
Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea Magistrale in Computer Science and Engineering

Master Degree’s Thesis

Design and Implementation of FlowGraph, a

Distributed Framework for Temporal Pattern

Recognition in Graph Data Structures

Supervisor

Prof. Alessandro Margara

Co-supervisor

Prof. Matteo Rossi

Candidate

Pietro Daverio
899800

Academic Year 2019–2020

Abstract

Graph data structures model relations between entities in many diverse ap-
plication domains. Graph processing systems enable scalable distributed com-
putations over large graphs, but are limited to static scenarios in which the
structure of the graph does not change. However, virtually all applications are
dynamic in nature, and this reflects to graphs that continuously evolve over
time. Understanding the evolution of graphs is key to enable timely reactions
when necessary. We address this problem by proposing a new model to express
temporal patterns over graph data structures. The model seamlessly integrates
computations over graphs to extract relevant values, and temporal operators
that define patterns of interest in the evolution of the graph.

We present the syntax and semantics of our model and discuss its concrete
implementation in FlowGraph, a distributed framework for temporal pattern
recognition in large scale graphs. We thoroughly evaluate the performance and
scalability of FlowGraph with various workloads. FlowGraph presents a level of
performance that is comparable to state-of-the-art graph processing tools when
processing static graphs. In the presence of temporal patterns, it can further
optimize processing by avoiding complex graph computations until strictly nec-
essary for pattern evaluation.

2

Contents

1 Introduction 9

2 State of the Art 11
2.1 Graph Processing . 11

2.1.1 Vertex-Centric abstractions 11
2.1.2 Other programming abstractions 15
2.1.3 Timing . 16
2.1.4 Partitioning and Communication 17

2.2 Stream Processing . 18
2.2.1 MapReduce . 20
2.2.2 Spark . 21
2.2.3 Flink . 23
2.2.4 Iterative dataflow . 24
2.2.5 Graph processing on top of Stream Processing 25
2.2.6 Complex Event Recognition 26

2.3 Motivations . 27
2.3.1 Objective . 27

3 Data and Processing Model 29
3.1 Data model . 29
3.2 Processing model . 30

3.2.1 Computations . 30
3.2.2 Selection . 31
3.2.3 Values extraction . 32
3.2.4 Functional operators . 32
3.2.5 Definition of subgraphs 33
3.2.6 Variables . 33
3.2.7 Temporal operators . 34
3.2.8 Pattern clauses . 35
3.2.9 Triggers and conditioned executions 35

4 Formal semantics 37
4.1 Data model . 37
4.2 Processing model . 38

4.2.1 Computations . 38
4.2.2 Selection . 38
4.2.3 Values extraction . 39
4.2.4 Functional operators . 39

3

4.2.5 Definition of subgraphs 39
4.2.6 Temporal operators . 40

5 System Implementation 43
5.1 Execution model . 44

6 Evaluation 47
6.1 Experiment setup . 47

6.1.1 Processing infrastructure 47
6.1.2 Dataset . 48
6.1.3 Measured values . 48
6.1.4 Parameters . 48

6.2 Vertex-centric computations . 48
6.3 Pattern detection . 50

6.3.1 Definition of subgraphs 51
6.3.2 Windowed evaluations . 52
6.3.3 Temporal sequences . 52

7 Related Work 55

8 Conclusions and Future Works 57
8.1 Conclusion . 57
8.2 Future work . 57

4

List of Figures

2.1 Example of first 2 iterations of PageRank [46] execution on a 3
vertices graph. 13

2.2 Babu and Widom proposed architecture for Continuous Stream
Processing . 19

2.3 Dataflow example of (a) parallel instructions written in pseu-
docode and (b) the corresponding dataflow graph. 20

2.4 Spark cluster composed of two workers machines serving one
driver. 22

2.5 SparkStreaming library collects continuous inputs streams in data
batches every 120ms before processing 22

2.6 Framework component stack comparison between Spark (A) and
Flink (B). Spark provides a compatibility library to handle DataS-
treams while Flink naively support DataStream computation. . 23

2.7 Example of Flink feedback-edge stream in which data produced
in current iteration by execution DAG is back-forwarded to feed
the next step. 25

2.8 Complex Event Recognition (CER) representation showing dis-
tributed agents connected by an overlay network (solid arcs) and
input and output system streams of events (dashed oriented arcs) 26

3.1 FlowGraph data and processing model overview. 29

5.1 System architecture of FlowGraph. 44

6.1 Average processing time to compute page rank (10 iterations).
Comparison of FlowGraph and GraphX with increasing graph sizes. 49

6.2 Average processing time to compute page rank (1 M vertices, 10
iterations). Comparison of FlowGraph and GraphX with increas-
ing graph sizes. 50

6.3 Average processing time for selection with increasing graph sizes. 51
6.4 Average processing time when introducing subgraph definition

and selection. 52
6.5 Average memory utilization per machine with increasing window

size. 53

5

6

List of Tables

6.1 Parameters used in the evaluation 49
6.2 Evaluation of a temporal sequence: computing page rank at each

inputput change vs computing page rank only when the number
of edges has increased by at least 10 in the last 10 minutes. . . . 54

7

8

Chapter 1

Introduction

Many application scenarios involve relations between entities that are natu-
rally modeled as graph-based data structures. Prominent examples are: social
networks, where users are connected to each other by some “friendship” or “fol-
lower” relation; maps, where locations are connected by roads; online stores,
where products are associated with customers who buy and review them; or
even the World Wide Web, where pages are connected by links. In virtually
all these scenarios, the graph structure evolves over time with the addition and
removal of entities as well as changes in their relations. For instance, in social
networks new posts are constantly added and they relate to existing ones as well
as to users that read, comment, and forward them.

In these contexts, common problems entail capturing and understanding the
temporal evolution of the graph and its properties, thus enabling timely reac-
tions when required. For instance, understanding the evolution of communities
of users in social networks can help customize the interface to improve user ex-
perience, and also propose more suitable advertisements. Similarly, observing
the relations between users and products over time in online stores can lead to
better recommendations and increase profit.

Studying the evolution of large-scale graphs over time is very challenging. On
the one hand, many algorithms that extract relevant information from graphs,
such as communities in social networks, are iterative in nature and computa-
tionally expensive. On the other hand, graph changes can occur frequently, so
they must be analyzed with low latency to keep up with their arrival rate.

Unfortunately, existing frameworks for large-scale data processing do not
meet these requirements. Graph processing systems [37] enable scalable dis-
tributed graph computations through a programming paradigm known as think
like a vertex (TLAV) [52], introduced in 2010 with the Pregel system [46]. TLAV
exploits a bulk synchronous parallel programming model, where the computa-
tion is split into supersteps (epochs): at each superstep, a vertex can perform
some computation that changes its internal state and/or send messages to other
vertices. This vertex-centric computing paradigm simplifies the distribution of
state and computation over multiple processing nodes, but only refers to static
graphs that do not change over time.

Stream processing systems analyze dynamic data as it becomes available, to
derive relevant information and enable timely reactions [20, 24]. Modern big
data processing platforms such as Apache Spark Streaming [85] and Apache

9

Flink [16] offer stream processing capabilities by implementing functional oper-
ators that transform input streams into output streams. A stream processing
job is represented as a workflow of such operators, which are then deployed over
multiple processing nodes. However, operators are designed to only store the
state that is strictly needed to compute the desired results and offer limited or
no support for updating large-scale data stores, as required to store graph data.

In summary, despite some initial studies [55, 35, 22], the problem of defining
a programming abstraction and processing framework to analyze the evolution
of large-scale graphs remains open.

In this paper, we tackle this problem by introducing a novel programming
model that integrates the TLAV graph processing paradigm with the temporal
pattern detection capabilities of stream processing systems, and in particular of
Complex Event Recognition (CER) systems [8, 27]. In our model, vertex-centric
computations determine the values of properties associated with vertices and
edges. Users can define temporal patterns that predicate on vertices, edges, and
the values of their properties at different points in time.

We present the model in detail using intuitive examples and provide a formal
definition of its semantics. We discuss the implementation of the model in
FlowGraph, a distributed processing framework to detect temporal patterns in
large-scale graphs. FlowGraph distributes the graph structure across multiple
nodes that contribute to the computation and store partial results for pattern
detection. It exploits temporal properties within patterns to defer the execution
of expensive computations, to sustain a high rate of changes.

We conduct a thorough evaluation of FlowGraph under different workloads.
Our results show that FlowGraph provides a level of performance on par with
state-of-the-art tools when considering static graph processing. Furthermore, it
can exploit temporal patterns to further reduce processing time when possible.

The remainder of this paper is organized as follows. Chapter 2 presents
background information and motivates our work. Chapter 3 introduces our data
and processing model, and Chapter 4 provides their formal semantics. Chapter 5
illustrates the design and implementation of FlowGraph, and Chapter 6 evaluates
its performance. Chapter 7 surveys work that is related to our proposal. Finally,
Chapter 8 provides some conclusive remarks, suggesting possible future research
directions.

10

Chapter 2

State of the Art

Our work is at the intersection of two research fields: graph processing and
stream processing (in particular, pattern recognition over streams of events).
Objective of this chapter is to provide a brief overview on the current state of
research on Data-Intensive models and to show why a new model is advisable
to analyze graphs evolution.

2.1 Graph Processing

Graph processing becomes challenging as graphs grow in scale. The processing
of such large scale graphs cannot be handled with traditional mainstream par-
allel computation algorithms [45]. For example, social networks with billions
of users and interactions could not fit in a single machine memory. A com-
mon approach is to partition the graph on a cluster of machines and process it.
In other applications, graph are an intermediate representation of an extensive
distributed pipeline, employed due to their characteristic of model entities and
their relations. Also in this case data is partitioned in order to limiting data
transfer, thus time cost.

Therefore, writing distributed graph application is inherently hard because
it requires to deal with execution parallelization, data partitioning and commu-
nication management among cluster machines.

These challenges has found the interest of both industry and academic com-
munity that have produced a notable set of researches and papers on distributed
graph processing in the last years.

In this section we present several popular high-level programming abstrac-
tion [37] and architectural choices for graph processing.

2.1.1 Vertex-Centric abstractions

Vertex-centric model is also known as think like a vertex (TLAV) or vertex-
oriented, it is the established approach to design scalable distributed graph
computations [52], and was introduced in 2010 with the Pregel system [46].

Many variants of TLAV graph processing model exist. For instance, some
systems introduce multiple phases within each superstep, as in Scatter-Gather
approach [60] and the gather-apply-scatter (GAS) model [28].

11

Vertex-centric

TLAV forces the user to express the computation from the point of view of
vertex. It requires a static graph in which unique-ID vertices has local state
values and the list of out-going edges with local values. The model is defined
on oriented graphs, but it can be extended to undirected ones.

Pregel computation is Bulk-Synchronous-Parallel (BSP) [26, 75], therefore
the entire computation can be split into phases, synchronized by synchronization
barriers, also called superstep. BSP relies on a master-slave architecture for
synchronization.

User defines a vertex-centric function, also called kernel that takes as input
the state of current node, superstep number, the list of outgoing edges and the
list of incoming messages to the node. Kernel can modify vertex values and it
yields the set of messages directed to outgoing edges.

Vertices can be active or inactive. Inside each superstep, kernel function is
executed in parallel on each active vertex. Initially, all vertices are active. Ver-
tices can vote to halt computation becoming inactive. Inactive vertices becomes
active if they receive any message. Vertex-centric function is applied only to
active ones. Overall computation terminates when all vertices, for all superstep
execution, does not produce any message and all nodes has become inactive.
The final result of computation is the set of vertex values at the end of last iter-
ation. We provide an algorithmic view of the described vertex-centric semantic
model:

Algorithm 1: Vertex-Centric model

1 input: G(V, E)
2 verticesactive ← V
3 step← 0
4 while verticesactive! = Empty do
5 outbox← Empty
6 foreach v ∈ verticesactive do
7 inboxv ← getMessages(inbox, v)
8 if inboxv.hasMessages()||step == 0 then
9 outbox+ : compute(v, inboxv)

10 end

11 end
12 inbox← setInbox(outbox)
13 step← step + 1

14 end

To exemplify vertex-centric semantic model presenting Google PageRank in
Figure 2.1. PageRank is based on the assumption that more important websites
are likely to receive more links from other websites. Thus, it estimates the
importance of a website by counting the number and quality of links (edges) to
a page (vertex). Calling Inv the set of vertices with an edge pointing to v and
D(i) the outdegree of i, PageRank is defined on vertex v as

PageRank(v) =
0.15

nvertices
+ 0.85 ∗

∑
i∈Inv

PageRank(i)

D(i)

12

Figure 2.1: Example of first 2 iterations of PageRank [46] execution on a 3
vertices graph.

Each vertex associated PageRank value is initially set to 1/nvertices and
PageRank/D(i) is sent on outgoing edges (Figure 2.1, Superstep 0). From
Superstep 1, PageRank value is updated according to definition, aggregating
values from incoming edges and spreading updated PageRank/D(i) on outgoing
edges. Vertex rank converges after several iterations [46].

Scatter-gather

With Scatter-Gather approach user has to implement two higher-order functions
(scatter and gather). Both are executed on each active node inside a superstep.

Scatter function, executed in scatter phase, define the messages that will be
sent along out-going edges. Scatter function takes as input vertex and return
the list of messages to be sent. Gather function, executed in gather phase, takes
as input vertex state as well as input messages returning an updated state of
vertex values.

