
POLITECNICO DI MILANO

School of Industrial and Information Engineering
Master of Science in Automation and Control Engineering

Collaborative robot scheduling based on
reinforcement learning in industrial assembly tasks

Supervisor:
Prof. Paolo ROCCO
Co-supervisor:
Prof. Andrea Maria ZANCHETTIN
Ing. Riccardo MADERNA

Master of science dissertation of:
Giovanni FIORAVANTI, student ID 899805

Daniele SARTORI, student ID 899680

Academic Year 2018-2019

Ringraziamenti

Milano, 6 Giugno 2020

Prima di presentare il lavoro sviluppato in questa tesi, desideriamo ringraziare le persone
che ci hanno supportato durante questo progetto e per tutto il nostro percorso universitario.
In particolare ringraziamo il professor Paolo Rocco e il professor Andrea Maria Zanchettin
per il contributo ed il supporto nella stesura di questa tesi. Con gratitudine, desideriamo
ringraziare l’ingegner Andrea Casalino e l’ingegner Riccardo Maderna, che ci hanno seguito
durante la nostra attività di ricerca senza mai farci mancare i loro consigli.
Desideriamo inoltre ringraziare tutti i nostri amici, che ci hanno accompagnato durante
questi anni di studio. Infine un grazie particolare alle nostre famiglie, che ci hanno permesso
di intraprendere questo percorso universitario e che ci hanno sostenuto ed accompagnato
in ogni momento. Con grande riconoscenza,

Giovanni e Daniele

Contents

Abstract VIII

Sommario IX

1 Introduction 1
1.1 Field of application . 1
1.2 Research question and contribution . 2
1.3 Thesis structure . 4

2 State of the Art 6

3 Theoretical Background 9
3.1 Markov Decision Process . 10
3.2 Stochastic Shortest Path problem . 12
3.3 Reinforcement Learning: an overview . 13

3.3.1 Classification . 14
3.3.2 Exploitation and Exploration trade-off 15

4 Use case: Industrial Assembly 16
4.1 YuMi . 16
4.2 Description of the product . 17
4.3 Setup Design . 18
4.4 Modeling a collaborative task as an MDP 20

5 Reinforcement Learning solution 25
5.1 Implemented Algorithms . 25

5.1.1 Q-Learning . 26
5.1.2 Delayed Q-Learning . 28

5.2 Analysis of the results . 31
5.2.1 Sensitivity analysis of the parameters 33

5.2.1.1 Test: Q-Learning . 33
5.2.1.2 Test: Delayed Q-Learning 38

I

5.2.2 Performance comparison . 43
5.2.2.1 Scenario: n=6 free actions 43
5.2.2.2 Scenario: n=55 free actions 45
5.2.2.3 Scenario: n=326 free actions - scheduling fully undefined . 48

5.2.3 Optimal scheduling . 52

6 GUI for Digital Twin generation 57
6.1 Motivations . 57
6.2 From the workflow to the digital twin . 58

7 Simulation-based RL solution 73

8 Conclusions and Future Developments 78

Appendix 80
.1 IRB 14000 YuMi Datasheet . 80

List of Figures

1.1 History of the Industry . 1
1.2 Human-robot collaboration . 2
1.3 Transition A and B simultaneously enabled 3

2.1 Allocation method proposed in [6] . 6
2.2 Hierarchical framework of the allocation technique proposed in [9] 7

3.1 Sequential decision making loop . 9
3.2 Example of a MDP . 10
3.3 Example of a SSP . 13

4.1 IRB 14000 YuMi . 17
4.2 The shaker assembled in our use case . 17
4.3 Pieces of the upper part . 18
4.4 Pieces of the lower part . 18
4.5 Setup of our use case . 19
4.6 Caps support . 20
4.7 The SSP of the use case . 24

5.1 Plot of the parameter strategies . 34
5.2 Case: normal reward. Plot of the total reward per episode (top) and plot

of the 10-episodes averaged total reward (bottom) with the best strategy
highlighted . 35

5.3 Case: averaged reward. Plot of the total reward per episode (top) and plot
of the 10-episodes averaged total reward (bottom) with the best strategy
highlighted . 35

5.4 Dispersion of the minimum number of episodes to achieve the optimal policy
with normal reward (left) and averaged reward (right) 37

5.5 Case: zero human variance. Plot of the total reward per episode (top) and
plot of the 10-episodes averaged total reward (bottom) with the best ε1
setting highlighted . 38

III

5.6 Case: low human variance. Plot of the total reward per episode (top) and
plot of the 10-episodes averaged total reward (bottom) with the best ε1
setting highlighted . 38

5.7 Case: high human variance. Plot of the total reward per episode (top) and
plot of the 10-episodes averaged total reward (bottom) with the best ε1
setting highlighted . 39

5.8 Dispersion of the minimum number of episodes to achieve the optimal pol-
icy with zero human variance (left), low human variance (center) and high
human variance (right) . 40

5.9 Case: low human variance. Plot of the total reward per episode (top) and
plot of the 10-episodes averaged total reward (bottom) with the best m
setting highlighted . 41

5.10 Case: high human variance. Plot of the total reward per episode (top) and
plot of the 10-episodes averaged total reward (bottom) with the best m
setting highlighted . 41

5.11 Dispersion of the minimum number of episodes to achieve the optimal policy
with low human variance (left) and high human variance (right) 42

5.12 MDP with n=6 free actions . 44
5.13 Scenario: n=6 free actions. Plot of the total reward per episode (top left)

and plot of the 10-episodes averaged total reward (bottom left) with a low
human variance. Plot of the total reward per episode (top right) and plot
of the 10-episodes averaged total reward (bottom right) with a high human
variance . 44

5.14 Dispersion of the minimum number of episodes to achieve the optimal policy
with low human variance (left) and high human variance (right) 45

5.15 MDP with n=55 free actions . 46
5.16 Scenario: n=55 free actions. Plot of the total reward per episode (top left)

and plot of the 10-episodes averaged total reward (bottom left) with a low
human variance. Plot of the total reward per episode (top right) and plot
of the 10-episodes averaged total reward (bottom right) with a high human
variance . 46

5.17 Dispersion of the minimum number of episodes to achieve the optimal policy
with low human variance (left) and high human variance (right) 47

5.18 MDP with n=326 free actions . 48
5.19 Scenario: n=326 free actions. Plot of the total reward per episode (top left)

and plot of the 10-episodes averaged total reward (bottom left) with a low
human variance. Plot of the total reward per episode (top right) and plot
of the 10-episodes averaged total reward (bottom right) with a high human
variance . 49

5.20 Dispersion of the minimum number of episodes to achieve the optimal policy
with low human variance (left) and high human variance (right) 50

5.21 Regret of a policy . 51
5.22 Plot of the regret per episode with a low human variance (left) and with a

high human variance (right) . 51
5.23 Optimal path of the industrial assembly use case 52
5.24 Utilization and efficiency of a manufacturing task 54
5.25 Plot of the wait time per episode for the human (left) and for the robot (right) 54
5.26 Plot of the sum of the human wait time and robot wait time per episode . . 55

6.1 Pipeline of the application . 58
6.2 Graphical elements . 59
6.3 Use case workflow . 60
6.4 Focus on a piece of the use case workflow and associated piece of graph . . . 61
6.5 Focus on sections of the digital twin representation 66

7.1 Policy iteration alternation between evaluation and improvement phases . . 75
7.2 Plot of the performances with Q-Learning (top) and Delayed Q-Leaning

(bottom). Each circle represents a optimal scheduling returned by a tech-
nique. The circle size measures the closeness of the optimal scheduling cycle
time to the reference one (larger implies closer). The circle colour mea-
sures the probability that the optimal scheduling is the reference one (green
implies high probability) . 76

List of Tables

4.1 Sub-action descriptions . 21
4.2 Sub-actions assignment to a sub-agent . 22

5.1 Sub-action expected durations . 32
5.2 Case: normal reward. Median values of the minimum number of episodes

to achieve the optimal convergence. The best result is highlighted 36
5.3 Case: averaged reward. Median values of the minimum number of episodes

to achieve the optimal convergence. The best result is highlighted 36
40table.caption.36
42table.caption.40
5.6 Scenario: n=6 free actions. Minimum number of episodes to achieve the

optimal policy . 45
5.7 Scenario: n=55 free actions. Minimum number of episodes to achieve the

optimal policy . 47
5.8 Scenario: n=326 free actions. Minimum number of episodes to achieve the

optimal policy . 49
5.9 Optimal scheduling of the industrial assembly use case 53

6.1 Description of the classes and their attributes 72

VI

List of Algorithms

1 Q-Learning . 27
2 Delayed Q-Learning . 29
3 Graph . 62
4 Graph_Generator . 63
5 Define_inp_transitions . 64
6 Assign_ID . 65
7 MDP_States_Generator . 67
8 Move_among_branch . 68
9 Move_along_branch . 69
10 MDP_Actions_Generator . 70
11 Generate_Actions . 70
12 Find_State . 71
13 Policy Iteration . 74

VII

Abstract

In classical automation, control systems are frequently guided by PLC logics. In this
sequential process, the problem of how to choose when two or more actions are simultane-
ously available may arise. To overcome this problem, precedence rules are normally used.
Sometimes, the definition of these rules is based on a priori knowledge of the system. Most
often, they rely on intuition or implement simple tie-breaking rules with no clear founda-
tion. In the thesis we solve this problem exploiting the tools that the fourth-generation
industrial revolution, called Industry 4.0, offer. We face it in a human-robot collaboration
(HRC) domain, in which humans and robots work together to achieve a common goal, and
we compute a solution using reinforcement learning (RL) techniques. From a trial-and-
error interaction with the environment, these techniques learn the “best” action to execute
among the simultaneously available ones. To validate these techniques we have designed
a use case that consists in an industrial assembly task. The manufacturing task is mod-
eled as a Markov Decision Process to which two RL algorithms are applied with the aim
of learning the optimal scheduling. Specifically, we have analysed the behavior and the
performance of the Q-Learning with averaged reward and the Delayed Q-Learning in three
scenarios of increasing complexity. Then, the manufacturing task performed following the
optimal scheduling is evaluated through standard industrial metrics. In the third scenario,
in which the optimal scheduling is learnt ex-novo with the maximum amount of flexibility,
the learning phase duration proves to be not suitable for an effective utilization in industry.
Hence, to speed up the learning, we have developed an application that converts a drawing
of a manufacturing task workflow into its digital twin, which simulates the interaction be-
tween the agent and the environment. Finally, in this simulation-based RL framework, we
have used the two RL algorithms to compute a static and a dynamic operation assignment,
whose adaptability is tested in the face of a non-stationary human behavior.

Key words: Human-robot collaboration, Reinforcement learning, Industrial assembly,
Digital Twin

VIII

Sommario

Nell’automazione classica i sistemi di controllo sono spesso gestiti con una logica PLC. In
questo processo sequenziale può sorgere il problema di come scegliere tra due o più azioni
contemporaneamente abilitate. Per risolverlo, normalmente, vengono utilizzate delle regole
di precedenza. Qualche volta la definizione di queste regole è basata su una conoscenza
a priori del sistema, più spesso si fa affidamento sull’intuizione o su semplici meccanismi
“tie-breaking” senza nessun chiaro fondamento. Nella tesi utilizziamo i nuovi strumenti
offerti dalla quarta rivoluzione industriale, chiamata Industria 4.0, per risolvere tale prob-
lema. Esso viene affrontato nell’ambito della robotica collaborativa, dove gli umani e i
robot lavorano assieme per raggiungere uno scopo comune. La soluzione viene trovata uti-
lizzando tecniche di Reinforcement Learning, che, tramite un approccio a tentativi e analisi
dei successivi feedback, apprendono qual è la miglior azione da eseguire tra quelle contem-
poraneamente abilitate. In sintesi, tale apprendimento segue una logica del “sbagliando si
impara”. Per validare queste tecniche abbiamo simulato una tipica lavorazione industriale,
ovvero l’assemblaggio di un prodotto. L’ assemblaggio viene modellato come un Markov
Decision Process, sul quale applichiamo due algoritmi di reinforcement learning allo scopo
di imparare lo scheduling ottimo delle azioni. Nello specifico abbiamo analizzato il com-
portamento e le prestazioni del Q-Learning con una funzione ricompensa mediata e del
Delayed Q-Learning in tre scenari caratterizzati da una complessità crescente. Dunque,
l’assemblaggio effettuato con lo scheduling ottimo è valutato tramite delle metriche indus-
triali standard. Nel terzo scenario, dove lo scheduling è appreso ex-novo e con il mas-
simo livello di flessibilità, il tempo di apprendimento ha dimostrato di non essere adatto
per un’effettivo utilizzo industriale. Quindi, per velocizzarne l’apprendimento, abbiamo
sviluppato un’applicazione che converte il workflow di una lavorazione manifatturiera nel
suo digital twin, dove viene simulata l’interazione tra agente ed ambiente. In conclusione,
data questa struttura del tipo Simulation-based Reinforcement Learning, abbiamo utiliz-
zato i due algoritmi per definire lo scheduling delle azioni in maniera statica e dinamica,
testando l’adattabilità a fronte di un comportamento umano non stazionario.

Parole chiave: Robotica collaborativa, Reinforcement Learning, Assemblaggio Industri-
ale, Digital Twin

IX

Chapter 1

Introduction

This chapter aims to introduce the reader to the topic of the thesis. In section 1.1 the
so called Industry 4.0, the technological context in which our project lays, is outlined.
In section 1.2 the research question, the beginning point from which we have developed
the thesis, is introduced. We also briefly describe how this question has been answered.
Finally, in section 1.3 the organization of the thesis dissertation is explained.

1.1 Field of application

The fourth generation industrial revolution, Industry 4.0, has created the notion of smart
factory where everything is interconnected, equipped with sensors and works as an au-
tonomous and self-organising system. This revolution follows three main directions: fur-
ther increasing automation, digitalization and miniaturization. The final purpose is the
creation of smart products and services through smart processes [1] [2].

Figure 1.1: History of the Industry

The technological pillars of Industry 4.0 are advanced robotics, internet of things, 3D
printing, machine learning, cloud computing, etc. Among them, we deal with an advanced

1

CHAPTER 1. INTRODUCTION

robotic concept, specifically the human-robot collaboration (HRC). It is defined as humans
and cobots that work together, sharing the same workspace, in order to reach a common
goal. The word “cobot” stands for “collaborative robots” and denotes a robot optimized for
the collaboration with humans, which means that the robot is provided with high safety
systems, rounded edges and limitation on speed and force. Industrial automation guar-
antees high efficiency and repeatability for mass production but it lacks flexibility to deal
with the fast changes in the consumers’ demand. Humans, on the other hand, can face
such uncertainties and variability but they are limited by their physical capabilities, in
terms of repeatability, physical strength, endurance, speed etc. The human-robot collab-
oration is a productive balance that catches the benefits from both industrial automation
and human work [3]. Beyond that, another technological pillar is treated in the thesis:
machine learning. It is defined as an application of artificial intelligence that provides sys-
tems with the ability to automatically learn and improve from experience without being
explicitly programmed. Specifically, we use a set of machine learning techniques called
reinforcement learning, that allows the system to learn from a trial-and-error interaction
with the environment in order to, in our case, efficiently manage the collaboration between
humans and cobots.

Figure 1.2: Human-robot collaboration

1.2 Research question and contribution

In classical automation, control systems are frequently guided by PLC logics: depending
on the inputs and the state of the operating system, the controller decides which action to
perform next. In this sequential process, the problem of how to make a decision when two
or more actions are simultaneously available may arise. An example of this in the domain
of HRC assembly can be found in [4]. The action choice of the cobot (specifically the right
and left arms of the ABB YuMi® robot) is guided by the logical SFC program shown in

2

CHAPTER 1. INTRODUCTION

figure 1.3, in which it can bed noticed that two transitions can be simultaneously enabled,
representing a case in which two actions are available at the same time.

Figure 1.3: Transition A and B simultaneously enabled

To overcome this problem precedence rules are normally used, which assign different pri-
orities to different actions. Sometimes, the definition of these rules is based on a priori-
knowledge of the system. Most often, they rely on intuition or implement simple tie-
breaking rules with no clear foundation.
The research question consists in using reinforcement learning (RL) techniques to process
experienced samples and learn the “best” actions to perform with respect to a metric. This
metric, which defines what “best” means, is the time needed to execute an entire sequence
of actions that brings the system from the initial state to the achievement of the goal. So,
given more alternative actions available, the point is not only about choosing the fastest
one but instead choosing the one that enables the fastest sequence. In the field of indus-
trial HRC this problem is declined in the issue of determining the scheduling of human
and cobot actions when it is not fully defined, with the purpose of minimizing the time
required to manufacture a product.

In the thesis we adapt two RL algorithms to fit a manufacturing task and we test them in
an industrial assembly use case. The robot involved is YuMi® by ABB and the assembled
product is the Domyos shaker produced by Decathlon. The results are collected for three
scenarios that differ for the amount of freedom that is left in the scheduling. In the first
one, the scheduling is completely defined apart from a few free actions among which the
learner must choose. In the second one, the number of free actions is increased. In the
third one, we fully generalize the problem: the scheduling is not defined at all and so all
the actions are free to be chosen.
Focusing on the case of computing the entire scheduling, RL techniques prove to be not
suitable for an industrial field. They carry out the optimal scheduling but require a long

3

CHAPTER 1. INTRODUCTION

learning phase that implies a waste of time. So, to speed up the process, we have devel-
oped an application that converts an easily drawable workflow of a manufacturing task
into its digital twin in which it’s possible to learn without physically interacting with the
environment. In this simulation-based RL framework, we test the two RL algorithms to
analyze their adaptability in the face of a non-stationary human behavior.

