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Abstract

The maximum horizontal flight speed of tiltrotor aircraft is limited by the

aeroelastic instability called “whirl flutter”. Nowadays, though, the phe-

nomenon understanding is still limited. For this reason, filling such knowl-

edge gap is a well established goal.

In order to gain better understanding of whirl flutter, the current re-

search efforts are focusing on investigating the stability of arbitrary tiltrotor

configurations. This is supported by the construction of wind tunnel test-

beds designed to model and analyze a wide range of tiltrotor assemblies.

Alongside such experimental research campaigns, the need of develop-

ing strong and flexible numerical tools is mandatory to both guide and gain

information from the real test-beds. As consequence, in this work, the devel-

opment of TiPa is presented. The software defines a flexible interface to the

general-purpose multibody dynamics solver MBDyn to provide a paramet-

ric tiltrotor model generation and investigation tool. The tool is combined

with DAKOTA, an Uncertainty Quantification (UQ) software. This coop-

eration gives birth to a complete aeroelastic stochastic predictor conceived

to simplify the identification of the system design parameters that mostly

affect the stability margin of an arbitrary tiltrotor configuration. The use of

the generalized Polynomial Chaos Expansions (gPCE) provides an efficient

and versatile forward propagating UQ tool, which delivers useful informa-

tion through the assessment of the system stochastic response to a set of

non-deterministic inputs.

The thesis proposes two versions of the parametric model generator.

One is based on the definition of complete MBDyn tiltrotor models while

the other one relies on the generation of two different subsystems to be

assembled through a substructuring approach. The second strategy relies on

adaptations of both the multiblade coordinates (MBC) transformation and

the Craig-Bampton approach applied to MBDyn multibody formulation.
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Riassunto in italiano

Questo lavoro presenta lo sviluppo di un solutore parametrico e stocastico

per lo studio dell’instabilità aeroelastica chiamata “whirl flutter” tipica dei

convertiplani. La tesi presenta sia la completa concezione teorica dello stru-

mento che la sua applicazione.

Lo formulazione del solutore si basa sull’interazione di tre elementi: un

generatore parametrico di modelli di convertiplano chiamato TiPa, il solu-

tore aeroelastico multicorpo MBDyn e il software DAKOTA. L’interazione

dei tre è disegnata per fornire un completo strumento di investigazione

aeroelastica in grado di valutare gli effetti della presenza di parametri non-

deterministici sulla risposta dei modelli testati. Lo scopo principale di ciò è

facilitare l’identificazione dei parametri che più contribuiscono all’insorgere

del whirl flutter.

Lo sviluppo di TiPa è iniziato prendendo ispirazione dal progetto TRAST.

L’obiettivo di tale progetto è l’incremento dell’attuale livello di conoscenza

del fenomeno aeroelastico, promuovendo l’identificazione dei fattori che più

contribuiscono alla nascita del whirl flutter in una generica configurazione

di questi velivoli. TiPa è stato disegnato appositamente per fornire una in-

terfaccia flessibile alla modellazione di set-up arbitrari in galleria del vento.

La concezione parametrica di TiPa è stata fondamentale per introdurre

un metodo di propagazione in avanti di parametri incerti. L’implementazione

di tale formalismo, possibile grazie al software DAKOTA, produce un nuovo

cluster di informazioni che favorisce l’investigazione parametrica dell’instabilità.

La tesi riporta una dettagliata revisione dei principali metodi che possono

essere usati nella propagazione di parametri incerti, con il fine di individuare

lo strumento ottimale da introdurre nel formalismo completo del solutore.

La versione non-intrusiva della generalized Polynomial Chaos Expansions

technique (gPCE) è stata selezionata per lo scopo in quanto metodo più

efficente, versatile e adatto alla specifica applicazione.

La completa definizione del solutore parametrico e stocastico è data dalla

combinazione di TiPa e DAKOTA. Questo permette sia l’esecuzione di com-
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plete analisi di sensitività globale e locale, sia l’investigazione della risposta

del sistema a input non-deterministici attraverso la definizione delle funzioni

di densità di probabilità delle risposte e all’identificazione stocastica delle

curve V-f e V-ξ. Le simualazioni di DAKOTA e TiPa forniscono quindi un

ampio range di informazioni a supporto dell’identificazione dei parametri

più pericolosi per lo sviluppo del whirl flutter.

TiPa permette la generazione dei modelli di convertiplano attraverso due

approcci differenti. Il primo si basa sulla definizione completa di un mod-

ello MBDyn dell’intero set-up desiderato. Il secondo, invece, si basa sulla

generazione individuale di due sottomodelli rappresentanti rispettivamente

il sistema ala e il sistema rotore. Questi sono uniti in un secondo momento

grazie un processo di sottostrutturazione. Il primo approccio, come presenta

la tesi, è limitato dalla forte dipendenza del processo dalla convergenza del

software multicorpo. Questo, in certi casi, può minare l’identificazione sto-

castica della condizione di flutter. Il secondo approccio, invece, cerca di

superare questo limite. Per fare ciò è stato introdotto un adattamento in-

novativo della trasformazione in coordinate multipala per i gradi di libertà

multicorpo di MBDyn. La sottostrutturazione viene eseguita tramite una

versione del metodo di Craig-Bampton applicata a MBDyn. Tuttavia, allo

stato di sviluppo attuale, il secondo metodo di modellazione non perme-

tte ancora di ottenere una corretta rappresentazione del sistema generato

a causa di inesattezze nell’identificazione delle frequenze associate ai modi

propri del convertiplano.

Per questo motivo, il completamento dello sviluppo di tale approccio

viene lasciato alla ricerca futura.
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Chapter 1

Introduction

1.1 The tiltrotor

A “tiltrotor” is defined as:

“An aircraft with rotors that can be tilted”

(ref. [9]). The term refers in general to machines whose rotors may act both

as propeller and as vertical lift generators according to the specific flight

condition.

The conceptual definition of such aircraft configurations is connected to the

inevitable speed and range limits affecting conventional helicopters. Hor-

izontal rotors represent a perfect design option when specific aircraft per-

formances are required (such as vertical take-off capabilities, high manoeu-

vrability at low speed...), but they inevitably limit the machine maximum

speed. This makes conventional helicopters much slower when compared

to fixed wing aircraft since the forward speed is provided only by a small

component of the lifting force. Tiltrotors try to overcome such limitation

introducing a fixed lifting surface. This one operates when the aircraft is in

horizontal flight (the so called “airplane” mode) allowing the complete tilt

of the rotor to be perpendicular with respect to the forward flight speed.

In this way, the rotors produced forces can be entirely allocated to generate

thrust. Consequently, tiltrotors in airplane mode can fly faster than conven-

tional rotorcrafts thanks to their lift/propulsion system which makes them

more similar to turboprop aircraft rather than to helicopters.
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1.2 Historical frame

The conceptual idealization of tiltrotor aircraft dates back to 1920 when the

inventor F. Vogelzang patented its aircraft with tilting rotors (ref. [44]).

Despite the design was never brought to life, a new concept was born. In

the following years, other inventors worked on the revolutionary idea. The

most relevant outcome of this was the “Heliplane” patented by Baynes in

the 1930’s (ref. [27]). As its predecessors, this machine was never assembled,

but its design included many of today’s tiltrotor aircraft. A sketch of it is

reported in figure 1.1.

Figure 1.1: Baynes Heliplane

The first tiltrotor prototypes were assembled when well established air-

craft companies and governments started to show interest in the config-

uration. In the 1950’s, the Department of Defense of the United States

of America commissioned McDonnel Aircraft, Sikorsky Aircraft and Bell

Helicopter the design of three “convertiplane” aircraft (this was tiltrotors

original name) which purpose was the investigation of the new concept fea-

sibility. The machines were named XV-1, XV-2 and XV-3 respectively (ref.

[8]). None of the models entered production, but their development pro-

vided a new cluster of information to their engineers. Among them, the Bell

XV-3 provided unprecedented understanding of such machines aeroelastic

behavior.

The initial version of the XV-3 was provided with three bladed rotors.

This implementation proved to be dangerous since the aircraft had different

accidents due to the occurrence of rotor dynamic instabilities. This led to

the design and construction of a new version provided with two bladed ro-

tors (see Fig. 1.2).

The successive series of tests provided enough data to allow in 1966 [15]

the development of an early tiltrotor “whirl flutter” characterization. This

term refers to a gyroscopic aeroelastic instability affecting some configura-

tions of fixed wing aircraft. The phenomenon develops in high speed flight
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and usually is the limiting factor in an aircraft max speed definition. For

further details about the phenomenon see section 1.3. That said, the Bell

XV-3 had many flaws in its design. This included the fact that the maxi-

mum horizontal flight speed (115 knots) was not enough to justify the new

concept and the pilot had to handle an extreme workload to manoeuvre the

aircraft. Despite that, the XV-3 successful test campaign managed to prove

the feasibility of the new aircraft concept specially of the in flight conversion

capability from helicopter to fixed wing configuration [23].

Figure 1.2: Bell XV-3 in airplane mode

In the 1970’s the raising interest in the technology lead to the establish-

ment of different tiltrotor related project thanks to the cooperation between

NASA and the US Army. The most iconic product of such collaboration

was the Bell XV-15. The design process focused mostly on solving the

XV-3 problems. A new flight control system was combined with automatic

stability augmentation tools in order to overcome the limited handling ca-

pabilities of the XV-3. In the XV-15 the installed engines became two and

were placed at each wing tip. This completely removed the complex shaft

mechanisms connecting its predecessor central engine to the wing tip rotors.

This required the engineers to design a transmission connecting each engine

to both the three-bladed rotors in order to grant symmetric thrust even

in case of an engine failure. These new implementations clearly explained

why tiltrotor aircraft dynamic stability can be hard to assess precisely. The

large number of interacting elements that are vital to the aircraft correct be-

haviour introduce high level of complexities in the assessment of its dynamic

stability behavior. That is true because the behaviour of each sub compo-

nent is coupled to many others and influence the overall system response
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to specific inputs. As result, a very wide range of parameters can influence

the aircraft behaviour making extremely difficult the instability phenomena

characterization.

The aircraft flight envelope was far more interesting in terms of real scale

possible implementations compared to its predecessor thanks to its new de-

sign solution. The XV-15 remained a prototype since only two of them were

built. For further reference see [23].

Figure 1.3: Bell XV-15

In 1981 the JVX project was born. JVX was a rotary wing aircraft de-

velopment program focused on designing a machine to meet various service

needs. Such specific requirement could be satisfied by the rising tiltrotor

technology (ref. [20].) Within this frame, the partnership between Bell He-

licopter and Boeing Helicopters, started in 1983, led to the creation of the

V-22: an evolution of the original JVX model (Fig. 1.4). This aircraft, also

known as Osprey, is the first example of a tiltrotor machine developed for

military purposes. To ensure the aeroelastic stability of the aircraft, a series

of experiments were run at NASA Langley Research Center. The many fac-

tors contributing to whirl flutter required a very broad series of experiments

in which a variety of scaled V-22 model configurations were tested in order

to identify the best possible building solution (ref. [21]). This complete

aeroelastic parametric investigation process was inevitable due to the com-

plex and sometimes unpredictable interactions among the many assembly

subcomponents. The aircraft performances needed to match specific U.S

Army and Navy requirements. This forced the engineers to overcome an

extensive range of new problems [13] and made the V-22 a very expensive

machine. Despite this, the Osprey both provided better understanding of

tiltrotor aircraft instability phenomena and proved the commercial value of

4



such machines with competitive performances. It became operative in 2005

and it is still in service today (ref. [31]).

Figure 1.4: Bell/Boeing V-22

In 1996 a Bell-Boeing cooperation aimed at developing the first tiltrotor

aircraft for civil transportation. Conceived to transport a small number of

people, the aircraft was meant to grant faster point to point transporta-

tion for business purposes and for search and rescue missions. In 1998 the

project became Bell-Agusta and eventually AgustaWestland (today owned

by Leonardo S.p.A.) (ref. [31]). The outcome of such development is the

AW609 (fig 1.5) (earlier called BA609). The aircraft is not operative yet.

Figure 1.5: AW609

In 2013, Bell Helicopter partnership with Lockheed led to the Bell V-280

Valor development. The aircraft was born within the JMR-TD project and

is designed to meet specific Army needs. Very little information is avail-

5



able to the public for confidentiality reasons but the V-280 has the specific

purpose to reach “over twice the speed and range of the current vertical lift

fleet” (ref. [2]).

Bell in 2016 started working as well on the V-247 Vigilant which is an

unmanned tiltrotor for surveillance and reconnaissance purposes. The de-

velopment is still in a very early stage.

1.3 Whirl flutter

“Whirl flutter” is an aeroelastic instability phenomenon that is generated

by the elastic interaction of the wing motor mounting structure and the

propeller dynamics.

It was discovered analytically in 1938 (ref. [43]) as precession-type instabil-

ity in a flexibly mounted aircraft engine-propeller combination. Its discovery

was associated to the turbo-prop aircraft configuration.

Both Bell (see section 1.2) and NASA led the investigation of the phe-

nomenon in the 1960’s. NASA proved great interest since compromised

engine-propeller connections led to the destruction of two Lockheed Electra

turboprop aircraft. The company in 1967 wrote an extensive report (ref.

[34]) with an detailed review and interpretation of such the whirl flutter

instability. The phenomenon is explained through a simple propeller/power

plant analytical model. Such schematic representation does not match the

more complex dynamics a tiltrotor aircraft, but it provides a very intuitive

representation of the simplest manifestation of the phenomenon: the classic

propeller whirl flutter instability.

1.3.1 A simple model

The model presented by NASA is composed of a four bladed propeller con-

nected to the ground through a rigid shaft and two springs (Sθ, Sψ) repre-

senting the actual stiffness of the otherwise flexible shaft. The two springs,

which are connected at a pivot point at distance a from the rotor disk, allow

only the assembly rotations about two perpendicular axes. No independent

degree of freedom is assigned to each blade. The entire range of motion of

the system can be described by the pitch θ and yaw ψ angles (see Fig. 1.6).

The dynamical behaviour of the system is affected by the angular speed Ω.

When the rotor is not spinning, the natural vibration modes related to each

degree of freedom can be spotted individually. As long as the rotor angular
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ψ

θ

ψz

Figure 1.6: Two DOFs model sketch

speed Ω is set different to zero, instead, these two are coupled due to the

gyroscopic forces generated by the additional motion. The resulting modes

are called “precession” ones. That is because, since some flexibility is in-

troduced in the system by the equivalent springs, the center of the rotor P

rotates about the axis connecting the middle point of an ideal rotor rigidly

connected to the ground.

P P

Figure 1.7: Forward (on the left) and backward (on the right) whirl modes

visualization in vaquo

This possible precession motions are two and can show up both in the di-

rection of the spinning rotor and in the opposite one. For this reason are

called “forward” and “backward” whirl modes respectively (see Fig. 1.7).

The modes, by themselves, are not dangerous. The situation can get prob-

lematic when the aerodynamic forces are introduced in the system.

The rotor motion triggered by the two whirl modes, directly influence the

aerodynamic forces generated by the blades. This happens since the rotor
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angular speed and the motions due to the flexibility of the rotor shaft affects

the way each blade incoming speed is defined. As consequence, a new set

of aerodynamics forces is generated and can lead to a divergent behaviour

of the system. The nature of the generated forces is strongly connected to

the motion that produced them. To explain the concept, here some combi-

nations of trigger motions and resulting loads are presented.

The first case to introduced here shows the effects produced by the forces

generated by the blade due to a vertical motion (pitch) of the propeller.

Keeping the simplified model (rigid shaft plus equivalent springs), this mo-

tion can be described through the pitch angle θ only. Considering the rotor

as a rigid disk with the airspeed hitting it perpendicularly, the inclination of

the shaft by an angle θ tilts as well the orientation of the rotating propeller.

This inevitably generates an angle between the incoming air and such disk

and, consequently, a velocity component Vθ parallel to the latter. Since the

propeller is spinning, assuming it is composed by an even number of blades,

it is always possible to identify two of them rotating at opposite sides with

respect to the disk center. In case one of the two, due to the rotation, is

directly facing Vθ, its airfoils perceive both a higher AoA and an incoming

speed with respect to the zero pitch angle condition. This generates a local

increase in lift in such areas. The opposite will happen at the other side of

the propeller center. As results, a “yaw” moment M(θ) is generated about

the axis aligned with the vertical displacement of the beam in addition to

a force L(θ) collinear with the direction of the “pitch” motion. The former

component is the most dangerous for the development of the whirl flutter

instability. That is because such moment acts in the direction of the “back-

ward” whirl mode motion. This may triggers the unstable phenomenon.

In case the propeller is shifted vertically with a ż velocity, the speed compo-

nent Vż parallel to the disk comes from the direction opposite to the motion.

The way this new speed influences the propeller behaviour is the opposite

with respect to the one connected to Vθ. This means that the airfoils in

the blades moving upwards with respect to the vertical motion are hit by

air with greater speed at an increased AoA with respect to the ones on the

opposite side. As consequence a “yaw” moment M(ż) and a vertical force

L(ż) are generated in the direction opposite to those generated by a pitch

rotation M(θ) and L(θ). This means that such contributions will stabilize

such the motion that generated them.

The last situation presented here is given by the influences of the extra

air-speed components due to a pitch rate. From the side, with the pitch

axis going out of plane, a positive pitch rate variation makes the disk tilt

with respect to such axis. One of its sides (the bottom one for a positive
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pitch rate) moves towards the airspeed while the other one in the opposite

direction. The former is affected by a reduction in its sections’ AoA with

a consequent lowering of the generated forces, while the latter reacts in the

opposite way. As result, a moment M(θ̇) rises whose orientation contrasts

the motion that originated it.

From these considerations it is possible to understand how the aero-

dynamic forces and moments acting on the propeller may tent sometimes

amplify to its oscillations. Since they do it by triggering the whirl motion

of the propeller, this aeroelastic phenomenon is called whirl flutter.

A key point that emerges from NASA report, is the strong dependence of

the phenomenon on a very large number of parameters whose connection to

whirl flutter may be highly unpredictable. This required (and still requires

today) parametric analysis of such variables to correctly estimate their

specific influence on the phenomenon. In a simple model like the one pre-

sented here, the analytical assessment of how different parameters influence

the stability of the system is possible. Once the model complexity rises, such

opportunity inevitably disappear. The consequence of this, for instance, led

to an extensive and inevitable wind tunnel testing campaign for the V-22

Osprey (see 1.2) with the specific purpose of spotting the best possible build-

ing configuration to optimize the aircraft aeroelastic behaviour.

This simple formulation is a very drastic approximation of the real scale

problem, but it helps understanding how the whirl flutter is triggered by

some specific interactions between the propeller rotating components dy-

namics, aerodynamics and the engine mounting structure. A tiltrotor sim-

plified model can be little complication of the model presented here. This

is true since both propellers and tiltrotor basic principles are similar. What

really differs is the complexities in the realization of the propulsion systems

of the latter which makes titrotor aircraft much more complicated in terms

of number of interacting elements and connections. The direct consequence

of this is that larger numbers of interactions may give birth to new trigger

mechanisms to such instability phenomena.

Some critical elements in that make tiltrotor aeroelastic investigations more

complicated with respect to turboprop aircraft ones are:

1. the increased pitch flexibility due to the need to rotate the engine

2. the tilting of thrust vector through the hub gimbal joint

3. the extra degrees of freedom due to flapping hinges and gimballed hub
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4. the much larger dimensions of the propeller blades

These inevitable design solutions reduce the proprotors aeroelastic stabil-

ity. That is because, due to the joints implemented, the shaft, pylon and

wing structure cannot directly provide restoring moments to the rotor in

case moments affecting the rotor stability rises. Another key element not

to neglect is the high velocity inflow typical of proprotor “airplane mode”.

This is the most common flight condition in which whirl flutter may rise.

That is because tiltrotors in cruise configuration combine the high speed

incoming air with large flexible blades. Specific forces and moments rise

due to these factor that requires extreme care in tiltrotors design (ref. [18]).

Hence, investigating whirl flutter instabilities is both a fundamental and a

very complex component in the design and certification of tiltrotor aircraft.

