from measurements of the
surface displacement, see [5], [6] and [7] . An accurate solution of the inverse problem
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Introduction

has become more and more important in order to anticipate and possibly prevent the
damages of large earthquakes.

Figure 1: Example of subduction zones. Image taken from [8].

One fundamental step towards the solution of the inverse problem is the generation
of accurate synthetic data from the forward model that are as close as possible to the
“true" data. For this reason, in this thesis we start studying the static equations of the
linear elasticity system in its forward form. An important definition to be introduced
in the context of problems with faults is certainly the one of transmission conditions at
subdomain interfaces, which allow to reformulate a boundary value problem in a multi-
domain formulation. There are several heterogeneous domain decomposition methods
that can be developed within this context (cf. [9] and [10]). To discretize the elasticity
equations supplemented with the interface conditions, different numerical schemes like
Finite Differences, Finite Elements or Spectral Element Methods (SEM) can be exploited.
In particular SEM (see [11]) are based on high-order Lagrangian interpolants and are well
suited for parallel computations, that are mandatory for three-dimensional problems. On
the other hand, they can lead to a large computational effort. For this reason, nowadays
it is preferable to use discontinuous Galerkin (DG) methods which combine the features
of the finite element and the finite volume framework. DG methods received considerable
interest for hyperbolic, elliptic and parabolic problems arising from a wide range of
applications, in electrodynamics, elastodynamics, fluid mechanics and plasma physics,
see [12] and [13].
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Figure 2: Piecewise continuous functional spaces.

Discontinuous Galerkin methods were first proposed and analyzed in the early 1970s.
However jump penalization in the modern sense were developed gradually and thanks
to the earlier influential contribution of Babuška, J.-L. Lions, Joachim Nitsche and
Miloš Zlámal, see for instance [14], [15], [16] and [17]. Like the Continuous Galerkin
(CG method), the DG method is a finite element method formulated relative to a weak
formulation of a particular model system. Unlike traditional continuous schemes that
are conforming, the DG method works over a trial space of functions that are only
piecewise continuous, as in Figure 2, and thus often comprise more inclusive functional
spaces. Moreover DG methods have the advantage to be locally conservative, stable and
of high-order accuracy. They are suitable for irregular meshes with hanging nodes (see
Figure 3) and approximations that have polynomials of different degree in different ele-
ments. DG methods are proved to be particularly well suited also for dealing with cracks
phenomena, which is our case of interest. Indeed, unlike the continuous formulation, the
interior-penalty discontinuous Galerkin method allows to incorporate the transmission
conditions directly in the semi-discrete scheme, cf. [18].
Such interface problems, yielding discontinuous solutions across the interface, can be
naturally analyzed in the DG setting simply by modifying the interior penalty DG
numerical fluxes accordingly and without alterating the order of accuracy of the method
as explained in this work.
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Figure 3: Non-conforming and irregular meshes.

The thesis is organized as follows: in Chapter 1 we present the forward elastostatic
model applied to homogeneous domains without a crack. We study the well-posedness
of the weak formulation for the continuous problem and we explain in details how the
numerical scheme is derived. Then, we prove that the solution approximated with the
DG method converges to the “true" solution and we show an a-priori error estimate,
that is confirmed by the numerical experiments.
In Chapter 2 we present the system of PDEs for the linear elasticity model applied to
heterogeneous domains with a crack. We report some results about the existence and
uniqueness of the solution for the interface problem, according to the regularity of the
slip field on the fault. Then, we slightly modify the DG method in order to treat the
interface conditions, we study the well-posedness of the new scheme and we develop a
theoretical error analysis confirmed by the numerical results.
In Chapter 3 we introduce the inverse problem, we study its uniqueness property and we
prove a Lipschitz stability under suitable assumptions on the fault and on the slip field.
Finally, we propose a reconstruction algorithm for the determination of the unknown
parameters and we report some verification tests.
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Chapter 1

The elastostatic problem

1.1 The mathematical model

We introduce the mathematical model for the elastostatic problem in an open bounded
domain Ω ⊂ R2, with Lipschitz boundary ∂Ω and outward normal unit vector n. The
boundary is assumed to be composed of two portions: ΓD 6= ∅, which is closed and where
the displacement vector u is prescribed, and ΓN where an external load applies. We
assume that ΓD and ΓN are disjoint, i.e. ΓD ∩ ΓN = ∅ and that ∂Ω = ΓD ∪ ΓN . On the
Dirichlet boundary ΓD the medium is rigidly fixed in the space and on ΓN we prescribe
surface tractions.
The problem reads as follows: find the medium displacement u : Ω→ R2 such that

−∇ · σ(u) = f in Ω,
σ(u)−Dε(u) = 0 in Ω,

u = gD on ΓD,
σ(u)n = gN on ΓN ,

(1.1)

where f ∈ L2(Ω) is a given source term, gD ∈ H
1
2 (ΓD), gN ∈ H−

1
2 (ΓN) are the Dirichlet

and the Neumann boundary conditions, respectively.
We have employed the standard notation for the Sobolev spaces, see [19]. More pre-
cisely, given the standard space L2(Ω), Hm(Ω), m ≥ 0, we set by L2(Ω) =[L2(Ω)]2,
Hm(Ω) =[Hm(Ω)]2 and L2(Ω) =[L2(Ω)]2×2

sym, Hm(Ω) =[Hm(Ω)]2×2
sym their vectorial and

tensorial counterpart, respectively. Each space is endowed with its usual norm, see [20].
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The elastostatic problem

Note that with ∇ · a we represent the divergence of an arbitrary tensor a in 2 dimensions,
i.e.

(∇ · a)i =
2∑
j=1

∂aij
∂xj

.

The second equation in (1.1) is the Hooke’s constitutive law that relates the strain tensor

ε(u) = 1
2(∇u +∇uT ), (1.2)

to the stress tensor σ through the 4th order stiffness tensor D, defined as follows:

Dε(u) = 2µε+ λtr(ε)I, (1.3)

where λ and µ are the first and second Lamé parameters, respectively, and where we
suppose that λ, µ ∈ L∞(Ω). However, an equivalent description (see [21]) can be obtained
with the coefficients’ pair made of the Young modulus (E) and the Poisson ratio (ν):

λ = νE

(1− 2µ)(1 + µ) , µ = E

2(1 + ν) .

In the definition (1.3), “tr(·)" is the trace operator, I ∈ R2×2 is the identity tensor and
D is symmetric, strictly convex and uniformly bounded over Ω, i.e.

∃ D0, D1 such that : 0 < D0
∑
i,j

X2
ij ≤

∑
i,j,k,l

XijDijklXkl ≤ D1
∑
i,j

X2
ij (1.4)

for any 2× 2 symmetric matrix X 6= 0.

In the case of a homogeneous and isotropic material, the assumption of strictly convexity
on D turns into the following conditions on the Lamè coefficients:

µ > 0, λ+ µ > 0,

or, equivalently, into a condition on the Young modulus and on the Poisson ratio, namely:

E > 0, −1 < ν <
1
2 .

From now on, we will make use of the following notation:

a · b = ab a, b ∈ R,
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1.1 The mathematical model

a · b =
2∑
i=1

aibi a,b ∈ R2,

a : b =
2∑

i,j=1
aijbij a, b ∈ R2×2.

1.1.1 The weak formulation

In order to write the weak formulation of the elastostatic problem (1.1), we suppose
without loss of generality homogeneous Dirichlet boundary conditions. Multiplying the
first equation in (1.1) by a smooth enough test function v and integrating over Ω we get:

∫
Ω
−(∇ · σ(u)) · v dx =

∫
Ω
f · v dx.

Now, using the Green’s formula and the boundary conditions, we have :

∫
Ω
−(∇ · σ(u)) · v dx =

∫
Ω
σ(u) : ε(v) dx −

∫
∂Ω

(σ(u)n) · v ds =

=
∫

Ω
σ(u) : ε(v) dx −

∫
ΓD

(σ(u)n) · v ds−
∫

ΓN

(σ(u)n) · v ds

We can employ the Neumann boundary conditions and it follows:

∫
Ω
σ(u) : ε(v) dx−

∫
ΓD

(σ(u)n) · v ds =
∫

Ω
f · v dx + 〈gN ,v〉ΓN

.

where we indicate with 〈·, ·〉ΓN
the duality pairing on H−

1
2 (ΓN). Imposing that

v = 0 on ΓD, the second integral on the left-hand side cancels.
We define the Sobolev space (cf. [19]):

H1
0,ΓD

(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}.

The variational formulation reads: find u ∈ H1
0,ΓD

(Ω) such that

B(u,v) = F (v) ∀ v ∈ H1
0,ΓD

(Ω), (1.5)

where the bilinear form B(·, ·) : H1
0,ΓD

(Ω) x H1
0,ΓD

(Ω)→ R is defined as:

B(u,v) =
∫

Ω
σ(u) : ε(v) dx,

7



The elastostatic problem

and the linear functional F (·) : H1
0,ΓD

(Ω)→ R is given by:

F (v) =
∫

Ω
f · v dx + 〈gN ,v〉ΓN

∀ v ∈ H1
0,ΓD

(Ω).

From now on we will endow the space H1
0,ΓD

(Ω) with the following norm:

||v||H1
0,ΓD

(Ω) = ||∇v||L2(Ω) ∀ v ∈ H1
0,ΓD

(Ω). (1.6)

Notice that this is a norm in H1
0,ΓD

(Ω) thanks to the following Lemma (cf. Teorema 8.2
in [22]):

Lemma 1. (Poincarè inequality). Let Ω be a bounded Lipschitz domain. If u ∈ H1
0,ΓD

(Ω),
then there exists a constant CP such that:

||u||L2(Ω) ≤ CP ||∇u||L2(Ω).

Problem (1.5) is well posed and admits a unique solution. The details will be presented
in the next section.

1.1.2 Existence and uniqueness of the weak solution

Theorem 1. Let f ∈ L2(Ω) be a given source term and let gN ∈ H−
1
2 (ΓN), then there

exists a unique solution u ∈ H1
0,ΓD

(Ω) which satisfies problem (1.5).

Proof. To simplify the notation, we define V := H1
0,ΓD

(Ω). The proof of Theorem 1
follows directly from Lax-Milgram theorem (see [23]). More precisely (1.5) is well posed
provided that the following properties are satisfied:

• B(·, ·) is continuous over V×V, i.e.

∃ M > 0 such that |B(u,v)| ≤M ||u||V ||v||V,

where the norm is the one defined in (1.6).

• B(·, ·) is V-coercive, i.e.

∃ α > 0 such that |B(u,u)| ≥ α||u||2V.
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1.1 The mathematical model

• The linear functional F (·) is continuous over V, i.e.

∃ γ > 0 such that |F (u)| ≤ γ||u||V.

We start by proving the continuity of B(·, ·), exploiting the assumptions on D (strong
convexity and uniform boundedness) and the Poincarè inequality of Lemma 1:

∫
Ω
σij(u)εij(v) dx =

∫
Ω

2∑
k,l=1

Dijklεkl(u)εij(v) dx ≤ C
∫

Ω

2∑
k,l=1

εkl(u)εkl(v) dx

≤ C||ε(u)||L2(Ω)||ε(v)||L2(Ω) ≤ C||∇u||L2(Ω)||∇v||L2(Ω) = C||u||V||v||V.

We next show the coercivity of B(·, ·):

B(u,u) =
∫

Ω
σ(u) : ε(u) dx =

∫
Ω
Dε(u) : ε(u) dx ≥ D0

∫
Ω
ε(u) : ε(u) dx ≥

≥ D0β||u||2V = α||u||2V,

where we have used the strict convexity of the stiffness tensor D and the following Korn’s
inequality (see [24]):

∃ β > 0 such that
∫

Ω
ε(u) : ε(u) dx ≥ β||u||2V ∀ u ∈ V.

Finally, the continuity of the linear functional F (·) follows directly from its definition, the
hypothesis of regularity on the source f and the data gN and using the Cauchy-Schwarz
inequality (cf. [25]):

|F (v)| ≤
∫

Ω
|f · v| dx + |〈gN ,v〉|ΓN

≤ γ||v||V.

Note that, even if it is not a necessary hypothesis of Theorem 1, it can be proved by
simple algebraic manipulations that the bilinear form B(·, ·) is also symmetric:

∫
Ω
σ(u) : ε(v) dx =

∫
Ω

2∑
i,j=1

σij(u)εij(v) dx

=
∫

Ω

2∑
i,j=1

(
λ(∇·u)δijεij(v)+2µεij(u)εij(v)

)
dx =

∫
Ω

2∑
i,j=1

(
λ(∇·u)εii(v)+2µεij(u)εij(v)

)
dx

9



The elastostatic problem

=
∫

Ω

2∑
i,j=1

(
λεii(u)(∇·v)+2µεij(u)εij(v)

)
dx =

∫
Ω

2∑
i,j=1

(
λ(∇·v)δijεij(u)+2µεij(v)εij(u)

)
dx

=
∫

Ω
σ(v) : ε(u) dx.

1.2 Discrete approximation

1.2.1 Mesh partitions and finite element spaces

To analyze the discrete approximation, we consider a family {Th, 0 < h ≤ 1} of shape-
regular partitions of Ω into non-overlapping triangles K, such that Ω = ∪K∈Th

K.
For a given mesh Th, as the one shown in Figure 1.1, we define the granularity h =
maxK∈Th

hK with hK = diam(K).

Figure 1.1: Example of a shape regular triangular discretization of a rectangular domain.

We collect all the interior faces γ in FI . Here a face γ ∈ FI is defined in such a way
that there exists two adjacent elements of Th: K+, K−, such that γ = ∂K+ ∩ ∂K−.
Similarly we gather all the faces belonging to the Dirichlet and Neumann bound-
ary γ in FD and FN , respectively: FD = {γ : ∃ K such that γ ⊆ ∂K ∩ ΓD} and
FN = {γ : ∃ K such that γ ⊆ ∂K ∩ ΓN}. Implicit in this definition there is the as-
sumption that the mesh respects the decomposition of the boundary ∂Ω; i.e., any face γ
belongs exactly either to FD or FN .

For an integer s ≥ 1, we define the Broken Sobolev spaces:

Hs(Th) = {v ∈ L2(Ω) : v|K ∈ Hs(K) ∀ K ∈ Th},

10



1.2 Discrete approximation

and the broken norms:
||v||2Hs(Th) =

∑
K∈Th

||v||2Hs(K),

||v||2L2(Fi) =
∑
γ∈Fi

||v||2L2(γ), i = {I,D,N}.

We will use the following notation for their vectorial and tensorial counterpart in two
dimensions:

Hs(Th), || · ||Hs(Th), || · ||L2(Fi), Hs(Th), || · ||Hs(Th), || · ||L2(Fi), i = {I,D,N}.

For an integer r ≥ 1, the discontinuous finite dimensional space is given by:

V r
h = {vh ∈ L2(Ω) : vh|K ∈ Pr(K) ∀ K ∈ Th},

where Pr(K) is the space of polynomials of total degree r defined on K. We set Vr
h =[V r

h ]2

and Vrh =[V r
h ]2×2

sym.

