
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione
Master of Science in Computer Science and Engineering
Dipartimento di Elettronica, Informazione e Bioingegneria

Side channel attacks to LEDAcrypt:
synthetic analysis and practical countermeasure

validation

Supervisor: Prof. Gerardo PELOSI

Co-supervisor: Prof. Alessandro BARENGHI

Master Thesis by:

Simone BERGONZI Matr. 899250

Anno Accademico 2019–2020

Sommario

Con la diffusione di dispositivi embedded che gestiscono informazioni sen-
sibili, la crittografia moderna non può più evitare di considerare la dimensio-
ne fisica nel progettare una primitiva crittografica. Infatti, ogni dispositivo
introduce nuove superfici di attacco dovute ai così detti side channels, l’in-
sieme di parametri fisici che possono rivelare dati sensibili dall’esecuzione di
un algoritmo, tra cui la potenza dissipata, il tempo di calcolo, le emissioni
elettromagnetiche.

Un’altra minaccia per la crittografia moderna è rappresentata dall’av-
vento del computer quantistico. Questa nuova tecnologia infatti, sarebbe in
grado di inficiare la sicurezza computazionale delle moderne primitive critto-
grafiche basate su due noti problemi matematici: la scomposizione in fattori
primi e il calcolo del logaritmo discreto. In risposta a questa minaccia, i
sistemi crittografici basati su codici a correzione di errori rappresentano una
promettente area di ricerca.

Il seguente studio vuole investigare lo stato dell’arte degli attacchi che
sfruttano la potenza dissipata durante l’esecuzione di sistemi crittografici
basati su codici (in particolare, codici di tipo QC-MDPC/LDPC), col fine
ultimo di valutare la sicurezza sotto questo fronte di LEDAcrypt. LEDA-
crypt è un sistema crittografico che offre sia una primitiva di incapsulamento
per chiavi di sessione, sia un cifrario a chiave pubblica basati su codici di
tipo QC-LDPC.

Dall’analisi dello stato dell’arte, abbiamo selezionato l’attacco proposto
da Sim et al. (2019, [46]). Si tratta di un attacco basato sulla traccia
di una singola esecuzione dell’algoritmo, e quindi, in grado di minacciare
anche l’uso di chiavi effimere. Abbiamo successivamente simulato l’attacco
e studiato una contromisura per mettere in sicurezza LEDAcrypt. In fine,

i

abbiamo eseguito l’attacco su un dispositivo fisico e quindi analizzato gli
effetti della nostra contromisura.

In conclusione, da una parte abbiamo validato l’attacco a traccia sin-
gola di Sim et al., spiegando anche il modello di leakage utilizzato dagli
autori, e dall’altra abbiamo sviluppato una contromisura basata sul random
precharging in grado di mettere in sicurezza l’algoritmo.

ii

Abstract

With the diffusion of cryptographic devices such as smart cards, which
handle sensitive information every day, modern cryptography must take into
account also the physical aspects concerning the execution of a cryptographic
primitive on such devices. In fact, a well-known family of attacks, called
side-channel attacks, exploit physical measures such as power consumption,
electromagnetic emissions, time computation, to recover secret data.

Another important threat to modern cryptography is the coming of quan-
tum computers. This technology would ensure the computational power
required to solve two important mathematical problems which are at the
basis of the modern cryptography: integer factorization problem and dis-
crete logarithm problem. To overcome this threat, researchers are studying
new cryptosystems based on different mathematical problems. Among the
new proposals, QC-MDPC/LDPC code-based cryptosystems seem to be a
promising research area.

This work aims to investigate the state-of-the-art power analysis attacks
against QC-MDPC/LDPC code-based cryptosystems and, in this way, evalu-
ate the power analysis resistance of LEDAcrypt. LEDAcrypt is a QC-LDPC
code-based cryptosystems that provides both a public key cryptoscheme and
a key encapsulation method (also optimized for use in an ephemeral key
scenario).

Therefore, we analyzed the state-of-the-art power analysis attacks and
selected the one proposed by Sim et al. (2019, [46]) for our study. It is a
single trace attack, a characteristic that turns it into a threat even for key
ephemeral scenarios. We then simulated the attack and designed a coun-
termeasure to secure the LEDAcrypt primitives. Finally, we carried out the
attack against a physical device and validated our countermeasure.

v

In conclusion, on one hand we validated the single trace attack of Sim
et al., while explaining the use of a Hamming weight leakage model. On
the other hand, we designed a countermeasure based on random precharging
able to secure the algorithm under threat.

vi

Contents

Introduction 1

1 Theoretical Background 7

1.1 Code-based cryptography . 7

1.1.1 McEliece cryptosystem 10

1.1.2 Niederreiter cryptosystem 11

1.2 Side Channel Attacks . 12

1.2.1 Modeling Power Consumption 13

1.2.2 Power Analysis Attacks 14

1.2.3 Countermeasures . 23

2 State of the Art 27

2.1 Post Quantum Cryptography 27

2.2 QcBits cryptosystem . 29

2.3 Power Analysis Attacks . 33

2.3.1 Vertical and Horizontal Attack on FPGA McEliece
(2016) . 34

2.3.2 Vertical Attack on QcBits (2017) 37

2.3.3 Multiple and Single Trace Attack to QcBits (2019) . . 40

2.4 LEDAcrypt . 46

3 Implementation 51

3.1 Simulation Environment . 52

3.2 Real Board . 57

4 Experimental Evaluation 61

4.1 Experiments in Simulation Environment 61

ix

CONTENTS

4.1.1 Tests on countermeasure 62
4.2 Experiments on real Board . 67

4.2.1 Countermeasure validation 75

Conclusion 79

A Constant-Time Multiplication (T. Chou convention) 81

Bibliografia 83

x

List of Figures

1.1 Vertical DPA (a) targets a single intermediate computation
and seeks correlation across multiple traces each using a dis-
tinct input, while Horizontal DPA (b) targets multiple inter-
mediate computations within a trace and seeks a correlation
among them [2]. 16

1.2 Simple Power Analysis against an RSA Left-To-Right Square
and multiply. 17

2.1 Comparison between the convention adopted by T. Chou (a)
and by LEDAcrypt showing the representation of an index d
of the secret key and the ciphertext vector w[]. 48

4.1 Simulation of the power traces and SOST values for index
d = 5979 = (01011101011011)2. 63

4.2 SOST values computed over 100 traces simulated with the
random precharging on the sensitive operations. The noise
added to the power trace is a white noise ∼N (0, 6). 64

4.3 Number of key bits correctly evaluated against the random
precharging countermeasure. The horizontal axis shows the
standard deviation of the white noise introduced in the trace. 65

4.4 The experimental board, STM32F746ZG. 68

4.5 The custom loop probe used for the measurements. 68

4.6 Power consumption trace of a constant-time multiplication
performed on every index of the secret key. 69

xi

LIST OF FIGURES

4.7 Power consumption trace of a constant-time multiplication.
From the top, the processing of a single index of the key,
along with a magnification of the processing of a single bit of
the index and, finally, the mask computation (refer to Algo-
rithm 2.4.3). 70

4.8 Percentages of recovered key bits (solid line) and false pos-
itives (dashed line) under the Hamming weight (blue) and
Hamming distance (orange) leakage models, over different thresh-
old values. The green line indicates the "unknown" bits. . . . 71

4.9 Percentages (computed without considering "unknown" bits)
of recovered key bits under the Hamming weight (blue) and
Hamming distance (orange) leakage models, along with the
false positives (dashed lines), over different threshold values. . 71

4.10 Percentages of recovered key bits set as 0 (orange) or 1 (blue)
under the Hamming weight model, over different threshold
values. 71

4.11 Percentages of recovered key bits set as 0 (orange) or 1 (blue)
under the Hamming distance model, over different threshold
values. 71

4.12 Intervals of the trace corresponding to the processing of each
bit involved in the word unit rotation of index d = 4448 =

(01000101100000)2 . 72
4.13 Leakage trace corresponding to the processing of index d =

4448 = (01000101100000)2. 73
4.14 Average value (in red) of traces captured for a single bit pro-

cessing, along with +/− standard deviation (in black). Each
sub-figure describe a different scenario. 74

4.15 Leakage peaks corresponding to themask computation for the
nine bits in index d = 4448 = (01000101100000)2 captured
while performing register precharging. 77

4.16 Leakage trace corresponding to the processing of index d =

4448 = (01000101100000)2 captured while performing register
precharging. 77

xii

List of Tables

2.1 Approximate number of attempts in the worst case 39
2.2 Approximate solving times in SAGE (for the algebraic part of

the attack) on one core of 2.9 GHz Core i5 MacBook Pro . . 40

3.1 Parameters for the simulation on a 64-bit architecture 54
3.2 Parameters for the real board (32-bit architecture) 58

4.1 Results of the most commonly used preprocessing functions . 67

xiii

LIST OF TABLES

xiv

List of Algorithms

2.2.1 QcBits encryption . 32
2.2.2 Bit Flipping . 32
2.2.3 QcBits decryption . 33
2.3.1 Constant-Time Multiplication in F2[x]/〈xr−1〉 (refer to [16]) 41
2.3.2 Multiple-Trace Attack on the Word Unit Rotation 43
2.3.3 Single-Trace Attack on the Word Unit Rotation 45
2.4.1 DECRYPTNie . 47
2.4.2 DECRYPTMcE . 47

2.4.3 Constant-Time Multiplication in F2[x]/〈xr − 1〉 49

A.0.1Constant-Time Multiplication in F2[x]/〈xr−1〉 (refer to [16]) 81

xv

LIST OF ALGORITHMS

xvi

Introduction

Since human beings started organizing in communities ages ago, the need
of communication has been at the core of human life. Soon another need
laid the foundation to what we now know as cryptography : the need to
communicate selectively.

The word cryptography comes from ancient Greek: kryptó s meaning
hidden and graphein meaning to write. In other words, the art of coding the
messages in such a way that only some designed people could have access to
the original information.

Among the most famous ciphers in history there are the scytale, a trans-
position cipher used by Spartans to communicate during military campaigns.
A transposition cipher is an encryption technique by which the position of
the letters in the original message is changed accordingly to a reversible
scheme producing a permutation of the original message. Another famous
example of ciphers in history is the Caesar cipher, a form of substitution
cipher used by Julius Caesar. A substitution cipher encrypts the message
by replacing the letters with other symbols (from the same or different al-
phabet) accordingly to a fixed scheme. In this case, the order of the letter
does not change (as in the case of transposition ciphers) but the symbols do.
Together with cryptography, another important discipline has been devel-
oped which is cryptanalysis, the art of breaking cipher to recover the secret
message (or key). For example the frequency analysis, which studies the
frequency of letters or groups of letters in a protected message, can retrieve
a message obfuscated by means of transposition and substitution which do
not modify the frequency of the symbols.

What we now refer to as modern cryptography has its bases in the Kerck-
hoffs’s principle (end of 19th century) which states: A cryptosystem should

1

Introduction

be secure even if everything about the system, except the key, is public
knowledge. In the 1940s C. E. Shannon proposed a more mathematical ap-
proach to the study of cryptography in communication theory opening the
way for modern cryptography. In his paper "Communication theory of se-
crecy systems" published in 1949 [43], defines the concept of perfect secrecy
for secret-key systems and proves their existence formulating the following
theorem:
Let

〈A,M, K, C, {Enck(), k ∈ K}, {Deck(), k ∈ K}〉

denote a symmetric key cryptosystem where the keys are picked indepen-
dently of plaintexts values and |K| = |C| = |M|.
The cryptosystem is perfectly secure if and only if

i. every key is used with probability 1
|K|

ii. ∀(m, c) ∈M× C there is a unique k ∈ K such that Enck(m) = c.

Plaintext is the name assigned to the original message before encryption
takes place. A plaintext belongs by definition to the message space M.
When the message has been manipulated by the cipher and has become
incomprehensible, it takes the name of ciphertext and it belongs to the ci-
phertext space C. The symbol A denotes the alphabet, that is the set of
symbols which can form a message. The key k is the parameter taken by the
cryptographic algorithm to manipulate the plaintext producing the cipher-
text. The key is usually produced by the cryptographic algorithm by means
of a key-generation algorithm, Gen() = k, and it belongs to the key space
K. Finally, Ek() and Dk() denotes respectively the encryption algorithm and
the decryption algorithm such that:

Enck1(m) = c, Deck2(c) = m, k1, k2 ∈ K, m ∈M, c ∈ C

Another important Shannon’s contribution to the modern cryptography is
the formulation of two general design principles:

Principle (Confusion). Make the relation between the key, plaintext (ptx)
and ciphertext (ctx) as complex as possible. Ideally, each digit of the key in-
fluences the correspondence between ptx and ctx letters in a non-predictable
way

2

Principle (Diffusion). Refers to the property that the statistical distribu-
tion of groups of ptx letters frequencies (due to the redundancy of the ptx
language) should be dissipated, as much as possible, into flat distribution
statistics, i.e. the ctx should appear as random data.
Ideally, keeping the same key, the change of a single bit in the plaintext
drives the change of all bits in ciphertext.

Cryptosystems are divided into two classes on the basis of how the key
is involved in the cipher.

Symmetric-key cryptosystems

Symmetric-key cryptosystems, also known as private-key cryptosystems,
are characterized by the usage of a single key for both the encryption and
decryption algorithm, that is, the sender and the recipient of the message
shares the same secret key.

There are two kinds of symmetric-key cryptosystems:

• block ciphers, they are ciphers which operate on a block of plaintext
at a time, producing a block of ciphertext by means of a key-parametric
transformation. AES (Advance Encryption Standard) is an example
of block cipher.

• stream cipher, they are ciphers which operate on individual plain-
text bits or digits. A well known example of stream cipher (although
nowadays its use is deprecated) is RC4 (Rivest Cipher 4).

Asymmetric-key cryptosystems

The major problem of symmetric-key cryptosystems is the key exchange.
The two parties need to find a secure channel on which they can share the
secret key.

In 1976, W. Diffie and M. Hellman proposed a solution to overcome this
issue, presenting the concept of asymmetric-key cryptography (also known
as public-key cryptography) [19], revolutionizing the modern cryptography.

This scryptographic scheme employs a pair of keys (Kpriv,Kpub) consist-
ing of private key, which must be kept secret and never shared, and a public
key, which is distributed to the other parties by means of a public channel.

3

Introduction

The public key Kpub of the recipient is used by the sender to encrypt the
plaintext, in this way, the recipient will decrypt the ciphertext using his own
private key Kpriv.

Encryption and decryption functions for public-key cryptosystems (re-
spectively, Enckpub() and DecKpriv()) are designed in practice making use of
number theoretic problems. The most common ones are:

• Integer Factorization Problem: given a composite integer n, com-
pute its factorization

∏
i p
ei
i , ei ≥ 1.

• Discrete Logarithm Problem: given a cyclic group (〈g〉, ·) and g1 =

gx, find x ∈ {0, 1, . . . , |g| − 1}.

These problems allows both the public-key encryption and decryption func-
tions to be designed in such a way that

i. the public key and the private key are linked in a mathematical way

ii. the knowledge of the public key tells you nothing about the private key

iii. the knowledge of the private key allows you to decrypt messages en-
crypted with the correspondent public key.

The encryption functions are also called one-way trapdoor functions which
are functions easy to compute in one direction (i.e., computing the public key
knowing the private key) and computationally hard to invert (i.e, computing
the private key, knowing the public key).

A well known cryptographic algorithm based on the integer factorization
problem is the RSA algorithm (Rivest, Shamir and Adleman). While im-
portant results based on the discrete logarithm problem are the public-key
agreement protocol known as Diffie-Hellman key exchange, the Elgamal en-
cryption algorithm and the ElGamal signature algorithm, from which has
been derived the more widely used DSA (Digital Signature Algorithm).

Quantum Computing and Post-Quantum Cryptography

In 1982, Feynman was the first suggesting that the computational power
of quantum mechanical processes might overcome that of the classical com-
putation models [21]. He also reasoned about the possibility for traditional

4

computers of efficiently simulate these quantum processes, eventually giving
a negative answer: a "quantum computing" might be imagined that could
perform such simulations efficiently. Few years later, Deutsch [18] proposed a
theoretically physically realizable model for the "quantum computer", which
he speculated might be more efficient than a deterministic Turing Machine
for certain types of computations.

An important result in cryptography, related to quantum computing,
was achieved in 1994 by Shor [44] who proposed an algorithm able to solve
the discrete logarithm and the integer factorization problems in polynomial
time, given a sufficiently large-scale quantum computer. This result drawn
the attention of the community since the most widely used public-key cryp-
tographic algorithms were (and still are) based on those problems, raising
the need for post-quantum cryptography.

Code-based cryptosystems are the most investigated ones to ensure a new
standard for cryptographic algorithms which must be secure against both
quantum and classical computers. Basic concepts of coding theory as well as
code-based cryptography are given in section 1.1, while section 2.1 presents,
in chronological order, the main results in post-quantum cryptography and
cryptanalysis.

5

Introduction

6

Chapter 1

Theoretical Background

This chapter introduces theoretical principles which will be recalled dur-
ing this document. First it is presented a list of basic concepts about code-
based cryptography, as well as the formulation of the two code-based cryp-
tosystems at the basis of the modern post quantum cryptography. Later, it
will be proposed a theoretical introduction to side channel attacks, further
deepening the techniques based on the exploitation of power consumption
leakages and corresponding countermeasures.

1.1 Code-based cryptography

Binary error correcting codes rely on a redundant representation of in-
formation in the form of binary strings used for controlling errors in data
over unreliable or noisy communication channels.

Let F2 denote the binary finite field with the addition and multiplication
operations corresponding respectively to the exclusive-or and logical product
between two Boolean values. Let Fk2 denote the k-dimensional vector space
defined on F2. A binary code, denoted as C(n, k), is defined as a bijiective
map C(n, k) : Fk2 → Fn2 , n, k ∈ N, 0 < k < n, between any binary k-tuple
(i.e., an information word) and a binary n-tuple (denoted as codeword).
The value n is known as the length of the code, while k is denoted as its
dimension.