What emerges from the simple analysis above and applies to real scale

tiltrotors as well is that, as in many others aeroelastic instability phenom-

ena, the incoming air speed is crucial in defining the thin layer between a

stable flight condition and an unstable one. This usually is the key limiting

factor in the definition of the aircraft maximum flight speed. This was im-

mediately clear since the first real scale tests on the XV-3 and has been a

limit to the effectiveness of the tilrtotor technology since then. Investigation

of aeroelastic instabilities are then one of the most crucial challenges in the

development the next generation of proprotors.

1.3.2 Tiltrotor whirl flutter investigation

As already mentioned in section 1.2, whirl flutter instability has been a key

element alongside the entire history of tiltrotor aircraft. Despite the phe-

nomenon investigation and correct assessment has been a priority since its

first individuation during the XV-3 testing phase, the purposes of whirl flut-

ter preliminary analysis changed in time. In the 1960’s, tiltrotor aeroelastic

behaviour needed to be correctly addressed in order to prove the feasibility of

the concept. This led to analysis focus on the specific models (the XV-3 and

the XV-15) and to their early development. From the 1980’s, instead, whirl

flutter investigation changed goal. The tiltrotor concept was mature enough

to allow engineers to focus its implementation in commercial and military

aircraft. Alongside with this need, new analytical and numerical tools were

developed with the specific purpose of investigating the phenomenon pre-

dictability. Different strategies and new were adopted which led to today’s

and tomorrow’s whirl flutter investigation strategies. To avoid unnecessary
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digressions, in this sections are briefly presented the most important inves-

tigation projects and strategies adopted from the 1980’s.

1980’s-today

In 1977 NASA published a technical paper [22] trying to asses whether it

was possible to correctly predict the whirl flutter occurrence in a tiltrotor

aircraft thanks to simple models. The work proved its point by comparing

the analytical results with experimental assessments and showed how the

important was to gain better theoretical understanding of the aeroelastic

phenomenon.

Starting from the 1980’s Bell leadership in the field, led to the company

cooperation to the JVX project. The V-22 was born within this frame (see

1.2). In the early 2000’s the JVX became part of the WRATS project. The

Wing and Rotor Aeroelastic Test System was a whirl flutter analysis test

bed designed to investigate whirl flutter phenomena. (ref. [48]) The project

started in 1994 and was developed by a collaboration of NASA and Bell

with the specific purpose to investigate aeroelastic phenomena limiting the

commercial implementation of tiltrotors. The main focus was on the ac-

tive vibrations control techniques to enhance proprotors performances, but

investigation of passive instability damping techniques was part of the pro-

gram as well. The wind tunnel model was updated and modeled as long as

experiments were run.

WRATS studies successfully increased the understanding of tiltrotors aeroe-

lastic phenomena. Parametric influence of some tiltrotors design parameters

(including blade precone, flapping stiffness...) were assessed. Some limita-

tions, though, affected the program. First, the tiltrotor model was derived

from the V-22, a military aircraft. This made its design data classified limit-

ing possible external research contributions. Second, the WRATS model was

not very flexible in its configuration including the type of rotors that could

be installed and the measurements data that could be extracted. These

factors limited the some of the possible additional positive outcomes of the

project.

Politecnico di Milano university contributed to the project modelling WRATS

with the multibody general purpose software MBDyn [26].

Future

Successive tiltrotor implementations in the years provided a lot of data and

information about possible specific designs. The desire to develop the next

generation of tiltrotors, though, moved researchers focus on seeking the best
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possible design configurations capable of pushing the concept even further.

This requires the best possible understanding of the whirl flutter instability.

In order to gain better insights on the phenomenon, the TRAST (TiltRro-

tor Aeroelastic Stability Testbed) project was conceived. TRAST relies on

an extremely versatile proprotor wind tunnel test-bed to assess the para-

metric influence of different components on the model aeroelastic response.

The system, designed starting from the XV-15 and meant to represent a

generic tiltrotor model, is placed at NASA Langley Transonic Dynamics

Tunnel (TDT). TRAST is designed specifically for research purposes. For

this reason, there are no confidentiality restrictions related to the project

experimental set-up and research outcomes (ref. [20]).

Numerical parametric analysis of TRAST aeroelastic behaviour have already

been conducted (ref.[50]).

1.3.3 Numerical prediction tools

The TRAST project provides the optimal environment to increase the whirl

flutter phenomenon understanding thanks to the open access to the test-

bed design. Thanks to this, researchers all around the world can develop

numerical tools to assess the real wind tunnel model behaviour with two

important benefits.

First, the formulation of ad hoc prediction tools is fundamental for the effec-

tiveness of the wind tunnels tests since they can help identifying which of the

real scale simulation provide the most useful information. Second, TRAST

test-bed experiments help validating the numerically estimated results im-

proving the level of confidence in the simulation tools. This unprecedented

level of interaction is granted by the possibility to share information without

confidentiality restrictions and it is crucial to eventually develop an effective

generic tiltrotor configuration aeroelastic behaviour prediction tool.

Over the last two decades, different modern numerical tools have been

successfully used to model whirl flutter (ref.[49]). Among them, multibody

software proved to be accurate in modelling proprotors complex dynamics

(ref. [12]). That is true thanks to such numerical methods precise modeling

of:

1. Large displacements

2. geometrical non-linearities

3. beam elements to model slender bodies (blades, wings)
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4. large rotations

which are necessary to depict such aircraft behaviour.

MBDyn (http://www.mbdyn.org/) is a free general purpose multibody

software developed by Politecnico di Milano in the last 20 years. It was born

with the specific purpose of providing autonomous modeling capabilities of

generic problems related to the dynamics of complex aeroelastic systems,

specifically rotorcraft and tiltrotor systems. MBDyn typical application is

related to the solution of initial value problems, in the form

Mẋ = ṗ

ṗ = f(ẋ,x, t) + φT/xλ

φ(x) = 0

(1.1)

where the first equation represent the nodes momenta definitions, the second

one their Newton-Euler equilibria and the last one the algebraic constraints.

The latter are directly imposed at configuration level, without any time dif-

ferentiation, resulting in an index-3 Differential Algebraic Equations (DAE)

system. The current software implementation is able to predict tiltrotor

aeroelastic stability and for this reason it has been used extensively the

whirl flutter instability (ref. [26]) and is used as investigation tool in this

work.

1.4 TiPa

Within the current research frame, Politecnico di Milano developed TiPa.

The name stands for Tiltrotor Parametric model generator and refers to a

MATLAB tool coded at the Dipartimento di Scienze e Tecnologie Aerospaziali.

The purpose of TiPa is to automatize both the generation and the aeroe-

lastic assessment of arbitrary MBDyn tilrotor wind tunnel models. The

software is designed to be as modular as possible in order to give access to

whatever system design feature.

The formulation is enriched with DAKOTA software’s Non-intrusive Poly-

nomial Chaos Expansions (PCE) based sensitivity assessment tools.

TiPa ultimate goal is providing a flexible multibody based tiltrotor whirl

flutter investigation tool with forward propagating uncertainty quantifica-

tion capabilities.
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1.4.1 The approach

This section aims at briefly introducing TiPa main working principles. A

more detailed formulation of the concepts presented here can be found in

section 4.

The user can interact with TiPa through the use of three input cards.

Two of them control the geometrical and structural definition of, respec-

tively, the wing and the rotor parts of the complete system. The third one,

instead, controls the software behaviour.

Two main tiltrotor modelling approaches are implemented in TiPa. One

relies on the complete definition of the tiltrotor system. The other one makes

use of two independently designed aeroelastic sub–models representing both

wing and rotor/pylon systems to be later assembled through a substructur-

ing process.

Despite the selected approach, the tool transforms the user defined data

into input files for the software MBDyn. The information required to assess

the dynamical behaviour of the system is extracted from MBDyn eigenanal-

ysis (ref. [24]) through the collection of the matrices describing the system.

In case the two subsystems are defined independently, the rotor degrees

of freedom are transformed through an original adaptation of the Multiblade

Coordinate Transformation (MBC) (ref. [4]) applied to the MBDyn matrices

describing such subsystem. This introduce a more consistent and reliable

point of view about the rotor description removing as well the periodicity

from the system. The two aeroelastic models can consequently be assem-

bled. The process is based on a Craig-Bampton (ref. [5]) like substructuring

process developed for the MBDyn multibody matrices. As consequence, a

representation of the complete tiltrotor is defined.

After the generation of the tiltrotor matrices according to either one

or the other approach, the stability of the system is assessed solving the

associated eigenvalue problem.

Non-intrusive generalized Polynomial Chaos Expansion (PCE) based

Uncertainty Quantification methods are introduced in the formulation thanks

to DAKOTA (https://dakota.sandia.gov/), an open source software un-

der GNU LGPL licence widely used in the research community to perform

uncertainty quantification and optimization analysis (ref. [1]). The combi-

nation of TiPa, MBDyn and DAKOTA allows the formulation of a complete

parametric aeroelastic predictor with forward propagating uncertainty quan-

tification. The gPCE formulation flexibility allows the computation of the

desired system stochastic responses to whatever set of non-deterministic in-
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puts the user desires. The execution of local and global sensitivity analysis

is possible as well.

The complete cooperation among the software provides a set of very

useful investigation parameters to help the individuation of the most critical

design features in the development of whirl flutter.
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Chapter 2

Uncertainty Quantification

The strong connection between aeroelastic instabilities and aircrafts safety

and performance makes such phenomena investigation a fundamentental

part of the design and certification phases.

The system aeroelastic response is usually influenced by a large num-

ber of parameters. In a relistic scenario, though, not all of them may be

known in a deterministic sense. The problem can be partially addressed

through the integration of uncertainty quantification formulations (UQ) in

the aeroelastic models. The estimation of the aircraft aeroelastic response

in a non-deterministic way provides better and more reliable observations of

the system behaviour. For this reason, the implementation of UQ methods

in aeroelasticitity is a current topic of investigation (ref. [32], [7]).

Within this research frame, the development of reliable numerical whirl

flutter investigation tools with uncertainty quantification capabilities is dis-

cussed in the chapter. This is meant to both increase the numerical results

robustness with respect to the system missing information and allow the

execution of parametric sensitivity analysis.

This chapter starts with an introduction to the different uncertain pa-

rameters that may affect a generic system. The focus is then shifted on

some of the most important UQ technique available to eventually identify

the most suitable method to implement alongside TiPa formulation.
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2.1 Uncertainty types

Different types of uncertainty can be classified according to the way they

are introduced in a system model.

The most important sources of uncertainty are:

1. lack of knowledge

2. randomness

“Lack of knowledge” (also called “ignorance”), in general, refers to the

disparity between what is known and what needs to be known to correctly

understand and model a specific phenomenon. Predictions derived from

a model with some levels of missing information inevitably lack in terms

of robustness and reliability. This type of uncertainty cannot be modeled

probabilistically (ref. [3]) and is usually classified as epistemic.

“Randomness”, instead, refers to all the sources of uncertainty derived

by the non-deterministic definition of some system parameters. In case

the probabilistic content of such parameters is known, their influence can

be accounted in the system response hence providing a useful cluster of

information. This uncertainty type is usually called aleatory.

2.2 Propagation methods

In this section are presented the different methodologies that can be used

to handle uncertainty within a given model. Two families of uncertainty

propagation analysis are defined.

Forward propagating UQ models are designed to assess the way an

uncertain input value affects the system response. This methodology, in

general, requires the knowledge of the probabilistic content of the identified

value from which the output statistical content is estimated.

Backward propagating UQ models, instead, work in the opposite di-

rection. From the probabilistic knowledge of the system response they evince

the previously unavailable stochastic description of a random input variable.

For this reason, these methods are used to solve the so called called “inverse

characterization” problems.

The definition of forward and backward propagating UQ models shows

how their implementation may fits entirely different purposes and depends

on:
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• the precision of the model definition

• the available information about the system responses

• the desired UQ analysis outputs

Backward propagating models requires the availability of an extensive

collection of the modeled system responses. This method is generally used

to complete the characterization of a numerical model using the data col-

lected from an intense experimental investigation campaign. That makes

this approach unsuitable for the development of TiPa.

For such purpose, instead, forward propagating UQ models are more

appropriated. Given that TiPa is designed to generate numerical predictions

starting from a set of data defined by its user, the introduction of uncertain

input variables through forward propagating methods allows:

1. computing the system non-deterministic response to such inputs

2. run sensitivity analyses over the parameters variability

Consequently, the implementation of forward propagating methods inevitably

increases TiPa estimations robustness and improves its parametric investi-

gation capabilities.

2.3 UQ methods classification

“UQ methods” refers to a very large number of mathematical and statistical

tools. According to the way each specific method works, they are classified

in specific families. The focus of this section is to introduce such methods

classification and what are the basic principles behind each one of them.

The main families are:

1. Sampling methods

2. Interval analysis

3. Stochastic expansion methods

4. Info-gap theory

According to section 2.2 discussion, all these methods are presented in

this section in their forward propagating version. This is done to analyze

their possible implementation in TiPa.

In the discussion, a numerical model of a generic phenomenon is consid-

ered.
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2.3.1 Sampling methods

Sampling methods relies on the definition of some samples. This set of vari-

ables are generated according to user defined probability distribution func-

tions providing a non-deterministic description of the uncertain parameters.

The samples are iteratively used as input to the model, which, provides

specific response variables. The latter are collected and used to compute a

non-deterministic description of the response.

Sampling methods are among the oldest and most established UQ tech-

inques. They represent the easiest implementation of UQ tools to assess

a general model probabilistic response. The main reason for this is that

sampling methods do not require the modification of whatever is inside the

numerical model. This makes them a very robust option since, if properly

tuned and designed, they always provide the desired response statistical

content.

The biggest drawback of sampling methods is the strong dependency of

the analysis results on both the dimensions and on the specific components

defining the samples cluster. To make sure the UQ analysis provides re-

producible results, it is often necessary to provide to the simulation a very

large number of samples. This inevitably increases the time required to

complete the UQ assessment making sampling methods very impractical in

most situations.

The best known sampling techniques are the Monte Carlo (MC) and

the Latin Hypercube Sampling (LHS) methods.

MC is the easiest implementation of the concept since the samples are

simply selected at random from a defined probability distribution function

(ref. [28], [36]).

LHS formulation is more complex (ref. [41]). This sampling method was

developed with the purpose of reducing the number of samples used by MC

to compute the system response probability content while maintaining the

same results accuracy. The key idea behind this is the “stratification” of the

input probability distribution function. The concept is based on dividing the

input cumulative distribution function into equally probable intervals and

randomly sampling input variables from each sub interval. Only one sample

is selected inside a single stratification. The concept is better visualized

extending the problem to a two dimensional one. In this case, since two

random input variables are considered, the sampling process results in the

generation of a grid where each axis represents the cumulative distribution

function of one of the two variables. The technique is called “Latin Square”

sampling if and only if one sample is picked from each row and column
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of the 2D grid matrix. From the generalization of this concepts to multi-

dimensional grids the Latin Hypercube Sampling was born.

LHS differs from MC in the sense that it has “memory”. This means that

in such family of methods is important for each new sample to remember

where each of the previous values were selected. This does not happen in

MC introducing an extra level of randomness. When compared to MC,

LHS proves to be more accurate since it requires less samples to provide

the same level of information. This is mostly due to the fact that LHS

forces the system to generate input parameters from each part of the specific

probability distribution function (including the tails). This is not certain in

a Monte Carlo method due to the shape of the probability curve. As the

number of uncertain variables grows, the same happens to the difference

between the number of samples required by the two methods to obtain

comparable results in terms of accuracy. Despite this, LHS still requires the

simulations to be run with a very wide amount of samples underlining once

again how these methods are not practical in very complex applications.

2.3.2 Interval analysis

This methodology is based on the assumption that the value of an uncertain

parameter is defined within an interval. This means that its actual defini-

tion lies in between two possible realizations of it.

A generic interval is usually defined in this form:

x = [x, x] (2.1)

Where x, x ∈ R and x ≤ (≥) x. Any value inside such gap is equally

possible to be assigned to the uncertain parameter. This does not mean

that the variable is modelled in a non-deterministic sense through a uniform

probability density function. Instead, the model represents in a reasonable

way the presence of epistemic uncertainty since no knowledge is required

about the variable distribution.

At first, interval analysis may look like a simple and easy to implement

approach since there is no need to propagate the statistical content of any

input through the model. What is needed, instead, is the computation of

the interval assessing the epistemic uncertainty of the output. This does

not provide any information about its statistical behaviour since each of the

values between the output interval limits is equally possible to be selected.

The approach, though, is far from being immediate since this type of

analysis requires a specific branch of mathematics called interval arithmetic.

This include a series of mathematical operators acting on real valued closed
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intervals. Interval uncertainties require then a specific and precise set of

tools to be manipulated effectively. For this reason, the implementation of

this family of methods in codes based on conventional mathematical opera-

tors is really complicated. Despite this, interval arithmetic can be used to

run sensitivity analyses (ref. [29]). A quick explanation and application of

interval operators can be found at ref. [17].

A not negligible possible problem to face when working with interval

analysis is the divergence of the output interval. This happens when the

latter is defined between numbers so far away from each other that the

propagation may fail or the output may carry no useful information. Some

factors contributing to this possible outcome are:

• the number of propagation steps inside the given code

• the complexity of each computation step

In general, raising the code complexity increases the possibility of diverging

results. For this reason, interval analysis based UQ methods are inevitably

affected by the specific application they are used for. This makes them

less robust if compared to sampling methods whose convergence is always

granted despite which model uncertainty is being assessed.

2.3.3 Stochastic Expansion methods

Stochastic Expansion (SE) based methods are non-sampling UQ tools. Start-

ing from the knowledge of the probabilistic uncertainty affecting a model

variable, the methods make use of an approximation of the uncertain input-

output relationship to evince the statistical content of the system response.

Different methods are classified according to the specific formulation used

to generate such system representation.

The Polynomial Chaos Expansions (PCE) methods use orthogonal

polynomial chaoses to generate an approximated representation of the sys-

tem. There are different possible implementations of these methods. Here,

the generalized PCE (gPCE) approach is presented. The gPCE method is

based on the use of the Wiener-Askey polynomial chaos.

In 1938, Wiener realized that Hermite polynomials orthogonality prop-

erties with respect to the probability density function of a Gaussian variable

could be used to solve problems describing second order random processes

with finite variance. The method could be effectively applied in engineer-

ing since the majority of random physical problems have finite variance.

The approach was based on the definition of an approximated description

of the system behaviour based on an expansion of Hermite polynomials
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(ref. [45]). The formulation was later extended by Askey which understood

that also other families of polynomials are orthogonal with respect to specific

probability density functions. They are grouped in the so called Askey (or

Wiener-Askey) scheme of polynomials. This increased the range of possible

uncertain input parameters to introduce in the formulation (ref. [11]).

A UQ techninque based on the “non-intrusive” gPCE formulation is pre-

sented here. The term in quotes refers to a method which evince the system

response probability content without taking into accont whatever happens

inside the existing model. From now on, this variant of the technique is

simply called gPCE. The importance of this version of the formulation is

explained in section 2.4.3.

According to the gPCE formulation, the outcome of a second order ran-

dom process X(θ) is represented as function of the uncertain input variable

θ in this way:

X(θ) =

∞∑
j=0

cjΦj(ξ(θ)) (2.2)

where:

• cj is the j-th real deterministic coefficient

• Φj is the j-th Wiener-Askey polynomial basis of order P

• ξ(θ) is the random vector ξ(θ) =
(
ξ1(θ), ξ2(θ), ...ξn(θ)

)
• θ is the random parameter

Equation 2.2 shows the simplest description of such expansion.

The random vector ξ(θ) collects all the uncertain variables that show up in

the model. Among them we could find, for instance, geometrical parame-

ters, external forcing elements and material properties. For sake of gener-

ality, the k-th random variable ξk(θ) uncertainty is modeled as function of

another sub-variable θ which may be the actual trigger for the randomness.

The generation of the Wiener-Askey polynomial basis Φj depends on

the probability distribution function describing the k-th random variable

ξk(θ) behaviour. Assuming that such variables are modeled with continuous

probability density functions, table 2.1 shows which family of Wiener-Askey

polynomials must be used in the definition of the basis Φj . For sake of

brevity, the actual generation process of Φj is not presented here. Specific

information can be found in references [46, 47].
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Random variables ξ pdf Wiener-Askey polyn Φ(ξ) Range

Gaussian Hermite (−∞,∞)

Uniform Legendre [a, b]

Gamma Laguerre [0,∞)

Beta Jacobi [a, b]

Table 2.1: Wiener-Askey polynomials and matching random variable types

The definition of orthogonal polynomials is explained in Appendix A to

provide better insights on the PCE formulation .