1.2.2 Trace operators

In order to deal with piecewise discontinuous functions we need suitable trace operators.
Let γ ∈ FI be an interior face shared by two elements K+ and K− of Th, and let n+,
n− be the unit normal vectors on γ pointing outward K+ and K−, respectively (see
Figure 1.2). On γ we define the average and the jump operators for regular enough
vector-valued and tensor-valued functions v and σ as:

{v} = 1
2(v+ + v−),

JvK = v+ ⊗ n+ + v− ⊗ n−,

{σ} = 1
2(σ+ + σ−),

JσK = σ+n+ + σ−n−,

(1.7)

respectively, where v⊗ n = (vnT + nvT )/2.
Note that the jump operator is defined using normal unit vectors and thus transforming a
vector-valued into a tensor-valued function and viceversa. In the numerical scheme, this
definition is preferable to the most common one “ JvK = v+ − v− " because it involves a
sum instead of a difference and we can exploit its commutative property.

11



The elastostatic problem

In particular, it allows the operator to be independent on the numbering of the elements
( K+ and K−) when implementing the code.
Analogously, if an edge is on the boundary of the domain, γ ∈ FD ∪ FN , we set:

{v} = v+,

JvK = v+ ⊗ n,

{σ} = σ+,

JσK = σ+n.

(1.8)

1.2.3 Discontinuous Galerkin finite element method

In this section we derive the variational formulation for DG methods, supposing the
following assumptions: Ω is a bounded convex polygon in R2 and the Cauchy stress
tensor is strictly convex, uniformly bounded as in (1.4) and Lipschitz continuous on Ω.
For example, if the Lamè parameters are constant, we can write:

σ11

σ22

σ12

 =


λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ



ε11

ε22

ε12

 . (1.9)

Moreover, without loss of generality, we suppose homogeneous Dirichlet and Neumann
conditions. It is always possible to treat the most general case exploiting the linearity of
the problem (cf. [26]).
Note that we are assuming Ω and D to be sufficiently regular so that we posses the
following regularity: u ∈ Hm(Ω), for some m ≥ 2 and σ ∈ Hm(Ω), for some m ≥ 1, since
we will need to write the trace of the Cauchy tensor average and we will make use of
a duality argument for the error analysis. However, it is also possible to show similar
results, relaxing some of these hypotheses and using different technical tools. We will
analyze it in detail in Chapter 3, when discussing the interface problem.
We multiply the first equation in (1.1) by a test function v ∈ Vr

h, integrate over a generic
K ∈ Th, integrate by parts as in the variational formulation (1.5) and sum over every
K ∈ Th, to obtain:

∑
K∈Th

∫
K
σ(u) : ε(v) dx−

∑
K∈Th

∫
∂K

(σ(u)n) · v dx =
∑
K∈Th

∫
K
f · v dx. (1.10)
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1.2 Discrete approximation

Note that the integrals are computed on each triangle of the mesh; in particular, this
means that in the second sum on the left in equation (1.10), the integrals over faces are
calculated twice for those elements that share an edge (see Figure 1.2), each one with its
respective normal vector n+ and n−.

Figure 1.2: Example of two adjacent elements.

In other words, we can also rewrite this term as a sum over the internal and the Dirichlet
boundary faces; it turns out that:

∑
K∈Th

∫
∂K

(σ(u)n)·v dx =
∑
γ∈FI

∫
γ

(
(σ(u)+n+)·v++(σ(u)−n−)·v−

)
ds+

∑
γ∈FD

∫
γ
(σ(u)n)·v ds.

Then using only the definition of the average and jump operators as in (1.7) and (1.8),
we get:

∑
γ∈FI

∫
γ

(
(σ(u)+n+) · v+ + (σ(u)−n−) · v−

)
ds +

∑
γ∈FD

∫
γ
(σ(u)n) · v ds =

=
∑

γ∈FI∪FD

∫
γ
{σ(u)} : JvK ds +

∑
γ∈FI

∫
γ
Jσ(u)K · {v} ds. (1.11)

The proof of the magic formula (1.11) is postponed below, see Section 1.2.4.

Since we are supposing that the solution u ∈ H2(Ω), the second integral of (1.11) is
null because the term Jσ(u)K is zero. We remind the reader that we are still deriving a
discrete scheme for the elastostatic problem (1.1) without a crack, in which we assume
that both the solution and the stress are continuous through all the interior elements of
the mesh. This implies that we can also add extra integrals containing the null term JuK,

13



The elastostatic problem

without modifying the problem we want to solve.
For example, we can add the term “

∫
γJuK : {σ(v)} ds " in the sum over the edges in

order to maintain the symmetric form of the original problem.
Moreover, it can be proved that a null integral of the form “

∫
γ ηJuK : JvK ds " ensures the

stability of the numerical method, without altering the symmetry. Generally speaking, η
is a stabilization function, that might depend on the discretization of the domain. We
introduce the following definition for the penalization parameter η ∈ L∞(FI ∪ FD):

η|γ = αD
r2

h
∀γ ∈ FI ∪ FD, (1.12)

where α is a positive constant to be properly chosen, h is the size of the mesh, r is the
polynomial degree and D = (|D 1

2 |22)
1
2 with | · |2 is the operator norm induced by the

l2-norm on R2.
Even without a rigorous proof, that can be found in [27], we can morally understand
how the parameter η entails a stabilization of the method, as it “penalizes" the jump of
the continuous solution. Having an increasingly refined mesh, i.e. h → 0, η increases
forcing the jump of u to become close to zero. This is also the reason why the method is
called interior-penalty discontinuous Galerkin, cf. [28] and [29].

We obtain the following bilinear form:

A(u,v) =
∑
K∈Th

∫
K
σ(u) : ε(v) dx −

∑
γ∈FI∪FD

∫
γ
{σ(u)} : JvK ds (1.13)

−
∑

γ∈FI∪FD

∫
γ
JuK : {σ(v)} ds +

∑
γ∈FI∪FD

∫
γ
ηJuK : JvK ds.

Recalling the definition (1.8) of the jump and average operators on a boundary face, we
define:

F (v) =
∑
K∈Th

∫
K
f · v dx. (1.14)

Finally, the discrete problem reads as follows (cf. [30] and [31]): find uh ∈ Vr
h such that:

A(uh,vh) = F (vh) ∀ vh ∈ Vr
h. (1.15)

When non-homogeneous Dirichlet and Neumann conditions are considered, the bilinear

14



1.2 Discrete approximation

form A(·, ·) does not change, whereas the functional F (·) becomes:

F (v) =
∑
K∈Th

∫
K
f · v dx−

∑
γ∈FD

∫
γ
gD · (σ(v)n− ηv) ds +

∑
γ∈FN

〈gN ,v〉γ. (1.16)

1.2.4 Proof of the magic formula

We present an excursus to demonstrate the magic formula that we used to derive the
discontinuous Galerkin method.
We report the formula and then we show with some manipulations that the term on the
right hand side (rhs) is equal to the one on the left (lhs):

∑
γ∈FI

∫
γ

(
(σ(u)+n+) · v+ + (σ(u)−n−) · v−

)
ds +

∑
γ∈FD

∫
γ
(σ(u)n) · v ds =

=
∑

γ∈FI∪FD

∫
γ
{σ(u)} : JvK ds +

∑
γ∈FI

∫
γ
Jσ(u)K · {v} ds.

Proof. First, separating the integrals over the internal and the Dirichlet faces and using
the definition of the jump and the average operators for a boundary edge, we can rewrite
the rhs as:

∑
γ∈FI

∫
γ

(
{σ(u)} : JvK + Jσ(u)K · {v}

)
ds +

∑
γ∈FD

∫
γ
(σ(u)n) · v ds.

Thus, we want to prove that:

∑
γ∈FI

∫
γ

(
(σ(u)+n+) · v+ + (σ(u)−n−) · v−

)
ds +

∑
γ∈FD

∫
γ
(σ(u)n) · v ds =

∑
γ∈FI

∫
γ

(
{σ(u)} : JvK + Jσ(u)K · {v}

)
ds +

∑
γ∈FD

∫
γ
(σ(u)n) · v ds.

This implies that we are only left to prove the following statement for any γ ∈ FI :

∫
γ

(
(σ(u)+n+) · v+ + (σ(u)−n−) · v−

)
ds =

∫
γ

(
{σ(u)} : JvK + Jσ(u)K · {v}

)
ds.
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We will show that the rhs is equal to the lhs above, using the definitions of jump and
average and the fact that n+ = −n− :

∫
γ

(
{σ(u)} : JvK + Jσ(u)K · {v}

)
ds =

∫
γ

(
σ(u)+ + σ(u)−

2

)
: (v+⊗n++v−⊗n−) ds+

∫
γ
(σ(u)+n++σ(u)−n−)·(v

+ + v−

2 ) ds =

∫
γ

(
σ(u)+ + σ(u)−

2

)
:
(

(v+− v−)⊗ n+
)
ds+

∫
γ
(σ(u)+n+ + σ(u)−n−) · (v

+ + v−

2 ) ds.

Now we can employ a general property of the tensor product:

a : (b⊗ c) =
2∑

i,j=1
aij(b⊗ c)ij =

2∑
i,j=1

aijbicj =
2∑

i,j=1
aijcjbi = (ac) · b,

and modifying accordingly the first integral, we get:

∫
γ

(
σ(u)+ + σ(u)−

2

)
n+ · (v+ − v−) ds +

∫
γ
(σ(u)+n+ + σ(u)−n−) · (v

+ + v−

2 ) ds =

=
∫
γ

((
σ(u)+ + σ(u)−

2

)
n+ · v+ −

(
σ(u)+ + σ(u)−

2

)
n+ · v−

)
ds +

+
∫
γ
(σ(u)+n+ + σ(u)−n−) · (v

+ + v−

2 ) ds =

=
∫
γ

(
σ(u)+

2 n+ · v+ + σ(u)−
2 n+ · v+ −��������σ(u)+

2 n+ · v− − σ(u)−
2 n+ · v−+

+σ(u)+n+ · v
+

2 + ��������
σ(u)+n+ · v

−

2 + σ(u)−n− · v
+

2 + σ(u)−n− · v
−

2

)
ds =

=
∫
γ

(
σ(u)+

2 n+ · v+ +��������σ(u)−
2 n+ · v+ + σ(u)−

2 n− · v− + σ(u)+n+ · v
+

2 −
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1.2 Discrete approximation

−
��������
σ(u)−n+ · v

+

2 + σ(u)−n− · v
−

2

)
ds =

=
∫
γ

(
(σ(u)+n+) · v+ + (σ(u)−n−) · v−

)
ds,

that is equal to the lhs and the proof is complete.

1.2.5 Well-posedness and error analysis

In this subsection we are interested in showing the well-posedness of the discrete problem
(1.15) and giving a quantitative estimate of the error between the continuous solution of
problem (1.5) and the discrete solution solving (1.15).
From now on, we will use the notation x . y to represent the inequality x ≤ Cy, where
C is a generic positive constant.
We set Ṽr

h = Vr
h + H2(Th) and we introduce the following norms:

||vh||2DG = ||D 1
2 ε(vh)||2L2(Th) + ||η1/2JvhK||2L2(FI∪FD) ∀ vh ∈ Vr

h,

|||vh|||2DG = ||vh||2DG + ||η−1/2{σ(vh)}||2L2(FI∪FD) ∀ vh ∈ Ṽ
r

h, (1.17)

where we have indicated with D
1
2 the square root of the 4th order tensor D, i.e. there

exists a tensor T such that D = T∗T with T∗ the adjoint operator of T and T = D
1
2 .

It can be shown that these two norms are equivalent on Vr
h, meaning that :

||vh||DG ≤ |||vh|||DG . ||vh||DG ∀ vh ∈ Vr
h. (1.18)

While the first inequality follows directly from the definition of the two norms, the second
one is not so trivial (cf. [12]) and is based on a trace-inverse inequality on the polynomial
space Vr

h.

Before discussing the error estimates for the method (1.15), we state its well-posedness
and some preliminary results.
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Lemma 2. (Well-posedness). Problem (1.15) admits a unique solution, provided that
the stabilization parameter α in (1.12) is chosen large enough.

Proof. We first show that A(·, ·) is continuous w.r.t the norm (1.17) in Ṽ
r

h. This implies
that the same result holds true using the || · ||DG norm with functions in Vr

h, thanks
to the equivalence relation of the norms (1.18). Then we will prove that A(·, ·) is also
coercive w.r.t. the || · ||DG norm in Vr

h.

• Continuity on Ṽ
r

h:

|A(u,v)| . |||u|||DG|||v|||DG ∀ u,v ∈ Ṽ
r

h.

Let u,v ∈ Ṽr

h then:

|A(u,v)| ≤
∣∣∣∣∣∣
∑
K∈Th

∫
K
σ(u) : ε(v) dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

γ∈FI∪FD

∫
γ
{σ(u)} : JvK ds

∣∣∣∣∣∣+

+
∣∣∣∣∣∣
∑

γ∈FI∪FD

∫
γ
JuK : {σ(v)} ds

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

γ∈FI∪FD

∫
γ
ηJuK : JvK ds

∣∣∣∣∣∣ .

Using the Cauchy-Schwarz inequality and the definition of the || · ||DG norm we get:

(I) =
∣∣∣∣∣∣
∑
K∈Th

∫
K

2∑
i,j=1

σij(u)εij(v) dx
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
K∈Th

∫
K

2∑
i,j=1

2∑
k,l=1

Dijklεkl(u)εij(v) dx
∣∣∣∣∣∣ ≤

≤
∑
K∈Th

∫
K
|D

1
2 ε(u)||D 1

2 ε(v)| dx ≤ |||u|||DG |||v|||DG.

(II) =
∣∣∣∣∣∣
∑

γ∈FI∪FD

∫
γ
{σ(u)} : JvK ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

γ∈FI∪FD

∫
γ
η−1/2{σ(u)} : η1/2JvK ds

∣∣∣∣∣∣ ≤

≤

 ∑
γ∈FI∪FD

||η−1/2{σ(u)}||2L2(γ)

1/2 ∑
γ∈FI∪FD

||η1/2JvK||2L2(γ)

1/2

=

= ||η−1/2{σ(u)} ||L2(FI∪FD) ||η1/2JvK ||L2(FI∪FD) ≤ |||u|||DG |||v|||DG.
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1.2 Discrete approximation

Analogously, for the third term:

(III) ≤
 ∑
γ∈FI∪FD

||η−1/2{σ(v)}||2L2(γ)

1/2 ∑
γ∈FI∪FD

||η1/2JuK||2L2(γ)

1/2

=

= ||η−1/2{σ(v)} ||L2(FI∪FD) ||η1/2JuK ||L2(FI∪FD) ≤ |||u|||DG |||v|||DG.

Finally, we estimate the fourth term with:

(IV ) ≤
 ∑
γ∈FI∪FD

||η1/2JvK ||2L2(γ)

1/2 ∑
γ∈FI∪FD

||η1/2JuK ||2L2(γ)

1/2

=

= ||η1/2JvK ||L2(FI∪FD) ||η1/2JuK ||L2(FI∪FD) ≤ |||u|||DG |||v|||DG.

Summing up the four bounds, we get:

|A(u,v)| . |||u|||DG|||v|||DG ∀ u,v ∈ Ṽ
r

h.

• Coercivity on Vr
h:

A(vh,vh) & ||vh||2DG ∀ vh ∈ Vr
h.

Recalling the definition of A(·, ·), we have:

A(vh,vh) = ||D1/2ε(vh)||2L2(Th)−2
∑

γ∈FI∪FD

∫
γ
{σ(vh)} : JvhK+

∑
γ∈FI∪FD

||η1/2JvhK||2L2(γ).

