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Abstract

Climate change is one of the biggest challenges of our time because it directly impacts

our economy and society. Temperature increase, caused by the growth in the last

decades of greenhouse gases, will cause a major demand of electricity for the use of

air conditioning systems that will require more energy potential in the grid with an

average predicted growth of 2%. Many studies were performed in the field using

linear models and investigating separately the sensitivity of electricity consumption

and clients behaviour. This work aims at developing a non parametric model to deal

with both mean city monthly temperature electricity response and the identification

of common clients behaviour patterns in the population. We propose a functional

mixed effect models for the city of Milan, where the fixed effect represents the mean

behaviour of the population and the random effects account for the clients’ and years’

variability. We succeed, studying the mean client’s curve, to identify two subgroups in

the population that differ for their quadratic or linear trend. After fitting two different

models for each subgroup we finally highlight a small number of behaviour’s patterns.

Given the nature of the data analysed we are able to uniquely identify functions using

vertex position and concavity for parables and intercept and slope for lines. This allows

us to cluster them using classical statistical tools and reduce complexity.
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Sommario

Il cambiamento climatico è una delle più grandi sfide del nostro tempo perchè avrà un

impatto diretto sulla nostra economia e società. L’aumeto della temperatura, causato

dalla crescita negli ultimi decenni dei gas serra, causerà una maggior domanda di

elettricità per l’uso di sistemi di aria condizionata che richiederannomaggior potenziale

nella rete con una crescita media prevista del 2%. Molti studi sono stati condotti

nel settore utilizzando modelli lineari e analizzando separatamente la sensibilità del

consumo elettrico e il comportamento dei clienti. Questo lavoro ha come obiettivo lo

sviluppo di un modello non parametrico per studiare sia la risposta media mensile

di energia elettrica della città alla temperatura sia l’identificazione di comportamenti

comuni dei clienti nella popolazione. Proponiamo un modello funzionale ad effetti

misti per la città di Milano. dove l’effetto fisso rappresenta il comportamento medio

della popolazione e gli effetti randomici tengono conto della variabilità dei clienti e

degli anni. Siamo riusciti, studiando la curva media del cliente, ad identificare due

sottogruppi nella popolazione che differiscono per il loro andamento quadratico o

lineare. Dopo aver utilizzato due differenti modelli statistici per ogni sottogruppo

abbiamo evidenziato un gruppo ristretto di comportamenti comuni. Data la natura dei

dati analizzati siamo stati, in grado di identificare univocamente le funzioni tramite

la posizione del vertice e la concavità per quanto riguarda le parabole e l’intercetta e

il coefficiente angolare per le rette. Questo ci ha permesso di classificarli ugualmente

usando i metodi della statistica classsica, riducendo la complessità computazionale.
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1. Introduction

Climate change is one of the biggest challenges of our times and we are facing its con-

sequences directly on our lives. Global warming causes more extreme climate events:

drought and wild fires started to occur more frequently, storm and hurricane become

more destructive, glacier are melting and global mean sea level is rising. It is well

known that the human activity, with the increase of greenhouse gasses emissions in

the atmosphere, is responsible for the rise of surface temperature that is driven by

a myriad of societal factors. It is clear how complicated is the problem and how the

economic, social-demographic, energy and climate fields are correlated together for the

study of the phenomena. To understand how the climate will impacts on our economy

and which policies governments can undertake to reduce global warming, Integrated

Assessment Models (IAMs) have been developed, coupling detailed energy system

technologies models with simplified economic and climate ones. They use different

narratives describing alternative socio-economic advancement, including sustainabil-

ity, regional rivalry, inequality, fossil-fuelled and middle-of-the-road development to

better analyse plausible major global improvement that together would lead in the

future to different challenges for mitigation and adaptation to climate change. In this

context many studies were elaborated to improve the equations of the mathematical

model to better predict future emission and costs. From the analysis performed using

scenarios of Integrated Assessment Models is clear that one of the most important

change will address the energy system. It has been proven that over the 21th century

the surface temperature is projected to rise under all assessed scenarios, causing more

frequent hot and fewer cold temperatures extremes over most land areas, and heat

waves will occur with a higher frequency and longer duration [9]. This will have a

direct impact on the energy system that will have to face the major challenges related to

climate change, especially because energy consumption is projected to grow on overage

of 2% per year and the 80% of it is still originated by fossil fuels. It is important to note

that one third of energy produced is used in the electricity system and is consumed

for the 60% in residential and commercial buildings [13]. Electricity consumption will

growwith the increasing installation of new air conditioning systems and therefore the

power generation grid will require additional resources.

In this context the literature presents different studies on finding the relation be-

tween electricity consumption and climatic variables using different approaches. The

empirical assessment of the response electricity temperature curve is important for

understanding what will be the real impact and cost of the changes that will be neces-

sary to increase the grid potential. Moreover, using the founded relation in Integrated

13



1. Introduction

Assessment Model, it is possible to provide more precise and realistic results in policy

evaluations.

• Mukherjee and Roshanak [19] developed a predictive model for residential and

commercial electricity usage to understand the relationship between weather,

climate and electric power consumption, analysing the state of Florida and testing

different non-linear models. They conclude that mean dew point temperature is

a more suitable predictor instead degree-days variable.

• Auffhammer et al. [1] used comprehensive high-frequency data at level of load

balancing authorities to parametrize the relationship between average or peak

electricity demand and temperature across the United State. Their study suggests

a significant increase in intensity and frequency of peak events.

• Franco and Sanstad [12] estimated the relationship between temperature and

both electricity consumption and peak demand at sample location in California

and combined them with global projections to understand the impacts of future

temperature change on electricity consumption and peak demand.

• Chen et al. [7] focused on the study of the residential sector analysing the pene-

tration of Air Conditioning systems developing a new classification method with

unprecedented spatio-temporal resolution in Los Angeles.

Other studies estimate region-specific predictive models. Climate change has ge-

ographically distinct impacts. Doing regional analysis will facilitate assessing the

end-use electricity consumption sensitivity because energy consumption are recorded

at regional level.

• Christenson et al. [8] investigated the impact of global warming in Switzerland, by

means of the degree day methods. They conclude that there will be an increasing

in the cooling potential.

• Mirasgedis et al. [18] focused on the potential upcoming impact of climate change

on electricity demand at regional/national level for regions where topography

and location results in large differences in local climate, to model the sensitivity

of electricity demand in Greek power system. The result confirmed an increase

of the annual electricity demand in particular during summer, that will lead to

the need for increases of the installed capacity.

A study regarding Italy was performed by Bianco et al. [4]. Their objective was to

analyse the influence of economic and demographic variables on the annual electricity

consumption in order to develop a long term consumption forecasting not consid-

ering climate change impacts. The relation between climate change and electricity

consumptionwas studied by Pagliarini et al. [20] who analysed in a five-year period the

correlation between daily average outdoor dry bulb temperature and daily electricity

consumption. They used a five-parameter estimation approach in order to highlight

14



the effect of both user behaviour and the physical characteristics of building stock.

The aim of this thesis work is to model the overall effect of temperature on electricity

consumption in the residential sector and also to identify the different behaviour of

single clients to understand common patterns in the consumption. We use a statistical

model able to handle the complex hierarchical structure of the data and to consider as

a statistical unit the monthly electricity temperature response function for every clients

in every year. Consequently we can predict the total increase demand of electricity

consumption and simultaneously classify clientswith the aim of analysing the presence

of air conditioning systems. Furthermore our estimation could be used in the context

of Integrated Assessment models to better understand the implication of an increase

demand on the electricity grid. We performed our analysis focusing on the city of

Milan using a monthly based dataset considering a time interval of 5 years (2015-2019).

This thesis is organized as follows. Chapter 2 contains the fundamental statistical

theory used, Chapter 3 explains the procedure that we have followed to construct the

final dataset. We present in Chapter 4 the analysis conducted to choose the parameters

of the models and the classification of the behaviours of the clients, while in Chapter 5

we draw conclusions summarizing the obtained results.

15





2. Statistical Methodology

2.1. Functional Data Analysis

Functional Data Analysis or FDA is the branch of statistics that studies complex and

high-dimensional data having functional nature (i.e curves, surfaces and images). The

basic idea of functional data analysis is to think of observed data as single entities,

rather than as a sequence of individual observation. Our functions live in a continuous

domain and lie in a functional space. The most common choice is using the L2 Hilbert

space for its good geometric properties. Indeed Hilbert space is a generalization of the

concept of Euclidean space to spaces of any dimension, even infinite. In this context

we can think our functional data as a point in the space of functions and using the

notion of inner product and norm to extend many methods belonging to multivariate

statistics.