As in vertex-centric model, the two higher order functions are executed on
the set of active nodes. All graph vertices are active in the first iteration, while
only vertices with incoming messages are active from the second iteration (non-
active nodes are inactive). Computation halts when all vertices has become
inactive, so when no messages are sent inside the superstep.

Thus, the main difference of Scatter-Gather model with respect to vertex-
centric one is the separation of receiving (gather) and sending (scatter) phases
of messages on single vertex inside the superstep, not allowing sending messages
during gather function execution and forbidding to access incoming messages in
scatter phase.

Separating the two phases can make some programs easier to read, but it can
also positively impact memory requirements, since it doesn’t need concurrent

13

Algorithm 2: Scatter-Gather model

1 input: G(V, E)
2 verticesactive ← V
3 step← 0
4 while verticesactive! = Empty do
5 outbox← Empty
6 foreach v ∈ verticesactive do
7 if inboxv.hasMessages()||step == 0 then
8 outbox+ : scatter(v, inboxv)
9 end

10 v.state+ : gather(inboxv, v)

11 end
12 step← step + 1

13 end

access both on inbox and outbox data structures. On the other hand, separat-
ing the two phases, all algorithms that send messages based on the content of
received ones, will requires to store a partial result from gather phase locally to
the vertex in order to retrieve it later in scatter phase, making algorithm harder
to understand and forcing more I/O operations to store and retrieve values [60].

GAS

Finally, GAS model, introduced for the first time in Powergraph [28], distinguish
between four phases: Gather, sum, Apply and Scatter.

In this case, gather function is not defined at vertex level but at incoming-
edge level, in other words, inside the same superstep, it is executed for each
incoming edge. Results of edges computations are collected in the next phase
by sum function, that it is required to be associative and commutative. The
result of sum and the state of vertex are passed to apply function that compute
new vertex values. At the end of sum phase, scatter phase execute a user-defined
function that sends new messages along outgoing edges, based on updated vertex
state.

Applying gather phase on edges, as happen in GAS model, it is possible to
parallelize computation on edges mitigating the problem of degree skew, typical
of the majority of real graphs (high-degree vertices usually takes more execution
time creating a computational imbalance behaving as stragglers).

If an algorithm cannot be decomposed in GAS steps with an associative and
commutative sum, implementation can just behave as a mere emulation of a
vertex-centric computation loosing benefits on skew mitigation but continuing
to pay higher overheads in memory and communication, due to the handling of
more algorithm phases. Therefore, some studies propose a differentiated vertex
computation model in which vertex-centric is applied to low-degree vertices while
GAS is preferred with high-degree ones [17].

14

Algorithm 3: GAS model

1 input: G(V, E)
2 verticesactive ← inputV ertices
3 step← 0
4 while verticesactive! = Empty do
5 foreach v ∈ verticesactive do
6 foreach e ∈ v.incomingEdge do
7 aggregatev ← sum(aggregatev, gather(v, inboxv, e))
8 end
9 v.state+ : apply(aggregate, v)

10 outbox+ : scatter(aggregate, v)

11 end
12 inbox← setInbox(outbox)
13 step← step + 1

14 end

Subgrap-centric

Other models provide subgraph-centric primitives that enable asynchronous evo-
lution of subgraphs to some degree [70, 33], or mimic shared memory program-
ming abstractions to ease the development of algorithms [44].

Subgraph-centric models extends the concept of vertex-centric model to
subgraphs, considering subgraph the target of user-defined function. In other
worlds, kernel function is applied to the entire subgraph instead of single vertex,
without changing the semantic.

The most common subgraph-centric model is partition-centric. With this
approach, subgraph taken as target of kernel correspond to graph partition. The
main advantage of this approach is the reduction of communication overhead
allowing kernel to access all vertices in the same partition at once avoiding
message passing on local memory scope. All vertices that are not part of current
partition but that are referenced by outgoing edges from partition’s vertices are
called boundary vertices. Boundary vertices provide a local copy of vertex value
that will be kept updated from the partition in which vertex reside.

Subgraph-centric models are able to save communication time if partitioning
are formed in order to minimize edge cuts, however it looses its performance
benefits with respect to vertex-centric approach if the graph is poorly parti-
tioned.

Furthermore, for most of users and graph computations, TLAV approach is
more intuitive rather than Think Like A Partition model.

2.1.2 Other programming abstractions

Research community provides some less known or adopted alternatives to vertex-
centric or subgraph-centric approaches. We will review briefly some of them for
completeness.

15

Graph Traversals

Implemented by The Gremling [63] graph traversal machine in Apache Tinker-
pop, it provides distributed traversals with a Bulk Synchronous Parallel compu-
tational model.

Traversers are modeled as messages and walks throughout a graph one time
for each superstep. Vertices receives traversers, execute a user defined function
and optionally generates new traversers. Halted traversers are stored in vertex
attributes and the entire computation halts when no traversers are generated in
the last superstep.

Filter-Process

Proposed in Arabesque system [74], it basically consists into two functions: filter
and process.

Filter function detect and select, from the input graph, the subgraph (also
called embedding) that become the target of process function. Process execute
a function on the embedding and optionally produce an output.

Computation is performed in several steps, following a BSP execution model.
In the first exploration step the candidate set contains all vertices (or edges) of
the input graph. From the second superstep, input-set is formed from selected
set of the previous superstep and the computations halts when no more embed-
ding have to be extended.

This model is well-suited for graph pattern mining problems as spam de-
tection and semantic data processing that are challenging to be express with a
vertex-centric model.

2.1.3 Timing

In graph processing, execution models, as presented in 2.1.1, are uncouple from
timing and scheduling logic.

Timing models define the order for active vertices execution. There are three
main models [52]: synchronous, asynchronous, hybrid

Synchronous

Based on Bulk-Synchronous-Parallel (BSP) [26, 75], it enables active vertices
to be executed in parallel within a superstep, thus no assumption on execution
order can be made inside the superstep. Master handles the global synchroniza-
tion barrier that guarantee no worker can begin a new superstep before the end
of the previous one.

Synchronous systems are conceptually simpler imposing determinism in the
number of steps, message exchanges and results. They also demonstrate to be
scalable with respect to number of vertices [46].

Synchronization imposes some performance drawbacks. For instance, on
shortest-path algorithm, it has been observed that 80% of total running time has
been taken by synchronization overhead on a partitioned graph execution [71].
In general, iterative algorithms particularly suffer the straggler problem (sec-
tion 13).

16

Asynchronous

With asynchronous model, synchronization barriers are not present, allowing
scheduler to dynamically generate and change execution schedules. This solution
solve the straggler problem increasing resource utilization, especially with I/O
bound and imbalance algorithm [81].

This model is more complex to manage and optimize, algorithms are less
intuitive to write and follow, also due to an usual non-determinism in execution.
Also results could converge to different values for different executions. Usually,
asynchronous execution is implemented in shared-memory systems models and
it also requires to manage data-race conditions [79].

Hybrid

Hybrid systems try to take advantage of both timing models. Rather than a
model, hybrid could be considered as a set of solutions and strategies that may
be rather different from each others.

One strategy to reduce the cost of global synchronization imposed by barriers
are pseudo-supersteps [61], that allows to decompose the global superstep into
several intermediate steps, usually local to partition.

Other strategies rely on the idea of taking advantage of asynchronous exe-
cution and dynamic scheduling, inside the single graph partition between two
synchronization barriers. This is a design choice for partition-centric model
(see section 14). In this case, barrier execute a synchronous step on boundary
nodes and requires user definition of two kernel functions, one for synchronous
superstep, the other for asynchronous local execution [79].

Finally, some systems overcome straggler problem converging asynchronously
after several synchronous iterations [79].

It has been proved that hybrid models can reach performance comparable
to asynchronous ones, but they remains more complicated to study and observe
with respect to synchronous model [79].

2.1.4 Partitioning and Communication

A common problem in graph processing is how to split a large-scale graph into
parts, to be placed in a distributed memory. In other words, how to partition a
graph. As already mentioned (see section 14), good partitioning could leads to
better performance [65, 76]. Good partitioning should evenly distribute work-
load among workers minimizing communication efforts, thus reducing edges or
vertices cuts and message exchanged between partitions maximizing data lo-
cality. The K-way graph partitioning problem is NP-complete [4] but there are
some strategies and heuristics that allows to improve partitions quality such as
METIS algorithms suite [39].

METIS may allow to obtain near-optimal partitioning in TLAV frameworks
but it usually requires long pre-processing phase to calculate and reallocate ver-
tices on partitions. Consequently, this solution may not fit the majority of ap-
plications, especially on large scale, highly-connected graphs. Some distributed
heuristics has been built on this METIS that proved to speed up particular
classes of graph computations [62].

17

Some frameworks support dynamic re-partitioning strategies for vertices in
order to mitigate computational imbalance. Dynamic re-partitioning poses dif-
ferent issues, from the selection of vertices to move, on the implementation of
a logic that define in which moment and toward which destination move ver-
tices and the guarantee of reachability before and after the relocation by all
system workers [65]. This set of techniques proved to reduce network I/O but
introducing a computational overhead that usually overcome benefits [57].

Another common approach, to decrease data communication between work-
ers is graph partitioning by edges instead of vertices, creating duplicates of bor-
der vertices. Values of duplicated vertices are kept consistent by framework [29].

Another problem, bounded with partitioning, is communication, in other
terms how data is shared between vertex programs.

The most common communication model in TLAV framework is message
passing. A message is composed by message data and destination address, more-
over destination is obtained from the set of vertex outgoing edges. At the end
of iteration, generated messages are dispatched by worker toward destination
inboxes, that can be on the same or different partitions [46].

An improvement to this solution is message-batching, in which generated
messages are collected in a buffer and sent as soon as its size reaches a threshold,
otherwise at the end of superstep. This solution not only improve performance
increasing network efficiency, but it also allows to decrease memory requirements
of synchronous computations [66].

Some frameworks also implements a combiner in order to de-duplicate re-
peated messages sent to different destinations reducing network usage. Com-
biner operations can be decomposed into two steps: (i) sender-side aggrega-
tion combines repeated messages value into one and (ii) receiver-side scattering
scatters message on receiver side, forwarding a copy of the message for each
destination.

Single machines frameworks usually benefit most from a shared-memory
model, in which vertex program kernel can directly access and modify all vertices
in the scope [69]. This solution have to guarantee consistency and avoidance of
data-race conditions that are instead intrinsic in synchronous message passing
model.

2.2 Stream Processing

Traditional DBMS, also known as Human-Active Database-Passive (HADP)
systems, become unfit for a rising number of modern applications that require to
analyze large amount of dynamic data generated as a continuous dataflow from
different distributed sources. In particular, traditional DBMS are limited by the
need of storage and indexing of incoming data before running any execution on
it and the need to trigger the execution from an external, asynchronous (human)
entity. Many evolutions as well as different models has been proposed in the
last decades [20] and we will review briefly them pointing out their application
fields and limits.

A first step forward came from active databases [51]. They allow to auto-
matically execute a set of actions on data as a given condition is matched. This
behavior, also known as reactive is based on the general event-condition-action
Knowledge Model [58] that defines which kind of event to take into account

18

Figure 2.2: Babu and Widom proposed architecture for Continuous Stream
Processing

and which condition the selected event have to satisfy in order to trigger the
execution of a user defined SQL action. This solution allows to automate data
processing but is unable to overcome the limitation posed by a single logical
persistent storage with respect to the possibility to handle frequent events.

In this context, Data Stream Management Systems (DSMSs) [9] offers a
different model, based on continuous queries, that, once deployed, can produce
results processing continuous data stream.

The general architecture for DSMS model, as defined by Babu and Widom [10]
is provided in Figure 2.2. This model requires as assumption the definition of
queries over data streams only but it can be extended to include conventional
relational symbols. Any time an incoming tuple t is notified to query Q, the
latter can take several actions based on t : it can update answer A appending
new tuples to stream of responses or updating Store (data-structure designed
to store information that belongs only temporary to answer A), it also may put
t, or data derived from t, into Scratch. Scratch collects data that isn’t part of
solution but that can be retrieved later. Finally we can discharge useless data
sending it to Throw. Therefore, query Q consumes input token and it can access
and modify data from Store and Scratch memory.

An improved triggering model for active databases has been proposed by
Babu and Widom, based on Alert approach. Continuous queries are allowed on
event streams together with conventional tables. Stream and store, composing
the Answer, may remain empty if trigger’s conditions aren’t fulfilled, otherwise
the generated SQL action itself is appended to answer stream. Employing this
approach for triggering, it is possible to express complex multi-table events and
conditions as well as benefit from efficient data management and processing
techniques that have been developed for continuous queries [10].

Closely linked to DSMS concept of continuous queries, from the perspective
of programming language paradigm, dataflow programming abstraction largely
found adoptions in Batch and Stream Computing such as Internet of Things,
mobile, clickstream, sensors and market analytic fields [40].

Dataflow Architecture Dataflow programming paradigm, also called datas-
tream, provides a programming architecture abstraction to model programs as
directed graphs in which data flows between operators.

19

Figure 2.3: Dataflow example of (a) parallel instructions written in pseudocode
and (b) the corresponding dataflow graph.

Arcs represent the data dependencies between operators and behave as an
unbounded First-In First-Out (FIFO) queue while each node is an operator
that may be a single instructions [41] or a section of sequential instructions [42].
An example of dataflow is provided in Figure 2.3. Arcs entering a node are
called input arcs, while arcs exiting the node are output ones. Firing set for
an operator is the set of input arcs that have to provide data to feed operator.
When firing set has data ready to be process for all its arcs, operator become
firable and system can schedule its execution. Execution consumes data from
firing set, process it according to operator logic and eventually produce new data
on one or more output arcs. Finally, operator terminate and wait to become
firable again [36].