1.3 Thesis structure

The rest of the thesis is articulated as follows:

• Chapter 2 - State of the Art
This chapter contains a review of the literature regarding the existing techniques to
determine an optimal operation scheduling in a HRC domain.

• Chapter 3 - Theoretical Background
This chapter outlines the theoretical concepts that lie behind the thesis work. Specif-
ically, we describe the classes of models adopted for the use case and we introduce the
reinforcement learning framework specifying how it can solve a sequential decision-
making problem.

• Chapter 4 - Use case: Industrial Assembly
In this chapter the use case is described: we introduce the robot, the product to
assemble and the customized workspace setup. Then, we illustrate how the use case
is modeled. Particular attention is placed to the actions necessary to assemble the
product, which are listed and described.

• Chapter 5 - Reinforcement Learning solution
In this chapter we firstly define the reinforcement learning algorithms we have applied
to the use case, which are Q-Learning and Delayed Q-Learning. Then, we show the
results of the implemented reinforcement learning techniques. Specifically, the results
of a sensitivity analysis of the parameters and a performance comparison. Finally,
we evaluate the resulting optimal scheduling through some indexes that are normally
used in the industrial field.

• Chapter 6 - GUI for Digital Twin Generation
In this chapter we initially present the technical motivations that have led to develop
an application that transforms a workflow of a manufacturing task into its digital
twin. Then, the application is explained. It is composed of four steps. The first
step involves the drawing of the workflow on a GUI. The second step consists in the
translation of the workflow to a graph, which is a manageable representation in the
form of data structure. The third step manages the conversion of the graph into the
model of the use case. The fourth step simulates the functioning of the use case.

4

CHAPTER 1. INTRODUCTION

• Chapter 7 - Simulation-based RL solution
This chapter outlines a simulation-based RL technique. This technique involves the
two RL algorithms and the digital twin with the aim of determining a static and a
dynamic action assignment. Then, we show a qualitative analysis of the adaptability
of this technique.

• Chapter 8 - Conclusions and Future Developments
The final chapter completes this document with a resume of the main contributions
and obtained results. Moreover, some suggestions of possible future developments
are proposed.

5

Chapter 2

State of the Art

In this chapter we review the state of the art of human-robot collaboration, focusing on
the studies that deal with the operation assignment problem. In the literature, several
approaches are introduced for scheduling the activities that human and robots have to
perform in order to complete a determinate task. The majority of the proposed techniques
share the purpose of setting an optimal scheduling, which consists in minimizing the work-
ing time in order to increase the productivity. On the other hand, they can be divided into
static or dynamic approaches.
A static assignment determines which operations have to be executed by either the human
or the robot in an a-priori way. This methodology can be useful when changes in the
workplace are not observable, agent performance is not measurable and/or the system is
observable and measurable but the agents are not controllable anymore once the task has
begun. An example of static allocation is reported in [5] and in [6]. In this last study the
authors propose a method based on giving a score to each operation. This score models
the potential of each operation to be automated and it depends on the operation cycle
time and adaptability, the properties of the components involved and the collaborative
workspace. Figure 2.1 shows the product they have assembled in the case study (figure
2.1a), the scores giving to each component (figure 2.1b) and the algorithm used to allocate
the operations (figure 2.1c).

(a) Linear actuator (b) Table of the scores (c) Allocation algorithm

Figure 2.1: Allocation method proposed in [6]

6

CHAPTER 2. STATE OF THE ART

Other techniques, conversely, involve dynamic allocation. They have the advantage of re-
acting and modifying the schedule in response to changes in the state of the process that
occur while the robot and the human are already performing the task. In [7] the authors
propose a method similar to [6] (the scores are replaced by a decision tree in the allocating
process), but they also design a procedure of operation dynamic reassignment in order to
counteract delays and disturbances that can happen during the process. In [8] the authors
follow a different approach. They introduce the Adaptive Preferences Algorithm that com-
putes an optimal flexible scheduling for the robot. The scheduling is flexible in the sense
that it accommodates the human preferences in terms of changes in the workflow, but pre-
serving strong guarantees for synchronization and timing of the activities. The Adaptive
Preferences Algorithm has been applied to aerospace manufacturing and it has proved to
be fast, robust and adaptable.
In [9] the authors present a hierarchical framework to solve the operation allocation prob-
lem. The structure is shown in figure 2.2. The first two layers, called assembly-level and
team-level, work offline and treat the planning of the assignments considering a multiagents
human-robot team interaction. In the assembly-level, the collaborative task is modeled us-
ing an AND/OR graph. In the team-level, this graph is used as input of a planner that,
exploiting the so-called A∗ algorithm (with suitable cost function assigned to each member
of the team), outputs the optimal scheduling for the robots. The third layer, called agent-
level, works online and use complex hierarchical and concurrent hybrid state machines to
handle the operation execution and conduct a real-time control. It is designed to cope with
unpredictable events that, given the human presence, are likely to happen.

Figure 2.2: Hierarchical framework of the allocation technique proposed in [9]

7

CHAPTER 2. STATE OF THE ART

In these last two studies, it’s clear how the robots have a follower role with respect to
human intentions. This trend is further pronounced in [10] and [11] in which the robot
scheduling depends directly on a model of the human behavior. For example in [10], the
author describes an algorithm that, given a model of the human behavior and the avail-
able resources, returns the operations the robot has to perform. The future evolution of
the system is simulated with a timed Petri net in order to predict how many autonomous
actions of the robot can be done before a collaborative action with the human must start.
The main purpose is to reduce the waiting time for the operator by avoiding the possibility
of the robot being late in case of collaborative action, which has the maximum priority.
In the already cited [11], the authors explain an adaptive scheduling based on a model of
the human behavior (a Gaussian mixture model for the position and a Gaussian mixture
regression for the motion trajectory) that is continuously updated during work. In this
study, the human performs the task while the robot delivers to him/her the necessary parts
and tools. So, the robot actions are scheduled using the predictive results of the model.
Specifically, the starting time of the robot actions depend on the estimates of the human
position and arrival time of his/her current operation.
Finally, in [12] the allocation of the operations is determined with the aim of improving
ergonomics. In this case, a capability score method to compute the assignment is subordi-
nated to an ergonomics evaluation. For each operation, the ergonomics evaluation is carried
out utilizing an automatic postural method based on the REBA score and a workload de-
fined as the REBA scores averaged over the operation duration. The REBA score assesses
the risk of suffering from musculoskeletal disorders. So, given the allocation resulting
from the capability method, an action assigned to the human remains to the human only
if both the REBA score and the workload of that action are lower than established bounds.

The literature lacks studies in which reinforcement learning techniques are used to deter-
mine the optimal scheduling, although there are many examples of learning by interaction
in the HRC domain (an example is proposed in [13] where the authors also show an overview
of the available techniques). Instead, in multi-robots tasks, the RL techniques have been
widely used to compute the operation allocation. The thesis dissertation [14] is one of the
most thorough work in the field. The author deals with the dynamic organization of a team
of robots that share a common goal(s). He provides a market-based reinforcement learning
algorithm (it is based on the economic principles behind the market) to determine the op-
eration allocation. The robots interact with their environment and communicate with each
other to allocate tasks that maximize their utilities based on their previous experience and
cost function. Then, the algorithm has been validated in four scenarios: a centralized task
allocation (a single robot assigns the task for the whole team) with homogeneous robots
and with heterogeneous robots, a distributed task allocation (each robot decides by itself)
with homogeneous robots and with heterogeneous robots.

8

Chapter 3

Theoretical Background

In the thesis we deal with a sequential decision making problem, whose underlying the-
oretical concepts are mainly four: agent, environment, reward and policy. The agent is
responsible for interacting with the world and making decisions. The environment is ev-
erything external to the agent and, according to some rules, it changes from state to state
after an agent action. The reward describes how good the action has been with respect to
the purpose of the agent. The policy represents the agent behavior.
Figure 3.1 show how these elements interact. Based on a policy, the agent chooses an
action, it acts on the environment and then observes how the action has changed the en-
vironment configuration and receives a reward.

Figure 3.1: Sequential decision making loop

The agent’s objective is to shape its policy in order to select actions that maximize the
reward over time (sometimes it may be better to sacrifice immediate reward to gain more
long–term reward).

In the next sections we analyze in detail the sequential decision making problem. In
section 3.1 we introduce a class of models called Markov Decision Processes. In section
3.2 we illustrate the class of Stochastic Shortest Path problems, a subset of MDPs. In
section 3.3 we outline the fundamentals of Reinforcement Learning, a framework in which
the agent has to maximize the reward without knowing the model. This preamble and the
rest of the chapter is based on [15], [16] and [17].

9

CHAPTER 3. THEORETICAL BACKGROUND

3.1 Markov Decision Process

Markov Decision Process (MDP) is a class of models involving an agent that interacts with
its environment in a sequential decision making problem. Specifically, we treat discrete-
time finite MDP in which the states and action spaces are finite and the time is considered
discrete.
The main property of a MDP declares that all the states of the environment are Markovian.
To be Markovian a state s has to satisfy the Markov assumption:

Pr(st+1 = s′|st = s, st−1, ..., s1, s0) = Pr(st+1 = s′|st = s) (3.1)

The state resumes all the necessary information from the history, hence it will be possible
to take decisions based only on the current state.

Formally a MDP is defined as a 6-tuple 〈S,A, T,R, γ, µ〉 where:

• S is a (finite) set of states;

• A is a (finite) set of actions;

• T : S×A×S → [0,1] is the transition function that specifies Pr(s′|s, a), the probability
to reach states s′ from state s taking action a;

• R : S × A → R is the reward function that specifies E[r|s, a], the expected gained
reward taking action a from state s;

• γ ∈ [0,1] is the discount factor, a parameter that denotes if the problem is myopic
(immediate rewards favourited) given by γ close to 0 or far-sighted (long-term rewards
favourited) given by γ close to 1;

• µ is a set of initial probabilities Pr(S0 = s) ∀s .

Normally, an MDP is subject to a graphical representation. An example, specifically of a
recycling robot [16], is the following:

Figure 3.2: Example of a MDP

10

CHAPTER 3. THEORETICAL BACKGROUND

The states are drawn as circles and the actions as black dots. On each arrow it is instead
possible to notice the probability and the reward associated with reaching the pointed state.

The agent should maximize some measure of the long-run reward received. The Sutton
hypothesis states that “All what we mean by goals can be well thought of as the maximization
of the cumulative sum of a received scalar reward ” [16]. We focus on the return vt defined
as the total discounted reward from time-step t.

vt = rt+1 + γ · rt+2 + ... =
∞∑
k=0

γk · rt+k+1 (3.2)

where ri are the scalar reward received at time i=t+1,..,+∞ (infinite time horizon).
A stationary policy π: S ×A → [0,1] specifies, independently of the time step, the proba-
bility of an action a to be chosen by the agent given the current state s.

π(a|s) = Pr(a|s) (3.3)

In order to evaluate a policy with respect to the agent’s goal we adopt the so called state-
value function V π : S → R that is equal to the expected return starting from state s and
then following policy π.

V π(s) = Eπ[vt|st = s] (3.4)

In order to carry out the optimal policy and not only evaluating one, it can be simpler to
consider the action-value function Qπ : S × A → R that is equal to the expected return
starting from state s, taking action a and then following policy π.

Qπ(s, a) = Eπ[vt|st = s, at = a] (3.5)

The Bellman expectation equations provide a recursive decomposition of state-value and
action-value function into immediate reward plus discounted value of successor state.

V π(s) = Eπ [rt+1 + γV π (st+1) |st = s]

=
∑
a∈A

π(a|s)

(
R(s, a) + γ

∑
s′∈S

Pr
(
s′|s, a

)
V π
(
s′
)) (3.6)

Qπ(s, a) = Eπ [rt+1 + γQπ (st+1, at+1) |st = s, at = a]

= R(s, a) + γ
∑
s′∈S

Pr
(
s′|s, a

)
V π
(
s′
)

= R(s, a) + γ
∑
s′∈S

Pr
(
s′|s, a

) ∑
a′∈A

π
(
a′|s′

)
Qπ
(
s′, a′

) (3.7)

The Bellman expectation equation of the state-value function can be expressed concisely
using a matrix form.

V π = Rπ + γ · T π · V π = (I − γ · T π)−1 ·Rπ (3.8)

11

CHAPTER 3. THEORETICAL BACKGROUND

Where T π =
∑

a∈A π(a|s) · T (s′|s, a) and Rπ =
∑

a∈A π(a|s) ·R(s, a).
Value functions define a partial ordering over policies:

π ≥ π′ if V π(s) ≥ V π′(s) (3.9)

For any MDP there always exists a deterministic optimal policy π∗ that is better or equal to
all other policies π∗ ≥ π, ∀π. This optimal policy represents the best possible performance
in the MDP.
The Bellman optimality equations provide a recursive decomposition for the optimal state-
value function V π∗(s) = V ∗(s) and action-value function Qπ∗(s, a) = Q∗(s, a).

V ∗(s) = max
a

Q∗(s, a)

= max
a

{
R(s, a) + γ

∑
s′∈S

Pr
(
s′|s, a

)
V ∗
(
s′
)} (3.10)

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

Pr
(
s′|s, a

)
V ∗
(
s′
)

= R(s, a) + γ
∑
s′∈S

Pr
(
s′|s, a

)
max
a′

Q∗
(
s′, a′

) (3.11)

From which it’s possible to compute the deterministic optimal policy:

π∗(a|s) =

{
1 if a = arg maxa∈AQ

∗(s, a)

0 otherwise
(3.12)

3.2 Stochastic Shortest Path problem

The class of Stochastic Shortest Path (SSP) problems, belonging to the more general
MDPs, is of central importance to AI: they are the representation of the classic minimum
path search problem in case of stochastic transitions and general reward functions. In a
SSP the optimal policy determines that from any initial state (often a fixed one), after n
periods of time, a target state is achieved maximizing the expected return.
A SSP is formally described as a discrete-time finite MDP, a 6-tuple 〈S,A, T,R, γ, µ〉,
with a state space S = {1, ..., n, t} such that t is an absorbing target state. An absorbing
state satisfies the following conditions: T (t, u, t) = Pr(t|t, u) = 1 ∀ u ∈ U(t) and R(t, u)

is the maximum admissible value ∀ u ∈ U(t) where U(t) is a subset of the action space
A containing all the actions that can be taken from state t. In other words, all the
actions performed when the current state is absorbing leads with probability 1 to the same
absorbing state and the reward to stay in the absorbing state is maximum.
The existence of an optimal policy is guaranteed under the following conditions:

• There exists a policy, called proper policy, that from any initial state, after n periods
of time, achieves the target state with a probability greater than 0.

12

CHAPTER 3. THEORETICAL BACKGROUND

• Except for R(t, a) with t absorbing state, the rewards are all negative (a cost per-
spective is often used in SSP, maximizing a negative expected return is equivalent to
minimizing the sum of the costs) or all positive.

These two assumptions preclude the case in which a policy remains “stuck” without reach-
ing the target state. For example a problem having zero-cost cycle (in the state space) is
excluded by the second assumption [18].

In figure 3.3 a SSP is shown:

Figure 3.3: Example of a SSP

The target state is labeled by “0” and it is absorbing since action “o”, the only one that
can be executed from the target state, leads to the target state with the maximum reward.
It’s possible to notice that the two assumptions are satisfied: from any state it’s possible
to reach the target state in n periods of time (also from the target state itself) and all the
rewards are negative (the reward of “o” action is allowed to be equal to 0 since it has to be
maximum and so cost-free).

3.3 Reinforcement Learning: an overview

“Reinforcement learning is the problem faced by an agent that must learn behavior through
trial-and-error interactions with a dynamic environment”. [19]

This quote introduces to Reinforcement Learning (RL): a branch of machine learning fo-
cused on solving sequential decision-making problems when the MDP model is unknown
(or formally, the transition and reward functions are unknown). In order to learn about the
sequential decision-making problem the RL framework is fed by a sequence of experience
tuples 〈s, a, r, s′〉. An experience tuple is a sample of a single interaction: the environment
is in state s, the agent takes action a, the environment sends a reward r to the agent

13

CHAPTER 3. THEORETICAL BACKGROUND

and changes its configuration to state s′. These samples are finally processed by an RL
algorithm to determine the optimal policy.
In the next sub-sections we provide a classification of the RL algorithms and we outline
the exploitation and exploration trade-off, which is an essential topic in RL.

3.3.1 Classification

RL algorithms can be divided into:

• Model-free vs Model-based
Model-free RL aims to carry out the optimal policy without reconstructing the whole
model whereas model-based RL does (despite the misleading name the model keeps
not to be available). Model-based algorithms require more samples and, if the purpose
is only finding the optimal policy, are less efficient since normally a lot of samples
are wasted to estimate part of the model that are useless with respect to the goal.

• On-policy vs Off-policy
On-policy algorithms estimate the policy that generates the collected samples while
off-policy ones estimate another policy, called target policy, from experience sampled
by the acting policy, called behavior policy. An example may be an AI that tries to
learn how to play chess optimally (the target policy) processing video records of old
matches (the behavior policies).

• Online vs Offline
Online learning is characterized by a continuous interaction between the agent and the
environment: a sample is collected and the policy is immediately updated. Instead,
offline learning is composed of two phases: in the first one the samples are collected
and in the second one the policy is learned. An offline learning implies that the use
of off-policy algorithms is mandatory.

• Tabular vs Function Approximation
A tabular representation consists of the storage of precise values of V(s), one for each
state, indeed it can be seen as a table (specifically a column vector). In a function
approximation representation V(s) is modeled as a function: a linear combination
of features with coefficients computed by minimizing a suitable cost function. The
outcome will not be anymore precise but an approximation, anyway, beyond this dis-
advantage, we will generalize and achieve a faster computation. The same distinction
can be done for the action value function Q(s,a).