2.1.1. Basis Function

Functional space are infinite dimensional, therefore we need a strategy for constructing

functions with parameters that are easy to estimate and on the other hand we do

not want to use more parameters than we need. The solution normally presented in

the literature (such as Ramsay and Silverman [22]) is to use a basis function system

{φ1, ...,φk, ...}. The functions composing the basis are mathematically independent of

each other and have the property that we can approximate arbitrarily well any function

by taking a weighted sum or linear combination of a sufficiently large number K of

this functions. For example the most familiar basis function system is the collection of

monomials used to construct the power series,

1, t, t2, t3, ..., tk, ... (2.1)

followed by the Fourier expansion

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt)..., sin(kωt), cos(kωt)... (2.2)

A function x(t) is represented by the linear expansion

x(t) =
K∑
k=1

ckφk(t) = c′φ(t) (2.3)

17



2. Statistical Methodology

Figure 2.1.: B-spline basis with 13 spline functions of order 4 defined over the interval

[0,10] by nine interior boundaries or knots.

The parameters c1, c2, ..., ck are the coefficients of the expansion and K determines the

degree to witch the data are smoothed as opposed to interpolated. Basis expansion

methods represent the potentially infinite dimensional world of functions within the

finite dimensional framework of the vectors c [22]. In Functional Data Analysis is

therefore very important to choose the correct basis system.

The most common choice for non-periodic functional data is the Spline Basis system.

It combines the fast computation of polynomials and greater flexibility achieved with

a modest number of basis functions. Splines are piecewise polynomials constructed by

dividing the interval of definition T into L subintervals, with boundaries at points called

breakpoints or knots. Over each interval the spline is defined as a polynomial of order

m. At each breakpoint, neighbouring polynomials are constrained to join smoothly

and derivatives up order m − 2 must also match. Summarizing a spline function is

determined by the order of polynomial sequence and the knot sequence τ.

There are several different basis system for constructing spline functions. One of the

most popular is the B-spline basis system. Their essential properties are:

• Each φk(t) is itself a spline function of orderm and a knot sequence τ

• A linear combination of these basis functions is a spline function

• Any spline function can be expressed as a linear combination of these basis

functions

We call Bk(t, τ) a B-spline basis function in twith sequence of breakpoints τ. A spline

function is then defined as

S(t) =
m+L−1∑
k=1

ckBk(t, τ) (2.4)

and we can see an example in Figure 2.1.

18



2.1. Functional Data Analysis

2.1.2. Principal Component Analysis

Once we have our functional data the first method that we turn to after descriptive

statistic and plots is Principal Component Analysis. In functional PCA, there is an

eigenfunction associated with each eigenvalue, rather than an eigenvector. The basic

ideas of this procedure were discovered independently by Karnhunen and Loeve [14,

15]. These eigenfunctions describe major variational components.

In multivariate statistics, variation is usually summarized by either a covariance or a

correlation matrix. Instead when dealing with functional observations, xi(s) and xi(t)
have the same origin and scale. Consequently, the estimated covariance function

v(s, t) = 1

N − 1
∑
i

[xi(s) − x̄(s)][xi(t) − x̄(t)] (2.5)

or the cross-product function

c(s, t) = 1

N

∑
i

xi(s)xi(t) (2.6)

will tend to be more useful than the correlation function

r(s, t) = v(s, t)√
[v(s, s)v(t, t)]

. (2.7)

We can define PCA as the search of a probe ξ that provide a prob score, defined as

ρξ(xi) =
∫
ξ(t)xi(t)dt, (2.8)

with the largest possible variation imposing

∫
ξ2(t)dt = 1. The probe score variance

Var
[∫
ξ(t)(xi(t) − x̄(t))2dt

]
associated with a probe weight ξ is the value of

µ = max

ξ

{∑
i

ρ2ξ(xi)
}

subject to

∫
ξ2(t)dt = 1. (2.9)

µ and ξ are referred to as the largest eigenvalue and eigenfunction respectively.

As in multivariate PCA a non increasing sequence of eigenvalues µ1 ≥ µ2 ≥...µk can

be constructed stepwise by requiring each new eigenfunction, computed in step l, to be

orthogonal to those computed on previous steps,∫
ξj(t)ξl(t)dt = 0 ∀j < l and

∫
ξ2l(t)dt = 1. (2.10)
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2. Statistical Methodology

We can compute eigenfunction ξj of the bivariate covariance function v(s, t) as solu-
tion of the functional eigenequation∫

v(s, t)ξj(t)dt = µjξj(s). (2.11)

After computing the pairs (µj, ξj), we choose 1 ≤ l ≤ N − 1,using visual inspection

of µj, to define a basis system for approximating our sample functions xi. These basis

function are referred to orthonormal basis and are the most efficient in the sense that the

total error sum of squares

PCASSE =

N∑
i

∫
[xi(t) − x̄(t) − c′iξ(t)]2dt (2.12)

is the minimum achievable with only l basis functions.

The coefficient vectors ci i=1,..N contain the principal component scores cij that define
the optimal fit to each function xi:

cij = ρξ(xi − x̄) =
∫
ξj(t)[xi(t) − x̄]dt (2.13)

They can be useful in interpreting the nature of the variation identified by the PCA and

is common practice to use these scores as "data" to be subjected to a more conventional

multivariate analysis (Ramsay and Silverman [22]).

2.1.3. Data Alignment and Clustering

One of the major problems that we can encountered in functional data analysis is

the misalignment of the data. Functions can vary in both phase and amplitude, as

illustrated in Figure 2.2 . Phase variation is illustrated in the bottom panel, opposed to

amplitude variation, shown in the top panel. Curve registration is useful if we want to

correctly estimate the mean curve. In the bottom panel of the figure we can see that the

dashed curves, does not resemble any other curve. The need to register the curves by

transforming their argument is motivated, in Ramsay and Silverman [22], by the fact

that physical timemay not be directly relevant to the dynamic of many real-life systems

and there could be a sort of biological time scale that can vary from case to case. The

problem of curve misalignment become more important if we want also to perform

clustering.

A solution to this problem is K-mean alignment proposed by Sangalli et al. [25]. The

authors describe a procedure that is able to efficiently cluster and align a set of curves

in k groups. If the number of clusters is set equal to 1, the algorithm implements

20



2.1. Functional Data Analysis

Figure 2.2.: The top panel shows five curves varying only in the amplitude. The bottom

panel shows five curves varying only in phase. The dashed line in each

panel indicates the mean of the five curves.

the Procrustes aligning procedure, whereas if no alignment is allowed, it implements a

functional k-mean clustering of curves.

Let us consider a set C of curves c(s). Aligning c1, c2 ∈ C means finding a warping
function h(s), such that the two curves c1 ◦h and c2 are most similar. We need to specify

a similarity index ρ(., .) : C × C → R and a class W of warping functions h, such that

c ◦ h ∈ C,∀c ∈ C and ∀h ∈ W. To align c1 to c2, according to (ρ,W), means finding

h? ∈ W that maximizes ρ(c1 ◦ h, c2). The choice of (ρ,W) will define what is meant by

phase and amplitude variability. One possible option is to use

ρ(c1, c2) =
1

d

d∑
p=1

∫
R
c′
1p
(s)c′

2p
(s)ds√∫

R
c′
1
p(s)2ds

√∫
R
c′
2p
(s)2

, (2.14)

W = {h : h(s) = ms + q with m ∈ R+,q ∈ R} (2.15)

as in K-mean.

The couple defined in Equations (2.14) and (2.15) satisfies the following properties:

1. ρ is bounded,with maximum value equal to 1. Moreover ρ is :

• reflexive: ρ(c, c) = 1 ∀c ∈ C;

• symmetric:ρ(c1, c2) = ρ(c2, c1) ∀c1, c2 ∈ C;
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2. Statistical Methodology

• transitive: [ρ(c1, c2) = 1, ρ(c2, c3) = 1] ⇒ ρ(c1, c3) = 1, ∀c1, c2, c3 ∈ C.

2. W is a convex vector space and has a group structures with respect to the operator

of function composition ◦.

3. ρ andW are consistent: ρ(c1, c2) = ρ(c1 ◦ h, c2 ◦ h)∀h ∈ W.

This implies that is not possible to obtain fictitious increment of similarity between

two curves simply by warping them simultaneously.

4. Similarity that can be obtained by align c1 to c2 is the same as the one that can be

obtained by aligning c2 to c1:
ρ(c1 ◦ h1, c2 ◦ h2) = ρ(c1 ◦ h1 ◦ h−1

2
, c2) = ρ(c1, c2 ◦ h2 ◦ h−1

1
) ∀h1,h2 ∈ W

5. The similarity index between two curves is unaffected by strictly increasing affine

transformations of one or more components of the curves:

LetWd
be the set of transformation r : Rd→ R

d
such that: x ∈ Rd→ r(x) ∈ Rd:

ρ(r1(c1), r2(c2)) = ρ(c1, c2) ∀r1, r2 ∈ Wd

Once (ρ,W) are defined we can proceed with Procrustes aligning procedure described

in Sangalli et al. [24]. The algorithm perform the following steps:

1. Expectation step:
The reference curve is estimated using all the curves obtained at the previous

iteration. A new reference curve is obtained.