A programming language supporting dataflow architecture should be able
to expose graph and data dependencies. Despite data dependencies may be
expressed in all classes of languages, they tend to infer different degrees of
parallelism [36]. According to Wail and Abranson [78], a dataflow programming
language should be (i) free from side effects, (ii) effects should be local, (iii) data
dependencies should impose the scheduling, (iv) variables cannot be reassigned,
(v) an ad-hoc notation for iterations is needed and (vi) operators shouldn’t be
sensible to procedure’s history. Given these principles, functional programming
has gain popularity in this context due their characteristics of avoiding side
effects and reassignments, while imperative paradigm is often used to express
loops [78].

2.2.1 MapReduce

Stream processing approach has been widely employed to develop many cluster
computing frameworks such as MapReduce [61]. These systems let the user to
write parallel computations extending a set of higher-order operators. Higher-
order operators have to be customized to implement operator logic. In MapRe-
duce data tokens are in form of key-value pairs and there are a fixed set of
higher-order operators to extends, some of them are: (i) input reader that takes
as input key-value token, (ii) map operator that takes as input a series of tokens,
eventually returning a new token for each of them, (iii) partition operator to
control data distribution, (iv) reduce operator that eventually produce a sin-
gle token analyzing the entire stream and (v) output writer that define system
sinks. MapReduce programming model with higher-order functional interfaces

20

has been widely adopted in modern big-data frameworks [20].

It can be demostrated that MapReduce is able to emulate arbitrary dis-
tributed computation. In fact, a generic distribute computation can be seen as
the composition of two classes of operation: (i) one is the computation local to
a computing node, that can be modeled by a map; (ii) the other is occasionally
exchange of messages between nodes, that can be modeled with a reduce. Thus,
the distributed computation could be modeled with a BSP [75] model in which
each reduce, behaving as synchronization barrier, collect the entire computation
state and messages that nodes have to exchange, redistributing them in follow-
ing superstep. However, writing-out the entire state after each step could be
inefficient resulting in high latency and network bottleneck [86].

While MapReduce framework has proven to provide a parallel and scalable
solution for a large set of batch processing, scaling out computation to multiple
nodes, it is not sufficient by itself to cover the diversity of computing workload
that characterize modern applications as iterative graph processing or interac-
tive SQL-like queries.

2.2.2 Spark

As mentioned in 2.2.1, MapReduce model could potentially emulate any dis-
tributed computation, but it may be inefficient for many types of workloads.
On the other hand, most of big-data applications need to handle different work-
loads in the same application. One common solution is to pipeline different
specialized frameworks, each one addressing one specific computation workload.
For example, MapReduce can be used to load and preprocess a dataset that
will be fed as input to an interactive SQL queries system, on top of which some
specialized machine learning framework can perform iterative ML computa-
tions. This kind of approach may result in many complexities and inefficiencies.
Firstly, users need to interface different systems and run different distributed
frameworks. Secondly, I/O operations require the storage and retrieval of inter-
mediate results increasing in latency and network usage [86].

Spark tries to overcome the above mentioned limitation providing a MapRe-
duce model over Resilient Distributed Dataset (RDD) [83] abstraction. RDDs
are immutable, fault tolerant collections of data, partitioned across a cluster
that can allow parallel data processing.

User controls driver program in which he defines operations on RDDs. Spark
API provides Spark Context to interface driver with the Spark Cluster (Fig-
ure 2.4). Spark program, also called Job, is submitted to Spark Cluster Manager
that controls cluster resources. Job is converted into its corresponding Directed
Acyclic Graph (DAG) to determine RDD dependencies and optimize execution
plan. The resulting execution plan is composed of a set of tasks. Spark Sched-
uler schedules tasks on cluster executors coordinating the distributed execution.
Finally, computation results are sent back to user program.

Any change in RDD data as well as any transformation applied to an RDD
will result in the definition and re-build of a new RDD [83]. However, RDD per-
mits to leverage distributed memory, shifting the computation as local to data as
possible, also allowing local storage and the use of intermediate results through
caching mechanisms. Data reuse is common in many iterative machine learning
and graph algorithms. For example, PageRank stores intermediate computed

21

Figure 2.4: Spark cluster composed of two workers machines serving one driver.

Figure 2.5: SparkStreaming library collects continuous inputs streams in data
batches every 120ms before processing

Rank to retrieve it in the following iteration. Data sharing, among different
iterations, provides large speedups also in interactive queries algorithms [82].

Users can operate on RDD using Spark functional programming API to
define functions that will be passed to Spark Cluster. The chain of higher-
order functions will be optimized and the corresponding execution DAG dy-
namically scheduled. Finally, the result is returned to client. Spark lazily eval-
uates RDDs finding an efficient dataflow plan through operation reordering and
grouping [85].

It is possible, with the use of RDDs, to build a variety of higher level li-
braries targeting many of specialized computing engines use cases. Spark en-
ables to potentially express any distributed computation since it provides a
complete MapReduce model. It has been demonstrated that RDDs, giving ap-
plications control over common bottle-neck resources in clusters—network and
storage I/O, make it possible to mimic most of optimizations that characterize
specialized systems reaching comparable performances [83].

Spark provides a set of libraries to operate with different classes of dataflow,
each one presenting a higher abstraction of data-structures and operations based
on underling RDDs dataflow (Figure 2.6 (A)).

• SparkSQL [6] provides a relational queries pararadigm with cost-based
optimization of queries. Data is organized in dataframes that are RDDs
of records structured in tabular layout.

• Spark Streaming [85], exemplified in Figure 2.5, is based on the concept
of discretized streams. Data stream is split in small chunks on time basis.

22

Figure 2.6: Framework component stack comparison between Spark (A) and
Flink (B). Spark provides a compatibility library to handle DataStreams while
Flink naively support DataStream computation.

Standard collecting window is 200 ms. As time wall is reached, batch is
sent into the system and, combined with RDDs state, it produces results.

• GraphX [29] is the library dedicated to graph processing. General-purpose
join and aggregation strategies do not leverage the common patterns and
structure in iterative graph algorithms and therefore they may miss impor-
tant optimization opportunities. Thus, despite graph dataset is stored on
top of RDDs, GraphX implements many graph processing optimizations
and takes advantage of peculiar data locality of graphs. GraphX imple-
ments Pregel model and optimizations such as GAS approach, advanced
partitioning strategies and messages aggregations. It also proved to scale
and perform on par with many specialized graph processing solutions.

• MLlib [86] provides the implementation of several machine learning algo-
rithms for distributed model training.

Despite implementation of data stream processing applications is possible, it
may suffer from limitations from high latency and performance constraints, due
to batching strategies and immutability of RDD. Moreover, Spark lacks of notion
of time and windowing techniques that are typical of some stream applications.
These characteristics, in spite of allowing some batching optimizations, make
Spark unfit to fulfil some application domains as real time continuous streams of
data. In general, RDDs are less suitable in handling asynchronous, fine-grained
updates to shared state [83].

2.2.3 Flink

While batch processing has as target to optimize throughput and scalability of
high volumes of static data, stream oriented models focus on lowering latency
for application in which response time is an important factor. Trade-off between
the two classes of models has been studied and it has been proposed an hybrid
architectural pattern called lambda architecture [49]. The idea is to convey
datastream through two different paths for computation: a fast one for a timely

23

approximated result and the other for a batch offline computation to get late, but
accurate, results. Still, this solution, implemented in several batching systems,
suffers from high latencies imposed by stream batching and it adds complexity
by the need of handling two parallel systems.

Apache Flink [16] is an open-source system for processing streams and batch
data. It allows to deploy any application that can be expressed as a pipelined
fault-tolerant dataflow. Therefore, as Spark, it includes processing of historic
data in batches and executing of iterative algorithms typical of graph-processing
and machine learning application. Furthermore, with respect to Spark, it also
supports applications of real-time analytic and continuous data pipelines in a
time awareness fashion that addresses the continuous timely nature of produced
data.

Flink processing and execution models make no distinction between real-time
processing of latest events and historical data, offering a unified data stream
processing model for both continuous streams and batches. Flink also offers a
flexible windowing mechanism for events based on time that allows to perform
both early approximate as well as delayed and accurate results.

A runtime program can be modeled as an Acyclic Directed Graph (DAG) in
which stateful operators are connected by streams. Flink cluster is essentially
a master-slave architecture in which a client application receives user defined
program code, transforms it into a corresponding dataflow and submits it to
JobManager (master). The latter schedules and coordinates the distributed
execution controlling TaskManagers (slaves) that execute one or more operators
and use network connections to exchange data streams between operators.

Batch processing is modeled as a stream processing on bounded streams
where ordering and time of records does not matter. Thus, records are theoreti-
cally considered all in the same time window. Therefore, batch processing has an
extended API that allows operations like joining and grouping and implements
dedicated scheduling strategies. For this reason, users can decide between two
different core API (Figure 2.6 (b)): a (i) Datastream API for a timely process of
potentially unbounded datastreams with time windowing and stateful operators;
and a (ii) Dataset API for batch computation. On top of them, Flink provides
higher-order libraries for machine learning, SQL-like queries, graph processing
(called Gelly) and Complex Event Recognition support.

In datastreams, time can be defined as event time (or source time) that
represents the generation time of an event or processing time (and ingestion
time) that represent the wall-clock time of the machine that is starting process-
ing (or is receiving) the incoming event. Event and processing time may differ
arbitrary [3], moreover, considering event time, incoming events may arrive out-
of-order, thus Flink implements a watermark strategy to keep track of global
system progresses and ditch too delayed events. On the other hand, opting for
processing time guarantees lower latency since incoming streams are considered
in-order and there is no need to wait for possible out-of-order events.

2.2.4 Iterative dataflow

The problem of efficient iteration in data-parallel processing frameworks has
been addressed by different strategies. Common MapReduce frameworks, as
Hadoop [13], do not provide explicit support for iterations and they suffer from
performance degradation in case of iterative steps emulations [15] since a new

24

Figure 2.7: Example of Flink feedback-edge stream in which data produced in
current iteration by execution DAG is back-forwarded to feed the next step.

iteration will result in the submission of an entire new job and data reshuffle
across partitions.

Haloop extends the Hadoop framework to offer an efficient loop-aware im-
plementation by handling loop control and offering a programming interface
to express iterations. It optimizes data reuse across iterations and minimizes
reshuffling, caching and indexing of local data [13].

Spark allows to express loop through common iterative constructs like for
and while. This iterative definition will result in the addition of operators to the
running DAG. Spark’s loops require to write intermediate computation state
on new RDD [84]. RDDs have caching optimizations to store and retrieve
intermediate results between iterations minimizing data reshuffling.

Flink uses feedback edges [56] strategy in which iterations steps are special
operators that can contain an execution DAG. This allows to maintain a DAG-
based runtime and scheduler in which tail and head tasks interact explicitly
connected by feedback edges, as shown in Figure 2.7. A feedback stream con-
nects the output of previous iteration with the input of the following one. For
batch iterations, Flink allows to implement structured iteration logic using it-
eration control events [16]. Flink also introduces the concept of delta iterations,
a form of explicit incremental iteration, that address the problem of immutable
state, exploiting the sparse computational dependencies inherent in many iter-
ative algorithms as in graphs processing [25].

2.2.5 Graph processing on top of Stream Processing

As we have seen in 2.2.4, dataflow is a suitable model to express iterations and
graph processing algorithms and we also have seen in 2.2.2 and 2.2.3 how modern
dataflow framework offers efficient graph processing libraries [29] [16] that allow
to express different kind of structured iteration logic, such as BSP [75] taking
advantage of sparse computational dependencies and maximizing data locality
and reuse.

Although these systems have shown good scaling properties in analysis of
static graphs, they are not designed to analyse the evolution of graphs over time.
For instance, GraphX’s immutable nature of RDD requires to re-instantiate
data-structures also on fine grain graph update. Gelly, on the other hand,

25

Figure 2.8: Complex Event Recognition (CER) representation showing dis-
tributed agents connected by an overlay network (solid arcs) and input and
output system streams of events (dashed oriented arcs)

supports graphs updates but still does not provide a flexible timely model to
study evolution for graph properties and topology.

2.2.6 Complex Event Recognition

Complex Event Recognition (CER) tries to offer a representation of datastream
in which each data token has an associated semantic. Thus, incoming data
tokens from external world, generated by event observers, are expressed as no-
tification of events. CER system filters and combines events in order to identify
and notify, as complex events, pattern of notifications interesting for the specific
application. Finally, sinks are event consumers that collect those events that
represent CER system output.

Inside, a CER system (Figure 2.8) could be seen as a network of event
processing agents, connected through the event processing network. The sys-
tem employs specialized routing and forwarding strategies to guarantee efficient
processing of heterogeneous data sources and scalability.

CER processors was initially based on message-oriented publish-subscribe
interaction model in which users define the information they are interest in and
for which they want to be notified [64]. This model has been extended to allow
the combination of events into composite ones.

Information can be filtered and combined expressing a subscription in terms
of event topic or based on the content of subscription. In the former case, topic-
based subscription model allows user to select the class of event they want filter
choosing it from a predefined set of topics [64]. In the latter case, content-based
filtering allows to select information also relying on the content of event notifi-
cations [2]. CER systems focus their attention on detection of event patterns
based both on their content as well as ordering and sequencing relationship [19].

Different formalisms have been proposed for pattern specification and recog-
nition [8, 27], ranging from regular expressions/timed automata [80, 14] to op-
erator trees [54] and logic formulas [7, 19].