• Value-based vs Policy-based vs Actor-Critic
A value-based approach implies to store value functions in order to estimate improved
value functions from which an action is selected, instead in a policy-based approach
we directly store the policy to estimate new policies. The actor-critic approach im-
plies to store both the value function and the policy: the policy architecture is called

14

CHAPTER 3. THEORETICAL BACKGROUND

the Actor, because it chooses the action, while the value function architecture is
called the Critic, because it criticizes the actions chosen by the actor.

3.3.2 Exploitation and Exploration trade-off

A fundamental topic in machine learning, and in general in the organizational learning, is
the trade-off between exploitation and exploration. Every data scientist involving in RL
problems has to face the dilemma of setting the right dynamics of exploitation, i.e. how
to make the best decision given the current information, and exploration, i.e. gather more
information. Since the purpose of RL is finding the best long-term strategy, exploration is
a necessary immediate sacrifice to make the best overall decision. In other terms, in case
we find a path bringing to a success it may be a local optimum. In fact, if previously we
have not tried enough alternative options, there may exist paths that yield better results
and displace the previous misinterpreted optimal path [20].

15

Chapter 4

Use case: Industrial Assembly

The purpose of this chapter is to show how HRC in manufacturing tasks can be modeled
as a MDP and so manageable by RL techniques. There are many manufacturing tasks
that can be carried out in a collaborative way, such as assembly, pick and place, painting
and welding [21]. Among them, we have developed an industrial assembly use case. In
the following sections, the use case is further described: in section 4.1 we introduce the
adopted cobot, in 4.2 we present the product subjected to the assembly task and in 4.3 we
illustrate how the experimental setup of the working area has been organized. Finally, in
section 4.4, we describe how the use case has been modeled as a MDP: the states, actions
and rewards are defined.

4.1 YuMi

The use case has been implemented in the MERLIN Lab at Politecnico di Milano. The
robot that has been used is a IRB 14000 YuMi® produced by ABB. It is a 7 axes dual-arm
robot optimized for the collaboration with humans. Therefore, it must adhere to stringent
safety requirements, such as power and speed limiting, soft padding, and the absence of
trap points (i.e. points that can trap body parts or clothing) (ISO-TS 15066 [22]). Each
arm of YuMi can reach points within a hemisphere of radius 0.56 m and lift up to 0.5
kg (decreasing with the distance from the mounting). Its TCP (tool center point, the
center of the hand section) has a maximum velocity of 1.5 m

s and an acceleration of 11 m
s2
.

The controller is integrated and the mounting is designed for tables. For each arm, the
integrated hand has a gripper and a vacuum. Further information can be found on the
technical datasheet reported in the appendix.

16

CHAPTER 4. USE CASE: INDUSTRIAL ASSEMBLY

Figure 4.1: IRB 14000 YuMi

The YuMi program is written in RAPID, a high-level programming language used to
control ABB robots, and it runs in the controller. It describes the assembling actions as
a sequence of robot movements needed to achieve the action goal, for example using the
vacuum to pick a piece and insert it in the semi-finished good or assembling two pieces
using a screwing movement of the gripper (all the use case actions will be explained in
section 4.4). The program also specifies trajectories (normally from a home position to a
working area passing through a warehouse) and sets the robot speed and acceleration.

4.2 Description of the product

The product to be assembled is the Domyos Shaker 500ml produced by Decathlon that
is shown in figure 4.2. The selected object represents a meaningful example since its as-
sembly is enough complexx, as it is composed of 8 pieces that can be combined following
several assembly sequences. Moreover, this product is made of polypropylene, that is a
quite robust and light material, and its size is suitable to be managed by YuMi.

(a) Domyos shaker 500 ml (b) Exploded view of the shaker (c) Shaker with detached cap

Figure 4.2: The shaker assembled in our use case

Focusing on the single component of the shaker we have ideally divided the product into
an upper and a lower part for the sake of clarity.

17

CHAPTER 4. USE CASE: INDUSTRIAL ASSEMBLY

The pieces of the upper part are the following:

(a) Small cap (b) Large cap with
annex leash

(c) Vortex (d) Filter

Figure 4.3: Pieces of the upper part

The pieces of the lower part are the following:

(a) Glass (b) Foot (c) Manual (d) Label

Figure 4.4: Pieces of the lower part

4.3 Setup Design

The setup of the workspace consists of the positioning of the warehouses, the necessary
tools and eventual supports. The workspace is the portion of a table (YuMi has to be
mounted on it) between YuMi and the human, which works in front of the robot.
To design our setup we have followed two guidelines:

• All the setup elements have to be reachable from both human and YuMi. If this is
not possible the element has to be doubled. This layout is due to the fact that the
RL algorithm decides which agent has to execute the action and so the elements have
to be available for both.

• Being the arm span of YuMi limited, all the setup elements used, for example, by
the right hand of YuMi has to be placed on its right side and viceversa.

18

CHAPTER 4. USE CASE: INDUSTRIAL ASSEMBLY

Figure 4.5: Setup of our use case

Figure 4.5 shows the implemented working cell, where it’s possible to notice how the two
guidelines have been satisfied. All the setup elements are reachable, there are not elements
in inaccessible zones as, for example, behind the human. The only element that has been
doubled is the label warehouse: one is placed in front of YuMi, the other on the left side
of human. Moreover, we have placed the setup elements on the right or left side of YuMi
depending on if they are involved in an action done by the right arm of YuMi o the left one
respectively. For this reason, the small cap, large cap, vortex, foot and label warehouses
have been placed on the Yumi’s right side while the glass and the filter warehouses and
the hand press have been positioned on the YuMi’s left side.
Most of the warehouses have been customly designed and made with a 3D-printer. Each
warehouse contains at maximum 6 pieces and, in order to pick the piece from its right
“cell”, the functions in the YuMi program are modified based on a counter that tracks
the number of finished products. Moreover, an assembly support has been made. It is
necessary to hold up the two caps and have a precise location where the robot can press
the leash, the vortex and the filter. In this way, a high repeatability of these actions is
guaranteed.

19

CHAPTER 4. USE CASE: INDUSTRIAL ASSEMBLY

Figure 4.6: Caps support

Please notice that after the setup of the experimental facility and the writing of the RAPID
program, it was not actually possible to perform experiments due to the unavailability of
the lab for the COVID-19 pandemic. The thesis will then report simulation results referred
to the same use case.

4.4 Modeling a collaborative task as an MDP

The use case is an example of sequential decision-making problem that can be modeled as
an MDP. The human and the robot act, in a collaborative way, on a semi-finished product
to assemble it. As a consequence the semi-finished product become closer to be completed.
Then, the human and the robot have to decide how to act next.
The agent comprises both the human and the robot, more specifically, the human, the right
arm of YuMi and the left arm of YuMi (individually they will be called sub-agents). In
principle, they may be considered as three separated agents but we have adopted a single-
agent framework since they collaborate to the same purpose and can be controlled by
centralized algorithms, so that a multi-agents framework doesn’t provide any meaningful
advantage. The actions of each sub-agent, called sub-actions, are the actions required to
assemble the shaker. In table 4.1 we present the sub-actions. The first seven sub-actions
contribute to the lower part assembly, while, from the eighth to the eleventh sub-action, the
upper part assembly is involved. The sub-actions are described following the point of view
o the robot, i.e. how the sub-actions have been programmed, since the human is allowed
to be more flexible in the realization of the sub-actions. It is assumed that the human
knows how to execute each sub-action without errors. Besides, the human is modelled as
a controllable sub-agent, i.e. he/she always performs the requested sub-action.

20

CHAPTER 4. USE CASE: INDUSTRIAL ASSEMBLY

Sub-Action Description

Place_C1 The small cap is taken from its warehouse and placed on a specific support,
called caps support (see section 4.3), on the setup.

Place_C2 The large cap is taken from its warehouse and placed upside-down on the caps
support. The trajectory is such that the leash lays down on the small cap.

Press_Leash The leash is pressed on the small cap.
Press_Filter The filter is taken from its warehouse and pressed on the large cap.
Press_Vortex The vortex is taken from its warehouse and pressed on the filter fixed to the

large cap.
Press_VortexFilter The Press_Vortex and Press_Filter actions are realized together coordinating

the movements of both arms in order to shorten the working time.
Screw_C1 The large cap is overturned and, thanks to a specific turn trajectory, the small

cap lays down on the threaded spout of the large cap. Then the large cap is
placed again on the support and the small one is screwed.

Place_Glass The glass and the foot are picked from their warehouse and the glass is placed
over the foot.

Press_Glass The glass is pressed into the foot with the aid of a hand press (operable also
by YuMi) and it is placed again in its warehouse.

Manual_ready The label is taken from their warehouse and attached to the manual (that is
positioned on its warehouse).

Place_Manual The ready manual is picked and inserted into the glass (that is positioned on
its warehouse).

Screw_C2 The large cap, that has been fully assembled (the upper part is finished), is
taken from the support. The glass, that has been fully assembled (the lower
part is finished), is taken from its warehouse. Then the upper part is screwed
on the lower one.

Place_inBox The completed product is picked and placed in a box.
Wait The agent stays at its home position.

Table 4.1: Sub-action descriptions

21

CHAPTER 4. USE CASE: INDUSTRIAL ASSEMBLY

In the table 4.2, instead, it is possible to find, for each sub-action, which sub-agent can
execute it (YuMiR and YuMiL stand, respectively, for the right and left arm of YuMi).

Sub-Action YuMiR YuMiL Human

Place_C1 X X

Place_C2 X X

Press_Leash X X

Press_Filter X X

Press_Vortex X X

Press_VortexFilter X X X

Screw_C1 X X X

Place_Glass X

Press_Glass X X

Manual_ready X X

Place_Manual X X

Screw_C2 X

Place_inBox X X

Table 4.2: Sub-actions assignment to a sub-agent

The sub-action “Wait” is not in the table because it is not properly a sub-action but it
represents a break from action of a sub-agent. A sub-action that can be executed by all
the sub-agents means that the sub-action can be carried out by the human or by the two
arms of YuMi working together. It does not exist a sub-action that can be done by either
YuMiR or YuMiL singularly.
An action is defined as the vector of the three sub-actions performed simultaneously by
the three sub-agents.

Action=
[
sub-action(YuMiR) sub-action(YuMiL) sub-action(Human)

]
The environment is defined as the level of completion of the assembly task. After each
action is executed the environment configuration changes toward an increased level of com-
pletion. From this point of view it’s natural to define the states as the level of the Work
in Progress (WIP), as shown in [28] and [29]. This definition satisfies the Markov assump-
tion, see section 3.1, since each WIP already stores all the necessary information about the
history (the previous WIPs).
The reward must be a measure of what we want to maximize in the long term. Since the
purpose is minimizing the time required to assemble the product, we set the reward as the
negative duration of an action. The duration of an action is defined as the maximum value
among the duration of the three sub-actions.
We consider a discrete-time MDP. The measure of time is called timestep and it increases

22

CHAPTER 4. USE CASE: INDUSTRIAL ASSEMBLY

of a unit each time a new interaction starts. For example, at timestep t there is the current
WIP, which is represented by s, on the workspace and the agent performs an action a cho-
sen according to the current policy. When the execution of each sub-action is terminated,
we have a new WIP, which is represented by state s′, generated by the application of each
sub-action on the previous WIP and a reward r is sent. Now, a new interaction starts:
the timestep increases of a unit, the new WIP becomes the current WIP and the agent
chooses and performs the next action. This definition can lead to a situation in which the
sub-agents wait for each other. The efficiency of this choice is analysed in section 5.2.3.
Finally, it’s possible to notice that an assembly is an episodic task, which means a task in
which the agent-environment interaction naturally breaks down into a sequence of sepa-
rate episode [16]. In our use case, for example, when a shaker is assembled the interaction
starts again to assemble a new one. An episodic task can be modeled as a SSP (Stochastic
Shortest Path), a sub-class of the MDPs described in section 3.2, with an absorbing state
that is the one representing the finished WIP, i.e. the assembled product.

Formalizing the SSP:

• S, the set of states, is the set of all possible WIPs that may appear during the
composition of the final product.

• A, the set of actions, is the set of all the combinations, in the form of vectors, of the
sub-actions.

• The transition function T is a 3-dimension matrix where the value of the cell (i, j, k)

can only be 0 or 1 depending on the probability Pr(s′ = k|s = i, a = j)

T (i, j, k) =

0, if Pr(s′ = k|s = i, a = j)=0

1, if Pr(s′ = k|s = i, a = j)=1

The reason is that, given a WIP (s) and an admissible action (a), there is not doubts
that the action achieves the expected result and that the new WIP (s′) is unique.

• The reward function R is the negative duration of an action.

• The discount factor γ=0.99 because we adopt a far-sighted strategy.

• The initial probability µ is zero for all the states except for the initial one corre-
sponding to the “null WIP”. The initial probability of this state will be equal to 1
since it is unique.

23

CHAPTER 4. USE CASE: INDUSTRIAL ASSEMBLY

The SSP is shown in figure 4.7. It has 58 states, 82 actions and 330 state-action pairs.
The initial state is marked by “S”, while the absorbing state is marked by “E”.

Figure 4.7: The SSP of the use case

24

Chapter 5

Reinforcement Learning solution

In this chapter the RL techniques applied to the use case are described and their results are
shown and commented. Firstly, in section 5.1, the implemented algorithms, Q-Learning
and Delayed Q-Learning, are introduced. Then, in section 5.2, we discuss the performances
of the RL algorithms in a comparative way, we analyse the sensitivity of the tunable
parameters and we evaluate the resulting optimal scheduling.

5.1 Implemented Algorithms

The use case is modeled as a SSP where the state and action spaces are finite. The choice
of tabular and value-based RL algorithms is therefore appropriate since it is not required
to store a remarkable amount of value functions. Moreover, SSP has an absorbing state so
the RL framework is fed with terminating episodes that are defined as finite sequences of
samples 〈s, a, r, s′〉 (the single episode terminates when s′ is equal to the absorbing state).
For what concerns value-based algorithms applied to episodic tasks, there are mainly two
methods to learn the value functions: the Monte-Carlo (MC) method and the Temporal
Difference (TD) one. Given the kth episode 〈si, ai, ri+1, si+1, ai+1, ri+2, ..., an−1, rn, sn〉
that lasts from timestep i to timestep n (when the absorbing state is met), the MC method
updates the action-value functions at the end of it. The following update rule holds:

Qk+1(st, at) = Qk(st, at) + α · (vt −Qk(st, at)) ∀t = i, ..., n− 1 (5.1)

where vt = rt+1 + γ · rt+2 + ...+ γn−t−1 · rn is the return from timestep t.
The parameter α is called forgetting factor (α ∈ [0,1]) and it sets how much of what has
already been learned from old samples affects the next update. Considering the boundary
values: if α=1 all the past is forgotten, if α=0 no weight is given to the current sample.
The forgetting factor can be either a time-dependent or time-independent parameter.
Instead, the TD method updates the action-value functions after each timestep t, without
waiting the end of the episode. So, giving a sample 〈st, at, rt+1, st+1〉, the following update

25

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

rule holds:
Qt+1(st, at) = Qt(st, at) + α · (vt −Qt(st, at)) (5.2)

where vt = rt+1 + γ ·Qt(st+1, at+1) is the expected return at timestep t.
The MC and TD update rules for the state-value function are analogous.

The TD method is subjected to a lower variance with respect to the MC one since each
TD return depends on one random reward (rt+1), while each MC return depends on many
random rewards (from rt+1 to rn). For this reason and because the TD method is generally
more efficient than the MC one, we adopt RL algorithms that use a TD method.
So, the TD-based RL algorithms called Q-Learning and Delayed Q-Learning are respec-
tively introduced in sub-section 5.1.1 and 5.1.2. In these algorithms action-value functions
are used and, for the sake of brevity, they will be called Q-value for the rest of the chapter.
Moreover, for the same reason, a (state, action) pair will be abbreviated to (s, a) pair.

5.1.1 Q-Learning

According to the RL algorithms classification of section 3.3.1 Q-Learning is a model-free,
off-policy, online, tabular and value-based algorithm. Moreover, it is based on a TD method
for updating the value functions. The Q-value is updated at each sample 〈st, at, rt+1, st+1〉
and its update rule is the following:

Qt+1(st, at) = Qt(st, at) + αt · (rt+1 + γ ·max
a∈A

Qt(st+1, a)−Qt(st, at)) (5.3)

Under the condition of Robbins–Monro sequence of step–sizes, which bounds the value
of the forgetting factor αt:

∑∞
t=1 αt = ∞ ∧

∑∞
t=1 α

2
t < ∞, Q-Learning converges to the

optimal Q-value, that means Qt(s, a)→ Q∗(s, a) for t→ +∞ [23].
For what concerns the policy, it is important to highlight that Q-Learning is an off-policy
algorithm. The target policy is obviously the optimal one while the behavior policy can
be whatever. The agent may continuously use a random policy along the entire learning
phase and the algorithm still learns the optimal policy (it is due to the max operator in
the update formula). However, normally, the behavior policy is ε-greedy in order to speed
up the convergence. A ε-greedy strategy takes into account the exploitation/exploration
trade-off (see section 3.3.2). Specifically, with probability 1-ε a greedy action is chosen
(exploitation), while with probability ε, a random action is chosen (exploration).

π(s, a) =

ε
m + 1− ε if a = argmax

a∈A
Q(s, a)

ε
m otherwise

(5.4)

The parameter m corresponds to the number of actions and it makes, for all the actions,
the probability to be chosen greater than 0.