The system response approximated model X̃(θ) derivation is now pre-

sented. This is done by tuning the coefficients cj such that the new system

behaviour matches the real one. This can be expressed as:

X̃(θ) = X(θ) (2.3)

The process can be done in different ways. The basic way to do it relies

on the minimization of an error definition between X̃(θ) and X(θ). This

can be done, for instance, projecting the system response against each basis

function through inner products using the orthogonality of the polynomial

basis or introducing a mean square minimization of the error esteem. The

exact way this is done really depends on the specific application and it is

not presented here. It is important to point out, though, that, for whatever

method is selected, the expansion coefficients tuning relies on the combi-

nation of the input-output data collected from the actual system. For this

reason, consequently, some numerical simulations have to be executed. This

does not mean that stochastic expansion methods work similarly to sam-

pling methods. The number of input-response combinations required by

gPCE are much less compared to those necessary to (for instance) MC to

complete the UQ assessment. The gPCE method uses the simulations only

as an instrument for the tuning of its expansion coefficients cj . This, as a

rule of thumbs, requires a number of simulations close to the number of such

coefficients.

The approximated system behaviour (X̃(θ)) exactly matches the real

model one (X(θ)) only if all the infinite terms and coefficients are considered

in equation 2.2. In reality, such series must and can be truncated without

losing too much information. This eventually allows:

• the computation of the cj coefficients

• the generation of the orthogonal basis Φj
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The infinite expansion defined in equation 2.2 is then truncated at a given

value S. Hence, the model approximation is now defined as:

X̃(θ) =

S∑
j=0

cjΦj(ξ(θ)) ≈ X(θ) (2.4)

The way S is defined depends on:

1. the order P of the Wiener-Askey polynomial chaos

2. the number n of random variables ξk(θ)

S (ref. [46]) is equal to:

S =
(n+ P )!

n! P !
(2.5)

So, the computational cost of gPCEs method strongly depends on n and

P which both affects the time required to generate the complete orthogo-

nal polynomial chaos basis and the number of simulations required to tune

the expansion coefficients. This makes stochastic expansion methods very

flexible since there is no theoretical limitation to the number of uncertain

variables modeled in the system. The big drawback of introducing many of

them, though, is the exponential increase in the computational cost required

to generate the approximated model X̃(θ).

The great advantage of the stochastic expansion methods with respect to

the sampling methods lays in how the system response stochastic content is

computed. X̃(θ) is a so called surrogate model of the real X(θ). Such term

refers to a function that represents the behaviour of a system whose for-

mulation, though, provides easy access to information about the real model

which were not otherwise available. The definition of a surrogate model

using gPCE exposes the statistical content of the approximated system re-

sponse. It is possible to prove, in fact, that the output stochastic content

can be derived analytically from the gPCE coefficients cj . The formulation

is the following:

E[X] = µX = c0 (2.6)

σ2[X] = σ2X =

S∑
j=1

(cj)2 (2.7)

Where µX and σ2X are the mean and variance of the system response. It

can also be proved that even higher order output statistical moments can be

computed analytically from the expansion coefficients. Despite having no
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particular physical interest, they can be used within stochastic expansion

methods to evince analytically properties as the Skeweness and the Kur-

tosis of the output probability distribution (ref. [42]) which, respectively,

represents the asymmetry (to the left or to the right) and the shape of the

given distribution.

An available surrogate representation generated with PCE provides an-

other important advantage as well. Since the approximated model mimics

the input-output relationship of the original system, its polynomial shape

makes it much more easy to handle. For instance, running a MC simu-

lation on the approximated model requires much shorter amounts of time

with respect to the same analysis run on the real model. This can be very

convenient since not all the interesting statistical indices can be computed

directly from PCE coefficients, but they require successive sampling methods

assessments which, under this approximations, are extremely inexpensive.

For this reason, the use of gPCE allows a very efficient computation

of the Sobol indices (ref. [40]). They are used in variance-based sensitivity

analysis since they provide an esteem of how much a specific random input is

affecting the variance of the entire system response. This can be a very useful

tool within parametric investigations of specific phenomena. The indices can

be computed directly from the expansion coefficients as well (ref. [6]).

2.3.4 Info-gap Theory

Info-gap Theory was born in the 1980’s (ref. [35]) as a non-probabilistic

decision theory to support decision making in situations where extensive

lack of knowledge is present. This limits the applicability of the method to

situations where epistemic uncertainty is present (see section 2.1).

An Info-gap assessment starts with the definition of a model that must

be used to enforce a specific decision. Some information, though, is missing

from the represented system definition. The purpose of the Info-gap Theory

is to define some indices to guide its user to make the “right” choice despite

the extensive lack of information.

To do so, uncertain parameters are classified with specific Info-gap mod-

els. Such models do not represent the statistical content of unknown parts

(called “Info-gaps”). Their purpose is instead to identify how each parame-

ter definition can vary around an “exact” value which is supposed to be the

best guess of it. The most simple Info-gap model U(h, u) is the fractional

error model. According to it, the unknown variable u(t) is so defined:

U(h, u) = {u(t) : |u(t)− u| ≤ hu(t)} (2.8)
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with h ≥ 0. Where:

• u is the best guess available of the uncertain parameter

• u(t) is the actual and unknown value of the parameter evaluated at

time t

• h is the horizon of uncertainty whose value is assessed as the difference

between u(t) and u within the given Info-gap model

The way equation 2.8 defines the unknown parameter u(t) can look very

similar to the way Interval Analysis does. The variable, after all, is defined

in between by two values. This, though, is not true for two reasons.

First, Info-gap models definition is not limited only to the one presented

above. The fractional error model is the simplest option, but many other

ways to define uncertain parameters exist within the theory (ref. [3]). In case

a series of uncertain parameters is present, the entire model uncertainty is

defined trough the union of all their Info-Gap models.

Second, Info-gap Theory does not require specific operators in the spreading

of the uncertainty through the model. This allows much more flexibility in

the entire process.

Figure 2.1: Robustness functions plot

Info-gap Theory provides information through the definition of a desired

system performance Pc. This term is usually represented by a user de-

fined threshold that the system response must never exceed. Imposing that
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the uncertain process, whose Info-gaps models are defined, always satisfies

the performance requirements, lead to the formulation of the so called ro-

bustness function ĥ(Pc). This function provides the limit value of the

horizon of uncertainty h which defines the maximum possible percentage

difference between the best guess u of the uncertain parameter and the ac-

tual parameter value u(t) to still satisfy the desired performance Pc. It

basically estimates the system “immunity to failure”.

This formulation gives very useful information in case the decision maker

has to identify the best available solution to a problem. An example is pre-

sented in figure 2.1. In the plot, ĥ1(Pc) and ĥ2(Pc) represent the robustness

functions of two different solutions with respect to the system expected per-

formance Pc. The figure provides a visual comparison between the safety

margin expected from the two implementations. The most robust solution is

identified by setting the desired performance value Pc and finding the curve

with the higher ĥ(Pc) value.

2.4 UQ methods for multibody software

Section 2.3 introduces some of the different options available to estimate the

uncertainty propagation of random variables through defined models.

Here the specific use of UQ methods in multibody software is discussed.

The purpose of this analysis is strictly connected to the design of TiPa. For

this reason, the multibody solver MBDyn working principles are taken as

reference in the discussion.

The optimal UQ method must:

• be compatible with MBDyn solver formulation

• allow the simulation of a vast range of uncertain parameter

• grant the propagation of multiple random input variables

• have good convergence properties

• be as time efficient as possible

The investigated options are once again:

1. Sampling methods

2. Interval analysis

3. Stochastic expansion methods

28



4. Info-gap theory

They are now discussed one by one.

2.4.1 Sampling methods

Sampling methods are introduced in section 2.3.1. There, both the Monte

Carlo (MC) and the Latin Hypercube Sampling (LHS) methods are pre-

sented. Due to their similarities, the discussion here focuses only on the

Monte Carlo method.

Introducing Monte Carlo in MBDyn formulation can be very easy. That

is because MC is not actually affecting the way the software works. Once

the solver input variables are generated and the outputs of the simulation

are extracted, what happens inside the software has no importance. More-

over, the solidity and robustness of the method make it very suitable for its

combination with MBDyn. It would allow to propagate virtually any de-

sired number of unknown parameters and to collect the required information

about the response behaviour.

As already explained, though, its most important drawback is the strong

dependency of the entire analysis results on the dimensions and elements

populating the generated sample. For this reason, to avoid these influences,

the analysis is run drawing the tested parameter values from a very large

sample. TiPa may take some minutes to generate the MBDyn model and

extract the useful information from the simulations, for this reason the use

of MC would inevitably make the UQ assessments very time demanding.

In an attempt to make the UQ assessment as flexible and fast as possible,

the MC approach is not considered to be the best option for the specific

purpose. That said, due to its robustness, uncertainty propagation analysis

results obtained with MC can always be used as reference to assess the

precision of other UQ implemented tools.

2.4.2 Interval Analysis

There are many reasons for which this method is problematic to combine

with MBDyn.

First, implementing this UQ method within or along an existing multi-

body software which does not relies on interval arithmetics is very com-

plicated. MBDyn is not designed to handle it. For this reason, due to

the generic orientation of the software, the introduction of this formulation

would require rewriting almost the entire code.
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Second, interval analysis does not gives any statistical information about

the system response. This may be acceptable when epistemic uncertainty is

hidden in the system model, but it is a big limitation in case the probability

distribution of the uncertain parameter is known since such information

is not relevant for Interval Analysis. This reduces the flexibility of the

uncertainty assessment tool contrasting with the parametric design of TiPa.

Third, the formulation of a multibody software with Interval Analysis

may be very dangerous since there is nothing to grant the convergence of

the method. Multibody formulation is complex. This, as explained in 2.3.2,

may lead to the inevitable divergence of the response interval providing no

useful information.

Despite all the just mentioned cons, though, a working formulation based

on interval uncertainties would be of great interest. That is because sensitiv-

ity analysis is possible using intervals. This is done assessing the relationship

between the intervals of the input and output variables (ref. [29]). Sensitivity

analyses, as already pointed out, are of great interest within this particular

research frame.

The non negligible problems carried by implementing this UQ theory in

MBDyn, though, are too many to make Interval analysis an eligible solution.

2.4.3 Stochastic Expansion methods

PCE based UQ tools are very fast and versatile. As explained in section

2.3.3, many interesting statistical indices and properties of the response can

be assessed easily through these methods.

Among all the presented UQ theories, the combination of the PCE formu-

lation with multibody solvers has been investigated the most. The reasons

of this lie in the many ways the two methods are compatible.

Different ways have been proposed to approach the interaction of multi-

body and PCE. Sandu (ref. [37, 38]) developed a formulation in which PCE

is introduced directly in the multibody solver code. The idea, is based on

modeling the input uncertain parameter through a PCE expansion. As con-

sequence, all the problem state variables depending on the random parame-

ter are as well expressed as function of PCE coefficients. This transforms the

conventional multibody DAEs equations into a new stochastic formulation.

The coefficients of the PCE expansions are eventually computed using the

orthogonality properties of the polynomial basis. Through this formulation,

it is possible to obtain results both in time and frequency domain and, in

theory, to model as many uncertain variables as desired as long as they are

defined in the form showed in equation 2.4.
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The formulation just explained provides huge amount of information

about the random multibody problem. Basically Sandu proposes to solve

the stochastic multibody DAEs equations. This type of formulation, though,

can be extremely complicated to add to an existing solver. The idea is re-

ally powerful when used to assess randomness in multibody simple prob-

lems where it is possible to directly write and solve the equations in their

stochastic version. Implementing this formulation for arbitrary uncertainty

in a general purpose solver, instead, would require rewriting the entire code.

With this design, the simulation is executed only once. The number of

computations required for the single assessment, though, can be very high

according to the number of existing random variables. In addition, solving

the actual stochastic multibody equations provides the uncertainty content

of all the output state variables. This results in redundant information since

usually only a few responses uncertain parameters are relevant to the specific

problem.

This method, though, is not the only option to combine multibody for-

mulation and PCE uncertainty quantification. Sandu’s approach is a so

called “intrusive” method. That is because the PCE formulation is directly

introduced in the software formulation. On the contrast, “non-intrusive”

methods exist. These ones consider the model as a “black box” and gen-

erates an approximation of the system only from the collection of some

system input-outputs combinations. Such methods rely on the formulation

explained in section 2.3.3. The non-invasivity is an advantage for many

reasons.

First, it does not require the modification of the actual solver.

Second, it allows to assess the uncertain output statistics only on the desired

family of responses. This on one side increases the number of time the

actual solver is executed since the coefficients of the PCE are assessed from

the combination of input-responses pairs, but on the other it avoids the

computation of the statistical content of the entire multibody state variables.

So, due to the extreme versatility of the PCE method, the non-intrusive

version of this UQ tool is considered the most suitable option to be combined

with MBDyn. For this reason, this formulation is introduced in TiPa design.

2.4.4 Info-gap theory

Info-gap theory has been extensively used in decision taking problems related

to engineering. Including this theory in TiPa and MBDyn formulation would

surely provide useful new information. Some concepts must be explained

though.
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First, the method was never implemented before into the complex multi-

body formulation of a general purpose software. The variety of Info-gap

models could well represent the different uncertain variables and propagate

them through the code formulation, but the results may not converge.

Second, only epistemic uncertainty can be represented. This is very

limiting in a general purpose formulation.

Third, the information provided by Info-gap theory cannot be compared

to the one derived by other methods since they are mostly limited to en-

hancing the decision making process.

This makes Info-gap theory interesting for TiPa development only if

placed alongside a more robust and studied method. For this reason, the

theory is not implemented in the first place.

2.5 PCE and MBDyn

The argumentations of section 2.4 led to the conclusion that the non-intrusive

polynomial chaos expansions based UQ techniques are optimal to propagate

uncertainty within the multibody solver MBDyn. The focus is now switched

on the best possible techniques to adopt in the PCE implementation pro-

cess.

The options are two:

1. Adding the PCE formulation directly the multibody solver

2. Coupling the solver with an external UQ tool

2.5.1 Adding PCE to the solver

The way non-intrusive PCE works is explained briefly in 2.4.3. The big

advantage of this version of the PCE formulation is connected to the no

longer necessary existing code modification. This technique requires:

1. an orthogonal polynomial basis generator

2. an algorithm for the PCE coefficients computation

Both of them, though, are not so easy to build.

The orthogonal basis depends on many variables including:

• the order of the polynomial chaoses

• the number of random variables

• the probability distribution functions describing each of them
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Formulating a general algorithm containing all these elements makes the

generation of such basis complicated. For details about the formulation see

reference [47].

Assuming such bases are generated an correctly working, though, pre-

cisely matching the PCE coefficients to the input-output relationship can

be tricky as well. A possible approach to the problem is, for instance, the

spectral projections technique (ref. [39]). This methodology exploits the

polynomial orthogonality properties using inner products to project the re-

sponse against each basis function. This requires multi-dimensional integrals

computation and, per se, may not represent such a hard obstacle. The hard

part would be the required testing and validation phase of the algorithm.

Since many variables affect both the UQ formulation and the software MB-

Dyn, obtaining a general purpose working implementation may require a

really long time. For this reason, this solution is not an option within TiPa

development.

2.5.2 Coupling the solver with an external UQ tool

Coupling the existing solver with an external UQ tool is considered here.

Since non-intrusive PCE techniques are the selected ones, the job of the

external tool would just be related to accomplishing the tasks explained in

the previous section. Once again, the existing software (TiPa and MBDyn)

is not touched in any way, only different collections of random input-output

combinations must be evaluated by the external tool.

The software DAKOTA is designed to do so. The tool “wraps around”

whatever software the user provides and runs complete non-intrusive PCE

based UQ assessments. DAKOTA both generates random inputs matching

the user defined uncertain parameters trend and collects the simulation de-

sired outputs. DAKOTA, on addition, features a wide range of Uncertainty

Quantification algorithms based on almost all the methodologies described

in section 2.3 (excluding Info-Gap Analysis). This means, that other UQ

methods can be used as well within the software to verify the accuracy of

the PCE formulation in TiPa analyses.

DAKOTA provides the complete gPCE based assessment introduced in

section 2.3.3. This includes the computation of the Sobol indices as well as

the Kurtosis and the Skeweness of the random output probability density

function. This makes DAKOTA the perfect candidate for UQ investigation

within TiPa frame. For further information about the software DAKOTA,

see 2.6.
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2.6 What is DAKOTA

DAKOTA is an open source software which provides a flexible interface be-

tween the user simulation code and a wide range of analysis methods. It can

be used in optimization, UQ, reliability and sensitivity analysis problems.

For the specific purpose, DAKOTA allows to introduce uncertainty quan-

tification analysis including basically all the methodologies discussed above

without requiring the user to implement it’s own code. With more than 20

years of development behind, DAKOTA provides the user well established

and working analysis methods.

The software works in two ways: either using its internal solvers or

adapting on the user provided ones. The former (called direct mode) is

limited of course by the finite number of the existing solvers implemented

within DAKOTA itself. The latter, instead, allows the combination of the

software with whatever external tool the user may want to use. This is

called fork mode.

In this mode, the software refers to the user-provided solver as a “black

box”. This means that DAKOTA simply provides to the other software a

set of tuned inputs and collects the simulation outputs without taking into

account the tool internal structure. This works thanks to an interface the

user defines which allows DAKOTA to communicate with the existing solver.

This happens twice since there are two different information exchanges dur-

ing the combined analysis: DAKOTA talking to the user’s solver and the

opposite. The exchange of information takes places thanks to successive

writing and reading of short text file.

The process is so defined. DAKOTA basically provides inputs to the

black box expecting it to be able to read what it is saying. This short

input DAKOTA provides contains the value of the input uncertain param-

eter to be tested. The solver runs the actual analysis and generate some

response parameters. The desired random output parameter is eventually

fed to DAKOTA as short text file. So, the correct establishment of the

interface requires coding a function capable of both importing information

from DAKOTA input text files and generating an output file storing the

simulation outputs.

The software provides an extremely well designed User’s guide (ref. [1]).

For further details about the DAKOTA and its capabilities, please see:

https://dakota.sandia.gov/.
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Chapter 3

Multiblade Coordinates for

multibody software

Extracting useful information about a linear time invariant (LTI) mechanichal

system is (in most of the cases) straightforward. By rewriting the given

equations in matricial form, collecting informations about its dynamical be-

haviour simply requires to set the proper eigenvalue problem.

The process is more complex when dealing with linear time periodic

(LTP) mechanical systems. The equations gain dependency on time due

to periodic variating coefficients embedded in the system matrices. The

stability of LTP systems requires specific methods to be assessed correclty.

The most famous tool in this sense is provided by the Floquet Theory (ref.

[10]). In general these processes can be less intuitive and straightforward

with respect to the simple istruments used for LTI investigations.

Helicopters rotors are by nature periodic mechanical systems due to

their rotating motions. For this reason, their dynamical behaviour must

be assessed carefully. The periodicity rises since each blade is usually de-

scribed individually by the system equations of motion. The definition of a

new coordinate set called Multiblade Coordinates (MBC) can, under certain

conditions, remove the system periodicity. The resulting model dynamical

behaviour can be assessed with the standard procedure for LTI systems.

The MBC transformation has been used in rotorcraft modelling for many

decades. In this chapter, the development of an innovative adaptation of the

theory is presented. The MBC transfomation is applied to the DAE system

of equations describing a multibody helicopter rotor model generated with

the general-purpose software MBDyn. The procedure is implemented in

TiPa.
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3.1 The concept

Multiblade coordinates were introduced in 1943 by Coleman [4] and fully

developed by Hohenemser and Yin in 1974 [16].

MBC refers to a new set of coordinates designed to describe the motion(s)

of the rotor as a whole system instead of representing its individual blade

behaviour. The rotor motion is depicted with respect to a fixed reference

frame. This description through a “non-rotating” frame simplifies the inter-

action between the rotor and other helicopter fixed elements dynamics.

Under specific conditions, the MBC transformation removes the periodicity

from the rotor equations of motion.

The following two sections are inspired by the book “Rotorcraft Aerome-

chanics” by W. Johnson. For further details about the MBC formulation

please see ref. [19].