26

2.3 Motivations

As we have seen seen in Section 2.1, the established approach to design scalable
distributed graph computations is known as think like a vertex (TLAV) [52].
Many variants of this model exist. For instance, some systems introduce multiple
phases within each superstep, as in the gather-apply-scatter (GAS) model [28],
others provide subgraph-centric primitives that enable asynchronous evolution
of subgraphs to some degree [70, 33], or mimic shared memory programming
abstractions to ease the development of algorithms [44].

In Section 2.2, we have analyzed stream processing systems and big-data
processing platforms as MapReduce [61], Apache Flink [16] and Apache Spark
Streaming [85]. Stream processing involves the analysis of dynamic data as it
becomes available, to derive relevant information and enable timely reactions.
Depending on the desired output, different programming models exist [20]. An-
other processing model, named Complex Event Recognition (CER) [24], looks
for temporal patterns in the streams of input data.

Graph processing systems are designed to handle static graphs. In this con-
text, they aim to provide processing efficiency, in terms of time to completion
and use of resources, and scalability on the size of the graph. On the other hand,
stream processing systems focus on streaming data and offer limited support for
integrating static data stores, since they only manage the state that is needed
to compute the desired results, such as window contents or partially recognized
patterns.

2.3.1 Objective

In this work, we build on the CER model—recognition of temporal patterns—
and augment it to support graph-shaped state and graph computations. We
adopt a logic formalism that seamlessly integrates graph computations as pred-
icates of the language. We present a prototype pattern recognition system that
stores the graph state into the main memory of multiple machines, implements
graph computations using TLAV algorithms, and distributes the state and pro-
cessing associated with pattern recognition as much as possible.

27

28

Chapter 3

Data and Processing Model

Figure 3.1 shows a conceptual overview of the FlowGraph data and processing
model. FlowGraph stores a graph that continuously evolves over time according
to a stream of input changes. Users install patterns that predicate on the
temporal evolution of the graph, and FlowGraph notifies them whenever one of
the installed patterns occur.

FlowGraph adopts an event-time model [3] where input changes carry a times-
tamp that indicates the point in time in which they take place from the perspec-
tive of the sources. We assume that input changes are received in timestamp
order.1

FlowGraph provides a high-level language to define patterns. This section
introduces the language features by examples while the following Chapter 4
formalizes their semantics.

3.1 Data model

The FlowGraph data model is grounded in labeled graphs, where each vertex
and edge has associated properties (labels) in the form of key-value pairs. We
also refer to the set of labels of a vertex or edge as the state of that vertex or
edge. For instance, in a social media application, vertices can represent users

1Assumptions and mechanisms to cope with out-of-order arrivals of events have been dis-
cussed in the past and can be adopted to ensure this property [72].

Changes

Patterns

Patterns
Detections

Figure 3.1: FlowGraph data and processing model overview.

29

and edges the relations among them. In this context, the labels associated with
vertices can indicate properties of users, such as their name, nationality, and
age, and the labels associated with edges can represent the type of relation.

Labels and their values can be set explicitly or derive from computations.
For instance, a clustering or community detection algorithm can label vertices
with the cluster or community they belong to.

The input stream contains time-annotated changes to the graph structure or
state: addition of new vertices and edges (with their associated labels), removal
of existing vertices and edges, or updates to the values of labels. We denote
the collective state of all vertices and edges of a graph G after applying all the
changes up to time t as the state of G at time t.

Patterns consist of one or more clauses, which are Boolean expressions that
predicate on the current and previous state of the graph. We say that a pattern
is satisfied at time t if all its clauses evaluate to true.

3.2 Processing model

Pattern evaluation is triggered by input changes: whenever a change is received,
FlowGraph evaluates all installed patterns and outputs a notification of detection
for each and every pattern that is satisfied.

Pattern clauses can refer both to the explicit values of labels in vertices and
edges, or to derived values that result from computations. They can predicate
on the state of individual vertices or edges, or to aggregated values computed
over the entire graph or parts of it. They can reference both the current state
and the state at some previous point in time, and correlate their values.

In the remainder, we incrementally present the core language constructs that
we offer to derive values from a labeled graph, and then we show how they can
be combined to form individual clauses and complete patterns.

3.2.1 Computations

To derive new values from the ones explicitly defined for vertices and edges,
FlowGraph supports vertex-centric computations, which promote parallel pro-
cessing and proved to be efficient and scalable to large graphs. Vertex-centric
computations are iterative: at each iteration each vertex updates its state and
sends out messages to neighboring vertices. Developers can start a vertex-centric
computation on a graph g using the compute primitive, which is parametric with
respect to the following three functions. These functions are executed indepen-
dently on each vertex and can augment the state of that vertex by adding more
labels and iteratively updating the values of such labels.

init(currState: VertexStateT): VertexStateT

iterate(currState: VertexStateT, edges: Set[EdgeT],

inMsgs: Iterator[MsgT], outMsgs: Set[(MsgT, EdgeT)]

): VertexStateT

end(currState: VertexStateT): VertexStateT

Function init initializes the state of each vertex before any iteration takes
place. It takes in input the state of a vertex (currState) and outputs the

30

initialized state. Function iterate defines, for each iteration, how a vertex
updates its internal state and which messages it sends out. Specifically, iterate
takes in input the current state of the vertex (currState), the set of outgoing
edges (edges), and an iterator over the set of received messages (inMsgs). It
outputs the new state of the vertex and adds outgoing messages (with the edge
they need to traverse) to the outMsgs set. Finally, function end is invoked after
the last iteration and returns the final state of each vertex.

As an example, let us consider an algorithm to compute the maximum value
for a given label. Function init initializes the current maximum to the local
value for each vertex. At the first iteration, each vertex sends out its local
value for that label. At each subsequent iteration, a vertex updates its current
view of the maximum based on the incoming messages. If its view changes
after receiving a message with a larger value, then the node sends out the new
value on all its outgoing edges. If the graph is connected, then eventually the
algorithm converges and all the nodes agree on the same maximum value.

Vertex-centric algorithms exist for many common problems on graphs. Flow-
Graph already includes a library of implemented algorithms as a proof of concept,
which we use for testing and benchmarking. Developers can add new algorithms
by implementing the init, iterate, and end functions. For instance we provide
an example of usage of max operator in pattern language:

g().compute(Max, $maxVal, [label=Height])

g() executes subsequent operations on the entire graph, compute invokes
a vertex-centric computation identified by first compute’s parameter while sec-
ond parameter defines the variable associated with result label (variables are ex-
plained in section 3.2.6). In square brackets, the assignment list of computation-
specific parameters.

3.2.2 Selection

FlowGraph provides selection primitives to isolate a subgraph based on the values
of labels of vertices (selectV primitive) or edges (selectE primitive). Specif-
ically, a select primitive takes in input a predicate—that is, a function that
evaluates the state of vertices or edges—and returs a Boolean value. It retains
the vertices or edges for which the function evaluates to true. The selectV

primitive also retains all and only the edges that connect selected vertices. The
selectE primitive also retains all vertices that are sources or destinations of
selected edges.

For instance, consider the computation of the shortest paths from a given
vertex: selectV might isolate the subgraph containing all the vertices whose
shortest path is below a given threshold, together with the edges that compose
the path. This is exemplified by the code snippet below. First, we compute the
shortest path tree on the graph starting from vertex v, using init(), iterate()
and end() functions defined for the shortest path algorithm. Then, we select
all vertices and edges having a value lower than 10 for label distance. Label
distance represents the link between the shortest path computation and the
subsequent selection: the computation assigns such label to each vertex in the
graph, and the selection uses the label to isolate a subgraph. The algorithms
in the standard FlowGraph library let the user customize the name of the labels

31

where they store their results, such that the results of multiple computations
do not conflict.

g().compute(ShortestPath, $distance, [fromVertex='v235'])

.selectV(distance < 10)

We may also want to select all vertices identified by at least one active

edge, where active is a property associated with edges.

g().compute(ShortestPath, $distance, [fromVertex='v235'])

.selectV(distance < 10)

.selectE(active='true')

All the primitives that work on graphs can be applied to selected subgraphs.
For instance, the following code snippet starts a community detection algorithm
only on the selected subgraph.

g().compute(ShortestPath, $distance, [fromVertex='v235'])

.selectV(distance < 10)

.compute(CommunityDetection, $community,

[numCommunities='5', type='k-clustering'])

3.2.3 Values extraction

Values extraction primitives let users refer to values of labels inside vertices
(extractV) or edges (extractE). The primitives take in input a list of labels l

and return a set of lists of values. Each list in the result set contains the values
associated with the labels in l for one vertex (in the case of extractV) or edge
(in the case of extractE) in the graph.

Each vertex and edge has an implicit and immutable label id, representing a
unique identifier that the system associates with that vertex or edge. FlowGraph
always includes id in the list of extracted labels: in this way, users always obtain
the identity of the vertex or edge as part of

the extracted values.
To exemplify values extraction, given a graph in which each node represent

a city, the following code snippet extracts all the name of cities and coordinates
that have a path of less than 1000km from Milan. Specifically, the extractV

primitive takes in input a list consisting of a single label (distance) and returns,
for each vertex in the graph, the id of that vertex and the value associated with
that label.

g().compute(ShortestPath, $distance, [fromVertex='id_milan'])

.selectV(distance < 1000)

.extractV(name, x_coord, y_coord)

3.2.4 Functional operators

In line with modern big data processing frameworks, FlowGraph provides a li-
brary of functional operators to derive new values starting from extracted ones.
Functional operators include filter, which filters the values according to a
predicate, map, which computes exactly one output element for each input ele-
ment according to a user-defined function, and flatMap, which computes zero,

32

one, or more output elements for each input element, according to a user-defined
function.

An important class of functional operators are reductions, which aggregate
all input values into a single output result. FlowGraph provides common arith-
metic reductions such as maximum, minimum, and average out-of-the-box. For
instance, the following code snippet computes the average distance from values
associated to compute result variable.

g().compute(ShortestPath, $distance, [fromVertex='v235'])

($distance)

.lessThan($distance.value, '10')

.avg($filtered.value)

3.2.5 Definition of subgraphs

FlowGraph provides primitives to identify subgraphs where vertices (subgraphByV)
or edges (subgraphByE) share common values for one or more labels. Subse-
quent operations are then applied to each and every subgraph independently.

Consider for instance the following code snippet. It first runs a community
detection algorithm that associates a community label with each and every ver-
tex. Then, it defines subgraphs having vertices that share the same value for
the community label. Finally, it extracts the set of vertices for each of these
subgraphs, and computes the cardinality of each set.

g().compute(CommunityDetection, $community,

[numCommunities='5', type='k-clustering'])

.subgraphByV($community)

.extractV()

.count()

When using subgraphByV, a subgraph contains all and only the edges having
both the source and the destination vertices in that subgraph. When using
subgraphByE, a subgraph contains all the vertices that are either source or
destination for an edge in that group: notice that this enables vertices to belong
to more than one subgraph.

3.2.6 Variables

Using the emit or compute primitives, FlowGraph defines variables to bind values
in different parts of a pattern. Variables can refer to graphs or values extracted
from computations on graphs. FlowGraph interprets tokens inside single quotes
as values (’value’) and token preceded by $ as variable names ($variable), oth-
erwise they are considered properties or labels names of graph. For instance,
the following code snippet counts the number of people older than 20 from the
largest community (or communities).

g().compute(CommunityDetection, $community,

[numCommunities='5', type='k-clustering'])

.subgraphByV($community)

.emit($communityGraphs);

33

$communityGraphs

.extractV()

.count()

.emit($communitySize);

$communitySize

.max()

.emit($maxSize);

$communityGraphs

.select($communitySize == $maxSize)

.extractV(id, age)

.selectV(age > 20)

.count()

The first part of the pattern performs community detection and groups ver-
tices according the their value for the $community label variable. It associates
such groups (graphs) with a variable $communityGraphs. Then, it computes the
number of vertices in each graph and stores it into a $communitySize variable:
this associates a different value with $communitySize for each group. Finally,
the first part of the pattern computes the maximum size of communities and
assigns it to a variable $maxSize.

This example illustrates the flexibility of variables, which can refer to graphs
(as in the case of $communityGraphs), multiple values (as in the case of
$communitySize), or a single aggregated value (as in the case of $maxSize).

The second part of the pattern refers to the three emitted variables. It starts
from the graphs in $communityGraphs and selects the one (or ones) having
maximum size. This selection makes use of the $communitySize and $maxSize

variables previously emitted. Finally, the pattern selects and counts the vertices
having a value greater than 20 for label age.

3.2.7 Temporal operators

FlowGraph lets users predicate on the temporal evolution of a graph by using
variables to refer to values at different times. Specifically, users can refer to the
value at a specific point in time (relative to the evaluation time), or to all values
in a window of time. FlowGraph support both natural time (seconds, hours,
days) as well as other logical ordering of events.

For instance, the following snippet refers to the size of the graph (number
of vertices) 10 seconds before the time of evaluation. The ago keyword allows
to access old views of values associated to variable, yielding values valid for the
time instant indicated by the offset. The offset is formed of a numeric value t

and a time unit. Thus it returns the value of a label or computation as if it was
performed t time units before the current time.

g().extractV()

.count()

.emit($graphSize);

($graphSize 10-s ago)

.emit($previousSize);

34

Similarly, the following snippet computes the maximum size of the graph in
the last 10 seconds. Within primitive returns the list of values that a variable
assumed in a time window started t time units ago (included) and ending now
(excluded), covering all values assumed by the variable in the time window.

g().extractV()

.count()

.emit($graphSize);

($graphSize within 10-s)

.max()

.emit($maxSize);

3.2.8 Pattern clauses

As explained at the beginning of this section, patterns consist of multiple clauses,
each of them introducing a constraint over some value derived from the labeled
graph at the current time or at some previous point in time. Clauses are defined
with the evaluate primitive, which takes in input a predicate and applies it to
a value.