26

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Q-Learning is a very general RL algorithm for tasks that can be modeled as MDPs. It also
efficiently fits SSP problems as shown in [24], where the authors apply a Q-Learning, called
Q-SSP, to a wireless sensor network. Moreover, they adopt a reward shaping approach,
which means to manipulate the reward in order to stimulate the RL technique to learn
the correct policy. Their reward shaping technique, called reward-averaging, is designed
to mitigate the stochasticity of the rewards. The reward of our use case, as mentioned
in 4.4, consists in the negative duration of an action that, mainly in the case of human
actions, suffers from a considerable variance. Hence, the reward-averaging is suitable for
our use case, too. The shaped reward is called averaged reward Ravgt+1(st, at) and it is equal
to the weighted average between the received reward rt+1 and the old value of the averaged
reward Ravgt (st, at). The weight is Numt(st, at) that is the number of time that the pair
(st, at) has been visited up to instant t.

Ravgt+1(st, at) =
Numt(st, at) ·Ravgt (st, at) + rt+1

Numt(st, at) + 1
(5.5)

Of course, for each pair (st, at) it is required to store a value of Ravg and Num.
Therefore, the Q-value update rule can be rewritten as:

Qt+1(st, at) = Qt(st, at) + αt · (Ravgt (st, at) + γ ·max
a

Qt(st+1, a)−Qt(st, at)) (5.6)

The complete algorithm is shown in 1.

Algorithm 1 Q-Learning
1: Inputs : S,A,γ, sinit, sabs, α, ε
2: for all (s, a) do
3: Q(s, a)← 0

4: Ravg ← 0

5: Num(s, a)← 0

6: end for
7: episode← 0

8: while episode < episodemax do
9: s← sinit

10: while s 6= sabs do
11: Let As denotes the set of admissible actions from s

12: a← ε-greedy(s) in As
13: (r, s′)← Env.Step(s, a)

14: Ravg(s, a)← Num(s,a)·Ravg(s,a)+r
Num(s,a)+1

15: Num(s, a)← Num(s, a) + 1

16: Q(s, a)← Q(s, a) + α · (Ravg(s, a) + γ ·max
a

Q(s′, a)−Q(s, a))

17: s← s′

18: end while
19: episode← episode + 1

27

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

20: end while
21: FinalPath← greedy path w.r.t (Q, sinit, sabs)

22: Return(FinalPath)

From row 1 to row 7, three tables (the first to store the Q-values, the others two to store
Ravg(st, at) and Num(st, at)) and an episode counter are initialized. Then there are two
nested loops. The way out condition of the inner one (from row 10 to row 18) is that the
current state s has to be equal to the absorbing state sabs, i.e. the episode is concluded.
Each iteration of the loop represents an interaction between the agent and the environment.
In row 11, the set As is filled by all the admissible actions from the current state s. In
row 12, among all the actions in As, the action a to take is determined by following an
ε-greedy policy. In row 13, the reward r and the observation about the next state s′ are
received after the execution of action a. From row 14 to row 16, the reward shaping and
the Q-value updates are performed. At the end of the loop, in rows 17, the next state
becomes the current one.
The outer loop (from row 8 to row 20) manages the convergence. If the counter of episodes
reaches a bound called episodemax (that has to be set high enough) the convergence is
considered achieved. In the loop the first current state is set equal to the initial state in
order to restart the episode (row 9). In row 19, the episode counter is increased. Finally,
in row 21, the convergence is achieved and the greedy path (the sequence of state-action
pairs that maximizes the returns) from the initial state to the absorbing one is computed
and returned (row 22).

5.1.2 Delayed Q-Learning

Delayed Q-Learning is an RL algorithms introduced by Strehl et al. in [25] and [26].
According to the RL algorithms classification of section 3.3.1 Delayed Q-Learning is a
model-free, off-policy, online, tabular and value-based algorithm. It is the first model-free
RL algorithm proved to be PAC-MDP (PAC stands for Probably Approximately Correct).
The definition of PAC-MDP involves the sample complexity that is, given an algorithm,
the number of timesteps t for which the non-stationary policy at time t, πt, is not ε-optimal
from the current state at time t, st, which means V πt(st) < V ∗(st) − ε. Informally, it is
the amount of experience needed to learn how to behave well. Thus, an algorithm is PAC-
MDP if, for any ε and δ, the sample complexity can be bounded by a polynomial in the
relevant quantities (S, A, 1

ε ,
1
δ ,

1
1−γ), with probability at least 1-δ.

Delayed Q-learning is similar in many aspects to traditional Q-learning, the main differ-
ences are:

• A (s, a) pair has to be experienced m times before updating the associated Q-value
(that is why it is called “delayed”). The update will be the average of the m missed
update opportunities. In this way the noisy effect of randomness has been miti-

28

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

gated (therefore the reward shaping applied to the Q-Learning case is not necessary
anymore).

• To encourage exploration an “optimism in the face of uncertainty” approach is used.
It consists in a more efficient method to guide the exploration: the initial Q-value of
each (s, a) pair is set to some overwhelmingly high number, in our case equal to 1

1−γ .
In this way if a (s, a) pair is often visited its estimated Q-value will become more
exact, and therefore, lower. Thus, the algorithm will lead to the more rarely visited
options, where the Q-values are still high [27]. This approach is made possible by
the combined effects of the already described parameter m and ε1 that is a constant
“exploration bonus” added to each action value function when it is updated.

The complete algorithm is shown in 2.

Algorithm 2 Delayed Q-Learning
1: Inputs : S,A,γ, sinit, sabs,m, ε1
2: for all (s, a) do
3: Q(s, a)← 1

1−γ
4: U(s, a)← 0

5: l(s, a)← 0

6: t(s, a)← 0

7: LEARN(s, a)← true
8: end for
9: t∗ ← 0

10: t← 0

11: episode← 0

12: while episode < episodemax do
13: s← sinit

14: while s 6= sabs do
15: Let As denotes the set of admissible actions from s

16: a← argmax
a∈As

Q(s, a)

17: (r, s′)← Env.Step(s, a)

18: if LEARN(s, a) = true then
19: U(s, a)← U(s, a) + r + γ ·max

a
Q(s′, a)

20: l(s, a)← l(s, a) + 1

21: if l(s, a) = m then
22: if Q(s, a)− U(s,a)

m ≥ 2 · ε1 then
23: Q(s, a)← U(s,a)

m + ε1

24: t∗ ← t

25: else if t(s, a) ≥ t∗ then
26: LEARN(s, a)← false

29

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

27: end if
28: t(s, a)← t

29: U(s, a)← 0

30: l(s, a)← 0

31: end if
32: else if t(s, a) < t∗ then
33: LEARN(s, a)← true
34: end if
35: s← s′

36: t← t+ 1

37: end while
38: episode← episode + 1

39: end while
40: FinalPath← greedy path w.r.t (Q, sinit, sabs)

41: Return(FinalPath)

Practically the algorithm works in the following way. Some locals variables are introduced,
for each (s, a): a flag LEARN(s, a) ∈ {true, false} that indicates whether the learner is
considering a modification to its Q-value estimate; a counter l(s, a) whose value is the
number of samples acquired for use in an upcoming update of Q(s, a); U(s, a) that stores
the running sum used to update Q(s, a) once enough samples have been gathered; t(s, a)

that is the instant of the last attempted update and t∗ that is the instant of the most
recent Q-value change. The initialization of these variable is between row 3 and row 9.
The loop from row 12 to row 39 cycles up to the achievement of the convergence (episodemax
has to be set high enough). The loop from row 14 to row 37 cycles until the current state
reaches the absorbing one in order to allow the restart of the episode (row 13). In row
16 the action a to perform is determined following a greedy policy i.e. picking the action
that, given the current state, leads to the highest Q-value. No ε-greedy actions are chosen
since it is the “optimism in the face of uncertainty” approach that provides the necessary
exploration. In row 17 the reward r and the observation about the next state s′ are received
after having executed action a.
From row 18 to row 34 there are subsequent conditions that, if satisfied, lead to an update
of the Q-value. The update of Q(s, a) is firstly driven by the flag LEARN (row 18) that
has to be true and, when the counter l has reached m samples (row 21), an update is tried
(the so called attempted update). Then there is a last condition Q(s, a) − U(s,a)

m ≥ 2 · ε1
(row 22) and, if it is verified, the update is executed (row 23) according to the following
update rule:

Q(s, a)← U(s, a)

m
+ ε1 (5.7)

U(s, a) is a temporary memory that has stored the sum of the m previous updates of the

30

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

action value function, ready to become the new Q-value (row 19).

U(s, a)← U(s, a) + r + γ ·max
a′

Q(s′, a′) (5.8)

The main rule of the algorithm is that every time a (s, a) pair is experienced m times,
an update of Q(s, a) is attempted. In order not to allow an infinite number of attempted
updates the computation has to be stopped: this is the role of LEARN(s, a). Hence,
attempted updates are only allowed for (s, a) when LEARN(s, a) is true. Besides being
set to true initially, LEARN(s, a) is also set to true when any (s, a) pair is updated (rows
32, 33, 34) because our estimate Q(s, a) may need to reflect this change. LEARN(s, a)

can switch from true to false only when no updates are made during a period of time in
which (s, a) is experienced m times and the next attempted update of Q(s, a) is rejected
(rows 25, 26, 27). In this case, no more attempted updates of Q(s, a) are permitted until
another Q-value is updated. Finally, in row 40, the greedy path is computed by acting
greedy on Q from the initial state to the absorbing one and then returned (row 41).

5.2 Analysis of the results

In this chapter, we simulate the industrial assembly use case, on which we apply the two
RL algorithms. The results of the simulations are shown and commented.

The simulations are fed with the durations of the sub-actions; each duration is not deter-
ministic but draws a Gaussian distribution. Then, at each timestep and for each sub-action,
the simulations are performed picking a random value of duration from the associated Gaus-
sian distribution.
The expected durations of YuMiR and YuMiL sub-actions have been computed by running
their RAPID programs on Robot Studio, which is an ABB’s simulation and offline pro-
gramming software. The resulting expected durations are summarised in table 5.1. Also
the YuMi sub-actions should not be considered fixed, in fact we take into account a vari-
ance equal to var(YuMi sub-actions)=0.01.
The expected durations of human sub-actions have been found by experimentally trying
the sub-actions an adequate number of times and measuring their durations. They are sum-
marised in table 5.1. On the other hand, in the industrial field, factories usually collect a
lot of data about the manufacturing task they perform, which can be exploited to estimate
the duration of human operations. For example, data from the same manufacturing task if
it was previously performed manually (often a manufacturing task is born manual and only
secondly got automated) or from comparable manufacturing tasks. For what concerns the
duration variance, we apply to all the sub-actions a variance equal to the largest among
all the experimental variances. So, the resulting variance is var(Human sub-actions)=0.25
that leads to an interval equal, for each sub-action i, to meani ± 3 ·

√
var = meani ± 1.5s

(with confidence of 99.5%). On average it corresponds to an interval meani± 25%. In the

31

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

rest of the thesis dissertation this variance will be called “low variance”. Since the human
behavior may be very stochastic, we have decided to evaluate the RL algorithms also con-
sidering a higher duration variance. This variance is equal to var(Human sub-actions)=1
that leads to an interval equal, for each sub-action i, to meani ± 3 ·

√
var = meani ± 3s

(with confidence of 99.5%). On average it corresponds to an interval meani± 50%. In the
rest of the thesis dissertation, this variance will be called “high variance”.
The “Wait” sub-action has both the duration mean and variance equal to 0.

Sub-Action YuMiR [s] YuMiL [s] Human [s]

Place_C1 3.200 / 3.9392
Place_C2 9.810 / 7.1450

Press_Leash 4.525 / 7.6700
Press_Filter / 5.215 5.3500
Press_Vortex 2.656 / 5.4925

Press_VortexFilter 7.744 5.239 4.9358
Screw_C1 6.100 7.149 8.8750
Place_Glass / / 5.5342
Press_Glass / 6.100 7.5975

Manual_ready 9.570 / 8.1175
Place_Manual / 8.785 10.2475
Screw_C2 / / 5.1233

Place_inBox / 4.250 8.0375

Table 5.1: Sub-action expected durations

A metric we use to evaluate the two RL algorithms is the total reward, which is the sum of
the rewards in an episode. An episode represents the assembly of an entire product. The
trend of the total reward is inverse with respect to the cycle time i.e the time needed to
manufacture a product (we remind that the total reward is proportional to the opposite
of the cycle time and maximizing the rewards means minimizing the cycle time), but the
total reward plots offer a better insight about the type of reward the algorithm adopts.
Another metric we use is the minimum number of episodes necessary to achieve the optimal
policy (or, equivalently, optimal convergence), which is the episode from which the used
RL algorithm always returns the optimal scheduling. Of course, the concept of optimality
already implies that the total reward is maximized.

In sub-section 5.2.1 we present the results of a sensitivity analysis of the tunable parame-
ters, which are α and ε for the Q-Learning (see sub-section 5.2.1.1) and ε1 and m for the
Delayed Q-Learning (see sub-section 5.2.1.2). Then, in sub-section 5.2.2, we adopt the pa-
rameters that lead to the best performances and we compare the performances of the two

32

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

RL algorithms in three scenarios. These scenarios differ for the amount of freedom that
is left in the scheduling. In sub-section 5.2.2.1 the scheduling is completely defined apart
from a few free actions among which the learner must choose. In sub-section 5.2.2.2 the
number of free actions is increased. In sub-section 5.2.2.3 we fully generalize the problem:
the scheduling is not defined at all and so all the actions are free to be chosen. Finally,
in sub-section 5.2.3, we focus on the optimal scheduling and we present some indexes,
normally used in the industrial field, in order to evaluate it.

5.2.1 Sensitivity analysis of the parameters

The sensitivity analysis of the parameters consists in tuning the parameters to examine
how they affect the performances of the RL algorithms.
They are evaluated on the entire MDP.

5.2.1.1 Test: Q-Learning

The parameters we analyze are α, which sets how much of what has already been learned
from old samples affects the next update, and ε, which drives the exploration. The tests
are organized in the following way: we have selected eight meaningful strategies from the
literature to vary the parameters and we evaluate them both in the case of a reward equal
to the opposite of the sub-action duration and the averaged reward. In figure 5.1, we plot
the strategies. They consist in the combination of specific trends of α and ε.
The trends of α are the following:

A. It decreases linearly starting from a value equal to 1.

B. It is constant and equal to 0.95 up to the 85% of the learning phase, then it decreases
linearly.

The trends of ε are the following:

C. It decreases exponentially starting from a value equal to 1.

D1. It is constant and equal to 0.6 up to the 40% of the learning phase, then it decreases
exponentially.

D2. It is constant and equal to 0.5 up to the 50% of the learning phase, then it decreases
exponentially.

D3. It is constant and equal to 0.4 up to the 60% of the learning phase, then it decreases
exponentially.

For all the trends, the slope depends on the learning phase length we set, since the param-
eter has to reach a value equal to 0 in the last learning episode. For all the α trends, the
Robbins-Monro conditions (see sub-section 5.1.1) are satisfied.

33

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.1: Plot of the parameter strategies

It’s important to highlight that, in all the strategies, ε converges faster than α. This
dynamics needs to speed up the learning, otherwise, if ε becomes higher than α, the ex-
ploration runs but its returns are disregarded by the fact that the weight assigned to the
past is so much greater than the weight assigned to the current return.

Figure 5.2 shows the plots of the test in which we use the normal reward (the opposite
of the sub-action duration), while figure 5.3 shows the plots of the test in which we use
the averaged reward. In these tests, we consider a low human variance. The length of the
learning phase changes according to the strategy and the considered reward and, for each
case, it is equal to the minimum number of episodes to converge (see tables 5.2 and 5.3).
For graphical reasons the simulations last more episodes than the learning phases.

34

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.2: Case: normal reward. Plot of the total reward per episode (top) and plot of the
10-episodes averaged total reward (bottom) with the best strategy highlighted

Figure 5.3: Case: averaged reward. Plot of the total reward per episode (top) and plot of the
10-episodes averaged total reward (bottom) with the best strategy highlighted

The best strategy is the one that leads to achieve the maximum total reward with the
lowest number of episodes. For the normal reward the best strategy is A-C, while for
the averaged reward the best strategy is B-C. To explain this difference it’s important to
underline two concepts. The first concept involves the averaged reward, which behaves
well in the face of stochasticity, it becomes more precise, but less reactive, as the number
of episodes increases (it is due to an increasing denominator in its update formula 5.5).
The second concept concerns α, which allows learning when it is close to 1 and encourages

35

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

the consolidation of what has been learnt when it is close to 0. The strategy A-C is not
suitable for the averaged reward since it leads to a high learning intensity at the beginning,
which decreases as the number of episodes increases. The averaged reward, on the contrary,
has a low precision at the beginning, which increases as the number of episodes increases.
So, when the learning intensity is high the averaged reward is imprecise, while when the
averaged reward is very precise the learning intensity is low. The normal reward doesn’t
suffer from this problem since it doesn’t behave differently with respect to the number of
episodes. Indeed, the averaged reward works well with the strategy B-C in which α is kept
close to 1 for more episodes. Moreover, the test in which we have an averaged reward and a
strategy B-C shows a faster convergence with respect to the test in which we have a normal
reward and a strategy A-C. The reason is that the averaged reward, if the parameters are
set in a suitable way, is more “powerful” than the normal reward thanks to its ability to
face stochasticity.

Finally, in tables 5.2 and 5.3, we summarise the results. For each strategy, we show the
minimum number of episodes necessary to achieve the optimal policy, which is obtained by
computing the median in 10 simulations. Furthermore, we highlight the values that lead
to the best performances (the ones that find the optimal policy faster). In figure 5.4, we
provide information about the dispersion of the results. For each strategy, we show the
boxplot of the minimum number of episodes to converge.

