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Abstract 

 
Seismic base isolation represents an innovative method for earthquake 

protection, that has been utilized with great success in reducing the danger 

from the horizontal ground motions. This thesis investigates the capability of 

an elastomeric bearing-based isolation system in terms of isolation in both the 

horizontal and the vertical direction. To this aim, the elastomeric bearings in 

question have been modelled with a low value of the shape factor (𝑆 < 5), 

which is expected to lower the vertical stiffness and provide sufficient isolation 

from the vertical earthquake-induced load. The design process is in accordance 

with the European Standards, with an exception in the defining of the design 

axial load, which is performed through a simplified approach that allows a 

relaxation of the strict requirements of the European Standards, at the cost of 

a reasonable reduction in the safety factor. The efficiency of the elastomeric 

bearings is tested through their implementation in a structure with considerable 

proportions and mass, in particular the European – Extremely Large 

Telescope, set to be the largest telescope in the world. This building is chosen, 

apart from its size, due to its sensitivity to high frequency vibrations. 

Validation of the bearings’ design is performed through analyses in the 

OpenSees, using the ElastomericX element object by Kumar [2016], that 

models the bearing as a two-node, 12 degree-of-freedom element with six 

springs that represent the mechanical behavior in all directions. Analyses of 

the entire structure are performed using the recorded ground motions from the 

El Centro (1940) earthquake, which exhibited a similar horizontal elastic 

response spectrum as the one of El Cerro Armazones, where the structure is 

located. The analyses results produce useful insight concerning the bearings’ 

behavior, such as the clear elastic response in the vertical direction. Moreover, 

the horizontal response exhibits strong similarities with the idealized bi-linear 

behavior. However, the results from the OpenSees analysis indicate the 

difficulty in accurately prediction the behavior of a 3D seismic isolation 

system, which will remain a field open for future studies and development.  
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Chapter 1 

 
Introduction 

 
Since the beginning of humankind, man has tried to tame the forces of nature. 

Learning about the environment and finding ways to adapt to diverse living 

conditions has been a constant quest over the ages. With the passing of time, 

knowledge of once inexplicable phenomena has grown, and with the sharp 

spike in technological advancements over the past few centuries, that 

knowledge has increased exponentially. 

One such phenomenon is the earthquake – a shaking of the ground caused by 

a sudden release of immense energy beneath Earth’s surface. These energy 

outbursts can cause anything between negligible vibrations and absolute chaos 

above ground. So far, powerful earthquakes have damaged or completely 

collapsed many structures and have taken countless lives, making them a 

hazard that cannot be overlooked. Nowadays, civil engineering considers 

earthquakes a priority concern for most types of structures. 

A traditional type of design meant to lower the potential damage done to 

buildings by earthquakes includes intentionally creating a weak spot that 

would fail under the earthquake’s force and absorb it, preventing damage to 

the rest of the rest of the structure. Such weak spots are called plastic hinges 

and are typically located somewhere at the bottom of the load-carrying 

construction. This method has been deemed efficient since it provides stability 

to the structure long enough for it to be evacuated, satisfying the most 

important safety condition which is saving human lives. However, the hinges 

themselves represent damage to the structure which is quite serious and often 

irreparable, which is obviously disastrous from a financial point of view. 

Considering the cost and importance of certain buildings, it is clear that a more 

sophisticated method of protection must be available.  

The field of seismic protection has greatly evolved in the past century, with 

multiple different methods of securing a building during an earthquake and 
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enabling future use, at costs significantly lower than having to rebuild. One of 

those methods is via base isolation, using devices with an incredible 

deformation capacity that dissipate the energy from the earthquake before it 

reaches the structure. This idea is likely to have been born toward the end of 

the 19th century, with the emerging  of many proposals for “devices which 

absorb or minimize shock to buildings arising from earthquakes, vibrations 

caused by heavy traffic or other disturbances of the earth’s surface2” [de 

Montalk, 1932]. In 1906, Jacob Bechtold of Munich, Germany made an 

application for a U.S. patent for an “earthquake proof building consisting of a 

rigid base-plate to carry the building and a mass of spherical bodies of hard 

material to carry the said base-plate freely” [Bechtold, 1907] These are just a 

few of the many proposals made at the time, although as far as is determined, 

none of them were ever built, probably due to a lack of practicality or 

confidence in the possibility of success [Buckle and Mayes, 1990].  

Going into the second half of the past century, seismic base isolation has seen 

widespread use, particularly by means of elastomeric bearings. These bearings 

are composed of layers of high quality vulcanized rubber, separated by layers 

of steel shims that increase the overall stiffness. They are placed in a plane so-

called isolation gap, which divides the building into a substructure 

(foundations) and superstructure (the rest of the building above). When the 

ground begins to shake, the bearings develop considerable deformations 

between their top and bottom point, absorbing a significant amount of the 

energy before it reaches the superstructure. After the ground has settled, the 

bearings return to their initial configuration, or near enough. The key idea is 

to provide sufficient damping to the system to shift its period in the long range 

and evade any critical modes. With respect to the damping capacity that the 

bearings can provide, a categorization can be made dividing them into high 

damping rubber (HDR) and low damping rubber (LDR) bearings. As the name 

suggests, the former provide lower damping and usually need to be combined 

with additional damping devices. The latter have rubber infused with various 

additives, most commonly carbon black, and offer a much higher damping 

capacity. Another distinct type of bearing is the lead-rubber (LR) bearing, that 

in addition to the rubber layers and steel shims  has a lead core whose plastic 

deformations govern the energy dissipation capacity.  

In the past decades these devices have seen worldwide success in isolating 

various buildings of importance, such as skyscrapers or nuclear power plants. 

For seismic areas where the horizontal component of the earthquake is by far 

dominant, it is safe to say that the design of elastomeric bearings has been 

mastered and has shown to offer the required level of isolation for many 

structures. However, earthquakes with a more severe vertical component 

demand to be countered with a slightly different design that would offer a 3D 

base isolation to a structure. One proposition by [Kelly et al., 1989] suggests 

that this could be achieved with an additional criteria for the shape factor of 
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the elastomeric bearings, a ratio between the diameter and the rubber layer 

thickness. According to Kelly, bearings with a low shape factor are more 

adequate at isolating structures from vertical vibrations, which if strong can 

prove to be fatal. 

 

The scope of this thesis is to analyze the behavior of an unorthodox building 

with an implemented 3D seismic base isolation system consisting of 

elastomeric bearings. The building in question is the European – Extremely 

Large Telescope (ELT), a structure of epic proportions funded by the European 

Southern Observatory. Set to be the largest telescope in the world, this 

building’s size and importance make it a suitable choice for the project at hand. 

The elastomeric bearings chosen for the base isolation system are high 

damping rubber bearings with a low shape factor in order to assess their effect 

on the response in both the horizontal and the vertical direction. Their precise 

properties are obtained through a procedure defined by European Standards, 

followed by a verification process executed using an approach which 

simplifies the European Standards on the basis of a highly probable 

assumption. Finally, the designed bearings and the structure as a whole are 

analyzed using OpenSees (Open System for Earthquake Engineering 

Simulation). 

 

This thesis is organized in seven chapters, the first being this introduction. The 

second is a brief overview of the literature on seismic protective systems and 

particularly seismic base isolation. The third chapter explains the mechanical 

behavior of elastomeric bearings through the mathematical model and 

introduces OpenSees as a framework. Chapter 4 elaborates the design and 

verification process, followed by Chapter 5 which implements them into the 

case study. Chapter 6 explains the analysis performed in OpenSees and the 

obtained results. The last chapter is the conclusion, obtained upon finishing 

the analyses and assessing the behavior of the E-ELT with an incorporated 3D 

seismic base isolation system.  
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Chapter 2 

 
Seismic Isolation 

Knowledge Overview 

 
The idea of isolating a structure from the seismic ground motions beneath it 

was first introduced well over a century ago. Notable practical applications 

however, took a long and steady road in the following decades. This unique 

concept is meant to offer, apart from efficiency in its purpose, necessary 

functioning (service) conditions for any type of structure built in this manner.  

Protection from earthquakes is a more vast field and in addition to isolation, it 

covers other protective strategies with essentially different concepts. 

Following is a brief overview of protective systems as a whole and then a 

closer look into the fundamental topics of seismic isolation and in particular, 

elastomeric bearings. 

 

2.1 Earthquake Protective Systems Overview 
 

Figure 2.1. shows the division of earthquake protective systems into active, 

passive and hybrid, as well as their sub-parts.  
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Figure 2.1: Family of earthquake protective systems (adapted from [Buckle, 2000]). 
 

Active systems provide protection by imposing forces on the structure that act 

as counterbalance against the earthquake induced forces. They are considered 

active mainly in the sense that they rely on an energy source, but also they 

require motion sensors, computer control, feedback mechanisms and moving 

parts that need to be maintained. In the event of an earthquake, sensors 

positioned throughout the building assess the direction and intensity of its 

force, so the system can provide an equivalent and opposite force to counter it 

and provide equilibrium to the structure, thus avoiding structural damage.  

Passive systems are called so since they do not require an additional energy 

source to operate, rather they are activated by the earthquake motion only. 

These systems include seismic (base) isolation and mechanical energy 

dissipation, where the former is perhaps the more developed with continuing 

novelties and applications. Seismic isolation is a design strategy that is based 

on the premise that it is both possible and feasible to uncouple a structure from 

the ground and thus protect it from damaging effects of earthquake ground 

motions. To achieve this result, the stiffness of the structural system is reduced 

by introducing flexible elements (isolators) near the base of a building, or on 

the pier cap, if a bridge. Additional damping may be provided in order to limit 

the isolator displacements to acceptable values [Buckle, 2000]. Common 

isolation systems include elastomeric and sliding bearings which may or may 

not have  damping mechanisms (bearings with high damping rubber or 

bearings with a lead core). 

The need to control isolator displacements gave rise to the development of 

energy dissipation systems, which in time became an adequate substitute for 

the isolation systems. Their main purpose is to reduce the load of the structural 

frame by dissipating the earthquake’s energy, but also to increase the frame’s 
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strength and stiffness. Passive energy dissipators may be simply classified as 

hysteretic or viscoelastic [Constantinou, Soong, and Dargush, 1998]. 

Hysteretic dissipators include the yielding of metals due to flexure, shear, 

torsion, or extrusion (metallic dampers) and sliding (friction dampers). They 

are all essentially displacement-dependent devices. Viscoelastic systems 

include viscoelastic solids, fluid orificing (fluid dampers), and viscoelastic 

fluids. They are essentially velocity-dependent devices (viscous in nature) and 

many are also frequency dependent. Some passive energy dissipators are 

modifications of the above set and may include elastic springs or pressurized 

cylinders to develop pre-load and re-centering capabilities [Buckle, 2000].  

A notable subset of these dissipators are the tuned mass dampers (TMD) and 

tuned liquid dampers (TLD), used for transferring the kinetic energy between 

different modes of vibration. When tuned to a particular dominant mode, they 

can provide a comfortable level of damping. However, they are more suited 

for controlling wind-induced vibrations rather than ones from earthquakes, and 

are not of large importance to this topic. 

Hybrid protective systems mainly refer to those systems that have active 

components, but are either more reliable, less expensive or less power 

demanding compared to fully active systems.  

 

 

 

2.2 Seismic Base Isolation 
 

Base isolation comprises of adding flexible elements to the structure that have 

a large capacity for lateral deformation and can increase the structure’s natural 

period to a longer, safer range. These elements are located at the base, 

decoupling the superstructure from its substructure that is embedded in the 

ground. Once an earthquake occurs, its force travels through the substructure 

to the isolation elements, which deform sufficiently and in this manner greatly 

reduce the force that reaches the superstructure. This concept lowers the 

demands for the structural elements and allows them to remain in the elastic 

range, whereas conventional design would lead to plastic deformations and 

local structural damage that would later be quite costly to repair, if it is 

reparable at all.  
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Figure 2.2: Conventional and base isolated structure deformations (adapted from 

[Symans, 2009]). 

 

Seismic base isolation devices can be classified with respect to some major 

design differences as: 
 

• Elastomeric bearings 

– Low-damping rubber bearings 

– High-damping rubber bearings 

– Lead rubber bearings 

• Sliding bearings 

– Friction pendulum 

– Triple pendulum 

 

Elastomeric bearings consist of stacked layers of elastomer and steel shims, 

usually both with a small thickness per layer. The elastomer layers have a very 

small horizontal stiffness, which allows large elastic deformations that 

dissipate the earthquake forces before they reach the superstructure. They are 

made from either natural or synthetic rubber that is pressurized under high 

temperatures in special molds along with the steel shims to achieve a bond.  

The steel shims provide vertical stiffness, restraining the rubber at the bond 

surface [Kelly et al., 1989]. It is very important to secure sufficient spacing 

between the bearings in order to avoid collision once they reach their 

maximum displacements. 
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Figure 2.3: Cross section of an elastomeric bearing (adapted from Constantinou et al. 

[2006]). 

 

A rubber cover is provided to protect the internal  rubber layers and steel plates 

from environmental degradation due to ozone attack and corrosion, 

respectively [Symans, 2009]. 

Low damping rubber (LDR) inherently offer low damping values (usually 

about 2-3% equivalent damping ratios). They have very good linearity, a stable 

restoring force and excellent flexibility. However, these properties require that 

additional damping devices are incorporated in the base isolation solution.  