For instance, the following code snippet defines a clause that is satisfied
whenever (at least) one community larger than 20 is detected.

g().compute(CommunityDetection, $community,

[numCommunities='5', type='k-clustering'])

.subgraphByV($community)

.extractV()

.count()

.evaluate("LargeCommunity", >, 20);

We will extend the language in the future to let users build richer notifica-
tions, for instance to output a custom result for each community in the example
above. The problem of identifying the data that contributes to the triggering
of a pattern and referring to it when building notifications has been widely
studied in the context of complex event recognition under the name of event
selection [27]. We plan to inherit established solutions from that domain.

3.2.9 Triggers and conditioned executions

We decided to expose some lower level language features in order to provide the
possibility for user to define events and conditions patterns have to react to,
triggering patterns or portion of them.

Currently, supported classes of events are vertex (and edge) creation, mod-
ification, deletion and periodic-actions. Periodic-actions can be seen as events
that enter the system on timely base. It can be observed how creations and dele-
tions of graph entities change the graph topology while we refer to any change
in properties of labels as a modification event.

Trigger allows to avoid executions that are not useful for the definition of
pattern results or are too heavy to be recomputed every time. In the following
example, community detection is executed every 10 seconds, while an increase
in number of vertices is notified promptly.

35

trigger(10-s)

.g()

.compute(CommunityDetection, $community,

[numCommunities='5', type='k-clustering']);

trigger(vertex insert)

.evaluate("GraphIncreased");

In most situations, it may be possible to automatically decide to filter out
some pattern executions without changing the semantics of pattern. For in-
stance, we know that some computations, as community detection algorithm,
doesn’t change their results without a topology changes. We are planning to
integrate those automatic static optimization techniques in FlowGraph.

It is also possible to decide to evaluate a pattern based on the outcome of
another pattern execution. To exemplify the concept of conditioned execution,
we provide a pattern in which we perform a PageRank only if the number of
total edges in the graph has increased with respect to 10 seconds before.

.g().compute(OutgoingEdges, $outDegree)

.emit($graph);

.collect($outDegree).reduce(count)

.emit($totalEdges);

.collect($totalEdges 10-ms ago, $totalEdges)

.map(diff f.value, s.value)

.emit($delta);

.collect($delta)

.greatherThan('10')

.emit($triggerVar);

.trigger($triggerVar)

.g().compute(PageRank, $rank, [maxIterations = '10']);

36

Chapter 4

Formal semantics

This section provides the formal semantics for the data and processing model
presented above.

4.1 Data model

FlowGraph builds on labeled time-evolving graphs. We model temporal evolution
by considering different graphs, each of them representing the state of a time-
evolving graph at a given point in time. Accordingly, we model a graph as a
3-tuple G = (VG, EG, tG), where VG is the set of vertices, EG is the set of edges,
and tG is a timestamp. A vertex v ∈ VG is a pair v = (id, `), where id is a
unique identifier of the vertex and ` is the state of that vertex, that is, a set
of labels (key-value pairs) associated with that vertex. An edge e ∈ EG is a
4-tuple e = (id, vs, vd, `), where id is a unique identifier of the edge, vs and vd
are the source and destination vertices, and ` is a set of labels (key-value pairs)
associated with that edge.

We denote v.` (respectively, e.`) the set of labels associated with vertex v
(edge e), and v.`.k (v.`.k) the value associated with key k in vertex v (edge e).
A unique identifier for a vertex v (edge e) is stored in v.`.id (e.`.id).

We model the input stream S as a—possibly unbounded—sequence of times-
tamped notifications (Ni, ti), where Ni is a set of changes to the structure or to
the state of the graph (addition or removal of vertices or edges, or changes in
the value of labels), and ti is a timestamp that indicates the point in time when
the changes occur.

We assume timestamps to be monotonically increasing:

∀i,j∈N ((Ni, ti) ∈ S ∧ (Nj , tj) ∈ S ∧ i > j)→ ti > tj

Let us assume that FlowGraph stores a graph G = (VG, EG, tG). Receiving input
element (Ni, ti), leads to a new graph G′ = (VG′ , EG′ , ti) where VG′ and EG′

are computed from VG and EG by applying all the changes in Ni.
Thus, each input element at time t results in a new graph at time t. When

a pattern refers to a graph at a point in time t′, it considers the graph with the
largest timestamp such that t ≤ t′ holds, meaning that the graph was defined by
all input elements up to time t and there are no other input elements between
t and t′.

37

4.2 Processing model

A pattern p ∈ P is a conjunction of clauses:

p = cp1 ∧ · · · ∧ cpn

Each clause predicates on a value at some point in time. A pattern evaluation
is triggered by the arrival of an input element. The pattern is satisfied if all
its clauses evaluate to true, in which case FlowGraph emits a notification of
detection for that pattern.

Values in clauses can be fully specified or they can depend on a set of one
or more variables V = v1, . . . , vn. In the latter case, the pattern is satisfied if
and only if there is at least one assignment of values v′1, . . . , v

′
n for the variables

in V that satisfy the pattern.
With the evaluation model specified, we can now define the semantics of the

individual constructs that compute and identify values at some point in time.

4.2.1 Computations

A computation takes place at some point in time t and updates the set of labels
without changing the structure of the graph (that is, without adding or removing
vertices or edges) and its timestamp. We formalize a computation as a function

comp : G→ G

where G is the set of all possible graphs, subject to the following constraints: if
G′ = comp(G) then time, vertices and edges (identifiers) remain the same.

tG′ = tG

(∀v∈VG
∃v′∈VG′ v.`.id = v′.`.id) ∧ (∀v′∈VG′ ∃v∈VG

v.`.id = v′.`.id)

(∀e∈EG
∃e′∈EG′ e.`.id = e′.`.id) ∧ (∀e′∈EG′ ∃e∈EG

e.`.id = e′.`.id)

Labels (other than id) can be added or modified according to the specific se-
mantics of the computation, which is out of the scope of this formalization.

4.2.2 Selection

We model a label predicate as a function p that takes in input a set of labels
and returns a Boolean value

p : P(L)→ bool

where L is the set of all possible labels and P(L) is its power set. Let us denote
P the set of all possible predicates. We now model the selectV operator, being
selectE analogous. We model selection as a function

sel : G× P → G

that takes in input a graph G and a label predicate p and returns a new graph
G′, subject to the following constraints: G′ has the same time as G, contains
all and only the vertices that satisfy the selection, and all and only the edges
that connect such vertices.

tG′ = tG

∀v′∈VG′ (v′ ∈ VG) ∧ ∀v∈VG
(v ∈ VG′ ↔ p(v.`))

∀e′∈EG′ (e′ ∈ EG) ∧ ∀e∈EG
(e ∈ EG′ ↔ (p(e.vs.`) ∧ p(e.vd.`))

38

4.2.3 Values extraction

For values extraction we refer to the extractV predicate, being extractE anal-
ogous. Let us denote KL the set of keys in labels and V L the set of values in
labels. We model values extraction as a function

extract : G× P(KL)→ P(V L)

that takes in input a graph G ∈ G and a set of keys keys = {k1, . . . , kn} ∈ KL,
and returns a set of tuples (vid, v1, . . . , vn), one for each vertex v in G, where
vid is the unique identifier of vertex v and vi ∈ V L is the value associated with
ki in vertex v.

extract(G, keys) contains as many elements as the number of vertices in G.

|extract(G, keys)| = |VG|

Each element in extract(G, keys) contains the values of the labels of one vertex
in G.

(vid, v1, . . . , vn) ∈ extract(G, keys) ↔ ∃v∈VG
(vid = v.`.id ∧ ∀ki∈keysvi = v.`.ki)

4.2.4 Functional operators

Functional operators compute an output dataset starting from an input dataset.
The semantics of the computation is provided via user-defined functions and is
outside the scope of this formalization.

4.2.5 Definition of subgraphs

We provide the semantics of subgraphByV, being the definition of subgraphByE
analogous. In its simplest form, subgraphByV computes a set of graphs GS
starting from a single graph G. We start to formalize this case, and then discuss
how subgraph operators can be applied recursively. We model subgraphByV as
a function

subgraphByV : G× P(KL)→ P(G)

that takes in input a graph G ∈ G and a set of label keys keys ∈ P(KL) and
returns a set of graphs GS ∈ P(G), subject to the following constraints.

Each graph G′ in GS has the same time as G.

∀G′∈GS tG′ = tG

Each graph G′ in GS can only contain vertices and edges that are in G.

∀G′∈GS (v ∈ VG′ → v ∈ VG) ∧ (e ∈ EG′ → e ∈ EG)

All the vertices in a graph G′ in GS contain the same values for all labels in
keys.

∀G′∈GS ∀k∈keys ∀v,v′∈VG′ (k, val) ∈ v.`→ (k, val) ∈ v′.`

In the following definitions, let us denote as kG the value that all vertices in a
graph G ∈ GS share for the label with key k. Different graphs G′ and G′′ in
GS contain different values for at least one key.

∀G′,G′′∈GS G′ 6= G′′ → (∃k∈keys kG′ 6= kG′′)

39

There is one graph G′ in the result set for each distinct set of key values.

∀v∈VG
∀k∈keys ∃G′∈GS kG′ = v.`.k

An edge is contained in a graph G′ if and only if both its source and its desti-
nation vertices are.

∀G′∈GS ∀e∈EG
e ∈ EG′ ↔ (e.vs ∈ VG′ ∧ e.vd ∈ VG′)

In the general case, subgraphByV can be applied repeatedly, thus leading to
groups of groups of graphs and so on. We model this case by generalizing the
definition above. First, we introduce the concept of group, which is either a
graph, or a set of groups. Then, we redefine subgraphByV to work on groups.

A group Gr ∈ Gr is either a graph G ∈ G, or a set of groups. Let us define
a predicate isGraph : Gr → bool that takes in input a group and returns true
if the group is a single graph. We also define a function nestLev : Gr → N that
defines, for each group, its nesting level, where the nesting level of an atomic
graph is 0, while that of a group is well-defined and equal to n > 0 if, and only
if, each element of the group has the same nesting level equal to n− 1:

∀Gr∈Gr ((isGraph(Gr)→ nestLev(Gr) = 0) ∧
(¬isGraph(Gr)→ (nestLev(Gr) = n↔

∀G′∈Gr(nestLev(G′) = n− 1)))

The general definition of subgraphByV takes in input a group Gr and a set of
label keys keys and returns a group Gr′. We require that the nesting level of
Gr be well defined:

subgraphByV (Gr, keys) = Gr′ → ∃n∈N(nestLev(Gr) = n)

If the group consists of a graph, then it returns a set of graphs as defined above
(we do not repeat this base case for the sake of space). If the group is a set, it
calls recursively subgraphByV on each and every element Gr′′ of the set.

¬isGraph(Gr)→ Gr′ = {Γ|∃Gr′′∈GrsubgraphByV (Gr′′, keys) = Γ}

4.2.6 Temporal operators

Temporal operators let users refer to graphs at different points in time. This
does not change the semantics of other language constructs, but only the graph
these constructs are applied to.

We model the before operator as a bef function that takes in input a time
point t ∈ T and returns the most recent graph at time t.

bef : T → G

Recall that S is the stream of timestamped input changes. bef(t) returns the
value at the point in time t′ when the last notification N ′ before t was received
from the input stream S.

bef(t) = G ∧ tG = t′ ↔ ∃(N ′,t′)∈St
′ ≤ t ∧ 6 ∃(N ′′,t′′)∈S t′ < t′′ ≤ t

We model the window operator as a win function that takes in input a time
point t ∈ T and returns the set of all graphs between t and the current time
(tnow).

win : T → P(G)

40

win(t) = {G | t ≤ tG ≤ tnow ∧ ∃(N, tG) ∈ S}

Notice that our language enables temporal operators to be applied not only to
graphs, but more generically to values derived from graphs at different points in
time. This is equivalent to first applying temporal operators to identify graphs
at some point in time, and then deriving some values from them. So, the above
definitions are sufficient to express all the temporal constructs in our model.

41

42

Chapter 5

System Implementation

FlowGraph is an open source project1 written in Java on top of the Akka actor
system2. Figure 5.1 depicts the architecture of FlowGraph. Similar to modern
data processing platforms, it comprises a master node that coordinates many
worker nodes. Clients can connect to the master node and submit the pat-
terns of interest together with the code of any user-defined computation. We
implemented a parser of patterns using the ANTLR parser generator3.

Graph vertices and edges are partitioned across worker nodes. Worker (dark
grey boxes in Figure 5.1) are processes, potentially running on different ma-
chines. Each partition (light grey box in Figure 5.1) within a worker is handled
by an actor. Workers can get a different number of partitions, depending on
their computational and memory resources. For instance, Figure 5.1 shows a
deployment with two workers and six partitions. Worker 1 manages partitions
P1 and P2, while Worker 2 manages partitions P3, P4, P5, and P6.

Vertices are assigned a unique identifier upon creation. Each vertex is as-
signed to a partition based on a hash of its identifier. Edges are assigned to the
same partition as their source vertex. Optimized partitioning of vertices based
on graph topology as well as dynamic repartitioning upon change are currently
outside the scope of this work, but we plan to integrate both aspects by building
on state-of-the-art approaches [76].