H
HHH

HHHε

α
A B

C 447 514
D1 597 594
D2 604 597
D3 607 599

Table 5.2: Case: normal reward. Median values of the minimum number of
episodes to achieve the optimal convergence. The best result is highlighted

HH
HHH

HHε

α
A B

C 554 398
D1 840 589
D2 845 592
D3 847 596

Table 5.3: Case: averaged reward. Median values of the minimum number of
episodes to achieve the optimal convergence. The best result is highlighted

36

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.4: Dispersion of the minimum number of episodes to achieve the optimal policy with
normal reward (left) and averaged reward (right)

The tests considering a human variance equal to the high variance lead to analogous results.
The best strategy still is the B-C with averaged reward.

37

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

5.2.1.2 Test: Delayed Q-Learning

The first parameter we analyze is ε1. We carry out three tests that differ from the value of
the human variance. Figure 5.5 shows the plots of the test in which the human variance is
set equal to 0 (it is an unrealistic case, but it is interesting for the ε1 analysis), figure 5.6
shows the plots of the test in which the human variance is the low variance and figure 5.7
shows the plots of the test in which the human variance is the high variance. The other
tunable parameter of Delayed Q-Learning, i.e. m, is set equal to 1 in the low variance test
and equal to 5 in the high variance test (see the sensitivity analysis of m).

Figure 5.5: Case: zero human variance. Plot of the total reward per episode (top) and plot of the
10-episodes averaged total reward (bottom) with the best ε1 setting highlighted

Figure 5.6: Case: low human variance. Plot of the total reward per episode (top) and plot of the
10-episodes averaged total reward (bottom) with the best ε1 setting highlighted

38

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.7: Case: high human variance. Plot of the total reward per episode (top) and plot of the
10-episodes averaged total reward (bottom) with the best ε1 setting highlighted

In these plots, it’s possible to notice the role that ε1 plays in the learning. It represents the
sensitivity of the learning. The smaller is ε1, the greater is the probability of converging to
the optimal policy. On the other side, the higher is ε1, the faster is the convergence. This
is due to the update condition of the Q-Value (algorithm 2, row 22). If ε1 is small, the
condition is satisfied often, Q-values are updated many times and so they lead to a more
precise result. Instead, if ε1 is high, the condition is verified only at the beginning of the
learning and we achieve soon the convergence (the Q-values don’t change anymore).
For example, we can focus on ε1=2. With this setting, the maximum reward is achieved
in plot 5.5, in which the learning is “easy” since the human is not modeled as stochastic.
Otherwise, in plots 5.6 and 5.7, we converge to a non-maximum reward that means a
sub-optimal policy. The reason is that, in the two last cases, we use a stochastic human
behavior and so the learning has to be more precise. Hence, we need a smaller ε1. Indeed,
with ε1=1 and ε1=0.5, the optimal policy is found. Between these two values, we prefer
ε1=1 since it implies a smaller number of episodes to converge.
Finally, it’s important to underline that in Q-Learning the amount of exploration, which
determines a correct learning, depends on the learning phase length we set (ε depends on
it), while in the Delayed Q-Learning the exploration is only driven by ε1 and m. So, in
Delayed Q-Learning, it is useless to set a longer learning phase to reach a more precise
learning.

We present, for each human variance, the minimum number of episodes necessary to achieve
the optimal policy. We summarise the results obtained in 10 simulations. In the table 5.4,
we show the median values, we highlight the best performances (the settings that allow to
find the optimal policy faster) and we mark with “/” the settings that don’t converge to

39

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

the optimal policy. In the boxplots 5.8, we provide information about the dispersion.

HHH
HHHHε1
var

Zero variance Low variance High variance

0.5 314 324 1512
1 311 313 1508
1.5 310 / /
2 309 / /
2.5 / / /
3 / / /

Table 5.4: Median values of the minimum number of episodes to achieve the optimal policy. The
symbol “/” indicates a sub-optimal convergence. For each variance, the best result is highlighted

Figure 5.8: Dispersion of the minimum number of episodes to achieve the optimal policy with zero
human variance (left), low human variance (center) and high human variance (right)

The second parameter we analyze is m. We carry out two tests that differ from the value
of the human variance. Figure 5.9 shows the plots of the test in which the human variance
is the low variance and figure 5.10 shows the plots of the test in which the human variance
is the high variance. In all the tests ε1 is kept fixed and equal to 1 (the value that leads
to the best performances).

40

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.9: Case: low human variance. Plot of the total reward per episode (top) and plot of the
10-episodes averaged total reward (bottom) with the best m setting highlighted

Figure 5.10: Case: high human variance. Plot of the total reward per episode (top) and plot of
the 10-episodes averaged total reward (bottom) with the best m setting highlighted

In Delayed Q-Learning, the Q-value update consists in the average of the m missed update
opportunities (algorithm 2, row 23). It’s clear the role of m to mitigate the noisy effect of
randomness. So, in order to achieve the optimal policy, we can’t set m too small. Anyway,
if we set m too high, we need a lot of episodes to converge since the attempted updates
occur too rarely (algorithm 2, row 21).
In plot 5.9, the right trade-off is represented by m=1 since it is the smallest value that
guarantees the achievement of the optimal policy. In plot 5.10, we need an higher m to

41

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

model the larger variance. The first setting that achieves the optimal policy is m=5 (the
settings m=1 and m=3 output a policy barely sub-optimal, their total rewards are very
close to the maximum value).

We present, for each human variance, the minimum number of episodes necessary to achieve
the optimal policy. We summarise the results obtained in 10 simulations. In the table 5.5,
we show the median values, we highlight the best performances (the settings that allow to
find the optimal policy faster) and we mark with “/” the settings that don’t converge to
the optimal policy. In the boxplots 5.11, we provide information about the dispersion.

HH
HHHHHm

var
Low variance High variance

1 313 /
2 610 /
3 912 /
4 1218 /
5 1506 1508

Table 5.5: Median values of the minimum number of episodes to achieve the
optimal convergence. The symbol “/” indicates a sub-optimal convergence. For
each variance, the best result is highlighted

Figure 5.11: Dispersion of the minimum number of episodes to achieve the optimal policy with
low human variance (left) and high human variance (right)

42

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

5.2.2 Performance comparison

The parameters of the RL algorithms are set in order to have the best performances, as
described in sub-section 5.2.1. So, for the Q-Learning we use the strategy B-C with an av-
eraged reward, while for the Delayed Q-Learning we set ε1=1 and m=1 or m=5 according
to the human variance.

In the next sub-sections we show the results from three scenarios and, for each of them,
we consider both a low human variance and a high human variance. These scenarios differ
from the number of free actions among which the learner chooses in order to fully define
the scheduling.
The three scenarios are characterized as outlined below.

• In sub-section 5.2.2.1 the scenario has a number of free actions equal to n=6.

• In sub-section 5.2.2.2 the scenario has a number of free actions equal to n=55.

• In sub-section 5.2.2.3 the scenario has a number of free actions equal to n=326.
The scheduling is fully undefined, except for the choices that involve sub-actions
executable only by the human (that is why n is different than the total number of
state-action pairs of the MDP).

In the scenarios with n=6 and n=55, it’s like to have reduced-size MDPs since the state
and action space become small. A lower number of free actions implies a lower number
of possible scheduling, which are translated into the MDP as a lower number of possible
path (i.e. sequence of state-action pairs) that brings from the initial state to the final one.
In these scenarios the overall optimal path, shown in section 5.2.3, is still available, hence
the RL algorithms will surely converge to that.

5.2.2.1 Scenario: n=6 free actions

In figure 5.12, we introduce the resulting MDP with n=6 free actions. In figure 5.13, we
show the total reward plots of a simulation. Then, we present, for each RL algorithm and
human variance, the minimum number of episodes necessary to achieve the optimal policy.
We summarise the results obtained in 10 simulations. In the table 5.6 we show the median
values, while in the boxplots 5.14 we provide information about the dispersion.

43

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.12: MDP with n=6 free actions

Figure 5.13: Scenario: n=6 free actions. Plot of the total reward per episode (top left) and plot of
the 10-episodes averaged total reward (bottom left) with a low human variance. Plot of the total
reward per episode (top right) and plot of the 10-episodes averaged total reward (bottom right)
with a high human variance

44

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

XXXXXXXXXXXXXAlgorithm
var

Low variance High variance

Q-Learning 29 37
Delayed Q-Learning 7 40

Table 5.6: Scenario: n=6 free actions. Minimum number of episodes to achieve the optimal policy

Figure 5.14: Dispersion of the minimum number of episodes to achieve the optimal policy with
low human variance (left) and high human variance (right)

Delayed Q-Learning is faster than Q-Learning in the low variance case, while the perfor-
mances of the two RL algorithms are roughly equivalent in the high variance case. The
median values indicate that Q-Learning is faster than Delayed Q-Learning, but the box-
plots show a dispersion in the results that doesn’t allow to clearly detect the best.
Moreover, it’s important to notice the different dispersions that the two RL algorithms
show in the minimum number of episodes to achieve the optimal policy. Q-Learning has
a random exploration that leads to boxplots showing a remarkable dispersion. Delayed
Q-Learning has a guided exploration that leads to boxplots showing a low dispersion.

5.2.2.2 Scenario: n=55 free actions

In figure 5.15, we introduce the resulting MDP with n=55 free actions. In figure 5.16, we
show the total reward plots of a simulation. Then, we present, for each RL algorithm and
human variance, the minimum number of episodes necessary to achieve the optimal policy.
We summarise the results obtained in 10 simulations. In the table 5.7 we show the median
values, while in the boxplots 5.17 we provide information about the dispersion.

45

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.15: MDP with n=55 free actions

Figure 5.16: Scenario: n=55 free actions. Plot of the total reward per episode (top left) and plot
of the 10-episodes averaged total reward (bottom left) with a low human variance. Plot of the total
reward per episode (top right) and plot of the 10-episodes averaged total reward (bottom right)
with a high human variance

46

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

XXXXXXXXXXXXXAlgorithm
var

Low variance High variance

Q-Learning 133 145
Delayed Q-Learning 54 257

Table 5.7: Scenario: n=55 free actions. Minimum number of episodes to achieve the optimal
policy

Figure 5.17: Dispersion of the minimum number of episodes to achieve the optimal policy with
low human variance (left) and high human variance (right)

With respect to the previous scenario, in the low variance case we confirm that Delayed
Q-Learning is faster than Q-Learning, in the high variance case we haven’t anymore equiv-
alent performances. In this scenario Q-Learning is faster than Delayed Q-Learning. Of
course, the minimum number of episodes necessary to achieve the optimal policy is in-
creased for both the RL algorithms since the complexity of the MDP is grown.

The different performances of the two RL algorithms are due to how they face stochastic-
ity. Q-Learning uses an averaged reward that estimates the value of the reward without
being affected by the variance. So, it leads to similar results both in the case of low and
high human variance. The averaged reward allows a learning that becomes more precise
and less reactive as the number of episodes increases. Instead, in Delayed Q-Learning the
stochasticity is managed by the algorithm itself, specifically the parametersm has a central
role, which changes according to the human variance. This method allows a learning that
doesn’t depend on the number of episodes and has a fixed reactivity linked to the value of
m (the smaller is m, the more reactive is the learning). In the low variance case, Delayed
Q-Learning is faster than Q-Learning because it shows a high reactivity (m=1). In the

47

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

high variance case, Delayed Q-Learning is slower than Q-Learning, because it shows a low
reactivity (m=5).
To sum up, Q-Learning with averaged reward always finds the optimal policy in an ac-
ceptable number of episodes, showing a robust behavior towards different values of human
variance. Delayed Q-Learning has a learning method that minimizes the number of episodes
to converge when the human variance is low, but, when the human variance is high, it toils
to find the optimal policy and so it becomes slower.

5.2.2.3 Scenario: n=326 free actions - scheduling fully undefined

In figure 5.18, we introduce the resulting MDP with n=326 free actions. In figure 5.19, we
show the total rewards plot of a simulation. Then, we present, for each RL algorithm and
human variance, the minimum number of episodes necessary to achieve the optimal policy.
We summarise the results obtained in 10 simulations. In the table 5.8 we show the median
values, while in the boxplots 5.20 we provide information about the dispersion.

Figure 5.18: MDP with n=326 free actions

48

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.19: Scenario: n=326 free actions. Plot of the total reward per episode (top left) and
plot of the 10-episodes averaged total reward (bottom left) with a low human variance. Plot of
the total reward per episode (top right) and plot of the 10-episodes averaged total reward (bottom
right) with a high human variance

XXXXXXXXXXXXXAlgorithm
var

Low variance High variance

Q-Learning 398 415
Delayed Q-Learning 313 1508

Table 5.8: Scenario: n=326 free actions. Minimum number of episodes to achieve the optimal
policy

49

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.20: Dispersion of the minimum number of episodes to achieve the optimal policy with
low human variance (left) and high human variance (right)

The remarks of the previous scenarios are confirmed. Delayed Q-Learning is faster than
Q-Learning in the low variance case, while Q-Learning is faster than Delayed Q-Learning in
the high variance case. Moreover, Q-Learning has a similar number of episodes to converge
for both the low and the high variance cases.
Of course, the minimum number of episodes necessary to achieve the optimal policy is
increased for both the RL algorithms since the complexity of the MDP is grown.

The amount of necessary episodes to converge starts to be remarkable. Considering the
Delayed Q-Learning for the low variance case and the Q-Learning for the high variance
case, the learning phase lasts 313 and 415 episodes. However, the working time “wasted”
in the learning phase is not uniform between the two RL algorithms. Using Q-Learning
the durations of sub-optimal schedulings become closer to the optimal one in a gradual
way. Using Delayed Q-Learning the durations of sub-optimal schedulings are really high
up to a trigger episode from which the algorithm starts to output the optimal policy. It is
particularly clear in the high variance case in figure 5.19, in which it’s possible to notice a
“jump” around episode 1500. These behaviors are due to how the exploration is managed.
In Q-Learning the exploration decreases exponentially as the episodes increase, while in
Delayed Q-Learning it follows a “face to optimism” approach that leads to the “jump” just
described (the conditions to update the Q-Value suddenly stop to be enabled).
A metric that allows to better analyse this aspect is the regret. It is defined as the
cumulative difference between the total reward of the optimal policy π∗ and that gathered
by the current policy π and, as well shown in figure 5.21, the regret represents what we
miss by adopting sub-optimal policies.

50

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.21: Regret of a policy

The formula of the regret at episode K is the following:

LK = K · V π∗
h −

K∑
k=1

E[V πk
h] (5.9)

Where πk is the policy that the algorithm returns at the end of the (k-1)th episode and h
indicates the final timestep of an episode.
In figure 5.22 we show a comparison between the regrets of the two RL algorithms.

Figure 5.22: Plot of the regret per episode with a low human variance (left) and with a high
human variance (right)

To sum up, the regret of the Delayed Q-Learning shows the “impact” of several highly sub-
optimal policies, which leads to a long learning phase in terms of working time. Hence,
if the comparison was computed in terms of working time, it will be less favorable for
the Delayed Q-Learning. For instance, considering the low variance case, the Delayed Q-
Learning learning phase lasts 18798 s (about 5 h and 10 min), while the Q-Learning learning
phase lasts 21532 s (about 6h). These learning phase durations have been calculated as
the average, over the 10 simulations, of the sums of the cycle times of the episodes that

51

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

occur before achieving the optimal convergence. The ratio between them is equal to:

learning_phaseDelQ(s)
learning_phaseQ(s)

=
18798

21532
= 0.87 (5.10)

While, in terms of episodes to converge, the ratio is equal to:

learning_phaseDelQ(episodes)
learning_phaseQ(episodes)

=
313

398
= 0.79 (5.11)

The ratios show that, if we adopt a working time perspective, the performances of Delayed
Q-Learning get worse with respect to an episodes perspective. Anyway, it remains the more
efficient algorithm to use with low human variance. As already cited, in the high variance
case the worsening is even more clear. Indeed, the ratio in terms of working time is equal to
89231 s
22475 s=3.97, while the ratio in terms of episodes to converge is equal to 1508 episodes

415 episodes =3.63.
This analysis holds also for the previous scenarios, but for them, being their learning phases
so much shorter, the problem is less meaningful.

5.2.3 Optimal scheduling

As analysed in section 5.2.2, the optimal scheduling can be found by using preferably the
Delayed Q-Learning in case of low human variance and preferably the Q-Learning in case
of high human variance. In figure 5.23, we show the optimal scheduling in the form of a
path, while, in table 5.9, we list the sub-actions that form the optimal scheduling.

Figure 5.23: Optimal path of the industrial assembly use case

52

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Order YuMiR YuMiL Human

1° Place_C1 Wait Place_Glass
2° Wait Press_Glass Place_C2
3° Press_Leash Wait Wait
4° Press_VortexFilter Press_VortexFilter Manual_ready
5° Wait Place_Manual Screw_C1
6° Wait Wait Screw_C2
7° Wait Place_inBox Wait

Table 5.9: Optimal scheduling of the industrial assembly use case

To evaluate the manufacturing task, performed following the optimal scheduling, we use
two standard industrial metrics: the Throughput (TH) and the Overall Equipment Effec-
tiveness (OEE).
The TH, or productivity, is the frequency with which the manufacturing task generates
the final product. It is calculated using the Little’s formula, which is:

TH =
WIP

cycle time
[
pz

h
] (5.12)

The cycle time is the duration of an execution of the optimal scheduling. It can be cal-
culated as the sum of the duration of the action that belongs to the optimal scheduling
or as the difference between the starting time of the current task and the starting time of
the previous task. The cycle time is a stochastic variable, we can use the mean without
loss of correctness. In our use case the cycle time is equal to 43.25 s. The variable WIP
indicates the average number of products in process. In our use case it is equal to 1. So,
the productivity is equal to:

TH =
WIP

cycle time
=

1 pz

43.25 s
= 0.0231

pz

s
= 83.23

pz

h
(5.13)

The OEE index measures, in terms of time, performances and quality of the final product,
the overall efficiency of a production process compared to its full potential. The OEE is
calculated as:

OEE = utilization · efficiency · quality (5.14)

The utilization, or availability, indicates how the production process exploits the available
time. It is defined as the period in which the production plants operates over the whole
period in which they may be used.

utilization =
utilized time
total time

(5.15)

Normally, a production process is organized to minimize all the events that can stop the
production long enough, which means a high utilization. For our use case, we assume a

53

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

utilization equal to 0.95.
The efficiency, or performance, points out how much the utilized time is exploited. In HRC
it is declined as how much the human and the robot works together rather than waiting
for each other. It is calculated as:

efficiency = 1− wait time
utilized time

(5.16)

Figure 5.24 summarises the link between the utilization and the efficiency.