 

High damping rubber (HDR) bearings have either natural or synthetic rubber 

layers infused with various materials (resins and other fillers) to increase the 

stiffness and provide higher damping values, so they exhibit both spring and 

damping characteristics. This way they meet the structure’s energy dissipation 

without the need for additional dampers, which makes them particularly useful 

in situations with space constraints. The high stiffness lowers the risk of 

bearing instability in extreme scenarios, whereas in service conditions (low 

shear strains) it keeps the forces and deformations in the elastic range. 

Damping ratios generally range between 10% and 20% of the critical one at 

100% shear strain [Grant et al., 2005]. High damping rubber bearings have 

relatively smooth hysteresis curves and the seismic isolation can be extended 

to the equipment inside the building. Certain loading conditions can cause a 

discontinuity in their properties in the initial motion cycles (scragging) 

affecting their dissipation ability and stiffness, although the values return to 

normal as the number of cycles increases. The behavior under virgin 

conditions could be strongly different from that under scragged conditions. 

After a sufficient amount of time, the initial properties are recovered [Warn 

and Ryan, 2012].  

 

Lead rubber (LR) bearings have layers of laminated natural rubber (and steel 

shims) with a lead plug embedded in the center. The elastomer provides the 

isolation component and the lead core, with diameter ranging between 15% 

and 33% of the bonded diameter of the bearing, provides the energy dissipation 

or damping com- ponent, due to the plastic deformation of the lead [Fujita, 

1998]. The hysteresis of LR bearings resembles that of elastoplastic materials. 

The lead core relieves the need for additional damping devices, with tuning 
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being done by varying its diameter. Caution should be taken with the lead’s 

temperature variation since large values can reduce characteristic strength. 

Fatigue of the lead could be disregarded since lead recrystallizes at normal 

temperatures [Constantinou et al., 1998]. 

 

 
 

Figure 2.4: Cross section of a lead rubber bearing (adapted from Naeim & Kelly  et al. [1999]).  
 
 

Sliding bearings consist of a top steel concave plate, an articulated slider, and 

a base plate that is either plain or also concave, depending on the bearing type. 

These bearings provide stiffness in the vertical direction through direct contact 

of the bearing elements, whereas horizontal stiffness is provided by sliding. 

Each surface area between two elements is coated with a material that has an 

extremely low friction coefficient, ususally polytetrafluoroethylene (PTFE). 

This is a solid made entirely of carbon and fluorine and has one of the lowest 

friction coefficients of any solid, allowing smooth sliding with as little 

resistance as possible. The other bearing elements are made of high-strength 

stainless steel. Upon dislocating from the initial configuration during seismic 

motion, re-centering is achieved through the elements’ geometry or using 

additional damping devices. 

 

Friction pendulum bearings (FPB) have a plain base plate, articulated slider 

and a concave top dish, whose curvature is designed to provide a restoring 

force to the bearing and return it to its initial configuration. In addition to this, 

when seismic motion causes sliding along the concave surface the bearing 

provides a lifting vertical component to the system which reduces vertical 

displacements. The radius of the con- cave contact surface and the friction 

coefficient are the parameters designed to give the Friction Pendulum bearings 

desirable dynamic properties, such that very high axial loads could be 

supported at large lateral displacements [Warn and Ryan, 2012].  



10 
 

 

 

 
  

 

 
Figure 2.5: Friction Pendulum bearing undeformed and deformed configurations 

(adapted from Warn and Ryan [2012]). 

 

Triple pendulum is a multi-spherical sliding bearings. This device consists of 

four spherical sliding surfaces and three independent pendulum mechanisms, 

as shown in Figure 2.8. In particular, the response during low intensity seismic 

event is controlled by the internal pendulum mechanism, with two concave 

plates and a rigid slider, whereas the outer stainless steel concave surfaces 

provide two independent pendulum mechanisms that con- trol the response 

during medium or high level of ground motions [Zayas et al., 2016], 

[Pecchillo, 2019]. 

 

 

 
 

Figure 2.6: Triple Pendulum bearing undeformed and deformed configurations (adapted 

from Zayas et al. [2016]).  

 
 
 

2.3 3D Seismic Isolation 
 

Elastomeric bearings can be further divided according to their damping 

capacities: 

 

1. Bearings that cannot provide sufficient damping to the system and have 

to be accompanied by additional damping devices; 

2. Bearings that are able to produce the required amount of damping 

without additional damping devices. 

 

The first group refers to low damping rubber bearings (LDR), whereas the 

second refers to high damping (HDR) and lead rubber (LR) bearings. One 

factor responsible for the difference in damping capacities between the 

bearings without a lead core is the composition of the elastomer. Different 

treatment during vulcanization and compounding as well as different 
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quantities of certain fillers (typically carbon black) have a large effect on 

hardness, stiffness, creep, stress relaxation and the elongation at break.  

A geometrical property with significant influence on the bearings’ stiffness is 

the shape factor (S):  

 

                                             𝑆 =
𝐷

4𝑡𝑟
                               (2.1)                                                     

 

Where D is the diameter of the reinforcing steel shims and 𝑡𝑟  is the rubber 

layer thickness. A small rubber layer thickness results in higher vertical 

stiffness, which in turn means that the isolation capacity in the vertical 

direction would be low. Analogous to this, a thicker rubber layer would result 

in a lower vertical stiffness and with that, a better isolation in the vertical 

direction. Having in mind the relationship between 𝑡𝑟  and S, it can be 

concluded that bearings with a high shape factor can provide isolation only in 

the horizontal direction, whereas bearings with a lower value of S can provide 

sufficient isolation in both horizontal and vertical direction. It is important to 

remember that the shape factor is associated only with the thickness of a single 

layer of rubber and not the total rubber thickness in the bearing, so its value 

has no significant correlation with isolation in the horizontal direction. 

Furthermore, studies have shown that even though variation in the shape factor 

influences vertical stiffness, the normal stress in the steel reinforcement 

remains unaffected by this variation. 

The loading scenario for rubber bearings gives rise to some phenomena, such 

as buckling, that represent a multiaxial issue and require several checks to be 

performed on the bearing design to ensure safety under both service and 

critical conditions.  

The bearing properties that must be determined to design an elastomeric 

bearing-based seismic isolation system are: 

 

• Horizontal stiffness of the bearing, linked to a specific horizontal 
natural frequency; 

• Vertical stiffness of the bearing, linked to a predominant vertical 
frequency; 

• Stability of the bearing under combined vertical load and lateral dis- 

placement.  

 
To  shed light on vertical response in general,  and on the stability prob-   lem, 

the following sections are focused on the theoretical background of the 

mathematical existing model for elastomeric bearing:  the Haringx’s the-   ory 

of bearing stability and the Two-spring model for elastomeric bearing. The 

formulations for the computation of horizontal and vertical stiffness of   a 

bearing are deeply discussed in Chapter 3,  with particular attention on    the 

coupling between horizontal and vertical motions and their reciprocal 

influence. [Kelly et al., 1989; Kumar et al., 2015; Pecchilo, 2019].  
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2.4 Haringx’s Theory of Rubber Bearing Stability 
 

Over the course of a few years, Haringx published several articles on highly 

compressible helical springs and rubber rods and their potential use in 

vibration-free mountings. His theory was later proven to be able to predict the 

buckling load and analyze the effects of the vertical loads on damping and 

shear in bearings by Gent [1964].  

The behavior of an elastomeric in terms of buckling resembles that of a slender 

column with a small stiffness in shear. With respect to this, the bearing can be 

considered as a beam for which the plane sections normal to the central axis 

remain plane after deformation, but not  necessarily normal to the central axis 

[Timoshenko and Gere, 1961].  

 

 

 
Figure 2.9: Haringx column in deformed configuration (adapted from Kelly et al. 

[1989]). 

 

Figure 2.9 describes an elastic column of length 𝑙 that is fixed at the bottom 

and has constrained rotation but free translation at the top. It is loaded by a 

compressive force 𝑃 and a moment 𝑀0 due to the constraint.  

The problem is defined with:  

 

 the displacement of the central axis, 𝑢 (x); 

 the rotation of a face originally normal to the undeformed axis, 𝜑(x). 

 

Leading to two contributions to the deformation: 

 

 the shear deformation 𝑢′(𝑥) − 𝜑(𝑥); 

 the curvature 𝜑′(𝑥). 
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Figure 2.10: Internal forces in a generic cross section of the deformed column (adapted 

from Kelly et al. [1989]). 

 

Figure 2.10 describes the post-deformation configuration of the column, where 

the equilibrium equations are: 

 

𝑀(𝑥) = 𝑀0 − 𝑃𝑢(𝑥) + 𝐻0(𝑥)                                (2.2) 

 

𝑉(𝑥) = 𝑃𝜑(𝑥) − 𝐻0                                                 (2.3) 

 

The constitutive equations expressing the problem are as follows: 

 

𝑀(𝑥) = 𝐸𝐼𝑒𝑓𝑓𝜑′(𝑥)                                                 (2.4) 

 

𝑉(𝑥) = 𝐺𝐴𝑒𝑓𝑓[(𝑢′(𝑥) − 𝜑(𝑥)]                             (2.5) 

 

To account for the steel shims in the bearings, the effective members from the 

constitutive equations become 𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑟𝐼𝑠  and 𝐺𝐴𝑒𝑓𝑓 = 𝐺𝐴𝑠. 

Another approach by [Kelly, 1993] offers a more accurate representation by 

taking into account the effect of the thickness of the steel shims on the 

slenderness and the elastic modulus, expressed as: 

 

 𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑟𝐼𝑠 =
𝐸𝑐

3
𝐼

ℎ

𝑇𝑟
                                           (2.6) 

 

𝐺𝐴𝑒𝑓𝑓 = 𝐺𝐴𝑠 = 𝐺𝐴
ℎ

𝑇𝑟
                                           (2.7) 

 

By combining the constitutive and equilibrium expressions, the governing 

differential equation of the problem can be reached in terms of both the 

displacement and the rotation as: 
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𝐸𝐼

1 +
𝑃

𝐺𝐴𝑠

𝑢′′ + 𝑃𝑢 = 𝐻0𝑥 + 𝑀0                           (2.8) 

 

𝐸𝐼

1 +
𝑃

𝐺𝐴𝑠

𝜑′′ + 𝑃𝜑 = 𝐻0                                       (2.9) 

 

where the first equation is expressed through 𝑢 and the second through 𝜑. 

From here, the general solutions are as follows: 

 

𝑢(𝑥) = 𝐴𝑐𝑜𝑠𝛼𝑥 + 𝐵𝑠𝑖𝑛𝛼𝑥 +
𝐻0

𝑃
𝑥 +

𝑀0

𝑃
                        (2.10) 

 

𝜑(𝑥) = 𝐶𝑐𝑜𝑠𝛼𝑥 + 𝐷𝑠𝑖𝑛𝛼𝑥
𝐻0

𝑃
                                          (2.11) 

 

The coefficient 𝛼 holds the expression: 

 

𝛼2 =
𝑃

𝐸𝐼𝑒𝑓𝑓
(1 +

𝑃

𝐺𝐴𝑠
)                                                   (2.12) 

 

The boundary conditions of the general solutions are: 

 

𝑢(0) = 0
𝜑(0) = 0
𝐻0(0) = 0

𝜑(𝑙) = 0
                                                         (2.13) 

 

From this a new expression containing 𝛼 is obtained, which can then be 

combined with the previous explanation of 𝛼2 in order to arrive at: 

 

𝛼𝑙 = 𝜋                                                          (2.14) 

 

𝑃 (1 +
𝑃

𝐺𝐴𝑠
) =

𝜋2𝐸𝐼𝑒𝑓𝑓

𝑙2
                                            (2.15) 

 

where the right hand side is defined as the Eulerian buckling load 𝑃𝐸 =
𝜋2𝐸𝐼𝑒𝑓𝑓

𝑙2
  

and 𝐺𝐴𝑠 = 𝑃𝑠. After exchanging these new terms into the equation above and 

making some adjustments, the critical buckling load can be expressed as: 

 

𝑃𝑐𝑟 = √𝑃𝐸𝑝𝑠                                                 (2.16) 

 

 

2.5 Two-Spring Model of an Elastomeric Bear- ing 

 

The previous section described the behavior of a bearing in buckling without 
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accounting for the effect of the lateral displacements, which if non-zero would 

affect the height and stiffness of the bearing. This influence can be captured 

by using a model with two springs [Koh and Kelly, 1988] that will couple the 

lateral displacements with the vertical stiffness. [Constantinou, 2006] 

discusses such a model through a column whose configuration and boundary 

conditions represent a bearing’s behavior. 

Consider a rigid column of length h equal to the total height of the  rubber 

layers and the steel shims. The column is put on a rigid plate on two 

 

 

 
 
 

Figure 2.11: The two-spring model (adapted from Constantinou et al. [2006]). 
 
 

frictionless rollers of negligible dimension, which in turn sit on another rigid 

plate. A horizontal spring, characterized by a stiffness K2 (force per unit 

length), constrains the relative displacement, s, between the two plates. The 

bottom plate is simply supported in the middle and the relative rotation, θ, is 

constrained by a rotational spring, characterized by a stiffness K1 (moment per 

unit radian). A vertical compression load P and a horizontal force FH are 

applied at the free end of the column [Kelly et al., 1989; Pecchillo, 2019]. 