Encoding through C(n, k) means converting an information word u ∈ Fk2
into its corresponding codeword c ∈ Fn2 . The decoding process, instead,
given a codeword ĉ corrupted by an error vector e ∈ Fn2 with Hamming

7

CHAPTER 1. Theoretical Background

weight t > 0 (ĉ = c+ e), recovers both the value of the information word u
and the value of the error vector e. A code is said to be t-error correcting if,
for any value of e, given c̃ there is a decoding procedure to retrieve both the
error vector e and the original information word u.

Code-based cryptography is based on the decoding problem of random
error-correcting codes which is known to be NP-hard [5]. The problem con-
sists of finding the closest codeword c to a given ĉ ∈ Fn2 , assuming that there
is a unique closest codeword.

Definition 1.1 (Circulant Matrix). A r × r matrix H ∈ Fr×r2 is a circulant
matrix if its rows are successive cyclic shifts of its first one. From the defi-
nition, it follows that any circulant matrix has a constant row (and column)
weight1. The top row (or the leftmost column) of a circulant matrix is the
generator of the circulant matrix.

Definition 1.2 (Quasi-Cyclic Matrix). A matrix H = (H0| . . . |Hn0−1) is a
quasi-cyclic (QC) matrix if the n0 sub-matrices H0, . . . ,Hn0−1 are circulant
matrices.

Definition 1.3 (Linear Code). The binary code C(n, k) of length n and
dimension k over a field F2 is linear if and only if the set of its 2k code-words
is a k-dimensional subspace of the vector space Fn2 .

Definition 1.4 (Minimum Distance). Given a linear binary code C(n, k),
the minimum distance d(C) of C(n, k) is the minimum Hamming distance
among all the ones which can be computed between a pair of its codewords.
The minimum distance gives the smallest number of errors needed to change
one codeword into another. As a result, it defines the error correction ca-
pability of the linear code C. In coding theory, depending on the adopted
code, it is possible to correct up to b(d(C) + 1)/2c errors over a codeword
c ∈ Fn2 . Namely, linear code C can correct up to t errors if d(C) ≥ 2t+ 1.

Definition 1.5 (Quasi-Cyclic Code). A QC-code is defined as a linear
block code C(n, k) having information word size k = rk0 and codeword
size n = rn0, where n0 is denoted as basic block length of the code and each
cyclic shift of a codeword by n0 symbols results in another valid codeword.

1The number of bits set to 1.

8

1.1. Code-based cryptography

There is a ring isomorphism denoted as ϕ between the r× r circulant matri-
ces and the quotient polynomial ring R = Fq[x]/〈xr − 1〉. Thus, a circulant
matrix A whose first row is a0 = [a0,0, . . . , a0,r−1] is mapped to the polyno-
mial ϕ(A) = a0,0 + a1x+ . . .+ a0,r−1x0,r−1, and the (n, k)-QC code can be
viewed as a cyclic code over the ring R = Fq[x]/〈xr − 1〉.

Definition 1.6 (Generator Matrix). The code C can be specified by pro-
viding a generator matrix G ∈ Fk×n2 , i.e., a matrix whose rows form a basis
of C.

Definition 1.7 (Parity-Check Matrix). A parity-check matrix H ∈ Fr×n is
a matrix which characterizes the linear code as C = {c ∈ Fn2 |cHT = 0r}.

Definition 1.8 (Syndrome). We refer to s = HxT as syndrome of x. A
vector x from Fn2 is contained in C (i.e., is a codeword of C) if and only if
its syndrome is 0r.

Definition 1.9 (QC-MDPC/LDPC). C is a QC-MDPC code if each row of
the parity-check matrix H which defines the code C has the same density
w = O(

√
n log(n)) (as defined in [46]). In case of a QC-LDPC code, each

row of the parity check will have smaller constant row weights, usually less
than 10.

Without knowing the QC-MDPC parity check matrix H = (H0|H1),
decoding a corrupted codeword (i.e., removing its errors) from a random
binary linear code is an NP-hard problem (as already mentioned above).
However, if H is known and the Hamming weight of e is not too large,
there are efficient algorithms for decoding corrupted QC-MDPC codewords.
The most commonly used decoding algorithm is the probabilistic bit-flipping
algorithm introduced by Gallager in [22].
Given a corrupted codeword with at most t errors, the algorithm will output
the (nearest) codeword after a sequence of iterations. Each iteration decides
statically which of the n positions of the input vector v might have a higher
chance to be in error and flips the bits at those positions. The flipped vector
then becomes the input vector to the next iteration. The basic version of the
algorithm stops when the syndrome (computed as, H × vT) becomes zero.
Based on the count of unsatisfied parity-check equations2 (denoted as upc),

2Each equation given by Hi × vT = si is denoted as parity-check equation. A parity-
check equation is unsatisfied when si = 1.

9

CHAPTER 1. Theoretical Background

the algorithm selects the positions that are the most likely of being in error.
The higher the count is, the higher the probability of a position being in
error.

Let u be the vector storing the count of upc for each position j of vT .
Then, the count of ups for position j is expressed as follows

uj = |{i|Hi,j = Hi × vT = 1}|.

Evaluating the vector u, there are two possibilities to determine which bits
should be flipped:

• Flip all positions that violate at least max({ui}) − δ parity checks,
where δ is a small integer, say 5.

• Flip all positions that violate at least Ti parity checks, where Ti is a
precomputed threshold for iteration i.

1.1.1 McEliece cryptosystem

The McEliece cryptosystem is a PKC scheme proposed in 1978 by Robert
McEliece [30] and exploiting the hardness of the problem of decoding a
random-like linear block code. Key-generation, encryption and decryption
operations can be generalized as follows:

• The key-generation algorithm considers a binary linear block code
C(n, k), with codeword length n, information word length k and out-
puts a secret key sk defined as the generator matrix G ∈ Fk×n2 of a
code C(n, k) able to correct t ≥ 1 or less bit errors, plus a randomly
chosen invertible binary matrix S ∈ Fk×k2 , named scrambling matrix,
and a binary permutation matrix P ∈ Fn×n2 :

sk ← {S,G, P}. (1.1)

The corresponding public key pk is computed as the generator matrix
G′ ∈ Fk×n2 of a permutation-equivalent code with the same size and
correction capability of the original code:

pk ← {G′}, withG′ = SGP (1.2)

10

1.1. Code-based cryptography

• The encryption algorithm takes as input a public key pk and a message
vector m ∈ Fk2, and outputs a ciphertext c computed as:

c = (m ·G′ ⊕ e) ∈ Fn2 , (1.3)

where e ∈ Fn2 is a random binary vector with weight t, named error
vector.

• The decryption algorithm takes as input a secret key sk and a cipher-
text c and outputs a message m′ computed as the result of a known
error correcting decoding algorithm able to remove t errors present in
cP−1 and subsequently multiplying by the inverse of the matrix S:

C ′ = Decode(cP−1)S−1 = Decode((cP−1)G+ eP−1)S−1

= (mS)S−1 = m (1.4)

1.1.2 Niederreiter cryptosystem

The Niederreiter cryptosystem [34] is a code-based cryptosystem exploit-
ing the same trapdoor introduced in the McEliece [30] with an alternative
formulation. The encryption employs syndromes and parity-check matrices
in place of the codewords and generator matrices employed by the encryp-
tion algorithm in the McEliece. When the same family of codes is used,
Niederreiter and McEliece cryptosystems exhibit the same cryptographic
guaranties [53]. Key-generation, encryption and decryption defining Nieder-
reiter cryptosystem are as follows:

• The key-generation algorithm considers a binary linear block code
C(n, k), with codeword length n, information word length k and out-
puts a secret key sk defined as the parity-check matrix H ∈ Fr×n2 of
a code C(n, k), r = n − k able to correct t ≥ 1 or more bit errors,
plus a randomly chosen invertible matrix S ∈ Fr×r2 , named scrambling
matrix:

sk ← {H,S}. (1.5)

The corresponding public key pk is computed as the parity-check ma-

11

CHAPTER 1. Theoretical Background

trix H ′ ∈ Fr×n2 obtained as the product of the two secret matrices:

pk ← {H ′}, withH ′ = SH (1.6)

• The encryption algorithm takes as input a public key pk and a mes-
sage binary vector e ∈ Fn2 with exactly t asserted bits, and outputs a
ciphertext c computed as the syndrome of the original message:

c = H ′eT = SHeT (1.7)

• The decryption algorithm takes as input a secret key sk and a cipher-
text c and outputs a message e computed as the result of a known error
correction syndrome decoding algorithm applied the vector S−1c and
able to recover the original error vector e:

e = SynDecoding(S−1c) = SynDecoding(HeT) (1.8)

1.2 Side Channel Attacks

A cryptographic primitive can be looked at in two different ways: it can
be seen from an abstract mathematical point of view (as a mathematical re-
lation transforming some input in some output); or it can be considered from
a physical point of view, since eventually, this primitive will be implemented
in a program and it will run on a specific hardware.

Several techniques have been studied for testing cryptographic algorithms
in isolation in order to tackle the mathematical structure of the primitive.
For example, linear cryptanalysis and differential cryptanalysis. These ap-
proaches have the advantage of being more general, since they do not relay on
a given implementation, but still, physical attacks on cryptographic devices
are often much more effective than classical cryptanalysis.

Such attacks exploit the physically observable environmental parameters
of a device performing a computation known as side channels. Examples of
side channels which can be related to the ongoing computation are: power
consumption, electromagnetic (EM) emissions, computation time and erro-
neous output obtained from fault inducing factors.

12

1.2. Side Channel Attacks

Side channel attacks are techniques designed to force cryptosystem ex-
ploiting the information leaking from the side channels. Among the above
mentioned techniques, the most important results have been achieved in
power consumption analysis and EM emissions analysis.

1.2.1 Modeling Power Consumption

At the basis of the digital circuits there are logic cells. These can be di-
vided into two categories: combinatorial cells, that is, logic that does not have
memory and thus its output depends only on the input at the present clock
cycle; and sequential cells, whose output depends not only on the present
value of its inputs but on the input history as well. The former are used
in computer circuits to perform Boolean algebra (such as end, xor . . .), the
latter are used to store data (for example a D-latch).

The most common logic style (that is the way logic levels 0 and 1 are
physically represented by the logic cells) is the Voltage-Mode Logic style, in
which the zeros and ones are represented in terms of a voltage level. The
ground voltage level GND is associated to 0 and the reference voltage level
VDD is associated to 1. Internally, the cells of digital circuits are realized
utilizing transistors as voltage driven switches. The most common transis-
tor technology is the Complementary Metal-Oxide-Semiconductor (CMOS),
which employs pairs of P-type and N-type metal-oxide-semiconductor field
effect transistors (MOSFET) to implement logic functions.

The power absorbed by a cell can be split into two components: a static
component Pst dissipated in a steady state (not directly influenced by the
switching activity), and a dynamic component Pdyn that is absorbed when
the cell is switching its logic state. In other words, if a cell is not switching
its input state, the only contribution to the global power consumption will
be the one of Pst, vice versa, if a cell changes logic level given in input, the
cell will draw Pst + Pdyn. It follows that a reasonable model for the power
consumption of a group of cells representing binary values is given by the
Hamming distance3 between the two outputs of the cells at time t− 1 and t.

In case the cells are toggling from an all-zero or all-one pre-charged state,
a better fitting model for the power consumption is given by the Hamming

3The Hamming distance between two binary values is defined as the minimum number
of single bit flips which should be applied to the first value in order to obtain the second.

13

CHAPTER 1. Theoretical Background

weight4 (HW) of the value being computed.

1.2.2 Power Analysis Attacks

Power analysis attacks are built on the information leaked by a device
through the power consumption correlated to the execution of a crypto-
graphic algorithm. The key idea is to build a relation between the power
consumption measured from the device and either a key-dependent control
flow in the algorithm, or specific operations in the data flow.

Power Consumption Measurement

First, to mount an attack, the attacker needs to gather samples of the
actual power consumption of the device while running a cryptographic algo-
rithm. The power consumption can be either acquired from a real measure
session by means of a digital sampling oscilloscope or obtained from a sim-
ulation by a power estimation tool such as the ones in common EDA tools.

In both cases, the power consumption associated to an execution i is
stored as a power trace ti, which is considered as a vector ofM power samples,
as shown in Equation 1.9.

ti = [ti,1, ti,2, · · · , ti,M] (1.9)

Where each power sample ti,j of a power trace ti is the sum of different
contributions that can be identified in

ti,j = tOpi,j + tDatai,j + tNoisei,j + tStati,j (1.10)

where the first contribution tOpi,j is the power consumption due to the
specific operation executed, the second tDatai,j is the power consumption due
to the processed data values, the third tNoisei,j is the due to the environmental
noise and the last tStati,j is the static power consumption of the device.

The tStati,j does not depend on the device activities, thus it is irrelevant to
the purposes of power analysis. Differently, the tNoisei,j contribution should
be minimized as much as possible in order to achieve good performance in
the results. Since tNoisei,j is not affected by the ongoing operations, it can

4The Hamming weight of a binary value is defined as the number of bits set to 1 in the
value.

14

1.2. Side Channel Attacks

be modeled as a random variable following a normal distribution with zero
mean N (0, σ).

The other three contributions, given a fixed input and a fixed imple-
mentation platform, are constant. This means that ti,j will follow a normal
distribution N (µi,j , σ), and it is thus possible to reduce the noise through
averaging a reasonable amount of measurements of the same encryption.

Attacks principles

Power analysis attacks focus on exploiting meaningful dependencies be-
tween the power consumption of the device and the cryptographic algorithm
flow, that will turn eventually into a key recovery.

There are two kinds of dependencies that can be used in a power analysis
attack. The first dependency is associated to the control flow of the algo-
rithm, that is, different operations are executed for different key bit value.
The second dependency is related to the data flow of the algorithm, in this
case the difference is not about the operations, but it interests the data de-
pending on the key bit value. These dependencies are exploited differently
resulting in two different families of attacks which will be presented later in
the subsection.

Another characteristic which is used to classify the attacks is the number
of traces that is necessary to analyze for the attack to succeed. The so called
vertical attack exploits a dependency on the key bit once per trace and needs
many traces (typically hundreds or thousands) to get enough information in
order to recover the secret key. The horizontal attack, contrariwise, exploits
a single power information repeated many times along the same trace and
thus it needs only few traces (sometimes just one trace) to mount the attack.
The two approaches are illustrated in Figure 1.1.

Simple Power Analysis (SPA)

The most straightforward attack technique relying on the power con-
sumption of a device is the Simple Power Analysis (SPA). This technique
leverages the specific key-dependent points in the control flow of a crypto-
graphic algorithm, for which the measurement of the dynamic power con-

15

CHAPTER 1. Theoretical Background

Figure 1.1: Vertical DPA (a) targets a single intermediate computation and
seeks correlation across multiple traces each using a distinct input, while
Horizontal DPA (b) targets multiple intermediate computations within a
trace and seeks a correlation among them [2].

sumption of the circuit can leak the key. In other words, SPA exploits points
in the algorithm where an instruction is executed depending directly on a spe-
cific value of the secret key, as it happens in key-dependent branches which
can be found, for example, in the schoolbook implementation of the straight-
forward square and multiply (or double and add) exponentiation (multipli-
cation) algorithm. In cases where the squaring operation has a different
power consumption with respect to the multiplication, it is possible for an
attacker to distinguish the two operations simply looking at the recorded
power trace of an exponentiation computation. Since the operations are
strictly key-dependent, this would be enough to recover the secret key.

Figure 1.2 illustrates a practical power trace example that clearly exposes
the vulnerability. It is evident the difference in the power consumption that
is recorded when the multiplication is performed rather than the squaring
operation.

It is thus possible for an attacker to recover, in a straightforward way,
each single bit composing the secret key, by simply decoding the information
captured in the recorded power trace.

Since this attack requires a single power trace in order to be accomplished,
it can be considered belonging to the horizontal class.

16

1.2. Side Channel Attacks

Figure 1.2: Simple Power Analysis against an RSA Left-To-Right Square
and multiply.

Differential Power Analysis (DPA)

Differential power analysis is a statistical power analysis technique, first
introduced by P. Kocher et al. [27], that relies on the difference of means
(DOM) statistical test to recover the secret key from a device.

The essential difference between SPA and DPA attacks is that, the former
take advantage of the difference in power consumption related to different
key-dependent operations executing on the device whereas DPA attacks ex-
ploit the difference in power consumption as a result of using key-dependent
data.

The basic idea of DPA is to predict the portion of the power consumption
which depends on the key, for a small amount of key values, and distinguish
the correct prediction employing the actual measurements as reference. A
statistical test is applied in order to identify the dependencies between the
measurements and the predictions: once the correct prediction is detected,
the value for a portion of the secret key is retrieved. Depending on the
specific statistical test employed to verify the hypothesis, DPA attacks are
referred to by different denomination in the literature.

In the practice, DPA attacks are organized in five steps:

17

CHAPTER 1. Theoretical Background

i. In the first step, an intermediate value of the cryptographic algorithm
which is computed as a known function f(d, k) is identified. d is a
known non-constant data value (usually either the plaintext or the
ciphertext) and k is a small portion of the secret key (typically 6 − 8

bits in order to keep the hypothesis space K small).

ii. Subsequently, N power traces ti are collected using N different known
data di over a fixed key k̂. The measurements are gathered in the form
of a matrix of power traces T of size N ×M , where each power trace
represents a row vector, while the input data are stored in the form of
a vector d

T =



t1

t2
...
ti
...

tN


=



t1,1 t1,2 · · · t1,j · · · t1,M

t2,1 t2,2 · · · t2,j · · · t2,M
...

...
. . .

...
. . .

...
ti,1 ti,2 · · · ti,j · · · ti,M
...

...
. . .

...
. . .

...
tN,1 tN,2 · · · tN,j · · · tN,M


d =



d1

d2
...
di
...
dN


iii. In the third step, the hypothetical intermediate values vi,l for each

input data di and every possible guess kj ∈ {k1, k2, . . . , kl, . . . , kK}
such that vi,l = f(di, kl), are computed. These values are gathered
in a matrix V of size N × |K| which then contains every intermediate
value for each possible key guess kl

V =



v1,1 = f(d1, k1) · · · v1,l = f(d1, kl) · · · v1,|K| = f(d1, k|K|)

v2,1 = f(d2, k1) · · · v2,l = f(d2, kl) · · · v2,|K| = f(d2, k|K|)
...

. . .
...