Figure 5.24: Utilization and efficiency of a manufacturing task

We focus on the efficiency of our use case. The two RL algorithms return, with the intent
to minimize the cycle time, an optimal scheduling that makes the human and the robot
collaborate as much as possible i.e. minimizing the amount of “Wait” sub-actions (unless
an agent is deeply faster than the other). In this way we also tend to minimize the wait
times, which are defined as follows. For each action, if the duration of the sub-action of
the human is higher than the maximum duration between the sub-action of YuMiR and
the one of YuMiL, the wait time of the human is 0 and the wait time of the robot is
the difference between these two durations. Otherwise, it is viceversa. In figure 5.25 we
show the trend of the wait times of the schedulings that have been attempted during the
learning phase, while in figure 5.26 we show the trend of the sum of these wait times. The
two figures refer to an entire MDP with low human variance (with high human variance is
analogous).

Figure 5.25: Plot of the wait time per episode for the human (left) and for the robot (right)

54

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

Figure 5.26: Plot of the sum of the human wait time and robot wait time per episode

The two RL algorithms don’t minimize the wait times of both the human and the robot
since there are spikes that reach lower values than the convergence one. Anyway, they
minimize the sum of these wait times. The averaged efficiency for both the human and
the robot will be equal since the two RL algorithms converge to the same wait time. It
is normal that the optimal scheduling balances the wait times of the agents, but it’s a
coincidence that they are exactly equal. The wait time is stochastic but, without loss
of correctness, we consider the mean that is equal to 9.2 s. Moreover, we normalize the
utilized time for a single product, hence it is equal to the cycle time. So, the efficiency is:

efficiency = 1− wait time
utilized time

= 1− 9.2 s

43.25 s
= 0.79 (5.17)

Regarding the human efficiency, it is important to highlight that it doesn’t overcome the
value of 0.88 and so an excessive human effort is avoided. This upper bound is determined
in [30] by exploiting the Methods-Time Measurement, a system widely used in the indus-
trial field to decompose manual operations into the basic motions required to perform it
and give to each motion a predetermined time standard. It takes into account the daily
fatigue curve of an operator that works standing up and the classification of the assembly,
which is a repetitive task.
Going back to the OEE formula, the quality is a measure of how the products are man-
ufactured. It is defined as the number of well-made products over the overall number of
manufactured products.

quality =
number good products

total products
(5.18)

In the literature the quality of HRC tasks have been analysed. For instance, in [31], the
authors present a fully manual assembly task and design a new cell production with HRC

55

CHAPTER 5. REINFORCEMENT LEARNING SOLUTION

in order to improve the efficiency. In terms of quality they show that the ratio between
the number of badly assembled products and the overall number of assembled products
decreases from a 15% down to be almost prevented. For our use case, we assume a quality
equal to 0.98.
To conclude, the OEE is equal to:

OEE = utilization · efficiency · quality = 0.95 · 0.79 · 0.98 = 0.74 (5.19)

The value of OEE that represents an efficient production process is still an open debate.
From the literature we can cite some best practice benchmarks, in [32] Ericsson considers
as acceptable values the indexes between 0.30 and 0.80, while Ljungberg, in [33], proposes
a range between 0.60 and 0.75.

56

Chapter 6

GUI for Digital Twin generation

In this chapter, we describe an application that we have developed in order to convert
the workflow of a manufacturing task, drawn on a Graphical User Interface (GUI), into
its digital twin. In section 6.1, we illustrate the reason behind the choice of implementing
such application and in section 6.2 we explain how it works.

6.1 Motivations

In chapter 5 we have answered the research question showing how the RL techniques can
determine a scheduling when it is not fully defined. These techniques have been designed
for working in an industrial field, hence, in the case of determining the entire scheduling,
they can be considered not suitable. Although the RL techniques carry out the optimal
scheduling also in that case, they need a lot of interactions to learn. Therefore, many
products are manufactured with sub-optimal policies that lead to a remarkable waste of
working time.
To avoid this disadvantage we have implemented an application that converts the workflow
of a manufacturing task into its digital twin, which simply is an MDP that simulates the
interaction between the agent and the environment. So, at each timestep t, we have a
“digital” sample 〈st, at, rt+1, st+1〉. In this framework, called simulation-based RL, we use
the Q-Learning and Delayed Q-Learning to carry out the optimal scheduling in a very fast
way. In chapter 7, we analyse the performances of a simulation-based RL technique that
involves the two RL algorithms and the digital twin to compute a static and a dynamic
actions assignment in the face of a non-stationary human behavior.
Furthermore, it’s important to underline, in a perspective of attractiveness for an industrial
field, that the application has been designed in order not to depend on computer science
specialists. It only needs a workflow, i.e. a simple drawing that involves only four graphical
elements and that can be done by any operator aware of how the manufacturing task works.

57

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

6.2 From the workflow to the digital twin

The application converts the workflow of a manufacturing task into its digital twin. It is
articulated in 4 steps. The first involves the drawing of the workflow, the second performs
the codification of the workflow in order to have a more manageable “digital” graph that
replies its structure. The third consists in the conversion from the graph to an MDP
structure (i.e. states linked by actions associated with rewards). The fourth, given the
MDP structure, manages the interaction between the agent and the environment. The
following description of the application is based on our use case but the functioning is
general, as it can be used to describe all the manufacturing tasks that can be performed
in a collaborative way and can be modeled as an MDP. The pipeline of the application is
sketched in figure 6.1.

Figure 6.1: Pipeline of the application

58

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

The application is written in C++, one of the most spread object-oriented programming
language. The explanation of the main function of the application is supported by pseudo-
codes. In order to avoid misinterpretations in the reading of the pseudo-codes it’s necessary
to state some initial remarks:

• In C++ language the variables are featured by a class. Each class can involve at-
tributes, which are additional information for characterizing the variable. In the
pseudo-codes the notation to indicate the attribute of a variable is the following:
variable.attribute.

• In the pseudo-codes the notation used for the function is function(input) while the
one used to define a value in a vector is vector(index).

• In the C++ program we have mainly used pointers and lists in order to save memory
and speed up the computational time. In the pseudo-codes, for the sake of simplicity,
we replace them with variables and vectors without loss of correctness.

For the graphical part, instead, we rely on the website Draw.io, an open source technology
stack for building diagramming applications, because it has a user-friendly interface and
it allows exporting a XML file that can be easily processed by C++ applications.

The application “step 1” is about the workflow drawn by the user. This workflow has to
describe the precedence constraints among the various phases of the assembly. Specifically,
he/she defines the workflow simply using the four graphical elements shown in figure 6.2.

(a) Object

A1 A2 A3Action

A1 A2 A3Action

(b) Action panel (c) Arrow (d) Connector

Figure 6.2: Graphical elements

The element of figure 6.2a is called object and it represents a single piece of the prod-
uct. The element of figure 6.2b is called action panel: a rectangle containing as many
circles as the number of sub-agents. Inside the rectangle the operator inserts the name of
a sub-action and selects, coloring the respective circles, which sub-agents can execute such
sub-action. The element of figure 6.2c is an arrow, which links action panels and represents
a precedence constraint: the sub-action of the panel from which the arrow starts has to be
carried out before that one of the panel where the arrow ends. The element of figure 6.2d
is a connector (a dashed line) which links two or more panels whose sub-actions led to the
same WIP.

59

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

The final workflow of the use case assembly is shown in figure 6.3.

Cap1
Leash+Cap2

Filter Vortex Foot

Glass

Labels
Manual

YR YL HPlace_C1

YR YL HPlace_C2

YR YL HPress_Leash

YR YL HPress_Filter

YR YL HPress_Vortex YR YL HPress_VortexFilter

YR YL HScrew_C1

YR YL HScrew_C2

YR YL HPlace_Glass

YR YL HPress_Glass

YR YL HPlace_Glass

YR YL HPlace_Manual

YR YL HPress_GlassYR YL HPlace_Manual

YR YL HManual_ready

YR YL HManual_ready

YR YL HPlace_inBox

Figure 6.3: Use case workflow

60

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

The application “step 2” has as input the workflow XML file generated by the interface.
It converts the XML file into a graph that replies the workflow structure, indeed a single
node of the graph, called graph state, corresponds to an action panel in the workflow. A
graphical representation of this conversion is presented in figure 6.4. Figure 6.4a shows
a piece of workflow and figure 6.4b the corresponding piece of graph (it is a simplified
snapshot, some attributes are omitted).

YR YL HScrew_C1

YR YL HScrew_C2

YR YL HPlace_Glass

YR YL HPress_GlassYR YL HPlace_Manual

YR YL HManual_ready

(a) Workflow

string action= "Screw_C1";
bool YumiR= true;
bool YumiL= true;
bool Human= true;

Input state

Output state

string action= "Screw_C2";
bool YumiR= false;
bool YumiL= false;
bool Human= true;

Input state

Output state

string action= "Place_manual";
bool YumiR= false;
bool YumiL= true;
bool Human= true;

Input state

string action= "Press_glass";
bool YumiR= false;
bool YumiL= true;
bool Human= true;

Input state

Output state

string action= "Manual_ready";
bool YumiR= true;
bool YumiL= false;
bool Human= true;

Input state

Output state

string action= "Place_glass";
bool YumiR= false;
bool YumiL= false;
bool Human= true;

Output state

Input state

(b) Graph

Figure 6.4: Focus on a piece of the use case workflow and associated piece of graph

To make the subsequent “step 3” of the application simpler, the graph allows bi-directional
exploration from leaves to root and viceversa.

The process of building the graph from the XML starts with algorithm 3. All the classes
and attributes are summarised in table 6.1 at the end of the chapter. This function takes
the XML as input (row 1). XML is a text file that codes images following specific rules.
In row 2, it is decoded and four vectors are created in order to store objects, action panels,

61

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

arrows and connectors. From row 3 to row 5, we loop the objects_vector and each object
ID is used as input of a function called Graph_Generator.

Algorithm 3 Graph
1: Inputs : XML_file
2: Decode_XML(XML_file)
3: for i=1 to length(objects_vector) do
4: Graph_Generator(objects_vector(i).ID)

5: end for
6: Join_gstates(find_connected_gstates())
7: Object_gstates_generator()
8: Return()

This function is explained in algorithm 4 and is used to create graph states (abbreviated
as gstates) and add them to a vector of graph states called gstates_vector (it is used as
global variable). All the graph states are associated univocally to an action panel, which
corresponds, for each gstate, to the attribute gstate.generator. So, the function works re-
cursively to generate all the graph states associated to the action panels that are placed,
on the workflow, among the input object and the root. It’s important to highlight that
the function is independent on which kind of ID it has as input. It is designed in such a
way because in the first call it has an object ID as input while, in the subsequent recursive
calls, the input is a panel ID.
In row 2, we use the find_arrow function that outputs a vector of arrows having, as
source or target, the panel or the object marked with the ID passed as second input. So,
output_arrows_first is a vector of arrows having as source the ID used as Graph_Generator
input. In row 3, we loop output_arrows_first. In row 4, we define curr_panel as the
panel having an ID equal to the target of the arrow (the objects can’t have incoming arrows)
using the find_panel function that cycles panels_vector. In rows 5 and 6, we create two
vectors of arrows: the input_arrows vector collects the incoming arrows of the curr_panel
while the output_arrows vector collects its outgoing arrows. In row 7, we verify if the
curr_panel has already generated a gstate; this check is done by the find_gstate function
that cycles gstates_vector and output the gstate having gstate.generator=curr_panel. If
it doesn’t exist, a gstate called curr_gstate is created (from row 8 to row 14) that means
determining all its attributes and then adding it to gstates_vector. The curr_gstate ID
is defined in row 8, the curr_gstate generator in row 9, the input and output transition
(if the panel is not the root) in, respectively, row 10 and 12. Then, in row 14, the well-
defined curr_gstate is added to gstates_vector and, if the curr_panel is not the root,
the Graph_Generator function is launched again (row 16).

62

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

Algorithm 4 Graph_Generator
1: Inputs : ID
2: output_arrows_first← find_arrow("source", ID)

3: for i=1 to length(output_arrows_first) do
4: curr_panel← find_panel(output_arrows_first(i).target)
5: input_arrows← find_arrow("target", curr_panel.ID)

6: output_arrows← find_arrow("source", curr_panel.ID)

7: if find_gstate(curr_panel) = NULL then
8: curr_gstate.ID← Assign_ID(curr_panel)
9: curr_gstate.generator← curr_panel

10: Define_inp_transitions(input_arrows)
11: if length(output_arrows) > 0 then
12: Define_out_transitions(output_arrows)
13: end if
14: Add(curr_gstate)
15: if length(output_arrows) > 0 then
16: Graph_Generator(curr_panel.ID)

17: end if
18: end if
19: end for
20: Return()

The algorithm 5 refers to the function Define_inp_transitions. Its aim is to define the
attribute gstate.input_transitions of the gstate we are generating. It is a vector composed
of transitions that are variables defined by the ID of a gstate and its generator panel. In
this case, the transition.gstate_ID obviously refers to the previous gstate in the graph.
The input of the function is input_arrows (row 1) that determines a loop starting in
row 2 and ending in row 21. For each iteration, a transition called curr_transition may
be created by defining its attributes and, then, added to input_arrows. Initially, the
curr_transition.gstate_ID is set to -1 (row 3) and we define as input_panel the panel
from which the arrow leaves (row 4). In row 5, we check if this panel exists (the arrow
may leave an object) and, if the condition is verified, we define as input_gstate the gstate
generated by the input_panel (row 6). The input_gstate can already exist (row 7) and
so the curr_transition.gstate_ID is trivially assigned (row 8), or it has not been created
yet (row 9).
In this case, we don’t create a gstate (only the Graph_Generator function can do it) but we
assign an ID to it. It can be new as described from row 13 to 16 (available_ID is a global
variable that stores the value of the last assigned ID), or it can be found in the input and
output transitions of other gstates as a consequence of an assignment already performed in

63

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

the generation process of other gstates. This check is performed by the check_transitions
function from row 10 to 12. Finally, in row 18, the attribute curr_transition.panel is
defined and in row 19 the curr_transition is added to the input_transitions vector of the
generating gstate. The Define_out_transitions function works analogously.

Algorithm 5 Define_inp_transitions
1: Inputs : input_arrows
2: for i=1 to length(input_arrows) do
3: curr_transition.gstate_ID← -1
4: input_panel←find_panel(input_arrows(i).source)
5: if input_panel 6= NULL then
6: input_gstate←find_gstate(input_panel)
7: if input_gstate 6= NULL then
8: curr_transition.gstate_ID←input_gstate.ID
9: else

10: for j=1 to length(gstates_vector) do
11: curr_transition.gstate_ID←check_transitions(gstates_vector(i), input_gstate)
12: end for
13: if curr_transition.gstate_ID= -1 then
14: curr_transition.gstate_ID←available_ID
15: available_ID←available_ID+1
16: end if
17: end if
18: curr_transition.panel←input_panel
19: Add(curr_transition)
20: end if
21: end for
22: Return()

The Assign_ID function instead works as described in algorithm 6. This function defines
the gstate.ID attribute of the gstate we are generating. Doing that, it’s necessary to pay
attention if the ID of the generating gstate has already been assigned. The input of the
function is a panel, called curr_panel, that corresponds to the attribute gstate.generator
of the generating gstate (row 1). From row 2 to row 13, we loop the gstates_vector
in order to check the input and output transitions of each gstate that has been already
created. From row 3 to row 7, the input transitions are analysed: if curr_panel is equal to
the attribute input_transitions.panel of a specific input transition (row 4), the attribute
input_transitions.gstate_ID of the same transition is returned (it is the already assigned
ID). From row 8 to row 12, the same analysis is made for the output transitions. If so far
no IDs are returned, it means that the generating gstate needs a new ID. Therefore, in row
14, a new one is computed and in row 16 returned.

64

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

Algorithm 6 Assign_ID
1: Inputs: curr_panel
2: for i=1 to length(gstates_vector) do
3: for j=1 to length(gstates_vector(i).input_transitions) do
4: if gstates_vector(i).input_transitions(j).panel=curr_panel then
5: Return(gstates_vector(i).input_transitions(j).gstate_ID)
6: end if
7: end for
8: for j=1 to length(gstates_vector(i).output_transitions) do
9: if gstates_vector(i).output_transitions(j).panel=curr_panel then
10: Return(gstates_vector(i).output_transitions(j).gstate_ID)
11: end if
12: end for
13: end for
14: ID←available_ID
15: available_ID←available_ID+1
16: Return(ID)

Coming back to algorithm 3, in row 5, the gstates of the graph are all generated. In row
6, we join the gstates having generator panels (i.e. the associated action panels) linked by a
connector. These gstates are called connected gstates. The function find_connected_gstates
outputs a vector whose elements are sets of connected gstates, while the function Join_gstates
joins the connected gstates belonging to the same set. The joined gstates have the following
attributes: gstate.ID is new, gstate.generator is a vector containing the generator panels of
both the connected gstates, gstate.output_transitions is equal to the one of the connected
gstates (they surely have the same output transitions) and gstate.input_transitions is the
union of the input transitions of the connected gstates. Beyond creating a new joined
gstate, the function Join_gstate manages the input and output transitions of the other
gstates in order to keep the graph coherent. Finally, in row 7, the Object_gstates_generator
creates particular gstates, called object gstates, that represent objects. They have a spe-
cific ID, no generator panels, no input transitions and output transitions that lead to the
correct leaves of the graph.