2. Maximization step:
Each curve is shifted and dilated in order to maximize its similarity with the

estimated reference curve. New curves are obtained.

The warping functions hi are given by the comparison of the optimal warping function

found at each iteration: hi = hiterK ◦ ... ◦ hiter2 ◦ hiter1. The registered centerline is

then defined as c̃i = ci ◦ h−1i
Nowwe consider the problem of clustering a set ofN curves {c1, ..., cN} with respect

of k unknown templatesϕ = {ϕ1, ...,ϕk}. What we have to do is to solve the following

optimization problem:

(i) findϕ = {ϕ1, ...,ϕk} ⊂ C and h = {h1, ..,hN} ⊂ W such that

1

N

N∑
i=1

ρ(ϕλ(ϕ,ci), ci ◦ hi) ≥
1

N

N∑
i=1

ρ(ψλ(ψ,ci), ci ◦ gi)

∀ψ = {ψ1, ...,ψk} ≠ ϕ, ∀g = {g1, ..,gN} ≠ h
(2.16)

where

- λ(ϕ, c) = min{r : c ∈ δr(ϕ)} is a labelling function,

- δr(ϕ) = {c ∈ C : suph∈W ρ(ϕj, c◦h) ≥ suph∈W ρ(ϕr, c◦h),∀r ≠ j} j = 1, ..k
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2.1. Functional Data Analysis

is the domain of attraction.

(ii) assign to ci to the cluster λ(ϕ, ci) and align it to the corresponding template

ϕλ(ψ,ci) using the warping function hi

Unfortunately (i) cannot be solved analytically.

K-meanpropose to simultaneouslydealwith (i) and (ii) via k-meanalignment algorithm

that iteratively alternates the following step:

• templates identification step:
estimation of the set of k templates associated to the k clusters.

Ideally the templateϕj[q] at the iteration q should be estimated as the curveϕ ∈ C
that maximize the total similarity:∑

i:λ(ϕ[q−1],ci[q−1])=1
ρ(ϕ, ci[q−1]) (2.17)

• assignment and alignment step:
The N curves {c

1[q−1], ..., cN[q−1]} are clustered and assigned to the set of the k

templates obtained in the previous step. More precisely, the i-th curve ci[q−1]
is aligned to ϕλ(ψ[q],ci[q−1]]) and c̃i[q] = ci[q−1] ◦ hi[q] is assigned to the cluster

λ(ψ[q], c̃i[q]])

• Normalization step:
For j = 1, ..k, all the curves c̃i[q]] assigned to cluster j are wrapped along ( ¯hj[q])−1,
where

¯hj[q] =
1

Nj[q]

∑
i:λ(ϕ[q],c̃i[q])=1

hi[q]. (2.18)

The normalization step is used to select the solution to the optimization problem

that leaves the average location of the cluster unchanged.

2.1.4. Functional Linear Regression

After building our functional data object, we can use them to model predictive rela-

tionship. In classical linear regression,predictive models are often in the form

yi =

p∑
j=0

xijβj + εi, i = 1, ..N (2.19)

where yi is the response variable, xij the covariates and εi measurement error.

If the vector of covariate observation xi = (xi1, ..xip) is replaced by a function xi(t)
the first idea is to discretize them by choosing a set of times t1, ...tq and fitting the
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2. Statistical Methodology

model

yi = α0 +
q∑
j=0

xi(tj)βj + εi, (2.20)

that choosing a finer mesh of times will approximate the integral equation

yi = α0 +
∫
xi(t)β(t) + εi. (2.21)

To determine the infinite-dimensional β(t) we can redefine the problem using a basis

coefficient expansion for β, and for xi(t):

β(t) =
Kβ∑
k

bkφk(t) = b′φ(t),

xi(t) =
Kx∑
k

cikψk(t), x(t) = C′ψ(t).

(2.22)

The model can be expressed as

ŷi =

∫
Cψ(t)φ(t)′b (2.23)

We can further simplify notation by defining (Kβ + 1)-vector ζ = (α,b1, ..bk)′ and the

coefficient matrix ζ to be Nx(Kβ + 1). Then the model become simply:

ŷ = Z ˆζ

Z′Z ˆζ = Z′y
(2.24)

There are also cases where the interest lies in the prediction of functional response

yi(t) = βo(t) +
K∑
j=1

xijβj(t) + εi(t) (2.25)

where xi1, ..., x1K are known scalar covariates. To estimate
ˆβwe need to minimize

N∑
i=1

∫ (
yi(t) − βo(t) +

K∑
j=1

xijβj(t)
)
2

dt. (2.26)

If there are no particular restriction on the way β(t) varies we can minimize Equa-

tion (2.26) individually for each t. We calculate β(t) for a suitable grid of values of t

using ordinary regression analysis, and then interpolate between these values.
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2.2. Linear Mixed Effect Model

2.2. Linear Mixed Effect Model

Mixed-effects models are an extension of linear models and are particularly useful

when there is no independence in the observations caused by the hierarchical structure

of the data. Linear models hypothesis is that data are characterized by independent

observations with an homogeneous variance. In a linear model the distribution ofY is

multivariate normal,

(Y|ℬ = b) ∼ N(Xβ + o,σ2W−1) (2.27)

where

- n is the dimension of the response vector,

- W is a diagonal matrix of known prior weights,

- β is a p-dimensional coefficient vector,

- X is an n × pmodel matrix,

- o is a vector of prior offset therm.

The parameters of the model are coefficients β and the scale parameter σ.

To deal with hierarchical data, a simple approach is to aggregate, so rather than

using a single observation that is not independent we study the mean for each level

of a factor. In this case data are simply averaged and we run a model with a reduced

number of observations. Another approach is to divide the data by factor and analysing

one unite at a time, running for each a linear model. However, in doing so we don’t

take advantage of the information in data from other levels. This can lead also to a poor

prediction caused by small amount of data.

In this context linearmixedmodels are in between the previous approaches. They are

able to describe relationships between a response variable and some covariates in data

that are grouped according one or more classification factors (i.e. longitudinal data,

repeated measured data, multilevel data). By associating common random effects

to observation sharing the same level of classification factor, mixed-effects models

flexibility represents the covariance structure induced by the grouping of the data.

Linear mixed effect models are defined by the distribution of two vector-valued

random variables: Y, the response and ℬ, the vector of random samples [2]. The

conditional distribution ofY given ℬ = b has the following form:

(Y|ℬ = b) ∼ N(Xβ + Zb + o,σ2W−1) (2.28)

where Z is the n×qmodel matrix for the q-dimensional vector-valued random-effect

variable, ℬ, whose value we are fixing at b.
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2. Statistical Methodology

The unconditional distribution of ℬ is also multivariate normal with mean 0 and a

parametrized q × q variance covariance matrix Σ

ℬ ∼ N(0,Σ). (2.29)

It is convenient to express the model in terms of relative covariance factor, Λθ, which

is a q× qmatrix, depending on the variance-component parameter, θ, and generating the

symmetric q × q variance covariance matrix, Σ, according to

Σθ = σ2ΛθΛ
T
θ. (2.30)

The parameters in these models are typically estimated by maximum likelihood or re-

strictedmaximum likelihood. In general there is no closed-form solution and theymust

be determined by iterative algorithm, for example involving a repeated applications of

the Penalized Least Squared method proposed by Batesa and DebRoyb [3].

2.2.1. Nonparametric Mixed Effect Models for Functional Data

In the current days with the increasing interest in functional analysis many works de-

velopmethodologies and applications to extend linear effect models to this framework,

like Rice and Wu [23], Edwards et al. [11], and LoMauro et al. [16].

A typical parametric mixed effects analysis of this type represents each subject’s

repeated measures as the sum of a population mean function depending on time and

other covariates, a low-degree polynomial with random coefficients, and measurement

error.

Rice and Wu [23] propose a methodology that is applicable when the curves are

sampled at variable and irregularly spaced points. Let there be m subjects, ni obser-

vations at times 0 ≤ tij ≤ T on the i-th subject, and n =
∑m
i=1 ni observations overall.