Assuming small displacements only, the lateral displacement 𝑢 and the 

reduction of the column height 𝑣 are computed as: 

 

𝑢 = 𝑠 + ℎ𝜃                                                 (2.17) 

 

𝑣 = 𝑠𝜃 + ℎ
𝜃2

2
                                           (2.18) 

 

The equilibrium equations are expressed with respect to the rotation point 𝑂 

and the displacement directions 𝑠, in the following form: 

 

𝑃𝜃 + 𝐹𝐻 + 𝐾2𝑆 = 0                                       (2.19) 

 

𝑃𝑢 + 𝐹𝐻ℎ − 𝐾1𝜃 = 0                                     (2.20) 
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Figure 2.12: Forces and moments acting on the deformed configuration of the Two- 

spring model (adapted from Constantinou et al. [2006]). 

 

To obtain the stiffness of the springs, each one is observed as if the other one 

tends to infinity. They are expressed as: 

 

𝐾1 = 𝑃𝐸ℎ                                               (2.21) 

 

𝐾2 =
𝐺𝐴𝑠

ℎ
=

𝐺𝐴𝑠

𝑇𝑟
                                 (2.22) 

 

Hence, the solutions to the equilibrium equations are: 

 

𝜃 =
𝐹𝐻

𝐺𝐴𝑠

𝐺𝐴𝑠 + 𝑃

𝑃𝐸 − 𝑃(1 +
𝑃

𝐺𝐴𝑠
)
                                 (2.23) 

 

𝑠

ℎ
=

𝐹𝐻

𝐺𝐴𝑠

𝑃𝐸

𝑃𝐸 − 𝑃(1 +
𝑃

𝐺𝐴𝑠
)
                                 (2.24) 

 

Taking into account that 𝐾𝐻 =
𝐹𝐻

𝑢
, the horizontal stiffness can be computed 

including the influence from the vertical load as: 

 

𝐾𝐻 =
𝐺𝐴

𝑇𝑟
(1 −

𝑃2

𝑃𝑐𝑟
2 )                                     (2.25) 

 

where 𝑃𝐸 ≫ 𝑃 and 𝑃𝐸 ≫ 𝐺𝐴𝑠 and the higher order terms are neglected. 

The total displacement in the vertical direction is computed as: 

 

𝑢𝑡𝑜𝑡 = 𝑢 + 𝑃
𝑇𝑟

𝐸𝑐𝐴
                                          (2.26) 

 

where the first term is the lateral contribution and the second is the contribution 

due to the vertical load. 
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As for the vertical stiffness, the equation is obtained by assuming that the 

bearing height is very close to the total height of the rubber layers and that 

𝑃 ≫ 𝐺𝐴. 

 

𝐾𝑢 =
𝐸𝑐𝐴

𝑇𝑟

1

1 +
3
𝜋

(2
𝑢
𝑟
)2

                                (2.27) 

 

where 𝑟 is the radius of gyration, computed as: 

 

𝑟 = √
𝐼

𝐴
                                             (2.28) 

 

Experimental data points out that the value for the vertical stiffness obtained 

with the two-spring model is sufficiently accurate [Warn and Whittaker, 2006].  
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Chapter 3 
 
 

Mathematical and Numerical 

Model of Elastomeric 

Bearings for 3D Seismic 

Isolation 
 

 

 

This chapter will encompass the mechanical behavior of an elastomeric 

bearing in all principal directions, as well as its numerical implementation in 

a software designed for seismic engineering and earthquake simulations. The 

first two sections will focus on the bearing behavior in the vertical and 

horizontal directions, accordingly. The third section will discuss the 

parameters relevant for rotation and torsion in elastomeric bearings. After that, 

the following sections will cover how this mechanical behavior is interpreted 

in OpenSees (Open System for Earthquake Engineering Simulation), a 

software framework that, unlike most popular civil engineering tools, relies 

completely on a programming language to build an entire model and perform 

certain analyses only through lines of code. It is capable of performing both 

serial and parallel finite element analyses is perfectly suited for investigating 

hazard in the field of geotechnics and structural engineering. The 

programming language in question is “tcl”, which has many similarities to 

C++,C and Fortran.  
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3.1 Mechanical Behaviour in Vertical Direction 
 
 

The stiffness in vertical direction of elastomeric bearings mainly controls the 

vertical frequency of a seismically isolated  structure.  Therefore,  to design  a 

three-dimensional isolation system that protects the structure also from 

vibrations in vertical direction (in addition to horizontal  directions),  the need 

to predict the behaviour under compressive loads becomes fundamental 

[Kelly, 1993]. In case of major earthquakes, large variations in axial loads are 

expected due to extreme shaking of the ground and the coupling of horizontal 

and vertical responses needs to be considered [Pecchillo, 2019]. 

This means that actions in a certain direction should be expected to have an 

effect on the bearing’s properties in an orthogonal direction, such as:  

• as the lateral displacement uh increases, the axial stiffness Kv decreases; 

• as the axial load P increases, the shear stiffness KH decreases; 

• a reduction in the axial stiffness Kv causes a reduction in the critical 
buckling load Pcr, thus reducing as well the shear stiffness KH. 

 
It is obvious that severe seismic motions have a complex impact on the 

bearings. The correlation between the lateral displacement and the vertical 

stiffness is captured in a simplified model by Koh and Kelly [1988] based on 

Haringx’s theory on rubber bearing stability [1949b]. It is a two-spring model 

with some assumptions where Kv is given as: 

 

𝐾𝑣 =
𝐸𝑐𝐴

𝑇𝑟

1

1 +
3𝑢ℎ

𝜋2𝑟

= 𝐾𝑣0

1

1 +
3𝑢ℎ

𝜋2𝑟

                               (3.1) 

 

where 

 
– Ec is the compression modulus of the rubber bearing; 

 

– A is the area of the bonded rubber layers; 
 

– Tr is the total height of the rubber; 
 

– r is the radius of gyration, as defined in Equation (2.24); 
 

– Kv0 is the vertical stiffness at zero lateral displacement, i.e. uh = 0. 



20 
 

 

 

 
  

 
 

One way to compute Ec is in accordance with a hypothesis proposed by Gent 

and Lindley [1959] that suggests total incompressibility (ν=0.5). With respect 

to this hypothesis, the compression modulus for a circular elastomeric bearing 

is as follows:  

 
Ec = E(1 + 2S2)           (3.2) 

 

 Where E is the Young modulus of the elastomer and S is the shape factor. This 

hypothesis is governed by the assumptions:  

• horizontal plane sections parallel to the rigid plate remain plane and parallel to 

it after deformation; 

• the lateral surface deforms in parabolic fashion; 

• normal stresses are equal to the mean pressure in the three orthogonal 
directions.  

 
Another hypothesis also by Gent and Lindley [1959] takes into consideration 

the compressibility of the volume. In this case, the equation for the 

compression modulus would be: 

 

1

𝐸𝑐
𝐽 =

1

𝐸𝑐
+

1

𝐾
                                                        (3.3) 

                  

where 𝐸𝑐  is the modulus as calculated in Equation (3.2) and K is the bulk 

modulus. Although the second expression is closer to the bearing realistic 

behavior, the first one has been deemed acceptable in the case of bearings with 

a low shape factor.  

 

 
 

 

Figure 3.1: Axial load-deformation curve in compression (adapted from Kumar et 

al. [2015]). 

 
Figure 3.1 shows the aforementioned relationship between lateral 

displacements and the vertical stiffness of the bearing. As long as 𝑢ℎ=0 the 



21 
 

 

 

 
  

vertical stiffness is equal to 𝐾𝑣0, which provides the critical buckling load 

Pcr0. After initial lateral displacements occur, the value of the vertical stiffness 

is reduced, thus reducing the critical buckling load and forming a lower 

inclination on the load-deformation curve in compression.  

The critical buckling load for a certain value of lateral displacement can be 

computed as a function of the overlapping area. 

 
 

 
 

Figure 3.2: Reduced area of elastomeric bearing (adapted from Warn and Whittaker 

[2006]). 

 

𝑃𝑐𝑟 = 𝑃𝑐𝑟0

𝐴𝑟

𝐴
                                                                         (3.4) 

 

Where 𝐴𝑟  is the overlapping area between the top and bottom sections of the 

bearing after displacements have occurred, and is equal to: 

 

𝐴𝑟 =
𝐷2

4
(𝛿 − 𝑠𝑖𝑛𝛿)                                                                    (3.5) 

 
where 

 

𝛿 = 2𝑐𝑜𝑠−1 (
𝑢ℎ

𝐷
)                                                                      (3.6) 

 
 

Mathematically, this suggests that once 𝑢ℎ=D the bearing would have zero 

buckling capacity, experimental studies have shown that even in this case 𝑃𝑐𝑟  

would still be larger than zero. A linear approximation proposed by Warn and 

Whittaker [2006] suggests that after the ratio between the overlapping and the 

bonded area falls under 0.2, the critical buckling load remains constant.  

 



22 
 

 

 

 
  

  

 

Figure 3.3: Bi-linear variation of buckling load (adapted from Kumar et al. [2015]). 

 

 

𝑓𝑜𝑟    
𝐴𝑟

𝐴
≥ 0.2            𝑃𝑐𝑟 = 𝑃𝑐𝑟0  

𝐴𝑟

𝐴
                                             

𝑓𝑜𝑟    
𝐴𝑟

𝐴
< 0.2             𝑃𝑐𝑟 = 0.2𝑃𝑐𝑟0                                                   (3.7) 

 

It is crucial to note that Figures 3.1 and 3.3 describe the bearing behavior solely 

in compression. Tension in elastomeric bearings is associated with cavitation, 

an occurrence that is accompanied by the irreversible damage due to formation 

of micro cracks in the volume of rubber. When the bearing is loaded beyond 

the point of cavitation and unloaded, it returns along a new path and cavitation 

strength is reduced. The area enclosed between loading and unloading amounts 

to the hysteretic energy due to damage in the bearing. Subsequent loading 

follows the latest unloading path elastically until strain exceeds the past 

maximum value max u , below which loading has the effect of only opening 

and closing of existing cavities within the rubber. Once loading exceeds the 

past maximum value of tensile strain, the formation of new cavities leads to 

increased damage [Kumar, 2013]. 

 

 
 

3.2 Mechanical Behaviour in Horizontal Direction 
 

With respect to the approximation of the two-spring model of an elastomeric 

bearing be Kelly [1993], the horizontal stiffness is: 

 

𝐾𝐻 =
𝑡𝑡𝐴

𝑇𝑟
|

1

1 −
𝑃
𝑃𝑐𝑟

| = 𝐾𝐻0 |
1

1 −
𝑃
𝑃𝑐𝑟

|                                             (3.8) 

 

where 𝐾𝐻0 is the horizontal stiffness while the axial load is zero, and 𝑃𝑐𝑟  is the 

critical buckling load, calculated as in Equation (3.7). It is obvious from the 

formulation that the axial load has an a crucial effect on the stiffness in 

horizontal direction.  

The coupling between vertical and horizontal is included in the model that 

describes the coupling between horizontal directions. In particular, the model 
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for elastomeric bearing in horizontal shear is a bidirectional smooth bi-linear 

hysteretic one, showed in Figure 3.4, and is based on the formulation by Park 

et al. [1986] [Pecchillo, 2019].  

 

 
Figure 3.4: Idealized smooth behaviour of elastomeric bearing in shear (adapted from 

Kelly [2001]). 

 
The hysteresis loop is characterized by parameters typical of seismic isolation 

design: 

– The initial elastic stiffness, Ke; 

 

– The post-elastic stiffness, Kd; 
 

– The effective stiffness, Keff ; 
 

– The yield strength, Fy; 
 

– The yield displacement, Y ; 
 

– The characteristic strength, Qd; 
 

– The maximum displacement, ∆; 
 

– The maximum force, Fm. 
 

The effective shear modulus can be computed as follows: 

 

𝑡𝑡𝑒𝑓𝑓 =
𝐾𝑒𝑓𝑓𝑇𝑟

𝐴
                                                        (3.9) 

 

where the effective stiffness 𝐾𝑒𝑓𝑓  is obtained through the ratio of the sums of 

the absolute values of the restoring force and the maximum displacements as: 
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𝐾𝑒𝑓𝑓 =
|𝐹+| + |𝐹−|

|∆+| + |∆−|
                                                 (3.10) 

 

The shear modulus is variable as it depends on the shear strains. For an increase 

in the strains up to 100% the shear modulus continuously decreases, but after 

that it is almost constant up to 200%. For practical purposes, the value of the 

shear modulus is assumed as constant, but these variations caused by the 

varying strains have to be taken into consideration.  

To acquire the restoring forces, the isotropic expression for the model is used: 

 

𝐹𝑥

𝐹𝑦
= 𝑐𝑑 (

𝑈�̇�

𝑈�̇�

) + 𝐾𝑑 (
𝑈𝑥

𝑈𝑦
) + 𝑄𝑑 (

𝑍𝑥

𝑍𝑦
)                                   (3.11) 

 

where: 

 

– 𝐹𝑥  and 𝐹𝑦 are the restoring forces in orthogonal directions; 

– 𝑈𝑥  and 𝑈𝑦  are the displacements in those directions; 

– 𝑈�̇�  and 𝑈�̇�  are the derivatives of the displacements, i.e. the 

velocities; 

– 𝑍𝑥  and 𝑍𝑦 are hysteretic components of the restoring forces. 