Before proceeding with the explanation of the application “step 3”, it is necessary to outline
an analysis about the two kinds of parallelism that can be identified into a graph:

• Alternative parallel branches: a parallelism given by two or more incoming arrows
into a single graph state that has been generated by some action panels linked with
a connector. In this case, the parallelism is among two or more sequences of actions,
which are mutually exclusive choices to carry out the same WIP.

65

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

• Independent parallel branches: a parallelism given by two or more incoming arrows
in a graph state that has been generated by a single action panel. The corresponding
action joins two or more semifinished parts, whose creations are totally independent
i.e. they do not have any precedence constraints.

This analysis is important because a state of the MDP model is the combination of one or
more graph states belonging to independent parallel branches of the graph. So an MDP
state, which represents a WIP of the final product (as explained in section 4.4), takes into
account also the fact that some processes can be parallelized.
Alternative and independent parallel branches are clearly identifiable in the graph, but
they can be noticed also in the MDP whose graphical representation has been already
introduced in figure 4.7. It’ s possible to notice that it looks like a 2-D matrix since, from
almost every state, it is possible to move in two independent directions: the vertical one
doing any action regarding the upper part (two caps, vortex and filter) and the horizontal
one doing any action regarding the lower part (glass, foot, manual and labels). These main
directions correspond with the two independent branches of the graph. For instance, if the
independent branches were three, the MDP would be similar to a 3-D matrix. Regarding
the alternative parallel branches, below we focus on two clippings of figure 4.7 to highlight
some examples.

(a) Alternative sequences in the upper part assembly
(b) Alternative
sequences in the

lower part assembly

Figure 6.5: Focus on sections of the digital twin representation

As shown in 6.5a, the assembly of the lower part (represented along the horizontal direc-
tion) is symmetric with respect to the central column. The main difference between the
sequences on the left and the one on the right is the precedence of glass and foot compo-

66

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

sition respect to labels and manual one. Also, in 6.5b an example of alternative sequences
which evolve along vertical directions is shown. They concern the assembly of the upper
part, in particular with vortex and filter that can be placed one by one (two actions case)
or together (single action case).

The application “step 3” is the part of the application that converts the graph into the
MDP model. It is articulated into three parts: the creation of the MDP states (called
states in short) from the gstates, the correct combination of sub-actions in order to carry
out the MDP actions (called actions in short) and the process of linking states to other
states through the suitable action. All the classes and attributes are summarised in table
6.1 at the end of the chapter.

The algorithm 7 is the first function of the states creation process. Its input is gstates_vector,
which is the vector containing all the graph states (row 1). In row 2, we define the vec-
tor roots that contains the gstates that are root of an independent parallel branches (the
graph state in which the independent branches merge). They are detected by exploiting the
function find_root_parallelism that loops gstates_vector picking the gstates that have
the length of gstate.input_transition greater than one and the length of gstate.generator
equal to one (to reject such gstates that have several input transitions only because they are
connected). In row 3, we define a vector of gstates called ind_gstates (it may contains also
joined gstates and object gstates) and we initially fill it with the overall root of the graph,
which is found by using the function find_last_gstate that loops the gstates_vector to
pick the gstate without output transitions. We also define a gstate variable called selected,
which is initially set equal to the root gstate (row 4).
In row 5, the Move_among_branch function is launched. The alternated recursive calls
of the Move_among_branch function and the Move_along_branch function determine
the identification of the gstates that have to be joined in order to create a new MDP
state. These gstates, which are from independent branches, are collected in ind_gstates.
When necessary, ind_gstates is passed as input of a Create_state function that properly
generates the state.

Algorithm 7 MDP_States_Generator
1: Inputs : gstates_vector
2: roots←find_root_parallelism(gstates_vector)
3: ind_gstates(1)←find_last_gstate(gstates_vector)
4: selected← ind_gstates(1)
5: Move_among_branch(ind_gstates, selected, roots)
6: Return()

The function Move_among_branch works as explained in the pseudo-code 8. It manages
the assignment of the gstate selected in order to cross the independent parallel branches. It

67

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

can be seen as a movement orthogonal to the direction root-leaves of the graph. This move-
ment is achieved by setting selected equal to the successive gstate of ind_gstates (function
move_selected in row 6) at each recursion of the function Move_among_branch (row 7).
When selected reaches the last gstate of ind_gstates, the function Move_along_branch
starts to be called (row 10 and row 12). The function Move_along_branch manages a
parallel movement with respect to the root-leaves direction and, if ind_gstates is modi-
fied, it launches again the function Move_among_branch.
The function Move_along_branch is further explained in the pseudo-code 9. It involves
three different scenarios. In the first, selected is a root (row 2) since the function is_root,
which cycles roots, has returned true. In this case, a state is generated (row 4) and
ind_gstates is modified by the function enlarge_vector. This function replaces the gstate
equal to selected with its inputs (they are surely more than one since it is a root), which can
be found in selected.input_transitions. Then, in row 5, the function Move_among_branch
is launched again since ind_gstates has been changed. In the second scenario, from row
7 to 16, selected is not a root but it has one more inputs. It has more inputs only if it
is a connected gstate or it is the endpoint of alternative parallel branches. Above all, a
state is created (row 8) and then, in row 11, there is a loop whose number of iterations is
equal to the number of inputs. Inside the loop, ind_gstates is changed by the function
modify_vector (row 14). This function replaces the gstate equal to selected with its ith

input. Then, since ind_gstates has been modified, the function Move_among_branch is
launched again. In the third scenario (row 17), selected has no inputs that means it is a
leaf of the graph. In this case a state is created (row 18) and selected is set to NULL.
Finally, we specify what is intended as creation of a state. The function Create_state takes
as input ind_gstates and it simply sets the attribute state.generators equal to ind_gstates.
Then, this new state is added to a vector called states_vector that contains all the already
generated states of the MDP.
To sum up, the function Move_among_branch chooses (through the gstate selected) in
which independent parallel branch the function Move_along_branch has to execute one
step toward the leaves. In this way all the admissible combinations of ind_gstates oc-
cur and, since ind_gstates is the input of the function Create_State, all the states are
generated.

Algorithm 8 Move_among_branch
1: Inputs : ind_gstates, selected, roots
2: while selected 6= NULL do
3: if selected 6= ind_gstates(end) then
4: mem_ind_gstates←ind_gstates
5: mem_selected←selected
6: move_selected(ind_gstates, selected)
7: Move_among_branch(ind_gstates, selected, roots)
8: ind_gstates←mem_ind_gstates

68

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

9: selected←mem_selected
10: Move_along_branch(ind_gstates, selected, roots)
11: else
12: Move_along_branch(ind_gstates, selected, roots)
13: end if
14: end while
15: Return()

Algorithm 9 Move_along_branch
1: Inputs : ind_gstates, selected, roots
2: if is_root(selected, roots) then
3: Create_State(ind_gstates)
4: enlarge_vector(ind_gstates, selected)
5: Move_among_branch(ind_gstates, selected, roots)
6: else
7: if length(selected.input_transitions)>0 then
8: Create_State(ind_gstates)
9: mem_ind_gstates←ind_gstates

10: mem_selected←selected
11: for i=1 to length(mem_selected.input_transitions) do
12: ind_gstates←mem_ind_gstates
13: selected←mem_selected
14: modify_vector(ind_gstates, selected, i)
15: Move_among_branch(ind_gstates, selected, roots)
16: end for
17: else
18: Create_State(ind_gstates)
19: selected← NULL

20: end if
21: end if
22: Return()

The creation of the MDP actions and the state connection process are described begin-
ning from the algorithm 10, which is the main function concerning these two parts. Its
input is states_vector, which is the vector containing all the states just generated (row
1). From row 2 to row 11, we cycle through states_vector and for each state the Gen-
erate_Actions function outputs all the admissible actions from the current state, called
curr_actions (row 3). Then, if it exists at least one admissible action, the connection
process, which consists in linking two different states through a specific action, starts at
row 5. For each action we define a variable called new_outgoing, since we set the at-

69

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

tribute new_outgoing.action equal to the considered admissible action (row 6) and the
new_outgoing.reached_state equal to the result of Find_State function (row 7). Finally,
at row 8, we add the new_outgoing variable to the attribute state.followings of the current
state.

Algorithm 10 MDP_Actions_Generator
1: Inputs : states_vector
2: for i=1 to length(states_vector) do
3: curr_actions←Generate_Actions(states_vector(i))
4: if length(curr_actions)>0 then
5: for j=1 to length(curr_actions) do
6: new_outgoing.action←curr_actions(j)
7: new_outgoing.reached_state←Find_State(states_vector(i),curr_actions(j))
8: Add (states_vector(i), new_outgoing)
9: end for
10: end if
11: end for
12: Return()

The function Generate_Actions is further explained in algorithm 11. It has a state as input
(row 1) and, from row 2 to 8, we cycles through all the state generators. Given a specific
gstate, which is one of the generators of a state, the function check_output_combinations
verifies if the output transition of that gstate can be combined with the output transitions
of other gstates in order to generate a new MDP action or, on the contrary, if that gstate is
root of a parallelism and so its output transitions cannot be combined with any other ones.
The function create_Actions_single_subaction is called at row 5. This function, for each
sub-agent of the MDP, cycles all the generator panels of the gstate (state.generators(i))
passed as input. Then, it reads the action name associated to each panel and creates all
the possible MDP actions (vectors of 3 sub-actions) with only a single activated sub-action
(activated means different from “Wait”), which is that one corresponding to the read action
name. Finally, in row 9, the function combine_Actions_single_subaction combines all the
actions with a single activated sub-action in order to obtain also the actions with two or
three activated sub-action, one for each sub-agent. In this way, given a specific starting
state, we create all possible and admissible combinations of sub-actions and we return them
at row 10.

Algorithm 11 Generate_Actions
1: Inputs : state
2: for i=1 to length(state.generators) do
3: if check_output_combinations(state.generators(i))=true then
4: for j=1 to length(sub_agents) do
5: temp_actions=create_Actions_single_subaction(state.generators(i))

70

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

6: end for
7: end if
8: end for
9: state_Actions←combine_Actions_single_subaction(temp_actions)
10: Return(state_Actions)

The last function, presented in pseudo-code 12 and used in the MDP_Action_Generator
function, is Find_State. Its inputs are a state, called starting_state, and an action

(row 1). In row 2, the function identify_subactions_names, which receives as input the
action, assigns to a new variable names all the sub-actions names. Then, they are used
by identify_state_generators_changed function to check which elements of the attribute
state.generators of starting_state are changed as consequence of performing the sub-
actions that corresponds to names. These elements are assigned to state_generators
in row 3. Finally, identify_reached_state function outputs an MDP state generated by
all the gstates contained in state_generators. This state is assigned to a variable called
reached_state and, in row 5, returned.

Algorithm 12 Find_State
1: Inputs : starting_state, action
2: names←identify_subactions_names(action)
3: state_generators←identify_state_generators_changed(starting_state, names)
4: reached_state←identify_reached_state(state_generators)
5: Return(reached_state)

The application “step 4” simulates the interaction between the agent and the environment.
It consists in a loop that, at each iteration, has a state variable called current_state
and an action variable called current_action that depends on the policy of the RL
algorithms we use. Given these two variables, we determine the state variable called
next_state. It is found by cycling the vector current_state.followings, which contains
outgoing variables. We pick the one having an attribute outgoing.action equal to the
current_action. Given this outgoing variable, its attribute outgoing.reached_state is as-
signed to the variable next_state. From current_action we can compute the value of
the variable current_reward. We loop the three sub-actions of current_action and we
compare the means of their attributes sub-action.duration. The opposite of the maximum
value is assigned to current_reward (the RL algorithms may involve a reward shaping
that modifies this value). In chapter 7, we also analyse how to determine the attribute
sub-action.durations. In this way, we have obtained the digital sample 〈st, at, rt+1, st+1〉,
which is passed as input to the RL algorithms. Finally, the variable next_state is assigned
to current_state and the next iteration of the loop begins.

71

CHAPTER 6. GUI FOR DIGITAL TWIN GENERATION

Workflow

Class Class.Attribute Description

object
object An initial piece of the assembly.

object.ID A number to identify the object.

panel

panel
It is an action panel, which provides information about the sub-action needed to reach
the action panel itself.

panel.ID A number to identify the panel.
panel.name The name of the sub-action.
panel.YuMiR A boolean value that indicates if the sub-action can be performed by YuMiR.
panel.YuMiL A boolean value that indicates if the sub-action can be performed by YuMiL.
panel.Human A boolean value that indicates if the sub-action can be performed by the human.

arrow
arrow It links two panels setting a precedence constraint.

arrow.source The ID of the panel from which the arrow leaves.
arrow.target The ID of the panel in which the arrow arrives.

connector
connector It links two panels whose sub-actions lead to the same WIP.

connector.source The ID of one of the two linked panels.
connector.target The ID of the other of the two linked panels.

Graph

Class Class.Attribute Description

gstate

gstate It is a state of the graph.
gstate.ID A number to identify the gstate.

gstate.generator
The panel associated univocally to the gstate (it can be a vector of panels if they are
linked by a connector).

gstate.input_transitions It is a vector of transitions linking the gstate with the previous gstates on the graph.
gstate.output_transitions It is a vector of transitions linking the gstate with the next gstates on the graph.

transition
transition It links two graph states.

transition.gstate_ID The ID of the pointed gstate.
transition.panel The panel associated to the pointed gstate.

MDP

Class Class.Attribute Description

state
state It is a state of the MDP.

state.generators The gstates associated to the state.
state.followings It is a vector of outgoings linking the state with the next states.

outgoing
outgoing It links two states.

outgoing.reached_state The pointed state.
outgoing.action The action that allows the changing of state.

action

action It is an action of the MDP.
action.YuMiR The sub-action performed by YuMiR.
action.YuMiL The sub-action performed by YuMiL.
action.Human The sub-action performed by the human.

sub-action

sub-action It is the action performed by a sub-agent.
sub-action.ID A number to identify the sub-action.

sub-action.name The name of the sub-action.
sub-action.durations It is a vector that contains time measures of the sub-action durations.

Table 6.1: Description of the classes and their attributes

72

Chapter 7

Simulation-based RL solution

In this chapter we outline a simulation-based RL technique that, with the support of a
digital twin, can carry out both a static and dynamic operation assignment in HRC man-
ufacturing tasks. We design this technique for our use case and we utilize it to compute a
dynamic assignment. Then, a qualitative analysis of the results is presented.

A simulation-based RL technique consists in the application of an RL algorithm to a frame-
work that can simulate the interaction between an agent and the environment. For this
purpose, the digital twin of a manufacturing task is a really suitable framework. By ex-
ploiting the simulation environment, the optimal scheduling is computed in a very fast
way since it doesn’t involve a real interaction between the human and the robot. For what
concerns our use case, we design a simulation-based RL technique that adopts the two RL
algorithms presented in 5.1 and we applied it to the digital twin developed in 6.2.
To carry out the static assignment of the sub-actions the simulation-based RL technique
works as the simulations shown in 5.2.2.3. In both the case we simulate the use case and
apply the two RL algorithms. Also the resulting optimal scheduling is the same if we
feed the digital twin, i.e. we fill the vectors sub-action.durations, with the same estimated
durations of the simulations. The optimal scheduling is described in 5.2.3 and the sub-
actions durations in 5.1. Anyway, for what concerns the speed of the learning, we have to
highlight that we are dealing with two different frameworks: the simulations reproduce an
RL framework in which the learning phase is measured in the range of assembled products
(or, equivalently, hours of working time), while in a simulation-based RL framework the
learning is measured in the range of digital twin iterations, which means almost instanta-
neous.

Thanks to the instantaneous learning, it’s possible to quickly re-compute the optimal
scheduling if the human sub-action durations change. So, we can readily react to a situa-
tion in which the human gets tired or a working tool breaks and it is replaced with another
that leads to slower performances (e.g. an electric screwdriver replaced by a manual one).

73

CHAPTER 7. SIMULATION-BASED RL SOLUTION

In other words, we can carry out a dynamic assignment of the sub-actions. This dynamic
assignment consists in repeating the procedure of the static allocation after each assembled
product. In order to allow the digital twin to track the human behavior, the attributes sub-
action.durations, called memories for the sake of clarity, are continuously updated. They
are initialised like the static assignment, then, each time a human sub-action is performed
in the assembly, the corresponding memory is updated. The memories have a fixed length,
so the filling follows a FIFO logic. So, the digital twin computes the rewards considering
estimated durations equal to the moving average of the measured durations.
The synchronization between the simulation-based RL technique and the manufacturing
task is the following. At the end of the previous assembly the human memories are up-
dated. Then, simultaneously and in parallel, the simulation-based RL technique and the
current assembly start. The two RL algorithms run on the digital twin and achieve the
optimal policy earlier than the end of the current assembly. The resulting optimal schedul-
ing will be performed in the next assembly. In this way, a non-stationary human behavior
is tracked and the optimal scheduling changes according to it.