. . .
...

vi,1 = f(di, k1) · · · vi,l = f(di, kl) · · · vi,|K| = f(di, k|K|)
...

. . .
...

. . .
...

vN,1 = f(dN , k1)· · ·vN,l = f(dN , kl)· · ·vN,|K| = f(dN , k|K|)


In this representation, each column l contains the intermediate values
that have been computed under the hypothesis of a specific key guess
ki and the plaintext di. At this point, the idea of DPA is to determine
which column actually contains the intermediate values corresponding

18

1.2. Side Channel Attacks

to the ones computed by the device. In this way, the portion kl of the
secret key is retrieved.

iv. In the fourth step, a power model fs (chosen accordingly to the ci-
pher implementation) is applied to map the hypothetical intermediate
values contained in matrix V to a matrix P of hypothetical power
consumption values

P =



p1,1 = f(d1, k1) · · · p1,l = f(d1, kl) · · · p1,|K| = f(d1, k|K|)

p2,1 = f(d2, k1) · · · p2,l = f(d2, kl) · · · p2,|K| = f(d2, k|K|)
...

. . .
...

. . .
...

pi,1 = f(di, k1) · · · pi,l = f(di, kl) · · · pi,|K| = f(di, k|K|)
...

. . .
...

. . .
...

pN,1 = f(dN , k1)· · ·pN,l = f(dN , kl)· · ·pN,|K| = f(dN , k|K|)


v. In the last step, a statistical test is employed to compare each predicted

power consumption (given a fixed key value kl) against the actual ones
stored in the power traces. When a predicted power consumption
matches, with a high statistical confidence, the actual consumption
of the device for a specific time instant, it means that the guessed key
value is the correct one.

In the following paragraphs, the two most common statistical test em-
ployed in DPA will be presented.

Difference of Means - Common DPA attack. The difference of means
is the first proposed statistical test used to validate the power consumption
prediction. This tool is applied on data classified into two different sets
S0, S1, in such a way that the sample-wise mean consumption of the two
sets presents a significant difference for some time instant j.

The attacker first chooses a selection function fs to decide to which set,
S0,l or S1,l, a trace ti belongs, depending on the predicted power consumption
pi,l = fs(vi, l) = fs(f(di, kl)) already computed with the data input di related
to the trace ti and the key hypothesis kl. This selection operation is repeated
for each key guess kl , since they will produce different partitions of the traces.

The simple-wise mean m0l of all the traces belonging to S0l , and the
sample-wise mean m1l of all the ones belonging to S1l are calculated.

19

CHAPTER 1. Theoretical Background

The attacker computes the sample-wise difference δl = m0l − m1l for
all possible key hypothesis kl. The correct key hypothesis will produce a
significantly large value of δl for some time instant i. This is due to the
fact that, if the key is correct, the selection function performs a correct
partitioning of the traces into two sets where the mean consumption of the
operation fits the predictions. Vice versa, if the key hypothesis is wrong, the
selection function performs a random partitioning, resulting in two sets with
roughly the same mean consumption.

Pearson’s Linear Correlation Coefficient - (CPA). Correlation power
analysis (CPA) employs the Pearson’s (linear) correlation coefficient as a sta-
tistical test to detect the correct key hypothesis. Pearson’s linear correlation
coefficient is the measure of the linear correlation between two random vari-
ables X and Y .

The Pearson’s linear correlation coefficient assumes values between −1

and 1. Values of the correlation coefficient close to 1 (or −1) indicates a high
positive (or negative) linear correlation, whereas values close to zero means
that the two variables are not linearly correlated.

Pearson’s linear correlation coefficient between two random variables X
and Y (denoted as ρX,Y) is defined as

ρX,Y =
cov(X,Y)

σXσY
=
E[(X − µX)(Y − µY)]

σXσY
(1.11)

Where, cov denotes the covariance between the two variables and σX

denotes the variance of a random variable X.

In order to use the Pearson’s correlation coefficient as a statistical test
in a DPA attack, the actual power consumption measured in a precise time
instant for all the traces tj = [t1,j , t2,j , · · · , ti,j , · · · , tN,j] and its prediction
for a fixed key hypothesis pj = [p1,j , p2,j , · · · , pi,j , · · · , pN,j] are considered to
be modeled by two random variables. Since the attacker does not know the
theoretical distribution of these variables, he will need to employ the sample
Pearson correlation coefficient as an estimator of the correct value of ρtj,pl

.
Given the samples contained in pl and tj, the sample Pearson correlation

20

1.2. Side Channel Attacks

coefficient (commonly noted as rtj,pl
) can be computed as

rtj,pl
=

∑
i

(ti,j − t̄j)(pi,l − p̄l)√∑
i

(ti,j − t̄j)2
∑
i

(pi,l − p̄l)2
(1.12)

where t̄j and p̄l are the sample means over tj and pl respectively.

Computing the coefficient for all the time instants j and the key hy-
pothesis kl exposes the correct key in correspondence of the highest peak
correlation coefficient over the whole encryption.

Template Attacks

Template attacks are the strongest form of side-channel attack from an
information point of view. They belongs to the class of profiled side-channel
attacks and they have been firstly proposed by Chari et al. in 2002 [12].These
attacks rely on the assumption that the attacker has access to a reference
device identical to the target device that he can program at his will.

Template attacks are mounted in two stages. The first stage is the profil-
ing stage (or training stage) and the second stage is the extraction stage. In
the profiling stage, the attacker collects some power traces from an identical
experimental device and builds templates for each key-dependent operation.
During the extraction stage, the attacker exploits the templates obtained
from the profiling stage to classify the correct key from a single power trace
(or at most few power traces) collected from the target device.

This technique thus requires a large number of power traces to profile the
device, but only few power traces (if not one) to retrieve the key during the
extraction phase against the target device. This feature makes the template
attack able to succeed in breaking implementations and countermeasures
whose security is dependent on the assumption that the attacker can use
only one or limited number of power traces, as in case of ephemeral keys
cryptographic protocols.

Profiling phase - Template creation. A template is a set of probability
distributions describing the power traces shape for many different keys. A

21

CHAPTER 1. Theoretical Background

trace is considered the realization of a multivariate Gaussian random vari-
able.

The most important points in each trace are called points of interest
(PoI), this specific instants should contain most of the useful information
and are usually a few, which allows to keep relatively small the dimension
of the multivariate distribution. To identify the most significant PoIs, there
are many techniques. One of the most effective method of choosing these
points is named SOST.

The attacker runs the implementation of the target cryptographic algo-
rithm n times obtaining n actual power traces (s1, s2, . . . , sn) which will be
needed to identify the interesting points. The n power traces are sampled
from the implementation with a fixed (know) key and a (known) random
input plaintext.

For a fixed instant point pt, the power consumption values of the n power
traces are collected in a vector r(t) := (s1[pt], s2[pt], . . . , sn[pt]). Let’s define
the sets Gi := {sj|g(mj , key) = oi}, i = 0, 1, . . . , k̄ − 1, where g(mj , key)

denotes a function (depending on the input plaintext mj and the (sub)key
key) which expresses the key-dependent operation oi. For the point pt, we
let m̄i[pt] :=

∑|Gi|
l=1 sl[pt]/|Gi| (i = 0, 1, . . . , k̄ − 1), where sl ∈ Gi.

Now, the SOST is based on the T-Test and is defined as the sum of
squared pairwise t-differences. For a point pt, let σ2i (t) denote the variance
of all the sample data si[pt], where si ∈ Gi. Then, the signal-strength
estimate of the SOST method is computed as follows:

f(t) =
∑
i 6=j

 m̄i[t]− m̄j [t]√
σ2
i (t)
|Gi| +

σ2
j (t)

|Gj|


2

, (1.13)

where i, j ∈ {0, 1, . . . , k̄ − 1}.

Once the attacker has picked ī points of interest, he computes the mean
and the covariance matrix for every operation k (every choice of (sub)key).
Let µi be the average power consumption at instant pi; vi denotes the vari-
ance of the power consumption at each point of interest pi, and let ci,j be the
covariance between the power consumption at every pair of points of interest
(pi and pj).

22

1.2. Side Channel Attacks

For every operation k ∈ {0, 1, . . . , k̄ − 1} he will obtain the mean vector
µk and the covariance matrix Σk

µk =



µk,1

µk,2
...
µk,i
...

µk,|I|


Σk =



vk,1 ck,(1,2) · · · ck,(1,j) · · · ck,(1,|I|)

ck,(2,1) vk,2 · · · ck,(2,j) · · · ck,(2,|I|)
...

...
. . .

...
. . .

...
ck,(i,1) ck,(i,2) · · · ck,(i,j) · · · ck,(i,|I|)

...
...

. . .
...

. . .
...

ck,(|I|,1) ck,(|I|,2) · · · ck,(|I|,j) · · · vk,|I|


Extraction phase - Template matching. Assuming that the attacker
obtains t actual power traces (labeled as s1, s2, . . . , st) from the target device
in the extraction phase. When the power traces are statistically independent,
the attacker can apply maximum likelihood approach on the product of con-
ditional probabilities

keyck := argmaxkeyi{
t∏

j=1

Pr(sj |keyi), i = 0, 1, . . . , k̄ − 1},

where Pr(sj |keyi) gives a measure of how likely is it that key keyi is the
correct one for trace j.

The keyck reveals which guess for the (sub)key fits the templates the best
and thus it is considered to be the correct (sub)key.

1.2.3 Countermeasures

Since side-channel attacks rely on the relationship between information
leaked though a side channel during the computation of a cryptographic al-
gorithm and the secret data, the countermeasures basic idea is to break those
dependencies. Following this principle, countermeasures can be categorized
in two classes that are called hiding and masking. The former tries to hide
the information leaked without altering the computation, while the latter
tries to mask the computation without altering the side-channels.

Countermeasures can be implemented at different levels of abstraction.
At the lowest level, countermeasures can be implemented by using protected
logic styles that try to hide the usual power consumption. At architectural

23

CHAPTER 1. Theoretical Background

level the main idea is to reorganize the flow of the instructions by randomly
modifying the order of execution or by randomly inserting dummy instruc-
tions in order to produce power traces that are not directly comparable.
Finally, at algorithm level, the cryptographic algorithm can be modified in
such a way that the information leaked is not any more correlated with the
expected intermediate values of a standard computation [29].

Different countermeasures can also be combined together to achieve a
higher level of security, typically by implementing hiding countermeasures
after that masking countermeasures have been used. When implementing
such countermeasures, it is important to keep in mind that they usually
come at a price in terms of loss of speed, higher chip area or higher power
consumption that make countermeasures hard to design in the practice.

Hiding.

The objective of hiding is to tamper with the dependencies between the
computation and the power consumption by altering the latter. Usually it
tries to produce a power consumption either constant or random.

The hiding countermeasure can alter either the time or the amplitude of
the power consumption. In the first case, the operations of the cryptographic
algorithm are executed in a different order or at a different time instant for
each different execution, this can be accomplished by random insertion of
dummy operations or by shuffling the order of some operations every execu-
tion. Whereas in the second case the power consumption of each operation
is altered randomly, this can be achieved by introducing noise in the form
of switching activity in the normal cryptographic computation altering the
power consumption.

Masking.

Masking is the complementary countermeasure to hiding, its purpose is
to invalidate the dependency of the computation from power consumption
by randomizing the intermediate results calculated by the cryptographic al-
gorithm.

Implementing a cryptographic algorithm with masking means taking ev-
ery intermediate value v and masking it by an unknown random value m

24

1.2. Side Channel Attacks

(that is different for every execution) that is called mask. Every intermediate
result must be masked all the time vm = v�m where � is a known operation.
The most common operations employed in masking countermeasure are the
exclusive-or function, the modular addition or the modular multiplication.

Masking operation can be designed over many shares (typically two or
three) to achieve a higher level of security, bearing in mind that the overhead
rapidly increases with the number of the shares. These techniques are known
as higher-order masking (second-order masking, third-order masking etc.).

Countermeasures based on masking have to ensure that the results of an
operation that involves two masked intermediate values are masked as well.
Thus, in the practice many different masks are adopted making it necessary
to specify a masking scheme that describes the order in which the masks are
employed.

25

CHAPTER 1. Theoretical Background

26

Chapter 2

State of the Art

This chapter presents the state of the art in post quantum cryptography,
in particular, code-based cryptosystems and side channel attacks against
them. First, it will illustrate the related works, presenting the evolution of
techniques in the area of code based cryptography in chronological order.
Subsequently, it will describe QcBits, a state of the art code-based cryp-
tosystem which employs a constant-time multiplication to secure the cipher
against timing analysis. Finally, it will present three papers discussing power
analysis side channel attacks against hardware and software implementation
of code-based cryptosystems.

2.1 Post Quantum Cryptography

The security of the most commonly employed public key cryptosystems
(PKCs) is based on the difficulty of number theory problems, such as the
integer factorization problem or the discrete logarithm problem. In 1994,
Shor [44] proposed an algorithm that can solve such problems in polynomial
time using quantum computing.

In the past few years, quantum computing became a main topic, so that,
in 2015, the National Security Agency (NSA) announced that it is planning
to transition “in the not too distant future” to a new cipher suite that is
resistant to quantum attacks. In December 2016, the National Institute of
Standards and Technology (NIST) announced a call for proposals for post-
quantum cryptography (PQC) standardization. Some of the most promising
alternatives include cryptosystems based on lattices, error correcting codes,

27

CHAPTER 2. State of the Art

hash functions, and multivariate quadratic equations. These mathematical
problems are expected to remain intractable even for quantum computing.
In the second-round of NIST competition, twenty-six candidates (over sixty-
nine) have survived [36], and seven candidates are code-based cryptographic
algorithms.

Code-based cryptography is based on coding theory, which aims to de-
tect and correct errors on transmitted data through a noisy channel. The
first code-based PKC was proposed by McEliece in 1978 [30]. Its security
is based on the difficulty of the Syndrome Decoding (SD) problem and the
Goppa Code Distinguishing (GCD) problem. The main drawback of the
original McEliece cryptosystem is the large size of the public keys. For
the 80-bit security level, the public key size of the McEliece cryptosys-
tem requires about 500 Kbits. To address this problem, several variants of
the McEliece cryptosystem have been proposed, by exploiting different effi-
cient codes other than Goppa codes, for example, generalized Reed-Solomon
(GRS), low-density parity-check (LDPC), and moderate-density parity-check
(MDPC) [7, 9, 16,17,31,34].

Using Quasi-cyclic MDPC (QC-MDPC) in the McEliece cryptosystem
was first suggested by Misoczki et al. in 2012 [32]. For the 80-bit security
level, the public key of QC-MDPC McEliece requires only 4801 bits. Some
hardware implementations of this scheme followed in 2013 [26] and 2014 [51].

Bernstein et al. proposed a key encapsulation mechanism (KEM)/data
encapsulation mechanism (DEM) called McBits [7], using the Niederreiter
cryptosystems as the underlying scheme.

In 2016, Chou proposed a variant of the hybrid (KEM/DEM) Niederreiter
encryption scheme called QcBits [16]. It operates in constant time and has
very good speed results and small key sizes.

Another issue with the QC-MDPC cryptosystems is that they use a prob-
abilistic decoder with a non-negligible decoding failure rate (DFR) depending
on the security parameters. In the original proposal by Misoczki et al. [31],
the DFR was around 10−7. In [24], Guo et al., take advantage of the de-
cryption failure to recover the secret key of Misoczki’s original version in
minutes. For QcBits [16], Chou claims a DFR of 10−8 for the 80-bit secure
version.

Kocher first presented side-channel attacks (SCAs) [28], which enable

28

2.2. QcBits cryptosystem

to recover cryptographic keys by analyzing side-channel leakages such as
execution time, power consumption, electromagnetic emission, and photonic
emission, when cryptographic algorithm are running on devices. These side-
channel attacks include timing attack (TA), simple power analysis (SPA),
differential power analysis (DPA), correlation power analysis (CPA), and
profiling attack [29].

A SCA against the McEliece cryptosystem was first proposed by Stren-
zke et al. in 2008 [50]. Other TAs against McEliece have been followed
in [10,45,47–49]. While various SPAs and DPAs against the McEliece cryp-
tosystem can be found in [20,25,33,40,41,52]. In [14] Chen et al. introduce
the horizontal DPA attack on a lightweight FPGA implementation of QC-
MDPC McEliece presented in [51]. Finally, fault injection attacks have been
presented in [11,48].

Chou suggested a CCA-secure constant-time implementation for QC-
MDPC McEliece to mitigate TAs [16]. Rossi et al. [42] proved this counter-
measure to be vulnerable to a DPA in private syndrome computation. The
proposed attack, however, requires further solving linear equations to obtain
the entire secret key. Sim et al. [46] proposed a novel attack against QcBits
able to fully recover the secret key, improving the results of Rossi et al. [42].
They also provided a single-trace SCA able to recover the secret key even
when using ephemeral keys or applying the DPA countermeasures suggested
in [15,42].

2.2 QcBits cryptosystem

One problem with QC-MDPC codes is that the most widely used decod-
ing algorithm, when implemented naively, leaks information about secrets
through timing. Even though decoding is only used for decryption, the same
problem can also occur if the key-generation and encryption are not constant-
time.
QcBits [16] is a fully constant-time implementation of a QC-MDPC-code-
based encryption scheme. It follows the McBits [7] paper to use a variant of
the hybrid KEM/DEM Niederreiter encryption scheme proposed in [39]. As
a property of the KEM/DEM encryption scheme, the software is protected
against adaptive chosen ciphertext attacks (aka it’s CCA-secure), unlike the

29

CHAPTER 2. State of the Art

plain McEliece or Niederreiter [34] encryption scheme. Other than being
faster than most of the other implementations (also not constant-time imple-
mentations), another important result of QcBits is that, using a 280-security
parameter set, the algorithm has a decryption failure rate lower than 10−8.