Let Yij = Yi(tij) be the outcome measured on the i-th subject at time tij. The mean

function and the random function are approximated non-parametrically with splines

E(Yi(t)) = µ(t) =
p∑
K=1

βk ¯φk(t) (2.31)

where { ¯φk(·)} is a basis for spline function on [0, T ]. The random effect curve for the

i-th subject is similarly modelled as

∑q
k=1

bikφk(tij). In this case {φk(·)} is a basis for a
possibly different space of spline functions on [0, T ] and bij are random coefficient with

mean zero and covariance matrix Σ. Incorporating also the uncorrelated measurement

error εij with mean zero and variance σ2, we finally obtain the following model

Yij = µ(t) =
p∑
K=1

βk ¯φk(t) +
q∑
k=1

bikφk(tij) + εij. (2.32)
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2.2. Linear Mixed Effect Model

The covariance structure is modelled through the bik and the covariance kernel for a

random curve Y(t) is computed as

cov(Y(s), Y(t)) =
q∑
k=1

q∑
l=1

Σklφl(t) + σ2δ(s − t), (2.33)

where δ(·) is the Dirac delta function.

Conditioning Equation (2.32) on p and q we obtain the classical mixed effect model,

and the vector of observations can be expressed as

Yi = Xiβ + Zibi + εi. (2.34)

In this way the estimate of β and σ2 can be computed using the method developed for

mixed effect models.
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3. Data

In this chapter we present the set of data we used to performed our analysis. With

the aim of studying the monthly relationship between average electricity consumption

and climatic variable in cities of Italy we used two datasets one regarding electricity

consumption and one on meteorological data.

The consumption dataset is part of a behavioural energy efficiency campaign con-

ducted by Bonan et al. [5] and Bonan et al. [6], that provides customers from a European

electric utility with information on their energy use. The dataset we used do not con-

sider only the subsample receiving by e-mail the Home Energy Report (eHER) as in

their study, but a 5% random sample of thewhole dataset relative to 8048municipalities

of Italy.

Several variables thatwe take in consideration characterize the householders, namely:

id of the electricity supply contract, consumer region andmunicipalities uniquely iden-

tifiable by the ISTAT code. Regarding instead the field of the experiment we considered

the average daily electricity consumption in the month [kWh/day], calculated by tak-

ing into account the specific monthly duration in days and an aggregated variables

identifying the relative month and year of the observation. Specifically we analyse data

from January 2015 to December 2019. To join correctly the two dataset we disaggregate

the month variable in two separate ones: Month and Year.

We can already understand the complex structure of the data. We have repeated ob-

servation of the clients in the different years and month that highlights the hierarchical

structure of the data and their natural functional behaviour.

The meteorological data come from E-obs dataset from the EU-FP6 project UERRA

(http://www.uerra.eu) and the Copernicus Climate Change Service, and the data

providers in the ECA&D project (https://www.ecad.eu) [10].

E-Obs comes as an ensemble dataset available on a 0.1 and 0.25 degree regular grid

starting from 01-01-1950 to nowadays on daily basis regarding the following variables:

daily mean temperature [°C], daily minimum temperature [°C],daily maximum tem-

perature [°C], daily precipitation sum [mm], daily averaged sea level pressure [hPa]

and daily mean global radiation [W/m2].

Each variable was stored separately in NetCDF-4 format and they cover the area:

25N-71.5N x 25W-45E.
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3. Data

The ensemble datasets is based on surface in-situ observations, collected by ground-

based observation networks, owned and operated by the National Meteorological Ser-

vices and is constructed through a conditional simulation procedure. As explained

in Cornes et al. [10], they produced for each of the members a spatially correlated

random field using a pre-calculated spatial correlation function. They calculated the

mean across the members and provided it as the "best-guess" fields, using for global

radiation 10-member ensemble, while for the other elements a 100-member ensemble.

We choose E-obs dataset because we could have an homogeneous data on over the

Italian peninsula for all the considered interval of time. Moreover E-obs contains the

principal predictors for estimating the variation of electricity consumption, first of all

temperature, the most important variable to explain climate change. This can be also

confirmed in the previous literature [8, 18, 17, 19, 20, 12]. Mukherjee and Roshanak [19]

found that the most important predictor was mean dew point temperature followed

by precipitation, in Pagliarini et al. [20] dry bulb temperature was the most correlated

weather variable to electricity use, followed by solar irradiance.

In this work are considered data from 1 January 2015 to 31 December 2019 using the

0.1 degree regular grid and we consider only the ensemble mean.

To join the weather dataset with the one of electricity consumption we have followed

these steps:

1. for every elements of the ensembled data:

• change the form from 3-dimensional array to list of dataframe(long, lat,

variable)

• extract grid point related to Italy

2. downscale data to every city of Italy present in the consumption dataset

• Starting from the shape file downloaded by Istat(Istituto Nazionale di Statis-

tica - www.istat.it), we computed the centroids for each city,

• Using KNN algorithmwe calculate the value relative to the city, as the mean

of the four nearest gridded points,

3. Finally we aggregate the values monthly using the same variable as Mukherjee

and Roshanak [19].

All this procedure has been done using R software, in particularwe used ncdf4 library
to read NetCDF format.

In the first step data for each climatic variable were stored in a 3-dimensional array,

one for each that represent longitude, latitude and time (days). In order to improve

the accessibility of data, we decided to transform the original 3-dimensional array

structure into a list of Dataframes. The slicing was performed with respect to the time
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Figure 3.1.: Selection of grid point relative to Italy, tg variable 01/01/2015. On the left

Europe data, on the right extracted Italian data.

component. Each observation was characterized uniquely by the couple longitude-

latitude, so we were able to construct the Dataframes using the previous variables and

another one containing the corresponding value. Subsequently, the shapefile of Italy

was used to select the grid point of interest, the one that fall inside the boundaries, to

perform the subsequent computations. In this way we obtained for every variable a list

of dataframes, one for each day containing the grid point related to Italy,as we can see

in Figure 3.1.

The goal of the second step was obtaining the values for each weather variable

relatives to the municipalities contained in the consumption dataset. We took the

shapefile for every municipalities and we computed the centroid. For each day and for

each weather variable we used K-Nearest-Neighbors algorithm. We used the euclidean

distance to determine the K nearest neighbours:

d(pi,pj) =
√
(xi − xj)2 + (yi − yj)2 (3.1)

where pi,pj are two observation at coordinates (xi,yi) and (xj,yj). The values of a new
observation was estimated as the mean of the k nearest observations.

t̂i =
1

K

K∑
j=1

τj, i = 1, ..N (3.2)

where t̂i is the estimated value of a point in the space where we do not have any

observation and {τ1, .., τK} are the values of the K nearest observations.

After computing leave-one-out cross validation using tg data relative to 1 January

2015 and testing different values for k, we obtained the minimum Predicted Sum of

Square (PRESS) using k = 4. We can see the result in Figure 3.2. For every day we

predicted values for all weather variable, we joined them and add a column relative to

Date, obtaining a single dataset.
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3. Data

Figure 3.2.: Comparison between grid dataset (left) andmunicipalities prediction using

knn (right), tg variable 01/01/2015.

In the third step we aggregated the meteorological data monthly, computing the

same variable as Mukherjee and Roshanak [19]. The most important weather variable

computed are: monthly mean temperature [°C], monthly meanmaximum temperature

[°C],monthly mean minimum temperature [°C], total precipitation in a month [mm],

monthly mean pressure [hPa], monthly mean radiation [W/m2] and monthly degree

days [°C] computed as

∑
max(0, 20 − Te) following the Italian normative). For ob-

servation identification the data also include the name of the municipality, uniquely

identified by ISTAT code, and relative Year and month of the observation.

Finally, we joined the two datasets using the ISTAT code, Year andMonth as binding

variables.

The variable names of all variables and their description can be found inAppendixA.
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4. Model

In this chapter we present our analysis on the previously created dataset with the goal

of estimating and analyse the effect of temperature on householders monthly electricity

demand. We concentrate our study on 5% of the Italian dataset and we construct our

model on the city of Milan.

We started our analysis with a data cleaning process of the Italian dataset. What we

wanted to analyse was a population that can represent the real behaviour of electricity

consumption in the residential sector. For this reason we removed all the observations

below 1 kWh, in this way we considered only clients that effectively were in their house

during that month. 1kWh was chosen as a threshold because, as we can found in Raj et

al. [21], it approximates the consumption of a refrigerator or standby lights. We also did

not consider higher values of average day consumption, because they do not represent a

typical residential behaviour. Unfortunatelywe did not have any information about the

family unit, so we decided to rank the observations and to erase the 3000 higher ones,

leaving the consumption relative to January, February, July and August. These ones are

respectively the coldest and hottest months, with extreme temperature that justify an

higher consumption. Finallywe kept only the clientswith at least four observations. We

can see in Figure 4.1 the results of our clean up process. The 3000 higher observations,

red in the left image, are a smaller cloud with respect to the other observations. In

the right image instead are plotted the final data. We can note that the consumptions

relative to January, February, July and August that are effectively the one with higher

consumptions.

The original dataset contained 100069 clients and 6332 municipalities and after the

cleanup process we ended up with 89942 clients and 5919 municipalities. In Figure 4.2

we can visualize the before and after relative to the city of Milan, the one that we

analysed in this work. We started with 1215 clients and end up with 1136.
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Figure 4.1.: Comparison of Italian dataset before (left) and after (right) cleanup proce-

dure.