Workers store the state of the graph in main memory for improved perfor-
mance. Figure 5.1 (right) expands the data structure that workers adopt to
store the state of their portion of the graph: each vertex and each edge is as-
sociated with a multi-version key-value store that contains the labels of that
vertex or edge at multiple points in time, indexed by time and key. Old versions
are deleted from the stores as soon as they cannot influence the detection of any
pattern anymore. Their time of validity is determined by statically analyzing
the patterns when they are deployed into the system.

1Available at https://github.com/pietruzzo/WIP-fg
2https://doc.akka.io/docs/akka/current/general/actor-systems.html
3https://www.antlr.org

43

https://github.com/pietruzzo/WIP-fg
https://doc.akka.io/docs/akka/current/general/actor-systems.html
https://www.antlr.org

Workers
Process 2Process 1

P1 P2 P3

 Master

Commands Results

Changes

……
key 3 val 3

val 2key 2
val 1key 1

time

Patterns

Figure 5.1: System architecture of FlowGraph.

5.1 Execution model

The input stream of changes is handled by the master that redirects each change
to the partition responsible for it. The master also governs the execution of the
various computational steps that are necessary to evaluate a pattern. Specifi-
cally, the master issues commands to the workers indicating the type of primitive
they need to execute. Data remains local to workers that return to the master
the minimum aggregate information that is necessary to evaluate the pattern.
Master may use these information also to skip evaluation of some pattern parts,
based on aggregate values or assign-use analysis. Patterns are evaluated sequen-
tially, one after the other.

Computations Workers execute computations using a vertex-centric paradigm,
with the master acting as a synchronization point between epochs. As discussed
in Chapter 3, computations are parametric with respect to three functions that
specify how vertices initialize and update the state of the computation at each
iteration, and how they exchange information. When executed on a vertex v,
initialization, iteration, and termination functions are allowed to modify the
current version of the key-value store associated with v by adding new labels
and iteratively updating their values.

Communication is implemented in a hierarchical way. Messages that are
local to a worker are exchanged through shared memory. Messages across work-
ers are serialized and sent through the network. Workers exchange messages
directly without passing through the master. At the end of each iteration, each
worker w notifies the number of messages generated during the iteration by all

44

the vertices w in its partitions. The master synchronously waits for a notifica-
tion from each and every worker, and requests a new iteration only in the case
some message has been generated.

Selection When the master commands a selection, each worker independently
performs the operation on all the vertices (or edges) in its partitions. A single
inter-worker communication step is necessary in the case of edges that cross
the boundaries of partitions, to determine whether the edge and its connected
vertices are part of the selection. Each worker then locally flags selected vertices
and edges, and considers only flagged entities in subsequent operations.

Values extraction Extraction also takes place independently on each worker,
which simply converts each vertex (or edge) into a set of values to be used as
input for further processing.

Generated set of values has an implicit information flow type depending if
they refers to (i) vertex label’s associated values, (ii) edge label’s associated
values or (iii) an aggregate set of values. It also groups set of values according
to eventual defined subgraphs or grouping.

Functional operators Functional operators transform extracted values, fol-
lowing the same approach as modern distributed stream processing frameworks.
Workers (and actors within workers) operate in parallel on the partitions they
are responsible for.

Several operators such as filter, map, or flatmap simply convert each el-
ement in the input dataset into one or more elements in the output dataset,
without requiring any communication between workers.

Other operators, however, require exchanging data. For instance, reduction
operators compute a single value from a dataset. FlowGraph implements several
reduction operators. Whenever possibile, the process takes place hierarchically
by first combining together values within a partition, and then reducing the
values across partitions. The unique result of a reduction is broadcast to all
workers, as it might be used in subsequent evaluations of the pattern. In other
words, FlowGraph dynamically infers information flow type and adapt accord-
ingly the semantic of functional operators. Note that all operators might not be
defined for all types of information flow, allowing user to partially implement
functional operators interfaces.

Definition of subgraphs FlowGraph implements subgraph primitives as local
operations within each partition. It does not move vertices or edges across
partitions, but simply annotates each vertex and edge with an identifier of the
subgraph (or subgraphs) it belongs to.

Any subsequent operation that is performed within a subgraph will take this
identifier into account. For instance, a computation will exchange messages only
across vertices that are part of the same subgraph.

Temporal operators In the presence of temporal operators, the master com-
putes the point in time t (or time window w) to be considered for the subsequent

45

commands, and communicates it to the workers. Workers follow the same ap-
proach discussed above but refer to the version of the key-value store valid at
time t (or within the time window w).

Variables and evaluation Evaluation of pattern clauses also takes place in
the workers. Indeed, as explained above, workers store any value that derives
from graph computations, functional, and temporal transformations. Thus, they
can autonomously evaluate a predicate on a value and return the result to the
master. In the case a clause depends on a variable previously computed during
the evaluation of a pattern, the master specifies which value the variable refers
to. Variables may be associated to vertex or edge associated label’s values,
aggregate values or it can correspond to a graph. As we have seen in previous
paragraph, in all of this cases, variables can refers to current or a previous time
instant or, if not associated to graph, it can represent a time window of values.
Moreover, variables keep track of eventual sub-graphs. Underline variable type is
statically inferred by FlowGraph that check the feasibility of pattern information
flow.

46

Chapter 6

Evaluation

To be useful in practice, FlowGraph needs to detect temporal patterns that in-
volve complex graph computations while scaling to large graphs. Accordingly,
our evaluation has several goals: (i) study the absolute performance and scala-
bility of FlowGraph in executing vertex-centric computations; (ii) compare Flow-
Graph against state-of-the-art solutions for distributed vertex-centric computa-
tions; (iii) study how the constructs offered by our pattern definition language
affect performance, scalability, and use of resources.

To answer the first question, we execute the page rank vertex-centric algo-
rithm while increasing the size of the graph and the available processing re-
sources. We show that the processing time increases linearly when moving from
medium to large graphs and that FlowGraph scales linearly with the number of
processors.

To answer the second question, we compare our system with GraphX [29], a
state-of-the-art library for graph processing in distributed environments. GraphX
builts on the Apache Spark [85] data analytics platform and is widely adopted
for its efficiency and scalability. We show that FlowGraph presents comparable
performance, and even outperforms GraphX with small to medium-size graphs
due to a lower platform overhead.

To answer the third question, we perform detailed microbenchmarking and
isolate the contributions of various pattern constructs on the performance of
FlowGraph. We show that some constructs can be beneficial for processing time
as they can avoid complex computations or reduce the portion of the graph they
consider.

6.1 Experiment setup

We now present the setup we use throughout the entire evaluation in terms of
processing infrastructure, parameters that we control during our experiments,
and values that we measure.

6.1.1 Processing infrastructure

To enable reproducibility of results, we execute all our experiments on a public
cloud infrastructure. We deploy FlowGraph on m5.2xlarge EC2 instances of

47

Amazon AWS. Each instance is powered by 8 vCPU (4 cores, 2 threads per
core) running on Intel Xeon R© Platinum 8175 processors at up to 3.1 GHz,
backed by 32 GB of memory and up to 10 Gbps of network bandwidth.

6.1.2 Dataset

To make sure that we measure the performance of FlowGraph when it is in a
steady state, before starting any evaluation, we first load a graph into FlowGraph.
The graph we load is directed, fully connected, with an average out-degree of
2. Each vertex has a label label with a numeric value uniformly distributed
between 1 and 4, included. In the remainder, we will refer to the number of
vertices in the graph as its size.

We inject one input (graph change) at a time and we average our measure-
ments over at least 10 inputs (100 when considering graphs smaller than one
million vertices). Unless otherwise specified, each input modifies the state of a
vertex, but not the graph topology.

We use the page rank algorithm as vertex-centric computation. To ensure
that the results across several executions are comparable, we consider a fixed
number of iterations without checking and stopping the iterative process in the
case of convergence.

6.1.3 Measured values

We designed FlowGraph to handle dynamic data, so we are primarily interested
in understanding how fast it can process input data that notifies a change in
the structure or content of the graph under analysis. Accordingly, our evalua-
tion measures the average processing time per input element as the difference
between (i) the point in time when an input element starts to be actively pro-
cessed by the system, and (ii) the point in time when the system ends processing
that element, after producing all the pattern detection results, if any.

The average processing time represents the response time of the system when
not overloaded, that is, when there are no input elements waiting to be processed
in input queues. The inverse of the average processing time also gives a good
estimate of the number of elements that FlowGraph can process in a unit of time,
that is, its maximum sustainable input throughput [38].

In addition, when relevant, we also measure the memory utilization of Flow-
Graph as the amount of memory used by one JVM process at a defined point of
execution. When the system runs on different machines, we report the average
memory utilization of each machine.

6.1.4 Parameters

Since we are interested in evaluating FlowGraph in heterogeneous scenarios, we
consider several parameters that affect its performance. We summarize them in
Table 6.1, showing their default value when not differently specified.

6.2 Vertex-centric computations

As a first experiment, we focus on vertex-centric computations and we measure
1. the average processing time of FlowGraph when increasing the size of the

48

Parameter Default

Size of the graph 1 M
Average out-degree 2
Number of instances (VMs) 4
Number of workers per instance 8
Number of partitions 32
Computation Page rank (10 iterations)

Table 6.1: Parameters used in the evaluation

1 10 100 1,000 10,000
0.1

1

10

100

Size of the graph (k)

P
ro

ce
ss

in
g

ti
m

e
(s

)

FlowGraph
GraphX

Figure 6.1: Average processing time to compute page rank (10 iterations). Com-
parison of FlowGraph and GraphX with increasing graph sizes.

graph, also in comparison with GraphX; 2. the scalability of FlowGraph when
increasing the number of available instances.

During these experiments we recompute the page rank algorithms every time
we receive an input element. We consider a fixed number of 10 iterations. For
GraphX, we use Apache Spark 3.0.0 and the page rank implementation provided
by the library.

Figure 6.1 compares the average processing time of FlowGraph and GraphX
while increasing the size of the graph from 1 k vertices to 10 M vertices. In
absolute terms, FlowGraph performs the computation under 0.7 seconds for a
graph of 100 k vertices and under 6 seconds for a graph of 1 M vertices. The
processing time increases more than linearly when moving from 1 k to 100 k ver-
tices, but then starts growing linearly. We believe this is because the processing
time is dominated by a fixed message communication overhead with graphs of
small sizes.

The same trend appears in GraphX, although the overhead of the Spark

49

1 2 3 4
0

5

10

15

20

25

Number of instances

P
ro

ce
ss

in
g

ti
m

e
(s

)

FlowGraph
GraphX

Figure 6.2: Average processing time to compute page rank (1 M vertices, 10
iterations). Comparison of FlowGraph and GraphX with increasing graph sizes.

platform is larger. In fact, FlowGraph outperforms GraphX with up to 5 M
vertices, and remains comparable with 10 M vertices, despite GraphX being
a mature commercial product optimized for distributed processing. While the
focus of our research is temporal pattern matching in dynamic scenarios, this
proves the efficiency of our prototype implementation in distributed vertex-
centric computations.

Figure 6.2 shows how FlowGraph scales when increasing the number of in-
stances. Despite inter-instance communication, FlowGraph clearly takes advan-
tage of the added processing resources. Remarkably, it obtains a speedup of
3.4× when moving from 1 to 4 instances. In comparison, GraphX performs
better with one instance, but presents marginal improvements when moving
from 1 to 4 instances. This is probably due to the higher overhead of the Spark
platform already discussed Figure 6.1 and in previous literature [53]. We also
observed the same trend with larger graphs (up to 10 M vertices, not reported
for space sake).

6.3 Pattern detection

After analyzing the performance of vertex-centric computations, we now focus
on the pattern detection constructs offered in our language.

Selection To evaluate the performance of selection, we measure the average
processing time to select vertices with a specific value for label label. Recall

50

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Dataset Size (M)

P
ro

ce
ss

in
g

ti
m

e
(s

)

Figure 6.3: Average processing time for selection with increasing graph sizes.

that label gets a uniform value between 1 and 4, hence we select 25% of the
vertices. Figure 6.3 shows the average processing time when the size of the
graph increases. Since selection requires evaluating a condition on each and
every vertex, the average processing time increases linearly with the size of the
graph. In absolute terms FlowGraph can handle selection over 5 M vertices in
about 0.67 s, and over 10 M vertices in about 1.6 s.

6.3.1 Definition of subgraphs

Figure 6.4 shows how the performance of FlowGraph change when considering
subgraph definition and selection. We compare three different patterns: no

group performs a computation (10 iterations of page rank) on the entire graph.
This is the same computation we presented in the previous section. group

groups vertices according to their value of the label label and then performs
the computation on each and every group. group select groups vertices and
then selects only one group. Recall that each group contains about 25% of the
vertices.

The definition of subgraphs (subgraphByV operator) requires about 1.2 sec-
onds on a graph of 1 M vertices. However, performing the computation on
smaller subgraphs rather than the entire graph reduces the compute time from
about 6 seconds to about 1.2 seconds. The select operator requires about
0.2 seconds to run, but it further reduces the time to 0.382 seconds. These
results confirm that FlowGraph can effectively define subgraphs and operate on
them, and this has the potential to speed up vertex centric computations with
respect to considering the whole graph, as we observed in the case of page rank.

51

no group group group select
0

1

2

3

4

5

6

P
ro

ce
ss

in
g

ti
m

e
(s

)

compute
subgraphByV

select

Figure 6.4: Average processing time when introducing subgraph definition and
selection.