 

𝑍𝑥  and 𝑍𝑦 both have units of displacement and are functions of time histories 

of 𝑈𝑥  and 𝑈𝑦. The biaxial interaction is given as: 

 

𝑌 {
𝑍�̇�

𝑍�̇�

} = (𝐴[𝐼] − [
𝑍𝑥

2(𝛾𝑆𝑖𝑔𝑛(𝑈�̇�𝑍𝑥) + 𝛽) 𝑍𝑥𝑍𝑦(𝛾𝑆𝑖𝑔𝑛(𝑈�̇�𝑍𝑦) + 𝛽)

𝑍𝑥𝑍𝑦(𝛾𝑆𝑖𝑔𝑛(𝑈�̇�𝑍𝑥) + 𝛽) 𝑍𝑥
2(𝛾𝑆𝑖𝑔𝑛(𝑈�̇�𝑍𝑦) + 𝛽)

]) (3.11) 

 

 

Parameters 𝛾 and 𝛽 control the shape of the hysteresis loop and A is the 

amplitude of the restoring force [Kumar, Whittaker and Constantinou, 2013], 

and it must hold that: 

 

𝐴

𝛾 + 𝛽
= 1                                                      (3.12) 

 

When yielding occurs, the solution of the system is: 

 

−𝑍𝑥 = 𝑐𝑜𝑠𝜃
𝑍𝑦 = 𝑠𝑖𝑛𝜃

𝜃 = 𝑡𝑎𝑛−1(
𝑈�̇�

𝑈�̇�

)

                                                     (3.13) 

 

where 𝜃 is the angle between the direction of the motion and the resultant 

force. 
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The characteristic strength 𝑄𝑑 that contributes to the hysteretic part of the 

restoring force is dependent on the effective damping of the system 𝛽𝑒𝑓𝑓 , 

computed as: 

 

 𝛽𝑒𝑓𝑓 =
1

2𝜋
[

𝐸𝐷𝐶

𝐾𝑒𝑓𝑓∆2
]                                                         (3.14) 

 

where ∆ is the displacement  of the system due to earthquake shaking obtained 

from smoothed response spectra and 𝐸𝐷𝐶  is the energy dissipated per cycle at 

displacement ∆ [Kumar, Whittaker and Constantinou, 2013] . For the idealized 

behavior in Figure 3.4, 𝐸𝐷𝐶  can be computed as: 

 

𝐸𝐷𝐶 = 4𝑄𝑑(∆ − Y)                                                        (3.15) 

 

where Y is the displacement of the system at the yielding point. For lead rubber 

bearings, the characteristic strength is determined using the effective yield 

stress of the lead core. It is important to note that in the case of low damping 

rubber bearings, the characteristic strength cannot be obtained directly. An 

effective damping of the system is assumed, and 𝑄𝑑 is computed as: 

 

𝛽𝑒𝑓𝑓 =
1

2𝜋
[
4𝑄𝑑(∆ − Y) 

𝐾𝑒𝑓𝑓∆2
] ≤

2𝑄𝑑

𝜋𝐾𝑑∆
                                           (3.16) 

 

𝑄𝑑 ≥
𝜋

2
𝛽𝑒𝑓𝑓𝐾𝑑∆                                                        (3.17) 

 

The characteristic strength of LDR bearings can be estimated if the value of 

displacement ∆ due to earthquake shaking is known from the simplified 

analysis. The above procedure can also be used for high damping rubber 

bearings, since their force-displacement response is similar to that shown in 

Figure 3.4 but with larger energy dissipated per cycle, so the same path of 

reasoning can be followed (e.g., Constantinou et al., 2011).  

 
 

3.3 Mechanical Behaviour in Rotation and 

Torsion 

 

The torsion and rotation of an individual elastomeric bearing have a fairly 

small effect on the overall response of the seismically isolated building. Due 

to this fact, the bearing behavior under torsion and rotation can be represented 

by linear elastic springs with the following stiffnesses: 

 

𝐾𝑟 =
𝐸𝑟𝐼𝑠
𝑇𝑟

𝐾𝑡 =
𝐺𝐼𝑡
𝑇𝑟

                                                                           (3.18) 
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respectively, where 𝐸𝑟  is the rotation modulus of the bearing, 𝐼𝑠 is the moment 

of inertia about the axis of rotation in the horizontal plane and 𝐼𝑡  is the moment 

of inertia about the vertical axis [Kumar, Whittaker and Constantinou, 2013].  

 

3.4 Numerical Model in OpenSees 

 

There are a few structural softwares that offer a numerical model of an 

elastomeric bearing. The scope of this thesis is focused on the modelling and 

analyzing of a seismically isolated structure using OpenSees, an object-

oriented, open source software framework sponsored by the Pacific 

Earthquake Engineering Research Center (PEER). This section will cover 

some of the basic principles of OpenSees, as well as its capabilities to capture 

the behavior of elastomeric bearings.  

 
3.4.1 OpenSees Framework 

 

Although still under development, OpenSees offers the user vast control over 

the manner of defining analysis procedures and results. Moreover, it makes it 

possible and fairly easy for multiple users to share and edit work and the scope 

of the output. It is designed to be flexible, extensible and object-oriented, i.e. 

Opensees makes extensive use of object composition allowing users to 

combine components in manners that are not available in commercial or other 

research codes [McKenna, 2011]. Admittedly the lack of a graphical interface 

is not quite typical for a structural engineering software, some of the perks of 

using an interpreter as OpenSees include quick modification of the design and 

analysis properties, notable reduction in time consumption of designing 

structures with a high level of modular repetition and a smaller chance for 

errors since OpenSees requires all aspects of the design and analysis process 

to be manually defined. However, the current database of OpenSees may prove 

to be somewhat limited for the cause of modelling more complex structures, 

which would lead to certain simplifications and reduced accuracy of the model.  

Every operation in OpenSees is written in the programming language Tcl, to 

which the interpreter adds commands that are bound to a C++ procedure. For 

the purpose of this thesis, this section will focus more on the commands added 

to Tcl in particular for the needs of structural design. 

The commands essential for this can be grouped in the following modules:  
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1. ModelBuilder: used to construct the objects of the structure in the 

model. 

2. Recorder: used to select the quantities to be monitored during anal- 

ysis procedures and the outputs of results. 

3. Analysis: used to define the solution procedure to advance the model 

from state at time ti to state at time ti + dt [Pecchillo, 2019]. 

 

The modelBuilder command is used at the beginning of any modelling 

procedure to specify the number of dimensions in which the problem will be 

observerd and in accordance with this the number of degrees of freedom. 

Afterward, in order to introduce the elements that make up the structure, it is 

necessary to define the type and properties of all the materials they consist of. 

Here OpenSees offers a plethora of commands that represent different stress-

strain relationships, mainly grouped under the “uniaxialMaterial” command 

for uniaxial, or under “ndMaterial” for stress-strain relationships at the gauss-

point of a continuum element. The following step is to define all the nodes that 

will represent a beginning or end of each object through their coordinates (2 

coordinates for 2D or 3 coordinates for a 3D problem). The same line of code 

can specify the lumped mass (if any) in a certain node, or the “mass” command 

can be used after the nodes have been defined. The procedure also requires that 

the constraints be defined as free with a “0” or fixed with a “1” in the “fix” 

command. The commands for the elements of the structure can be written only 

after all previous prerequisites are met. The elements hold the force vectors 

and stiffness matrices needed for the analysis.  

Once the model is complete, the next step is to apply the loads, which begins 

with defining the time series that represent the relationship between the time 

in the domain and the load factor that will be applied to the loads. The second 

step is writing the command for the load patterns that hold the intensity, 

location and direction of the loads. Each load pattern is associated with a 

“timeSeries” object and can contain nodal loads, elemental nodes  or single 

point constraint objects. 

After having defined the model and the loads, the type of analysis needs to be 

selected. The “analysis” command offers the choice between a static analysis 

and transient analyses with either a constant or a variable time step 𝑑𝑡. 

However, before an analysis is initiated, several of its components that will 

determine how the analysis runs need to be manually defined by the user.   
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Figure 3.5: Analysis objects on OpenSees (adapted from Mazzoni et al. [2006]). 

 

Finally, the needed information from the analysis is acquired through recorder 

objects that monitor what is happening during the analysis and generate the 

output afterward. Recorder objects can be focused on monitoring both nodes 

and elements, providing various information (node displacements, reactions, 

internal forces, stiffnessess etc.).  

 

3.4.2 Reference Coordinate Systems 
 

OpenSees recognizes three different reference coordinate systems: 

– basic coordinate system; 

– local coordinate system; 

– global coordinate system. 

 

Each reference coordinate system is associated with a different aspect of the 

model and the analysis. The basic coordinate system is related to the 

information on the elements (displacements, stiffness matrices, forces). The 

local coordinate system holds the nodal response, whereas the global 

coordinate system is used for the system of equations for the whole model. 

During the analysis process, the contents of the basic coordinate system 

(stiffness matrices and force vectors) are transformed first into the local 

reference system, and then into the global one. Once the system of equations 

there reaches a solution, the transformation process is ran backward. 

OpenSees has a geometric transformation command which creates a 

coordinate transformation object used to transform the element’s stiffness and 

resisting force from the basic to the global coordinate system.  
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Figure 3.6: Linear coordinate transformation (adapted from Mazzoni et al. [2006]). 

 

 

3.4.3 Element ElastomericX 
 

The OpenSees element that will be used to interpret the elastomeric bearings 

in this thesis is the “ElastomericX” object, used for 3D problems. With it the 

bearing is modelled as a 2-node, 12 degree of freedom (DOF) discrete element. 

It is an extension of the Bouc-Wen OpenSees bearing element, only instead of 

requiring material models as input arguments, the ElastomericX only needs 

the geometric and material properties of the elastomeric bearing as arguments. 

 

 
 

Figure 3.7: Coordinate systems of a vertical element in OpenSees (adapted from Kumar 

et al. [2015]). 

 

The top and bottom nodes are connected by six springs that interpret the 

mechanical behavior of the bearing in the six basic directions (Figure 3.9).  
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Figure 3.8: Model of the 3D continuum geometry of an elastomeric bearing (adapted 

from Kumar [2016]). 

 

The general form of the element force vector is expressed as: 

 

𝑓𝑏 =

[
 
 
 
 
 

𝐴𝑥𝑖𝑎𝑙
𝑆ℎ𝑒𝑎𝑟 1
𝑆ℎ𝑒𝑎𝑟 2
𝑇𝑜𝑟𝑠𝑖𝑜𝑛

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 1
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 2]

 
 
 
 
 

                                                                    (3.19) 

 

All springs are uncoupled, apart for the two shear spings for which a 

bidirectional coupled model is used. The coupling between the vertical and 

horizontal directions is taken into account indirectly by expressing the 

mechanical properties in one direction in dependence of the response 

parameters in the other direction [Kumar, 2016]. As covered in Section 3.3, 

torsion and rotation do not significantly affect the response, so the torsional 

and two rotational springs are linear uncoupled. 

The stiffness matrix of the bearing is given as: 

 

𝐾𝑏 =

[
 
 
 
 
 
𝐴𝑥𝑖𝑎𝑙    0     0     0     0     0
0    𝑆ℎ𝑒𝑎𝑟1    0    0    0    0
0    0    𝑆ℎ𝑒𝑎𝑟2    0    0    0
0    0    0    𝑇𝑜𝑟𝑠𝑖𝑜𝑛   0    0
0   0   0   0   𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛1   0
0   0   0   0   0   𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛2]

 
 
 
 
 

                                                      (3.20) 

 

It should be noted that the two-spring model [Koh and Kelly, 1987] does not 

consider the off-diagonal terms regarding the coupling of axial behavior with 

shear and torsion, which would be non-zero in an exact model [Kumar, 2016]. 

The values of axial and shear stiffness as a function of the axial load and lateral 

displacement can be obtained through Equations (3.1) and (3.8).  
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Figure 3.9: Degrees of freedom and discrete spring representation of an elastomeric 

bearing (adapted from Kumar [2016]). 

 

During the analysis, the state of the model and all of its parameters is calculated 

at the end of each time step ∆𝑡. 

In the axial direction, the progression of the parameters begins with the 

variation of the lateral displacements, expressed as: 

 

𝑢ℎ = √𝑢𝑏,𝑦
2 + 𝑢𝑏,𝑧

2                                                         (3.21) 

 

where 𝑢𝑏,𝑦  and 𝑢𝑏,𝑧  are the displacements along the 𝑦 and 𝑧 axis of the basic 

coordinate system, respectively. Each new value for the lateral displacement 

leads to new values for the axial stiffness 𝐾𝑣 (Equation (3.1)) and the angle 𝛿 

(Equation (3.6)), which in turn leads to a new value for the overlapping area 

𝐴𝑟  (Equation (3.5)). This is followed by a change in the critical buckling load 

(Equation (3.4)), which governs the buckling problem. If in any time step the 

axial load becomes larger than the critical buckling load, i.e. if the bearing 

buckles it will lose the load carrying capacity, however for numerical reasons 

in the analysis a residual stiffness a thousand times smaller than 𝐾𝑣 will be 

assumed. 