Figure 4.2.: Comparison of Milan dataset before (left) and after (right) cleanup proce-

dure.
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4.1. First Approach

The aim of this work was to study the mean monthly electricity temperature response

curve relative to the city of Milan and also identifying the different behaviour of single

clients to discover common consumption trend. The complex hierarchical structure of

the dataset led us to choose a non-parametric mixed effect model, used LoMauro et al.

[16], considering the curve as a statistical unit.

The equation of the model is the following:

yYC(t) =
k∑
i=1

βiφi(t) +
k∑
i=1

BYiφi(t) +
k∑
i=1

bCiφi(t) + εYC(t) (4.1)

where:

- yYC(t) is the datum that one would have recorded if the client C in the year Y ∈
(2015, 2019)were measured at temperature t ∈ (2.127, 28.435),

- {φ1(t), ...,φi(t)} is a basis of spline functions,

-

∑k
i=1 βiφi(t) indicates the Milan mean curve,

-

∑k
i=1 BYiφi(t) is the correction relative to the specific year,

-

∑k
i=1 bCiφi(t) is the correction for the specific client,

- εYC(t) indicates the specific observation measurement error,

- bCi ∼ N(0,σ2i), allowing a different variance σ2
i
for each natural cubic spline,

- εYC(t) ∼ N(0,σ2) for each client C in the year Y for every time t.

The proposed model was implemented in R with the package lme4 [2]. lme4 package

was developed to compute linear mixed effect models, to use it to compute our non

parametric mixed effect model we followed this procedure:

i. We computed the basis spline using temperature data and setting the parameter k,

the number of basis functions and d, the degree of the polynomial and evaluated

them in each given observation.

ii. We constructed a new dataset composed by: the evaluation of the splines, the

logarithmic transformation (base 10) of the average monthly consumption variable

to meet the hypothesis on the model coefficients,Year and Clients ID.

iii. We used the new dataset with the lme4 package, using the following formula:

log
10
(avg_day_month_consum) ∼ 0+splines+(0+splines|YEAR)+(0+splines|ID)

The best k and dwere chosen computing the Akaike Information Criterion (AIC), for
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Figure 4.3.: Comparison of AIC for different basis of spline.

each of the following combinations:

• d = 2, k = 3

• d = 2, k = 4

• d = 2, k = 5

• d = 2, k = 6

• d = 3, k = 4

• d = 3, k = 5

• d = 3, k = 6

• d = 4, k = 5

• d = 4, k = 6

• d = 5, k = 6

We can see in Figure 4.3 a graphic comparison of the models.

The parameters we chose for the model (d = 2, k = 3) were the ones that minimized

theAIC,moreover they confirmed the climatic theory that identifies a quadratic relation

between electricity consumption and temperature.

We can see in Table 4.1 the summary of the model. We note that the variability of the

annual random effect is less than the variability of the clients groups.

To test the significance of the random effect we performed Likelihood Ratio Test on

all the possible combinations of the following model:

- Linear Model: log
10
(avg_day_month_consum) ∼ 0 + splines

- Fixed + YEAR: log
10
(avg_day_month_consum) ∼ 0 + splines + (0 + splines|YEAR)

- Fixed + ID: log
10
(avg_day_month_consum) ∼ 0 + splines + (0 + splines|ID)
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Table 4.1.: Model 1: Summary model.

Random effects
Groups Name Variance Std. Dev.
ID X3 0.0826314 0.28746

ID.1 X2 0.0872961 0.29546

ID.2 X1 0.0637489 0.25249

YEAR X3 0.0011025 0.03320

YEAR.1 X2 0.0010647 0.03263

YEAR.2 X1 0.0008337 0.02887

Residuals 0.0134927 0.11616

Fixed effects
Estimate Std. Error t value

X3 0.74637 0.01510 49.42

X2 0.62786 0.01734 36.20

X1 0.69386 0.01727 40.18

Table 4.2.: Model 1: Likelihood Ratio test for random effect significance.

Linear Model Fixed + YEAR Fixed + ID Complete Model
LogLikelihood -3260.02 -3175.9 26829 27088

LM vs YEAR LM vs ID LM vs Compl YEAR vs Compl ID vs Compl
LR 168.2789 60177.46 60696.08 60528 518.63

p-val 1.488066e-36 0 0 0 0
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Figure 4.4.: Model 1: Normality plot for the model’s residuals.

Figure 4.5.: Model 1: Normality plot for coefficients relative to Clients.

- CompleteModel: log
10
(avg_day_month_consum) ∼ 0+splines+(0+splines|YEAR)+

(0 + splines|ID)

Results summarized in Table 4.2 confirmed that the more complex model is always

better.

Than we verified the hypotesis on the coefficients and residual of the model. The

residuals [Figure 4.4] do not properly follow a Gaussian distribution but their distri-

bution is symmetric and with lighter tails, so we can be reasonably satisfied. bCi
[Figure 4.5] for every spline, even if they present a right lighter tail, follow a Gaussian

distribution and therefore satisfy the hypothesis.

Finally we examined the the model’s results. The fixed effect that represent the

mean monthly electricity temperature response curve relative to the city of Milan has

a positive concavity with the minimum at 19.1 °C relative to 4.6 kWh. The extremes

instead are at 5.5 kWh and at 5kWh. Studying analytically the curves we observed that

an increase of temperature of 1°C will lead to an increase in the average day monthly

consumption of 1.2%.
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+ + =

Figure 4.6.: Model 1: Fixed effect with 95% point-wise confident interval, year and

clients random effects and total estimated curves of the model.

+ =

Figure 4.7.: Model 1: Fixed effect with 95% point-wise confident interval, Annual ran-

dom effect and Annual mean curves.

+ =

Figure 4.8.: Model 1: Fixed effectwith 95%point-wise confident interval, Client random

effect and Clients mean curves.
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Figure 4.9.: Model 1: Estimated curves for 5 clients.

In the annual mean curves we can see a difference in the minimum of the parabola

[Figure 4.7]. In particular, we have seen that 2017 and 2018 had a similar behaviour

that can be explained by their similar monthly temperature, with 2017 slightly warmer.

Regarding 2016, it was the coolest year with a maximum temperature if 25.4 °C that

can explain the decreasing curve. Finally 2015 was the hottest year with a pick at 28.4

°C that justifies the highest consumption. Instead 2019 had a similar behaviour of 2015

with the difference that was a colder year, this can justifies the reduced consumption

of electricity.

To understand better this differences and if it could be explained with the heating

regulation that impose for the city of Milan the switching on and of respectively the

15 October and the 15 April, we ran the model including a categorical variable in the

fixed effect that represents the heating switching. Finally we performed a Likelihood

Ratio Test to test the significativity of the heating categorical variable ending up with a

p-value of 0.03 . For the goal of our analysis we decided to not consider it in the model

because it did not changes the results.

Finally, as we can see in Figure 4.9 and Figure 4.10, wewere able to handle the general

client behaviour, instead we have very little variability in the years. This confirmed the

choice of studying only the overall average curve of the customer to understand the

behaviour of the population.
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Figure 4.10.: Model 1: mean clients curve, the boundaries represent the minimum and

maximum for each point of the functions of each customer.

4.2. Model 1: Analysis

In the following analysis we concentrated on studying only themean client effect (Fixed

effect + Clients Random Effect), to understand common behaviour in the population.

The first analysis we performed was the Functional Principal Component Analysis

(PCA). We started from predicted data of previous model on the whole interval (2.127,

28.435) andwe interpolated themwith a basis of 10 quadratic spline, using fda package.

The first two components explained the 98.8% of the variability, as we can see in

Figure 4.11. The first component represent the mean behaviour instead the second

component the curvature of the function. We can note that the changing point of the

second component is 18.3 °Cwhich is the reference temperature of degree days used in

model to differentiate between cold and hot season. The minimum of the mean curve

instead is at 19.1 °C

We tried to use scores of first and second component for doing clustering but, as we

can see in Figure 4.12 there is no a clear division of the data. So we decided to compute

functional clustering using the k-mean-alignment explained in Sangalli et al. [25].

We tried both Pearson similarity and L2 distances, using both no-alignment method

and only shifting. Pearson performed better because clustered together clients with the

same function shape. We can see in Figure 4.13 that we have a knee at k=3. Cluster

1 represent clients with a constant consumption, Cluster 2 clients that reduce their

consumption at high temperatures and Cluster 3 clients that have higher consumption

at higher temperatures. L2 similarity instead, as we can see in Figure 4.14, captured

the changing in the mean consumption clustering high, medium and low consumption

clients separately.
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Figure 4.11.: Model 1: Functional PCA. In the second component (centre) are also iden-

tified with blue and red points, respectively the minimum of the mean

curve and the changing point.