3.1.1 Working principle

The new set of coordinates is introduced. Despite many similarities appears

between theoretical frame behind MBC transformation and the Fourier Se-

ries expansion, they are not the same.

Defining a rotor with Nb equally spaced blades, the azimuth angle ψk
assessing the position of the k-th blade is:

ψk = ψ + (k − 1)
2π

Nb
(3.1)

where ψ is the azimuth angle of the first blade.

Assuming that the k-th blade motion is described by a single and generic

degree of freedom qk, that DOF can be rewritten as a linear combination of

the system multiblade coordinates in the following form:

qk = q0 +
∑
n

(qnc cosnψk + qns sinnψk) + qNb/2(−1)k (3.2)

Where n = 1 : (Nb − 1)/2 if Nb is odd and n = 1 : (Nb − 2)/2 if Nb is even.

The qNb/2 DOF appears only if Nb is even as well. The coordinates q0, q1c
and q1s are referred as collective and cyclic modes and are the most relevant

descriptors of the rotor dynamical behaviour. All the other coordinates

qNb/2, qns and qns with n > 1 are the reactionless coordinates.

In general, it is possible to describe the change of coordinates of the

equations of motions through the multiblade transformation matrix T(ψ) in

this form:

q = T(ψ)qmb (3.3)
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where q = {q1 q2 . . . qk}T is the vector storing the individual blades DOFs

and qmb collects the non-rotating frame MBC degrees of freedom. The trans-

formation matrix T(ψ) changes according to the number of blades and is

defined from the system of equations 3.2.

3.1.2 New point of view

The introduction of the new set of coordinates changes the way the rotor

is described. As index of the rotor behaviour, here the eigenvalues and

eigenvectors of a simple rotor model are used.

Here, we consider that each blade is described by the flapping in hover

equation. Assuming the rotor has Nb blades, the motion of the k-th one,

in case some arbitrary damping is introduced in the system, is described by

the equation:

β̈k +
γ

8
β̇k + ν2βk = 0 (3.4)

where ν is the system natural frequency. The forcing terms are neglected

since not relevant.

The eigenvalues of equation 3.4 are:

λr = − γ

16
± i
√
ν2 −

( γ
16

)2
(3.5)

Once the transformation is applied, the system described with respect

to the non-rotating frame maintains the same number of coordinates but

introduces new DOFs. In the new frame, the system of equations 3.4 takes

the form:

β̈0 +
γ

8
β̇0 + ν2β0 = 0 (3.6)

{
β̈nc
β̈ns

}
+

[
γ
8 2n

−2n γ
8

]{
˙βnc
˙βns

}
+

[
ν2 − n2 nγ8
−nγ8 ν2 − n2

]{
βnc
βns

}
=

{
0

0

}
(3.7)

β̈Nb/2 +
γ

8
β̇Nb/2 + ν2βNb/2 = 0 (3.8)

The eigenvalues of equations 3.6 and 3.8 match those coming from equation

3.4 since only different coordinates appear in the formulation.
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In equations 3.7 some extra coupling terms appear. The eigenvalues of

that system of equations are:

λnr = − γ

16
± i
√
ν2 −

( γ
16

)2
± in = λr ± in (3.9)

λnr, the eigenvalues associated to the βnc and βns degrees of freedom,

appears to be similar to the rotating frame ones λr. The former are simply

shifted by ±in with respect to the latter.

The eigenvectors associated to these coordinates have π/2 phase difference

since:

βnc/βns = ±i (3.10)

for the corresponding eigenvalues λr ± in.

3.2 Multibody formulation

The transformation of a multibody dynamical system degrees of freedom

to MBC is presented in this section. The general purpose formulation of

MBDyn is used as reference in the explanation process since the software

is used in TiPa development. Please do note that the procedure presented

here can be adapted and extended to other multibody solvers.

The actual transformation of multibody DOFs to MBC is presented in

section 3.2.5. All the other parts introduce the concepts required for the

correct process design.

3.2.1 Multibody dynamics basics

Many applications of multibody dynamics rely on the writing of the assem-

bly sub components equations of motion independently from the definition

of their interactions. The latter are assessed through specific constraint

equations. This means that each component is defined in a “free-free” con-

dition while the assembly constraints are enforced through a set of algebraic

relationships (Lagrange multipliers).

In MBDyn, the resulting DAE system is written in a precise order. The

entire assembly “free-free” equations of motions are always placed before

the constraints enforcing ones. This directly affects the way MBDyn orders

the current simulation DOFs and, consequently, the way it assembles the

matrices representing the modeled system.

Naming q the generalized MBDyn state vector, its element are always
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stored in this specific order:

q =

{
x

λ

}
(3.11)

Where x vector contains all structural DOFs while λ contain the joints

(Lagrange multipliers) DOFs.

The equations describing the generic multibody system in MBDyn have the

following structure.

E q̇ = A q (3.12)

3.2.2 Rotating systems

To introduce the multiblade transformation, we assume that equation 3.12

describes the dynamics of a Nb bladed rotor. The blades are equally spaced

and their azimuthal position is assessed by equation 3.1.

To understand how to transform the system DOFs to the non-rotating frame,

it is first important to correctly assess how the system DOFs are stored in

x.

Nodes

The vector x stores the description of each node motion xn. This means

that it can be decomposed as follows:

x =


x1

x2

...

xn

 (3.13)

for n = 1 : Ntot with Ntot equals to the entire assembly nodes number.

The rotor nodes can be classified in two groups:

• recursive nodes (xr) are the nodes that generate the rotor blades

• non-recursive nodes (x0) are the nodes appearing only once in the

assembly

All blades are geometrically identical. This means that each one of them

have the same number of nodes and DOFs associated. For this reason, they

create a recursive pattern in the model definition and their behaviour can

be recombined through the multiblade transformation.
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Figure 3.1: Schematic representation of recursive (in blue) and non-recursive

(in red) nodes in a four bladed rotor

Non-recursive nodes include for instance the hub node and swashplate nodes.

Their associated DOFs do not appear more then once, hence they cannot

be rewritten in the non-rotating frame.

A visualization of the two node families is showed in fig. 3.1.

Non-recursive nodes are identified here through apex the ()0. The DOFs

associated to the i-th non-recursive node are stored in the vector x0
i .

Defining a single blade nodes number as Nbl, it is then possible to group each

recursive node DOFs in the vector xkj where k = 1 : Nb and j = 1 : Nbl.

The number of non-recursive structural nodes Nnr can be computed as:

Nnr = Ntot −Nbl ∗Nb︸ ︷︷ ︸
=Nr

= Ntot −Nr (3.14)

Where Nr is the number of recursive nodes.
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These definitions allows to rewrite 3.13 as:

x =

{
x0

xr

}
=



x0
1

x0
2
...

x0
Nnr

x1
1

x1
2
...

xNb
Nbl−1

xNb
Nbl



(3.15)

Please do note that the order in which recursive or non-recursive nodes

DOFs are defined does not follow specific rules. In equation 3.15, non-

recursive nodes DOFs are defined earlier with respect to the others. This is

just a convention used to better introduce the nodes classification.

3.2.3 MBC for multibody DOFs

To explain the way the multiblade transformation works for a large number

of DOFs, it is first important to understand how it works in a simple case.

1 DOF example

A three bladed rotor with rigid blade elements is defined and a single DOF

sk is assigned to the k-th one of them (so, k = 1 : 3). This means that only

3 DOFs describe the entire rotor motion.

In this simple case, the recursive nodes degrees of freedom xkj (with j = 1)

are scalars since:

xk1 = sk (3.16)

According to equation 3.15 and assuming non-recursive DOFs are not

present, the system DOFs x can be written as:

x =


x1
1

x2
1

x3
1

 =


s1
s2
s3

 = s (3.17)

The transformation to MBC is defined according to equation 3.3 as:

s = T(ψ)smb (3.18)
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where ()mb indicate parameters transformed in the non-rotating frame.

2 DOF example

When a new DOF pk (with k = 1 : 3) is added to each model blade, the

transformation to MBC requires more attention. In the new configuration,

each blade node structural DOFs are defined as xk1 = {sk pk}T .

The entire rotor DOFs are then assembled as:

x =


x1
1

x2
1

x3
1

 =



s1
p1
s2
p2
s3
p3


(3.19)

Where once again non-recursive node are assumed not to be present. MBC

transformation is effective only if consistent DOFs are transformed to the

non rotating frame independently. This happens if:

s = T(ψ)smb, p = T(ψ)pmb (3.20)

where p = {p1 p2 p3}T and T(ψ) is the transformation matrix defined in

equation 3.3.

To correctly apply the transformation, the system coordinates in equation

3.19 needs to be reordered. So, a DOFs permutation matrix Px is introduced

such that:

x =



s1
p1
s2
p2
s3
p3


= Px



s1
s2
s3
p1
p2
p3


= Px

{
s

p

}
= PxxP (3.21)

Where ()P indicates the permuted degrees of freedom vector. Px is a square

matrix whose dimensions LP are exactly equal to the number of recursive

nodes DOFs. For this reason, it is very important to correctiily assess how

many DOFs are related to each node to effectively implement the multiblade

transformation.

In MBDyn, for instance, each xkj vector can store different numbers of

degrees of freedom according to the way the associated node is defined.
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There are two options.

Static nodes have 6 DOFs associated (3 displacements and 3 rotations)

while dynamic nodes 12 (3 displacements, 3 rotations, 3 linear momenta

and 3 momenta moments).

The permutation allows the system transformation multiblade to MBC.

The matrix Tx(ψ) is introduced as follows:

xP =

{
s

p

}
=

[
T(ψ) 0

0 T(ψ)

]{
smb
pmb

}
= Tx(ψ) xmb (3.22)

Constraints

The generalized MBDyn state vector defined in equation 3.11 stores informa-

tion about the system constraint equations. How is the λ vector transformed

to MBC?

Constraints can be either enforced on recursive or non-recursive nodes. This

means that λ elements as well can be grouped in recursive and non recursive

quantities according equation 3.15.

λ =

{
λ0

λr

}
=



λ0
1

λ0
2
...

λ0
Ncnr

λ1
1

λ1
2
...

λNc
Nbl


(3.23)

Where Nc is the number of constraint enforced on each blade and Ncnr is

the number of non-recursive joints.

To apply the transformation to MBC, the process follows equation 3.21 and

3.22, giving:

λ = PλλP (3.24)

λP = Tλ(ψ) λmb (3.25)

Please do note that each recursive joint has specific number of DOFs. This

must be carefully considered when generating the permutation (Pλ) and

MBC (Tλ(ψ)) transformation matrices for the λ vector.
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3.2.4 Local VS global reference frames

As already mentioned in the previous section, MBC transformation works

only in case consistent quantities are combined together. To make sure this

is the case, it is important to identify how the given solver generates and

describes the model.

MBDyn, for instance, writes the equation of motions of each element with

respect to a single global reference frame. This, if not correctly addressed,

can be a problem for the transformation.

To explain the concept, a four bladed rotor is presented here as example.

The geometry is defined such that the first blade is aligned with the direction

of the positive global MBDyn X axis. The specific set-up can be described

with a null azimuth angle (ψ = 0). Consequently, the k-th blade azimuthal

orientation is assessed by:

ψk = (k − 1)
2π

4
(3.26)

(where k = 1 : 4) which is an adaptation of equation 3.1 to this case. As

consequence, the second blade is collinear to the positive direction of the

global Y axis. The rotor considered configuration is depicted in fig. 3.2. In

red is represented MBDyn global reference frame.

Assuming we want to focus only on each blade first node, the entire

system structural DOFs can be written as:

x =
{
x0
1 . . .x

0
Nnr

x1
1 . . .x

2
1 . . .x

3
1 . . .x

4
1 . . .

}T
(3.27)

Where xk1 for k = 1 : 4 is the vector storing the k-th blade first node DOFs.

According to MBDyn formulation each xki is defined as follows:

xk1 =
{
pk1x pk1y pk1z rk1x rk1y . . .

}T
(3.28)

Where pk1u is k-th blade first node position DOF in the u-th direction (with

u = x, y, z) and rk1u is the same node orientation about u-th axis. All the

xk1 vectors are defined in the global MBDyn reference frame.

Four local reference frames are now introduced. Each one of them is

placed at a specific blade root position with the X axis aligned with the

element longest dimension (positive from root to blade tip) and the Z axis

pointing upwards. Using such reference frames, it is possible to introduce

x̃k1: a new representation of each blade first node DOFs. Maintaining the
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X Y

Z

Figure 3.2: Four bladed rotor with ψ = 0

same formulation used in 3.28, the vectors are so defined:

x̃k1 =
{
p̃k1x p̃k1y p̃k1z r̃k1x r̃k1y . . .

}T
(3.29)

The information stored by x̃k1 and xk1 is the same. What differs is the way it

is presented and this can be a crucial factor for the correct implementation

of the multiblade transformation.

The use of xk1 is not a reliable method to set the transformation. That is

because, going back to the four bladed rotor example introduced above, the

first terms of x1
1 and x2

1 (p11x and p21x respectively) carry different information

since the problem geometry makes the two DOFs describe different blades

local behaviours. This can be proven thanks to the visualization of the local

represented blades DOFs. The local reference frames describes each blade

motion as if it was recorded by four observers sitting at the elements roots.

For the k-th observer, p̃k1x represent by how far the first node is displaced

along the k-th blade X axis. So, p̃k1x provides consistent information about

the rotor overall behaviour.

What does pk1x represents instead? How is it compared to the information

carried by p̃k1x? For this specific rotor geometry and orientation:

p11x = p̃11x, p
2
1x = −p̃21y (3.30)
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So, applying the transformation defined in eq. 3.3 to the pk1x variables does

not satisfy the consistency requirements among the transformed quantities.

That is because, in this simple case, the operation would combine DOFs

assessing different blades local behaviours (see eq. 3.30). The situation

can be worse if ψ 6= 0 since the information coming from xk1 is even more

shuffled.

As example, the information carried by pk1x and by p̃k1x are plotted in

fig. 3.3. The figure on the left, represents a visualization of the DOFs stored

in pk1x. The global MBDyn reference frame is represented in red. The

four blue cirles represents the blade nodes and the arrows represent the

direction along which pk1x DOFs describe the motion. The arrow heads are

filled with red since they describe quantities assessed with respect to the

global reference frame. It is obvious how such DOFs represent different

individual components of the blade behaviour. On the right, instead, the

blade local reference frames are depicted in green (actually only two of them

are presented to make the picture more readable). The arrow heads are

now filled with green to indicate that they are representing the local DOFs

described by p̃k1x. It is clear from the visualization how the information

carried about the blades behaviour is consistent. So, to transform first

nodes X position DOFs to the non-rotating frame the use of p̃k1x variables is

recommended.

The formulation can be extended to the entire range of DOFs simply

suggesting the use of x̃kj instead of xkj as set of recursive nodes coordinates

for the MBC transformation.

X Y

Z

X

Y

Z
X

Y Z

Figure 3.3: Blades node 1 first DOF described in global VS local reference

frames
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In case the solvers provide equations written in a global reference frame

only, the DOFs can be brought to local reference frames thanks to an az-

imuthal rotation matrix. In the current example, the azimuth position of

the k-th blade is assessed by equation 3.26.

To move to the local representation, each blade equations must be ro-

tated with respect to the correct ψk angle. The rotation matrix used, de-

pends on the specific axis about which the rotor is spinning. For instance,

in case the rotor spins about Z axis (as in fig. 3.2), Rk
z is used to rotate the

k-th blade equations.

Rk
z =

cos(ψk) −sin(ψk) 0

sin(ψk) cos(ψk) 0

0 0 1

 (3.31)

It is important to point out that in some cases, rotations about other axis

needs to be accounted as well in this process. If a gimbal hinge is present in

the hub, for instance, the rotating disk may be tilted about other axis. In

such cases, the use of a complete 3D rotation matrix is suggested.

Some further considerations are required about the definition of local

blade coordinated. Bringing multibody equations into new reference frames,

in general, requires both the rotation of the structural nodes and of the

algebraic constraint equations. This process is though affected by:

• how the specific software writes the assembly “free-free” equations

• how it enforces constraints

MBDyn, as already mentioned, writes the nodes equations with respect

to a global reference frame. This means a rotation to local blade frames

is needed to obtain a consistent multiblade transformation. This process

can have some complications. Due to the way structural nodes equations

are written in MBDyn, momentum and momenta moment definition can

introduce extra rotations components in case relative motion is present.

Allowing some relative motions between different part of the model makes

it much harder to impose the correct transformation to local reference frames

since extra terms appear in the formulation. To overcome this, the definition

a rotor clamped to the ground is recommended. An explanation of this is

presented in [25]. If such conditions are satisfied, instead, it is possible

to rotate structural DOFs equations just by pre and post-multiplying the

azimuthal rotation matrix (see eq. 3.34). Such matrix transformation must

act on all DOFs with the correct angular azimuthal orientation.
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The entire system structural coordinates defined with respect to MBDyn

global reference frame (x) can be grouped as:

x =



x0

x1
bl

x2
bl

x3
bl

x4
bl


(3.32)

So, the transformation to the local DOFs is defined as:



x0

x1
bl

x2
bl

x3
bl

x4
bl


=



[
I
] [

Rbl(ψ1)
] [

Rbl(ψ2)
] [

Rbl(ψ3)
] [

Rbl(ψ4)
]





x0

x̃1
bl

x̃2
bl

x̃3
bl

x̃4
bl


(3.33)

where xkbl and x̃kbl are vectors storing all DOFs related to the k-th blade

defined with respect to global and local reference frames. The formulation

can be compressed in:

x = Rx(ψ) x̃ (3.34)

in which x̃ stores local reference frames DOFs and Rx(ψ) applies the trans-

formation. Rbl(ψk) matrices are square matrices whose dimensions are equal

to the number of each blade DOFs. In MBDyn, this one depends on the

type of structural node implemented in the formulation. The matrices are

block diagonal where each one of them is a 3 by 3 rotation matrix (Rk
z for

instance, see eq. 3.31) whose coefficients depends on the angle (ψk) defining

the specific blade azimuthal position.

Please note that in equation 3.33 the description of non recursive nodes

DOFs x0 is not rewritten in a local reference frame since:

x0 = I x0 (3.35)

This is a consequence that such DOFs are not touched by the MBC trans-

formation and consequently do not need to be described with respect to new

reference frames.

The way constraint are enforced in MBDyn really depends on many pa-

rameters. In the software, it is possible to implement in different manners

the same joints. This is mostly due to the implementation of the “total
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joint” in most recent versions of MBDyn. This element allows the definition

of various types of joints simply enabling or not specific position and orien-

tation constraints DOFs. The “total joint” is enforced directly in the local

reference frames of each node. This means that no extra rotation is required

to correctly apply the multiblade transformation. Implementing the same

constraint through ad hoc MBDyn joints may results instead into partially

local or global reference frames joint definitions. This, if not accounted,

may induce errors in the transformation. So, for MBDyn users, a good hint

would be to use as much as possible “total joint” elements.

From the previous considerations, when MBDyn “total joints” are used:

λ = Rλ(ψ) λ̃ = I λ̃ (3.36)

Where λ̃ stores the “locally” assessed constraint DOFs.

So, the MBDyn state vector q is described with respect to local blades

reference frame through:

q =

{
x

λ

}
=

[
Rx(ψ) 0

0 I

]{
x̃

λ̃

}
= Rtot(ψ) q̃ (3.37)

Where Rtot is defined from equations 3.34 and 3.36.

3.2.5 The transformation

In the previous sections, all the steps required to transform MBDyn DOFs

to the non-rotating frame have been presented. Here, the entire process is

showed.

VWP

To ease the formulation, MBDyn equations are assumed to be derived through

a VWP (Virtual Work Principle) formulation. This helps understanding how

the MBC transformation is applied to both “sides” of the problem matrices.

Thanks to the VWP, MBDyn equations can be written as:

δqT (E q̇ −A q) = 0 (3.38)

Since the transformation does not apply to all MBDyn states, the correct

identification of the system recursive and non-recursive nodes (xr, x0) and

joints DOFs (λr, λ0) is assumed.
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Global to local

The first step of the transformation requires the blades multibody equations

description through their local reference frames. The process is explained

and detailed in section 3.2.4.