The adaptability of the simulation-based RL technique is essential in order to have an
optimal dynamic operation assignment. It depends on the length of the memories. We
show a qualitative analysis of the adaptability of some simulation-based RL techniques
featured with memories having different length. The adaptability of these techniques is
evaluated with respect to a dynamic programming algorithm called Policy Iteration (PI)
[15], which is an MDP planning algorithm, i.e. an algorithm that process a known MDP
model to return the optimal policy. We use PI as reference: at each product we feed it
with the MDP structure and the current human sub-action durations (that are unknown
in reality and are not available to the digital twin) and, consequently, it outputs the
optimal policy synchronized with the changing human behavior. So, we use that policy as
a benchmark to evaluate the delay of the simulation-based RL techniques in adapting to
changes.
The policy iteration algorithm is shown in algorithm 13.

Algorithm 13 Policy Iteration
1: Inputs : MDP=〈S, A, T, R, γ〉
2: Initialize V (s) ∈ R and π(s) ∈ A arbitrarily ∀ s ∈ S
3: ∆← arbitrary small value
4: while |V − Vold| > ∆ do
5: Vold ← V

6: T π ←
∑

a∈A π(s) · T (s′|s, a)

7: Rπ ←
∑

a∈A π(s) ·R(s, a)

8: V ← (I − γ · T π)−1 ·Rπ

9: for all (s, a) do
10: Q(s, a)← R(s, a) + γ ·

∑
s′∈S T (s′|s, a) · V (s′)

74

CHAPTER 7. SIMULATION-BASED RL SOLUTION

11: π(s)← argmax
a∈A

Q(s, a)

12: end for
13: end while
14: Return(π)

The policy iteration algorithm is divided into two parts: the policy evaluation part, where
the current policy π is evaluated by the state-value function (row 8) and the policy im-
provement part, where the policy becomes closer to the optimal one by acting greedily (row
11). So, the continuous alternation of policy evaluation and policy improvement leads the
optimization to converge to the optimal policy and state-value function. Figure 7.1 recaps
this process.

Figure 7.1: Policy iteration alternation between evaluation and improvement phases

A test is organized as follows. We consider three simulation-based RL techniques with
memory lengths equal to 8, 10 and 12. Up to the 4th assembly the human behavior is such
to lead to an optimal scheduling equal to the one described in 5.2.3. Then, we simulate
a change in the human behavior by increasing, as a step, the durations of the performed
sub-actions. The new optimal cycle time becomes higher and this increment can be seen
as the consequence a worker that gets tired. Obviously, these steps don’t perfectly model
the evolution in the behavior of a tired worker, however they allow a simple analysis of
the dynamic response of the simulation-based RL techniques. The performances of these
techniques are shown in figure 7.2. The figure is composed of two plots, one showing
the results of the tests in which Q-Learning (with averaged reward) is applied, the other
showing the results of the tests using Delayed Q-Learning. On the vertical axis we list
the applied techniques: RL algorithms with different memory lengths or the reference PI.
On the horizontal axis there is the number of assembling products. The performances are
described by coloured circles. Each circle resumes the features of the optimal scheduling
returned by a technique at a specific assembled product. The circle size indicates the
difference between the optimal scheduling cycle time and the reference cycle time obtained
using the PI. These cycle times are given by averaging the results of 10 tests. The circles
become larger as the optimal scheduling cycle time gets closer to the reference one. If

75

CHAPTER 7. SIMULATION-BASED RL SOLUTION

the circle is boxed, the cycle time is acceptable i.e. lies within a tolerance interval with
respect to the reference one. We have set a tolerance equal to 0.3 s, so the interval
is ref_cycle_time ± 0.3s (as a percentage, ref_cycle_time ± 0.65%) The circle colour
represents the probability of the technique, calculated over the 10 tests, to output the
reference optimal scheduling. The colour changes from red to green as this probability gets
higher.

Figure 7.2: Plot of the performances with Q-Learning (top) and Delayed Q-Leaning (bottom).
Each circle represents a optimal scheduling returned by a technique. The circle size measures the
closeness of the optimal scheduling cycle time to the reference one (larger implies closer). The circle
colour measures the probability that the optimal scheduling is the reference one (green implies high
probability)

In the figure it’s possible to notice that the longer the memories are, the higher the prob-
ability is to reach the reference optimal scheduling and the larger the delay is to achieve
an acceptable optimal scheduling i.e. the scheduling showing an acceptable cycle time
(the boxed circles). Viceversa, the shorter the memories are, the lower the probability
is to reach the reference optimal scheduling and the smaller the delay is to achieve an
acceptable optimal scheduling. We focus on this last case to explain the overall concept
behind these dynamic responses. A short memory quickly forgets the durations referred
to the previous human behavior and replaces them with measures of durations referred to

76

CHAPTER 7. SIMULATION-BASED RL SOLUTION

the current human behavior. In this way, we have a small delay to achieve an acceptable
optimal scheduling. On the other hand, a short memory implies that the mean of the
durations belonging to the memory, which is used to compute the reward and so address
the convergence to a specific scheduling, is really subjected to the variance of the duration
measures that depends on the human variance. On other words, with a short memory, the
mean of the durations does not efficiently filter the human variance. For this reason, a
short memory don’t accurately model the human behavior even at steady state, hence we
have a low probability to reach the reference optimal scheduling. To sum up, the length of
the memories determines a trade-off between the speed and the accuracy of the response.
Between the two RL algorithms, there are not remarkable differences since, in this frame-
work, they only have to achieve the optimal scheduling, without requirements about the
speed of learning.

It doesn’t exist a globally correct setting for the memory capacity. It depends on the
human variance since, if the human variance is high, a long memory is required, and on
the dynamic of the human behavior changes since, if these changes are fast, a short memory
is required. Finally, it depends also on the difference, in terms of cycle time, between the
reference optimal scheduling and its sub-optimal schedulings. If this difference is low, a
long memory is required. This last aspect is mainly due to the product, its workflow and
the similarity among the sub-actions necessary to assemble it.

77

Chapter 8

Conclusions and Future
Developments

In this chapter we summarise the obtained results and we propose some possible future
developments.

The aim of the thesis has been to solve a typical problem related to the PLC logic: how to
choose when two or more actions are simultaneously available. A solution has been found
using RL techniques, which allows the learning of the optimal action to execute from a
trial-and-error interaction with the environment.
The main steps of our thesis have been the following. Firstly, we have designed a use case.
It consists in an industrial assembly task in a HRC domain. We have modeled the use
case as an MDP, the framework that underlies the RL techniques. Then, we have chosen
two RL algorithms: Q-Learning and Delayed Q-Learning. We have tested them on the
use case with the aim of learning the optimal scheduling, which is the one minimizing the
time necessary to assemble the product. The first test has been a sensitivity analysis with
the objective of tuning the parameters of the algorithms in order to achieve the optimal
convergence with the lowest number of episodes. The second test has been a performance
comparison between the two RL algorithms in three distinct scenarios, which differ in the
number of free actions among which the algorithm chooses. In all the scenarios, the op-
timal convergence has been achieved faster by Delayed Q-Learning in case of low human
variance and by Q-Learning in case of high human variance (except for the first scenario in
which, thanks to the simplicity of the MDP, Delayed Q-Learning can perform equally well).
We have also evaluated the algorithm performances in terms of working time required to
achieve the optimal convergence. In this case, the comparison has been less favorable for
the Delayed Q-Learning since its learning phase presents several highly sub-optimal poli-
cies. Anyway, it has remained the best algorithm in the case of low human variance.
After that, we have evaluated, the manufacturing task performed following the found op-
timal scheduling. We have used two standard industrial metrics: the throughput and the

78

CHAPTER 8. CONCLUSIONS AND FUTURE DEVELOPMENTS

overall equipment effectiveness. They prove that, although the human and robot efficiency
can be improved, the performances are satisfying.

The most complex scenario shows that the performances of both the RL algorithms are not
suitable for the industrial field since the learning phase is too long. So, in order to speed
up the learning, we have developed an application that converts the manufacturing task
workflow into its digital twin. This application has been designed to avoid the dependence
on computer science specialists, in fact it only requires a drawing of the workflow that
can be done by any operator aware of how the manufacturing task works. The graphical
elements of the workflow and the functions that constitute the application are deeply ex-
plained. The digital twin simulates the interaction between the agent and the environment,
from which digital samples are collected. In this simulation-based reinforcement learning
framework, we have designed a technique that involves the two previous RL algorithms and
the digital twin in order to determine a static and a dynamic assignment of the sub-actions
in the face of a non-stationary human behavior. Thus, we have done a qualitative analysis
of the adaptability of this technique. We have highlighted how the velocity and the ac-
curacy of the response are affected by the length of the memories that feed the digital twin.

The first future development obviously involves the validation of the RL and simulation-
based RL techniques with data coming from the use case in the reality. Then, the thesis
work can be extended by integrating other aspects of the HRC. For example, the possibility
of assembling more than one product at a time may be modeled. In this way, the human
and the robot may exploit the wait time and, consequently, increase the TH (the variable
WIP raises) and the OEE index (the efficiencies grow). Another aspect to model may be
the risk that an assembly action fails. This risk may be depending on which sub-agent
performs the action or on the action itself (e.g. a screwing action can be subjected to a
higher risk than a simple insertion). A hint to carry out this variation is the following. A
new state may be added in order to represent a “wrong” WIP. Then, the transition func-
tion has to be modified in order to allow the reaching of this “wrong” WIP state with a
probability greater than 0. An interesting development concerns the reward function that,
beyond minimizing the cycle time, may take into account the psychophysical wellness of
the human. It can be measured and suitably integrated into the reward function using
some metrics such as, for instance, the REBA score that assesses the risk of musculoskele-
tal disorders or the Heart Rate Variability to evaluate the stress.
Finally, it is possible to further analyse the adaptability of the simulation-based RL tech-
nique and elaborate a method to efficiently set the length of the memories. This method
has to well manage the trade-off between velocity and accuracy considering the human
variance, the dynamic of the human behavior changes and the presence of sub-optimal
schedulings with cycle times closed to the optimal one. Then, the analysis can be gener-
alised to more accurate models of the non-stationary human behavior.

79

Appendix

.1 IRB 14000 YuMi Datasheet

80

Bibliography

[1] Lasi, Heiner Fettke, Peter Kemper, Hans-Georg Feld, Thomas Hoffmann, Michael.
(2014). Industry 4.0. Business Information Systems Engineering. 6. 239-242.

[2] Preuveneers, Davy Ilie-Zudor, Elisabeth. (2017). The intelligent industry of the future:
A survey on emerging trends, research challenges and opportunities in Industry 4.0.
Journal of Ambient Intelligence and Smart Environments.

[3] El Zaatari S., Marei M, Li W., Usman Z., 2019. Cobot Programming for Collaborative
Industrial Tasks: An Overview. Robotics and Autonomous Systems 116 (June): 162–180.

[4] Zanchettin, A.M.; Marconi, M.;Ongini, C.; Rossi, R.; Rocco, P.; "A Formal Control
Architecture for Collaborative Robotics Applications", Politecnico di Milano, Diparti-
mento di Elettronica, Informazione e Bioingegneria, 2019.

[5] Huang, Chin-Jung. "Integrate the Hungarian method and genetic algorithm to solve
the shortest distance problem." 2012 Third International Conference on Digital Manu-
facturing Automation. IEEE, 2012.

[6] Malik, Ali Ahmad and Arne Bilberg. “Collaborative robots in assembly: A practical
approach for tasks distribution.” Procedia CIRP 81 (2019): 665-670.

[7] Antonelli, Dario Bruno, Giulia. (2019). Dynamic distribution of assembly tasks in a
collaborative workcell of humans and robots. FME Transactions. 47. 723-730.

[8] Wilcox, Ronald, Stefanos Nikolaidis, and Julie Shah. "Optimization of temporal dy-
namics for adaptive human-robot interaction in assembly manufacturing." Robotics 8
(2013): 441.

[9] Johannsmeier, Lars, and Sami Haddadin. "A hierarchical human-robot interaction-
planning framework for task allocation in collaborative industrial assembly processes."
IEEE Robotics and Automation Letters 2.1 (2016): 41-48.

[10] Cividini, Filippo. A scheduling algorithm for human-robot collaborative assembly
tasks. Master of Science thesis, Politecnico di Milano, 2017.

81

BIBLIOGRAPHY

[11] Kinugawa, J., Kanazawa, A., Arai, S., Kosuge, K. (2017). Adaptive task scheduling
for an assembly task coworker robot based on incremental learning of human’s motion
patterns. IEEE Robotics and Automation Letters, 2(2), 856-863.

[12] El Makrini, Ilias Merckaert, Kelly De Winter, Joris Lefeber, Dirk Vanderborght,
Bram. (2019). Task allocation for improved ergonomics in Human-Robot Collaborative
Assembly. Interaction Studies. 20. 103-134.

[13] Akkaladevi, Sharath Plasch, Matthias Chowdhary, Maddukuri Eitzinger, C. Pich-
ler, Andreas Rinner, Bernhard. (2018). Toward an Interactive Reinforcement Based
Learning Framework for Human Robot Collaborative Assembly Processes. Frontiers in
Robotics and AI. 5. 126.

[14] El-Telbany, Mohammed. (2003). Reinforcement Learning Algorithms for Multi-Robot
Organization.

[15] Littman, Michael L.. “Algorithms for sequential decision-making.” (1996).

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA: MIT Press, 1 ed., 1998.

[17] Bertsekas, Dimitri P. and John N. Tsitsiklis. “An Analysis of Stochastic Shortest Path
Problems.” Math. Oper. Res. 16 (1991): 580-595.

[18] Bonet, Blai Gener, Hector. (2002). Solving Stochastic Shortest-Path Problems with
RTDP.

[19] Kaelbling, L. P.; Littman, M. L.; and Moore, A.W., 1996. Reinforcement learning: a
survey. Journal of Artificial Intelligence Research, 4 (1996), 237–285.

[20] Desai, Deven R., Exploration and Exploitation: An Essay on (Machine) Learning, Al-
gorithms, and Information Provision (December 15, 2015). 47 Loyola University Chicago
Law Journal, 541 (2015); Georgia Tech Scheller College of Business Research Paper No.
WP44.

[21] Shirine El Zaatari, Mohamed Marei, Weidong Li, Zahid Usman, Cobot programming
for collaborative industrial tasks: An overview, Robotics and Autonomous Systems,
Volume 116, 2019, Pages 162-180.

[22] Robots and robotic devices – Collaborative robots, ISO Standard ISO/TS 15066:2016,
2016.

[23] Watkins, C.J., Dayan, P. Technical Note: Q-Learning. Machine Learning 8, 279–292
(1992).

82

BIBLIOGRAPHY

[24] W. Xia, C. Di, H. Guo and S. Li, "Reinforcement Learning Based Stochastic Shortest
Path Finding in Wireless Sensor Networks," in IEEE Access, vol. 7, pp. 157807-157817,
2019.

[25] Strehl, Alexander Li, Lihong Wiewiora, Eric Langford, John Littman, Michael.
(2006). PAC model-free reinforcement learning. ICML 2006 - Proceedings of the 23rd
International Conference on Machine Learning. 2006.

[26] Strehl, Alexander Li, Lihong Littman, Michael. (2009). Reinforcement learning in
finite MDPs: PAC analysis. Journal of Machine Learning Research. 10. 2413-2444.

[27] István Szita and András Lőrincz. 2008. The many faces of optimism: a unifying ap-
proach. In Proceedings of the 25th international conference on Machine learning (ICML
’08). Association for Computing Machinery, New York, NY, USA, 1048–1055.

[28] D. Schwung, F. Csaplar, A. Schwung and S. X. Ding, "An application of reinforce-
ment learning algorithms to industrial multi-robot stations for cooperative handling op-
eration," 2017 IEEE 15th International Conference on Industrial Informatics (INDIN),
Emden, 2017, pp. 194-199.

[29] Ramya Ramakrishnan. Perturbation Training for Human-Robot Teams. Master of
Science thesis, Massachusetts Institute of Technology, 2015.

[30] Minati, Marco. Tempi e Metodi, Ipsoa, 1°ed, 2012.

[31] Morioka, M. Sakakibara, S.. (2010). A new cell production assembly system with hu-
man–robot cooperation. Cirp Annals-manufacturing Technology - CIRP ANN-MANUF
TECHNOL. 59. 9-12.

[32] Ericsson J., 1997, Disruption Analysis – an important tool in Lean Production, De-
partment of Production and Materials Engineering, University of Lund.

[33] Ljungberg O., 1998, “Measurement of overall equipment effectiveness as a basis for
TPM activities”, International Journal of Operations Production Management, Vol. 18,
Issue 5, pp. 495 – 507.

83

	Abstract
	Sommario
	Introduction
	Field of application
	Research question and contribution
	Thesis structure

	State of the Art
	Theoretical Background
	Markov Decision Process
	Stochastic Shortest Path problem
	Reinforcement Learning: an overview
	Classification
	Exploitation and Exploration trade-off

	Use case: Industrial Assembly
	YuMi
	Description of the product
	Setup Design
	Modeling a collaborative task as an MDP

	Reinforcement Learning solution
	Implemented Algorithms
	Q-Learning
	Delayed Q-Learning

	Analysis of the results
	Sensitivity analysis of the parameters
	Test: Q-Learning
	Test: Delayed Q-Learning

	Performance comparison
	Scenario: n=6 free actions
	Scenario: n=55 free actions
	Scenario: n=326 free actions - scheduling fully undefined

	Optimal scheduling

	GUI for Digital Twin generation
	Motivations
	From the workflow to the digital twin

	Simulation-based RL solution
	Conclusions and Future Developments
	Appendix
	IRB 14000 YuMi Datasheet