QcBits uses (n, r, w)-QC-MDPC binary codes with n = 2r, where n, r
and w denotes respectively the code length, the code dimension and the
codeword density. The parity check matrix in its QC-MDPC form is then
composed of two square sparse circulant matrices

H = (H0|H1) ∈ Fr×n2 . (2.1)

The generator matrix in its systematic form is the r × n binary matrix

G = (I|P) (2.2)

Where I is the r× r identity matrix and P is an r× r dense binary circulant
matrix

P = (H−11 ·H0)
T . (2.3)

It easy to verify that H · GT = 0, so the rows of G form a basis for the
codewords. An r-bit data vector x is encoded by multiplying it by G:

c = x ·G. (2.4)

Let e be a n-bit error vector, and ĉ the corrupted codeword

ĉ = c⊕ e = x ·G⊕ e. (2.5)

The private key of QcBits is the QC-MDPC parity check matrix Hpriv:

Hpriv = (H0|H1) (2.6)

where H0, H1 ∈ Fr×r2 are randomly generated circulant matrix with weight
w/2 in each row. The private key is sparse, so only the indices of the nonzero
values of the first row are stored. Knowing the private key, one can use
the bit-flipping decoding algorithm to recover a codeword which has been
corrupted up to t errors.

30

2.2. QcBits cryptosystem

The public key is computed directly from the private key as the dense
circulant r × r matrix P :

P = (H−11 ·H0)
T . (2.7)

From P , anyone can derive the generator matrix in its systematic form Gpub

and a parity-check matrix Hpub:

Gpub = (I|P) (2.8)

Hpub = (I, P−T). (2.9)

In the following, it will be presented how the QcBits cryptosystem prim-
itives work.

In QcBits, Niederreiter encryption is used to encrypt a random vector e
of weight t, which is then fed into a key-derivation function to obtain the
symmetric encryption and authentication key. The ciphertext is then the
concatenation of the Niederreiter ciphertext, the symmetric ciphertext, and
the authentication tag for the symmetric ciphertext.

By default, QcBits uses the following symmetric primitives:

• A hash function denoted Hash. QcBits uses Keccak with 512-bit out-
puts [38];

• A symmetric stream cipher denoted (Senc,Sdec). QcBits makes use of
Salsa20 [8];

• An authentication function denoted (Tag,Check). QcBits makes use of
Poly1305 [6];

The encryption of a message m using QcBits is shown in Algorithm 2.2.1.

We next describe the bit-flipping algorithm, which is used by the de-
cryption algorithm. In QcBits, the bit-flipping algorithm performs a total of
jmax = 6 iterations. It uses the precomputed thresholds Thresh[0, . . . , 5] =

[29, 27, 25, 24, 23, 23] in each iteration to determine which bits should be

31

CHAPTER 2. State of the Art

Algorithm 2.2.1: QcBits encryption
Input : Plaintext m Public matrix P
Output: Ciphertext (c|d|g)

1 e← $ // Drawing a random n-bit error vector with Hamming weight t
2 key ← Hash(e)
3 cT ← (I, P−T) · eT ∈ Fr2
4 d← Senc(key,m)
5 g ← Tag(key)
6 return (c|g|d)

flipped. This process is shown in Algorithm 2.2.2.
Algorithm 2.2.2: Bit Flipping
Input : Hpriv ∈ Fr×n2 , x ∈ Fn2
Output: Corrected codeword v

1 v ← x

2 S ← Hpriv · vT // Syndrome computation
3 for j = 0 to jmax do
4 for i = 0 to n− 1 do
5 σi ← 〈S, hi〉 ∈ Z//hi denotes the i-th column of H
6 if σi ≥ Thresh[j] then
7 vi ← vi ⊕ 1

8 S ← Hpriv · vT

9 return the codeword v

The decryption works in a similar way as encryption, Algorithm 2.2.3.
First, (c|0) ∈ Fn2 gets decoded. The bit-flipping returns the error e. Then,
the decryption hashes e to compute the symmetric key, verifies the tag g,
and decrypts the second part of the ciphertext, d.

Sparse-Times-Dense Multiplications in F2[x]/〈xr − 1〉

Given the problem of computing h(x) = f(x)g(x) ∈ F2[x]/〈xr − 1〉,
where f(x) is represented as an array of indices in I = {i | fi = 1}, where fi
represents the bit in position i of the dense representation of f(x), and g(x)

is in the dense representation. Then we have

f(x)g(x) =
∑
i∈I

xig(x). (2.10)

32

2.3. Power Analysis Attacks

Algorithm 2.2.3: QcBits decryption
Input : Ciphertext (c|d|g), Private key Hpriv = (H0|H1)
Output: Plaintext m or ⊥

1 s← (c|0) ∈ Fn2
2 e←Bit-Flipping(Hpriv, s)⊕ s
3 key ← Hash(e)
4 if Check(key, g) then
5 return m← Sdec(key, d)
6 else
7 return ⊥

Therefore, the implementation first sets h = 0. Then, for each i ∈ I, xig(x)

is computed and accumulated in h. Note that xig(x) is represented as an
array of dr/be b-bit words, so adding xig(x) to h(x) can be implemented using
dr/be bitwise-XOR instructions on b-bit words. xig(x) can be obtained by
rotating g(x) by i bits. In order to perform a constant-time rotation, the
implementation makes use of the idea of the Barrel shifter. The idea is to
first represent i in binary representation

(ik−1ik−2 · · · i0)2. (2.11)

Since i ≤ r − 1, it suffices to use k = blg (r − 1)c + 1. Then, for j from
k − 1 to lg b, a rotation by 2i bits is performed.One of the unshifted vector
and the shifted vector is chosen (in a constant-time way) and serves as the
input of the next j. After dealing with all ik−1, ik−2, . . . , i0, a rotation of
(ilg b−1ilg b−2 · · · i0)2 bits is performed using a sequence of logical instructions.

The constant-time multiplication algorithm which is used to secure pri-
vate syndrome computation HcT as a countermeasure against timing attacks
is shown (along with a toy example) in Appendix A.

2.3 Power Analysis Attacks

Concerning post quantum cryptography, QC-MDPC(/LDPC) cryptosys-
tems are the most promising ones, therefore, they have drown the attention
of many researchers.

In the following subsections, three different papers which explore the
robustness against power analysis attacks of the state of the art of QC-

33

CHAPTER 2. State of the Art

MDPC(/LDPC) cryptosystems will be presented.
In the first paper, by C. Chen et al. [13], the vulnerabilities exposed by

a state of the art FPGA implementation of McEliece are exploited leading
to a full key recover. The researchers introduce a vertical and an horizontal
side-channel attack and subsequently they suggest possible countermeasures.

In the second paper, by M. Rossi et al. [42], the researches test a state
of the art software implementation, QcBits (already presented in subsec-
tion 2.2). In particular, they mount a DPA attack targeting the constant
time multiplication suggested by Tung Chou and they eventually present a
mask-based countermeasure to secure the algorithm.

The third paper, by B.-Y. Sim et al. [46], extends the work of Rossi et
al. presenting a multiple-trace attack and a single-trace attack against the
constant-time multiplication adopted in QcBits.

For the rest of the section, the parity check matrixH represents the secret
key of the cryptosystems under investigation. Let Hi ∈ Fr×r2 be the i-th
circulant sub-matrix ofH ∈ Fr×n2 such thatH = (H0| . . . |Hn0−1), n = r×n0.
The first row of each block Hi is referred to as hi and hi,j represents the j-th
bit of the first row of the i-th block, while w denotes the sum of the weights
(number of bit set to 1) of the first row of each block (i.e., the weight of the
first row of the matrix H).

2.3.1 Vertical and Horizontal Attack on FPGA McEliece
(2016)

This subsection presents the work of C. Cheng et al. [13].
In this paper, Cheng et al. present a vertical and a horizontal SCA

exploiting leakages during the syndrome computation of the decryption for
a state of the art FPGA implementation of McEliece proposed in [51].

QC-MDPC McEliece

The QC-MDPC McEliece public key cryptosystem uses t-error correcting
(n, r, w)-QC-MDPC codes, where r = n − k the co-dimension of C(n, k).
Using such a code, key generation, encryption and decryption operations
can be described as follows.

• Key generation: the secret key is comprised of the first rows h0, . . . ,

34

2.3. Power Analysis Attacks

hn0−1 ∈ Fr2 of the n0 parity-check matrix blocks H0, . . . ,Hn0−1. These
rows are chosen at random and it has to be ensured that their weights
sum up to w. Iterated cyclic rotation of the hi yields the parity-check
matrix blocks H0, . . . ,Hn0−1 ∈ Fr×r2 and thereby the secret parity-
check matrix H = (H0| . . . |Hn0−1) ∈ Fr×n2 . Assuming the last to be
non-singular, the public key is obtained as generator matrix G = (I|P)

in standard form, where, in case of n0 = 2,

P =


(H−1n0−1 ·H0)

T

(H−1n0−1 ·H1)
T

...
(H−1n0−1 ·Hn0−2)

T


• Encryption: to encrypt a message m ∈ Fk2, an error vector e ∈ Fn2 of

weight wt(e) ≤ t is chosen at random. The ciphertext is then computed
as c = (m ·G⊕ e) ∈ Fn2 .

• Decryption: to decrypt a ciphertext c ∈ Fn2 , a t-error correcting QC-
MDPC decoder is applied to c recoveringm·G. Since G is in systematic
form, the message m can be simply read off from the first k positions
of m ·G.

The target under investigation is a lightweight implementation of QC-
MDPC McEliece for re-configurable devices by [51]. The chosen parameters
are for an 80-bit security level: n0 = 2, n = 9602, r = 4801, w = 90, t = 84.

Vertical attack on the syndrome computation

The syndrome s is computed by processing the ciphertext c in a bitwise
fashion. If the j-th bit is set, i.e., xj = 1, then the j-th row of H is added
to the syndrome s. The implementation adds two 32-bit words in parallel:
one word of the rotated h0 and one word of h1 are processed in each clock
cycle. For the first set bit ci = 1, the zeroed syndrome is overwritten with (a
shifted version of) h0 or h1. Thus, assuming a Hamming distance function,
each bit hi,j will leak in a 32-bit word. Exploiting this leakage, they mounted
a vertical DPA analyzing power traces from chosen ciphertext of weight 1,
i.e., all the possible c such that wt(c) = 1.

35

CHAPTER 2. State of the Art

Horizontal attack on the key rotation

Since the Block Random Access Memories (BRAMs) store only the first
row of each block of H, they need to be rotated by one bit to generate the
next rows during the syndrome computation.

The key rotation is implemented as follows: in the first clock cycle, the
least significant bit (LSB) is loaded from the last memory cell. The first 32-
bit of the row to be rotated are loaded next. In all following clock cycles, the
succeeding 32-bit blocks of the row are read and overwritten by the rotated
preceding 32-bit block. The LSB of each 32-bit block is delayed by a flip-flop
and becomes the most significant bit (MSB) of the following block. That is,
in each clock cycle (151 clock cycles per rotation) one bit hi,j (the LSB of
the last accessed word) is written to the carry register, causing a leakage
λcarry. In the following clock cycle, that bit is overwritten with the LSB of
the next word, hi,j+32. Assuming an Hamming distance leakage function,
and assuming that hi,j+32 = 0, it is possible to distinguish the case when
hi,j = 0 from hi,j = 1.

All rotations together result in a total of 4801× 150 carry register over-
writes for each hi. Since there are 4801 bits in hi, each bit is written to the
carry register 150 times. The corresponding clock cycles l are then identified
and their corresponding leakage λi(j, l) is combined, allowing them to mount
a horizontal SCA. A null ciphertext is used to avoid the leakage contribution
of the syndrome calculation.

Rotating the two parts of the secret key is implemented in parallel, which
means that the 4801-bit rows of the first and the second part of the parity-
check matrix are rotated at the same time. This means that the attack
retrieves information about h0 + h1.

Full key recover

Due to noise observed in both attacks and leakage overlapping observed
in the horizontal one, there are probably false positive errors in the recovered
bits. To recover the full key correctly with either attack strategy, starting
from equation

h0 = h1 ×QT , vertical attack
h0 ⊕ h1 = h1 × (QT ⊕ I4801) , horizontal attack

36

2.3. Power Analysis Attacks

they ended up with a linear system of equations that possibly can be solved
and yields a unique candidate for h1.

Countermeasure

The proposed countermeasure is presented in [15] which consists in a
threshold implementation inspired masking with two to three shares to key
and syndrome during syndrome computation and during the decoding step
to achieve a protection against first-order side-channel attacks.

2.3.2 Vertical Attack on QcBits (2017)

This subsection presents the work of M. Rossi et al. [42].

In this paper Rossi et al. present a side-channel assisted cryptanalytic
attack against QcBits (presented in subsec. 2.2). In contrast to Guo et al.’s
attack in [24], this attack focuses on the first step of the decoding process
and is independent of its failure probability. This attack only requires the
attacker to observe about 200 power traces for the implementation under
analysis. The attack also works for both the 80-bit and 128-bit security
versions. The attack consists of two steps:

i. A DPA attack targeting the syndrome computation of the decryption
operation that is able to recover some information about the half of
the private key (H0) employed during the computation;

ii. A linear algebra computation which takes advantage of the sparseness
of the private key and that, in the end, allows the attacker to recover
the entire secret key.

The DPA targets the syndrome computation at line 2 of the bit-flipping
decoding (Alg. 2.2.2) to recover some partial information about the secret
matrix H0.

37

CHAPTER 2. State of the Art

General leakage model

The computation of the syndrome in the bit-flipping decoding (Step 2 in
Alg. 2.2.2) can be written as:

Hpriv ·

(
cT

0

)
= (H0|H1) ·

(
cT

0

)
= H0 · cT (2.12)

Since H0 is a circulant matrix with few ones, QcBits represents it as a
list of the indices {x0, . . . , x(w

2
−1)} of the nonzero elements of the first row

h0. H0 can be decomposed as a sum of w/2 rotation matrices

H0 = Rx0 + . . .+Rx(w2 −1)
. (2.13)

Multiplying cT by Rxi , 0 ≤ i ≤ w
2 − 1, results in a left circular shift of

c by xi positions. Hence the syndrome computation at Step 2 (Alg. 2.2.2)
can be accomplished by computing the rotated ciphertexts for each index
xi, and XORing them together. In fact, this is how QcBits implements the
multiplication. In a loop, each rotated version of c is stored into a temporary
memory location as it is calculated, and then XORed with the partial XOR
sum from the previous loop iteration.

The SCA model assumes that the power consumption of the device de-
pends on whether the leftmost bit (bit position 0) of each rotated version of
c is either 0 or 1.

For the attack evaluation, Rossi et al. used the reference C version of
QcBits [16] with 80 and 128 bits of security. To do so, they ported the code to
run on ChipWhisperer evaluation platform designed by Colin O’Flynn [37].

To recover the information about H0 they attacked the unknown indices
{x0, . . . , x(w

2
−1)} sequentially using standard DPA. They first made a guess

for all possible values for the unknown x0. For each of those guesses, they
sorted the traces Tj into two partitions based on whether the leftmost bit of
each rotated version of c was a zero or a one. They averaged the traces in
the two partitions separately and computed the difference of the averages.
Large spikes in the difference trace indicated a leak of information. The DPA
process is then repeated for each of the unknowns xi.

Since from the (i+ 1) to (i+W)-th bits, where W is the word size of the
device, are saved into the same register, there will be W candidates for the

38

2.3. Power Analysis Attacks

Table 2.1: Approximate number of attempts in the worst case

Security level
Architecture

8-bit 16-bit 32-bit 64-bit

80-bit 22 950 223 258

128-bit 40 3500 226 264

index xi. Hence, it is impossible to find accurate secret indices just with this
process. For the full recovery of the secret key, it is thus required to solve
linear equations.

Setting Q = P−1 we can write

Q ·HT
0 = HT

1 . (2.14)

The matrices H0 and H1 are sparse circulants defined by their first rows h0

and h1 respectively. We can therefore write the last equation as the system
of linear equations

Q · h0
T = h1

T . (2.15)

Where Q is dense and known, h0 is sparse and partially known and h1 is
sparse and unknown.

From this, they kept only the intervals of h0 where they knew there
were at least a bit set to one, reducing the Q matrix accordingly. They
added a parity equation for each of the interval and finally they obtained a
square system of equations by randomly selecting the right number of entries
from h1 and keeping the corresponding rows of Q (retaining all the parity
equations). If all the selected entry from h1 are actually zeroes, then the
value of h0 (such that wt(h0) = w

2 and wt(Q · h0
T) = w

2) is among the
solution of the resulting system of equations. If this is not the case, the final
step is repeated with different random subvectors of h1 until a solution is
found.

39

CHAPTER 2. State of the Art

Table 2.2: Approximate solving times in SAGE (for the algebraic part of the
attack) on one core of 2.9 GHz Core i5 MacBook Pro

Security level
Architecture

8-bit 16-bit 32-bit 64-bit

80-bit 0.4 sec 15 sec 16 h ≈ 530y

128-bit 2 sec 4 min ≈ 7d ≈ 790, 000y

Countermeasure

They proposed a marking technique to help defending against SCA dur-
ing the syndrome calculation in QcBits. Since QC-MDPC codes are linear,
the XOR of two codewords is another codeword. Also, all codewords are in
the nullspace of the parity check matrix Hpriv. It is then possible to mask
the corrupted codeword (c|0) by XORing it with a random codeword cm

before passing it to the syndrome calculation:

Hpriv · ((c|0)⊕ cm)T = Hpriv · (c|0)T ⊕Hpriv · cTm = Hpriv · (c|0)T . (2.16)

2.3.3 Multiple and Single Trace Attack to QcBits (2019)

This subsection presents the work of B.-Y. Sim et al. [46].

In this paper, Sim et al. present two different SCA against the constant-
time multiplication introduced by Chou for secure syndrome computation in
QcBits [16]. The first is a multiple-trace attack which enhances the result
obtained by Rossi et al. [42]. The second attack is a novel single-trace at-
tack which allows to recover the secret key even when using ephemeral keys
or DPA countermeasures [15, 42]. Finally, they claim the vulnerability of
BIKE [1] and LEDAcrypt [3, 4], two of the second-round candidates of the
NIST PQC standardization, to their attacks.

Using QcBits, a syndrome of a vector c′ = (c|0) ∈ Fn2 is calculated by

Hpriv ·

(
cT0

0

)
= (H0|H1) ·

(
cT0

0

)
= H0 · cT (2.17)

40

2.3. Power Analysis Attacks

H0 · cT =
∑
i∈I

Ri(c0)
T , (2.18)

where Ri(c(k)) is an i-bit left rotation of c(k). For any vector a ∈ Fr2 there
exists an isomorphism that maps a to the polynomial ring F2[x]/〈xr − 1〉.
Thus, c(k) can be considered to be a polynomial, and Ri(c(k)) can be calcu-
lated by the multiplication xdck in F2[x]/〈xr−1〉, where d = r−1. Chou then
suggested a constant-time multiplication xdc(k), as shown in Algorithm 2.3.1,
to secure private syndrome computation HcT against a TA.