We next estimate the second term on the right hand side:

∣∣∣∣∣∣
∑

γ∈FI∪FD

∫
γ
{σ(vh)} : JvhK

∣∣∣∣∣∣ ≤
≤ ||η−1/2{σ(vh)} ||L2(FI∪FD) ||η1/2JvhK ||L2(FI∪FD)

≤ δ

2 ||η
−1/2{σ(vh)} ||2L2(FI∪FD) + 1

2δ ||η
1/2JvhK ||2L2(FI∪FD),

where we have used the Cauchy-Schwarz inequality and the following Young’s
inequality:

ab ≤ δ

2a
2 + 1

2δ b
2 for a δ ∈ (0, 1).
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The elastostatic problem

If w is a piecewise polynomial, we can also use the following trace-inverse estimate:

||w||L2(γ) .
r

h1/2 ||w||L2(K) ∀ γ ∈ ∂K ∀ w ∈ Pr(K). (1.19)

Using the above estimate, the fact that σ(vh) ∈ Vr
h and the definition of the

penalization parameter as in (1.12), we obtain:

||η−1/2{σ(vh)} ||2L2(FI∪FD) .
∑

γ∈FI∪FD

h

αr2 ||D
−1/2{σ(vh)}||2L2(γ)

.
h

αr2
r2

h

∑
K∈Th

||D−1/2Dε(vh)||2L2(K+∪K−)

.
1
α
||D1/2ε(vh)||2L2(Th).

Hence, it follows that:
A(vh,vh) ≥

||D1/2ε(vh)||2L2(Th) − δ ||η−1/2{σ(vh)} ||2L2(FI∪FD) + (1− 1
δ

) ||η1/2JvhK ||2L2(FI∪FD)

≥ (1− Cδ

α
) ||D1/2ε(vh) ||2L2(Th) + (1− 1

δ
) ||η1/2JvhK ||2L2(FI∪FD),

where in the last step we have exploited the arithmetic-geometric inequality, for
any δ ∈ (0, 1).

Finally we can choose δ such that both (1− 1
δ
) and (1− Cδ

α
) are positive, bounded

away from zero and such that α ≥ 4C, in order to obtain:

A(vh,vh) ≥
1
2 ||D

1/2ε(vh) ||2L2(Th) + 1
2 ||η

1/2JvhK ||2L2(FI∪FD) = 1
2 ||vh||

2
DG.

which shows the coercivity on Vr
h

• Continuity of the linear functional F (·) on Vr
h.

∣∣∣∣∣∣
∑
K∈Th

∫
K
f · v dx

∣∣∣∣∣∣ ≤
 ∑
K∈Th

||f||2L2(K)

1/2 ∑
K∈Th

||v||2L2(K)

1/2

. ||f||L2(Th)

 ∑
K∈Th

||ε(v)||2L2(K)

1/2

. ||f||L2(Th)||v||DG,
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1.2 Discrete approximation

where we have used the Poincaré inequality for piecewise functions in H1, cf. [32],
together with Korn’s inequality.

Now, using the Lax-Milgram Lemma (see [23]), the proof is complete.

In the following, we present some useful results to prove the error estimates.

Lemma 3. (Strong consistency). The exact solution u satisfies the discrete problem, i.e.

A(u, vh) =
∫

Ω
f · vh ∀ vh ∈ Vr

h. (1.20)

Proof. Here we consider u as the solution of the boundary value problem (1.1) in Ω with
homogeneous Dirichlet and Neumann conditions. From the integration by parts and the
Magic Formula (1.11), we get:

∑
K∈Th

∫
K
σ(u) : ε(v) dx = −

∑
K∈Th

∫
K

(∇ · σ(u)) · v dx +
∑

γ∈FI∪FD

∫
γ
{σ(u)} : JvK ds

+
∑
γ∈FI

∫
γ
Jσ(u)K : {v} ds ∀ v ∈ H1(Th).

Since Jσ(u)K = 0 on each interior face and −(∇·σ(u)) = f, the above expression becomes:

∑
K∈Th

∫
K
σ(u) : ε(v) dx−

∑
γ∈FI∪FD

∫
γ
{σ(u)} : JvK ds =

∫
Ω
f · v dx ∀ v ∈ H1(Th).

Notice that JuK = 0 on each interior face and JuK = u = 0 on each boundary face
contained in ΓD. Thus, we can also write:

∑
K∈Th

∫
K
σ(u) : ε(u) dx−

∑
γ∈FI∪FD

∫
γ
{σ(u)} : JvK ds−

∑
γ∈FI∪FD

∫
γ
{σ(v)} : JuK ds

+
∑

γ∈FI∪FD

∫
γ
ηJuK · JvK =

∫
Ω
f · v dx ∀ v ∈ H1(Th),

that is
A(u,v) = F (v) ∀ v ∈ H1(Th).

In particular, we obtain (1.20) because Vr
h ⊂ H1(Th).
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From the consistency of the method and by a simple argument of linearity, the following
Lemma holds:

Lemma 4. (Galerkin orthogonality, cf. [33])

A(u− uh, vh) = 0 ∀ vh ∈ Vr
h.

This property can be interpreted as the orthogonality between the approximation error
u− uh and the space Vr

h with respect to the scalar product A(·, ·) in Vr
h. This means

that uh is the function in Vr
h that best approximates the exact solution u in the energy

norm.

Before stating the error estimates, we need to provide a bound for |||u− Πr
hu|||DG and

we will make use of the following hp-approximation:

Lemma 5. (cf. [34] and [35]) Let v ∈ Hs(K) and τ ∈ Hs(K), for some s > 1 and
for each K ∈ Th. Then, there exists a sequence of operators: Πr

hv : L2(Ω) → Vr
h and

Πr
hτ → Vrh for r = 1, 2, .. such that:

||v− Πr
hv||Hq(K) .

hmin(r+1,s)−q

rs−q
||v||Hs(K) 0 ≤ q ≤ s,

||v− Πr
hv||L2(∂K) .

hmin(r+1,s)−1/2

rs−1/2 ||v||Hs(K),

||τ −Πr
hτ ||Hq(K) .

hmin(r+1,s)−q

rs−q
||τ ||Hs(K) 0 ≤ q ≤ s,

||τ −Πr
hτ ||L2(∂K) .

hmin(r+1,s)−1/2

rs−1/2 ||τ ||Hs(K).

The hidden constant is independent on v, τ , h, r but depends on the shape-regularity of K
and on the material properties.

Let e = u− Πr
hu and recall the definition of the || · ||DG norm:

|||e|||2DG = ||D 1
2 ε(e)||2L2(Th) + ||η1/2JeK||2L2(FI∪FD) + ||η−1/2{σ(e)}||2L2(FI∪FD)

and define (I), (II), (III) the terms on its right hand side.
We can now estimate the first term with Lemma 5 and we get:

(I) . h2min(r+1,s)−2

r2s−2 ||u||2Hs(Th). (1.21)
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1.2 Discrete approximation

For the second term, we use again Lemma 5 to obtain:

(II) . r2

h

∑
K∈Th

||e||2L2(∂K) .
r2

h

h2min(r+1,s)−1

r2s−1 ||u||Hs(Th) = h2min(r+1,s)−2

r2s−3 ||u||Hs(Th). (1.22)

Analogously, for the term (III) we can write:

(III) . r2

h

∑
K∈Th

||σ(e)||2L2(∂K) .
r2

h

h2min(r+1,s)−3

r2s−3 ||u||Hs(Th) = h2min(r+1,s)−4

r2s−5 ||u||Hs(Th).

(1.23)
Summing on the previous bounds, we obtain:

|||u− Πr
hu|||DG .

hmin(r+1,s)−1

rs−1/2 ||u||Hs(Th). (1.24)

The error analysis of the method shows that the solution uh converges to u when the
error is measured in the norm (1.17) or in average. The error estimator for linear elastic
analysis can also be showed when any combination of Neumann and Dirichlet boundary
conditions are admissible in the formulation, see for instance [36], [37] and [38].
The estimates are contained in the following theorem:

Theorem 2. Suppose that the exact solution u ∈ H2(Ω) ∩Hs(Th), for some s ≥ 2. If
the parameter α appearing in the definition (1.12) of the stabilization function is chosen
sufficiently large and uh is the solution obtained with (1.15), it holds:

||u− uh||DG .
hmin(r+1,s)−1

rs−1/2 ||u||Hs(Th), (1.25)

||u− uh||L2(Ω) .
hmin(r+1,s)

rs+1 ||u||Hs(Th), (1.26)

where r = minK∈Th
(rK) and h = maxK∈Th

(hK).

Proof. In order to prove Theorem 2, we will assume, for simplicity, that the mesh Th is
quasi-uniform and that rK = r ∀K ∈ Th. Let Πr

hu ∈ Vr
h be defined as in Lemma 5. Now

using all the previous results, we obtain:

||Πr
hu− uh||2DG . A(Πr

hu− uh,Πr
hu− uh) (Coercivity on Vr

h,Lemma 2)
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. A(Πr
hu− u,Πr

hu− uh) (Consistency as in (1.20))

. |||Πr
hu− u|||DG |||Πr

hu− uh|||DG (Continuity on Ṽ
r

h,Lemma 2)

. |||Πr
hu− u|||DG ||Πr

hu− uh||DG (Norms equivalence on Vr
h)

Recalling the triangle inequality:

||u− uh||DG ≤ ||u− Πr
hu||DG + ||Πr

hu− uh||DG,

we get
||u− uh||DG . |||u− Πr

hu|||DG.

Now using (1.24) we have:

||u− uh||DG .
hmin(r+1,s)−1

rs−1/2 ||u||Hs(Th),

and the proof of the first estimate is complete. The bound is optimal in h and sub-optimal
in r by a factor r1/2 (cf. [39]).
The estimate for the L2-error can be obtained using a duality argument and the elliptic
regularity, i.e.

||u||H2(Ω) . ||f||L2(Ω) ∀ f ∈ L2(Ω).

For the sake of simplicity, we will consider the case of homogeneous Dirichlet boundary
conditions, i.e. ΓN = ∅ and gD = 0. Thus, we denote with V the space H1

0(Ω) = {v ∈
H1(Ω) : v = 0 on ∂Ω} and with (·, ·)L2(Ω) the scalar product in L2(Ω). Let u be the
solution of Problem (1.5), i.e.

find u ∈ V such that: B(u,v) = (f,v)L2(Ω) ∀ v ∈ V,

and uh the DG solution of Problem (1.15):

find uh ∈ Vr
h such that: A(uh,vh) = (f,vh)L2(Ω) ∀ vh ∈ Vr

h.

Finally, we introduce the so-called dual problem: ∀ g ∈ L2(Ω),

find φ = φ(g) ∈ V such that: B(v,φ) = (g,v)L2(Ω) ∀ v ∈ V,
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1.2 Discrete approximation

and analogously the discrete dual problem: ∀ g ∈ L2(Ω),

find φh = φh(g) ∈ Vr
h such that: A(vh,φh) = (g,vh)L2(Ω) ∀ vh ∈ Vr

h.

In our case A(·, ·) is symmetric and the following adjoint consistency property holds:

A(vh,φ) = (g,vh) ∀ vh ∈ Vr
h. (1.27)

It can be proved that a result of elliptic regularity also holds for the solution of the dual
problem, i.e.

∃ C > 0 : ||φ(g)||H2(Ω) ≤ C||g||L2(Ω) ∀ g ∈ L2(Ω).

In particular, this is true for a polygonal and convex domain Ω.
We choose now g = u−uh = eh as the approximation error and we denote φ = φ(eh) to
simplify the notation. Moreover, we choose vh = eh and we use property (1.27) to get:

||eh||2L2(Ω) = A(eh,φ).

For the elliptic regularity of the dual problem, we also know that φ ∈ H2(Ω) and
||φ||H2(Ω) ≤ C||eh||L2(Ω). Now thanks to the Galerkin orthogonality (cf. Lemma 4), we
know that A(eh,Πr

hφ) = 0 and we can write:

||eh||2L2(Ω) = A(eh,φ) = A(eh,φ− Πr
hφ)

≤ C1|||eh|||DG|||φ− Πr
hφ|||DG ( Continuity of A(·, ·) in Ṽ

r

h)

≤ C2|||eh|||DG
h

r
3
2
||φ||H2(Ω) ( Estimate (1.24) with s = 2)

≤ C3|||eh|||DG
h

r
3
2
||eh||L2(Ω) ( Elliptic regularity of the dual problem ).

Note that, when applying the estimate (1.24), the broken norm H2(Th) that is the sum
of the norms in each triangle of the mesh, becomes the usual H2 norm on the whole
domain Ω, thanks to the additivity of the integrals. Thus, we get the following bound:

||eh||L2(Ω) ≤ C3
h

r
3
2
|||eh|||DG,

and the thesis follows applying the energy norm error estimate in (1.25).
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1.2.6 Algebraic formulation

Following the usual argument, to ease the notation we assume rK = r ≥ 1 ∀ K ∈ Th and
we partition the domain Ω in M triangles and we multiply this number by the dimension
of the space of polynomials of degree r to obtain the total number N of degrees of
freedom: N = M 1

2(r + 1)(r + 2), see Figure 1.3.

Figure 1.3: Degrees of freedom on a triangular mesh.

We introduce a basis {(Φ1
i ,Φ2

i )}, i = 1, ..., N , for the finite element space Vr
h and we

express the solution uh as a linear combination of the shape functions:

uh(x) =
N∑
i=1

(U1
i Φ1

i (x) + U2
i Φ2

i (x)).

Here U = (U1
1 , U

1
2 , ..., U

1
N , U

2
1 , U

2
2 , ..., U

2
N) is the vector of suitable coefficients which

constitute the solution of the linear system associated to our problem:

AU = F. (1.28)

This system derives from the variational formulation (1.15), substituting the generic test
function vh with the basis functions {(Φ1

i ,Φ2
i )} ∈ Vr

h for i = 1, ..., N . It results that the
matrix A can be written as the sum of four matrices associated to the four integrals in
the bilinear form (1.13), i.e.:

A = V − I − IT + S,

with
Vi,j =

∫
Ω
σ(Φj) : ε(Φi) dx, for i, j = 1, ...2N ;

26



1.2 Discrete approximation

Ii,j =
∫
FI∪FD

{σ(Φj)} : JΦiK ds, for i, j = 1, ...2N ;

Si,j =
∫
FI∪FD

ηJΦjK : JΦiK ds, for i, j = 1, ...2N,

where Φj = Φ1
j , j = 1, ...N and Φj = Φ2

j , j = N + 1, ...2N.
Analogously, the vector F on the right hand side of the system (1.28) arises from the
functional (1.14), substituting the test function vh with the basis of Vr

h, so that:

Fi =
∫

Ω
f · Φidx−

∫
FD

gD · (σ(Φi) · n− ηΦi) ds +
∫
FN

gN · Φi ds, for i = 1, .., 2N.

Note that we can also write the linear system (1.28) highlighting each component of the
solution field, namely: A

1 A2

A3 A4


U1

U2

 =

F1

F2

 (1.29)

where each block of the matrix can be decomposed in the following way:

Al = V l − I l − (I l)T + Sl, for l = 1, .., 4.

Now, let us analyze in details which integral every block matrix represents, in order to
describe the implementation of the code for the Discontinuous Galerkin scheme.