In the horizontal direction, in accordance with the Bouc-Wen formulation the 

elastomeric bearing is observed as having two components to its response – 

one is viscoelastic with an elastic stiffness 𝑘𝑒 and the other is hysteretic with 

an initial elastic stiffness 𝑘0. The initial bearing stiffness is equal to the sum 

of the two components, whereas the post-yield stiffness is equal to the former 

component, expressed through the post-yield stiffness ratio 𝛼 as: 

 

𝛼 =
𝑘𝑒

𝑘𝑒 + 𝑘0
                                                                (3.22) 

 

The viscoelastic component’s stiffness is in fact what was previously defined 
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as 𝐾𝐻0 in Equation (3.8), the horizontal bearing stiffness for a zero axial load.  

 

 
 

Figure 3.10: Numerical model of the response in shear (adapted from Kumar et al.   

 

The post-yield stiffness ratio along with the characteristic strength of the 

bearing computed in Equation (3.17) give the yield strength as: 

 

𝑓𝑦 =
𝑄𝑑

1 − 𝛼
                                                                     (3.23) 

 

For a known constant value of the shear modulus, the viscoelastic stiffness is 

expressed as: 

 

𝑘𝑒 =
𝐺𝐴

𝑇𝑟
                                                                          (3.24) 

 

where the value for 𝐺 is experimentally obtained for a lateral displacement ∆=

𝑇𝑟  (100% shear strain).  

An additional parameter governing the behavior in the horizontal direction is 

the damping. Upon computing 𝑘𝑒 as in Equation (3.24) and the effective 

damping 𝛽𝑒𝑓𝑓 as in Equation (3.16), the damping 𝑐𝑑 can be obtained from the 

expression for the critical damping: 

 

𝛽𝑒𝑓𝑓 =
𝑐𝑑

𝑐𝑐𝑟

𝑐𝑐𝑟 = 2√𝑘𝑒𝑚

𝑐𝑑 = 2𝛽𝑒𝑓𝑓√𝑘𝑒𝑚

                                                              (3.25) 

 

The torsion and rotation remain represented with uncoupled linear elastic 

springs with the stiffness defined previously in Section 3.3. As mentioned 

before, their effect has a lesser influence on the model response. 

 

Finally, the format of the command to create an elastomeric bearing object in 

OpenSees with the aforementioned parameters is the following: 

 

element ElastomericX $eleTag $Nd1 $Nd2 $Fy $alpha $Gr $Kbulk $D1 $D2 

$ts $tr $n <<$x1 $x2 $x3> $y1 $y2 $y3> <$kc> <$PhiM> <$ac> <$sDratio> 
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<$m> <$cd> <$tc> <$tag1> <$tag2> <$tag3> <$tag4> 

 

where “$” symbolizes that what follows is the value of the parameter and “< 

>” implies that the parameter within is optional and may be given a default 

value if not otherwise specified. 

 
 

Input Deftnition 

$eleTag tag associated to the bearing (unique) 

$Nd1 bottom end node 

$Nd2 top end node 

$Fy yield strength 

$alpha post-yield stiffness ratio 

$Gr shear modulus 

$Kbulk bulk modulus 

$D1 internal diameter 

$D2 external diameter 

$ts thickness of a single steel shim 

$tr thickness of a single layer of rubber 

$n number of rubber layers 

$x1 $x2 $x3 
vector components in global coordinates defin- 

ing local x-axis 

$y1 $y2 $y3 
vector components in global coordinates defin- 

ing local y-axis 

$kc cavitation parameter (default=10.0) 

$PhiM damage parameter (default=0.5) 

$ac strength reduction parameter (default=1.0) 

 
$sDratio 

distance of the shear centre from the bottom 

node, as a fraction of the element length (de- 

fault=0.5) 

$m mass of the isolator (default=0.0) 

$cd viscous damping parameter (default=0.0) 

$tc thickness of the rubber cover (default=0.0); 

$tag1 
tag to include the cavitation and post-cavitation 

behaviour in tension 

$tag2 
tag to include the variation in the buckling load 

capacity due to lateral displacement 

$tag3 
tag to include the variation in horizontal shear 

stiffness with axial load 
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$tag4 
tag to include the variation in vertical stiffness 

with lateral displacement 

Table 3.1: Input arguments of ElastomericX. 

 

 

The last four tags require an input of either “1” or “0” to define if those factors 

will be included in the analysis or neglected, respectively.  
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Chapter 4 

 
Design of a 3D Elastomeric 

Bearing-based Isolation 

System 
 

 

This chapter covers the design procedure of a 3D base isolation system with 

elastomeric bearings in accordance with the European Standards. In addition 

to this, an alternative approach is introduced, whose concept is based on a 

hypothesis that should benefit an analysis of this scope by relieving certain 

strict requirements, without taking a hazardous toll on safety. 

The introduction of a three-dimensional isolation system to a structure 

primarily represents a division of the structure, both physically and in terms of 

stiffness. The isolation devices form a gap and divide the structure into a 

substructure (the foundations) and a superstructure (the rest of the structure 

above the isolation gap). This design has a tremendous effect on the overall 

stiffness, causing a reduction and increasing the flexibility of the structure. In 

the vertical direction, this causes a relief in the damage otherwise taken by 

vibrations, whereas in the horizontal direction a shift in the natural period of 

the structure occurs, moving it into the long range and reducing the negative 

effect of certain modes. 

The high deformation capacity of the elastomeric bearings allows a much more 

stable and uniform behavior of the superstructure, further ensured by the 

reduction of the top accelerations, which in turn reduce the maximum drifts. 

However, to exploit the bearing’s deformation capacity and to guarantee 

safety, sufficient space must be secured between the bearings themselves and 

also any other objects in the isolation gap. 

A useful note is that as much as they contribute to the flexibility in case of 

severe earthquakes, they also provide a certain degree of rigidity to aid the 

behavior under wind and service loads. 

For the purpose of achieving these benefits from a seismic isolation system in 

this thesis, a solution using high damping rubber bearings will be utilized.  
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4.1 Design Procedure according to European 

Standards 

 

The following design procedure draws from the Eurocode for the design of 

structures for earthquake resistance EN1998-1:2004 (EC8 for short), the 

European standards for anti-seismic devices EN15129:2017 (EN15129 for 

short) and the European standards for elastomeric bearings EN1337-3:2005 

(EN1337 for short).  

 

The beginning of the procedure is marked by the assumption of the structure’s 

period 𝑇0, which should belong to the long period range of 2-4 seconds. The 

higher end of this interval is associated with a low stiffness that would lead to 

larger displacements, due to which the aim will be toward the interval between 

2-3 seconds.  

Once the assumption on the period has been made, the natural frequency of the 

system can be expressed as: 

 

𝜔 =
2𝜋

𝑇0
                                                                   (4.1) 

 

Assuming that the mass is known, the effective stiffness can be obtained 

through the definition of the natural circular frequency, which is: 

 

𝜔 = √
𝐾𝑒𝑓𝑓

𝑚𝑡
                                                          (4.2)  

 

𝐾𝑒𝑓𝑓 = 𝜔2𝑚𝑡                                                              (4.3) 

 

For an isolation system where all the bearings have the same material and 

geometrical properites, the horizontal stiffness of a single bearing is computed 

by simply dividing the effective stiffness by the total number of bearings in 

the system 𝑛𝑖 : 

 

𝐾𝐻 =
𝐾𝑒𝑓𝑓

𝑛𝑖
                                                              (4.4) 

 

The horizontal stiffness is a function of the surface area 𝐴, the height of the 

elastomer 𝑇𝑟  and the shear modulus 𝐺. Since an assumption on the material 

properties is needed, EN15129 §8.2.2.1 offers a range for the value of the shear 

modulus between 0.3𝑀𝑃𝑎 and 1.5𝑀𝑃𝑎. Kelly [2001] suggests a slightly 

narrower range based on the hardness of the rubber compound. 
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Hardness IRHD± 2 Shear Modulus G 

37 0.40 MPa 

40 0.45 MPa 

45 0.54 MPa 

50 0.64 MPa 

55 0.81 MPa 

60 1.06 MPa 

                  Table 4.1: Values of the shear modulus suggested by Kelly  

 

Another assumption should be made on the bearing’s geometry, i.e. the 

diameter and the rubber height. These parameters define the shape factor, 

whose value can be an indicator of the bearings capacity to provide sufficient 

isolation in both the vertical and horizontal direction. A shape factor with a 

lower value (smaller difference in the values of the diameter and the rubber 

height) is more appropriate for isolation in the vertical in addition to the 

horizontal direction. To this aim, the threshold for the shape factor value below 

which the bearing is considered to provide vertical isolation is set at 𝑆 = 5. 

After a value for the shear modulus has been chosen and the shape factor is 

known, the elastic compression modulus can be computed according to 

EN15129 §8.2.3.3.2  as: 

 

𝐸𝑐 = 3𝐺(1 + 2𝑆2)                                                          (4.5) 

 

For all purposes this value can be considered equal to that computed in 

Equation (3.2), as the difference is negligible, if any.  

In terms of the height of the rubber, apart from the total height, additional 

notable parameters are the height of a single rubber layer and the number of 

rubber layers in a bearing. The latter can be easily expressed once the former 

is approximately assumed, as: 

 

𝑛 =
𝑇𝑟

𝑡𝑟
                                                                       (4.6) 

 

where it is important to note that the value computed in this manner might be 

a decimal number, which is physically impossible for a uniform thickness of 

all rubber layers. Due to this, the closest integer value for 𝑛 is approximated 

and subsequently a new, exact value for 𝑇𝑟  is obtained. Using the new 𝑇𝑟 , a 

new horizontal stiffness is computed with Equation (4.4) and then by running 

Equations (4.3), (4.2) and (4.1) backward a new value for the period is reached, 

which is no longer an assumption but the actual effective period 𝑇𝑒𝑓𝑓 . 

The same path of reasoning is applied to the computation of the vertical period 

of the structure, aiming also to acquire a value in the long range which would 

otherwise not be the case for a non-isolated structure. The ideal interval for the 

vertical period however, is notably smaller than the one for the horizontal 
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period, about 0.3-0.5 seconds, since larger values are correlated with the 

rocking phenomena. 

After the aforementioned parameters have been defined, it is necessary to 

perform an evaluation of the stability of the bearing in accordance with 

EN15129. 

The design shear strain caused by vertical loads is given in EN 15129 §8.2.3.3 

as: 

 

휀𝑐.𝐸 =
6𝑆𝑁𝐸𝑑,𝑀𝑎𝑥

𝐴𝑟𝐸𝑐
                                                        (4.7) 

 

where: 

– 𝑆 is the shape factor; 

– 𝑁𝐸𝑑,𝑀𝑎𝑥  is the maximum vertical load; 

– 𝐴𝑟  is the reduced surface area caused by non-seismic loads; 

– 𝐸𝑐 is the compression modulus. 

 

Following is the design strain due to angular rotation, which is covered by 

EN1337 §5.3.3.4. For the case of a circular bearing where a minimum 

rotational angle of 𝛼𝑑 = 0.003 𝑟𝑎𝑑 has been assumed for each orthogonal 

direction, the strain 휀𝛼,𝑑  is computed as: 

 

휀𝛼,𝑑 =
𝐷2𝛼𝑑

𝑛𝑡𝑟
2                                                                 (4.8) 

 

where: 

– 𝛼𝑑  is the rotation angle; 

– 𝐷 is the bearing outer diameter; 

– 𝑛 is the number of rubber layers; 

– 𝑡 is the thickness of each rubber layer. 

 

The design shear strain due to earthquake-imposed horizontal displacement 

𝑑𝑏𝑑  is computed as: 

 

휀𝑞,𝐸 =
𝑑𝑏𝑑

𝑇𝑞
                                                                  (4.9) 

 

where 𝑇𝑞 is the thickness of the elastomer active during shear. The shear strain 

due to maximum horizontal displacement is set to be: 

 

휀𝑞,𝑚𝑎𝑥 =
𝑑𝐸𝑑

𝑇𝑞
                                                               (4.10) 

 

where: 
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𝑑𝐸𝑑 = 𝛾𝑥𝑑𝑏𝑑                                                            (4.11) 

 

The horizontal displacement 𝑑𝑏𝑑  can be obtained from the horizontal elastic 

response spectrum and 𝛾𝑥 represents a magnification factor and is equal to 1.2.  

The maximum total design shear strain, comprised of all the aforementioned 

parameters, is expressed as: 

 

휀𝑡,𝑑 = 𝐾𝐿(휀𝑐.𝐸 + 휀𝑞,𝑚𝑎𝑥 + 휀𝛼,𝑑) ≤
7.0

𝛾𝑚
                                 (4.12) 

 

where 𝐾𝐿  is a loading factor which is equal to unity for all cases except 

designing bridges, and 𝛾𝑚 is a partial factor for elastomers. It is a 

recommendation that its values is taken as 1. 

The horizontal elastic response spectrum is a function of the damping 

correction factor 𝜂, which is governed by the damping ratio ξ (previously 

discussed as 𝛽𝑒𝑓𝑓  in Equation (3.16)). In accordance with EC8 §3.2.2, the 

damping correction factor is expressed as: 

 

𝜂 = √
10

(5 + ξ)
                                                              (4.13) 

 

where ξ is considered as a percentage, so 𝜂 = 1 for a damping ratio of 5%.  