6.3.2 Windowed evaluations

We now consider a temporal pattern that evaluates graphs over a window of
time. The processing overhead for the evaluation when increasing the size of the
window is negligible, so the average processing time remains almost constant.
However, the presence of a window requires storing different versions of the
graph. Figure 6.5 shows the average memory utilization per instance when
increasing the size of the window. As expected, the memory utilization grows
linearly. In terms of absolute values, the memory utilization of each instance
remains below 14 GB even when considering a window size of 1000 seconds.

6.3.3 Temporal sequences

We now evaluate the performance of FlowGraph in detecting temporal sequences,
and we show how they can be used to optimize the average processing time
by triggering computations only when certain conditions hold. To do so, we
consider the following pattern

.g().compute(OutgoingEdges, $outDegree)

.emit($graph);

.collect($outDegree).reduce(count)

.emit($totalEdges);

.collect($totalEdges 10-ms ago, $totalEdges)

.map(diff f.value, s.value)

.emit($delta);

52

10 100 1,000

1,000

10,000

Window size

M
em

or
y

u
ti

li
za

ti
o
n

(M
B

)

Figure 6.5: Average memory utilization per machine with increasing window
size.

.collect($delta)

.greatherThan('10')

.emit($triggerVar);

.trigger($triggerVar)

.g().compute(PageRank, $rank, [maxIterations = '10']);

The first clause of the pattern computes the out-degree (number of outgoing
edges) of each vertex. It compares the total number of edges at the time of eval-
uation with the total number of edges 10 minutes before the time of evaluation
(stored in variable previousSize). The clause is satisfied only if the difference
in size is greater than 10. Finally, the pattern computes page rank.

We test the pattern on a stream of changes, where each change adds a new
edge to the graph. Under these circumstances, FlowGraph avoids computing the
second clause when the first one evaluates to false. In this case, this results in
avoiding an expensive page rank computation when the number of edges has
not increased significantly in the last 10 minutes.

Table 6.2 compares the average processing time when evaluating the page
rank clause for each input element (first line) and when using the above pattern
(second line). We consider an input of 300 changes such that the page rank
computation is executed only 10% of the times. As Table 6.2 shows, the com-
putation of the out degree and the evaluation of its difference over time affects
performance only marginally (0.2 s on average), but the time spent to compute
page rank decreases by almost 10 times, since page rank is only evaluated on

53

OutDegree
comput.

OutDegree
eval.

PageRank
comput.

Total

Page rank 0 s 0 s 5.98 s 5.98 s

Temporal sequence 0.10 s 0.10 s 0.60 s 0.80 s

Table 6.2: Evaluation of a temporal sequence: computing page rank at each
inputput change vs computing page rank only when the number of edges has
increased by at least 10 in the last 10 minutes.

10% of the input. As a consequence the average processing time decreases from
5.98 s to 0.80 s. This proves that (i) FlowGraph computes temporal sequences
efficiently, and (ii) using temporal constraints can avoid complex computations
when they are not needed, significantly decreasing the average processing time.

54

Chapter 7

Related Work

Section 2.3 already presented the processing abstractions on which our model
builds — vertex-centric computations on static graphs and logic-based CER to
reason on graph evolution. In this section, we survey existing approaches that
deal with dynamic graphs.

A recent survey on dynamic graph analysis [1] classifies existing work in the
area in two categories: maintenance methods, which maintain (possibly with
incremental algorithms) the results of a computation as the graph evolves, and
evolution analysis methods, which aim to quantify and understand the changes
that occurred in the underlying graph. Our work fits into the second class,
although it can benefit from efficient maintenance methods that update the
results of computations used in patterns.

The evolution analysis methods listed in the survey focus on specific prob-
lems such as community emergence and evolution [31] or shortest path distance
evolution [30]. Our work is more general as it can integrate the results of multiple
computations within a pattern, although it does not focus on the optimization
of any specific algorithm.

Only few systems have been proposed to efficiently implement evolution
analysis problems in centralized or distributed settings, in batch or in near-real-
time/streaming fashion [34, 68, 18, 22, 23]. These systems are the most closely
related to our proposal. However, to the best of our knowledge, our work is the
first to provide a formal specification of temporal patterns over dynamic graphs.

Song et al. [71] introduce an algorithm to detect patterns over dynamic
graphs. Differently from our proposal, they look for structural patterns —a
problem known as subgraph pattern matching [73]— and extend it to capture a
strict partial order over time when the vertices and edges that form the subgraph
are added.

Graphs are also at the heart of knowledge representation in many domain,
and most significantly in semantic Web. In this context, queries to the knowl-
edge base take the form of subgraph pattern matching, as in the standard
SPARQL language [59]. Although the FlowGraph model can support subgraph
pattern matching using vertex-centric computations, we plan to include ad-hoc
constructs and evalutation algorithms for these problems in the future, thus
simplifying the definition of integrated structural and temporal patterns and
making their recognition more efficient.

Several work extended SPARQL to reason on streaming graph-shaped data [11,

55

21, 48]. Some recent work proposed a logic framework to express and recognize
temporal sequences of subgraph patterns [12, 47]. We believe that the dis-
tributed architecture presented in this paper can be beneficial in this area of
application.

Finally, graph databases focus on storing and querying graph data [5, 77].
Temporal graph database exist [55], but do not address the detection of temporal
patterns (in near-real-time) as we do.

56

Chapter 8

Conclusions and Future
Works

8.1 Conclusion

This paper introduced a novel model to capture the temporal evolution of large-
scale graph data structures. The model combines vertex-centric computations
to extract relevant information from graphs with temporal operators to define
patterns of interest that predicate on the evolution of the graph. We presented
the model semantics and its implementation in FlowGraph, a distributed system
that supports large-scale dynamic graphs.

The evaluation shows the scalability of FlowGraph with respect to the graph
size and the comparable performance of FlowGraph to state-of-the-art distributed
frameworks for graph computations. We also think further optimizations are
possible in presence of temporal patterns.

We believe that FlowGraph has the potential to open new areas of investiga-
tions in the domain of dynamic graph analysis.

8.2 Future work

Our plans for future work include (i) the implementation of fault tolerance and
persistence mechanisms; (ii) to extend the library of vertex-centric algorithms,
also considering incremental computations; (iii) the introduction of ad hoc con-
structs for subgraph pattern matching problems; (iv) to study advanced parti-
tion strategies and vertex migration approaches to reduce the cost of computa-
tion [50]; (v) the investigation of pattern-rewriting techniques [67] to optimize
patterns evaluation.

Message batching and combiner FlowGraph exchanges vertex-centric com-
putation messages in a dedicated phase at the end of superstep. One common
optimization in Graph and Stream Processing is to send batches of messages as
soon as they reach a given size threshold [46, 85]. Through this mechanism, it
has been observed a more efficient use of network bandwidth and a lowering in
response time.

57

Some frameworks also implements a combiner in order to de-duplicate re-
peated messages as we have seen in Section 2.1.4.

We believe that the integration of these solutions may lower the slope of
response time curve in Figure 6.1 paying a small overhead.

Fault Tolerance and Persistence FlowGraph has not a fully developed
strategy to handle faults and guarantee data persistence in the distributed envi-
ronment, but we also think that defining strategies to detect and recovery from
fails is critical for applications that FlowGraph propose to address.

Communication is based on Akka Actors system middleware [32] that al-
ready guarantee at-most-once delivery and message ordering. Akka has also
mechanisms to detect failed remote actors. FlowGraph has been develop also
with an acknowledge mechanism for each message exchanged. Therefore, we
should be able to detect any system fault both on machines and channels, but
we still need to define a strategy for data replication, distributed persistence
and recovery.

Similar graph processing frameworks employs check-pointing strategies [46],
distributed in-memory databases as Facebook’s RocksDB or Redis and dis-
tributed file-systems such as Hadoop Distributed File System (HDFS). In par-
ticular, with above mentioned in-memory databases, we observed 1̃-2 orders of
magnitude of performance degradation in random access to stored information
with respect to heap random access. On the other hand, we noticed only a 5̃
time degradation in sequential information retrieval of large chunks. Thus, a
trade of checkpoint granularity should be carefully tuned.

Incremental computation The intuitive idea behind incremental computa-
tions is that minor incremental changes of inputs may not require to reprocess
the entire work but only the affected portion. Restricting the scope of com-
putation to affected vertices should allow to generate less messages as well as
converge in less supersteps [43].

Advanced partitioning strategies FlowGraph support only graph partition-
ing based on the hashing of vertex-id. This partition strategy allows to obtain a
relatively balanced set of partitions in terms of number of vertices per partition.
However, this strategy could impose an high number of edge cuts, underfitting
the locality properties proper of graphs.

We have presented, in Section 2.1.4, some algorithms and techniques to min-
imize vertex cuts, balance computation’s execution and we cited some studies
that propose to migrate vertices from one partition to another in order to re-
balance a distributed graph.

FlowGraph may be also easily extended to support also partition-based com-
putations taking advantage of specific partitioning techniques (Section 14).

Pattern Rewriting As seen in Chapter 5, FlowGraph is already able to rec-
ognize definition-usage dependencies of variables, also trimming pattern chain
executions based on results of other chains. However, execution model is still
limited by a sequential interpretation of pattern with few static optimization
at parsing time, leaving to user the charge of writing optimized versions of the
same pattern. A future work could consist in exploring different static (parsing

58

time) and dynamic (profiling) strategies for operation reordering, decoupling,
postponing and trimming based on their dataflow.

59

60

Acknowledgement

I would like to express my gratitude to my supervisor Alessandro Margara for
the exceptional guidance, deep knowledge about the topic, useful comments,
remarks and engagement through the learning process of this master thesis.
Furthermore, I would like to thank professor Matteo Rossi for his precious sug-
gestions, competence and collaboration. I would also like to give thanks to
Hassan Nazeer Chaudhry for introducing me to the topic, for the amount of
time he invested in our meetings as well as for the valuable support on the way.

Lastly, I would like to thank my loved ones, especially Chiara, my family,
my cousins and also who left us recently. They have given me constant support
and love throughout the entire process. I will be grateful forever for your love.

61

62

Bibliography

[1] Charu Aggarwal and Karthik Subbian. Evolutionary network analysis: A
survey. ACM Computing Surveys, 47(1):10:1–10:36, 2014.

[2] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,
and Tushar D. Chandra. Matching events in a content-based subscription
system. In Proceedings of the Eighteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, page 53–61, New York, NY, USA, 1999.
Association for Computing Machinery.

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills,
Frances Perry, Eric Schmidt, and et al. The dataflow model: A prac-
tical approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. Proc. VLDB Endow.,
8(12):1792–1803, 2015.

[4] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. In
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’04, page 120–124, New York, NY,
USA, 2004. Association for Computing Machinery.

[5] Renzo Angles and Claudio Gutierrez. Survey of graph database models.
ACM Computing Surveys, 40(1):1:1–1:39, 2008.

[6] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali
Ghodsi, et al. Spark sql: Relational data processing in spark. In Proceedings
of the 2015 ACM SIGMOD international conference on management of
data, pages 1383–1394, 2015.

[7] A. Artikis, M. Sergot, and G. Paliouras. An event calculus for event recog-
nition. IEEE Transactions on Knowledge and Data Engineering, 27(4):895–
908, 2015.

[8] Alexander Artikis, Alessandro Margara, Martin Ugarte, Stijn Vansum-
meren, and Matthias Weidlich. Complex event recognition languages: Tu-
torial. In Proceedings of the International Conference on Distributed and
Event-based Systems, DEBS ’17, pages 7–10, New York, NY, USA, 2017.
ACM.

[9] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-
nifer Widom. Models and issues in data stream systems. In Proceedings of

63

the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, PODS ’02, page 1–16, New York, NY, USA,
2002. Association for Computing Machinery.

[10] Shivnath Babu and Jennifer Widom. Continuous queries over data streams.
SIGMOD Rec., 30(3):109–120, September 2001.

[11] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele
Della Valle, and Michael Grossniklaus. C-sparql: Sparql for continuous
querying. In Proceedings of the International Conference on World Wide
Web, WWW ’09, pages 1061–1062, New York, NY, USA, 2009. ACM.

[12] Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink. Lars:
A logic-based framework for analyzing reasoning over streams. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, AAAI’15, page
1431–1438. AAAI Press, 2015.

[13] Dhruba Borthakur. The hadoop distributed file system: Architecture and
design. Hadoop Project Website, 11(2007):21, 2007.

[14] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Os-
sher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker
White. Cayuga: A high-performance event processing engine. In Proceed-
ings of the International Conference on Management of Data, SIGMOD
’07, pages 1100–1102, New York, NY, USA, 2007. ACM.

[15] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.
Haloop: Efficient iterative data processing on large clusters. Proc. VLDB
Endow., 3(1–2):285–296, September 2010.

[16] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache flink: Stream and batch processing
in a single engine. IEEE Data Engineering Bullettin, 38(4):28–38, 2015.

[17] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra: Dif-
ferentiated graph computation and partitioning on skewed graphs. In Pro-
ceedings of the Tenth European Conference on Computer Systems, EuroSys
’15, 2015.

[18] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,
Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Ki-
neograph: Taking the pulse of a fast-changing and connected world. In
Proceedings of the European Conference on Computer Systems, EuroSys
’12, pages 85–98, New York, NY, USA, 2012. ACM.

[19] Gianpaolo Cugola and Alessandro Margara. Tesla: A formally defined event
specification language. In Proceedings of the International Conference on
Distributed Event-Based Systems, DEBS ’10, pages 50–61, New York, NY,
USA, 2010. ACM.

[20] Gianpaolo Cugola and Alessandro Margara. Processing flows of informa-
tion: From data stream to complex event processing. ACM Computing
Surveys, 44(3):15:1–15:62, 2012.