As seen before, the integral related to the matrix V is defined as: for i, j = 1, ..., N

V 1
i,j =

∫
Ω

(
(λ+ 2µ)

∂Φ1
j

∂x

∂Φ1
i

∂x
+ µ

∂Φ1
j

∂y

∂Φ1
i

∂y

)
dx,

V 2
i,j =

∫
Ω

(
λ
∂Φ2

j

∂y

∂Φ1
i

∂x
+ µ

∂Φ2
j

∂x

∂Φ1
i

∂y

)
dx,

V 3
i,j =

∫
Ω

(
µ
∂Φ1

j

∂y

∂Φ2
i

∂x
+ λ

∂Φ1
j

∂x

∂Φ2
i

∂y

)
dx,

V 4
i,j =

∫
Ω

(
(λ+ 2µ)

∂Φ2
j

∂y

∂Φ2
i

∂y
+ µ

∂Φ2
j

∂x

∂Φ2
i

∂x

)
dx.

27



The elastostatic problem

Observe that, for the matrix I and S, we need a slightly different argument, because
we want to discretize integrals over edges. This means that we have to differentiate the
integrals according to the fact that we are considering an internal or a border edge.
For i, j = 1, ..., N it holds that:

S1
i,j =

∑
γ∈FI∪FD

∫
γ

Φ1,+
j Φ1,+

i ds, S2
i,j = S3

i,j = 0, S4
i,j =

∑
γ∈FI∪FD

∫
γ

Φ2,+
j Φ2,+

i ds,

and

I1
i,j =

∑
γ∈FI∪FD

δγ

(
1
2(λ+ 2µ) n+

1

∫
γ

∂Φ1,+
j

∂x
Φ1,+
i ds + 1

2µ n
+
2

∫
γ

∂Φ1,+
j

∂y
Φ1,+
i ds

)
,

I2
i,j =

∑
γ∈FI∪FD

δγ

(
1
2λ n

+
1

∫
γ

∂Φ2,+
j

∂y
Φ1,+
i ds + 1

2µ n
+
2

∫
γ

∂Φ2,+
j

∂x
Φ1,+
i ds

)
,

I3
i,j =

∑
γ∈FI∪FD

δγ

(
1
2µ n

+
1

∫
γ

∂Φ1,+
j

∂y
Φ2,+
i ds + 1

2λ n
+
2

∫
γ

∂Φ1,+
j

∂x
Φ2,+
i ds

)
,

I4
i,j =

∑
γ∈FI∪FD

δγ

(
1
2µ n

+
1

∫
γ

∂Φ2,+
j

∂x
Φ2,+
i ds + 1

2(λ+ 2µ) n+
2

∫
γ

∂Φ2,+
j

∂y
Φ2,+
i ds

)

where δγ = 1, 2, depending on whether γ is an interior or boundary edge, respectively,
and n+ = (n+

1 , n
+
2 )T is the unit outward normal of the element K+.

Next, we consider the case where γ is an internal edge, meaning that there exists a
neighbouring element of K+ (we can call it K−) such that γ̄ = ∂K+ ∩ ∂K−.
For these cases, there are some further contributions to add:

S1
i,j =

∫
γ

Φ1,−
j Φ1,+

i ds, S2
i,j = S3

i,j = 0, S4
i,j =

∫
γ

Φ2,−
j Φ2,+

i ds

and
I1
i,j = 1

2(λ+ 2µ) n1

∫
γ

∂Φ1,−
j

∂x
Φ1,+
i ds + 1

2µ n2

∫
γ

∂Φ1,−
j

∂y
Φ1,+
i ds,
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1.2 Discrete approximation

I2
i,j = 1

2λ n1

∫
γ

∂Φ2,−
j

∂y
Φ1,+
i ds + 1

2µ n2

∫
γ

∂Φ2,−
j

∂x
Φ1,+
i ds,

I3
i,j = 1

2µ n1

∫
γ

∂Φ1,−
j

∂y
Φ2,+
i ds + 1

2λ n2

∫
γ

∂Φ1,−
j

∂x
Φ2,+
i ds,

I4
i,j = 1

2µ n1

∫
γ

∂Φ2,−
j

∂x
Φ2,+
i ds + 1

2(λ+ 2µ) n2

∫
γ

∂Φ2,−
j

∂y
Φ2,+
i ds.

It is important to notice that all the arguments related to the matrices S and I are not
valid for edges on which we impose Neumann boundary conditions, as we can see from
the bilinear form (1.13). On such edges, only the matrix V comes into play.

Finally, we remind that for non-homogeneous Dirichlet boundary conditions gD =
(g1, g2)T , we need to impose them weakly by adding extra terms to the vector of external
loads as follows:

F1
i =

∑
γ∈FD

{∫
γ
ηΦ1,+

i g1 ds − 2
(

1
2(λ+ 2µ) n+

1

∫
γ

∂Φ1,+
i

∂x
g1 ds + 1

2µ n
+
2

∫
γ

∂Φ1,+
i

∂y
g1 ds

)

−2
∑
γ∈FD

{(
1
2µ n

+
1

∫
γ

∂Φ1,+
i

∂y
g2 ds + 1

2λ n
+
2

∫
γ

∂Φ1,+
i

∂x
g2 ds

)}
,

F2
i =

∑
γ∈FD

{∫
FD

ηΦ2,+
i g2 ds − 2

(
1
2λ n

+
1

∫
γ

∂Φ2,+
i

∂y
g1 ds + 1

2µ n
+
2

∫
γ

∂Φ2,+
i

∂x
g1 ds

)}

−2
∑
γ∈FD

{(
1
2µ n

+
1

∫
γ

∂Φ2,+
i

∂x
g2 ds + 1

2(λ+ 2µ) n+
2

∫
γ

∂Φ2,+
i

∂y
g2 ds

)}
,

for i = 1, .., N.
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1.3 Numerical results

In this section we illustrate some numerical results for the elastostatic problem with both
Dirichlet and Neumann conditions on a square domain Ω = (−1, 0)× (0, 1) with uniform
and constant Lamé parameters. For each test we report the data of the simulation, the
computed errors as well as the computed convergence rates, showing that the optimal
accuracy of the error is achieved, according to the theoretical bounds of Theorem 2.

1.3.1 Example 1

In the first test we choose the Lamè coefficients λ = 1 and µ = 0.5 and the components
of the exact solution as:

u1(x, y) = ex cos(y),

u2(x, y) = sin(x) cos(y).

Thus, the source term becomes:

f1(x, y) = 3
2(cos(x) sin(y)− ex cos(y)),

f2(x, y) = 5
2 sin(x) cos(y) + 3

2e
x sin(y).

Notice that the manufactured solution has been chosen in Hs(Ω), for any s ≥ 2. We
tested our method on a sequence of meshes with granularity h = [0.0627, 0.0314, 0.0157].
For this test, we have set three sides of the square domain as Neumann boundary and
the remaining one as Dirichlet boundary, as in Figure 1.4.
Figure 1.6 shows the computed errors in the L2(Ω) and DG norms as a function of the
mesh size h (log-log scale). Figure 1.6.a shows that, under h-refinement, the L2(Ω)-norm
of the error converges to zero at the optimal rate O(hr+1), where r is the polynomial
degree, here chosen as r = 1. Similarly, Figure 1.6.b displays that for the H1(Ω)-error,
the rate of convergence O(hr) is achieved.
Finally, Figure 1.5 shows the two components of the computed vector solution using the
Discontinuous Galerkin method on a grid of granularity h = 0.0157.
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ΓN

ΓN

ΓD

ΓN

Figure 1.4: Boundary conditions on the computational domain.

(a) First component of the solution u1. (b) Second component of the solution u2.

Figure 1.5: Example 1. Plot of the computed solution on a grid with granularity
h = 0.0157 (3 levels of refinement).
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(a) Computed errors in the L2-norm versus the
mesh size h.

(b) Computed errors in the H1-norm versus
the mesh size h.

Figure 1.6: Example 1. Computed errors versus the mesh size h (log-log scale).

1.3.2 Example 2

In the second test we choose the Lamè coefficients λ = 1 and µ = 2 and the components
of the exact solution as:

u1 = ex sin(2πy),

u2 = ey sin(2πx).

Thus, the given source term becomes:

f1 = (8π2 − 5)ex sin(2πy)− 6πey cos(2πx),

f2 = (8π2 − 5)ey sin(2πx)− 6πex cos(2πy).

In this test, the exact solution has been chosen in Hs(Ω), for any s ≥ 2 and mixed
boundary conditions have been used, as in the previous example. In Figure 1.7 we report
the plot of the computed solution with its components, on a grid of granularity h = 0.0157.
Again, the polynomial degree r is equal to 1, so that we achieve the optimal rate of
convergence O(h2) and O(h) for the L2(Ω) and the DG norm of the errors, respectively,
as shown in Figure 1.8.
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(a) First component u1 of the solution. (b) Second component u2 of the solution.

Figure 1.7: Example 2. Plot of the computed solution on a grid with granularity
h = 0.0157 (3 levels of refinement).

(a) Computed errors in the L2-norm versus the
mesh size h.

(b) Computed errors in the H1-norm versus
the mesh size h.

Figure 1.8: Example 2. Computed errors versus the mesh size h (log-log scale).
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Chapter 2

The elastostatic problem with a
fault

2.1 The mathematical model

Now we focus on the case where we have a fault in an elastic medium. We consider
an open bounded domain Ω ⊂ R2 , with Lipschitz boundary ∂Ω and outward normal
unit vector n. The fracture Γ ⊂ Ω is considered to be a 1-dimensional C∞ manifold, i.e.
Γ ⊂ R with nΓ the normal unit vector and it is a straight interface. For the sake of
the numerical analysis, we will consider the prolongation of Γ until the boundary of the
domain, such that it divides Ω into two subdomains Ω1 and Ω2, as in Figure 2.1. The
boundary is assumed to be composed of two portions: ΓD 6= ∅, which is closed and where
the displacement vector u is prescribed, and ΓN where an external load applies.
Our goal is to find the medium displacement u : Ω→ R2 such that:

−∇ · σ(u) = f in Ω \ Γ,
σ(u)−Dε(u) = 0 in Ω \ Γ,

u = gD on ΓD,
σ(u)n = gN on ΓN ,

JuK = q0 ⊗ n+
Γ on Γ,

Jσ(u)K = q1 on Γ,

(2.1)

where f ∈ L2(Ω) is a given source term, gD ∈ H
1
2 (ΓD), gN ∈ H−

1
2 (ΓN ), q0 ∈ H

1
2 (Γ) and

q1 ∈ H−
1
2 (Γ). The strain tensor ε and the stress tensor σ are defined as in (1.2) and (1.3)
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Ω1

Ω2

Γ

Ω

Figure 2.1: The subdomains Ω1 and Ω2 separated by the interface Γ.

and we employed the definition of the jump operator as in (1.7).
From an analytical point of view, we have different results of well-posedness based on the
regularity of the slip field q0, as showed in [40] and [41]. In all the cases, it is assumed
that the traction is continuous along the fault, i.e. q1 = 0.
We know by [41] that there exists a unique distributional solution u ∈ H 1

2−ε(Ω)∩Hs(Ω\Γ)
of the boundary-value/transmission problem (2.1), for ε > 0 and s < 1.
The second result is obtained by assuming that the dislocation surface Γ can be extended
to a closed Lipschitz, orientable surface S and that q0 ∈ H

1
2
00(Γ), meaning that q0 can

be extended by zero in S \ Γ to a function q̃0 ∈ H
1
2 (S) :

q̃0(x) =

q0(x), if x ∈ Γ,

0, if x ∈ S \ Γ.
(2.2)

Without loss of generality, we suppose homogeneous Dirichlet boundary condition, i.e.
gD = 0. With all these assumptions, the authors in [42] were able to prove that there
exists a unique weak solution u ∈ H1

0,ΓD
(Ω \ Γ) to Problem (2.1).

2.2 The Discontinuous Galerkin formulation

In order to derive a DG formulation for the problem with a crack inside the elastic
medium, we consider Ω to be a bounded convex polyhedral domain in R2 and we assume

36



2.2 The Discontinuous Galerkin formulation

that D is symmetric, strictly convex and uniformly bounded over Ω, as in (1.4), and
piecewise constant over mesh-elements. Moreover, we require a regular enough slip field
q0 to have the solution u ∈ Hs(Th) ∩H2(Ω \ Γ), for some s ≥ 2.
Without loss of generality, we suppose throughout the whole analysis homogeneous
Dirichlet and Neumann conditions, i.e. gD = 0 and gN = 0. We also assume that the
traction is continuous along the fault Γ, i.e. q1 = 0.
As before, we consider a quasi-uniform triangulation, i.e. maxK∈Th

hk . minK∈Th
hk,

where hk denotes the diameter of each triangle and we assume that the grid is aligned
with Γ. As a result, we can construct a one-dimensional discretization of Γ containing
only those vertices of the triangles K ∈ Th that lie on the interface; the same procedure
is applied to generate the discretization of the boundary ∂Ω = ΓD ∪ ΓN . Note that, for
the analysis of the discrete formulation, we will consider the prolongation of Γ until the
boundary of the domain ∂Ω as in the dashed line of Figure 2.1. We collect the interior
faces γ in FI and the Dirichlet and Neumann boundaries γ in FD and FN , respectively,
as in Chapter 1. Note that, for the sake of the analysis, we will not consider the faces on
Γ belonging to FI .
Given all the aforementioned assumptions, we can now proceed to formulate a new DG
scheme for the interface problem. The aim is to add again null terms in the bilinear form
A(·, ·), defined in (1.15), but separating the integrals along a generic interior face γ ∈ FI
and the ones that lay on the crack Γ, on which (JuK− q0 ⊗ n+) = 0.

What results is the following approximate problem: find uh ∈ Vr
h such that

A(uh,vh) = F(vh) ∀ vh ∈ V r
h , (2.3)

where:
A(u,v) =

∑
K∈Th

∫
K
σ(u) : ε(v) dx−

∑
γ∈FI∪FD∪Γ

∫
γ
{σ(u)} : JvK ds

−
∑

γ∈FI∪FD∪Γ

∫
γ
JuK : {σ(v)} ds +

∑
γ∈FI∪FD∪Γ

∫
γ
ηJuK : JvK ds,

F(v) =
∑
K∈Th

∫
K
f · v dx−

∑
γ∈Γ

∫
γ
q0 ⊗ n+ : {σ(v)} ds +

∑
γ∈Γ

∫
γ
η q0 ⊗ n+ : JvK ds,

and the penalization parameter η is defined as in (1.12).
When we have non-homogeneous boundary conditions, the bilinear form does not change
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and the linear functional becomes:

F(v) =
∑
K∈Th

∫
K
f · v dx−

∑
γ∈FD

∫
γ
gD · (σ(v) · n− ηv) ds +

∑
γ∈FN

〈gN ,v〉γ

−
∑
γ∈Γ

∫
γ
q0 ⊗ n+ : {σ(v)} ds +

∑
γ∈Γ

∫
γ
η q0 ⊗ n+ : JvK ds.