After obtaining the correction factor and finding the elastic response spectrum 

the coincides with 𝑇𝑒𝑓𝑓 , it holds that: 

 

𝑆𝑒,ξ = 𝜂𝑆𝑒(𝑇𝑒𝑓𝑓)                                                            (4.14) 

 

Which is sufficient to compute the earthquake-imposed displacement as: 

 

𝑑𝑏𝑑 =
𝑆𝑒,ξ(𝑇𝑒𝑓𝑓)

𝜔2
                                                           (4.15) 

 

Following is the stability verification, governed by the critical buckling load 

which is expressed as: 

 

𝑃𝑐𝑟 =
𝜆𝐺𝐴𝑟𝐷𝑆

𝑇𝑟
                                                           (4.16) 

 

where the coefficient 𝜆 equals 1.3 for rectangular bearings, or as 1.1 for 

circular bearings. The main condition of the stability verification is the 

following: 

 

𝑁𝐸𝑑,𝑀𝑎𝑥 ≤
𝑃𝑐𝑟

2
                                                             (4.17) 
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The verification proceeds in two possible cases, depending on the difference 

in the values of 𝑁𝐸𝑑,𝑀𝑎𝑥  and 𝑃𝑐𝑟: 

 

𝑓𝑜𝑟        
𝑃𝑐𝑟
2

> 𝑁𝐸𝑑,𝑀𝑎𝑥 ≥
𝑃𝑐𝑟
4

        →         1 −
2𝑁𝐸𝑑,𝑀𝑎𝑥

𝑃𝑐𝑟
≥ 0.7𝛿

𝑓𝑜𝑟        𝑁𝐸𝑑,𝑀𝑎𝑥 <
𝑃𝑐𝑟

4
        →         𝛿 ≤ 0.7                                     

                 (4.18) 

 

where: 

 

𝛿 =
𝑑𝐸𝑑

𝐷
                                                                (4.19) 

 

It should be noted that these criteria ensure fail-safe service conditions of a 

bearing and include an ample level of safety, which is to state that the limit 

conditions demanded here are not placed at the limit capacity of the node. 

Furthermore, should the case be that the lateral displacements are equal to the 

diameter (for circular bearings), the bearing still exhibits some residual 

carrying capacity. 

 

 

 

 

              Figure 4.1:  Design and Verification Process. 

 

4.2 Alternative Design Approach 
 

The design procedure offered by the European Standards described above 

offers a safe and well established approach to the seismic isolation of 

structures, although it is obviously complicated, with several dependencies 

which require almost certain repeating of the steps included. The goal of 

providing isolation in the vertical direction in addition to the horizontal 

requires a low value of the shape factor, which comes at the cost of lowered 

stiffness of system in both directions. This is coupled with the obvious need 

for a high critical buckling load which can be accomplished by selecting a 

large value for the shear modulus, which in turn would increase the stiffness 

and omit the effect of a low shae factor. These connections between the 
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numerous parameters involved makes the process of calibrating the ideal 

values quite cumbersome. Due to this, an alternative approach is introduced 

which focuses on the high probability that the precautions taken with the 

European Standards take an unnecessary toll on the practicality of designing.  

 

The procedure described in EN15129 considers the maximum design axial 

force NEd,Max as the sum of the structure’s self-weight, the axial force caused 

by the vertical component of the earthquake as well as the rocking effect 

caused by the horizontal motion. However, as previously mentioned, there is 

an undeniable difference in the long ranges belonging to the horizontal and the 

vertical periods. The former should be between 2 and 3 seconds, whereas the 

latter in the interval between 0.3 and 0.5 seconds. This large difference points 

out that the probability of the maximum effects from the horizontal and the 

vertical earthquake components acting in the same instance is considerably 

low. In light of this fact, the alternative approach proposes considering two 

separate conditions: 

 

1. Static load combined with horizontal seismic action – assuming that the 

horizontal earthquake component is at its peak and the lateral 

displacement has reached the highest value, the maximum axial load 

is computed as the sum of the structure’s self weight and the 

overturning moment caused by the horizontal ground motion 

(rocking). The effect of the earthquake’s vertical component is 

neglected. 

 

2. Static load combined with vertical seismic motion – the largest 

earthquake-imposed load in the vertical direction is considered and the 

rocking effect from the horizontal earthquake component is neglected. 

The maximum axial load is computed as the sum of the self-weight 

and the vertical earthquake component. For this case a notably smaller 

lateral displacement should be assumed.  

 

Once both values for the vertical load are obtained, one value is used to 

perform the design procedure discussed in the previous Section, while the 

verification is performed using the other value. To “safeproof” this approach, 

a check should be performed to ensure that when the lateral displacement 

reaches its peak the axial load will not be at the maximum value and vice versa.  

It is worth noting that the stability requirement reported in Equation (4.17) is 

defined to guarantee a safety factor equal to 2. This condition  is strongly 

conservative and can be slightly relaxed, maintaining a great level of safety 

[Pecchillo, 2019]. 

 

 

 

 

 



42 
 

 

 

 
  

 

 

 

 

 

 

 

 

Chapter 5 

 
Design of a 3D Seismic Base 

Isolation System for a Case 

Study 

 
This chapter utilizes the design procedure described in Chapter 4 in order to 

define a 3D base isolation system for a structure with large sensitivity to high 

frequency vibrations in the horizontal and vertical directions. The system is 

composed of high damping rubber bearings with a low value for the shape 

factor, in hopes to shift both the horizontal and vertical periods  in the long 

range. Predicting the behavior of such a system is quite a difficult task and 

implementing it is very expensive, so it is done only in cases where the vertical 

vibrations are of extreme importance for the structure. In this particular case, 

the structure is the E-ELT and it is considered that the proposed solution is 

suitable for the problem at hand. The first section of this chapter introduces the 

purpose and importance of the E-ELT, with a scheme of the structure 

following in the second section. Section 5.3 describes the acting loads, and 

finally Section 5.4 reports the design procedure and the obtained properties for 

the elastomeric bearings. 

 

5.1 E-ELT Structure 
 

The European Extremely Large Telescope (E-ELT for short) or “the world’s 

biggest eye on the sky” as some have called it, is a 1083 million euro, 11-year 

programme funded by the European Southern Observatory (ESO) and is meant 

to provide research capabilities to the European astronomical community in 

the following decades. It is located on Cerro Armazones as part of the La Silla 

Paranal Observatory, which has been proven to be one of the best astronomical 

sites on the planet. The main jewel of the structure will be a state-of-the-art 

mirror with a record size of 39.3 meters in diameter and will view an area of 

the sky close to one ninth the size of the full Moon. In addition to this, a large 
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quantity of other expensive and highly sensitive instruments will inhibit the 

ELT’s structure, which will be positioned at an altitude of 3064 meters above 

the sea level. The proportions of this project in combination with the chosen 

location make a seismic isolation protective system the perfect option for the 

ELT. The sensitivity of the equipment in the structure will require considerable 

reduction of the effects of an earthquake that is unfortunately not an 

uncommon occurrence for this part of the continent. Moreover, the high 

altitude leads to local temperatures that agree with the thermal requirements of 

elastomeric bearings.  

 
 

 

Figure 5.1: Rendering of the E-ELT (adapted from ESO [2019]). 

 

As seen in Figure 5.1, the telescope is covered and protected by a dome with 

the ability to open from the middle, uncovering an enormous surface for the 

mirror. The opening doors of the dome move along tracks, supported by four 

girders. The dome is supported by its own foundation, a reinforced concrete 

annulus with an 11.8 meter height and a thickness of 1 meter. A windscreen is 

also added in order to provide protection from high-speed winds.   
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Figure 5.2: Rendering of the telescope (adapted from ESO [2019]).  

 
The entirety of the structure inside the dome constitutes the main structure, 

which stands on a concrete pier of considerable proportions, approximately 

86.4 meters in diameter with a height of 9.3 meters. The piers lifts the azimuth 

the ground level and ensures a that the primary mirror is 10 meters above the 

ground at all times. The top of the pier holds a crown structures that supports 

upward facing bogies for the dome rotation. The dome foundatons have a 

spacious opening that is 8 meter wide and 7 meters high made for the moving 

of large objects during construction and operation.  

 

 

 

Figure 5.3: Telescope concrete pier (adapted from ESO [2011]). 
 
 
 

 
The telescope pier has two annular rings that support the azimuth tracks of the 

telescope, one of which has a diameter of 51.5 meters and the other 34 meters. 

The other components of the pier are the 40cm-thick slabs at the top and 

bottom, as well as radial walls on every 15 degrees to increase the stiffness. 

The floor is located at the 8.125-metre level and extends outside the pier outer 

diameter to allow access to the lower part of the outer track for maintenance. 

The inner floor is similar to the dome floor with the same load-carrying 
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capacity (20 
𝑘𝑁

𝑚2) [ESO, 2011].  

According to the construction proposal for the ELT, the design includes an 

isolation system within the telescope pier underneath the main structure’s 

foundation, with the isolation plane being above the bottom concrete slab of 

the pier. The same is comprised of springs, viscous damping devices and pre-

loaded units working in unison and providing an equivalent damping of 27%. 

This shifts the period in the long range with a fundamental frequency of 

0.51𝐻𝑧.  

 
 

Figure 5.4: Horizontal elastic response spectrum (adapted from ESO [2011]). 
 
 

The damping greatly reduces the earthquake’s effect on the superstructure, 

lowering the horizontal accelerations above the isolation plane to 0.14𝑔, in 

correspondence with the No Collapse Requirement (NCR). 

 

 

 
Figure 5.5: Horizontal response spectrum due to equivalent damping of 27% (adapted 

from ESO [2011]).  

 

5.2 Scheme of the Structure 
 

The earthquake protective system of the ELT is designed for thorough seismic 
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isolation of the structure as a whole, including devices underneath the tracks 

of the dome. This thesis is focused on the isolation of the main structure, hence 

the topic of the discussion will be the elastomeric bearings installed in the two 

annular rings of the telescope pier described above. The behavior of the pier is 

assumed to be perfectly rigid and its total mass will be expressed as a point 

mass located at the center of the annular rings, at a height equal to half of the 

pier height. To simplify, the main structure will be considered as an elastic 

beam with a height of 18.84 meters, equal to the estimated height of the 

rotation point which coincides with the height of the Nasmyth platforms. The 

mass of the main structure will be expressed as a lumped mass, placed at the 

top of the elastic beam.  

 

     

 

Figure 5.6: Dimensions of the main structure (adapted from ESO [2011]). 

 

 

 
 

 

 
 

 

 
  

Table 5.1: Eigenfrequencies of the main structure (adapted from ESO [2011]). 
 

 

Table 5.1 shows the modes that represent the overall behavior of the main 

structure in two orthogonal horizontal directions and the vertical direction. 

  

 Figure 5.7: Deformed shape of the mode 1, mode 2 and mode 8 of the main 

structure (adapted from ESO [2011]). 

 

Mode Frequency Mode shape 

1 2.91 Hz Horizontal in Y 

2 3.19 Hz Horizontal in X 

8 5.17 Hz Vertical 
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The eigenfrequency values from Table 5.1 can be used to obtain the natural 

frequencies of the system, from which the stiffness in the vertical and 

horizontal direction can be derived. The absence of torsional modes, at least in 

the first ten modes of vibration of the main structure, allows to consider as zero 

the torsional mass and the torsional moment of inertia. Assuming that the main 

structure has an average Young’s  modulus  of EYoung = 200 GPa, close to 

the modulus of elasticity of the steel, the geometrical properties of the 

equivalent elastic beam result [Pecchillo, 2019]: 

 

𝐴 = 0.338𝑚2

𝐼𝑥 = 12.299𝑚4

𝐼𝑦 = 14.78𝑚4
                                                           (5.1) 

 

The beam representing the main structure is modelled in OpenSees using an 

“elasticBeamColumn” element. 

 

5.3 Acting Loads 
 

Considering the size of the ELT, it should be no surprise that its mass is of 

serious proportions, which further explains the need for implementation of an 

isolation system. Table 5.2 shows the mass contribution of the components 

supported by the bearings: 

           

Component Description Mass 

Telescope 

Pier 

Concrete walls and slabs 

Concrete floors 

17815 ton 

794 ton 

Main Structure Telescope and sub-units 3400 ton 

Table 5.2: Mass budget (adapted from ESO [2011]). 

 

For the purpose of analyzing an individual elastomeric bearing, the sum of 

these mass contributions will be divided by the total number of bearings, since 

the geometry of the problem and the disposition of the bearings allow the 

consideration that each bearing carries an equal part of the total load.  

The design of the isolation system is performed considering the seismic event 

as the predominant variable action on the structure. The actual values of the 

seismic actions in horizontal and vertical directions should be obtained through 

a numerical dynamic analysis. However, to apply the design pro- cedure, it is 

possible to initially consider the seismic actions as equivalent static loads and, 

successively, perform the numerical dynamic analysis. 

The initial assumptions of the design procedure are based on the required 

horizontal response of the bearing, i.e. the dimensioning of the bearing isthat 

the 3D isolation system is made of high damping rubber bearing characterized 

by low shape factor, an effective damping ξ equal to 10% is selected 
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[Pecchillo, 2019]. 