Figure 4.12.: Model 1: Scores first and second principal component.
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4.2. Model 1: Analysis

Figure 4.13.: Functional Clustering Pearson: In the top panels are presented the total

within similarity for different number of cluster and the cluster’s mean

curves for k=3. The bottom panels represent the relative classified curves.

Figure 4.14.: Functional Clustering L2: In the top panels are presented the total within

distance for different number of cluster and the cluster’s mean curves for

k=3. The bottom panels represent the relative classified curves.
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Figure 4.15.: Model 1: The top panel represent the hierarchical dendrogram computed

with Pearson similarity and Ward linkage. The bottom panels represent

the relative classified curves for each cluster.

We were not fully satisfied from the results so we tried also hierarchical clustering

using Pearson similarity to compute the distance matrix with both complete and Ward

linkage. Ward linkage, thatminimizes the total within-cluster variance, better clustered

the different groups: Cluster 1 and 2 are the major part of the population with respec-

tively 770 and 335 clients and represent respectively, constant behaviour and increased

consumption at high temperature (see Figure 4.15).

Considering all of the previous clustering results we can note that in each there

are some function that were not clustered correctly. Moreover some clients present a

negative curvature that goes against climatic theory.

To better analyse this behaviour and tried to study the functions reducing complexity,

we decided to compute for each clients the position of the vertex (x, y) and the curvature

(d2) analytically, that uniquely identify each parabola.

Aswe can see in Figure 4.16, we have very high and lowvalue of x outside the interval

(0,30). We decided to compute the distribution of x and to consider only the 95% of it,

erasing 58 clients that have value outside the 2.5% and 97.5% boundaries [Table 4.3].

From Figure 4.17 we can clearly see parabolas with negative concavity, that did not

respect physical behaviour, and degenerate parabolas with zero concavity, that can be

represented linearly. At this point we decided to divide the dataset in two different

groups using as a threshold d2=0.005:
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4.2. Model 1: Analysis

Figure 4.16.: Model 1: On the left Boxplot of the variables relative to vertex position(x,y)

and concavity (d2) and Scatterplot of x and y on the right.

Table 4.3.: Distribution of x

Quantiles:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-14028.21 7.80 12.73 66.76 17.39 82191.27

Cut percentiles:
2.5% 50% 97.5%

-41.90591 12.72733 61.95722

Figure 4.17.: Model 1: Parabolas Standardize Scatterplot. (x,y) on the left, (x,d2) in the

centre and (y,d2) on the right.
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- d2 > 0.005 : Clients with paraboloid behaviour,

- d2 6 0.005 : Clients with linear behaviour.

4.3. Second Approach: Paraboloid and Linear Behaviour

In this section we analysed the two groups of clients separately, fitting for each a

different model.

4.3.1. Paraboloid Behaviour

Weclassified as clientswith paraboloid behaviour the 48%of the dataset andwe refitted

on them the same model as before following the Equation (4.1). We also maintained

the same value for the parameters (k=3, d=2).

Analysing the clients coefficients relative to each spline (see Figure 4.18), we noted

3 outliers that did not follow properly the Gaussian distribution. We can see from

Figures 4.19 and 4.20, that they are the clients with higher mean average electricity

consumption reaching 100 kWh and they depart from the main group for about 20

kWh. For these reasons we decided not to include them in the analysis.

The model without outliers led to a greater satisfaction of the model’s assumptions.

If we look at Figure 4.22, they completely fulfill the hypothesis of Gaussianity, except for

the second spline that presents a heavier right tail but definitely better than before. The

residual instead, in Figure 4.21, presented the same configuration of the first model.

They did not follow completely the Gaussian distribution but at least were symmetric,

thus we still were reasonably satisfied.

Figure 4.18.: Parabolas: Normality plot for coefficients relative to Clients.
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Figure 4.19.: Parabolas: estimated curves for clients with coefficients that not follow

Gaussian hypothesis.

Figure 4.20.: Parabolas: Plot of fixed effect and ID random effects.

Figure 4.21.: Parabolas: Normality plot for the model’s residuals.
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Figure 4.22.: Parabolas: Normality plot for coefficients relative to Clients.

Table 4.4.: Parabolas: Summary model.

Random effects:
Groups Name Variance Std. Dev.
ID X3 0.0800699 0.28297

ID.1 X2 0.0670472 0.25893

ID.2 X1 0.0640910 0.25316

ANNI X3 0.0007065 0.02658

ANNI.1 X2 0.0007810 0.02795

ANNI.2 X1 0.0006477 0.02545

Residual 0.0144698 0.12029

Fixed effects:
Estimate Std. Error t value

X1 0.76300 0.01613 47.30

X2 0.47411 0.01744 27.19

X3 0.80612 0.01732 46.54

Table 4.5.: Parabolas: Likelihood Ratio test for random effect significance.

Linear Model Fixed + YEAR Fixed + ID Complete Model
LogLikelihood -1476.13 -1458.58 12095.28 12149.06

LM vs YEAR LM vs ID LM vs Compl YEAR vs Compl ID vs Compl
LR 35.0928 27142.83 27250.38 27215 107.56

p-val 5.665178e-08 0 0 0 1.821286e-23
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+ + =

Figure 4.23.: Parabolas: Fixed effect with 95% point-wise confident interval,year and

clients random effects and total estimated curves of the model.

+ =

Figure 4.24.: Parabolas: Fixed effect with 95% point-wise confident interval, Annual

random effect and Annual mean curves.

+ =

Figure 4.25.: Parabolas: Fixed effect with 95% point-wise confident interval, Client

random effect and Clients mean curves.
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Figure 4.26.: Parabolas: Estimated curves for 5 clients.

Figure 4.27.: Parabolas: mean clients curve, the boundaries represent theminimumand

maximum for each point of the functions of each customer.
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4.3. Second Approach: Paraboloid and Linear Behaviour

As we can see in Table 4.4, we obtained very similar results as the first model and

also in this case we found major variability in the clients random effect. Equally we

performed the Likelihood Ratio Test to check the significance of the random effects.

Once again we had the confirmation of the importance of all the Random effects,

included the "YEAR" component. We can see the results in Table 4.5.

Analysing the model results relative to Clients with paraboloid behaviour (see Fig-

ure 4.23), we found the mean function of the population had the minimum at 14.37 and

that an increase of 1°C of temperature will lead to an increasing in the consumption

of the 6.3%. In this context we had also some differences in the annual mean effects

similar as the first model but affect less the final result [4.24].

The little variance of the annual effect can be seen also in Figures 4.26 and 4.27, there-

fore we can use only the mean effect of the clients to study the population behaviour.
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4.3.2. Linear Behaviour

In this section we analyse the remaining 52% of clients that present a linear behaviour.

In this case we use a classic linear mixed effect model that we can be described with the

following equation:

yYC(t) = β0 + β ∗ t + BY0 + BY ∗ t + bC0 + bC ∗ t + εYC(t) (4.2)

where:

- yYC(t) is the datum that one would have recorded if the client C in the year Y ∈
(2015, 2019)were measured at temperature t ∈ (2.127, 28.435),

- β0 + β ∗ t indicates the Milan mean curve,

- BY0 + BY ∗ t is the correction relative to the specific year,

- bC0 + bC ∗ t is the correction for the specific client,

- εYC(t) indicates the specific observation measurement error,

- bC ∼ N(0,Σ), where Σ is the variance covariance matrix of the clients random effect,

- εYC(t) ∼ N(0,σ2) for each client C in the year Y for every time t.

Figure 4.28.: Linear: Normality plot for the model’s residuals.

The residuals of the model not follow properly the Gaussian distribution, even so

like the previous model is a symmetric distribution with lighter tail. The random

coefficients relative to clients (see Figure 4.29) meet the assumption of Gaussianity,

instead the ones relative to the temperature have a lighter left tail. If we analyse more

specifically we can see that two clients in particular do not follow the quantiles of the

Gaussian distribution (60 and 375). Looking at the predicted curves in Figure 4.30, we

can note a decreasing paraboloid behaviour estimated by the first model.
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Figure 4.29.: Linear: Normality plot for coefficients relative to Clients.

Figure 4.30.: Linear: Comparison between estimated curves using linear model (left)

and model 1 (right) for clients with coefficients that not follow Gaussian

hypothesis.
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Table 4.6.: Linear: Summary model.

Random effects:
Groups Name Variance Std.Dev. Corr
ID (Intercept) 6.202e-02 0.249037

temp 2.661e-05 0.005159 -0.46

ANNI (Intercept) 6.886e-04 0.026242

temp 3.708e-07 0.000609 -0.78

Residual 1.305e-02 0.114258

Fixed effects:
Estimate Std. Error t value

(Intercept) 0.769507 0.015701 49.01

temp -0.005108 0.000364 -14.03

Table 4.7.: Linear : Likelihood Ratio test for random effect significance.