Observe that the bilinear form is consistent with (1.15): A(·, ·) = A(·, ·) if Γ = ∅, i.e. no
interface is present. The interface conditions, that correspond to the last two equations
in (2.1), appear in the right-hand side of the new scheme. In particular, the two terms
on the rhs read as:

−
∑
γ∈Γ

∫
γ
q0 ⊗ n+ : {σ(v)} ds +

∑
γ∈Γ

∫
γ
η q0 ⊗ n+ : JvK ds,

need to compensate the following terms on the lhs:

−
∑
γ∈Γ

∫
γ
JuK : {σ(v)} ds +

∑
γ∈Γ

∫
γ
ηJuK : JvK ds,

which is no longer zero over Γ as in problem (1.1).
At the algebraic level, we will only need to modify the right hand side of the linear
system, adding the new terms. Using the notation of Section 1.2.6, we get:

Fi =
∫

Ω
f · Φidx−

∫
Γ
q0 · (σ(Φi) · n− ηΦi) ds, for i = 1, .., 2N,

or, equivalently, for q0 = (q0x, q0y)T and i = 1, .., N :

F1
i =

∑
γ∈Γ

{∫
γ
ηΦ1,+

i q0x ds −
(

1
2(λ+ 2µ) n+

1

∫
γ

∂Φ1,+
i

∂x
q0x ds + 1

2µ n
+
2

∫
γ

∂Φ1,+
i

∂y
q0x ds

)}

−
∑
γ∈Γ

{(
1
2µ n

+
1

∫
γ

∂Φ1,+
i

∂y
q0y ds + 1

2λ n
+
2

∫
γ

∂Φ1,+
i

∂x
q0y ds

)}
,

F2
i =

∑
γ∈Γ

{∫
γ
ηΦ2,+

i q0y ds −
(

1
2λ n

+
1

∫
γ

∂Φ2,+
i

∂y
q0x ds + 1

2µ n
+
2

∫
γ

∂Φ2,+
i

∂x
q0x ds

)}

−
∑
γ∈Γ

{(
1
2µ n

+
1

∫
γ

∂Φ2,+
i

∂x
q0y ds + 1

2(λ+ 2µ) n+
2

∫
γ

∂Φ2,+
i

∂y
q0y ds

)}
.
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2.2.1 Well-posedness and error analysis

For the sake of the analysis, we write Problem (2.3) in the following equivalent form:
find uh ∈ Vr

h

Ã(uh,vh) = F(vh) ∀ vh ∈ Vr
h, (2.4)

where
Ã(u,v) =

∑
K∈Th

∫
K
σ(u) : ε(v) dx +

∫
Ω
σ(u) : R(JvK) dx

+
∫

Ω
R(JuK) : σ(v) dx +

∑
γ∈FI∪FD∪Γ

∫
γ
ηJuK : JvK ds, ∀ u,v ∈ Vr

h.

Here R(·) : L2(FI ∪ FD)→ Vrh is the lifting operator of the traces of 2× 2 symmetric
tensors defined as:

∫
Ω
R(JwK) : σ(v) dx = −

∑
γ∈FI∪FD∪Γ

∫
γ
JwK : {σ(v)} ds ∀ v ∈ Vr

h. (2.5)

Note that, despite formulations (2.3) and (2.4) are equivalent at the discrete level, for-
mulation (2.4) is not strongly consistent with the continuous problem due to the discrete
nature of the lifting operator (2.5).

We define the space Ṽr

h = Vr
h + H1(Th) and endow it with the following DG norm:

||v||DG =
∑
K∈Th

||D
1
2 ε(v)||2L2(K) +

∑
γ∈FI∪FD∪Γ

||η
1
2 JvK||2L2(γ) ∀ v ∈ Ṽ

r

h. (2.6)

We next show the following result and refer to [43] for its proof.

Lemma 6. [43] For any v ∈ Ṽ
r

h it holds:

||R(JvK)||2L2(Ω) .
1
α

∑
γ∈FI∪FD∪Γ

||η
1
2 JvK||2L2(γ),

where α is the constant appearing in the definition of the penalty function, cf. (1.12).

The well-posedness of the DG formulation (2.4) is established in the following Lemma.

Lemma 7. (Well-posedness). Problem (2.4) admits a unique solution, provided that the
stabilization parameter α in (1.12) is chosen large enough. Moreover, the semi-discrete
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approximation depends continuously on the data, i.e.

||u||DG . ||f||L2(Ω) + ||q0||L2(Γ).

Proof. Using the standard arguments together with Lemma 6, it can be easily proved
that:

Ã(v,v) & ||v||2DG,

Ã(v,w) . ||v||DG||w||DG,

for all v,w ∈ Ṽr

h. Thus, the bilinear form Ã is continuous and coercive in the space Ṽr

h.
We are left to show that the functional F(·) is also continuous in Ṽ

r

h and then we can
employ Lax-Milgram Lemma (see [23]). To this aim by the Cauchy-Schwarz inequality
we get:

|F(v)| ≤
∣∣∣∣∣∣
∑
K∈Th

∫
K
f · v dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
γ∈Γ

∫
γ
q0 ⊗ n+ : {σ(v)} ds

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
γ∈Γ

∫
γ
η q0 ⊗ n+ : JvK ds

∣∣∣∣∣∣ .
We analyze the three terms separately and we use the regularity required for f and q0:

(I) ≤
 ∑
K∈Th

||f||2L2(K)

1/2 ∑
K∈Th

||v||2L2(K)

1/2

. ||f||L2(Ω)

 ∑
K∈Th

||ε(v)||2L2(K)

1/2

. ||f||L2(Ω)||v||DG,

where we have used Poincaré inequality for piecewise functions in H1, cf. [32], together
with Korn’s inequality:

For the second term we use the trace inequality (cf. [19]) and we obtain:

(II) =
∣∣∣∣∣∣
∑
γ∈Γ

∫
γ
q0 ⊗ n+ : {σ(v)} ds

∣∣∣∣∣∣ ≤
∑
γ∈Γ
||q0 ⊗ n+||2L2(γ)

1/2∑
γ∈Γ
||{σ(v)}||2L2(γ)

1/2

≤

∑
γ∈Γ
||q0 ⊗ n+||2L2(γ)

1/2 ∑
K∈Th

||Dε(v)||2L2(K+∪K−)

1/2

≤ ||q0 ⊗ n+ ||L2(Γ) ||Dε(v) ||L2(Th) . ||v||DG.

Finally, we estimate the third term with:
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2.2 The Discontinuous Galerkin formulation

(III) ≤
∑
γ∈Γ
||q0 ⊗ n+ ||2L2(γ)

1/2∑
γ∈Γ
||η1/2JvK ||2L2(γ)

1/2

=

= ||q0 ⊗ n+ ||L2(Γ) ||η1/2JvK ||L2(Γ) . ||v||DG.

Summing up over three bounds, the proof is complete.

It is easy to see that, since the exact solution u of Problem (2.1) belongs to H2(Ω \ Γ),
it satisfies:

A(u,vh) = F(vh) ∀ vh ∈ Vr
h,

so formulation (2.3) is strongly-consistent. On the other hand, formulation (2.4) is not
strongly-consistent, so we have to deal with the consistency error and introduce the
residual bilinear form, before stating an error bound, see [44] and [45].

Lemma 8. Let Rh(·, ·) : Ṽ
r

h ×Vr
h → R be the residual defined as:

Rh(v,w) = Ã(v,w)−A(v,w) ∀ v ∈ Ṽ
r

h,∀ w ∈ Vr
h. (2.7)

Then, for any v such that σ(v) ∈ Hs(Th), for some s ≥ 1, it holds:

sup
w ∈Vr

h, w6=0

|Rh(v,w)|
||w||DG

.
hmin(r+1,s)

rs
||σ(v)||Hs(Th), (2.8)

Proof. From the definition of the lifting operator R in (2.5) and denoting by
Π0 : L2(Ω)→ Vrh the L2-orthogonal projection onto Vrh, we can write the residual Rh(·, ·)
as:

Rh(v,w) = −
∑

γ∈FI∪FD∪Γ

∫
γ
{σ(v)} : JwK ds−

∫
Ω
R(JwK) : σ(v) dx

= −
∑

γ∈FI∪FD∪Γ

∫
γ
{σ(v)} : JwK ds−

∫
Ω
R(JwK) : Π0(σ(v)) dx

= −
∑

γ∈FI∪FD∪Γ

∫
γ
{σ(v)− Π0(σ(v))} : JwK ds.

From the Cauchy-Schwarz inequality we have:

|Rh(v,w)| ≤ ||η 1
2 JwK||L2(FI∪FD∪Γ) ||η−

1
2{σ(v)− Π0(σ(v))}||L2(FI∪FD∪Γ),
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where η is the penalty parameter function defined as in (1.12). By adding and subtracting
{Πr

h(σ(v))}, where Πr
h is defined as in Lemma 5, we obtain:

|Rh(v,w)| ≤ ||η 1
2 JwK||L2(FI∪FD∪Γ)

(
||η−

1
2{σ(v)−Πr

h(σ(v))}||2L2(FI∪FD∪Γ)+

+||{Πr
h(σ(v))− Π0(σ(v))}||2L2(FI∪FD∪Γ)

) 1
2

= (T1 + T2) 1
2 ||η

1
2 JwK||L2(FI∪FD∪Γ).

The term T1 can be bounded based on employing the interpolation estimates of
Lemma 5:

T1 .
∑
K∈Th

||η−
1
2{σ(v)− {Πr

h(σ(v))}||2L2(∂K) .
∑
K∈Th

h2min(r+1,s)

r2s+1 ||σ(v)||Hs(K).

For T2, from the trace inverse inequality (1.19), the definition of the L2- projection and
together with its continuity and interpolation estimates of Lemma 5, we have:

T2 .
∑
K∈Th

||η−
1
2{Πr

h(σ(v))− Π0(σ(v))}||2L2(∂K) .
1
α

∑
K∈Th

|| {Πr
h(σ(v))− Π0(σ(v))}||2L2(K)

= 1
α

∑
K∈Th

|| {Π0(Πr
h(σ(v))− σ(v))}||2L2(K) .

1
α

∑
K∈Th

|| {Πr
h(σ(v))− σ(v)}||2L2(K)

1
α

∑
K∈Th

h2min(r+1,s)

r2s ||σ(v)||2Hs(K).

Summing up the two contributions, we get:

|Rh(v,w)| .

. ||η
1
2 JwK||L2(FI∪FD∪Γ)

( ∑
K∈Th

h2min(r+1,s)

r2s+1 ||σ(v)||Hs(K) +
∑
K∈Th

h2min(r+1,s)

r2s ||σ(v)||2Hs(K)

) 1
2

. ||η
1
2 JwK||L2(FI∪FD∪Γ)

( ∑
K∈Th

h2min(r+1,s)

r2s ||σ(v)||2Hs(K)

) 1
2

. ||w||DG
( ∑
K∈Th

h2min(r+1,s)

r2s ||σ(v)||2Hs(K)

) 1
2

,

(2.9)
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where in the last step we have used the definition of the DG norm in (2.6) and the fact
that: ||η 1

2 JwK||L2(FI∪FD∪Γ) ≤ ||w||DG.
From (2.9) we can divide everything by ||w||DG, w 6= 0, take the supremum over
w ∈ Vr

h,w 6= 0 and the proof is complete.

We will also need the following Strang Lemma for the analysis.

Lemma 9. (Strang Lemma, cf. [46]). Consider the problem:

find u ∈ V : a(u, v) = F (v) ∀ v ∈ V,

where V is a Hilbert space with norm || · ||V , F ∈ V ′ is a bounded, linear functional on V
and a(·, ·) : V × V → R is a continuous and coercive bilinear form. Suppose also to have
an approximation of the before-mentioned problem of the form:

find uh ∈ Vh: ah(uh, vh) = Fh(vh) ∀ v ∈ Vh,

where {Vh, h > 0} is a family of finite dimensional spaces and ah(·, ·) is a continuos
bilinear form on Vh × Vh and is uniformly coercive on Vh, i.e.

ah(vh, vh) ≥ α∗||vh||2V ∀ vh ∈ Vh, for a positive α∗.

Suppose that Fh is a linear and continuous functional on Vh. Then, there exists a unique
solution uh for the approximate problem and

||uh||V ≤
1
α∗

sup
vh∈Vh\{0}

Fh(vh)
||vh||V

.

Moreover, the following a-priori error estimate holds:

||u− uh||V ≤
(

1 + M

α∗

)
inf

wh∈Vh

||u− wh||V + 1
α∗

sup
vh∈Vh\{0}

|fh(vh)− ah(u, vh)|
||vh||V

,

where M is the continuity constant of the bilinear form a(·, ·).

Now using the well-posedness of problem (2.4) (cf. Lemma 7), the strong consistency of
formulation (2.3) and Lemma 9, we obtain the following abstract error bound.

Lemma 10. Let the penalty parameter α of Problem (2.4) be sufficiently large. Then,
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the following estimate holds:

||u− uh||DG . inf
v∈Vr

h

||u− v||DG + sup
w ∈Vr

h, w6=0

|Rh(u,w)|
||w||DG

, (2.10)

where Rh(·, ·) is the residual defined in (2.7).

We have now all the technical tools, so we can state the main result for the error analysis.

Theorem 3. Suppose that the exact solution u ∈ H2(Ω\Γ)∩Hs(Th) and σ(u) ∈ Hs(Th),
for some s ≥ 1. If the parameter α appearing in the definition (1.12) of the stabilization
function is chosen sufficiently large and uh is the solution obtained with (2.3), it holds:

||u− uh||DG .
hmin(r+1,s)−1

rs−3/2 ||u||Hs(Th) + hmin(r+1,s)

rs
||σ(u)||Hs(Th). (2.11)

Proof. We recall the abstract bound (2.10) in Lemma (10):

||u− uh||DG . inf
v∈Vr

h

||u− v||DG + sup
w ∈Vr

h, w 6=0

|Rh(v,w)|
||w||DG

,

and we start to bound the first term on the right-hand side. Note that we can still exploit
Lemma 5 and in particular the estimates (1.21) and (1.22). So we obtain that, for s ≥ 2:

inf
v∈Vr

h

||u− v||DG ≤ ||u− Πr
hu||DG .

hmin(r+1,s)−1

rs−3/2 ||u||Hs(Th). (2.12)

Finally, the following bound for the second term:

sup
w ∈Vr

h, w 6=0

|Rh(v,w)|
||w||DG

.
hmin(r+1,s)

rs
||σ(v)||Hs(Th)

follows directly from the inequality (2.8).
Summing all the previous bounds, the proof of Theorem 3 is complete.

To obtain an a-priori estimate in the L2(Ω)-norm, we need more regularity of the solution,
in order to use a duality argument. Therefore, we assume that Ω, D, the fault Γ and
the slip field q0 are sufficiently regular so that u ∈ H2(Ω \ Γ) . The dual problem with
the given source g ∈ L2(Ω) is also well posed and its unique solution ξ satisfies the
following elliptic regularity: ξ ∈ H2(Ω \Γ), σ(ξ) ∈ H1(Ω \Γ), ||ξ||H2(Ω\Γ) . ||g||L2(Ω) and
||σ(ξ)||H1(Ω\Γ) . ||g||L2(Ω). The following bound holds.
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Theorem 4. We assume that the grid Th is quasi uniform. Let uh ∈ Vr
h be the DG

solution obtained with a penalty parameter α appearing in (1.12) sufficiently large. Then,

||u− uh||L2(Ω) .
hmin(r+1,s)

rs−1

(
||u||2Hs(Ω\Γ) + h

r2 ||σ(u)||Hs(Ω\Γ)

)
. (2.13)

Proof. We solve the dual problem as in (1.27) with g = u− uh and for any ξh ∈ Vr
h we

obtain:
||u− uh||2L2(Ω) = A(ξ,u− uh) = A(ξ − ξh,u− uh) =

= Ã(ξ − ξh,u− uh) +Rh(ξ − ξh,u− uh)

. ||ξ − ξh||DG||u− uh||DG +Rh(ξ − ξh,u− uh).