Algorithm 2.3.1: Constant-Time Multiplication in F2[x]/〈xr − 1〉
(refer to [16])
Input : d = (dl−1, . . . , d0)2, 0 ≤ d ≤ r − 1, binary representation of

the shift amount, i.e., an element of the sparse key.
c(k) = (cL−1, . . . , c0)2W , L = dr/W e, binary vector 1× r in
dense representation

Output: xdc(k), 1× r binary vector
Data: L: number of architecture words needed to represent the

binary vector c(k); W : word length of the architecture;
l = log2 r: number of bits needed to represent the shift
amount.

1 v ← 0, w ← c(k)
2 for i = l − 1 down to log2W do I word unit rotation lines 2 to 10
3 di ← (d� (l − 1− i)) & 1
4 mask ← 0− di
5 us← 1� (i− log2W)
6 ptr ← v, v ← w, w ← ptr
7 for j = 0 up to L− 1− us do
8 w[j]← (v[j + us] & mask)⊕ (v[j] & ¬mask)
9 for j = 1 up to us do

10 w[j+L−1−us]← (v[j−1] & mask)⊕(v[j+L−1−us] & ¬mask)

11 low ← d & ((1� log2W)− 1) I bit rotation lines 11 to 18
12 high←W − low
13 tmp← w[0]
14 for j = 0 up to L− 2 do
15 w[j]← w[j]� low
16 w[j]← w[j] | (w[j + 1]� high)

17 w[L− 1]← w[L− 1]� low
18 w[L− 1]← w[L− 1] | (temp� high)
19 return w

41

CHAPTER 2. State of the Art

Multiple-trace attack

Based on the structure of the constant-time multiplication shown in Al-
gorithm 2.3.1, they divided the attack into two parts to find the secret index
d = (dl−1, . . . , d0): the word unit rotation to find (dl−1, dl−2, . . . , dlog2W),
and the bit rotation to find (dlog2W−1, . . . , d1, d0).

In Algorithm 2.3.1, in the steps 7 and 8, both the rotated value v[j+us]

and the unrotated value v[j] are loaded but, depending on the value of di,
only one of them is selected to be saved in w[j]. Thus, having the word size
equal to 8 bits:

w[j] =

{
(v[j + us] & 0x00)⊕ (v[j] & 0xff) = v[j] , if di = 0;

(v[j + us] & 0xff)⊕ (v[j] & 0x00) = v[j] , if di = 1.

They defined 2 properties:

Property 1. The mask value is 0 − di; therefore, it is 0x00 when di = 0.
Consequently, in the steps 7 and 8 in Algorithm 2.3.1, v[j] is saved to w[j].
Thus, v[j] is loaded and saved, but v[j + us] is only loaded. Contrariwise,
when di = 1, the mask value is 0xff on an 8-bit processor and v[j + us] is
saved to w[j]. Thus, v[j + us] is loaded and saved, but v[j] is only loaded.

Property 2. If di = 0, then the unrotated value is chosen, i.e. v[j] is saved
to w[j], which has the same index. Contrariwise, when di = 1, the rotated
value is chosen, i.e. v[j + us] is saved to w[j], which has a different index.

According to their leakage model, they remodeled Ptotal as ε ·wt(data) +

Pnoise, where ε is a constant, i.e., they defined a linear relationship between
Ptotal and wt(data). They thus determined the positions where the v[j]

value was used by calculating the Pearson correlation coefficient between
the Hamming weight of the v[j] values and power consumption traces.

If di = 0, then the mask value is 0x00; therefore, the power consump-
tion with respect to the v[j] value occurs sequentially twice in the steps 7
and 8 of Algorithm 2.3.1 according to the Property 1. Contrariwise, when
di = 1, the mask value is 0xff on an 8-bit processor; therefore, the power

42

2.3. Power Analysis Attacks

consumption with respect to the v[j] value occurs once in the steps 7 and 8
of Algorithm 2.3.1. In this way they identified dl−1.

To recover the subsequent bits of the index (up to dlog2W), they used
Property 2, knowing that the power consumption related to the v[j] value
occurs sequentially twice in the same iteration where the loaded and saved
operations are executed according to the prior key bits di + 1 when di = 0.
Otherwise, the power consumption related to the v[j] value occurs sequen-
tially twice in a different iteration from where the loaded and saved opera-
tions are executed based on the prior key bits di+1 when di = 1.

Algorithm 2.3.2 describes the attack procedure.

Algorithm 2.3.2: Multiple-Trace Attack on the Word Unit Rotation
Input : a trace set T = {T 1, · · · , TN} and an input value set

C = {c1, c2, · · · , cN}
Output: (dl−1, dl−2, · · · , dlog2W)

1 Calculate the correlation coefficient between T and
C = {c1[0], c2[0], · · · , cN [0]}

2 if high correlation occurs twice at 1st iteration then I finding dl−1
3 dl−1 ← 0

4 else
5 dl−1 ← 1

6 for i = l − 2 down to log2W do I finding (dl−2, · · · , dlog2W)
7 if high correlation occurs twice at same position with di+1 then
8 di ← 0

9 else
10 di ← 1

11 return (dl−1, dl−2, · · · , dlog2W)

To derive the remaining bits (dlog2W−1, · · · , d1, d0), they made guesses
for the leftmost word

(w[0]� (low)|(w[1]� (W − low))

of the result of the bit rotation xdc(k) of the Algorithm 2.3.1 (first iteration
Steps 14 to 16). At this point the low value and the last log2W−bit value of

43

CHAPTER 2. State of the Art

d are the same. With this information, they mounted a Correlation Power
Analysis (CPA) finding the last log2W−bit of d.

Single-trace attack

Also the single-trace attack is divided into two parts to find d: the word
unit rotation to find (dl−1, dl−2, . . . , dlog2W), and the bit rotation to find
(dlog2W−1, . . . , d1, d0).

The mask value determined by the value di is used to check whether the
rotated value is saved or not. Therefore, there exists a phase, such as in
the step 3 of Algorithm 2.3.1, in which di bit are extracted from the l-bit
secret index string d = (dl−1, dl−2, · · · , d0)2 and saved before performing the
word unit rotation. Then, the values mask and ¬mask are computed and
saved. Besides, when the steps 7 and 8 of Algorithm 2.3.1 are executed, the
values mask and ¬mask are loaded. They classified the power consumption
properties of Algorithm 2.3.1 as follows:

s.1 di ← (d� (l − 1− i)) & 1 I di is saved;

s.2 mask ← 0− di I mask is saved;

s.3 ¬mask is calculated I mask is loaded,
¬mask is saved;

s.4 w[j]← (v[j + us] &mask)⊕ (v[j] &¬mask) I mask and ¬mask
are loaded.

Furthermore, they introduced new properties:

Property 3. The secret bit di is 0 or 1. Thus, if di = 0, the power consump-
tion is associated with 0 when extracting and saving the di value. Likewise,
if di = 1, then the power consumption is associated with 1.

Property 4. Themask value is 0−di; therefore, it is 0x00 when di = 0, and
the power consumption is related to 0. Contrariwise, when di = 1, the mask
value is 0xff on an 8-bit processor, and the power consumption is related to
8, which is the Hamming weight of the mask value.

44

2.3. Power Analysis Attacks

Property 5. The ¬mask value is the bitwise inversion value of the mask
value. Consequently, it is 0xff on an 8-bit processor when di = 0 and the
power consumption is related to 8. Contrariwise, the power consumption is
related to 0 when di = 1.

Starting from multiple traces measured from the syndrome computation
(N runs with different ciphertexts (C0, · · · , CN) for each different known
key), they recovered a PoI (maximum SOST [23] value) for each round cor-
responding to each of the bits, from dl−1 to dlog2W (representing the most
significant part of the secret index d). These PoIs corresponds to an instant
in the trace in which the operation (the one with the highest difference in
power consumption depending on the value of di among the aforementioned
operations s.1, s.2, s.3, s.4) is being processed.

They then classified this PoIs into two groups G1 and G2 using the k-
means clustering algorithm. They finally distinguished which group was
associated with di = 0 or di = 1 knowing the intermediate corresponding to
the PoIs and computing the average values of each group. In this way, they
recovered the first secret key bits (dl−1, dl−2, · · · , dlog2W).

Algorithm 2.3.3 describes the attack procedure.

Algorithm 2.3.3: Single-Trace Attack on the Word Unit Rotation
Input : A trace T
Output: (dl−1, dl−2, · · · , dlog2W)

1 for i = l − 1 down to log2W do
2 Select PoIs pi of word unit rotation operation associated with di
3 Classify pi into two groups, G1 and G2, using the k-means clustering
algorithm

4 Calculate the average values AV G1 and AV G2, respectively, of G1

and G2

5 for i = l − 1 down to log2W do
6 if pi ∈ G1 then I assume that AV G1 < AV G2

7 di ← 1 I di = 1 when it follows the property 4
8 else
9 di ← 0 I di = 0 when it follows the property 4

10 return (dl−1, dl−2, · · · , dlog2W)

45

CHAPTER 2. State of the Art

To recover the remaining bits, (dlog2W−1, · · · , d1, d0), they applied a SPA.

If the processors only provide single bit shift instructions, a 1-bit right
shift operation is repeated low times, and a 1-bit left shift operation is re-
peated high times in the steps 14 to 18 of the Algorithm 2.3.1. A SPA thus
allows to identify the number of 1-bit left shift operations that is the last
log2W−bit value of d.

If the processors support a barrel shifter, as the most commonly used
32-bit and 64-bit processors do, W candidates remain, requiring to recover
accurate indices with additional algebraic computations, similarly as dis-
cussed in [42].

2.4 LEDAcrypt

The LEDAcrypt [3] cryptosystem is the result of merging two crypto-
graphic systems, LEDAkem and LEDApkc and provides three cryptographic
primitives based on binary linear error-correcting codes:

i. An IND-CCA2 key encapsulation method, named LEDAcrypt-KEM.

ii. An IND-CCA2 public key encryption scheme, named LEDAcrypt-PKC.

iii. An IND-CPA key encapsulation method optimized for employment in
an ephemeral key scenario, while providing resistance against acciden-
tal key reuse, named LEDAcrypt-KEM-CPA.

LEDAcrypt exploits the advantages of relying on Quasi-Cyclic Low-Density
Parity-Check codes to provide high decoding speeds and compact key pairs.

Both key encapsulation methods are based on the OW-CPA Niederreiter
scheme, while the public key encryption scheme is based on the McEliece
encryption and decryption primitives.

46

2.4. LEDAcrypt

Algorithm 2.4.1:DECRYPTNie

Input : s: syndrome; 1× p
binary vector.
skNie = {H,Q}
private key;

Output: e = [e0, . . . , en0−1]:
error; sequence of n0
binary vectors with
size 1× p.
res: Boolean value
denoting if the
decryption ended
successfully (true)
or not (false)

Data: p > 2 prime,
ordp(2) = p− 1, n0 ≥ 2

1 L← HQ
2 s′ ← Ln0−1s
3 {e, error} ←
4 LEDADECODER(s′, skNie)
5 if res = false then
6 e← ⊥
7 return (e, res)

Algorithm 2.4.2:DECRYPTMcE

Input : c = [c0, . . . , cn0−1]:
error affected
codeword; 1× pn0
binary vector, where
each cj is a 1× p
vector with
0 ≤ j < n0;
skNie = {H,Q}
private key;

Output: u = [u0, . . . , un0−1]:
message; sequence of
n0 binary vectors with
size 1× p.
e = [e0, . . . , en0−1]:
error sequence of n0
binary vectors with
size 1× p.
res: Boolean value
denoting if the
decryption ended
successfully (true)
or not (false)

Data: p > 2 prime,
ordp(2) = p− 1, n0 ≥ 2

1 L← HQ
2 s← LcT

3 {e, error} ←
4 LEDADECODER(s, skMcE)
5 if res = true then
6 for j = 0 to n0 − 1 do
7 uj ← cj + ej
8 else
9 e← ⊥;u← ⊥

10 return (e, res)

Algorithm 2.4.1 and Algorithm 2.4.2 describes the decryption algorithm
of Niederreiter and McEliece cryptosystems, instantiated with QC-LDPC
codes. These algorithms are employed respectively in the decapsulation al-
gorithm of LEDAkem and in the decryption transformation in LEDApkc.

Both Algorithm 2.4.1 and Algorithm 2.4.2 compute a sparse to dense mul-
tiplication at line 2. This kind of operation, if not carefully implemented,
may be vulnerable to side channel attacks based on timing analysis. The
constant-time multiplication proposed by T. Chou at CHES 2016 [16] repre-
sents the state of the art to secure this computation against timing attacks.

47

CHAPTER 2. State of the Art

Figure 2.1: Comparison between the convention adopted by T. Chou (a) and
by LEDAcrypt showing the representation of an index d of the secret key
and the ciphertext vector w[].

Algorithm 2.4.3 is the constant-time multiplication proposed by T. Chou
and rewritten using the LEDAcrypt [3] convention.

In 2017 Rossi et al. described a differential power analysis against the
Chou implementation of the constant-time multiplication, but provided also
a valid countermeasure to mitigate the attack (refer to [42]).

In 2019 Sim et al. proposed a novel single trace attack based on a dif-
ferent power consumption leakage, but leaving open the question of a sound
countermeasure to secure the multiplication against this threat. Moreover,
they stated that this attack might be able to allow a full recover of the secret
matrix L of LEDAcrypt.

48

2.4. LEDAcrypt

Algorithm 2.4.3: Constant-Time Multiplication in F2[x]/〈xr − 1〉
Input : d = (dl−1, . . . , d0)2, 0 ≤ d ≤ r − 1, binary representation of

the shift amount, i.e., an element of the sparse key.
c(k) = (cL−1, . . . , c0)2W , L = dr/W e, binary vector 1× r in
dense representation

Output: xdc(k), 1× r binary vector
Data: L: number of architecture words needed to represent the

binary vector c(k); W : word length of the architecture;
l = log2 r: number of bits needed to represent the shift
amount.

1 w ← c(k), tail← r mod W
2 for i = 0 up to l− log2W − 1 do I word unit rotation lines 2 to 14
3 v ← w
4 di ← (d� (l − 1− i)) & 1
5 mask ← 0− di
6 us← 1� (l − 1− log2W − i)
7 w[0]← (v[us] & mask)⊕ (v[0] & ¬mask)
8 for j = 1 up to L− us− 1 do
9 w[j]← (v[j + us] & mask)⊕ (v[j] & ¬mask)

10 for j = 1 up to us− 1 do
11 w[j + L− 1− us]← (((v[j − 1]� (W − tail)) | (v[j]� tail))
12 & mask)⊕ (v[j + L− 1− us] & ¬mask)

13 w[L− 1]← (((v[us− 1]� (W − tail)) | (v[us]� tail)) & mask)
14 ⊕ (v[L− 1] & ¬mask)

15 low ← d & ((1� log2W)− 1) I bit rotation lines 15 to 29
16 mask ← ((low − 1)� (W − 1))− 1
17 high←W − low
18 tmp← w[1]
19 tmp2 ← w[0]
20 for j = 1 up to L− 2 do
21 w[j]← w[j]� low
22 w[j]← w[j] | ((w[j + 1]� high) &mask)

23 w[L− 1]← w[L− 1]� low
24 tmp2 ← tmp2 � ((W − tail) &mask)
25 tmp2 ← tmp2 | ((tmp� tail) &mask)
26 w[L− 1]← w[L− 1] | ((tmp2 � high) &mask)
27 w[0]← w[0]� low
28 w[0]← w[0] | ((tmp� high) &mask)
29 w[0]← w[0] & ((1� tail)− 1)
30 return w

49

CHAPTER 2. State of the Art

50

Chapter 3

Implementation

The aim of this work is to investigate possible attack surfaces exposed by
the LEDAcrypt cryptosystem and to design and validate a countermeasure
in order to secure it against the state of the art of power analysis attacks.

The state of the art for power analysis attacks against QC-LDPC cryp-
tosystems is described in Section 2.3. Three different papers are reported,
each of which discusses a different attack based on power analysis.

For the first two papers, the authors them self proposed a valid counter-
measure to secure the cryptosystems against their own attack. These coun-
termeasures are discussed in [15] and in [42]. The first of the two attacks
proposed by Sim et al. in [46] can be prevented by the same countermea-
sures as reported by the authors. Instead, for the single trace attack, Sim et
al. suggest the implementation of hiding methods, such as random noise and
dummy operations, to increase attack complexity. However, they do not pro-
vide any theoretically-sound countermeasure against this attack, they just
list it as "one of the interesting future research topics", leaving the question
open.

All the above considerations have contributed to draw the focus of this
work on the analysis of the single trace attack and the design and validation
of a practical countermeasure. Particular attention was given to the evalu-
ation of the reproducibility of the attack, in synthesis and on board, with
different Signal to Noise Ratio (SNR).

The different stages of this thesis project are described in the following
sections dividing the work into two environments: the analysis in a simu-

51

CHAPTER 3. Implementation

lation environment and the study of the attack against real traces acquired
from a microcontroller.

3.1 Simulation Environment

This section describes the steps we followed to reproduce and validate
the attack in a simulation environment.

Single trace attack based on a Hamming weight (HW) power
consumption model. The first step is to simulate the single trace attack
as it is described by Sim et al. in [46]. This is done to validate the concept
at the basis of the attack and prove it’s theoretical reproducibility. This
means building the framework to perform the constant-time multiplication
proposed by T. Chou integrating it with the LEDAcrypt framework. The
Hamming weight is employed to simulate the power consumption during
the execution of the algorithm. In this way, several simulated power traces
are collected. Only the samples related to the power consumption of the
constant-time multiplication are gathered, since the attack does not concern
the rest of the framework. After that, the attack is built following the two
phases described by the authors: in the training phase, the SOST method
is applied over the collected traces in order to select the points of interest;
in the evaluation phase, the single trace attack is mounted over those points
which are classified using the k-means clustering algorithm, finally retrieving
the secret key.