The different components present in eq. 3.38 are processed differently. The

vector q is transformed as in equation 3.37 while:

q̇ = Rtot(ψ) ˙̃q (3.39)

δqT = δq̃T RT
tot(ψ) (3.40)

DOFs permutation

Local recursive degrees of freedom x̃r and λ̃
r

must now be permuted (see

sec. 3.2.3) in preparation of the MBC transformation. Equations 3.21 and

3.24 becomes then:

x̃r = Px x̃rP (3.41)

λ̃
r

= Pλ λ̃
r

P (3.42)

Since only recursive DOFs are permuted,

x̃ =

{
x̃0

x̃r

}
=

[
I 0

0 Px

]{
x̃0
P

x̃rP

}
= Pxtot x̃P (3.43)

and

λ̃ =

{
λ̃
0

λ̃
r

}
=

[
I 0

0 Pλ

]{
λ̃
0

P

λ̃
r

P

}
= Pλtot λ̃P (3.44)

The global system DOFs permutation is defined by matrix P as:

q̃ =

{
x̃

λ̃

}
=

[
Pxtot 0

0 Pλtot

]{
x̃P
λ̃P

}
= P q̃P (3.45)

Which results in:
˙̃q = P ˙̃qP (3.46)

δq̃T = δq̃TP PT (3.47)
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MBC transformation

It is finally possible to apply the transformation to MBC. Once again, only

recursive and non-recursive DOFs x̃rP and λ̃
r

P are affected by the process.

Equations 3.22 and 3.25 becomes:

x̃rP = Tx(ψ) xrmb (3.48)

λ̃
r

P = Tλ(ψ) λrmb (3.49)

The transformation is so decomposed:

x̃P =

{
x̃0
P

x̃rP

}
=

[
I 0

0 Tx(ψ)

]{
x0
mb

xrmb

}
= Txtot(ψ) xmb (3.50)

and

λ̃P =

{
λ̃
0

P

λ̃
r

P

}
=

[
I 0

0 Tλ(ψ)

]{
λ0
mb

λrmb

}
= Tλtot(ψ) λmb (3.51)

From which is possible to define the system multiblade transformation ma-

trix as:

q̃P =

{
x̃P
λ̃P

}
=

[
Txtot(ψ) 0

0 Tλtot(ψ)

]{
xmb
λmb

}
= Tmb(ψ) qmb (3.52)

Which results in:

˙̃qP = Tmb(ψ) q̇mb + ˙Tmb(ψ) qmb (3.53)

δq̃TP = δqTmb TT
mb(ψ) (3.54)

Overall process

To compact the formulation, combining equations 3.37, 3.45, and 3.52 its

possible to define the entire process transformation matrix M as:

q =
(
Rtot P Tmb

)
qmb = M qmb (3.55)

and consequently

δqT = δqTmb MT (3.56)
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Thanks to to equations 3.39, 3.46 and 3.53, q̇ is connected to qmb and q̇mb
by:

q̇ = M q̇mb + Ṁ qmb (3.57)

Where

Ṁ = Rtot P ˙Tmb (3.58)

MBDyn equations can eventually be rewritten in the non-rotating frame as:

δqTmb

(
MTEM︸ ︷︷ ︸

Emb

q̇mb − (MTAM −MTEṀ)︸ ︷︷ ︸
Amb

qmb

)
= 0 (3.59)

Which corresponds to:

δqTmb
(
Emb q̇mb −Amb qmb

)
= 0 (3.60)

3.3 Transformation results

As already explained in section 3.1.2, writing the rotor equations in the non-

rotating frame changes the way the system is described. This can be easily

seen since the new set of coordinates affects extensively the way the system

matrices elements are defined and organized.

This section briefly explains how the MBC transformation affects the

description of a simple rotor multibody model generated with the general

purpose software MBDyn. It focuses first on how the system matrices are

reorganized to eventually validate the process with some reference results.

3.3.1 Matrices structure

To easily present the transformation effects, a simple four bladed gimballed

rotor model is used here.

The mast and hub structure is modelled with a simple scheme. From

bottom to top, the first node is grounded and connected to the lower of

the two swashplate nodes. The latter are connected with a dedicated joint.

The upper of the two is eventually connected to the hub node. All the just

mentioned node and joint elements are this model equivalent of the so called

non-recursive nodes (x0) and joints (λ0) introduced in section 3.2.2.

Each blade element is composed of five nodes connected by two MBDyn

beam elements. Their first node is attached to the rotor hub node through

a pitch hinge and it is connected to the swashplate through a pitch link.
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This simple model, of course, does not represent a realistic rotor system.

This scheme is designed to include simple examples of recursive nodes (xr)

and joints (λr) as, respectively, blades nodes and pitch hinges and links.

Please note that, to obtain a valid transformation, the system is rotating.

No aerodynamical elements are used in the formulation.

Figure 3.4 compare the elements populating the simple rotor associated

MBDyn matrices before (in red) and after (in blue) the application of the

MBC transformation. The visualization are generated with the MATLAB

“spy” command. On the left, the comparison between Amb and A is pre-

sented while, on the right, Emb and E are overlapped.

Figure 3.4: Amb/A and Emb/E comparisons

It is easy to visualize that the transformation drastically manipulates the

matrices structure. The actual modifications are broken down one by one

in following lines.

Figure 5.3 shows a side to side comparison of Emb and E matrices.

A grid is introduced to ease the comparison between different sections of the

matrices. The boxes named 1.1 and 2.1 refers, in both matrices, to the terms

storing information about the non-recursive nodes and joints respectively.

The 1.2 and 2.2 rectangles, instead, contain the nodal and joint properties

associated to recursive nodes. The terms not included in the grid, which

appear on the bottom of each figure, store the information about the joints

enforcements but with a slightly different description compared to the one

found in boxes 2.1 and 2.2. For this reason, the constraining terms are

analyzed only in those two.
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1.1
2.1

1.2

2.2

1.1
2.1

1.2

2.2

Figure 3.5: Comparison between Emb and E

The exact method MBDyn uses to write the system equations and con-

sequently the model representing matrices is not explained here. For further

information, please refer to [24].

From Figure 5.3 it is clear that, as expected, the quantities related to

non-recursive nodes and joints are not affected by the formulation. This is

true since the terms stored in boxes 1.1 and 2.1 maintain the same disposi-

tion in both Emb and E. Please note that these visual comparisons do not

provide any information about the actual terms magnitude. According to

the formulation presented in 3.2, though, only the recursive quantities are

affected by the MBC transformation. So, matrices elements associated to

non-recursive DOFs maintain the same description both in terms of terms

placement and magnitude.

The recursive quantities, instead, are effectively manipulated by the pro-

cess. In matrix E, box 1.2 contains information about the blade nodes prop-

erties. Inside such box, the red plot show a recursive pattern which repeats

itself four times: once per blade. With a careful look, the shape of the pat-

tern describing a single blade appears, instead, only once in Emb matrix 1.2

box. Such shape is extended to the entire nodes DOFs area. This provides

a simple visual representation of how each individual blade description is re-

assembled into an overall description of the rotor. The same process is clear

when comparing the information coming from the recursive blade joints en-

forcement. While in E matrix four red enforcing constraints blocks appear

in 2.2, in Emb matrix a single larger element contains the joints description.

This, once again, shows easily how the multiblade transformation groups
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each blade recursive information into an overall rotor description.

Figure 3.6, instead, shows a side to side comparison of Amb and A ma-

trices.

1.1
2.1

1.2

2.2

1.1
2.1

1.2

2.2

Figure 3.6: Comparison between Amb and A

The interpretation of these visualization requires a little more attention.

The reason behind this is the fact that Amb contains information coming

from both A and E matrices as explained in equation 3.59. This is evident

when comparing Amb and A 2.1 and 2.2 blocks in Figure 3.6. A, according

MBDyn formulation, does not contain any information about the joint en-

forcements. They are present, though, in Amb due to the E matrix influence

on the matrix. Please note that in area 2.2, the joints are grouped matching

the MBC transformation description of the recursive quantities.

Each matrix boxes 1.1 and 1.2 show a similar trend as the one presented

in Figure 5.3. This time, though, boxes 1.1 maintain only a similar orga-

nization in both A and Amb since in the latter the influence of E matrix

corresponding box is present. The red elements present in A matrix 1.2

block show, once again, the repetition of the same pattern describing each

blade elements. This pattern is “expanded” and presented only once in Amb

1.2 block. Here as well, the influence of E matrix is visible.

In Figure 5.3 some terms appears in the rectangular boxes placed above

and to the left of each matrix 1.2 block. These represent the forces intro-

duced by the pitch links on both the upper swashplate node and each blade

first node. In matrix A, these elements repeat themselves with an asym-

metrical pattern that is grouped, once again, in matrix Amb by the MBC

DOFs.
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3.3.2 New description

To prove the transformation is acting properly on the system, the new sys-

tem of coordinates must assess the rotor behaviour while respecting the

theoretical formulation presented in section 3.1.2. The effects of the trans-

formation can be easily assessed when computing the eigenvalues and eigen-

vectors of associated to both Amb/Emb and A/E matrices. They represent

the dynamical behaviour of the system both in non-rotating and rotating

reference frames.

Since a four bladed gimballed rotor is used here, n = 1 from equation 3.2.

Consequently, the qk coordinates describing the k-th blade q-th DOF are

recombined through the collective (q0), the cyclic (q1c and q1s) and the

reactionless (q1) non-rotating frame DOFs.

According to the theoretical development presented in 3.1.2 some system

eigenfrequencies remains the same while others are shifter by ±1/rev after

the MBC transformation. Those remaining constant after the transforma-

tion are associated to system modes whose eigenshapes are dominated by

the collective and reactionless coordinates. The opposite happens for the

eigenvectors associated modes dominated by the cyclic coordinates activa-

tion. Table 3.1 shows an example of collective and cyclic dominated modes

eigenfrequencies. The chart compares their associated adimensional eigen-

frequencies described in the rotating and non-rotating frame with a fixed

angular speed.

Mode name Rotating frame freq. Non-rotating frame freq.

[1/rev] [1/rev]

Gimbal
1 0

1 2

Cone 5.39 5.39

Table 3.1: Cyclic and collective modes description examples

The gimbal appears twice since both the regressive and progressive modes

derive from the system eigenananlysis. Since these motions are dominated

by cyclic coordinates, we can see in table 3.1 how their associated frequen-

cies are shifted by the expected ±1/rev amount when described with MBC

coordinates.

The cone mode, instead, being dominated by collective coordinates, is

represented by the same eigenvalue in both formulations.

Modes dominated by cyclic degrees of freedom also (for instance the first

two gimbal modes) are characterized by the theoretical phase lag between
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each couple of cyclic coorinates as defined in the theoretical frame. An

interesting outcome of the extended MBC multibody formulation is that

such behavior is evident in the Lagrange multipliers associated DOFs as

well. Still using as reference the four bladed rotor presented above, the

concept is now proven.

Among each blade first node DOFs, five of them are locked by the cor-

responding revolute hinge. Table 3.2 shows the activation of the Lagrange

multipliers DOFs associated to the constraints each joint enforces in the Z di-

rection of such nodes. The degrees of freedom presented there are extracted

from the eigenvector associated to the progressive gimbal mode. Within

each column, the values showed are normalized with respect to the norm of

the larger complex number. In the model, the Z axis is placed with respect

to the rotor as visualized in Figure 3.2. The k-th blade DOF is called λkFz

and the MBC corresponding ones are called λFz
0 , λFz

1c , λFz
1s and λFz

1 .

DOFs DOFs activation DOFs activation MBC DOFs

λ1Fz
0.0834− 0.5032i 0 + 0i λFz

0

λ2Fz
−0.1813 + 0.9834i 0.9951 + 0.0988i λFz

1c

λ3Fz
−0.0834 + 0.5032i 0.0988− 0.9951i λFz

1s

λ4Fz
0.1813− 0.9834i 0 + 0i λFz

1

Table 3.2: Progressive gimbal mode Lagrange multipliers activation

Table 3.2 provides a simple representation of how the analyzed cyclic

mode activates differently the regular MBDyn DOFs and their correspond-

ing MBC version. The regular DOFs show a pattern that describes the

periodic oscillation of the four bladed rotor. Please note that, despite the

blade elements are modeled without structural damping, the eigenvectors

are complex since the system is rotating. This, in MBDyn formulation,

introduces some levels of damping due to the presence of Coriolis forces.

The multiblade DOFs behaviour, instead, matches the theoretical anal-

ysis presented in section 3.1.2. The collective and hingeless DOFs are not

active while the cyclic ones are. Computing:

λFz
1c /λ

Fz
1s = i (3.61)

Equation 3.61 proves the existence of the expected π/2 phase distance be-

tween λFz
1c and λFz

1s and that the former precedes the latter. Since the rotor is

spinning about the positive Z axis, this easily proves the progressive nature

of the investigated eigenmode.
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Chapter 4

TiPa

TiPa, which stands for Tiltrotor Parametric model generator, is a MATLAB

environment based software developed at Politecnico di Milano. It repre-

sents a key element in the formulation of a tiltrotor generic configuration

aeroelastic numerical predictor with uncertainty propagation capabilities.

The development of the software started within this thesis project alongside

the current whirl flutter research frame.

TiPa is conceived to complete different tasks.

First, it is designed to provide a semi-automatic model generator for an

arbitrary user defined tiltrotor wind tunnel configuration. The process is

based on three software input cards that can store information about the

system features and the required simulation properties. The software is

designed to handle different amounts of input data in order to match the

specific level of knowledge about the model configuration. Such information

is used by TiPa to prepare input files for the multibody software MBDyn.

Second, TiPa directly provides the abovementioned input files to MBDyn.

This happens inside the current TiPa simulation in order to automatize the

complete aeroelastic assessment.

Third, TiPa acts as a posprocessor for the response variables provided by

MBDyn analysis.

Such tasks are designed to make TiPa simulation flexibles and agile in

order to be coupled with the external Uncertainty Quantification software

DAKOTA. This cooperation completes the formulation of the aeroelastic

stochastic solver.

This chapter starts with a brief introduction to the key ideas behind TiPa

conception and development. After that, the software simulation capabilities

are presented as well as the cooperation between DAKOTA and TiPa. In

conclusion, the working principles behind the complete aeroelastic solver
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with uncertainty propagation capabilities are described.

4.1 Parametric conception

Since the early development stages, TiPa has been conceived to model a

generic tiltrotor configuration. For this reason, each step of its formulation

has been modeled to handle whatever generic data its user may want to

provide to simulate a specific wind tunnel system. The software requires the

definition of a series of input variables to be manipulated by TiPa internal

schemes in order to generate the desired geometries. These input parameters

are accessible through some input cards (see section 4.2). As consequence,

TiPa generated models design can be tuned in a really short amount of time

just by acting on such variables definitions.

The development of a parametric tiltrotor whirl flutter predictor is meant

to satisfy specific investigation requirements. Whirl flutter is an aeroelastic

phenomenon affected by a large number of factors. As already explained

in section 1.3, the need to understand how each design feature influences a

specific system aeroelastic behaviour is crucial in gaining further insights on

the origin of instability phenomenon. The easy tunability of TiPa models

allow this type of investigation.

Today’s tiltrotors whirl flutter research is led by TRAST. The project

promotes the importance of investigating the behaviour of a generic propro-

tor configuration to gain better knowledge of the whirl flutter phenomenon

(for further details see section 1.3.2). TiPa a numerical tool is designed to

match TRAST test-bed flexibility to both provide and gain useful informa-

tion from the research project.

In conclusion, TiPa is meant to be a crucial component in the develop-

ment of a generic tiltrotor wind tunnel model configuration predictor with

uncertainty quantification capabilities. This allows the investigation of the

system aeroelastic stochastic behaviour with respect to uncertain design

features. The “non-intrusive” gPCE based UQ technique has been selected

to propagate the random input parameters through the model (see sections

2.3.3 and 2.4.3). The method is introduced in the overall formulation thanks

to the software DAKOTA. This does not operate on the internal structure

of TiPa, but requires easy access to the latter input an output variables (see

2.6). For this reason, TiPa simple input parameters system was designed.
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4.2 Interfacing with TiPa

TiPa does not provide a Graphical User Interface (GUI). The user can in-

teract with the software through specific input cards. They are MATLAB

files that contain information about both the desired tiltrotor features and

the overall simulation. TiPa reads such cards in the beginning of each run.

TiPa handles the model generation dividing the tiltrotor entire assembly

into two parts (or subsystems): the wing one and the rotor one. This, as

explained in section 4.4, provides further flexibility in the modelling process

and in TiPa analysis selected approach.

The cards definition matches such design scheme. Consequently three

different input cards exist.

The control card contains a series of variables designed to control the

current simulation. For instance they define:

• which assembly component to generate and analyze

• the mode to use in generating each submodel elements (see sec. 4.3)

• the air data for the aeroelastic assessment

• the postprocessing operations TiPa must run on MBDyn analysis re-

sults

The wing card stores the user defined information required to model

the wing subsystem. It contains the model geometrical, aerodynamical and

structural features. The variables TiPa extracts from this card are processed

by the software algorithm and transformed into a MBDyn input file.

The rotor card, instead, contains information about the rotor geometri-

cal, aerodynamical and structural definition. It includes the blade elements

characterization and the description of the rotor/hub command chain. This

information as well is processed and transformed to a MBDyn input file.

4.3 The modes

The details of the information stored in both wing and rotor cards can be

different. TiPa is conceived to work in two modes:

• the generation mode

• the import mode
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The differences between the two formulations justify the different amount of

information the user may have to generate each submodel beam elements.

In generation mode, the user provided data is as little as possible, hence,

the code computes all the required properties to generate the full model.

This mode is mostly used to test configurations where the user completely

lacks information about inertia and stiffness properties of the elements in

the simulation. TiPa estimates all the missing properties from the little

data provided. For details about this mode see section 4.3.1.

In import mode, instead, the user may desire to test components whose

characterization comes from an experimental campaign. In this situation,

the data available to generate the model is assumed to be more detailed and

can be “directly” fed to the software. To read more about this mode see

section 4.3.2.

It is important to underline, though, that the every single assembly sub-

model can be defined either in generation or import mode without limiting

to a specific formulation the definition of the other component.

The following subsections aims at briefly presenting the two different

modes functioning. There, only an introduction to the different input vari-

ables required by each specific formulation is presented. For further infor-

mation about TiPa internal developlment, the software is provided with a

dedicated User’s guide. The file can be found in the software dedicated

GitLab repository at ref. [14].

4.3.1 The generation mode

This mode allows the user to generate each submodel beam elements in case

very little details about the components mechanical properties are known.

The software requires to define:

• the type of material used

• the geometrical shape and dimensions of the section

• the mass of the entire beam element

• the X,Y,Z position of each beam element begin/end

• the number of beam elements

• the beam nodes twist angles

Such information is used by TiPa to generate each beam elements mass,

inertia and stiffness properties to complete the characterization of the com-

62



ponent. The algorithms TiPa uses in this mode are explained in details in

the User’s guide (ref. [14]).

4.3.2 The import mode

In case the user wants to model subcomponents whose beam elements (wing,

blade...) mechanical properties have been previously characterized experi-

mentally, much more details about their definition are available. The soft-

ware allows dealing with this situation thanks to the import mode.

This second procedure allows the definition a component by importing

the latter section properties (2D) at specific positions along the span. These

properties are then expanded to the 3D model through the import mode

formulation.

The inputs TiPa requires are:

• ETA: the adimensional position along the component beam axis (X)

of the i-th section whose properties are known

• mi
2D: the mass per unit span of the i-th section

• yiCG, ziCG: the Y and Z coordinates of the i-th section CG position

• Iixx 2D, Iiyy 2D,Iizz 2D: the i-th section moments of inertia

• yiSC , ziSC : the Y and Z coordinates of the i-th section shear center

(SC) position

• EAi: the i-th section axial stiffness measure

• EJ iy, EJ iz: the i-th section bending stiffness about the section Y and

Z axis

• GJ i: the i-th section torsional stiffness measure

• GAiy, GAiz: the i-th section shear stiffness about the section Y and Z

axis

• ξi: the damping factor of the i-th section

• Xi, Y i, Zi: the position in space of each section “center” point

• θi: the twist angle of the i-th section

The entire mode formulation is once again presented in ref. [14].
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4.4 TiPa analysis

TiPa is designed to execute a different range of analysis. It is possible, for

instance, to execute analysis on each submodel. This allows the individual

characterization of each one of them. The numerical subsystem dynamical

behaviour can consequently be tuned to match the real model dynamical

behaviour. TiPa provides an internal parametric design investigation tool

to easily assess how specific parameters influence the mechanical behaviour.