Moreover, thanks to the definition of Rh in (2.7) and the continuity of Ã(·, ·) we get:

Rh(ξ − ξh,u− uh) = −Rh(ξ − ξh,u) +Rh(ξ,u− uh).

Next, using Lemma 8 we have:

||u− uh||2L2(Ω) . ||ξ − ξh||DG||u− uh||DG + hmin(r+1,s)

rs
||σ(u)||Hs(Ω\Γ)||ξ − ξh||DG

+h
r
||σ(ξ)||H1(Ω\Γ)||u− uh||DG,

and by the elliptic regularity of the dual problem:

||u− uh||2L2(Ω) . ||ξ − ξh||DG||u− uh||DG + hmin(r+1,s)

rs
||σ(u)||Hs(Ω\Γ)||ξ − ξh||DG+

+h
r
||u− uh||L2(Ω)||u− uh||DG.

Choosing ξ = Πr
h(ξ) we can use estimate (2.12) with s = 2, r = 1 and the elliptic

regularity and we obtain:

||ξ − ξh||DG .
h

r
1
2
||ξ||H2(Ω\Γ) .

h

r
1
2
||u− uh||L2(Ω).

Combining the above bounds, we have:

||u−uh||2L2(Ω) .
h

r
1
2
||u−uh||L2(Ω)||u−uh||DG+ hmin(r+1,s)+1

rs+1 ||σ(u)||Hs(Ω\Γ)||u−uh||L2(Ω),
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that is
||u− uh||L2(Ω) .

h

r
1
2

(
||u− uh||DG + hmin(r+1,s)

rs+
1
2
||σ(u)||Hs(Ω\Γ)

)
.

Finally, applying Theorem 3 we obtain the thesis and the proof is complete.

2.3 Numerical results

In this section we present some numerical computations to illustrate the performance of
the proposed numerical scheme. In each example, we will consider a jump of the elastic
displacement through the interface Γ and a discontinuity of the stress tensor.
We will employ two different geometric configurations: a square domain Ω = (−1, 0)×(0, 1)
with a horizontal interface Γ = (−1, 0)× {0.2} and Ω = (−0.8, 0.8)× (−0.8, 0.8) with
Γ =[(−0.8;−0.5), (0.8;−0.1)]. In both cases we choose a sequence of grids aligned with
the crack. Figure 2.2 and Figure 2.3 show an example of the computational meshes under
3 levels of successive refinements.

(a) First level of
refinement.

(b) Second level of
refinement.

(c) Third level of
refinement.

Figure 2.2: Example 1: Domain with a horizontal interface Γ = (−1, 0)× {0.2}.
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(a) First level of
refinement.

(b) Second level of
refinement.

(c) Third level of
refinement.

Figure 2.3: Example 2: Domain with an oblique interface Γ =[(−0.8;−0.5), (0.8;−0.1)].

2.3.1 Example 1

In the first example, we choose the Lamé coefficients λ = 1 and µ = 1 and the exact
solution as:

u1(x, y) = ex cos(y) + 1 · (y > y1 + (y0 − y1)
(x0 − x1)(x− x1)),

u2(x, y) = x2 + y2 + 1 · (y > y1 + (y0 − y1)
(x0 − x1)(x− x1)),

where (x0, y0) = (−0.8,−0.5) and (x1, y1) = (0.8, 0.1) are the coordinates of the intersec-
tion of Γ =[(−0.8;−0.5), (0.8;−0.1)] with the boundary ∂Ω, cf. Figure 2.3.

The source term is chosen accordingly, i.e.:

f1(x, y) = −2ex cos(y),

f2(x, y) = 2ex sin(y)− 8,

as well as the Neumann and the Dirichlet data on ΓD = (−0.8, 0.8)×0.8 and ΓN = ∂Ω\ΓD.
It can be easily shown that in this case the jump through the fault is constant and is
given by q0 =[1, 1]T , whereas q1 =[0, 0]T , meaning that the normal component of the
stress is continuous along Γ. Figure 2.4 shows the computed solution on a mesh with
approximately 5200 elements (h = 0.0138), corresponding to 3 levels of refinement. The
computed errors using a polynomial degree r = 1 is shown in Figure 2.5 as a function of
the mesh size h (log-log scale). We can clearly observe a quadratic (linear respectively)
convergence rate when the error is measured in the L2 (H1, respectively) norm, as
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predicted by Theorem 3 and Theorem 4.

(a) First component of the solution u1. (b) Second component of the solution u2.

Figure 2.4: Example 1: Plot of the computed solution on a grid with granularity
h = 0.0138 (3 levels of refinement).

(a) Computed errors in the L2-norm versus the
mesh size h.

(b) Computed errors in the H1-norm versus
the mesh size h.

Figure 2.5: Example 1: Computed errors versus the mesh size h (log-log scale).
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2.3.2 Example 2

In this example we choose uniform Lamé coefficients λ = 1 and µ = 1 and the components
of the exact solution as:

u1(x, y) = sin(2πx) + x2 · (y > y0),

u2(x, y) = sin(2πy) + x2 · (y > y0),

where y0 = 0.2 is the y-coordinate of the horizontal interface Γ = (−1, 0)× {0.2}.
The given source term becomes:

f1(x, y) = 12π2 sin(2πx)− 6 · (y > y0),

f2(x, y) = 12π2 sin(2πy)− 2 · (y > y0).

and the Dirichlet boundary datum is chosen accordingly on ΓD ≡ ∂Ω, cf. Figure 2.2.
For this test, the vector q0 =[x2, x2]T is parabolic in the x direction and we have a jump
of the stress tensor along Γ: q1 =[−2x,−2x]T .
The results in Figure 2.6 show that, as expected, the parabolic discontinuity of the
displacement in the x direction along the interface Γ. Figure 2.6 displays both the
components of the computed solution on a mesh with granularity h = 0.0157 (that
corresponds to 3 levels of refinement). In Figure 2.7 we report the computed error in
the L2 and H1 norm as a function of the mesh size h (log-log scale), obtained with
a polynomial degree r = 1. We can clearly observe a quadratic ( linear respectively)
convergence of the error when measured if the L2 norm (H1 norm respectively), as
predicted by the theory.
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The elastostatic problem with a fault

(a) First component of the solution u1. (b) Second component of the solution u2.

Figure 2.6: Example 2: Plot of the computed solution on a grid with granularity
h = 0.0157 (3 levels of refinement).

(a) Computed errors in the L2-norm versus the
mesh size h.

(b) Computed errors in the H1-norm versus
the mesh size h.

Figure 2.7: Example 2: Computed errors versus the mesh size h (log-log scale).
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2.3.3 Example 3

In the third example we choose uniform Lamé coefficients λ = 1 and µ = 1 and the
components of the exact solution as:

u1(x, y) = sin(2πx) + sin(2πx) · (y > y0),

u2(x, y) = sin(2πy) + sin(2πy) · (y > y0),

where y0 is the y-coordinate of the horizontal interface Γ, defined as Γ = (−1, 0)× {0.2}.
The given source term is:

f1(x, y) = 12π2 sin(2πx) + 12π2 sin(2πx) · (y > y0),

f2(x, y) = 12π2 sin(2πy) + 12π2 sin(2πy) · (y > y0).

For this test, the vector q0 =[sin(2πx), sin(2πy)]T is a trigonometric function in the x
and y directions and we have q1 =[0, −6π cos(2πy)− 2π cos(2πx) ]T .
Figure 2.8 and Figure 2.9 show the two discontinuous components of the computed solution
on a mesh with approximately 4000 elements (granularity h = 0.0157, corresponding to 3
levels of refinement) and the computed errors, respectively. We remark that again we
observe the convergence rates predicted by the theory.

(a) First component of the solution u1. (b) Second component of the solution u2.

Figure 2.8: Example 3: Plot of the computed solution on a grid with granularity
h = 0.0157 (3 levels of refinement).
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The elastostatic problem with a fault

(a) Computed errors in the L2-norm versus the
mesh size h.

(b) Computed errors in the H1-norm versus
the mesh size h.

Figure 2.9: Example 3: Computed errors versus the mesh size h (log-log scale).

2.3.4 Example 4

In the last experiment, we try to combine the problem with discontinuous Lamè pa-
rameters across a geometrical interface to the one with a discontinuous solution across
a different crack. Thus, we take the unit square domain Ω = (0, 1) × (0, 1) divided
by two faults: the horizontal interface Γ1 = {0.4} × (0, 1) and the vertical interface
Γ2 = (0, 1)× {0.5}, as shown in Figure 2.10.

(a) First level of
refinement.

(b) Second level of
refinement.

(c) Third level of
refinement.

Figure 2.10: Example 3: Domain with two interfaces: Γ1 = {0.4} × (0, 1) and the
vertical Γ2 = (0, 1)× {0.5}.

We choose:
λ = µ = 1, if x < x0
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λ = µ = 2, if x ≥ x0

and the components of the exact solution as:

u1(x, y) = sin(2πx) + sin(2πx) · (y > y0),

u2(x, y) = sin(2πy) + sin(2πy) · (y > y0),

where y0 = 0.4 is the y-coordinate of Γ1 and x0 = 0.5 is the x-coordinate of Γ2.
The given source term is given by:

f1(x, y) = 12π2 sin(2πx) + 12π2 sin(2πx) · (x ≥ x0)− 6 · (y > y0)− 6 · (x ≥ x0) · (y > y0),

f2(x, y) = 12π2 sin(2πy) + 12π2 sin(2πy) · (x ≥ x0)− 2 · (y > y0)− 2 · (x ≥ x0) · (y > y0).

We impose Dirichlet boundary conditions on the whole boundary ∂Ω and the datum gD is
chosen accordingly. Figure 2.11 shows the two components of the computed solution on a
mesh with granularity h = 0.0135, that corresponds to 3 levels of refinement of an initial
mesh grid with 342 elements. In Figure 2.12, as before, we report the computed errors in
the L2 norm (left) and H1 norm (right) as a function of the mesh size h (log-log scale).
These results have been obtained base on employing piecewise linear polynomials, i.e.
r = 1. As expected, we clearly observe a linear convergence of the error when measured
in the H1 norm and a quadratic convergence of the error when measured in the L2 norm.

(a) First component of the solution u1. (b) Second component of the solution u2.

Figure 2.11: Example 4: Plot of the computed solution on a grid with granularity
h = 0.0135 (3 levels of refinement).
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(a) Computed errors in the L2-norm versus the
mesh size h.

(b) Computed errors in the H1-norm versus
the mesh size h.

Figure 2.12: Example 4: Computed errors versus the mesh size h (log-log scale).
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Chapter 3

The inverse problem and its
numerical approximation

Mathematically, we model the portion of the Earth where the fault is located as an
elastic medium Ω in the regime of small oscillations, the slip is represented by the jump
of the displacement on the fault. The surface of the earth is traction free, along the fault
the traction is continuous and in the part of Ω buried we impose homogeneous Dirichlet
boundary conditions. The mathematical model in two dimensions then reads as follows:

−∇ · σ(uΓ) = f in Ω,
σ(uΓ)−Dε(uΓ) = 0 in Ω,

uΓ = 0 on ΓD,
σ(uΓ)n = 0 on ΓN ,

JuΓK = q0 on Γ,
Jσ(uΓ)nK = 0 on Γ,

(3.1)

where the fault Γ is an open curve in Ω (see Figure 3.1).
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The inverse problem and its numerical approximation

Γ

Ω

Figure 3.1: Region occupied by the elastic material with a linear inclusion.

As we mentioned above, a-priori assumptions on the unknowns are needed in order to
regularize the inverse problem and to implement a reconstruction algorithm:

• Assumption 1: the domain Ω is a bounded simply connected and convex domain
of R2 such that diam(Ω) ≤ E, with E a given positive constant, and ∂Ω is Lipschitz.

• Assumption 2: suppose that Γ is a segment of endpoints P,Q such that:

L−1 ≤ |P −Q| ≤ L and d(Γ,R2 \ Ω) ≥ L−1

for a constant L ≥ 1.

• Assumption 3: assume that Ω is homogeneous and isotropic, being (λ, µ) the
Lamé coefficients, i.e. the elastic tensor field D is defined as in (1.3).

• Assumption 4: D is bounded and strongly convex in Ω, i.e., there exists a positive
constant ξ such that:

DA · A ≥ ξ|A|2

for any symmetric 2× 2 matrix A 6= 0.

• Assumption 5: suppose that the slip field q0 is piecewise constant and the stress
is continuous through Γ. Physically this suggests that the fault Γ is not opening or
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self-intersecting, hence only slipping is allowed.

Now let BR(0) ⊂ R2 be the closed ball of radius R centered in 0 and Ωd0 = {x ∈ Ω :
dist(x, ∂Ω) ≥ d0}.
Given all the stated assumptions, consider the map T : Ωd0 × Ωd0 ×BR(0)→ L2(Σ) :

T (P,Q,q0) = uq0
Γ |Σ, (3.2)

where uq0
Γ |Σ is the trace of the displacement uΓ, satisfying (3.1), on some open portion Σ

of the Neumann boundary ΓN .
The inverse problem we are interested is to determine the slip field q0 and the fault
Γ = (P,Q) simultaneously from the measurements of uΓ on Σ. Hence, we are interested
in studying the properties of the inverse map T−1.
We know from the results obtained in the previous chapters that a unique distributional
or weak solution uΓ of the forward problem (3.1) exists, according to the regularity of q0.
It is also easy to show that T is injective because uniqueness for the inverse problem
holds. In the following theorem we prove, by using unique-continuation properties of
solution to the Lamé system, that one surface measurement of the displacement field is
sufficient to recover uniquely both the crack and the slip field, assuming all the mentioned
hypotheses.

Theorem 5. (Uniqueness). Let Γ1,Γ2 ⊂ Ω be two linear faults satisfying Assumption
2 and q1, q2 6= 0 two constant vector slip fields. Let u1 and u2 be the unique solution
of (3.1) corresponding to the constant slip q0 = qi and the fault Γ = Γi, for i = 1, 2. If
u1|Σ = u2|Σ, then Γ1 = Γ2 and q1 = q2.

Proof. By usual arguments, we define the difference w = u1 − u2 on Ω \ Γ1 ∪ Γ2. Then

−∇ ·Dε(w) = 0 in Ω \ Γ1 ∪ Γ2,

w = 0 on ΓD,
σ(w)n = 0 on ΓN ,

(3.3)

where we have used the homogeneous boundary conditions of (3.1). We also know from
the hypothesis of the theorem that u1|Σ = u2|Σ, so it follows:

w|Σ = 0.
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We can then apply the result in [47] to obtain the unique continuation property for
elliptic operators. This means that w = 0 in Ω \ Γ1 ∪ Γ2.