Recalling that the desired effect of the isolation system is to shift the isolation 

period in the long range which is between 2 and 3 seconds, the assumption 

made at the beginning on the value of the period is 𝑇 = 2.5𝑠. 

In accordance with the horizontal elastic response spectrum provided by the 

European Southern Observatory (Figure 5.2), an isolation period of 2.5s 

corresponds to 𝑆𝑒(𝑇𝐻) = 0.18𝑔. Using Equation (4.13) the correction factor 

is computed to be 𝜂 = 0.816, which is applied to the obtained acceleration 

value of 𝑆𝑒(𝑇𝐻) to arrive at the actual value: 

 

𝑆𝑒,𝜉(𝑇𝑒𝑓𝑓) = 𝑆𝑒(𝑇𝑒𝑓𝑓)𝜂 = 0.147𝑔                                     (5.2) 

 

The largest recorded horizontal displacement computed through Equation 

(4.15) is 𝑑𝑏𝑑 = 0.231𝑚 and this is then multiplied with the coefficient 𝛾𝑥 =

1.2 to arrive at: 

 

𝑑𝐸𝑑 = 𝛾𝑥𝑑𝑏𝑑 = 0.277𝑚                                                  (5.3) 

 

Which is the maximum horizontal displacement induced by the seismic 

motion. 

An assessment on the shear on the basis of the elastic response spectrum 

(Figure 5.4) is performed as: 

 

𝑉𝑏 = 𝑚𝑡𝑆𝑒,ξ(𝑇𝑒𝑓𝑓)                                                      (5.4) 

 

The base shear is proportionally distributed between the masses of the 

structure. For the specific model of the ELT, this is the point mass representing 

the mass of the telescope pier and the one representing the mass of the main 

structure atop the elastic beam. The two shear components are computed as: 

 

𝑉𝑡𝑝 =
𝑚𝑡𝑝

𝑚𝑡𝑝 + 𝑚𝑚𝑠
𝑉𝑏                                                    (5.5) 

 

𝑉𝑚𝑠 =
𝑚𝑚𝑠

𝑚𝑡𝑝 + 𝑚𝑚𝑠
𝑉𝑏                                                  (5.6)  

 

where 𝑉𝑡𝑝 , 𝑉𝑚𝑠 , 𝑚𝑡𝑝 and 𝑚𝑚𝑠  are the shear and mass components of the 

telescope pier and the main structure, respectively. These shear components 

multiplied by their distance from the base give the overturning moment caused 

by the horizontal seismic motion: 

 

𝑀𝑟𝑜𝑐𝑘 = 𝑉𝑡𝑝ℎ𝑡𝑝 + 𝑉𝑚𝑠ℎ𝑚𝑠                                              (5.7) 
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The values  required to compute the shear components and the overturning 

moment are as follows: 

 

𝑚𝑡𝑝 = 18609𝑡                                                                 

𝑚𝑚𝑠 = 3400𝑡
ℎ𝑡𝑝 = 4.65𝑚

ℎ𝑚𝑠 = 28.14𝑚
                                                                   

 

 

Making reference to Equation (5.4), the base shear is 𝑉𝑏 = 31739𝑘𝑁, leading 

to an overturning moment of 𝑀𝑟𝑜𝑐𝑘 = 262560𝑘𝑁𝑚. 

To compute the rocking effect using the overturning moment, the structure will 

be observed as a beam supported by elastic springs, represented by the 

elastomeric bearings. The moment is causing a rotation around the center and 

the axial force acting on a single spring will depend on the distance between 

that spring and the center of rotation. Once the overturning moment is 

obtained, the axial force 𝑁𝑟𝑜𝑐𝑘  is computed as: 

 

𝑁𝑟𝑜𝑐𝑘 =
𝑥𝑖 − 𝑥𝑔

∑ (𝑥𝑖 − 𝑥𝑔)2
𝑖

𝑀𝑟𝑜𝑐𝑘                                          (5.7) 

 

where 𝑥𝑖 is the coordinate of the 𝑖-th bearing and 𝑥𝑔 the coordinate of the 

center of rotation which is located in the center of the azimuth rings. The most 

affected bearings are the ones that are the furthest of the center. For this 

configuration, half of the bearings will experience a compressive loading, 

whereas the ones opposite of them will experience a tensile loading. The total 

number of bearings supporting the structure is 144, with half of this number 

under each of the azimuth rings. The bearings are placed symmetrically, with 

one for each 5 degrees of the rings, also making sure that every third bearing 

along the arc is supporting a radial wall, since the radial walls in the telescope 

pier are placed at a distance of 15 degrees each. 

The value for the axial force is 𝑁𝑟𝑜𝑐𝑘 = 197𝑘𝑁 

The other component of the axial force is caused by the vertical earthquake-

induced motion. The one provided response spectrum of the ELT coincides 

with the one defined by Eurocode 8 referring to the case for soil type A, so this 

is the scenario that will be discussed.  

The beginning and the end of the stationary segment occur at frequencies of 

2.5𝐻𝑧 and 7𝐻𝑧, corresponding to a period of 0.4𝑠 and about 0.15𝑠, 

respectively. The same values define parameters 𝑇𝐵  and 𝑇𝐶  in EC8 §3.2.2, so 

in accordance with Table 3.4 in EC8 §3.2.2.3, the vertical response spectrum 

will be defined by: 

 

𝑇𝐵 = 0.05𝑠
𝑇𝑐 = 0.15𝑠
𝑇𝐷 = 1𝑠

𝑎𝑣𝑔 = 0.9𝑎𝑔 = 0.36𝑔
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where 𝑎𝑔 is the peak ground acceleration in horizontal direction and 𝑎𝑣𝑔  is the 

peak ground acceleration in vertical direction, and is 90% of the former.  

 

 
 

 

 

Figure 5.8: Vertical elastic response spectrum (adapted from EC8). 
 
 

Assuming a response in the long range with a period of 0.3𝑠 and following the 

vertical response spectrum properties given in EC8 §3.2.2.3, the acceleration 

of the damped system is computed as: 

 

𝑆𝑣𝑒,𝜉(𝑇𝑣) = 3.0𝑎𝑣𝑔𝜂𝑣

𝑇𝐶

𝑇
= 0.39𝑔 = 3.9

𝑚

𝑠2
                              (5.8) 

 

Hence, the axial force contribution due to vertical earthquake-induced motion 

is: 

 

𝑁𝑣𝑒 =
𝑚𝑡𝑜𝑡𝑆𝑣𝑒,𝜉(𝑇𝑣)

𝑛
= 596𝑘𝑁                                          (5.9) 

 

Finally, the total axial design force 𝑁𝐸𝑑,𝑀𝑎𝑥  which is used for the verification 

procedure given by EN15129 is computed as the sum of the self-weight, the 

rocking effect and the contribution from the vertical earthquake component: 

 

𝑁𝐸𝑑,𝑀𝑎𝑥 = 𝑁𝑣𝑒 + 𝑁𝑟𝑜𝑐𝑘 +
𝑚𝑡𝑜𝑡𝑔

𝑛
= 2292𝑘𝑁                             (5.10) 

 

Given that the absolute value of 𝑁𝑣𝑒 alone is smaller the sum of the other two 

contributions to 𝑁𝐸𝑑,𝑀𝑎𝑥 , it can be concluded that even in the case of an 

upward vertical ground motion, the elastomeric bearings will not experience 
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tensile loading.  

 

5.4 Design of the 3D Isolation System 
 

The isolation design proposal of this thesis aims to achieve sufficient isolation 

in both horizontal and vertical direction, provided by 144 high damping rubber 

bearings, each with an effective damping of 18%. An equal number of bearings 

is installed under both azimuth rings and their layout ensures a symmetry in 

the system. The centers of damping and stiffness are located at the center of 

the two azimuth rings and have zero coordinates along the global 𝑥 and 𝑧 axis. 

The same is true for the center of the mass, hence the torsion effects will not 

impose an issue for the structure.  

The design of the bearings will be performed following the alternative 

approach described in Section 4.2 which allows uncoupling of the maximum 

axial forces induced by the vertical and the horizontal components of the 

earthquake. This approach is based on the idea that the vertical and horizontal 

isolation periods will not coincide, which must be verified through a dynamic 

analysis in OpenSees.  

As mentioned before, the approach examines two possible cases for a 

maximum axial force: 

 

 Coupling of the static load and the horizontal earthquake component: 

 

𝑁1 =
𝑚𝑡𝑜𝑡𝑔

𝑛
+ 𝑁𝑟𝑜𝑐𝑘 = 1696𝑘𝑁                                        (5.11) 

 

 Coupling of the static load and the vertical earthquake component: 

 

𝑁2 =
𝑚𝑡𝑜𝑡𝑔

𝑛
+ 𝑁𝑣𝑒 = 2095𝑘𝑁                                            (5.12) 

 

To proceed with the design, an isolation period in the horizontal direction is 

assumed with a value of 2.5𝑠. The natural frequency is then: 

 

𝜔0 =
2𝜋

𝑇𝑒𝑓𝑓,0
= 2.51

𝑟𝑎𝑑

𝑠
                                          (5.13) 

 

The assumed value of the shear modulus should provide sufficient stiffness, as 

well as buckling capacity. However, sacrificing a portion of the stiffness would 

lead to increased displacements, which would imply improved flexibility as 

well. For this particular case the shear modulus is assumed to be 𝐺 =

0.64𝑀𝑃𝑎. 

The rubber in the bearings is composed of layers with a uniform thickness that 

is now assumed to be 0.09𝑚. The diameter of the bearings is 1.2𝑚, which 

leads to a shape factor of 𝑆 = 3.33. Since this value is lower than 5, it can be 

expected that the bearings will be able to isolate the structure in the vertical 
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direction. 

 

The effective stiffness of the structure is computed as: 

 

𝐾𝑒𝑓𝑓,0,𝑡𝑜𝑡 = 𝜔0
2𝑚𝑡𝑜𝑡 = 138659

𝑘𝑁

𝑚2
                                   (5.14) 

 

The effective stiffness of a single bearing is obtained by simply dividing the 

total stiffness by the number of bearings in the system, and is equal to: 

 

𝐾𝑒𝑓𝑓,0 =
𝐾𝑒𝑓𝑓,0,𝑡𝑜𝑡

𝑛
= 962.9

𝑘𝑁

𝑚2
                                         (5.15) 

 

The compression modulus depends on the shape factor and the shear modulus 

and it results: 

 

𝐸𝑐 = 3𝐺(1 + 2𝑆2) = 44.5𝑀𝑃𝑎                                      (5.16) 

 

The surface area of the bearing is 𝐴 = 1.13𝑚2, so the total height of the 

bearing can be computed as: 

 

𝑇𝑟.0 =
𝐺𝐴

𝐾𝑒𝑓𝑓
= 0.626𝑚                                               (5.17) 

 

The number of required layers of rubber with the assumed thickness is: 

 

𝑛 =
𝑇𝑟.0

𝑡𝑟
= 6.95                                                      (5.18) 

 

As mentioned before, the number of rubber layers has to be an integer, so the 

closest value that is also higher than the required one is 𝑛 = 7. After making 

the necessary adjustment to the number of layers, the parameters calculated 

thus far on the basis of assumptions are now computed again, this time as final 

and effective values: 

 

𝑇𝑟 = 0.63𝑚

𝐾𝑒𝑓𝑓 = 1148
𝑘𝑁
𝑚2

𝜔 = 2.5
𝑟𝑎𝑑
𝑠

𝑇𝑒𝑓𝑓 = 2.51𝑠

                                                    (5.19) 

 

Following is the computation of the vertical isolation period, which depends 

on the vertical stiffness of the elastomeric bearings. The stiffness for a single 

bearing is computed as follows: 
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𝐾𝑣 =
𝐸𝑐𝐴

𝑇𝑟
= 79820

𝑘𝑁

𝑚
                                              (5.20) 

 

The total vertical stiffness is obtained by multiplying the stiffness of a single 

bearing with the total number of bearings in the system, which is used to 

compute the vertical period as: 

 

𝑇𝑣 = 2𝜋√
𝑚𝑡𝑜𝑡

𝑛𝐾𝑣
= 0.27𝑠                                             (5.21) 

 

After having obtained such values for the horizontal and vertical period, it can 

be stated that both belong in their respective long range, which correlates to a 

design solution with an implemented seismic isolation system. 

A verification of the bearing’s state is necessary for both of the loading 

conditions proposed by the approach. 

For the case of the self-weight combined with the horizontal earthquake 

component, the deformations computed using the equations discussed in 

Chapter 4 are as follows: 

 

휀𝑐,𝐸 = 0.673

휀𝛼,𝑑 = 0.038

휀𝑎,𝑚𝑎𝑥 = 0.361 ≤ 2.5

휀𝑡.𝑑 = 1.072 ≤
7.0
1

                                            (5.22) 

 

The values are within the permitted limits and satisfy the requirements.  