A possible outcome of such investigation is showed in Figure 4.1 where, on

the left, the system eigenfrequencies are plotted for three different values of

a user defined input parameter (called “para”). On the right, instead, a per-

centage error esteem of the differences between two consecutive simulations

assessments is reported.
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Figure 4.1: TiPa parametric design investigation tool outputs

For what concerns complete TiPa tiltrotor investigations, two different

strategies can be adopted. The basic aeroelastic predictor is based on the

definition of the complete tiltrotor MBDyn model starting from the defi-

nition of the wing and rotor properties. This approach already provides

the possibility to execute complete stochastic parametric aeroelastic assess-

ments. For further information about this process, see section 4.4.3. The

use of this modelling approach, though, has some fundamental limitations

when complete stochastic aeroelastic assessments are executed on it. This

concept is addressed in details in Chapter 5.

The alternative approach, instead, is based on the tiltrotor models de-

velopment starting from the definition and analysis of the two submodels:

one representing the wing element, the other describing the rotor+pylon
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subsystem. This second TiPa formulation is based on the definition of both

the submodels with a node clamped to the ground. They are eventually

assembled together to describe the entire proprotor aeroelastic behaviour.

This modelling strategy was implemented with some precise reasons behind.

First, dividing the tiltrotor assembly into two separated submodels re-

duces the number of MBDyn degrees of freedom in each model generation.

This, despite the need of two separate assessments, cuts down the each TiPa

analysis computation time hence speeding up the entire aeroelastic investi-

gation. This happens since in a tiltrotor model, the rotor element plays an

important role in defining the convergence of the solution. The imposed

angular speed as well as the inputs applied to the control chain require to

be introduced progressively in the model motion to be handled properly

by the solver. This, inevitably, extend the overall simulation time. If the

tiltrotor is divided into two submodels, though, each one of them can be

investigated with different simulation times according to their specific re-

quirements. The wing analysis can be much shorter compared to the other

system’s. As consequence, despite two simulations are executed, with this

approach the overall TiPa simulation time is cut down due to the reduced

number of degrees of freedom.

Second, if rotor is modeled with a node clamped to the ground, it is

possible to apply the MBC transformation to such subsystem matrices. The

reason behind this requirement is presented in section 3.2 as well as the

transformation theoretical formulation. The MBC transformation has the

fundamental benefit to provide a better point of view about the rotor aeroe-

lastic behaviour. The transformation can as well be very important in order

to obtain as much as possble information about the complete system. This

happens since it removes the intrinsic periodicity of this kind of rotating

systems providing complete information about the rotor dynamics. Section

4.4.2 presents how the MBC transformation is introduced in TiPa workflow.

That said, this formulation was introduced in TiPa to improve the overall

stochastic predictor investigation capabilities. The use of complete MBDyn

models as basis for the sensitivity analysis has some limitations. The main

reason behind this is that the use of the conventional modelling approach

is strongly dependent on the convergence of each tiltrotor MBDyn analysis.

This is not always granted when random input are provided to the stochas-

tic predictor. Executing individual subparts assessments, instead, provides

a higher level of controllability over the entire process. The concept is ad-

dressed with more details in Chapter 5.

The following sections briefly explains how each tiltrotor component can

be individually modelled and analyzed to eventually describes the two dif-
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ferent options for complete systems definitions and assessments.

4.4.1 Wing subsystem modelling and analysis

As explained in section 4.2, the wing subsystem definition and analysis is

regulated by both wing and control cards. These contain the user defined

information necessary to a single wing dynamics or aeroelastic assessment.

A complete wing submodel analysis is now presented. The process is

explained graphically in Figure 4.2 on the left flowchart.

Before the assessment begins, the user defines the wing and simulation

features through the appropriated cards. Please note that in the figure, the

direct interaction between the user and the solver elements is represented

with dashed lines. On the other hand, all the other actions are represented

by continuous arrows. This convention is maintained along the entire chap-

ter writing.

When TiPa analysis starts, the wing and control cards variables are

imported by the software to be provided to TiPa preprocessor. This part

of the software has two main purposes:

1. transforming the user defined data into information compatible with

MBDyn modelling schemes

2. printing such information into a MBDyn input file

MBDyn is a Command Line Interface (CLI) tool. For this reason, each

software simulation is controlled by an input text file. The latter contains the

wing model desired geometry (provided by the wing card) and the definition

of the simulation analysis including the wind tunnel air properties (provided

by the control card). Such information is written according to MBDyn

syntax.

The input file is now provided to MBDyn to execute the user defined

requested simulation. TiPa makes extensive use of MBDyn eigenanaly-

sis since its output files store information about the modelled multibody

system equations. The theoretical frame behind MBDyn eigenanalysis is

presented in ref. [24]. Starting from such data, thanks to a postproces-

sor, it is possible to reconstruct the MBDyn wing system matrices. These

are really important in TiPa aeroelastic assessment. Since they allows the

computation of the system eigenfrequencies, they are used to investigate the

system aeroelastic stability. The postprocessing operations are controlled

by the variables stored in the control card.

Once the system matrices and eigenfrequencies are computed, the simu-

lation is complete.
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4.4.2 Rotor subsystem modelling and analysis

The rotor subsystem modelling and simulation process is now presented.

The operation main frame is similar to the one presented in the previous

section. Once again, the input cards are imported by TiPa to be transformed

into a MBDyn input file by a preprocessor block. MBDyn simulation is

executed and the useful data is extracted by a postprocessor routine. This

time, though, the process may not stop here.

With specific control card parameters, the user can enable the MBC

transformer algorithm. The latter, when turned on, applies to the rotor

subsystem matrices the multiblade coordinate transformation (MBC). Once

again, the usefulness of such operation is extensively discussed in Chapter

3 as well as the theoretical description of the transformation applied to

multibody equations.

As results, the MBDyn rotor subsystem is now described through the

non-rotating frames DOFs.

In figure 4.2, a visual representation of the entire process is presented on

the right.
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Figure 4.2: TiPa wing and rotor submodels analyses comparison
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4.4.3 Tiltrotor conventional modelling and analysis

This section presents TiPa workflow of the conventional approach for a

complete tiltrotor assessment.

Within the procedure, the steps followed are very similar to those exe-

cuted during an individual wing investigation. This time, though, all the

input cards are read by the preprocessor in order to generate a complete

tiltrotor MBDyn input file. After the MBDyn analysis is complete, the

postprocessor extract the system related matrices as well as the associated

eigenfrequencies and eigenvectors to evince information about the system

behaviour.
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Figure 4.3: TiPa conventional tiltrotor model generation and analysis

4.4.4 Tiltrotor alternative modelling and analysis

As mentioned in the beginning of this section, TiPa tiltrotor models can

be assembled as well starting from the wing and rotor+pylon subsystems.

The process relies on a combination of the two models individual dynam-
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ical behaviour assessments to evince the entire system representation. A

visualization of the formulation used is showed in figure 4.4.
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Figure 4.4: TiPa alternative tiltrotor model generation and analysis

The process starts as usual with the user definition of the input cards.

Once again, all three of them are used.

After that, each single submodel assessment is executed. In figure 4.4,

the coloured blocks called wing analysis and rotor analysis contain the

corresponding subsystems simulation processes. What happens inside such

blocks matches the formulation showed in figure 4.2 inside the rectangles

with matching colours. The wing and rotor analysis outputs are the same

compared to those generated in each subsystem individual analysis. Please

note that, in this complete model definition, each submodel input card does

not affect the analysis of the other one.

The MBDyn wing and rotor models are now combined through a dy-

namical substructuring process. Within TiPa, the technique is based on a

generalization of the Craig-Bampton (C-B) approach (ref. [5]). This one is

based on the definition and analysis of a complex structure as an assembly of

different and simpler substructures. The latter are generated with the sepa-

ration of the starting model in different regions whose individual description
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is generated from a transformation of their systems coordinates using spe-

cific matrices. This operation both reduces the number of the system DOFs

and provide an intuitive representation of the regions. The procedure differs

from the standard modal reduction process since the C-B approach main-

tains the physical representation of each substructure “boundary nodes”

DOFs. These are used to enforce the connections among the individual

systems to reproduce the complex original system behaviour.

The generation of the wing and rotor substructures is assigned to two

independent algorithms. In figure 4.4, the routines are represented by the

blocks called wing and rotor C-B model generator respectively. The

definition of individual algorithms derives from the different approaches nec-

essary to formulate each component substructure. A brief presentation of

the implemented techniques is presented in appendix B.

The wing and rotor substructures are eventually assembled by the sub-

structures assembler algorithm. This provides the entire tiltrotor system

matrices as well as its eigenfrequencies and eigenvectors. Please note that

in this formulation the tiltrotor entire system physical degrees of freedom

are not direcly accessible since the C-B transformation describes the system

mostly trough the subsystems modal coordinates. The system mode shapes,

though, can be easily reconstructed using the C-B transformation matrices.

All the substructuring algorithms are controlled by TiPa control card.

4.4.5 Some concluding remarks

This section contains some concluding remarks about the just explained

TiPa investigation methods. These considerations are useful to explain the

development of the complete solver with uncertainty quantification capabil-

ities.

TiPa investigation process explained in section 4.4 is completely auto-

matic. This means that once the three input cards contain the user defined

properties and the software is started, all the tasks presented in the section

are executed in sequence by TiPa. This continuous workflow is fundamental

for the development of the complete aeroelastic predictor with uncertainty

quantification.

Both the subsystems and the tiltrotor analyses presented in sections

4.4.1, 4.4.2, 4.4.3 and 4.4.4, though, do non represent complete aeroelas-

tic investigations. In standard TiPa analyses, the user can define a single

airspeed to test the model with. This, though, does not provide any infor-

mation about the system behaviour at other speed. So, with this approach,

a series of successive analysis is required to complete the assessment.
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The problem lies in the fact that it is not possible to access MBDyn

aerodynamics formulation outside of the software environment. As conse-

quence, to evince the aeroelastic behaviour of the system for different ranges

of speed, MBDyn allows to run a single simulation where the wind airspeed

is raised in time and consecutive eigenanalysis are executed. The informa-

tion evinced from this type of analysis provides a detailed description of

the aeroelastic behaviour of the system. Once again, this method is imple-

mented in TiPa and can be used as a standard assessment tool, but it is

not the one used in the complete stochastic solver. The reason behind this

lies in the uncertainty quantification adopted strategy and it is explained in

the following section.

4.5 The complete flutter/whirl flutter stochastic

investigation

The discussion presented in Chapter 2 proved that the “non-intrusive” gPCE

based Uncertainty Quantification method is optimal to be combined with

MBDyn multibody dynamics software in order to develop a stochastic gen-

eral configuration tiltrotor aeroelastic solver. The technique is introduced in

the TiPa/MBDyn formulation thanks to the external software DAKOTA. In

section 2.6, a quick introduction to the tool working principles is presented.

Here, the actual combination of DAKOTA and TiPa is presented. In

order to understand how the two software are combined to run complete

stochastic flutter and whirl flutter investigations, it is first important to

show the TiPa and DAKOTA basic interaction.

4.5.1 DAKOTA and TiPa combination

Since DAKOTA is a Command Line Interface software, the interaction with

the tool occurs through the Operative System (OS) terminal. Given that

the DAKOTA and TiPa combination has been developed on a UNIX-like

OS, this chapter explains this interaction using such systems environment

commands as reference.

As already mentioned in section 2.6, to allow DAKOTA cooperating

with another software an interface has to be established. The latter actual

implementation strategy is not reported in this section, for reference see

ref. [1]. So, assuming a working interface has already been designed, the

basic steps defining a single DAKOTA/TiPa analysis are now presented.

The first important element is the way the user can interact with the

overall process. The operation is initiated with the execution of DAKOTA
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form command line with this syntax.

>> dakota − i ( i n p u t f i l e n a m e ) −o ( output f i l e name )

Where the “>>” sign is used to indicate command line inputs along

the entire chapter writing. The command is straightforward and it is so

interpreted. The user is telling DAKOTA which text input file to use to

run the analysis and the name of the file to store the process results in.

The input file represents the single method the user has to interact with

the entire process. This file stores the information about which type of

analysis DAKOTA must run and how it is supposed to interact with the

user provided software. This means that, during a DAKOTA/TiPa coupled

analysis, it is not possible to directly access the tiltrotor model definition

through TiPa input cards. For this reason, both the simulation properties

and geometry must be tuned before the assessment starts.

The uncertainty propagation scheme is based on the theoretical frame

presented in section 2.3.3 and 2.4.3. The process, in this specific case, re-

quires the communication between two different environments. TiPa oper-

ates entirely in MATLAB environment. DAKOTA, instead, is assumed for

simplicity to be working in the directory where the software is executed.

That said, the before-mentioned “interface” refers to whatever exchange of

information occur between the two different environments.

The overall DAKOTA/TiPa assessment is divided into two phases:

1. the definition of TiPa analysis surrogate model

2. the assessment of TiPa response stochastic content

The generation of a surrogate model of TiPa random input-output relation-

ship has the purpose of providing a process representation much simpler

to handle with respect to the original one. If the real system response is

called X(θ), the gPCE formulation provides an approximation of the such

output X̃(θ) as an expansion of polynomial basis Φj(ξ(θ)) whose definition

depends on the probabilistic definition of the input random variables ξ(θ).

The deterministic coefficients cj are used to tune the representation. The

equation is the following:

X̃(θ) =
S∑
j=0

cjΦj(ξ(θ)) ≈ X(θ) (4.1)

The detailed theoretical frame behind this entire formulation is explained

in section 2.3.3.
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Figure 4.5: Schematization of a DAKOTA/TiPa interaction

A schematic representation of the DAKOTA/TiPa interaction is pre-

sented in Figure 4.5.

The process begins when DAKOTA is started with the command line

input presented above in this section. The software, as first step, generates

the polynomial basis Φj(ξ(θ)). The task, that can be regulated through

DAKOTA input file, is completed by a gPCE basis generator algorithm

according to the user provided information about the nature of the process

random input(s) ξ(θ).

The coefficients cj are consequently tuned by DAKOTA with the itera-

tive execution of TiPa. The process, that happens entirely inside DAKOTA

run, can be easily visualized in figure 4.5. There, DAKOTA environment

is represented by the bigger reddish box, while TiPa appears on the right

side of the flowchart in the green rectangle. The picture is divided vertically

in half to represent the two different environments in which the simulation

is executed. A DAKOTA random input variable generator algorithm

evinces a deterministic value of ξ(θ) according to the user defined input

probabilistic distribution. The parameter is consequently provided to TiPa.

This process represents the first interface interaction between the two soft-
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ware. TiPa stores the received variable either in the wing or rotor card

according to which subsystem it is referred to and execute the complete

tiltrotor analysis. The tiltrotor analysis block contains one between the

two processes presented in Figure 4.3 and Figure 4.4. Please note that since

ξ(θ) affects the tiltrotor geometry or properties definition, each time such

variable is provided to TiPa, the complete generation of a new model is

required.

Once TiPa analysis is complete, the second interaction occurs. From the

tiltrotor simulation some output variables are provided back to DAKOTA.

These parameters represent the j-th loop responses and are collected by a

random output variable collector algorithm. The responses the user

wants DAKOTA to collect are defined through the software input file (see

ref. [1]). In this application, they usually store information about the whirl

flutter critical modes frequency esteems and damping factors. In case multi-

ple response variables are considered, different response functions X̃(θ) are

computed.

The j-th output variables are provided to a gPCE coefficients tuning

scheme in order to identify the values of the expansion coefficients cj . The

process started with the random input variable generation is repeated iter-

atively according to DAKOTA internal design as long as all the coefficients

are computed. This loop is presented in Figure 4.5 with blue arrows.

Once the tuning is complete, the cycle ends and the surrogate model

is entirely defined. This new model is used to compute the system output

stochastic behaviour since it represents the relationship between the ran-

dom input parameters ξ(θ) and an approximation of the random response

X̃(θ) through a polynomial representation. The approximated definition is

very convenient because, on one side, the expansion coefficients cj already

provides some statistic information about the real uncertain response X(θ)

while, on the other, the new polynomial description allows the computa-

tionally inexpensive application of Monte Carlo-like sampling methods to

assess the output probability and cumulative distribution functions as well

as the input-output sensitivity indices (see section 2.3.3). This process is

represented in Figure 4.5 in the block called UQ analysis.

After this operation, the assessment is complete. DAKOTA saves the

results in a series of output text files and stops its run. It is important

to point out that during the entire process DAKOTA is not aware about

the internal structure of TiPa. The two interactions happening through

the interface between the two software are the only elements necessary to

complete the assessment. This is the strong feature of the “non-intrusive”

gPCE formulation.
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A problem

The process explained in the previous section shows a non-negligible prob-

lem. During an UQ assessment, TiPa input cards are only accessible by

DAKOTA. For this reason, as already mentioned, the user must tune the

model design and simulation properties (excluding the random variables pro-

vided by DAKOTA) before the UQ software is executed. The problem lies

in the fact that the information about the wind tunnel air properties (speed,

density,...) are stored in the control card. As results, the user cannot get ac-

cess to them during DAKOTA execution. This limits each DAKOTA/TiPa

analysis to a specific airspeed configuration.

A possible solution to the problem is represented by the idea introduced

in section 4.4.5. There, the possibility of executing a series of MBDyn eige-

nanalysis inside each TiPa tiltrotor assessment is presented. This, in case

the airspeed is gradually increased during the multibody simulation, pro-

vides a possible solution of the problem. If the interesting tiltrotor eigen-

values are collected at different speed conditions, a complete picture of the

system behaviour is obtained. Since DAKOTA allows the user to define

whatever number of response variables desires, all this data can be provided

to DAKOTA to obtain a complete stochastic aeroelastic assessment. This

approach, though, is not feasible for three reasons.

First, in case the tiltrotor model is generated by TiPa with the sub-

structuring process, this introduces some problems. Since the purpose of

the investigation is the assessment of the whirl flutter instability, the system

is analyzed in a regime horizontal flight condition. The wing and rotor sub-

systems analysis require different amounts of simulation time to reach such

condition. This is mostly due to the more complex nature of the latter with

respect to the former one. Since the final purpose is the definition of the

complete aeroelastic model, it is crucial to define a routine to extract infor-

mation about the two systems in the exact same airspeed conditions. This,

for the reasons just mentioned, can be extremely complicated end increase

exponentially the MBDyn simulation time.

Second, the use of a large number of system responses would increase

as well DAKOTA simulation time. This would inevitably affect the overall

process efficiency.

Third, DAKOTA output files provides information about the interactions

of the random input-output variables during each simulation. This includes

the sensitivity evaluation of the random provided parameters influence on

the system response. In case a large number of responses is provided to

DAKOTA, such evaluation would inevitably lose value. That is true since
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the software would cross compare interactions between response variables

coming from data obtained at different airspeeds. This, for many reasons,

has no physical meaning.

In conclusion, the problem needs a different solution. The selected ap-

proach is presented in the following section.

4.5.2 Flutter/whirl flutter investigation

The main purpose of the complete investigation is the definition of the model

V-f and V-ξ curves. These functions provide information about the system

eigenmodes frequency (f) and damping factor (ξ) with respect to the in-

coming airspeed values.

To obtain such data, the aeroelastic model needs to be tested at different

flight speeds. For this reason, a strategy must be developed to overcome the

DAKOTA/TiPa limitation to single airspeed per analysis.

The solution implemented uses as fundamental brick the formulation

presented in section 4.5.1 and depicted in Figure 4.5. Such workflow is

slightly modified in order to obtain a complete whirl flutter assessment. This

new version of the DAKOTA/TiPa interaction allows the iterative update

of the MBDyn simulation airspeed.

The process makes use of a loop stored into a shell script. The procedure

is represented in Figure 4.6 where the script is called “DAKOTA TiPa.sh”.

There, as in the previous chapter, the “>>” sign is used as convention

to precede simple representations of the command line inputs used in the

framework. Once again, the process was designed on UNIX-like systems.

For this reason, the formulation presents such Operative Systems features.

The operation begins with the user definition of all the N desired air-

speed values to test the aeroelastic model with. These variables are stored in

the shell script first part. TiPa tiltrotor model is still not accessible during

the simulation. For this reason, the model features must be tuned before

the assessment starts.