We assume that Γ1 6= Γ2, and we fix y ∈ Γ1 such that y 6∈ Γ2. Then there exists a ball
Br(y) of radius r and centered in y that does not intersect Γ2. Hence,

0 = JwKBr(y)∩Γ1 = Ju1KBr(y)∩Γ1 = q1,

and this leads to a contradiction, because q1 has support on Γ1.
The same argument can be repeated switching the role of Γ1 and Γ2, to conclude that
Γ1 = Γ2. Therefore,

0 = JwKΓ1 = JwKΓ2 → Ju1KΓ1 = Ju2KΓ2 → q1 = q2,

and the proof is complete.

We have proved that the map T is injective. On the other hand, to regularize the
inverse problem and since measurements are affected by errors we also need to study
the continuous dependence of the unknowns from the data. This will be discussed in the
next section.

3.1 Lipschitz stability

To prove Lipschitz continuity of T−1 we will show that the assumptions of the following
general result proved in [48] are satisfied in our setting.

Theorem 6. Let H be a Banach space, U ∈ Rd an open set and K ⊂ U a convex
compact set. Let T ∈ C1(U ;H) and assume T is injective as well as DT (y), where for
each y ∈ U DT (y) ∈ L(Rd, H) is the Fréchet derivative of T evaluated in y ∈ U. Then,
there exists a constant C such that ∀ y, y′ ∈ K,

|y − y′| ≤ C||T (y)− T (y′)||H .

We will apply Theorem 6 with H = L2(Σ), U = Ω×Ω×R2 and assuming Ω to be a convex
set, we choose K = Ωd0 × Ωd0 ×BR(0). Moreover we will let T (y) := T (P,Q,q0) where
T (P,Q,q0) is defined in (3.2). Thus we are left to show that T is Fréchet-differentiable
and that its derivative is injective.
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3.1 Lipschitz stability

We will first show that T is Gateaux differentiable. We denote by Γt the segment [Pt, Qt]
where:

Pt = (1− t)P0 + tP1, Qt = (1− t)Q0 + tQ1, t ∈ (0, 1),

and qt the following slip field with support on Γt:

qt = (1− t)q0 + tq1, t ∈ (0, 1).

Now we define: ut = uqt
Γt

the solution of the model in (3.1) with q0 replaced by qt and
Γ by Γt. We know by [5] that the map T in (3.2) is Gateaux differentiable and can be
explicitly formulated. Let u′t = d

dt
ut be the derivative of the medium displacement with

respect to the variable t. We briefly remind the reader the generalization of the concept
of directional derivative for a functional between locally convex topological vector spaces,
the so-called “Gateaux derivative" (see [49]): suppose that X and Y are locally convex
topological vector spaces (for example, Banach spaces), U ⊂ X is open, and F : X → Y .
The Gateaux differential dF (u;ψ) of F at u ∈ U in the direction ψ ∈ X is defined as:

dF (u;ψ) = lim
τ→0

F (u+ τψ)− F (u)
τ

= d

dτ
F (u+ τψ).

If the limit exists for all ψ ∈ X, then one says that F is Gateaux differentiable at u.
First of all, we write the elastic displacement ut as the sum of two terms, thanks to the
linearity of the model:

ut = vt + ũ, (3.4)

where vt is the solution of:

−∇ ·Dε(vt) = 0 in Ω \ Γt,
vt = 0 on ΓD,

σ(vt)n = 0 on ΓN ,
JvtK = qt on Γt,

Jσ(vt)ntK = 0 on Γt,

(3.5)
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and ũ satisfies a classic linear elasticity PDEs system with a source f 6= 0:

−∇ ·Dε(ũ) = f in Ω,
ũ = 0 on ΓD,

σ(ũ)n = 0 on ΓN ,
JũK = 0 on Γt,

Jσ(ũ)ntK = 0 on Γt,

(3.6)

Now we know that the displacement vt can be written in a form of a double layer
potential, as in [5] and [50]: for any y ∈ ∂Ω

vt(y) =
∫

Γt

Dε(N(x,y))nt · qt dσ(x) =

=
∫ 1

0
Dε(N((1− s)Pt + sQt,y))nt · qt |Qt − Pt|ds, (3.7)

where N(·,y) is the Neumann function related to the elastic problem (3.5) with homoge-
neous mixed boundary conditions. We also define τt = Qt−Pt

|Qt−Pt| as the unit tangent vector
field to the segment Γt and nt = τ⊥t as the unit normal vector field.
On the other hand, ũ is the solution of a linear elasticity problem with classic transmission
conditions. Hence, ũ ∈ H1(Ω) and it does not depend neither on Γt nor on qt:

d

dt
ũ = 0.

This implies that:
u′t = d

dt
vt,

whose explicit form is provided in the following Lemma.

Lemma 11. For any y ∈ ∂Ω

u′t(y) = +
∫ 1

0
Dε(N((1− s)Pt + sQt,y))nt · (q1 − q0)(|Qt − Pt|)ds (3.8)

+ Dε(N(Qt,y)) ( ((Q1 −Q0) · τt)nt − ((Q1 −Q0) · nt)τt ) · qt
−Dε(N(Pt,y)) ( ((P1 − P0) · τt)nt − ((P1 − P0) · nt)τt ) · qt.

60



3.1 Lipschitz stability

Proof. Taking the derivative of vt defined in (3.7), we have:

u′t(y) =
∫ 1

0

( d
dt
Dε(N((1− s)Pt + sQt,y))

)
nt · qt|Qt − Pt| ds

+
∫ 1

0
Dε(N((1− s)Pt + sQt,y))nt ·

d

dt
(qt|Qt − Pt|)ds

+
∫ 1

0
Dε(N((1− s)Pt + sQt,y))

(dnt
dt

)
· qt|Qt − Pt|ds

:= I1 + I2 + I3. (3.9)

Following the proof in [5], we obtain:

I1 = Dε(N(Qt,y))(At(1)nt −Bt(1)τt) · qt (3.10)
−Dε(N(Pt,y))(At(0)nt −Bt(0)τt) · qt

−
∫ 1

0
Dε(N((1− s)Pt + sQt,y)) d

ds
(At(s)nt · qt −Bt(s)τt · qt)ds,

where
At(1) = (Q1 −Q0) · τt, At(0) = (P1 − P0) · τt,

Bt(1) = (Q1 −Q0) · nt, Bt(0) = (P1 − P0) · nt,

d

ds
(At(s)nt·qt−Bt(s)τt·qt) =

(
((Q1−Q0)−(P1−P0))·τt)nt−((Q1−Q0)−(P1−P0))·nt)τt

)
·qt.

For the term I2, note that
∫ 1

0
Dε(N((1− s)Pt + sQt, y))nt ·

d

dt
(qt|Qt − Pt|)ds =

=
∫ 1

0
Dε(N((1− s)Pt + sQt, y))nt ·

d

dt
((tq1 + (1− t)q0)|Qt − Pt|)ds =

=
∫ 1

0
Dε(N((1− s)Pt + sQt,y))nt ·

(
qt
d

dt
(|Qt − Pt|) + (q1 − q0)(|Qt − Pt|)

)
ds =

=
∫ 1

0
Dε(N((1−s)Pt+sQt,y))nt·

(
qt(((Q1−Q0)−(P1−P0))·τt)+(q1−q0)(|Qt−Pt|)

)
ds.

Finally, it is easy to show that

dnt
dt

= −
(

(Q1 −Q0)− (P1 − P0)
|Qt − Pt|

· nt
)
τt,
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and we get:

I3 = −
∫ 1

0
Dε(N((1− s)Pt + sQt,y))τt · qt

(
(Q1 −Q0)− (P1 − P0)

)
· nt ds.

Summing up all the results for I1, I2 and I3, the proof is complete.

Now we have to show that the Gateaux derivative in Lemma 11 is continuous, so that it
coincides with the Fréchet derivative (cf [51] and [52]) which will be continuous as well.
If we next prove that this derivative is also injective, then we can apply Theorem 6.

Lemma 12. For a fixed y on ∂Ω, the map F: (Pt, Qt, qt)→ u′t(y), as defined in Lemma
11, is continuous.

Proof. The proof is trivial because we can exploit the result of local regularity for the
Neumann function. By fixing y on ∂Ω, N(·,y) is the weak solution of a homogeneous
elliptic problem with constant coefficients and mixed boundary conditions, i.e.:

−∇ ·Dε(N(·,y)) = 0 in Ω,
N(·,y) = 0 on ΓD,

σ(N(·,y))n = 0 on ΓN ,

(3.11)

and so it is locally C∞. We perturb the position of the fault and of the constant slip field
and we use the linearity of the integrals in the slip and the regularity of the Neumann
function to obtain the continuity of u′t(y). This means that small perturbations of both
the slip field and the fault correspond to small variation of u′t(y), i.e.:
∀ ε > 0 ∃ δPt, δQt, δqt such that

|F (Pt + δPt, Qt + δQt,qt + δqt)− F (Pt, Qt,qt)| < ε.

We are left to show that the Frèchet derivative is injective.

Lemma 13. (Uniqueness). For a fixed y on ∂Ω and a fixed configuration for t = t0 ∈
(0, 1), the map F : (Pt0 , Qt0 , qt0)→ u′t(y)|t=t0 is injective.

Proof. Let us define V = (V1,V2,V3) with V1 = P1 − P0,V2 = Q1 −Q0,V3 = q1 − q0

the directions of the Frèchet derivative, so that F (Pt0 , Qt0 ,qt0)[V]= u′t(y)|t=t0 . We can
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exploit the linearity of the Frèchet derivative, so that it is sufficient to prove that
F [V]= 0 ⇒ V = 0 in order to obtain the injectivity property. This means that if
u′t(y)|t=t0 = 0 for some y on ∂Ω, we want to show that P1 = P0, Q1 = Q0 and q1 = q0.
On the other hand, we also derive from the representation of u′t and the properties of N
that the derivative of the elastic displacement satisfies the problem:

−∇ ·Dε(u′t) = 0 in Ω \ Γt,

σ(u′t(y))n = 0 onΓN ,

which implies by the unique continuation property for elliptic operators:

u′t = 0 in Ω \ Γt.

This means that, for all y ∈ Ω \ Γt

u′t(y) = +
∫ 1

0
Dε(N((1− s)Pt + sQt,y))nt · (q1 − q0)(|Qt − Pt|)ds

+ Dε(N(Qt,y)) ( ((Q1 −Q0) · τt)nt − ((Q1 −Q0) · nt)τt ) · qt
−Dε(N(Pt,y)) ( ((P1 − P0) · τt)nt − ((P1 − P0) · nt)τt ) · qt.
= I1 + I2 + I3 = 0. (3.12)

We know that for the second and the third term it has to be Q1 = Q0 and P1 = P0,
otherwise we will get confliction since these terms would blow up, while the derivative
must be zero. Therefore, we get I2 = I3 = 0.
Note that but by the well-know regularity results for elliptic systems (cf. [47]), we have

N(x,y) = Γ(x,y) + ω(x,y),

where ω is a smooth function and Γ(x,y) is the fundamental free space solution of
∇ · (Dε(·)). Now, exploiting the fact that (q1,q0) and |Qt − Pt| are constant quantities
along Γt, we can write I1 as:

∫ 1

0
Dε(N((1− s)Pt + sQt,y))nt · (q1 − q0)(|Qt − Pt|)ds =(∫ 1

0
Dε(Γ((1− s)Pt + sQt,y)− ω((1− s)Pt + sQt,y))ntds

)
· (q1 − q0)(|Qt − Pt|)

The fundamental solution is known and the integral of its traction along Γt can be
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explicitly calculated, using symbolic computing software (e.g. Mathematica by Wolfram).
One can see that logarithmic singularities at the tips of the segment appear, so again the
only way the Frèchet derivative to be zero is to require Q1 = Q0, P1 = P0 and q1 = q0.

Summarizing the results, we have showed that all the hypotheses of Theorem 6 are
satisfied in our setting. Thus we can state a theorem for the Lipschitz stability applied
in our context.

Theorem 7. (Lipschitz stability). Let Γ1 and Γ2 be two segments satisfying Assumption
2 and suppose that Assumptions 1, 3, 4, 5 are verified. Let uq1

Γ1 and uq2
Γ2 be the functions

satisfying (3.1), where Γ is replaced by Γ1 and Γ2, respectively, and q0 by q1 and q2.
Then there exists a constant C such that:

dH(Γ1,Γ2) + |q1 − q2| ≤ C||uq1
Γ1 − uq2

Γ2 ||L2(Σ),

where Σ is an open subset of ΓN .
Here δH denotes the Hausdorff distance:

dH(Γ1,Γ2) = min{max{|P1 − P2|, |Q1 −Q2|},max{|P1 −Q2|, |Q1 − P2|}},

where P1, Q1 and P2, Q2 are the endpoints of Γ1 and Γ2 respectively.

All the properties of the map T allow us to regularize the problem and make it well-posed.
We are now ready to construct an algorithm to solve the inverse map T−1, being sure
that the result will be physical relevant and will not cause oscillations.

3.2 Numerical approximation of the inverse problem

A possible way to solve the inverse problem would be to write the solution uΓ of the
problem in (3.1) explicitly as a function of the slip field and the fault Γ in a similar way
to the decomposition in (3.4):

uΓ = u0 + w. (3.13)

The displacement u0 in (3.13) is defined as a double layer potential on Γ, through the
Neumann function associated to the elasticity tensor in the free space, so that it satisfies:
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Ju0K|Γ = q0 and Jσ(u0)nK|Γ = 0. The function w in (3.13) would be a regular correction
term to take into account the given source f and the mixed boundary conditions in (3.1).

However, this approach would lead us to a highly complicated system of integral equations
to determine the slip field and the position of the fault.
We will implement instead a Tikhonov-type algorithm to generate a numerical reconstruc-
tion of the fault geometry and slip field from a finite number of surface measurements.
The key idea behind the Tikhonov method (see cf. [53] and [54]), that is a common
method of regularization for ill-posed problems, is to directly incorporate a-priori in-
formation penalizing the misfit functional with an additional term. In particular, the
Tikhonov regularized estimate is defined as the solution to the following minimization
problem:

FTIK(β) = argminu||ũ− u||22 + β2||Ru||22, (3.14)

where in our case u is the elastic displacement solving (3.1) and ũ are the available
measurements on Σ, i.e. ũ = u|Σ. The first term in (3.14) is the same L2 residual norm
appearing in the least-squares approach and ensures fidelity to data, becuase it minimizes
the distance in average between the measured datum and the real solution. The operator
R of the second term in (3.14) is called the “regularizer” or “side constraint” and captures
a-priori knowledge about the expected behavior of u through an additional penalty
term. If no additional regularity is assumed (that is, if β or R is zero) then we can
minimize FTIK to zero easily, but then the solution is highly oscillatory, locally very large
and usually has no physical relevance, because of the instability of the inverse problem.
Common choices for the regularizing operator R include discrete approximations of the
surface gradient or Laplacian operators, forcing solutions with limited high-frequency
energy and thus capturing a-priori belief that solution should be smooth. The parameter
α acts like a Lagrangian multiplier and controls the trade-off between the two terms, see
for instance [55].
However, in our context, we have already regularized the ill-posed inverse problem,
restricting the set of unknowns to a finite dimensional set and proving a Lipschitz
stability. Therefore, the functional to be minimized is the following:

F = min
∫

Σ
|ũ− u(Γ,q0)|2 ds, (3.15)

where Γ and q0 are the fault and the slip field we want to determine, respectively, with
the constraint that Γ is a segment and q0 is constant.
Before discussing the numerical scheme that we will employ to solve the optimization
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problem in (3.15), it will be necessary to discretize the data we are provided with,
following some hints from the algorithm presented in [56], [57] and [58].