Linear Model Fixed + YEAR Fixed + ID Complete Model
LogLikelihood -581.443 -516.5887 15355.14 15562.27

LM vs YEAR LM vs ID LM vs Compl YEAR vs Compl ID vs Compl
LR 129.7088 31873.16 32287.42 32158 414.26

p-val 5.665178e-08 0 0 0 1.821286e-23

Unfortunately it is not allowed by theory and our linear model succeeded to esti-

mate the consumption trend considerably. For these motivations we didn’t erase the

observation from the model.

The summary (see Table 4.6) highlights also in this case a higher variance of the

clients random effect, that can also be seen in Figures 4.34 and 4.35.

The result of Likelihood Ratio Test, computed to test the significance of the random

effect Table 4.2, confirmed the importance of all.

The model underline a decreasing mean effect for the city of Milan with an intercept

of 5.88 kWh and slope of -0.005. a higher consumption for 2019 at higher temperatures.

Only 2018 and 2019 intersect each other with a higher consumption for 2019 at higher

temperatures.

Finally we can justify the study of the mean consumption curves of the clients for

identifying common pattern in the population, because, as we can see in Figures 4.34

and 4.35 we succeed to estimate the general trend of the customers, that have higher

variance respect to the annual effect.
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+ + =

Figure 4.31.: Linear: Fixed effectwith 95%point-wise confident interval,year and clients

random effects and total estimated curves of the model.

+ =

Figure 4.32.: Linear: Fixed effect with 95% point-wise confident interval, Annual ran-

dom effect and Annual mean curves.

+ =

Figure 4.33.: Linear: Fixed effect with 95% point-wise confident interval, Client random

effect and Clients mean curves.
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Figure 4.34.: Linear: Estimated curves for 5 clients.

Figure 4.35.: Linear: mean clients curve, the boundaries represent the minimum and

maximum for each point of the functions of each customer.
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4.4. Second Approach: Analysis

4.4. Second Approach: Analysis

Once obtained the mean function relative to clients of both model we analysed them

separately to cluster them and study the population behaviour.

Figure 4.36.: Fixed effect and ID random effect of clients with paraboloid behaviour

(left) and linear behaviour (right).

4.4.1. Paraboloid Behaviour

Following the same procedure of the first model, we proceeded with a functional prin-

cipal component analysis. Aswe can se in Figure 4.37 the first two principal component

explained the 99% of the variability. As before, the first component represents themean

consumption levels and the second one the concavity of the curve. The minimum now

is at 14.3 °C and the changing point is at 16.6 °C. If we compare the second components

of the parabolas to the one of the first model, we can note that in this case we obtained

more concave curves with high consumption of electricity at extreme temperatures. We

plotted the scores of the first two principal component to try to use them for clustering,

but also this time they didn’t present any grouping pattern.

To cluster clients electricity response curve we tried different approaches. The first

one was the classical functional clustering without alignment and Pearson similarity,

using the procedure of Sangalli et al. [25]. To choose the number of cluster we plotted

the mean of the similarities of the curves respect to the cluster mean. As we can see

from Figure 4.39 we have an elbow at k=3. The first cluster, composed by the 28% of the

clients, represent an increase of consumption relative to higher temperature, probably
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Figure 4.37.: Parabolas: Functional PCA. In the second component (centre) are also

identified with blue and red points, respectively the minimum of the

mean curve and the changing point.

Figure 4.38.: Parabolas: scores of first and second principal component.
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Figure 4.39.: Parabolas: Functional Clustering Pearson. In the top panels are presented

the total within similarity for different number of cluster and the cluster’s

mean curves for k=3. The bottom panels represent the relative classified

curves.

caused by the presence of air conditioning. The second cluster (58% of clients) presents

what can be considered as a constant behaviourwith slightly increasing consumption at

temperatures extremes. Finally the remaining 14% presents a decreasing behaviour. It

is interesting to note that all the clientswill experience an increasing in the consumption

of electricity for future higher temperatures.

The second approach we attempted was hierarchical clustering using both com-

plete and Ward linkage. We computed the distance matrix using Pearson similarity.

Complete linkage (see Figure 4.40) identifies a major cluster composed by the 90% of

the clients, characterized by low concavity and a major consumption of electricity at

extreme temperature. Instead the second and the third cluster (5% of clients each),

represent respectively clients with higher consumption at high temperature and low

temperature. Ward linkage (see Figure 4.41) assignedmore clients (20%) to the decreas-

ing pattern in the first cluster, 4% of clients to the third cluster and the 76% to the second

one. Concluding, we observed that Ward method better clustered the population, if

we look close we can see that first cluster of complete linkage include some clients with

decreasing curve that are assigned correctly in Ward to Cluster 1.

Finally, knowing that parabolas can be described uniquely by 3 parameters we de-

cided to compute the position of vertex (x, y) and concavity (d2) of the curves and

cluster clients using this new dataset, reducing the complexity of computations.
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Figure 4.40.: Parabolas: The toppanel represent the hierarchical dendrogramcomputed

with Pearson similarity and complete linkage, k=3. The bottom panels

represent the relative classified curves for each cluster.

Figure 4.41.: Parabolas: The top panel represent the hierarchical dendrogram com-

puted with Pearson similarity and Ward linkage, k=3. The bottom panels

represent the relative classified curves for each cluster.
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Figure 4.42.: Parabolas: clients vertex position and concavity standardized scatter plot.

(x,y) on the left, (x,d2) in the centre and (y,d2) on the right.

As we can see in the scatterplot in Figure 4.42, this time we have only positive

concavity and there isn’t any pattern in the data.

Applying k-means to the constructed standardized dataset, we choose k=4. As we

can see from Figure 4.43, after repeating the algorithm for different seed and different

number of cluster, it was the most stable. We can identify a constant behaviour in

clusters 1 (38%) and 3 (31%)that differ only for the mean consumption, respectively

middle-high and low. Cluster 2 (13%) is characterized by a decreasing behaviour

and Cluster 4 (18%) has higher concavity with an increase of consumptions for high

temperature. This new constructed dataset is useful also because we can study the

marginal density functions relative to each cluster (see Figure 4.44) and use them for

tuning the climaticmodel to have amore precise projection on the future consumptions.

Moreover, we analysed the cluster generated using only all the possible couples of

variables. In our opinion the most significative is the one using the abscissa and the

concavity. In this way we are highlighting differences regarding the shape of the curve

but not on the mean consumption. In Figure 4.45, we can see the results. As before

we found 3 cluster representing a constant consumption with a little increase in the

consumption at high temperature (60%), clients with a decreasing trend (16%) and a

cluster with higher concavity and high consumption at high temperature (24%). Also

in this case, we can study the marginal and joint density functions the abscissa and

concavity and use them for tuning the parameters of climatic models (see Figure 4.46).
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Figure 4.43.: Parabolas: In the top panel are represented the between (left) and within

(right) total sum of squares of Kmean clustering using vertex position and

concavity. The bottom panels represent the relative classified curves for

k=4.

Figure 4.44.: Parabolas: marginal pdfs for x, y, d2 relative to k=4 clusters identified by

kmean.
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Figure 4.45.: Parabolas: In the top panel are represented the between (left), within

(centre) total sum of squares of Kmean clustering using vertex abscissa

and concavity and the cluster scatterplot relative to k=3. The bottom

panels represent the relative classified curves.

Figure 4.46.: Parabolas: marginal and joint pdfs for x, d2 relative to k=3 clusters identi-

fied by kmean.
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4.4.2. Linear Behaviour

In the following subsection we present the result of clustering of clients with linear

behaviour.

We started with functional kmeans using Sangalli et al. [25] algorithm and Pearson

similarity. In Figures 4.47 and 4.48 we consider 2 cases k=2 and k=3. If we consider

3 cluster we obtain two very similar cluster containing decreasing lines and we can

note some misclassified clients. For this reason we preferred the case k=2. The first

cluster, composed by the 73% of clients, represents a constant consumption while the

second one (27%) a decreasing trend. We can justify this behaviour by supposing

that these clients didn’t have the air conditioning and the consumption of electricity at

higher temperatures can be caused by a less use of lighting in the hottest month that

correspond to the one with more daily sun hours.

Figure 4.47.: Linear: Functional Clustering Pearson. In the top panels are presented

the total within similarity for different number of cluster and the cluster’s

mean curves for k=2. The bottom panels represent the relative classified

curves.

The second approach tested was functional hierarchical clustering. Also in this case

we constructed the distance matrix using Pearson similarity. The complete linkage case

(see Figure 4.49) identified the same two cluster but in this case clustered as constant

the majority of the clients (94%), and only 6% with decreasing trend.
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Figure 4.48.: Linear: Functional Clustering Pearson. In the top panels are presented

the total within similarity for different number of cluster and the cluster’s

mean curves for k=3. The bottom panels represent the relative classified

curves.