DAKOTA is no longer invoked directly. The execution is regulated by

the external shell script. The script is initiated with the command:

>> . /DAKOTA TiPa. sh

The execution starts with a loop that collects iteratively the i-th airspeed

from the user provided values. The variable is printed into a text file called

“airspeed.dat” which will be later used by TiPa. DAKOTA is now executed

with the usual command:

>> dakota − i ( i n p u t f i l e n a m e ) −o ( output f i l e name )
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The DAKOTA/TiPa analysis executed in this process is the same one pre-

sented in section 4.5.1 and in Figure 4.5 in the block with the reddish colour.

Only one detail is different. TiPa, before starting its analysis, imports the

i-th simulation airspeed data from the text file “airspeed.dat”. The process

can be easily visualized on the right side of the DAKOTA/TiPa block in

Figure 4.6. This allows the automatic update of MBDyn simulations air-

speed values during external loop progress. Please note that within the i-th

loop, the flight speed remains constant. Once the DAKOTA/TiPa analysis

is complete, the responses stochastic data are stored in the i-th output files.

wing 
card

Current Directory

end

wing 
card

DAKOTA all
simulations
output les

USER

for i = 1 : N

DAKOTA 
input le>>dakota -i                

wing 
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airspeed.dat>>echo                 

Figure 4.6: Schematization of a complete DAKOTA/TiPa aeroelastic as-

sessment

This entire process is repeated N times: once per each defined airspeed.

The shell script is over when the loop is completed.

The entire collection of DAKOTA simulations output files is eventually

parsed from a MATLAB postprocessor which imports the interesting re-

sults in the numerical environment.

The typical response variables analyzed are the frequencies (f) and the

the damping (ξ) associated to the system modes that may lead to the

whirl flutter phenomenon development. In such cases, plotting the i-th loop
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DAKOTA responses characterizations over the i-th airspeed values provides

a stochastic visualization of the V-f and V-ξ diagrams.

From DAKOTA results files it is possible as well to plot the responses

Probability Density Functions (PDF) and the Cumulative Distribution Func-

tions (CDF) curves and to collect the Sobol indices esteem. These provides

information about how each input parameter affects a given response func-

tion.
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Chapter 5

Application

This chapter is conceived to show the most important features of TiPa and

its combination with DAKOTA. It is divided into two parts.

The first one shows two possible examples of DAKOTA/TiPa analy-

sis. There, some considerations about the investigation parameters tuning

are presented as well as some examples of the useful indices derived from

the analysis. The assessments are executed on a semplification of the three

bladed stiff in-plane version of the WRATS model generated entirely with

TiPa. Please note that such model represents a simpler version of the real

WRATS test-bed. For this reason, we do not expect it to match the original

system behaviour. The generated numerical model is meant only to pro-

vide a working assembly in order to show some typical analysis results. In

this part, the tested tiltrotor is generated entirely in MBDyn through the

conventional modelling approach (see. section 4.4.3).

The second part, instead, explains some insigths about the alternative

modelling approach (see. section 4.4.4). Despite the method shows some

interesting and encouraging results, its validation, at this stage of the devel-

opment, is not complete yet. For this reason, the final part of this chapter

explains the state of the art of this different modelling approach. In doing

so, it both shows the steps that led to the validation of most of the entire

procedure and highlights a possible path to complete the assessment of the

process in future research campaigns.
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5.1 The model

The tiltrotor model used as reference is the three bladed stiff in-plane ver-

sion of the WRATS test-bed model. The system is a 1/5 scaled replica of

the V-22/JVX aeroelastic model. Further reference on the starting model

geometry can be found both in ref. [33] and ref. [26] and in section 1.3.

To obtain the most consistent analysis conditions, the entire range of

simulations was executed with the rotor in windmill condition: the zero

torque trim case. To grant this reference condition, the formulation re-

quired the investigation of the collective influence on the rotor torque using

the isolated rotor analysis of TiPa. These tests led to the introduction of

a simple controller capable of maintaining such condition at the different

tested airspeeds. The tests were entirely executed with the rotor angular

Figure 5.1: The TiPa generated WRATS model

speed set to 742 RPM which, according to the data used, represents the

reference angular speed in airplane mode for the WRATS test-bed. The

model used in the following assessments is presented in Figure 5.1.

5.2 Uncertainty Quantification parameters tuning

The gPCE method relies on the definition of a surrogate model to execute the

Uncertainty Quantification assessments (see section 2.3.3). For this reason,

the accuracy of the analysis results strongly depend on the quality of the

defined approximated model. Its precision is regulated by the order of the
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polynomial approximation used to generate it.

For this reason, some investigations were executed to identify the optimal

number of polynomial coefficients to use in the definition of each iteration

surrogate response models.

To do so, a series of analysis were run to understand the stochastic

variation of the WRATS isolated wing model first bending mode frequency

under an uncertain mass distribution. This random parameter was chosen

since it would have extensively affected the system response value. The tests

were executed increasing the order of the Gaussian quadrature rule used

to compute the multidimensional integration necessary evaluate the gPCE

coefficient values. The number of evaluated gPCE coefficients matches, in

this simple case, the quadrature order.

PCE coeff. Mean value Variance Time

1 19.694080904 0.0 25 sec

2 19.712230207 0.48856253450 55 sec

3 19.712295477 0.49074529832 1 min 17 sec

4 19.712295871 0.49076493460 1 min 43 sec

5 19.712305684 0.49078412682 2 min 23 sec

Table 5.1: Effects of gPCE order on reference analysis results

Table 5.1 shows how the gPCE order mostly affects the variance esteem

of the random response rather than its mean value. Despite this, the av-

erage and variance evaluations converge rapidly as the polynomial order is

increased.

It is now important to point out that DAKOTA does not rely on the

gPCE coefficients values to compute the local and global sensitivity indices

during each analysis. They are evaluated from the sampling methods as-

sessments executed on the surrogate model. For this reason, no extra gPCE

coefficients are required to obtain quality sensitivity indices.

So, for the entire sets of analysis presented in the following sections, a

fourth order polynomial expansion has been used during the assessments.

This was considered to be an optimal solution both in terms of accuracy and

in terms of efficiency since, in the following analysis, a limited number of

random input and response variables was considered. In case a larger set of

parameters are investigated, the use of a lower order polynomial expansion

is suggested to maintain a reasonable execution time.
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5.3 DAKOTA/TiPa analysis results

This section presents some examples of DAKOTA/TiPa analysis results.

The assessments were executed using the conventional TiPa tiltrotor whirl

flutter modelling approach. This methodology is based on the paramet-

ric generation of the entire assembly within a single MBDyn model. The

procedure is explained in section 4.4.3.

5.3.1 Single random input parameter propagation

This section shows the simplest possible version of a DAKOTA/TiPa whirl

flutter stochastic investigation.

In this example, an uncertain distribution of the wing bending stiffness

about the model Y axis (aligned with the incoming wind speed direction) is

assumed. To model the random condition, the vector storing the reference

wing EJy stiffness values is pre-multiplied by a normal distribution N (µ, σ2)

with:

• mean value µ = 1

• standard deviation σ = 0.05

Such distribution allows the investigation of the system response when the

bending stiffness properties are extracted from a cluster of values close to

the nominal ones.

The analysis features and results are now presented.

Analysis time

Table 5.2 shows a detail of the execution times of the different parts of the

predictor.

TiPa execution DAKOTA execution Total time

55 min 11 sec 20 sec 58 min 46 sec

Table 5.2: Single random input propagation simulation times

where “DAKOTA execution” refers to the actual time in which the software

generates the polynomial basis, tunes the expansion coefficients and executes

the UQ analysis. This is pointed out since, as explained in section 4.5.1, most

of the entire process actually happens inside DAKOTA environment. Please

note that some time seems to be missing in Table 5.2 since the execution
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times of both software does not sum up to provide the total analysis time.

This is due to the fact that each time a TiPa simulation is called, MATLAB

is started as well and the latter requires some seconds to become operative

at each iteration.

Table 5.2 is extremely powerful in showing the effectiveness of the g-PCE

methods in UQ assessments. Here is why.

For each investigated speed, a surrogate model of the random input/out-

put relationship is developed. A single complete TiPa/MBDyn tiltrotor

assessment requires about two minutes. For this reason, with the used

fourth order approximation, four successive runs need to be executed to

complete the approximated system representation. Once each surrogate

model is ready, DAKOTA, draws 10000 samples from the stochastic input

definition and executes a LHS (Latin Hypercube Sampling) UQ assessment

(see ref. 2.3.1) on the polynomial representation of the system. This allows

the evaluation of the response pdf, CDF and the sensitivity indices of the

analysis. This final assessment is extremely fast. By comparison, the same

uncertainty assessment could be executed on the original TiPa model using

the conventional LHS. This, in this case, would require to executes 10000

times a 2 minutes simulation just to obtain the same level of information

about the system stochastic response. DAKOTA does this and the gPCE

tuning in about 20 seconds.

Of course, there is a price to pay when the gPCE method is used: the

responses stochastic content is not evaluated using the real model but by

means of an approximation of it. This can affects the results reliability, but

it is easy to avoid with the selection of the proper polynomial expansion

order.

Stochastic V-f and V-ξ diagrams

The first outcomes of the analysis are the stochastic V-ξ and V-f diagrams.

They provide a visual representation of how the system random responses

(the beam mode frequencies and damping) are assessed assuming the un-

certain input variables. The collection and investigation of the first bending

mode properties as response variables is due to the fact that, in the origi-

nal WRATS model, it is possible to investigate the aeroelastic stability of

the system through the definition of this mode stability margin. Figure 5.2

shows the abovementioned diagrams.

In both plots, the red squares are placed at the responses mean values

computed at each airspeed condition. The error bars, instead, are a visual

representation of the responses standard deviation. Please note that the
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Figure 5.2: Single input stochastic V-ξ and V-f diagrams

minimum tested airspeed has been selected at 30 kn since the simple imple-

mented windmill controller adopted in the model is not effective enough at

lower speeds.

Moreover, in Figure 5.2 two different damping trend are presented for

speeds higher than 90 kn. The blue line represent the ideal trend we would

expect from a perfect definition of the WRATS model. The orange and black

one, instead, represents the stability margin derived from its simplification

used in the assessments. The real data is not presented for airspeeds lower

than 90 kn since the two trends are almost identical. The representation

of both curves, though, has the purpose of underlying once again the fact

that the analysis presented in this chapter do not try to get any specific

conclusion on the real WRATS model design. They are simply presented to

show the outcomes of the stochastic predictor developed in this thesis.

In this example, it is clear that the random input parameter is mostly

affecting the beam mode eigenfrequency while leaving almost untouched the

mode damping quantification. This can be said since the eigenfrequency

values shows are more spread around their mean value when compared to

the other response ones. The latter parameter actually shows an increasing

trend in the variability of the response as the airspeed is increasing. This,

despite not being easy to identify through figure 5.2, it can be assessed using
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the analysis sensitivity indices.

Local sensitivity

Local sensitivity assessments provide information about how a small per-

turbation in the input variable affects the system responses. The basic idea

behind type of assessment relies on the use of two couples of parameters:

a reference input value and its associated system response, and a second

input value computed as an increment of the reference one with the related

system response. These four variables allows to compute the steepness of

the response vs input curve. Such parameter provides the definition of the

response variable local sensitivity to the input variation ref. [30].

Figure 5.3: Responses local sensitivity to random EJy

Figure 5.3 shows the responses local sensitivity indices to the random wing

EJy distribution. On the left, it is evident that there is an increase in the

sensitivity of the beam mode eigenfrequency to the random input value as

the airspeed increases. Despite this happens by a very small amount, it

means that as the incoming wind speed rises, if the same perturbation in

the system input is introduced, the evinced eigenfrequency value derived

from the perturbed input tents to increase by a larger amount.

In Figure 5.3 on the right, instead, it is possible to see the beam mode

damping associated local sensitivity indices trend. Here, as already clear

from Figure 5.2, it is possible to assess how little influence the tested random

input parameter has on the mode damping value since the local sensitivity

indices have a very low order of magnitude when compared to the other
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response indices. The interesting feature of the plot, though, is represented

by the change of sign of such sensitivity indices as the airspeed increases.

This means that for the same positive increase of the input variable, the

beam mode damping value is either increased (at about 30 kn) or decreased

(at all the other tested speeds). This provides a very useful insight about

the “direction” of the system response at different speeds.

The responses pdf and CDF curves

The last interesting feature provided by a DAKOTA/TiPa analysis is the

assessment and identification of the responses stochastic curves. An exam-

ple of such outpus is presented in Figure 5.4 which shows the pdf and CDF

curves representing the stochastic characterization of the beam mode eigen-

frequency at 30 knots. The pdf curve representation is superimposed with

the response mean value (dashed line) and its standard deviation (the two

diamonds).

Figure 5.4: Beam mode frequency pdf and CDF curves with random wing

EJy

This response associated pdf curve maintains the input normal distribution

shape with associated:

• Skewness ≈ 0

• Kurtosis = −2

For further reference about Skewness and Kurtosis, see section 2.3.3.
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5.3.2 Two random input parameters propagation

This section shows some reference outcomes of a DAKOTA/TiPa stochastic

investigation when two random input parameters are assumed in the system

modelling process.

In order to provide a reasonable comparison with the assessment pre-

sented in section 5.3.1, the wing beam EJy stiffness randomness is used

in this investigation as well. The parameter maintains the same stochastic

definition of the previous analysis.

As new non-deterministic parameter, a random definition of the pylon

mass value Mp is introduced in the formulation. In order to model a possible

variability in its definition, its stochastic definition has been generated by

pre-multiplying the nominal value of the parameter times a uniform distri-

bution defined in between the values 0.8 and 1.2. This provides a set of input

variables placed close to the reference value of Mp. The use of the uniform

distribution shape has no particular physical meaning. It was introduced

in the analysis in order to provide an example of the possibility to execute

analysis with different shapes of the input variables pdf curves.

Analysis time

The DAKOTA/TiPa execution time is, in this analysis, extensively affected

by the presence of the second random input variable. Table 5.3 shows the

details about the simulation times.

TiPa execution DAKOTA execution Total time

142 min 5 sec 52 sec 148 min 58 sec

Table 5.3: Two random inputs propagation simulation times

The analysis time is increased by both the fact that a larger number of

TiPa executions is required (in order to tune the gPCE coefficients) and by

the increased number of random input variables according to equation 2.5

introduced in section 2.3.3.

Stochastic V-f and V-ξ diagrams

The stochastic V-f and V-ξ associated to this assessment are presented in

Figure 5.5. Please note that the same concepts discussed in the description

of Figure 5.2 beam mode damping trend are valid here. The model used in

the analysis does not try to exactly emulate the WRATS behaviour, but it
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is meant to show the possible outcomes of some reference DAKOTA/TiPa

analysis.
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Figure 5.5: Two inputs stochastic V-ξ and V-f diagrams

The curves shows a similar trend compared to those presented in Figure 5.2.

When the second random variable is introduced, though, the responses stan-

dard deviation tends to increase with respect to the case in which only one

appears. It is interesting to notice how, in this second analysis, the beam

mode damping standard deviation increment as the airspeed rises is more

evident compared to the previous case.

Local sensitivity

Figure 5.6 shows the local sensitivity indices of the system responses to

the variability in the Mp value. The represented trends shows that both

responses tent to decrease due to an increment in the mass value since

the local sensitivity indices always have a negative value. This trend is

maintained through all the tested airspeeds.

The comparison between the damping local sensitivity indices repre-

sented in Figure 5.3 and Figure 5.6 shows that this parameter is more in-

fluenced by an increment in the Mp with respect to a variation of the EJy
definition. This can be said since the sensitivity indices to the mass pylon
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Figure 5.6: Responses local sensitivity to random Mp

value are one order of magnitude larger with respect to those related to the

bending stiffness.

Global sensitivity

One of the most interesting aspects of the DAKOTA/TiPa investigation

when multiple random input parameters are present is the computation of

the Sobol indices.

They are used to execute global sensitivity analysis since they provide a

quantification of each random input variable contribution to the responses

variance (ref [30, 40]). This gives a deep insight about the actual role of

each non-deterministic parameter in the system overall behaviour.

Each Sobol index value can be defined in between 0 and 1 and the sum

of all the indices associated to a given analysis is always equal to one. In

Figure 5.7, two plots are reported. The one on the left shows the values of

the Sobol indices indicating the influence of each random parameter input

on the variance of the beam mode eigenfrequency at the tested airspeeds.

The one on the right, instead, shows the way the damping quantification

is affected. Please note that a third index is always estimated when two

random variables are introduced in a system. This is meant to assess the

contribution of the “interaction” between the two variables to the responses

variance. In the presented analysis, very little interaction appears in the

results and for this reason it is not reported in Figure 5.7.

These indices can be very helpful in understanding which input parame-

ters are most influential on the system analyzed response. During an aeroe-
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Figure 5.7: Sobol indices associated to the system responses

lastic analysis, for instance, the main purpose could be the investigation of

the system parameters whose value affects the most the stability margin.

From the right plot in Figure 5.7, it is very clear that randomness of the py-

lon mass has a larger influence on the beam mode damping variability with

respect to the wing stiffness value. This, in this simple test, may happen due

to the two different and arbitrary definitions provided to the input variables.

In a more realistic case, though, when two (or more) comparable sources of

randomness are introduced in the model, the information provided by the

Sobol indices can be very powerful and intuitive.

The responses pdf and CDF curves

Figure 5.8 shows the pdf and CDF distributions of the beam mode eigen-

frequency evaluated, once again, at 30 kn. By comparison with Figure 5.4

pdf distribution, it is possible to identify how the new parameter inevitably

affects the system stochastic response in the same tested airspeed condition.

The change in the pdf properties can be assessed as well in through its shape

defining parameters:

• Skewness = 0.04195

• Kurtosis = −1.0461
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Figure 5.8: Beam mode frequency pdf and CDF curves with random wing

EJy and Mp

5.3.3 Concluding remarks

Section 5.3 presents some reference analysis obtained from the DAKO-

TA/TiPa collaboration. As already mentioned, such assessments were de-

signed in order to present the most interesting outcomes of this type of

analysis. This final section, though, contains some final remarks about the

presented assessments.

First, in the reported analysis, the maximum number of random input

variables used is two. This does not mean that the stochastic predictor is

capable of handling only a maximum of two non-deterministic inputs at a

time. The user can choose to introduce in the system as many variables as

desired. The use of a large number of variables inevitably affects the speed of

the tool as explained in section 2.3.3. Two random inputs were introduced in

the second analysis (see section 5.3.2) in order to introduce and present the

results of a global sensitivity assessment (which requires multiple stochastic

input variables) while maintaining a relatively short simulation time.

Second, the pdf distributions the user can associate to each random

input variables are not limited to the normal and uniform ones used in this

chapter. Through the gPCE it is possible to model all the distributions

which are part of the Wiener-Askey scheme reported in Table 2.1.

Third, the use of the complete tiltrotor model as reference for the inves-

tigation analysis is not optimal. This is true since the eigenvalues associated

to the system matrices are affected by the periodicity of the rotating system.
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As results, the information extracted from those matrices can be slightly dif-

ferent according to the exact condition of the system (the azimuth of the

rotor). These effects should not not have a large impact on the resulting

assessment since the rotor, when the aircraft is in airplane mode, is in ax-

ial flow condition. Despite this, though, with this procedure the effect is

not accounted. This is one of the main reason that led to the formaliza-

tion of the alternative tiltrotor modelling approach based on the multiblade

coordinates transformation.

Fourth and last, the use of MBDyn models of the entire assembly to run

complete stochastic evaluations is extremely dependent on the convergence

of the multibody software. This can lead to the impossibility to correctly

identify the flutter condition since the solution could diverge when the anal-

ysis gets close to such airspeed. Since the whirl flutter instability is triggered

by the interaction of the wing and rotor systems, their individual assessment

at the flutter airspeed increases the chances of both simulations to converge.

As consequence, a more reliable stochastic assessment of the whirl flutter

condition is expected. This is the second important reason for which the

alternative approach has been developed.

5.4 The alternative approach

In order to obtain more robust and reliable formulation, the alternative

tiltrotor modelling approach has been introduced in TiPa design. The tech-

nique has the purpose of:

• obtaining the best possible description of the rotor behaviour

• solving the conventional method convergence problem when the whirl

flutter condition is approached

A deeper insight on the formulation is presented in section 4.4.4.