64

[21] Emanuele Della Valle, Stefan Schlobach, Markus Krötzsch, Alessandro Boz-
zon, Stefano Ceri, and Ian Horrocks. Order matters! harnessing a world
of orderings for reasoning over massive data. Semantic Web, 4(2):219–231,
2013.

[22] Benjamin Erb, Dominik Meissner, Jakob Pietron, and Frank Kargl.
Chronograph: A distributed processing platform for online and batch com-
putations on event-sourced graphs. In Proceedings of the International
Conference on Distributed and Event-based Systems, DEBS ’17, pages 78–
87, New York, NY, USA, 2017. ACM.

[23] Benjamin Erb, Dominik Meiundefinedner, Frank Kargl, Benjamin A. Steer,
Felix Cuadrado, Domagoj Margan, and Peter Pietzuch. Graphtides: A
framework for evaluating stream-based graph processing platforms. In Pro-
ceedings of the 1st ACM SIGMOD Joint International Workshop on Graph
Data Management Experiences & Systems (GRADES) and Network Data
Analytics (NDA), GRADES-NDA ’18, New York, NY, USA, 2018. ACM.

[24] Opher Etzion and Peter Niblett. Event Processing in Action. Manning
Publications Co., 1st edition, 2010.

[25] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl.
Spinning fast iterative data flows. arXiv preprint arXiv:1208.0088, 2012.

[26] Alexandros V. Gerbessiotis and Leslie G. Valiant. Direct bulk-synchronous
parallel algorithms. Journal of Parallel and Distributed Computing,
22(2):251–267, 1994.

[27] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis,
and Minos Garofalakis. Complex event recognition in the big data era: a
survey. The VLDB Journal, Jul 2019.

[28] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natural
graphs. In Proceedings of the Conference on Operating Systems Design and
Implementation, OSDI’12, pages 17–30, Hollywood, CA, 2012. USENIX
Association.

[29] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,
Michael J. Franklin, and Ion Stoica. Graphx: Graph processing in a dis-
tributed dataflow framework. In Proceedings of the USENIX Conference
on Operating Systems Design and Implementation, OSDI’14, page 599–613,
USA, 2014. USENIX Association.

[30] Manish Gupta, Charu C. Aggarwal, and Jiawei Han. Finding top-k shortest
path distance changes in an evolutionary network. In Proceedings of the
International Conference on Advances in Spatial and Temporal Databases,
SSTD ’11, pages 130–148. Springer, 2011.

[31] Manish Gupta, Charu C. Aggarwal, Jiawei Han, and Yizhou Sun. Evolu-
tionary clustering and analysis of bibliographic networks. In Proceedings
of the International Conference on Advances in Social Networks Analysis
and Mining, ASONAM ’11, pages 63–70. IEEE, 2011.

65

[32] Munish Gupta. Akka essentials. Packt Publishing Ltd, 2012.

[33] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asyn-
chronous parallel execution in pregel-like graph processing systems. Pro-
ceedings of VLDB Endow., 8(9):950–961, 2015.

[34] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: A
graph engine for temporal graph analysis. In Proceedings of the European
Conference on Computer Systems, EuroSys ’14, pages 1:1–1:14, New York,
NY, USA, 2014. ACM.

[35] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica.
Time-evolving graph processing at scale. In Proceedings of the Interna-
tional Workshop on Graph Data Management Experiences and Systems,
GRADES ’16, pages 5:1–5:6, New York, NY, USA, 2016. ACM.

[36] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in
dataflow programming languages. ACM Comput. Surv., 36(1):1–34, March
2004.

[37] V. Kalavri, V. Vlassov, and S. Haridi. High-level programming abstractions
for distributed graph processing. IEEE Transactions on Knowledge and
Data Engineering, 30(2):305–324, Feb 2018.

[38] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl. Benchmarking distributed stream data processing systems. In
Proceedings of the International Conference on Data Engineering, ICDE’18,
pages 1507–1518. IEEE, 2018.

[39] G. Karypis and V. Kumar. Parallel multilevel graph partitioning. In Pro-
ceedings of International Conference on Parallel Processing, pages 314–319,
1996.

[40] Taiwo Kolajo, Olawande Daramola, and Ayodele Adebiyi. Big data stream
analysis: a systematic literature review. Journal of Big Data, 6, Jun 2019.

[41] Paul Kosinski. A data flow language for operating systems programming.
ACM SIGPLAN Notices, 8:89–94, 09 1973.

[42] Ben Lee and Ali R Hurson. Dataflow architectures and multithreading.
Computer, 27(8):27–39, 1994.

[43] Qiang Liu, Xiaoshe Dong, Heng Chen, and Yinfeng Wang. Incpregel: an
incremental graph parallel computation model. Frontiers of Computer Sci-
ence, 12(6):1076–1089, 2018.

[44] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo
Kyrola, and Joseph M. Hellerstein. Distributed graphlab: A framework
for machine learning and data mining in the cloud. Proceedings of VLDB
Endow., 5(8):716–727, 2012.

[45] Andrew Lumsdaine, Doublas Gregor, Bruce Hendrickson, and Jonathan
Berry. Challenges in Parallel Graph Processing. Parallel Processing Letters,
17(01):5–20, 2007.

66

[46] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for
large-scale graph processing. In Proceedings of the International Conference
on Management of Data, SIGMOD ’10, pages 135–146, New York, NY,
USA, 2010. ACM.

[47] Alessandro Margara, Gianpaolo Cugola, Dario Collavini, and Daniele
Dell’Aglio. Efficient temporal reasoning on streams of events with dotr. In
Proceedings of the Extended Semantic Web Conference, ESWC ’18, pages
384–399. Springer International Publishing, 2018.

[48] Alessandro Margara, Jacopo Urbani, Frank van Harmelen, and Henri Bal.
Streaming the web. Web Semantics, 25(C):24–44, March 2014.

[49] Nathan Marz and James Warren. Big Data: Principles and best practices
of scalable realtime data systems. Manning Publications Co., 2015.

[50] C. Mayer, M. A. Tariq, R. Mayer, and K. Rothermel. Graph: Traffic-aware
graph processing. IEEE Transactions on Parallel and Distributed Systems,
29(6):1289–1302, June 2018.

[51] Dennis McCarthy and Umeshwar Dayal. The architecture of an active
database management system. SIGMOD Rec., 18(2):215–224, June 1989.

[52] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a
vertex: A survey of vertex-centric frameworks for large-scale distributed
graph processing. ACM Computing Surveys, 48(2):25:1–25:39, 2015.

[53] Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! but
at what cost? In Proceedings of the USENIX Conference on Hot Topics
in Operating Systems, HOTOS ’15, pages 14:1–14:6. USENIX Association,
2015.

[54] Yuan Mei and Samuel Madden. Zstream: A cost-based query processor for
adaptively detecting composite events. In Proceedings of the International
Conference on Management of Data, SIGMOD ’09, pages 193–206, New
York, NY, USA, 2009. ACM.

[55] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Enhong Chen, and Wenguang Chen. Immortalgraph:
A system for storage and analysis of temporal graphs. Transactions on
Storage, 11(3):14:1–14:34, 2015.

[56] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Mart́ın Abadi. Naiad: a timely dataflow system. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples, pages 439–455, 2013.

[57] T. Suzumura N. T. Bao. Towards highly scalable pregel based graph pro-
cessing platform with x10. Proc. 22nd Int., page 501–508, 2013.

[58] Norman Paton and Oscar Dı́az. Active database systems. ACM Comput.
Surv., 31:63–103, 03 1999.

67

[59] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and com-
plexity of sparql. ACM Transactions on Database Systems, 34(3):16:1–
16:45, 2009.

[60] William Cohen Philip Stutz, Abraham Bernstein. Signal/collect: Graph
algorithms for the (semantic) web. In Patel-Schneider P.F. et al., editor,
The Semantic Web, 2010.

[61] Lu Qin, Jeffrey Xu Yu, Lijun Chang, Hong Cheng, Chengqi Zhang, and
Xuemin Lin. Scalable big graph processing in mapreduce. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’14, page 827–838, New York, NY, USA, 2014. Association
for Computing Machinery.

[62] Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, Mark Jela-
sity, and Seif Haridi. A distributed algorithm for large-scale graph partition-
ing. ACM Transactions on Autonomous and Adaptive Systems, 10:1–24,
06 2015.

[63] Marko A. Rodriguez. The gremlin graph traversal machine and language
(invited talk). Proceedings of the 15th Symposium on Database Program-
ming Languages - DBPL 2015, 2015.

[64] David S Rosenblum and Alexander L Wolf. A design framework for
internet-scale event observation and notification. In Proceedings of the 6th
European SOFTWARE ENGINEERING conference held jointly with the
5th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 344–360, 1997.

[65] Semih Salihoglu and Jennifer Widom. Optimizing graph algorithms on
pregel-like systems. Proc. VLDB Endow., 7(7):577–588, March 2014.

[66] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon
Seo, Jongsoo Park, M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin,
and Pradeep Dubey. Navigating the maze of graph analytics frameworks
using massive graph datasets. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, page
979–990, New York, NY, USA, 2014. Association for Computing Machin-
ery.

[67] Nicholas Poul Schultz-Moller, Matteo Migliavacca, and Peter Pietzuch. Dis-
tributed complex event processing with query rewriting. In Proceedings of
the International Conference on Distributed Event-Based Systems, DEBS
’09, New York, NY, USA, 2009. ACM.

[68] Dipanjan Sengupta and Shuaiwen Leon Song. Evograph: On-the-fly effi-
cient mining of evolving graphs on gpu. In Julian M. Kunkel, Rio Yokota,
Pavan Balaji, and David Keyes, editors, High Performance Computing, ISC
’17, pages 97–119. Springer, 2017.

[69] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine
on a memory cloud. In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’13, page 505–516,
New York, NY, USA, 2013. Association for Computing Machinery.

68

[70] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Na-
garkar, Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. Goffish:
A sub-graph centric framework for large-scale graph analytics. In Euro-Par
Parallel Processing, pages 451–462. Springer, 2014.

[71] Chunyao Song, Tingjian Ge, Cindy Chen, and Jie Wang. Event pattern
matching over graph streams. Proceedings of VLDB Endow., 8(4):413–424,
2014.

[72] Utkarsh Srivastava and Jennifer Widom. Flexible time management in data
stream systems. In Proceedings of the Symp. on Principles of Database
Systems, PODS ’04, pages 263–274, New York, NY, USA, 2004. ACM.

[73] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li.
Efficient subgraph matching on billion node graphs. Proceedings of VLDB
Endow., 5(9):788–799, 2012.

[74] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos
Siganos, Mohammed J. Zaki, and Ashraf Aboulnaga. Arabesque: A sys-
tem for distributed graph mining. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP ’15, page 425–440, New York, NY,
USA, 2015. Association for Computing Machinery.

[75] Leslie G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, August 1990.

[76] Luis M. Vaquero, Felix Cuadrado, Dionysios Logothetis, and Claudio
Martella. Adaptive partitioning for large-scale dynamic graphs. In Pro-
ceedings of the International Conference on Distributed Computing Sys-
tems, ICDCS ’14, pages 144–153. IEEE, 2014.

[77] Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo, Dominic Fox, and Jonas
Partner. Neo4j in Action. Manning Publications Co., USA, 2014.

[78] Simon F Wail. Can dataflow machines be programmed with an imperative
language. Advanced Topics in Dataflow Computing and Multithreading,
pages 229–265, 1995.

[79] Guozhang Wang, Wenlei Xie, Alan J Demers, and Johannes Gehrke. Asyn-
chronous large-scale graph processing made easy. In CIDR, volume 13,
pages 3–6, 2013.

[80] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex
event processing over streams. In Proceedings of the International Con-
ference on Management of Data, SIGMOD ’06, pages 407–418, New York,
NY, USA, 2006. ACM.

[81] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen.
Sync or async: Time to fuse for distributed graph-parallel computation.
SIGPLAN Not., 50(8):194–204, January 2015.

[82] Reynold S Xin, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott
Shenker, and Ion Stoica. Shark: Sql and rich analytics at scale. In Proceed-
ings of the 2013 ACM SIGMOD International Conference on Management
of data, pages 13–24, 2013.

69

[83] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), pages 15–28.
USENIX, 2012.

[84] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
Ion Stoica, et al. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[85] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 423–438, New York, NY, USA, 2013.
ACM.

[86] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkatara-
man, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache spark: A unified engine for big data processing.
Commun. ACM, page 56–65, 2016.

70

	Introduction
	State of the Art
	Graph Processing
	Vertex-Centric abstractions
	Other programming abstractions
	Timing
	Partitioning and Communication

	Stream Processing
	MapReduce
	Spark
	Flink
	Iterative dataflow
	Graph processing on top of Stream Processing
	Complex Event Recognition

	Motivations
	Objective

	Data and Processing Model
	Data model
	Processing model
	Computations
	Selection
	Values extraction
	Functional operators
	Definition of subgraphs
	Variables
	Temporal operators
	Pattern clauses
	Triggers and conditioned executions

	Formal semantics
	Data model
	Processing model
	Computations
	Selection
	Values extraction
	Functional operators
	Definition of subgraphs
	Temporal operators

	System Implementation
	Execution model

	Evaluation
	Experiment setup
	Processing infrastructure
	Dataset
	Measured values
	Parameters

	Vertex-centric computations
	Pattern detection
	Definition of subgraphs
	Windowed evaluations
	Temporal sequences

	Related Work
	Conclusions and Future Works
	Conclusion
	Future work