Since we chose to focus only on the constant-time multiplication, rather
then the entire cryptosystem, the only primitive of LEDAcrypt that has been
used is the key-generation, along with the LEDAcrypt security parameters,
taken directly from the LEDAcrypt source code.

For the constant-time multiplication algorithm, we used the C code pro-
vided by T. Chou and modified to be consistent with the convention adopted
in LEDAcrypt (see Algorithm 2.4.3).

The implementation developed in order to carry out the training phase
in a simulation environment can be summarized as follows:

• A function which generates a key k (employing the key-generation
primitive by LEDAcrypt) and performs the constant-time multiplica-

52

3.1. Simulation Environment

tion between k and ci, where ci is the i-th randomly generated cipher-
text, and 0 ≤ i < 100.

• A Hamming weight function. To simulate the Hamming weight leakage
model during the multiplication we computed the Hamming weight cor-
responding to a number of variables, with enough granularity to char-
acterize the power trace. These values have been collected in a suitable
format representing the emulation of 100 power traces corresponding
to 100 run of the sparse-to-dense multiplication (using constant-time
multiplication) between a fixed key k and a variable ciphertext ci.

• A function which performs the SOST computation over a collection of
simulated power traces.

Since the algorithm of the constant-time multiplication repeats the same
operations over each index of the key, we performed the training phase on
the single index, identifying the points of interest at index level rather than
trace level.

The SOST computation extrapolates the points of interest exploiting the
differences in the leakage of multiple runs with two different keys. Working
at index level, we collected 100 traces with a fixed key and then, we com-
puted the SOST values processing the samples corresponding to two different
key indices. The two indices have been chosen on the basis of the adopted
power consumption model. With the Hamming weight model, to enhance
the results given by the SOST function, one index have to be the bit-wise
complement of the other (e.g, index0 = 001101 . . ., index1 = 110010 . . .), in
this way, the sample corresponding to an operation strictly dependent on the
value of the i-th key-bit will have a high (Hamming weight) value if the key
bit is set to 1 (or 0, depending on the operation) and a low value with the
usage of the other index, leading to a high SOST value for that time instant
(that is, it will highlight as meaningful data that sample of the trace). As
Sim et al. explained, the operation involving the two variables mask and
¬mask are the ones that are the most likely to leak information about the
secret key (and consequentially, to produce a high SOST value). In fact, we
have mask = 0x00, when the key bit di = 0 and mask = 0xff...ff when
di = 1, with ¬mask behaving in a complement fashion. This is particularly
clear in the simulation (on a 64-bit architecture) where the simulated power

53

CHAPTER 3. Implementation

consumption of mask is given by HW(mask), that is 0 in one case and 64

in the other (the same considerations hold for ¬mask).
To simulate the error present in practical measurements of the traces, a

random value extracted from a normal distribution is added to each sam-
ple. The experiments are repeated enhancing the standard deviation of the
simulated white noise to evaluate the attack under different SNR scenarios.

In Table 3.1 are given the value of some parameters used in the simu-
lation of the constant-time multiplication. Note that the number of blocks
of the secret key matrix, the weight of each row, the size of the matrix and,
accordingly the number of bits needed to represent an index belong to the
security parameters of LEDAcrypt 1. The last two parameters, depend also
on the word length of the architecture.

Table 3.1: Parameters for the simulation on a 64-bit architecture

64-bit word parameters value symbol

Number of blocks N of the secret key L 2 n0

Weight of a row of each block of L 71 V

Length of a row of each block of L 10253 r

Number of bits to represent an index of L 14 l

Number of bits used for the word unit rotation 8 l − log2W

Number of words representing the ciphertext 161 L

To proceed with the evaluation phase of the attack, we have to collect
a simulated power trace for the multiplication between the unknown key k̄
and a random ciphertext c.

Once we have collected these data, we can extract the samples corre-
sponding to the points of interest within the trace. With the training phase
we obtain the time instants where are located the points of interest for the
processing of a single index. Being a simulation, and having the trace per-
fectly aligned and divided by intervals, where each interval of data describes
the processing of an index, it is sufficient to project the pattern that identi-
fies the points of interest of one index over each interval to retrieve the most
meaningful samples for the whole trace.

If the Hamming weight model is adopted to describe the power consump-

1These values refer to the LEDAcrypt specification before march 2020

54

3.1. Simulation Environment

tion (as suggested by the authors), the way to proceed for the single trace
attack is described in Algorithm 2.3.3 by Sim et al. The k-means clustering
algorithm is applied on the samples selected in correspondence of the points
of interest. The sign of the SOST value (before the squaring) tells you if
the point of interest corresponds to an operation which involves mask or
¬mask. Depending on this information and the cluster to which the point
belongs (after the k-means), the bit value is identified. Finally, the binary
representation of the key is retrieved and compared against the secret key k̄
used for the multiplication.

Single trace attack based on a Hamming distance (HD) power
consumption model. Sim et al. have described the attack over the as-
sumption of the Hamming weight model being suitable to characterize the
power consumption leakage. However, this assumption could not be the
strongest one in this case scenario. As written in [29], " . . . the power con-
sumption of registers in hardware implementations of cryptographic algo-
rithms can be described very well by the HD model . . . An attacker can
simulate the power consumption of a register by calculating the Hamming
distance of the values that are stores in consecutive clock cycles.", moreover,
" . . . In case of the Hamming weight model, the attacker assumes that the
power consumption is proportional to the number of bits that are set in the
processed data value. The data values that are processed before and after
this value are ignored. Therefore, this power model is in general not very
well suited to describe the power consumption of a CMOS circuit. The power
consumption of a CMOS circuit rather depends on the fact whether there
occurs a transition in the circuit or not, and not on the processed value.",
concluding that " . . . due to the fact that 0 → 1 and 1 ← 0 transitions
always lead to slightly different power consumption, HW(v) is typically at
least somehow related to the actual power consumption. This relationship
can of course become weak. Attackers therefore use the HD model whenever
possible".

The Hamming distance model seemed to better fit the power consump-
tion leakage in this case, therefore, a second simulation of the attack has
been carried out, this time using the Hamming distance model to emulate
the power traces.

55

CHAPTER 3. Implementation

We therefore adapted the original attack to consider a Hamming distance
model as follows.

During the training phase, we had to employ different keys with respect
to the ones used in the simulation based on the HW.

Employing the HD model, the key indices suitable for the SOST compu-
tation have to match the following scheme: one index must be a sequence of
the same bit value (i.e., index0 = 000 . . ., or index0 = 111 . . .) and the other
must be an alternating sequence of ’1’ and ’0’ (i.e., index1 = 0101 . . ., or
index1 = 1010 . . .), in this way, the samples corresponding to an operation
dependent on the i-th key-bit will have a high (Hamming distance) value in
case of the "alternating-bit" index and a low value in case the other index is
employed, obtaining a high SOST value for that time instant.

Also the evaluation phase of the attack has been adjusted accordingly to
the power model. In this case, the string of bits that we retrieve after the
clustering process does not represents directly the secret key, but it describes
it instead through a "toggle pattern". In other words, looking at this binary
string, a bit set to 1 in position i tell us that di−1 ⊕ di = 1 (where di−1 and
di = 1 are respectively the bit of k̄ in position i − 1 and i), which means
that, to obtain the bit in position i of the secret key, you have to toggle the
bit in position i− 1. On the other hand, a bit set to 0 in position i tells that
di−1 ⊕ di = 0, which means that the bit of k̄ in position i is equal to the bit
of k̄ in position i − 1. The first bit of the sequence is unknown (since the
Hamming distance related to the first bit of the key relays on the first bit
it self and the bit at position "-1", which clearly does not exist), thus, we
have to guess the first bit of the key, say d0 = 0, apply the toggle pattern
to retrieve a key, compare it against the secret key k̄ and, if they do not
match, we have to recompute the key changing the guess for the first bit,
i.e., d0 = 1.

Single trace attack countermeasure based on a Hamming dis-
tance power consumption model. To secure the constant-time multi-
plication under the hypothesis of the Hamming distance model, it has been
designed a countermeasure based on the principal of random precharging on
data registers. In this way, the power leakage is no more directly correlated
to the key-dependent operations which are now masked by a random value.

56

3.2. Real Board

To simulate the random precharging, a random value is assigned to each
sensitive variable before performing any other assignment to it. Then, the
Hamming distance on mask (to simulate the power consumption) is com-
puted between the random value and the new value ofmask. This introduces
a distortion in the simulated leakage and breaks the correlation between
mask at time i− 1 and i.

Since the simulation has been performed on a 64-bit architecture, to
generate a 64-bit random value from a uniform distribution, we employed a
C code of Mersenne Twister for 64-bit machines, named MT19937-64, coded
by Takuji Nishimura and Makoto Matsumoto [35].

3.2 Real Board

After the analysis of the single trace attack performed in a simulation
environment, a practical study has been carried out with the main objective
of achieving a practical reproducibility of the attack and the validation of
the countermeasure designed in the previous phase.

Note that, in order to validate the countermeasure based on random
precharging it was first necessary to validate the Hamming distance model,
proposed in this work, over the Hamming weight model, suggested by Sim
et al. [46].

The practical experiments have been performed on a Cortex-M7 core
mounted on a STMicroelectronics NUCLEO-F746ZG board2. Details on the
measurement setup for power consumption traces can be found in Section 4.2

The rest of this section describes the the work carried out in a real envi-
ronment, targeting the STM32F746ZG board.

Code porting for the STM32F746ZG board. The first thing we had to
do in order to perform the attack on the microcontroller was to adapt the
framework to the STM32F746ZG board.

The practical experiments have been carried out under the assumption
that the attacker is able to perform the training phase and thus to extrapolate
the points of interest needed to complete the single trace attack. According
to this assumption, the training phase was not implemented for the real

2https://www.st.com/en/evaluation-tools/nucleo-f746zg.html.

57

https://www.st.com/en/evaluation-tools/nucleo-f746zg.html

CHAPTER 3. Implementation

board environment.
The architecture size of the adopted microcontroller is 32-bits, there-

fore some of the parameters are different from the ones used for the 64-bits
architecture in the simulation. In Table 3.2 are reported the parameters
involved in the multiplication algorithm for a 32-bit architecture. Refer to
Algorithm 2.4.3 to see how the different parameters affect the computation.

Table 3.2: Parameters for the real board (32-bit architecture)

32-bit word parameters value symbol

Number of blocks N of the secret key L 2 n0

Weight of a row of each block of L 71 V

Length of a row of each block of L 10253 r

Number of bits to represent an index of L 14 l

Number of bits used for the word unit rotation 9 l − log2W

Number of words representing the ciphertext 321 L

The following adjustments were needed to successfully deploy the code
on the STM32F746ZG microcontroller:

• To avoid the deployment of the LEDAcrypt code on the microcon-
troller, we simply precomputed the operands of the multiplication (the
key k and the ciphertext c) and saved them in a C header.

• The code of the constant-time multiplication has been rewritten in a
three-address form in order to highlight every operation which needed
to be masked with the random precharging. Moreover, all the variables
have been declared volatile to ensure a store operation each time a
variable was written and a load operation each time a variable was
read. This was made with the intention of implementing the random
precharging at C level.

• To generate the random values needed for the countermeasure, we ex-
ploited the TRNG (True Random Number Generator) component em-
bedded within the board.

• Since the training phase was not implemented, a block of nop3 oper-
3A nop is an assembler instruction that does not execute any operation during its

processing.

58

3.2. Real Board

ations has been inserted before and after the mask computation (line
5, Algorithm 2.4.3), which has been chosen as the target operation of
the attack, so that the points of interest were easier to identify.

Single trace attack with no countermeasure. Once we have cap-
tured the trace with the oscilloscope, we proceeded with the attack organized
in the following steps:

i. Parsing of the acquired trace.

ii. Collection of the intervals of nop containing the samples associated
with the computation of mask.

iii. Shape definition: from the acquired trace, one singular characteristic
shape has been identified and used as a template to extrapolate the
leakage of the target operation from the nop intervals.

iv. Shape detection: several filters are applied to the samples in order
to deal with the noise present in the measured trace. In this way,
the characteristic shape is identified and the meaningful samples are
retrieved for each key bit.

v. Evaluation: the selected samples are compared against a threshold to
determine if the corresponding key bits are set to 0 or 1. This step is
repeated for different thresholds to find the value which maximizes the
number of detected bits.

To recognize the leakage model, the binary string resulting from the at-
tack was compared against both the key and the "toggle-pattern" describing
the key, counting the number of positive matches for both cases.

Countermeasure validation. The single trace attack has been per-
formed against the protected version of the algorithm to verify the appli-
cability and efficacy of the suggested countermeasure (random precharging)
which was designed validated in a simulation environment. Firstly, the ran-
dom precharging was implemented by assigning a random value to each sen-
sitive variable right before their usage. After the analysis of the traces we
observed that working at C level (with the volatile attribute) was not enough
to ensure the correct behavior of the countermeasure. For this reason, it was

59

CHAPTER 3. Implementation

necessary to implement the countermeasure in assembly, loading random
values in registers and storing random variables in memory locations for the
sensitive variables. Although the countermeasure was implemented on the
entire algorithm, since we did not implemented the training phase for the
board environment, the effect of the countermeasure has been analyzed in
depth only for the target operation. However, visual evidence of the efficacy
of the countermeasure on the rest of the algorithm was found on the profile
of the acquired traces. More details are given along with the results of the
practical experiments in Section 4.2.

60

Chapter 4

Experimental Evaluation

This chapter will present the results obtained with the simulation of the
single trace attack and its application in a real board scenario.

4.1 Experiments in Simulation Environment

For the simulation, the attack has been implemented and tested on a
64-bit architecture. According to the parameters presented in Table 3.1, the
number of bits, for each index, involved during the word unit rotation (see
Algorithm 2.4.3) is equal to 8, i.e., the single trace attack presented by Sim
et al. [46], performed against the constant-time multiplication implemented
with these parameters, aims to recover the first 8 most significant bit of
each index of the secret key employed in the operation (where each index
represents the position of a set bit in the first row of a block of the quasi-cyclic
key matrix).

In order to simulate the power traces, the leakage has been modeled over
the Hamming weight (or Hamming distance, depending on the power model
adopted) of the value written into the variables during the computation of
the algorithm. In this way, the power traces are represented by a long series
of number taking values between 0 and 64.

The noise on the power consumption measures has been modeled as a
normal distribution N (µ, σ2) with mean µ = 0 and standard deviation σ ∈
{1, 6}.

For the training phase, we produced 100 power traces to compute the
SOST values identifying the points of interest.

61

CHAPTER 4. Experimental Evaluation

Figure 4.1a shows the power consumption simulated under the assump-
tion of a Hamming weight leakage model for the processing of the eight most
significant bits of an index (i.e., the bits involved in the word unit rotation).
The high peaks correspond to the mask computation (if bit di = 1) or to
the computation of its complement ¬mask (where bit di = 0). These opera-
tions are easily recognizable in the simulated power trace since the Hamming
weight of each word of the vector which has been rotated is quite low.

Figure 4.1b shows the power consumption related to the processing of the
same index but simulating the trace under the assumption of a Hamming
distance model. In this case, the peaks occur both for the computation of
mask and ¬mask 1 but only when the corresponding bit is different from
the previous one (di 6= di−1).

In Figure 4.1c, the eight points with the highest SOST values are where
the mask computation is performed, or where themask complement (¬mask)
is computed. Since the SOST values are similar in both Hamming weight
and Hamming distance model, only the latter is shown below.

Under both leakage models, with the appropriate changes in the attack
(as already explained in Section 3.1), the attack has been tested 1000 times,
changing each time the key and the 100 random ciphertexts for the training
phase and the key and the ciphertext for the evaluation phase. Both the
training phase and the evaluation phase were always successful, leading every
time to a full key recover.

4.1.1 Tests on countermeasure

The introduction of a random precharging in the simulation makes it im-
possible to select meaningful points of interest, since the SOST computation
is heavily affected by the countermeasure.

Figure 4.2 shows the SOST values computed over the traces simulated
with the random precharging to mask the key-dependent operations. This

1the processing of mask and ¬mask are one right after the other, resulting in two
contiguous peaks that can be mistaken for a single one

62

4.1. Experiments in Simulation Environment

(a) Simulated power consumption trace, based on the Hamming weight, corre-
sponding to the the word unit rotation of index d = 5979 = (01011101011011)2.
The noise added to the power trace is a white noise ∼N (0, 6).

(b) Simulated power consumption trace, based on the Hamming distance, corre-
sponding to the the word unit rotation of index d = 5979 = (01011101011011)2.
The noise added to the power trace is a white noise ∼N (0, 6).

(c) SOST values computed over the samples from 100 traces and divided into
two groups depending on the value of the key bit. The noise added yo the power
trace is a white noise ∼N (0, 6).

Figure 4.1: Simulation of the power traces and SOST values for
index d = 5979 = (01011101011011)2.

63

CHAPTER 4. Experimental Evaluation

Figure 4.2: SOST values computed over 100 traces simulated with the ran-
dom precharging on the sensitive operations. The noise added to the power
trace is a white noise ∼N (0, 6).

time, the peaks which highlighted the sensitive operations visible in Fig-
ure 4.1c are canceled and the samples corresponding to the highest SOST
values are meaningless.

To examine the effectiveness of the countermeasure, we modified the
single trace attack in order to take into account the presence of the random
precharging. We assumed the attacker to be able to select the samples of
the trace which correspond to the operations of random precharging and
the mask computations. We collected these pairs of samples for each bit
of the key involved in the word unit rotation and mounted the single trace
attack over the output of a preprocessing phase. As preprocessing function
We adopted the absolute-difference2 [29]. The idea is to process the pairs
of values {random precharging, sensitive operation} in order to cancel the
effect of the random precharging to make possible the attack.

Figure 4.3 shows the average number of key bits that have been correctly
evaluated by the attack with respect to the standard deviation of the white
noise added to the trace. In a simulation environment with zero noise, the
attack can successfully classify about 95% of the key bits. However, as soon
as a small noise is introduced to simulate the error on the measurements in
a real world scenario, the effectiveness of the attack instantly drops and it
quickly approaches the threshold of 50% (which means to perform a random
guess on the key bits).