The main elements contributing to this innovative formalism have been

introduced alongside this work development. Specifically they are:

1. the multiblade transformation for multibody software

2. the substructuring process for MBDyn multibody software

The multiblade transformation applied to multibody systems has been

extensively presented in Chapter 3. There, specifically in section 3.3.1

and 3.3.2, the effectiveness of the introduced formulation has been discussed.

The adopted substructuring approach used to define reduced represen-

tations of the wing and rotor+pylon subsystems has been introduced briefly
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in Appendix B. There, a simple validation example of the wing subsystem

substructuring process is presented as well.

This section is designed to present the early results obtained with this

new modelling approach. The procedure, though, is not yet reliable enough

to provide a correct representation of the modelled system. Here, the state

of the art of the procedure is presented alongside to some possible guidelines

to complete the development of the formulation in future studies.

5.4.1 Reference set-up

In order to develop a consistent representation of the whirl flutter phe-

nomenon, during each component substructuring process a precise set of

constrained normal modes ΦL (see Appendix B) has been used in the con-

struction of the Craig-Bampton matrices of each subsystem. In Table 5.4

are listed the selected mode shapes used in the definition of the wing and

rotor substructuring matrix.

Wing normal modes Rotor normal modes

1st bending OoP (Beam) Gimbal

1st bending InP Cone

2nd bending OoP 1st collective/cyclic Beam

2nd bending InP 1st collective/cyclic Lead-Lag

1st torsion . . .

Table 5.4: Normal modes used in substructuring matrices

Where “OoP” means “Out of Plane” while “InP” means “In Plane”. The

“. . . ” are placed in Table 5.4 right column to point out that while the normal

modes types and numbers used in the beam substructuring process has been

maintained as a constant during the whole process since we expect them to

be sufficient to model the motion cause by whirl flutter, the use of different

shapes associated to the rotor subsystem have been investigated. Different

analysis showed that the resulting tiltrotor eigenvalues are affected by the

number of rotor normal modes used. Despite this, though, we were not able

to define a precise set of rotor modes to use in order to develop a consistent

representation of this system to obtain the best possible description of the

whirl flutter phenomenon. This topic will require further investigation.

5.4.2 The rotor substructure

The rotor substructuring process used by TiPa is briefly explained in Ap-

pendix B. There, the basic steps used to define the rotor C-B matrices is
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presented. Despite the effectivness of the process can be easily assessed for

the wing (proved in Appendix B), this is not true for the rotor. The val-

idation process is more complex because the rotor substructure describes

a free-free element since only a single node is connected to the ground in

the original constrained model. These degrees of freedom are “freed” by

the introduced rigid body motion shapes necessary to generate the system

associated C-B matrix. In order to try the effectiveness of the used rigid

body motion shapes, we tried to define an equivalent model generated with

a different approach.

The definition of a free-free equivalent rotor in MBDyn, though, is not

straightforward. For this reason, to test the validity of the transformation,

we first compared the MBDyn original clamped rotor with its free-free cor-

responding substructured model with a very large pylon mass (Mp) attached

to its interface node to “reintroduce” the clamp and make the two systems

comparable. This was meant to investigate whether the introduced rigid

body motions affected in unpredictable ways the system normal modes as

well. Table 5.5 shows comparison between the two system normal modes

adimensional eigenfrequencies in column two and three. The model were

tested in vaquo at 742 RPM, the regime condition. Please, note that both

systems are described in multiblade coordinates. This, as explained in sec-

tion 3.1.2 affects the mode frequency values. For reference, the MBDyn

eigenfrequencies computed in the rotating frame are reported in the right-

most column.

Mode name MBDyn model Subst. w large Mp MBDyn rotating

[1/rev] [1/rev] [1/rev]

Gimbal
≈ 0 ≈ 0 1

1.98 1.99 1

Cone 1.18 1.18 1.18

1st coll L-L 1.63 1.63 1.63

1st cyc L-L
0.62 0.61 1.62

2.62 2.61 1.62

Table 5.5: Clamped MBDyn and substructured rotor modes comparison

Table 5.5 shows a clear similarities in the two system representations.

This proves that the rigid body shapes generated and introduced in the

system through the CB matrix do not alter the rotor flexible behavior.

With the exact value of the pylon mass, the rotor substructured model

eigenfrequencies slightly changes with respect to the clamped system ones.

The modes shapes, as well, adapt to the free interface condition. As example
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of this, in Figure 5.9, the coning mode of the rotor substructure is presented.

There, it is easy to identify the displacement of the mast and hub nodes

with respect their initial position. This matches the expected behavior of

the system with free interface. Among the eigenmodes associated to this

substructured system some pure rigid body motions appear as well.

Figure 5.9: Coning mode of the rotor substructure

So, the rotor substructure generated with the current approach, seems

to provide a good representation of the subsystem. Despite this, though,

the process cannot be entirely validated since we could not generate a dif-

ferent free-free rotor model in order to prove the exact match between the

formulations. This step, as well, is left for future investigation.

5.4.3 Tiltrotor model

The fact that we could not validate the abovementioned steps, inevitably

reflects on the definition of the tiltrotor model with the adopted strategy.

As results, the dynamical behaviour of the tiltrotor model generated with

this approach is not consistent with the expected one. This means that by

comparing the tiltrotor models generated with the two different modelling

approaches, the resulting descriptions do not match at some level.

The alternative approach proved to be effective in the reconstruction

of the proper tiltrotor system mode shapes since they appear to be very

similar to those associated to the entire MBDyn tiltrotor model. In figure

5.10, for instance, the beam mode shape of the tiltrotor generated with the

C-B approach is represented. The shape was reconstructed starting from

the eigenvectors associated to the substructured system matrices.
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Figure 5.10: Beam mode shape from tiltrotor substructured model

5.4.4 Frequency shift

Despite the system mode shapes proves to be consistent with the expected

ones, though, their associated eigenfrequencies do not show yet a consistent

representation of the complete system eigenvalues.

This means that the values of the eigenvalues associated to the identified

eigenmodes do not match those obtained from the entire MBDyn generated

model with the same design features.

Table 5.6 shows a comparison between some of the eigenvalue obtained

from the two models, the MBDyn one and the one generated through sub-

structuring. Both models are tested in a 30 kn airspeed condition.

It is immediately clear that the frequency and damping values identified

by the two modes have some neat difference. The C-B model, is not capable
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Mode name MBDyn model C-B model

Freq. [Hz] damp. [adim] Freq. [Hz] damp. [adim]

Beam mode 5.83 0.0083 8.16 0.034

1st bend InP 8.15 0.024 19.54 0.038

Table 5.6: Bending modes comparison between the two models

at this level of the development to match MBDyn titltrotor entire model

behaviour and the difference between the two descriptions is not negligible.

At this stage of the development, we can not identify with precision why

this occurs. We believe, though, that the not complete validation of the

substructuring process for the rotor subsystem (as explained in sections 5.4.1

and 5.4.2) plays an important role in this, since all the other steps have

been extensively tested. Despite getting very close to the final results, the

complete proof of the process is left to future research.
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Chapter 6

Conclusions

In this work, the development of a stochastic parametric tiltrotor “whirl flut-

ter” predictor is presented. Alongside the complete theoretical development,

some early results and applications are reported as well.

The tool is based on the interaction of three elements: a parametric

tiltrotor model generator called TiPa, the multibody general-purpose aeroe-

lastic solver MBDyn and the software DAKOTA. The interaction of the three

has been designed to provide an effective investigation tool to support the

current research in the field.

TiPa has been developed specifically to provide a flexible interface to

the modelling of an arbitrary configuration tiltrotor assembly in order to

match the TRAST wind tunnel model flexibility.

The parametric conception of TiPa proved to be an essential feature to

introduce a forward propagating Uncertainty Quantification (UQ) method

in the formulation. A complete discussion about the optimal UQ method

to spread random input variables through the multibody formulation is pre-

sented in the thesis. This led to the adoption of the non-intrusive generalized

Polynomial Chaos Expansions (gPCE) technique as tool to assess the effects

of random input variables on the system response. The gPCE has been in-

troduced in the formulation thanks to the software DAKOTA.

The combination of TiPa and DAKOTA provides the complete defi-

nition of the stochastic parametric aeroelastic predictor. Thanks to the

introduction of the UQ techniques, it is possible to execute complete sensi-

tivity analysis of the desired input parameters effects. Moreover, the system

non-deterministic response to such variables is estimated through the def-

inition of: the stochastic V-f and V-ξ diagrams and the outputs pdf and

CDF curves. For this reason DAKOTA/TiPa simulations provide its user a

broad range of information in support of the identification of the most crit-
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ical parameters in the definition of the analyzed tiltrotor stability margin.

TiPa provides two different modelling approaches to define the com-

plete titltrotor assembly. One option is based on the definition of an entire

proprotor MBDyn model, while the other relies on the generation of two

individual subsystems to be joined through a substructuring approach. The

former modelling option shows some intrinsic limitations due to its strong

dependency on the convergence of the multibody solver. This can prevent

the tool to provide a stochastic identification of the flutter condition.

The second approach has been designed to overcome this limitation.

The method provides a more consistent representation of the rotor dynam-

ics through an innovative adaptation of the multiblade coordinates (MBC)

transformation. The thesis reports a complete development and validation

of the entire transformation. An original application of the Craig-Bampton

substructuring approach has been designed as well for MBDyn multibody

matrices.

Despite most of this second modelling approach has been tested and

validated, the tiltrotor models generated with this technique do not show

the expected dynamical behaviour yet.

The thesis provides some guidelines to complete the validation of the

process. This is left for future research.
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Appendix A

Orthogonality in polynomials

The concept of orthogonality is more commonly used to define vectors and

their reletive orientations in n-dimentional spaces.

Orthogonal vectors are vectors a and b whose dot product is equal to zero

with ‖a‖, ‖b‖ > 0. Such operator is a powerful instrument since it allows

representing vectors and their respective orientation with scalar variables.

Mathematicians extended this concept to other mathematical elements

to have an easy and intuitive tool to define them. Polynomials can then be

classified through the concept of orthogonality thanks to the Hilber spaces

definition an the inner product operator.

Given two polinomials a(x), b(x) and the (joint) probability density function

of the random variable x, w(x), the inner product is defined as:

〈a, b〉 =

∫
a(ξ)b(ξ)w(ξ)dξ (A.1)

Given that, two polinomials Φi and Φj are called orthogonal if

〈Φi,Φj〉 = 0 for i 6= j.

by looking at equation A.1, it’s clear that the definition of of the operator

is strongly connected to the nature of the weight function w(x). Being the

Wiener-Askey polynomials chaoses Φj complete basis of the Hilbert spaces,

they are orthogonal since:

〈Φi,Φj〉 =

∫
Φi(ξ)Φj(ξ)w(ξ)dξ = 0 (A.2)

if j 6= i and w(ξ) is the continous probability density function of the uncer-

tain input variable used to generate Φi, Φj according to table 2.1. Hence,

according to the distribution of the uncertain variables stored in ξ, different
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familes of polynomials are orthogonal with respect to the variables associ-

ated probability density functions.
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Appendix B

Substructuring for

multibody systems

The Craig-Bampton method [5] is among the most important substructuring

techniques currently available in the literature. TiPa analysis are based on

an adaptation of the Craig-Bampton method to MBDyn multibody system

matrices. While the entire DAKOTA/TiPa analysis is presented in chap-

ter 4, here only brief disscussion of the key elements adopted to generate

the tiltrotor substructures is presented.

B.1 Conventional applications

The Craig-Bampton method has been extensively applied to FEM struc-

tural problems to reduce overall model degrees of freedom. The techinque is

based on the identification of different subareas splitting a complex model

into simpler regions. Each one of them is called “substructure”. The DOFs

of each area are classified as either interior and boundary ones. The

Craig-Bampton process applies a partial modal reduction to each substruc-

ture leaving their boundary DOFs untouched. The technique, which is not

presented here, relies on the C-B transformation matrix:

CB =

[
I 0

ΦR ΦL

]
(B.1)

where:

• ΦL are the normal modes of each substructure in constrained config-

uration (fixed boundary DOFs)
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• ΦR, also called static shapes, are the shapes deriving from units dis-

placements of the boundary degrees of freedoms

In a conventional FEM formulation, both ΦL and ΦR can be easily

identified from the system mass and stiffness matrices. For further details,

the formulation is extensively presented in ref. [5].

B.2 Multibody application

Multibody dynamics equations can we written in different forms. This dis-

cussion takes as reference the structure adopted by MBDyn.

MBDyn stores its matrices in the descriptor form as:

E q̇ = A q (B.2)

where q = {x λ}T is the generalized coordinates vector.

The A and E matrices associated to the proper model can be used to

easily identify ΦL but not ΦR. This happens since the use of a formula-

tion equivalent to the FEM one to generate the ΦR would require inverting

matrices with null determinant due to MBDyn matrices structure.

B.2.1 Static shapes

To identify ΦR associated to both the rotor and the wing subsystems, TiPa

generates them “manually”. The term refers to the fact that the software

generates such shapes independently from the current analysis. They are

defined prior to each analysis and retrieved during TiPa assessments.

To correctly generate such shapes, two elements needs to be remembered.

First, despite the q vector structure, only the nodal DOFs x must be prop-

erly tuned generate the correct ΦR matrix. This is true since the static

shapes are defined in an equilibrium condition, hence the contribution pro-

vided by the λ components is null since they define internal forces.

Second, each MBDyn node has twelve DOFs (3 positions, 3 orientation, 3

momenta and 3 momenta moments). So, since the number of static shapes

is associated to the numbers of the boundary nodes DOFs, twelve shapes are

needed. This is twice the number of those needed in a conventional FEM

approach. This problem was solved by generating the six static shapes asso-

ciated to unit activations of position and rotation DOFs and consequently

reusing them by translating to the left momenta DOFs. This process has

proven to be a valid method (see ref. B.2.2).

The approached used to define each subsystem shapes are slightly dif-

ferent. They are now presented.
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Wing static shapes

The wing model is very simple. For this reason it is possible and easy to

extract the FEM like matrices describing its beam structure from MBDyn

system matrices. If no aero panels are present, the extracted mass and

stiffness matrices can be used to generate the wing static shapes. The mo-

tions describe the positions of the internal DOFs after unit activations of

the wing tip ones. These shapes are then redistributed to an MBDyn like

twelve DOFs node structures to complete the generation of the wing associ-

ated ΦR. Once this is done, the wing C-B matrix is complete and the model

can be substructured.

Rotor static shapes

The definition of the rotor static shapes is harder due to the more complex

nature of the subsystem. For this reason is not possible to define the required

shapes starting from equivalent FEM matrices. This time, the boundary

node is represented by the node clamping the system to the ground. As

consequence, ΦR contains proper rigid body motions. The shapes are this

time generated by an algorithm which defines the nodes displacements ac-

cording to the specific rotor geometry. Once again, the twelve shapes are

generated in groups of six. Those associated to the boundary node activa-

tions are the first to be generated to be eventually “shifted downwards” to

describe the motions associated to the interface momenta DOFs.

Please remember that, since the rotor behaviour is described with multi-

blade coordinates, the rotor rigid body motions need to be assessed with

such coordinates as well. For this reason, the shapes are generated using

the conventional MBDyn DOFs and are eventually transformed to the non-

rotating frame coordinates with the MBC transformation matrix M defined

in equation 3.55 in section 3.2.5. The equation is reported once again:

q =
(
Rtot P Tmb

)
qmb = M qmb (B.3)

where q is MBDyn generalized coordinates vector and qmb is its MBC ver-

sion.

Thanks to M, the rotor rigid body motions can be described in the non-

rotating frame ΦR
mb with equation B.4.

ΦR
mb = (M)−1 ΦR (B.4)

The normal modes ΦL needs as well to be described in the non-rotating

frame. If they are extracted among the eigenvectors resulting form an eigen-
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analysis on the MBC system matrices Amb and Emb, the desired ΦL
mb modes

are automatically obtained.

It is now possible to create the rotor substucture and to assemble it to the

wing one.

B.2.2 Some validation results

To prove the effectiveness of the above-mentioned substructuring process for

the multibody systems, here some results are presented.

Table B.1 shows a comparison of eigenfrequencies associated to the first

five normal modes of the WRATS isolated wing model. The central column

shows the values coming from the substructured model while the left one

shows the eigenfrequencies associated to a MBDyn model. The substruc-

tured model has been developed according to the procedure presented in

this Appendix starting from a MBDyn model of the wing system clamped

at both ends.

Mode type Subs. freq [Hz] MBDyn freq [Hz]

1st bend OoP 19.71 19.71

1st bend InP 27.36 27.36

1st torsion 74.52 74.50

2nd bend OoP 157.99 157.80

2nd bend InP 180.39 180.12

Table B.1: WRATS wing modes comparison

The similarities between the two systems dynamical behaviour presented

in Table B.1 show the effectiveness of the introduced substructuring ap-

proach.
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Vol. 12. 1883, pp. 47–88.

107

https://www.bellflight.com/products/bell-v-280
https://www.bellflight.com/products/bell-v-280
https://www.collinsdictionary.com/dictionary/english/tiltrotor
https://www.collinsdictionary.com/dictionary/english/tiltrotor


[11] Roger Ghanem. “Stochastic finite elements with multiple random non-

Gaussian properties”. In: Journal of Engineering Mechanics 125.1

(1999), pp. 26–40.

[12] Gian Luca Ghiringhelli et al. “Multi-body analysis of a tiltrotor con-

figuration”. In: Nonlinear Dynamics 19.4 (1999), pp. 333–357.

[13] ST Glusman, Robert A Hyland, and Roger L Marr. “V-22 technical

challenges”. In: AGARD Advances in Rotorcraft Technologies Sympo-

sium. 1996.

[14] F Guerroni. TiPa. 2020. url: https://gitlab.com/fedeguerro/

tipa_distro/-/tree/master.

[15] W Earl Hall. “Prop-Rotor Stability at High Advance Ratios”. In: Jour-

nal of the American Helicopter Society 11.2 (1966), pp. 11–26.

[16] KH Hohenemser and SK Yin. “On the use of first order rotor dynamics

in multiblade coordinates”. In: 30th Annual National Forum of the

American Helicopter Society, Preprint No. 831. 1974.

[17] Youmin Hu et al. “An Uncertainty Quantification Method Based on

Generalized Interval”. In: 2013 12th Mexican International Conference

on Artificial Intelligence. IEEE. 2013, pp. 145–150.

[18] Wayne Johnson. “Dynamics of tilting proprotor aircraft in cruise flight”.

In: (1974).

[19] Wayne Johnson. Rotorcraft aeromechanics. Vol. 36. Cambridge Uni-

versity Press, 2013.

[20] Andrew R Kreshock et al. “Development of a New Aeroelastic Tiltro-

tor Wind Tunnel Testbed”. In: AIAA SciTech Forum (2019).

[21] Raymond G Kvaternik. “A historical overview of tiltrotor aeroelastic

research at Langley Research Center”. In: (1992).

[22] Raymond G Kvaternik and Jerome S Kohn. “An experimental and

analytical investigation of proprotor whirl flutter”. In: (1977).

[23] Martin D Maisel. The history of the XV-15 tilt rotor research aircraft:

from concept to flight. 17. National Aeronautics, Space Administra-

tion, Office of Policy, and Plans . . ., 2000.

[24] P. Masarati. “Direct Eigenanalysis of Constrained System Dynam-

ics”. In: Proc. IMechE Part K: J. Multi-body Dynamics 223.4 (2009).

doi:10.1243/14644193JMBD211, pp. 335–342.

[25] Pierangelo Masarati. “MBDyn Theory and Developer’s Manual Ver-

sion 1”. In: X-Devel, Politecnico di Milano, Milan, Italy (2010).

108

https://gitlab.com/fedeguerro/tipa_distro/-/tree/master
https://gitlab.com/fedeguerro/tipa_distro/-/tree/master


[26] Pierangelo Masarati et al. “Soft-Inplane Tiltrotor Aeromechanics In-

vestigation Using Two Comprehensive Multibody Solvers”. In: Journal

of the American Helicopter Society 53.2 (2008), pp. 179–192.

[27] Keith McCloskey. Airwork: a history. The History Press, 2012.

[28] Nicholas Metropolis and Stanislaw Ulam. “The monte carlo method”.

In: Journal of the American statistical association 44.247 (1949), pp. 335–

341.

[29] FABIAN ANDRES LARA MOLINA et al. “Sensitivity Analysis of

Flexible Rotor Subjected to Interval Uncertainties”. In: (2019).
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