Figure 4.49.: Linear: The top panel represent the hierarchical dendrogram computed

with Pearson similarity and complete linkage, k=2. The bottom panels

represent the relative classified curves for each cluster.
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Figure 4.50.: Linear: The top panel represent the hierarchical dendrogram computed

with Pearson similarity and Ward linkage, k=2. The bottom panels repre-

sent the relative classified curves for each cluster.

The ward linkage instead using k=2 (see Figure 4.50) divided the two behaviours

more similar to the functional kmean assigning to the constant one 70% of the clients

and 30% to the one with decreasing trend. If we look closely to the constant cluster

we can note that there are lines with positive slope. These lines are correctly classified

using k=4 (see Figure 4.51). They represent only the 5% of the clients and have a small

slope. This explains why they were classified in the constant cluster before, that now

represent the 67%. These reasons have led us to prefer the division in two clusters.

To reduce the complexity of the computation we decided to calculate for all the lines

the intercept and the slope and use this new dataset to cluster them. From Figure 4.52

we can see a decreasing pattern, reasonable since the lines are in a fixed range and the

increase of m corresponds to a decrease of the intercept.

We decide to maintain the two cluster division to perform clustering using the in-

tercept and the slope standardized, Figure 4.53. k=2 is stable, and we can see also the

division between the two groups in the scatterplot. In this case we obtained a constant

cluster with a lowmean consumption, 44% of the clients, and a decreasing cluster with

an higher intercept (56%). As we have done with the parabolas we can use the density

functions of the intercept and slope for tuning the parameters of climatic models (see

Figure 4.46).
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Figure 4.51.: Linear: The top panel represent the hierarchical dendrogram computed

with Pearson similarity and Ward linkage, k=4. The bottom panels repre-

sent the relative classified curves for each cluster.

Figure 4.52.: Linear: clients intercept and slope standardized scatter plot.
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Figure 4.53.: Linear: In the top panel are represented the between (left), within (centre)

total sum of squares of Kmean clustering using intercept and slope and

the cluster scatterplot relative to k=2. The bottom panels represent the

relative classified curves.

Figure 4.54.: Linear: marginal and joint pdfs for m, q relative to k=2 clusters identified

by kmean.
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Figure 4.55.: Linear: In the top panel are represented the between (left), within (centre)

total sum of squares of Kmean clustering using slope and the cluster scat-

terplot relative to k=2. The bottom panels represent the relative classified

curves.

Figure 4.56.: Linear: density function of m relative to k=2 clusters identified by kmean.
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Finally if we want to consider only the trend of the clients and not their mean

consumption is useful to cluster using only the slope (see Figure 4.55). Also in this

case we decided to maintain the two cluster division obtaining the constant cluster

composed by 62% of clients and the decreasing one with 38%. We can see the density

function of m relative to clusters in Figure 4.56.
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The aimof thisworkwas to propose amodel able to estimate themeanmonthly electric-

ity consumption response to climate change in the residential sector and also identify

the clients electricity temperature response curve to highlights common patterns in

the population. Nowadays we are experiencing on our lives the importance of climate

change and the impact that it has on our lives. Temperature increasing, accelerated by

the growing use of fossil fuel in the last decades, is the climate phenomena that most

influences the electricity sector and our economy. The presence of higher temperature

will tend to increase the installation and the usage of air conditioning systems and will

increase the need of electricity in the grid, produced for themajority part by fossil fuels,

principal cause of climate change. To study this complex problem and predict future

mitigation policies and their costs scientist developed Integrated Assessment Models

that couple detailed models of energy system technologies with simplified economic

and climate science models. The empirical assessment of the response electricity tem-

perature curve is useful to obtain more precise impacts and evaluations of policies in

specific regions.

In this context many study were performed in the field to analyse the sensitivity

of consumption and the penetration of air conditioning. Moreover it is demonstrated

that climate change has geographically distinct impacts base on regional level, so the

major of study regard a particular state. Italian study on electricity sector and climate

change were performed at different time scale analysing the impacts of demographic

and climatic variables using regression model, mostly at global level or for specific

cities, but not analysing the single client behaviour.

We performed our analysis focusing on the city of Milan using a monthly based

dataset considering the time interval of 5 years (2015-2019). To handle the complex

hierarchical structure of the data we used a non-parametric mixed effect model, devel-

oped by Rice andWu [23] and used in LoMauro et al. [16], using a functional approach

considering as statistical unit the monthly electricity temperature response curve. The

fixed effect represented the mean behaviour of the city and random effect accounted

the consumer and years effects. To filter out the effect of the different length of months

we decided to use the average day monthly energy consumption, and for the reason

explained before as a climatic variable the mean monthly temperature.

In the first model we tested, we succeeded to underline the general behaviour of the

city of Milan, studying the difference between the years and the mean clients curves.

The fixed effect confirmed the quadratic behaviour of consumption and temperature,
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that we found in the theory. Specifically we will have an increase in consumption of

1.2% for a temperature rise of 1°C. Year effect turn to be statistically significative but

with very small variance allowing us to study only the mean clients response function.

Analysing the client response function analytically we discover the presence of two

macro-groups of clients: the first with quadratic positive behaviour composed by the

48% of clients and the other one with linear behaviour composed by 52% of clients.

Consequently we divided the dataset and fitted two different model, fitting the same

non parametric model for the first one and a linear mixed effect model for the second

one. We obtained a major concavity for the mean response function of the first group

that will cause an increasing of 6% of the consumption relative to an increment of

°C, instead we observed a decreasing trend for the second group. Studying the mean

clients curve we used different clustering methods to to identify the principal trend

in the population. We were able to identify for the quadratic group three clusters of

clients representing decreasing, constant and increasing trend. We noted that in this

group all the clients will experience an increase in consumption. Instead for the linear

group we identify 2 principal clusters,representing constant and decreasing behaviour.

The method that performed better in functional analysis was kmeans using Pearson

similarity. In both cases we we managed in reducing the complexity of functional

clustering, obtaining the same one, standard statistics methods analysing variables

that uniquely identify the functions: vertex position and concavity for parabolas and

intercept and slope for the straight lines.

Unfortunately, we succeeded to perform our model only on the 5% of the dataset of

Milan for computational issues. A direct future development would be to extend the

model to the whole Italian dataset to have a complete understanding of the national

behaviour and to analyse the difference response in the consumption studying the

compositions of clusters in each municipalities. In the current work we decided, after

finding the two subgroups of the population, to analyse them separately. To avoid

a priori identification of the group to which an observation belongs, we propose to

define a functional mixture model. Moreover, our analysis focused majorly on the

clients behaviours, while it is also necessary to understand the differences between the

annual mean consumptions using for example functional non parametric permutation

tests. Finally, the electricity temperature response and composition of the cluster of

clients found could be plugged in the Integrated Assessment Models to better analyse

the cost of possible government policies in the energy field to cope with the increasing

demand of electricity.
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A.1. Dataset Variable Specification

Consumption Dataset:

Variable Explanation
utility_ customer_id Customer number identification

comune_fornitura Municipality of the clients

istcom Istat code that uniquely identify a municipality

regione_fornitura Region

avg_ day_month_consum Average day monthly energy consumption [kWh/day]

month Aggregated variable identifying month and year

Meteorological Dataset:

Variable Explanation
tg Daily mean temperature [°C]
tn Daily minimum temperature [°C]
tx Daily maximum temperature [°C]
rr Daily precipitation sum [mm]

pp Daily averaged sea level pressure [hPa]

qq Daily mean global radiation [W/m2]
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Monthly Weather Dataset :

Variable Explanation
comune_fornitura Municipality of the clients

istcom Istat code that uniquely identify a municipality

Year

Month

MMXT Monthly mean maximum temperature [°C]
MNTM Monthly mean temperature [°C]
MMNT Monthly mean minimum temperature [°C]
EMXT Extreme maximum daily temperature observed in a month [°C]
EMNT Extreme minimum daily temperature observed in a month [°C]
DT90 Number days in a month with maximum temperature >= 32.2 °C
DT32 Number days in a month with minimum temperature <= 0 °C
DT00 Number days in a month with minimum temperature <= -17.8 °C
DX32 Number days in a month with maximum temperature <= 0 °C
EMXP Extreme maximum daily precipitation observed in a month [mm]

TPCP Total precipitation in a month [mm]

DP10 Number of days with >= 25.4 mm of precipitation

DP01 Number of days with >= 2.54 mm of precipitation

DP05 Number of days with >= 12.7 mm of precipitation

MMPR Monthly mean pressure [hPa]

MMRD Monthly mean radiation [W/m]

GG Monthly degree days [°C] (∑max(0, 20 − Te))
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