3.3 Parameterization and discretization of the data

First, let us consider a square domain Ω ⊂ R2, where we define the bottom edge as a
Dirichlet boundary ΓD and the Neumann boundary as the union of the remaining faces,
i.e. ΓN = ∂Ω \ ΓD. Let us denote by Pj, j = 1, ...N the points, as in Figure 3.2, that
belong to the surface Σ ⊂ ΓN , where displacement measurements ũj on the points Pj are
available. Assume that Γ is a linear crack, dividing the domain Ω into two sub-regions.
To uniquely determine the position of the fault, we define two parameters:
1: d is the distance between the intersection of the fault with the left side of the domain
and the bottom edge ΓD, as shown in Figure 3.2;
2: θ is the angle of the inclination of the fault, measured with respect to the direction of
ΓD, represented by the dashed line in Figure 3.2.

Figure 3.2: Parameterization of the fault position and displacement measurements on
the boundary Σ.
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Now, for a fixed fault Γ defined through the pair (d, θ), we introduce the functional:

Fd,θ(q0) = (
N∑
j=1
|ũj − u(Pj)|2)/(

N∑
j=1
|ũj|2), (3.16)

that is the discrete analogue of (3.15). Next we define C the set of admissible slip fields,
namely all the functions q0 piecewise constant or piecewise linear, i.e.

q0 = (a11x+ a12y + b1, a21x+ a22y + b2)T = Ax + b, (3.17)

where we have used the following definition:

A =
a11 a12

a21 a22

 , x =
x
y

 , b =
b1

b2

 .
In both cases, we assume that the slip field is null on the endpoints of Γ. Note that we
did not prove rigorously the Lipschtiz stability for the case of piecewise linear slip fields,
but we expect that it holds true also in this case.
Now we have all the discrete data and the ingredients to define a reconstruction algorithm.

3.4 Reconstruction and genetic algorithms

The idea is to use an iterative algorithm that first, given a linear crack, minimizes the
functional Fd,θ on all the possible slip fields q0 of the admissible configurations C.
Then, given the new coefficients for the linear slip field A and b, we minimize the same
functional over the fault and we update the values of d and θ. The algorithm is iterative
and it ends when the value of the objective function is less or equal than a tolerance, cf.
Algorithm 1.

Note that in Step 1 and 3 of Algorithm 1, we have introduced the class of “genetic algo-
rithms", that are methods for solving approximately both constrained and unconstrained
optimization problems and are based on natural selection, i.e. the process that drives
biological evolution. Genetic algorithms repeatedly modify a population of individual
solutions. At each step, the method select individuals at random from the current
population to be parents and uses them to produce the children for the next generation.
Over successive generations, the population “evolves" toward an optimal solution. Genetic
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Algorithm 1: Inverse problem
Result: Determine the slip field q0 and the position of the fault Γ.
Start from some initial guess for d, θ;
while Fd,θ(q0) > tol do

1. Compute
f(d, θ) = infq0∈CFd,θ(q0),

using a genetic algorithm;
2. update the slip field q0 with A, b;
3. compute

infd,θf(d, θ)

using a genetic algorithm;
4. update d, θ;

end

algorithms differ from a classical, derivative-based, optimization algorithms because they
generate a population of points instead of a single point at each iteration such that the
best point in the population approaches an optimal solution.

Before reporting some computational tests of Algorithm 1, we briefly explain how this
class of algorithms works in practice. We call fitness function the function that has to be
minimized and an individual any point to which you can apply the fitness function. The
algorithm begins by creating a random initial population, which is an array of individuals,
as shown in the Figure 3.3.

Figure 3.3: Random Initial Population. Example taken from [59].
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Then at each iteration, the genetic algorithm performs a series of computations on
the current population, called parents, and uses them to create individuals in the next
generation, called children. Typically, there are three main types of rules that are used
to create the next generation from the current population:

- Elite are the individuals in the current generation with the best fitness values. These
individuals automatically survive to the next generation.

- Crossover are created by combining the vectors of a pair of parents.
- Mutation children are created by introducing random changes, or mutations, to a

single parent.
The schematic diagram in Figure 3.4 illustrates the three types of children.

Figure 3.4: Types of children in genetic algorithms. Image taken from [59].

The algorithm creates crossover children by combining pairs of parents in the current
population. At each coordinate of the child vector, the default crossover function randomly
selects an entry, or gene, at the same coordinate from one of the two parents and assigns
it to the child. The algorithm creates mutation children by randomly changing the genes
of individual parents. Both processes are essential to the genetic algorithm. Crossover
enables the algorithm to extract the best genes from different individuals and recombine
them into potentially superior children. Mutation increases the diversity of a population
and thereby the likelihood that the algorithm will generate individuals with better fitness
values. Figure 3.5 shows the populations at iterations 60, 80, 95, and 100.
As the number of generations increases, the individuals in the population get closer
together and approach the minimum point (0, 0). Finally, there are several stopping
criteria for the genetic algorithms which will be discussed in the next section, when
presenting the numerical results.
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(a) Population after 60 iterations (b) Population after 80 iterations

(c) Population after 95 iterations (d) Population after 100 iterations

Figure 3.5: Iterations of a genetic algorithm. Example taken from [59].

3.5 Numerical results

This last section is devoted to the presentation of some computational results with the
aim of testing the performance of the proposed approach for the numerical discretization
of the inverse problem.
In each example we will suppose to have a square domain Ω = (−1, 0)× (0, 1), the crack
Γ completely internal to the domain and Σ = {(x, y) ∈ ∂Ω : y = 1}, that is the portion
of the boundary where the measurements are available, as in Figure 3.2.
For the sake of simplicity, we will select slip fields that are linear only in the x-direction
and we will always consider an horizontal fault, meaning that the inclination θ is equal
to zero (cf. Figure 3.2). Considering the aforementioned assumptions and the fact
that the problem is two dimensional, we will obtain five numbers for each example:
(a1, b1, a2, b2, d), where a1, b1, a2, b2 are the coefficients of the slip field (a1x+b1, a2x+b2)T
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and d is the distance between the intersection of the fault with the left side of the domain
and the bottom edge .

3.5.1 Example 1

In the first example we do not use the tool of the forward problem for the data formation
process, but we choose a manufactured solution in order to test the performance of the
algorithm. We suppose that both the first and the second component of the elastic
displacement are sinusoidal with a constant jump on the interface q0 = (1, 3)T , null on
the endpoints of Γ, and the fault located in d = 0.7.
In this thesis we employ the genetic algorithm available in the Matlab optimization

toolbox. The algorithm terminates as soon as any one of these conditions is satisfied:
- Generations: the algorithm stops when the number of generations reaches a maximum
value (user dependent).
- Time limit: the algorithm terminates whenever the computational time exceed a given
value (user dependent).
-Fitness limit: the algorithm stops when the value of the fitness function for the best
point in the current population is less than or equal to Fitness limit (user dependent).
Since the minimum value of the objective function is zero, we set the Fitness limit to
1e-30 and we test the algorithm three times with an increasing number of generations
as stopping criterion. In the first test we have used 100 as the maximum number of
generations for the genetic algorithm with d as variable and 400 for the genetic algorithm
with (a1, b1, a2, b2) as variables. In the second test we have chosen 150 and 700 generations
as stopping criterion, respectively; finally we have analyzed the results with 300 and 1000
generations in the third test, as showed in Table 3.1.

Max. Nr. of Generations for fd,θ Max. Nr. of Generations for F (q0)
Test 1 100 400
Test 2 150 700
Test 3 300 1000

Table 3.1: Set-up of the stopping criterion.

The result it is showed in Table 3.2 and is very close with what we would expect.
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Variables Exact values Test 1 Test 2 Test 3
a1 0 0.003 0.001 0
b1 1 0.997 0.999 1
a2 0 0.009 0.003 0.001
b2 3 3.009 3.008 3
d 0.7 0.699 0.702 0.7

Table 3.2: Example 1. Comparison between the exact parameters and the values
computed with Algorithm 1.

In Figure 3.6, 3.7 and 3.8 we have an example of the performance of the genetic algorithm
with the slip field as variable for the cost functional. The figures show the trend of the
best and the mean fitness values as the number of generations increases. Best fitness
refers to the fitness of the best individual in the current population. On the other hand,
the average or the mean fitness is simply the mean of the fitness values across the
entire population. At each generation the population changes and we get a new average
population fitness. What we can clearly see in the plots is that best fitness tends to get
better as the iterations proceed. This happens quickly at first and then slowing down as
the algorithm finds better and better solutions that are harder to improve upon. The
mean fitness is always less than (or equal to) the best fitness, and the difference between
the two goes on decreasing over time.
In conclusion, it is evident the minimum value reached by the functional in the 3 different
tests decreases considerably (4e-4, 2.18e-7, 7.19e-12) when we modify the stopping criterion
Generations. This will allow us to have a better reconstruction.
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Figure 3.6: Example 1, Test 1: Fitness value versus generation (log-log scale).

Figure 3.7: Example 1, Test 2: Fitness value versus generation (log-log scale).
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Figure 3.8: Example 1, Test 3: Fitness value versus generation (log-log scale).

We remind the reader that we employ a genetic algorithm twice in a single iteration of
Algorithm 1, in order to find both the slip field and the position of the fault.
Thus, increasing the number of possible generations when performing a genetic algorithm
does not lead to a growth of the number of iterations for Algorithm 1 as well. It is more
likely that increasing the number of generations allows to have a higher precision and
consequently, the tolerance is reached by the functional faster and Algorithm 1 stops
earlier. Note that the results reported in the Table 3.2 and in Figure 3.6, 3.7 and 3.8
refer to the last iteration of Algorithm 1.

3.5.2 Example 2

In the second example, we still choose a manufactured solution but with a linear slip field
q0 = (2x+ 1, 3x+ 5)T , null on the endpoints of Γ, and the fault located in d = 0.5. We
test the algorithm, for three different set-up of the maximum number of generations, cf.
Table 3.3. The computed values of the parameters a1, b1, a2, b2, d are shown in Table 3.4.
In Figure 3.9, 3.10 and 3.11 we report the trend of the best and mean fitness values as a
function of the generations number. Again it is evident that we achieve a better value
of the objective function as we increase the stopping criterion of Generations: the best
values found are: 4.17e-08, 3.5e-10, 4.95e-13 which correspond to a different maximum
number of generations in the three tests: 400, 700, 900.
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Max. Nr. of Generations for fd,θ Max. Nr. of Generations for F (q0)
Test 1 50 400
Test 2 100 700
Test 3 300 900

Table 3.3: Set-up of the stopping criterion.

Variables Exact values Test 1 Test 2 Test 3
a1 2 2.242 2.005 2
b1 1 0.844 0.996 1
a2 3 2.899 2.997 3
b2 5 4.981 5.002 5
d 0.5 0.499 0.5 0.5

Table 3.4: Example 2. Comparison between the exact parameters and the values
computed with Algorithm 1.

Figure 3.9: Example 2, Test 1: Fitness value versus generation (log-log scale).

3.5.3 Example 3

Finally, in the third example, we use the data coming from the resolution of the
forward problem. Suppose that we are provided with an external load f and that
we have homogeneous Dirichlet and Neumann boundary conditions, a piecewise constant
slip field on Γ, e.g. q0 = (3, 7)T and null on the endpoints of Γ, and the crack position,
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Figure 3.10: Example 2, Test 2: Fitness value versus generation (log-log scale).

Figure 3.11: Example 2, Test 3: Fitness value versus generation (log-log scale).

e.g. d = 0.2. We do not know the analytical expression of the true solution, but we let
the Discontinuous Galerkin algorithm solve the Lamè system in order to obtain the first
and the second component of the numerical displacement, as showed in Figure 3.12.
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(a) First component of the solution u1. (b) Second component of the solution u2.

Figure 3.12: Example 3. Plot of the computed solution on a grid with granularity
h = 0.0135 (3 levels of refinement).

Now we are able to select the values of the elastic displacement on Σ from the vector
solution but on a coarser, as we were taking measurements on a portion of the Earth’s
crust. Then, we use the data of the forward problem in the reconstruction Algorithm
1 with a set-up of the generations as in Table 3.5. The result that we obtain is quite
accurate and is reported in Table 3.6.

Max. Nr. of Generations for fd,θ Max. Nr. of Generations for F (q0)
Test 1 200 400
Test 2 300 800
Test 3 400 1200

Table 3.5: Set-up of the stopping criterion.

Variables Exact values Test 1 Test 2 Test 3
a1 0 0.003 0.001 0
b1 3 2.887 3.999 3
a2 0 0.118 0.001 0
b2 7 7.189 7.001 7
d 0.2 0.199 0.2 0.2

Table 3.6: Example 3. Comparison between the exact parameters and the values
computed with Algorithm 1.
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Chapter 4

Conclusions

In the first part of this work, we investigated the elastostatic equations in a two dimen-
sional setting. The PDEs sytem is applied to Lipschitiz and bounded domains that
can be either homogeneous and without cracks or heterogeneous (i.e. Lamè coefficient
are not necessarily uniform inside the body) and can present a fault, where interface
conditions are applied. On one hand, we supposed suitable hypotheses on the regularity
of the data, i.e. the source term, the Cauchy stress tensor, the boundary conditions
and the slip field for the interface problem, and we analyzed the well-posedness of both
the models from an analytical point of view. On the other hand, from a numerical
point of view, we proposed and studied a discontinuous Galerkin finite element method,
that is the most natural choice when dealing with cracks phenomena. We proved the
well-posedness of the resulting schemes and an a-priori error estimate that take into
account the local regularity of the exact solution. In both cases we were able to recover
an optimal bound in the mesh size of the computational domain and a sub-optimal
bound in the local approximation degree, when the error is measured in a suitable energy
norm. The sharpness of our theoretical analysis has been confirmed by the numerical
experiments carried on simplified test cases with manufactured solutions. However, the
two methods seem to be robust and stable and can be employed in cases of practical
interest, such as in the earthquake modeling and in the analysis of the slip conditions
between subduction zones.

To the same aim of simulating seismic scenarios, the second part of the thesis is devoted
to an accurate study of the inverse problem, that is the determination of the fault
position and the slip on the fault from surface measurements of the elastic displacement
in a homogeneous body. In particular, we established uniqueness and we mitigated the
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ill-posedness of the inverse problem, by supposing the fault to be a segment inside the
medium and the slip to be a constant field. These a-priori assumptions allowed us to
prove a Lipschitz stability starting from a theorem of functional analysis. As a result,
we were able to develop an iterative Tikhonov algorithm for the reconstruction of the
unknown parameters, being sure that the result would have been physically relevant and
not oscillatory. Indeed, this was confirmed by our numerical experiments.

Concerning the future works, the natural continuation of this thesis is the extension of the
forward elastostatic problem in a three dimensional setting and the study of numerical
schemes for the dynamic linear elasticity model with cracks.
Moreover, it would be interesting to study the inverse problem exploiting the possibility of
rewriting the elastic displacement as a double layer potential on the fault and analyze in
detail the resulting system of integral equations and the case of a fault in an heterogeneous
medium.
Finally, in order to recover the unknown parameters, the iterative method that we
proposed could be substituted by an algorithm based on the shape derivative of the
functional to be minimized. This scheme is obviously much more complicated to construct
but probably more effective and useful in the geophysical applications.
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