2i.e., the absolute value of the difference of two points.

64

4.1. Experiments in Simulation Environment

Figure 4.3: Number of key bits correctly evaluated against the random
precharging countermeasure. The horizontal axis shows the standard de-
viation of the white noise introduced in the trace.

In the following, we analyze the effect of the preprocessing function show-
ing its unsuitability the attack against the random precharging.

The different cases can be divided into four on the basis of two consecutive
(at time instant i− 1 and i) values of mask, mi−1 and mi:

i. mi−1 = 0x0, mi = 0xff . . .ff3.

|ĤDi − HDi| = |HW(mi−1 ⊕ ri)− HW(ri ⊕mi)|

= |HW(ri)− (64− HW(ri))|

= |2 · HW(ri)− 64| (4.1)

3The Hamming weight of 0xff. . . ff is equal to the word length, which is 64 in the case
of the simulation environment.

65

CHAPTER 4. Experimental Evaluation

ii. mi−1 = 0xff . . .ff , mi = 0x0.

|ĤDi − HDi| = |(HW(mi−1 ⊕ ri)− HW(ri ⊕mi)|

= |(64− HW(ri))− HW(ri)|

= |64− 2 · HW(ri)|

= |2 · HW(ri)− 64| (4.2)

iii. mi−1 = 0x0, mi = 0x0.

|ĤDi − HDi| = |HW(mi−1 ⊕ ri)− HW(ri ⊕mi)|

= |HW(ri)− HW(ri)|

= 0 (4.3)

iv. mi−1 = 0xff . . .ff , mi = 0xff . . .ff .

|ĤDi − HDi| = |HW(mi−1 ⊕ ri)− HW(ri ⊕mi)|

= |(64− ĤD(ri))− (64− HW(ri))|

= 0 (4.4)

ĤDi denotes the Hamming distance between the previous value of mask
(mi−1) and the value of the random precharging at time i (ri). HDi denotes
the Hamming distance between the value of the random precharging at time
i (ri) and the current (time i) value of mask (m1). These two values are the
samples taken from the trace (simulated with the Hamming distance) and
give to the preprocessing function. HW(x) denotes the Hamming weight of
x.

Since Eq. 4.1 and 4.2 lead to the same result, and the same holds between
Eq. 4.3 and 4.4, the absolute-difference seems to correctly characterize the
cases in which mi−1 = mi and the cases in which mi−1 6= mi, i.e. the cases
in which the Hamming distance between two consecutive values of mask is
low or high.

Table 4.1 summarizes the results for different preprocessing functions.

However, since the values of the random precharging are uniformly dis-

66

4.2. Experiments on real Board

Table 4.1: Results of the most commonly used preprocessing functions

Value

mi−1 0 0 64 64

mi 0 64 0 64

HD(mi−1,mi) 0 64 64 0

|ĤDi − HDi| 0 |2 · HW(ri)− 64| |2 · HW(ri)− 64| 0

(ĤDi − HDi)
2 0 (|2 · HW(ri)− 64|)2 (|2 · HW(ri)− 64|)2 0

ĤDi × HDi (HW(ri))
2 Hw(ri)× (64− HW(ri)) (64− HW(ri))× HW(ri) (64− HW(ri))

2

tributed, the expected value of HW(ri) is given by:

E[HW(ri)] =
0 ·
(
64
0

)
+ 1 ·

(
64
1

)
+ . . .+ 64 ·

(
64
64

)
264

=

∑64
b=0 b ·

(
64
b

)
264

=
64

2
(4.5)

This means that the expected value of Eq.4.1 and 4.2 is equal to

E[|2 · HW(ri)− 64|] = |2 ·E[HW(ri)]− 64|

= |2 · 64

2
− 64|

= 0 (4.6)

and that the preprocessing phase is not really able to distinguish the
different cases.

The same (or equivalent) result is obtained with other commonly used
preprocessing functions4 (see Table 4.1), preventing other possible attacks
in this direction.

4.2 Experiments on real Board

For the experiments on real board, the attack has been implemented
and tested on a Cortex-M7 (32-bit architecture) mounted on a STM32F746ZG

board. All the experiments have been carried out at a clock frequency of
4including, but not limited to, the product of the values, the square of the difference,

the cube of the difference.

67

CHAPTER 4. Experimental Evaluation

Figure 4.4: The experimental
board, STM32F746ZG.

Figure 4.5: The custom loop
probe used for the measure-
ments.

216 MHz, with the adaptive real time (ART) accelerator disabled. Also
the interrupt requests have been disabled during the computation of the
algorithm to limit as much as possible their interference on the trace.

Electromagnetic radiations measurements have been acquired with the
digital oscilloscope Pico Technology PicoScope 5244D at a sampling rate
of 500 MS/s and a 12-bit vertical resolution. The near field probe adopted
was a custom loop probe (an electric field probe) and it was positioned over
a microcontroller power supply line, near to the chip.

During the experiments, we employed also an impedance adapter (50Ω→
1MΩ) and a 2-stage cascaded amplifier circuit (consisting of two Agilent

INA-10386 each of gain 26 dB, obtaining a total gain of 52 dB) to correct
and enhance the signal acquisition.

Communication with the board has been enabled by the built-in serial
interface.

Figure 4.6 shows the acquired trace for a constant-time multiplication
performed over every index of the matrix to compute a complete sparse-to-
dense multiplication. For this and the following figures, the square of the
acquired voltage trace has been plotted to present a qualitative behavior for
the power consumption. 142 repetitions of the same pattern (separated by a

68

4.2. Experiments on real Board

high and a low peak), corresponding to a single constant-time multiplication
(i.e., the processing of a single index of the key), can be easily recognized.

Figure 4.6: Power consumption trace of a constant-time multiplication per-
formed on every index of the secret key.

According to the parameters presented in Table 3.2, the number of bits,
for each index, involved during the word unit rotation is equal to 9, which
are the bits that the single trace attack aims to recover.

An example of a constant-time multiplication is shown in Figure 4.7.
These samples correspond to a single constant-time multiplication (Algo-
rithm 2.4.3) which performs a circular shift over a vector by a shift amount
given by an index of the key matrix. It is possible to recognize the word unit
rotation and the bit rotation as well as the two for loops inside the word unit
rotation. The two parts to the left and right of the peak in the magnification,
correspond to the blocks of nop operations introduced to highlight the target
operation. The target operation, which produces the peak in the center of
the magnification, is the operation at line 5 of Algorithm 2.4.3, where the
value of mask is computed.

The single trace attack, performed over a real trace acquired from the
device electromagnetic leakage, exposed a leakage model following the Ham-
ming weight principle.

The acquired single trace was really noisy and the attack didn’t obtained
the neat results obtained in the simulation environment. Due to the noise,
the attack has not been able to evaluate 14% of the bits (which has been
classified as "unknown") and a significant part of the others produced false
positives. However, these results are enough to highlight the leakage model.
In particular, over different thresholds, the Hamming weight model fits the
leakage model at best at 65%, while the Hamming distance model is able to
describe the leakage model ranging between 48 and 51%. According to these
results, the Hamming distance seems to act as a series of random guesses on
the key bits, and therefor it can not be used to describe the leakage model

69

CHAPTER 4. Experimental Evaluation

Figure 4.7: Power consumption trace of a constant-time multiplication. From
the top, the processing of a single index of the key, along with a magnifi-
cation of the processing of a single bit of the index and, finally, the mask
computation (refer to Algorithm 2.4.3).

of the code under examination.

Figure 4.8 shows the percentages of recovered bits, along with the false
positives, employing the Hamming distance or Hamming weight model with
different thresholds (refer to Figure 4.9 for the percentage values computed
without consider the "unknown" bits). It is easy to notice that the Hamming
distance model is not affected by the value of the threshold and it always
correctly identify about the half of the key bits. On the other hand, setting
the right threshold, the Hamming weight model can reach better results.

Figure 4.10 and 4.11 show the number of recovered key bits (in percent-
age), under one leakage model or the other, distinguishing between bit set
to 0 and bit set to 1.

To confirm the previous results, we measured several times the leakage in

70

4.2. Experiments on real Board

Figure 4.8: Percentages of recovered
key bits (solid line) and false posi-
tives (dashed line) under the Ham-
ming weight (blue) and Hamming dis-
tance (orange) leakage models, over
different threshold values. The green
line indicates the "unknown" bits.

Figure 4.9: Percentages (computed
without considering "unknown" bits)
of recovered key bits under the Ham-
ming weight (blue) and Hamming dis-
tance (orange) leakage models, along
with the false positives (dashed lines),
over different threshold values.

Figure 4.10: Percentages of recovered
key bits set as 0 (orange) or 1 (blue)
under the Hamming weight model,
over different threshold values.

Figure 4.11: Percentages of recovered
key bits set as 0 (orange) or 1 (blue)
under the Hamming distance model,
over different threshold values.

correspondence of the target operation for the processing of different indices
and we examined the average value of the traces for each of them. The
average of 16 traces was enough to significantly reduce the noise leading to
more precise results. Under these circumstances 89% of the key bits has
been correctly identified by the Hamming weight model, while the Hamming
distance, once again, was able to correctly identify 51% of the key bits.

Figure 4.12 shows the leakage of the target operation surrounded by
several nop operations on the left and right side. Each sub-figure represents
the leakage for each one of the nine bits involved in the word unit rotation for

71

CHAPTER 4. Experimental Evaluation

(a) bit in position 13 = 0. (b) bit in position 12 = 1. (c) bit in position 11 = 0.

(d) bit in position 10 = 0. (e) bit in position 9 = 0. (f) bit in position 8 = 1.

(g) bit in position 7 = 0. (h) bit in position 6 = 1. (i) bit in position 5 = 1.

Figure 4.12: Intervals of the trace corresponding to the processing of each bit
involved in the word unit rotation of index d = 4448 = (01000101100000)2

index d = 4448 = (01000101100000)2. Sub-figure 4.12a shows the leakage in
correspondence of the MSB (bit in position 13, first bit from the left) while
Sub-figure 4.12i shows the ninth bit from the left of the binary representation
(bit in position 5). Looking at peak in the grey box in these figures,it is clear
how the leakage can be well described by the Hamming weight model. Each
peak that exceeds the threshold corresponds to a key bit set to 1, while each
peak that stays below the threshold corresponds to a key bit set to 0.

The Hamming weight leakage model is also well observable on the first

72

4.2. Experiments on real Board

Figure 4.13: Leakage trace corresponding to the processing of index d =
4448 = (01000101100000)2.

for loop of the word unit rotation (lines 8, 9 in Algorithm 2.4.3). Figure 4.13
shows the interval of the trace corresponding to index d = 4448. The first
for loop of the word unit rotation has been highlighted in blue for each bit.
It is possible to notice that the samples corresponding to key bits set to 1
reach a higher power consumption.

We investigated also the traces captured with the random precharging
enabled on the sensitive operations.

These traces ended up being noisier than the others with the plain multi-
plication, and it was not possible to correctly distinguish the value of the key
bits. However, it was found that this supplementary noise was introduced
by the background operations of the TRNG module of the board. In order
to see this behavior, We examined the execution of four different versions of
the code:

i. With the random precharging given by the RNG peripheral keeping its
clock enabled throughout the entire run of the algorithm.

ii. In order to reduce the extra noise introduced by the background opera-
tions of the RNG, we captured several traces with the RNG peripheral
enabled but disabling its clock after each call to the module.

iii. Since the second setup did not completely removed the noise carried
by the RNG, we disabled the peripheral and simulated the random
precharging with a constant value. For the constant precharging, we
employed an arbitrary 32-bit value with a Hamming weight equal to
16, simulating an average value for a 32-bit true random number.

73

CHAPTER 4. Experimental Evaluation

iv. Finally, as reference model, the same traces has been captured on the
plain multiplication, without any kind of precharging.

(a) The RNG peripheral is enabled along with its clock.

(b) The RNG peripheral is enabled, but its clock is disabled after each
call to the RNG.

(c) The RNG peripheral is disabled and precharging is done with a con-
stant value.

(d) Plain multiplication without any countermeasure enabled.

Figure 4.14: Average value (in red) of traces captured for a single bit process-
ing, along with +/− standard deviation (in black). Each sub-figure describe
a different scenario.

74

4.2. Experiments on real Board

As shown in the pictures collected in Figure 4.14, a significant noise was
introduced by the use of the RNG peripheral, while the precharging operation
it self did not tampered the leakage at all.

These results are consistent with respect to the Hamming weight leakage
model since the random precharging is able to mask only the Hamming
distance between two values but not the Hamming weight of a single value.

After the validation of the Hamming weight model, the next step was to
understand way it was the right model and why the Hamming distance was
not.

Examining the assembly code generated by the compiler, it was easy to
recognize the reason behind the Hamming weight leakage.

The following assembly code is the translation of line 5 in Algorithm 2.4.3.

ldr r1 , [sp , #36] ; 0x24
negs r1 , r1
str r1 , [sp , #28]

The first line, loads the value of di (located at [sp, #36]). The second
line saves in r1 the result of di − 1. Finally, the third line, stores the result
in mask (located at [sp, #28]).

Notice that di is 0 when the key bit is 0 and 1 when the key bit is 1. The
negs instruction overwrites the value of di with the result of 0 − di which
gives a word of 32 bits set to 1 (when the key bit is 1) or a word with 32 bit
set to 0 (when the key bit is 0). Therefor, the negs instruction produces a
switching activity in r1 equal to 31 switches if the key bit is set to 1 and 0
switches if the key bit is set to 0. This behavior is perfectly modeled by the
Hamming weight of the value of mask.

4.2.1 Countermeasure validation

Since the Hamming weight leakage model is validated by the re-usage
of a register, the idea of using random precharging to secure the algorithm
against power analysis is still valid. The problem with the implementation

75

CHAPTER 4. Experimental Evaluation

was the limitation given by the only usage of the volatile keyword aiming
at performing random precharging from a variable abstraction level that has
proved to be not enough to ensure the expected results.

For the random precharging to be effective, it has to be done at register
level. The following assembly listing shows an example for the application of
the precharging with constant values to secure line 5 of Algorithm 2.4.3. Sim-
ilar adjustments have been introduced also to secure the rest of the constant
time multiplication.

movw r1 , #51526 // precharg ing r1
movt r1 , #46489 // precharg ing r1
ldr r1 , [sp , #36] // load ing di

movw r4 , #47764 // precharg ing r4
movt r4 , #52049 // precharg ing r4
negs r4 , r1 // sav ing 0− di in r4
movw r1 , #45786
movt r1 , #38042
str r1 , [sp , #28] // precharg ing mask

str r4 , [sp , #28] // s t o r i n g ’mask ’ in memory

r1 is loaded with an arbitrary 32-bit value before loading di. Also r4 is
loaded with a arbitrary 32-bit value before receiving the result of 0− di, as
well as the memory location of mask before storing the new value in it.

In Figure 4.15 are shown the results of the precharging at register level.
The peaks corresponding to the nine bits of the index have been placed next
to each other for easy comparison between them. The values on the top
represents the actual value of the key bit. Since the leakage is the same for
each mask computation, it is no longer possible to correctly guess the key
bits involved in the operations.

Figure 4.16 shows how the leakage of the first loop in the multiplication
algorithm is affected by the countermeasure. Differently from what is shown
in Figure 4.13 (where the countermeasure is not employed), in this case,
the samples corresponding to the first for loop of the word unit rotation
(highlighted in blue) have similar values for each key bit, masking the leakage

76

4.2. Experiments on real Board

Figure 4.15: Leakage peaks corresponding to the mask computation for the
nine bits in index d = 4448 = (01000101100000)2 captured while performing
register precharging.

Figure 4.16: Leakage trace corresponding to the processing of index d =
4448 = (01000101100000)2 captured while performing register precharging.

of the key-dependent operations.

All the practical experiments have been carried out on a Cortex-M7 run-
ning at 216 MHz. A complete sparse-to-dense multiplication employing the
constant-time multiplication algorithm (Algorithm 2.4.3) and the parameters
given in Table 3.2 takes, on average, 6950120 cycles. The same operation,
with the same parameters, employing the presented countermeasure, takes

77

CHAPTER 4. Experimental Evaluation

11425031 cycles, plus the time spent in the random values generation (which
depends on the RNG latency and the possibility of parallelization of this
process with respect to the multiplication). These values correspond to a
time overhead of 64%.

78

Conclusion

In this document we investigated the state-of-the-art power analysis at-
tacks mounted against cryptosystems based on QC-MDPC/LDPC codes.
Particular attention has been given to the ones which could find a possible
attack surface in LEDAcrypt.

The single trace attack described by Sim et al. (2019, [46]) was found
to be the most promising one. The target of this attack corresponds to the
constant-time multiplication proposed by Tung Chou as the state-of-the-art
countermeasure against timing attacks, and employed to perform a sparse-
to-dense multiplication with the secret key, during the decryption phase.
Moreover, they explicitly suggested the feasibility of this attack against
LEDAcrypt without producing any countermeasure. For the other attacks
which have been taken into account (see [13,42]), the authors themselves pro-
posed valid countermeasures in [15, 42]. We thus proceeded in the analysis
of the single trace attack.

First, we implemented a simulation framework to reason about the leak-
age model end evaluate the theoretical feasibility of the attack. On the
results observed in the simulation, we designed a countermeasure in order
to secure the algorithm. Then, we moved on a real device and tested both
the attack and the countermeasure on leakage traces acquired with a dig-
ital oscilloscope and a custom loop probe. The results of the analysis are
summarized below.

The proposed single trace attack was designed modeling the leakage with
the Hamming weight, although the Hamming distance is usually a better fit
for real case scenarios. In the simulation environment, we tested the two
leakage models and proved the theoretical applicability of the attack based
on both. We then designed a countermeasure based on random precharging,

Conclusion

aiming at securing the algorithm against the attack under the hypothesis of
the more likely Hamming distance model. What we saw from the analysis
of the traces acquired from the device, was that the Hamming weight was
actually able to describe the leakage of the algorithm while the Hamming
distance was not. In fact, the attack mounted against the Cortex-M7 was
able to recover most of the key bits assuming a Hamming weight model.
However, it was found that the leakage behavior was given by the usage of
the registers dictated by the compiler, hence, the random precharging was
still a valuable countermeasure to invalidate the attack. In order for the
random precharging to be effective, we had to redesign the countermeasure
introducing a segment written in assembly to directly control the use of
the registers. Implementing the random precharging at register level, gave
the expected results: masking the leakage of a key-dependent operation and
preventing the single trace attack.

In conclusion, the single trace attack proposed by Sim et al., although the
acquired single traces was too noisy to allow a full key recover, seems to be a
reasonable threat and it must be taken into account if we want to secure the
constant-time-multiplication algorithm. At the same time, we proved that
a random precharging, carefully implemented, can be considered as a valid
countermeasure against such attack.

For practical reasons, the training phase of the attack has not been imple-
mented for the evaluation of the acquired traces. It followed that we focused
on the study of a single target operation (pointed out, by Sim et al., to be
the most critical one, but not the only). Although visible improvements have
been obtained over the whole trace, a future work may further investigate
the soundness of this countermeasure starting from the SOST computation
to see if there are still key-dependent operations which leak sensitive infor-
mation. Moreover, it would be interesting to develop a more extensive study
on the overhead introduced by the proposed countermeasure.

80

Appendix A

Constant-Time Multiplication
(T. Chou convention)

The Algorithm A.0.1 is a detailed scheme for Algorithm 2.3.1.

Algorithm A.0.1: Constant-Time Multiplication in F2[x]/〈xr − 1〉
(refer to [16])
Input : d = (dl−1, . . . , d0)2, 0 ≤ d ≤ r − 1,

c(k) = (cL−1, . . . , c0)2W , L = dr/W e
Output: xdc(k)

1 v ← 0, w ← c(k), tail← r mod W
2 for i = l − 1 down to log2W do I word unit rotation lines 2 to 14
3 di ← (d� (l − 1− i)) & 1
4 mask ← 0− di
5 us← 1� (i− log2W)
6 ptr ← v, v ← w, w ← ptr
7 for j = 0 up to L− 1− us− 1 do
8 w[j]← (v[j + us] & mask)⊕ (v[j] & ¬mask)
9 w[L− 1− us]← ((v[L− 1] | (v[0]� tail)) & mask)

10 ⊕(v[L− 1− us] & ¬mask)
11 for j = 1 up to us− 1 do
12 w[j + L− 1− us]← (((v[j]� tail) | (v[j − 1]� (W − tail)))
13 & mask)⊕ (v[j + L− 1− us] & ¬mask)

14 w[L−1]← ((v[us−1]� (W−tail)) & mask)⊕(v[L−1] & ¬mask)

81

Constant-Time Multiplication (T. Chou convention)

15 low ← d & ((1� log2W)− 1) I bit rotation lines 15 to 27;
16 mask ← ((low − 1)� (W − 1))− 1;
17 high←W − low;
18 tmp← w[0];
19 for j = 0 up to L− 3 do
20 w[j]← w[j]� low;
21 w[j]← w[j] | ((w[j + 1]� high) &mask);
22 w[L− 2]← w[L− 2]� low;
23 w[L− 1]← w[L− 1] | (tmp� tail);
24 w[L− 2]← w[L− 2] | ((w[L− 1]� high) &mask);
25 w[L− 1]← w[L− 1]� low;
26 w[L− 1]← w[L− 1] | ((temp� high) &mask);
27 w[L− 1]← w[L− 1] & ((1� tail)− 1);
28 return w;

Toy example for the case r = 40, W = 8, a vector c(k) = (c0, c1, · · · , c39)
∈ F40

2 can be represented as the polynomial c(k) = c0+c1x+c2x
2+· · ·+c39x39

∈ F2[x]/〈x40 − 1〉. Let the polynomial c(k) be

(x8 + x10 + x12 + x14) + (x16 + x17 + x20 + x21) + (x24 + x25 + x26 + x27)

+ (x36 + x37 + x38 + x39),

which can be expressed as a 5-byte array as below:

v[0] v[1] v[2] v[3] v[4]

(00001111)2 (11110000)2 (11001100)2 (10101010)2 (00000000)2

Following the convention, in the first cell (v[0]) are stored the 8 most
significant bits. Inside the word, the bits are represented (from left to right)
starting from the bit with the lowest weight. In other words, v[0] contains
the terms (x32 + x33 + x34 + x35 + x36 + x37 + x38 + x39).

Let d = 19; then it is represented by 6-bit (010011)2. Since W = 8

and log2W = 3, it is possible to calculate the rotated intermediate values
using 8-bit word unit rotation for di from d5 to d3. For the last 3-bit,

82

(d2, d1, d0)2 = (011)2, a sequence of logical instructions is used, combining
the most significant 5-bit of v[i] and the least significant 3-bit of v[(i+1) mod
l]. Accordingly, the multiplication xd = x(010011)2 = x0·2

5 ·x1·24 ·x0·23 ·x(011)2

and c(k) is given by:

c(k) · (x0·2
5 · x1·24 · x0·23 · x(011)2) = ((((c(k) · x0·2

5
) · x1·24) · x0·23) · x(011)2).

Firstly, the computation is started from the multiplication with x25 which
can be acquired by a 4-byte left rotation. However, the d5 is 0, so the
unrotated value is saved.

v[0] v[1] v[2] v[3] v[4]

unrotated (00001111)2 (11110000)2 (11001100)2 (10101010)2 (00000000)2

rotated (00000000)2 (00001111)2 (11110000)2 (11001100)2 (10101010)2

Secondly, the multiplication with x2
4 can be acquired by a 2-byte left

rotation. Since the d4 is 1, the rotated value is saved.

v[0] v[1] v[2] v[3] v[4]

unrotated (00001111)2 (11110000)2 (11001100)2 (10101010)2 (00000000)2

rotated (11001100)2 (10101010)2 (00000000)2 (00001111)2 (11110000)2

Thirdly, the multiplication with x2
3 can be acquired by a 1-byte left

rotation. However, the d3 is 0, so the unrotated value is saved.

v[0] v[1] v[2] v[3] v[4]

unrotated (11001100)2 (10101010)2 (00000000)2 (00001111)2 (11110000)2

rotated (10101010)2 (00000000)2 (00001111)2 (11110000)2 (11001100)2

Lastly, the multiplication with x(011)2 can be acquired by the sequence
of logical instructions which combines the most significant 5-bit of v[i] and
the least significant 3-bit of v[(i+ 1) mod l].

v[0] v[1] v[2] v[3] v[4]

unrotated (01011001)2 (00010101)2 (11100000)2 (00000001)2 (10011110)2

83

Constant-Time Multiplication (T. Chou convention)

84

Bibliography

[1] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron,
Tim Guneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Gilles Zemor, and
Valentin Vasseur. Bike (bit flipping key encapsulation).

[2] Aydin Aysu, Youssef Tobah, Mohit Tiwari, Andreas Gerstlauer, and
Michael Orshansky. Horizontal side-channel vulnerabilities of post-
quantum key exchange protocols. pages 81–88, 04 2018.

[3] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi,
and Paolo Santini. Ledacrypt-kem and ledacrypt-pkc website. https:

//www.ledacrypt.org.

[4] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi,
and Paolo Santini. Ledakem: A post-quantum key encapsulation mech-
anism based on qc-ldpc codes. In Tanja Lange and Rainer Steinwandt,
editors, Post-Quantum Cryptography, pages 3–24, Cham, 2018. Springer
International Publishing.

[5] E. Berlekamp, R. McEliece, and H. Tilborg. On the inherent intractabil-
ity of certain coding problems (corresp.). Information Theory, IEEE
Transactions on, 24:384 – 386, 06 1978.

[6] Daniel J. Bernstein. The poly1305-aes message-authentication code. In
Henri Gilbert and Helena Handschuh, editors, Fast Software Encryption,
pages 32–49, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[7] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast
constant-time code-based cryptography. In Guido Bertoni and Jean-

85

https://www.ledacrypt.org
https://www.ledacrypt.org

BIBLIOGRAPHY

Sébastien Coron, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2013, pages 250–272, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[8] Daniel J. Bernstein and Peter Schwabe. New aes software speed records.
In Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, ed-
itors, Progress in Cryptology - INDOCRYPT 2008, pages 322–336,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[9] Bhaskar Biswas and Nicolas Sendrier. The hybrid mceliece encryption
scheme (hymes). 2008.

[10] Dominic Bucerzan, Pierre-Louis Cayrel, Vlad Dragoi, and Tania Rich-
mond. Improved timing attacks against the secret permutation in the
mceliece pkc. International Journal of Computers Communications &

Control, 12(1):7–25, 2016.

[11] P. Cayrel and P. Dusart. Mceliece/niederreiter pkc: Sensitivity to fault
injection. In 2010 5th International Conference on Future Information
Technology, pages 1–6, May 2010.

[12] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks.
In Burton S. Kaliski, çetin K. Koç, and Christof Paar, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2002, pages 13–28,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[13] C. Chen, T. Eisenbarth, I. von Maurich, and R. Steinwandt. Horizontal
and vertical side channel analysis of a mceliece cryptosystem. IEEE
Transactions on Information Forensics and Security, 11(6):1093–1105,
June 2016.

[14] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Stein-
wandt. Differential power analysis of a mceliece cryptosystem. In Tal
Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Poly-
chronakis, editors, Applied Cryptography and Network Security, pages
538–556, Cham, 2015. Springer International Publishing.

[15] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Stein-
wandt. Masking large keys in hardware: A masked implementation of

86

BIBLIOGRAPHY

mceliece. In Orr Dunkelman and Liam Keliher, editors, Selected Ar-
eas in Cryptography – SAC 2015, pages 293–309, Cham, 2016. Springer
International Publishing.

[16] Tung Chou. Qcbits: Constant-time small-key code-based cryptography.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic
Hardware and Embedded Systems – CHES 2016, pages 280–300, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[17] Tung Chou. Mcbits revisited. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems – CHES 2017,
pages 213–231, Cham, 2017. Springer International Publishing.

[18] David Deutsch. Quantum theory, the church-turing principle and the
universal quantum computer. Proceedings of the Royal Society of Lon-
don. A. Mathematical and Physical Sciences, 400:117 – 97, 1985.

[19] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, November 1976.

[20] Tomáš Fabšič, Ondrej Gallo, and Viliam Hromada. Simple power anal-
ysis attack on the QC-LDPC McEliece cryptosystem. Tatra Mt. Math.
Publ., 67:85–92, 2016.

[21] Richard P. Feynman. Simulating physics with computers. International
Journal of Theoretical Physics, 21:467 – 488, 1982.

[22] R. Gallager. Low-density parity-check codes. IRE Transactions on
Information Theory, 8(1):21–28, January 1962.

[23] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates
vs. stochastic methods. In Louis Goubin and Mitsuru Matsui, editors,
Cryptographic Hardware and Embedded Systems - CHES 2006, pages
15–29, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[24] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery
attack on mdpc with cca security using decoding errors. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASI-
ACRYPT 2016, pages 789–815, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

87

BIBLIOGRAPHY

[25] Stefan Heyse, Amir Moradi, and Christof Paar. Practical power analysis
attacks on software implementations of mceliece. In Nicolas Sendrier,
editor, Post-Quantum Cryptography, pages 108–125, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[26] Stefan Heyse, Ingo von Maurich, and Tim Güneysu. Smaller keys for
code-based cryptography: Qc-mdpc mceliece implementations on em-
bedded devices. In Guido Bertoni and Jean-Sébastien Coron, editors,
Cryptographic Hardware and Embedded Systems - CHES 2013, pages
273–292, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[27] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Michael Wiener, editor, Advances in Cryptology — CRYPTO’
99, pages 388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[28] Paul C. Kocher. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In Neal Koblitz, editor, Advances in
Cryptology — CRYPTO ’96, pages 104–113, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[29] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards (Advances in Information
Security). Springer-Verlag, Berlin, Heidelberg, 2007.

[30] Robert J. McEliece. A public key cryptosystem based on algebraic
coding theory. 1978.

[31] R. Misoczki, J. Tillich, N. Sendrier, and P. S. L. M. Barreto. Mdpc-
mceliece: New mceliece variants from moderate density parity-check
codes. In 2013 IEEE International Symposium on Information Theory,
pages 2069–2073, July 2013.

[32] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S.
L. M. Barreto. Mdpc-mceliece: New mceliece variants from moderate
density parity-check codes. In IACR Cryptology ePrint Archive, Report
2012/409, 2012.

[33] H. Gregor Molter, Marc Stöttinger, Abdulhadi Shoufan, and Falko
Strenzke. A simple power analysis attack on a mceliece cryptoprocessor.
Journal of Cryptographic Engineering, 1(1):29–36, Apr 2011.

88

BIBLIOGRAPHY

[34] H. Niederreiter. Knapsack-type cryptosystem based on algebraic coding
theory. Problems of Control and Information Theory, 15(2):157–166,
1986.

[35] Takuji Nishimura and Makoto Matsumoto. Mersenne twister 64bit ver-
sion, 2004. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/

emt64.html.

[36] NIST. Post-quantum cryptography, round 2 submissions, nist computer
security resource center. 2019. https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Round-2-Submissions.

[37] Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-
source platform for hardware embedded security research. In Emmanuel
Prouff, editor, Constructive Side-Channel Analysis and Secure Design,
pages 243–260, Cham, 2014. Springer International Publishing.

[38] Michaël Peeters, Gilles Van Assche, Guido Bertoni, and Joan Daemen.
Keccak and the sha-3 standardization. 2013.

[39] Edoardo Persichetti. Secure and anonymous hybrid encryption from
coding theory. In Philippe Gaborit, editor, Post-Quantum Cryptogra-
phy, pages 174–187, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg.

[40] M. Petrvalsky, T. Richmond, M. Drutarovsky, P. Cayrel, and V. Fis-
cher. Countermeasure against the spa attack on an embedded mceliece
cryptosystem. In 2015 25th International Conference Radioelektronika
(RADIOELEKTRONIKA), pages 462–466, April 2015.

[41] M. Petrvalsky, T. Richmond, M. Drutarovsky, P. Cayrel, and V. Fis-
cher. Differential power analysis attack on the secure bit permutation in
the mceliece cryptosystem. In 2016 26th International Conference Ra-
dioelektronika (RADIOELEKTRONIKA), pages 132–137, April 2016.

[42] Mélissa Rossi, Mike Hamburg, Michael Hutter, and Mark E. Marson.
A side-channel assisted cryptanalytic attack against qcbits. In Wieland
Fischer and Naofumi Homma, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2017, pages 3–23, Cham, 2017. Springer Inter-
national Publishing.

89

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html
https://csrc.nist.gov/Projects/Post- Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post- Quantum-Cryptography/Round-2-Submissions

BIBLIOGRAPHY

[43] C. E. Shannon. Communication theory of secrecy systems. The Bell
System Technical Journal, 28(4):656–715, Oct 1949.

[44] P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations
of Computer Science, pages 124–134, Nov 1994.

[45] Abdulhadi Shoufan, Falko Strenzke, H. Gregor Molter, and Marc Stöt-
tinger. A timing attack against patterson algorithm in the mceliece
pkc. In Donghoon Lee and Seokhie Hong, editors, Information, Secu-
rity and Cryptology – ICISC 2009, pages 161–175, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[46] Bo-Yeon Sim, Jihoon Kwon, Kyu Young Choi, Jihoon Cho, Aesun Park,
and Dong-Guk Han. Novel side-channel attacks on quasi-cyclic code-
based cryptography. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(4):180–212, Aug. 2019.

[47] Falko Strenzke. A timing attack against the secret permutation in the
mceliece pkc. In Nicolas Sendrier, editor, Post-Quantum Cryptography,
pages 95–107, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[48] Falko Strenzke. Message-aimed side channel and fault attacks against
public key cryptosystems with homomorphic properties. Journal of
Cryptographic Engineering, 1(4):283, Oct 2011.

[49] Falko Strenzke. Timing attacks against the syndrome inversion in code-
based cryptosystems. In Philippe Gaborit, editor, Post-Quantum Cryp-
tography, pages 217–230, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

[50] Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and
Abdulhadi Shoufan. Side channels in the mceliece pkc. In Johannes
Buchmann and Jintai Ding, editors, Post-Quantum Cryptography, pages
216–229, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[51] I. von Maurich and T. Güneysu. Lightweight code-based cryptography:
Qc-mdpc mceliece encryption on reconfigurable devices. In 2014 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1–6,
March 2014.

90

BIBLIOGRAPHY

[52] Ingo von Maurich and Tim Güneysu. Towards side-channel resistant
implementations of qc-mdpc mceliece encryption on constrained devices.
In Michele Mosca, editor, Post-Quantum Cryptography, pages 266–282,
Cham, 2014. Springer International Publishing.

[53] Yuan Xing Li, R. H. Deng, and Xin Mei Wang. On the equivalence of
mceliece’s and niederreiter’s public-key cryptosystems. IEEE Transac-
tions on Information Theory, 40(1):271–273, Jan 1994.

91

	Introduction
	Theoretical Background
	Code-based cryptography
	McEliece cryptosystem
	Niederreiter cryptosystem

	Side Channel Attacks
	Modeling Power Consumption
	Power Analysis Attacks
	Power Consumption Measurement
	Attacks principles
	Simple Power Analysis (SPA)
	Differential Power Analysis (DPA)
	Difference of Means - Common DPA attack.
	Pearson's Linear Correlation Coefficient - (CPA).

	Template Attacks
	Profiling phase - Template creation.
	Extraction phase - Template matching.

	Countermeasures
	Hiding.
	Masking.

	State of the Art
	Post Quantum Cryptography
	QcBits cryptosystem
	Power Analysis Attacks
	Vertical and Horizontal Attack on FPGA McEliece (2016)
	QC-MDPC McEliece
	Vertical attack on the syndrome computation
	Horizontal attack on the key rotation
	Full key recover
	Countermeasure

	Vertical Attack on QcBits (2017)
	General leakage model
	Countermeasure

	Multiple and Single Trace Attack to QcBits (2019)
	Multiple-trace attack
	Single-trace attack

	LEDAcrypt

	Implementation
	Simulation Environment
	Real Board

	Experimental Evaluation
	Experiments in Simulation Environment
	Tests on countermeasure

	Experiments on real Board
	Countermeasure validation

	Conclusion
	Constant-Time Multiplication (T. Chou convention)
	Bibliografia