As for the stability criteria, the verification is performed as in Equation (4.18) 

with respect to the ratio of the critical buckling load and the design axial force: 

 

𝑃𝑐𝑟 = 5047𝑘𝑁
𝑃𝑐𝑟

2 > 𝑁𝐸𝑑,𝑀𝑎𝑥 ≥
𝑃𝑐𝑟

4

1 −
2𝑁𝐸𝑑,𝑀𝑎𝑥

𝑃𝑐𝑟
= 1 − 0.672 = 0.328 > 0.212

                       (5.23) 

 

For the case of self-weight combined with the vertical earthquake component, 

the deformation values are the following: 

 

휀𝑐,𝐸 = 0.832

휀𝛼,𝑑 = 0.038

휀𝑎,𝑚𝑎𝑥 = 0.361 ≤ 2.5

휀𝑡.𝑑 = 1.231 ≤
7.0
1

                                             (5.24) 

 

The stability verification shows: 
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𝑃𝑐𝑟 = 5047𝑘𝑁
𝑃𝑐𝑟

2
> 𝑁𝐸𝑑,𝑀𝑎𝑥 ≥

𝑃𝑐𝑟

4

1 −
2𝑁𝐸𝑑,𝑀𝑎𝑥

𝑃𝑐𝑟
= 0.169 < 0.212

                                (5.25) 

 

 

Upon completing the verifications for both cases of maximum axial load, it is 

shown that for the case of self-weight combined with the horizontal earthquake 

contribution the final stability check exceeds the required value, to be precise 

0.328 > 0.212. However, keeping in mind that indeed 
𝑃𝑐𝑟

2
> 𝑁𝐸𝑑,𝑀𝑎𝑥  and that 

the safety factor in question is 2, this deviation is considered acceptable.  
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Chapter 6 

 
Analyses in OpenSees of the 

Case Study 

 
This chapter is focused on the modelling and analysis process of the ELT using 

the open framework OpenSees. The first section elaborates the code used to 

build a simplified model of the structure, supported by the elastomeric 

bearings, as designed in the previous chapter. Following is a presentation of 

the results from the OpenSees analyses, obtained by recording the relevant 

parameters at each time step of the duration of an earthquake simulation. The 

final section is a commentary on the results in terms of behavior of the 

elastomeric bearings as part of a 3D base isolation system.  

 

6.1 Model of the E-ELT 
 

The OpenSees model of the designed bearing is created referring to the 

formulation of Kumar et al. [2015] and the element implemented by Kumar 

[2016]. However, the parameters required as input arguments of the element 

need to be selected such that represent the actual behaviour of the isolation 

device. 

In particular,  it is worth nothing that the expression for the computation      of 

the restoring forces, based on the formulation by Park et al. [1986] and 

reported in Equation  (3.11),  describes in a correct manner  the behaviour    of 

lead rubber bearings, in which the hysteretic component is exploited by the 

internal lead core, but makes a mistake for what concerns elastomeric bearings. 

In fact, using that expression, the energy dissipation exploited by the rubber is 

taken into account twice: firstly by means of the parameter cd  of the viscous 

energy dissipation, that represents the defined percentage of the critical 

damping of the bearing, and then by means of the characteristic strength Qd, 

i.e. the intercept of the hysteresis cycle curve with the y-axis. Both quantities 

depend on the effective damping βeff , that is the ratio between the energy 
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dissipated per cycle and the elastic strain energy,  so  it is evident that the 

contribution of the damping is doubled. The major energy dissipation 

mechanism of the elastomer used for high damping rubber bearing is hysteretic 

rather than viscous. Due to this, the parameter cd is assumed to be zero.  

The predominant contribution of hysteretic energy dissipation leads to non- 

linear hysteresis in the force-displacement graph. The behaviour is modelled 

as a bi-linear curve, with initial elastic stiffness and then a strain-hardening 

branch. The post-elastic stiffness ratio α, i.e. the ratio between the the post-

elastic stiffness and the elastic stiffness, is suggested by Kelly [2001] to be in 

the range of 1/3 − 1/4 for high damping rubber bearing, so the elastic stiffness 

is from three to four times the post-elastic one. 

 Elastomeric bearings are usually subjected to large strains, so the design of 

their properties is usually carried out at shear strain of 100%. In the case of the 

E-ELT, the aim to reach a vertical isolation, in addition to the horizontal 

isolation, has implied thick layers of rubber that means a high value of the total 

height of the bearing. Due to this, the design horizontal deformation 

corresponds no longer to shear strain of 100% but to less than 50%. In fact, the 

design horizontal displacement reported in Equation (5.3) is far from Tr = 0.63 

m, so the bearing subjected to high-intensity earthquakes will not reach the 

level of deformation assumed by Kumar et al. [2015]. Therefore, attention 

must be paid to the definition of the hysteresis cycle. In fact, the expression to 

compute the characteristic strength (Equation (3.17)) depends on quantities 

determined for ∆ = Tr, i.e. shear strain of 100%, but in this case ∆ = Tr can 

not be reached, so the value of Qd computed by means of Equation (3.17) can 

not be used. To shed light on the reasons for this, the idealized bi-linear 

behaviour in shear, shown in Figure 6.1, is considered, with umax 

corresponding to the maximum lateral displacement, here referred as ∆.  

 

 

 
 

Figure 6.1: Idealized behaviour of elastomeric bearings in shear (adapted from Warn 

and Whittaker [2006]). 

 
 

The area enclosed in the curve represents the energy dissipated per cycle and 

it can be computed in an approximate manner through Equation (3.15), that is 

a linear function of the maximum displacement ∆. The elastic strain energy is 

defined as Keff ∆2 that is a square function of the maximum dis- placement. 
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Thus, if the maximum displacement ∆ decreases, both energies decrease but 

the elastic strain energy decreases faster than the energy dis- sipated per cycle, 

so the value of the effective damping βeff results higher than the initial one, as 

evident from Equation (3.14). Moreover, since the effective stiffness is 

computed through Equation (3.10), if the maximum dis- placement ∆ 

decreases, the effective stiffness Keff increases. Kumar et al. [2015] assumes 

the effective stiffness Keff to be very similar to the post- elastic stiffness Kd 

such that it has no influence if it is considered the latter rather than the former 

and this is acceptable for a shear strain of 100%. Conversely, for lower shear 

strain, the effective stiffness must be computed as: 

 

𝐾𝑒𝑓𝑓 = 𝐾𝑑 +
𝑄𝑑

∆
                                                (6.1) 

 

Hence, for value of the shear strain lower than 100%, the system turns out to 

be stiffer (Keff > Kd) and more damped (> βeff ), so the procedure proposed 

by Kumar et al. [2015] leads to a hysteresis cycle that does not represent the 

actual behaviour of the designed bearing. In particular, due to the fact that the 

post-elastic stiffness Kd is defined as a function of the geometrical and 

material properties of the bearing, that are fixed, and the elastic stiffness is 

computed as the product between the post-elastic stiffness Kd and the post-

elastic stiffness ratio α, that are fixed, the characteristic strength Qd remains 

the only quantity that can be modified to define a correct force-deformation 

curve. Therefore, the definition of the characteristic strength is performed 

through an iterative procedure that aims at finding a value of Qd for which the 

ef- fective damping at a shear strain corresponding to the design horizontal 

displacement results as the designed value, i.e. βeff  =  10%.  The  geome rical 

and material properties of the bearing are known and the post-elastic stiffness 

ratio is fixed. Considering ∆ = dbd, the procedure starts assuming a value of 

the characteristic strength Qd, from which it is possible to compute the yield 

strength FY through Equation (3.26) and the corresponding yield displacement 

Y as the ratio between the yield strength and the lateral displacement ∆. Then, 

the area enclosed in the hysteresis cycle can be obtained by means of Equation 

(3.16) and, once the post-elastic stiffness has been calculated as Kd = GA/Tr, 

the effective stiffness Keff is found through Equation (6.1). Finally, the 

effective damping can be computed using Equation (3.16) and the result must 

be in accordance with the initial hypothesis of βeff = 10%. If the check is 

fulfilled, the initially assumed value of the characteristic strength Qd describes 

correctly the energy dissipation of the bearing. Conversely, if the effective 

damping βeff does not match with the initial hypothesis, another value of the 

characteristic strength must be assumed and the procedure must be repeated. In 

particular, if the effective damping βeff results lower than the required one, a 

higher value of the characteristic strength Qd has to be selected. [Pecchillo, 

2019]. 

Following the procedure previously discussed by Pecchillo [2019], the 

obtained value for the characteristic strength is 𝑄𝑑 = 46𝑘𝑁, leading to a yield 
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strength of 𝐹𝑦 = 69𝑘𝑁. After completing this adjustment with respect to the 

realistic behavior of the structure, the next step is the implementation of model 

in OpenSees. 

 

The modelling of the structure begins with the definition of the spatial 

dimension of the object and the degrees of freedom of the nodes using the 

BasicBuilder command as: 

 

#Create Model Builder  

model BasicBuilder -ndm 3 -ndf 6 

 

Next is the definition of the node coordinates using the node command: 

 

#Define nodes  

node $nodeTag $x $y $z 

 

The node representing the center of mass of the telescope pier has the 

coordinates (0,4.65,0) along the 𝑥, 𝑦 and 𝑧 axes, respectively, and an additional 

node (0,9.3,0) represents the top of the pier and the beginning of the main 

structure. The mass of the main structure is represented by a point mass in the 

node with coordinates (0,28.125,0). The rest of the nodes in the model are 

associated with the top and bottom point of the elastomeric bearings.  

The masses of the telescope pier and main structure are appointed for each 

individual degree of freedom using the mass command as: 

 

#Define mass  

mass 1 18609.0 18609.0 18609.0 18609.0 18609.0 18609.0 
mass 3 3400.0  3400.0 3400.0 0.0 0.0 0.0 

 

The fix command is used to define the constraints for each degree of freedom 

of the nodes: 

 

#Define constraints 

fix $nodeTag (ndf $constrValues) 

 

where the value of $constrValues can be 1 for a fixed DOF or 0 for a free 

DOF. The bottom of the bearings is intact to the foundations, so all the degrees 

of freedom for the bottom nodes of the bearings are constrained, whereas all 

other nodes are completely free. 

The following step is to create the physical link between the node representing 

the telescope pier mass and the nodes representing the top of the elastomeric 

bearings. This is done using elasticBeamColumn elements with extremely high 

mechanical properties that should simulate a near-perfectly rigid bond. 

However, using these elements would allow a transfer of a moment from the 

pier to the bearings when in fact, this cannot occur in the real structure. Due to 

this, additional “clone” nodes are created with the exact same coordinates as 

the nodes representing the top of the bearings, and are then connected to their 
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“original” nodes using an equalDOF constraint object that will impose the 

same translational displacements of the original nodes to their clones. The 

rotational DOFs of the clone nodes are left unbound and the link between the 

pier and the bearings is actually created between the node with the pier mass 

and the clone nodes, instead of the original nodes. In this manner, the transfer 

of the moment to the bearings is avoided, thus the model behavior stays true 

to that of the real structure. The equalDOF constraint objects are defined as: 

 

#Define equalDOF 

equalDOF $rNodeTag $cNodeTag $dof1 $dof2 $dof3 

 

where $rNodeTag is the retained “master” node and $cNodeTag is the 

constrained “slave” node, on which are imposed the displacements of the 

former for the defined degrees of freedom. 

Before defining element objects, a coordinate transformation object is 

introduced for the purpose of transferring the element stiffness and restoring 

force from the basic to the global coordinate system: 

#Define geometric transformation 

geomTransf Linear 1 0 0 -1 

 

The connections between the bearings and the telescope pier mass are created 

with elasticBeamColumn elements that have the following properties: 

 

Table 6.1: Designed input arguments of elasticBeamColumn elements for 
telescope pier 

 

Input Value Input Value 

$eleTag 1001 $Iz 12.299 

$Nd1 $telescope pier 

mass 
$Iy 14.78 

$Nd2 $top of bearing $transfTag 1 

$A 0.338 $massDens default 

$E 210000000000.0 -cMass default 

$G 70000000000.0   

$J 10.0   

 

The input for forces in OpenSees is in kilonewtons and the area is in square 

meters. Consequently, the stresses are in [ 
𝑘𝑁

𝑚2 ].  

The properties for the elasticBeamColumn portraying the main structure are 

listed below: 

 

 

 

Table 6.2: Designed input arguments of elasticBeamColumn elements for main 
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structure 
 

Input Value Input Value 

$eleTag 1000 $Iz 12.299 

$Nd1 $telescope pier 

top 
$Iy 14.78 

$Nd2 $main structure 

lumped mass 

$transfTag 1 

$A 0.338 $massDens default 

$E 210000000.0 -cMass default 

$G 70000000.0   

$J 10.0   

 

The elastic  and shear modulus of the elasticBeamColumn elements used for 

the telescope pier are 1000 times greater than that of the main structure, since 

their role is to provide a completely rigid link between the pier and the 

elastomeric bearings. This value is considered to be sufficient, whereas using 

an even higher value might cause convergence issues in OpenSees.  

The last part of the model are the elastomeric bearings, implemented using 

ElastomericX elements with the following parameters: 

 

Table 6.3: Designed input arguments of ElastomericX. 
 

Input Value Input Value 

$eleTag 1 $y1 $y2 $y3 1  0 0 

$Nd1 $bottom node $kc default 

$Nd2 $top node $PhiM default 

$Fy 69.4 kN $ac default 

$alpha 0.33 $sDratio default 

$Gr 640.0 $m default 

$Kbulk 2000000 $cd 0.179 

$D1 0 $tc   default 

$D2 1.2 m $tag1 0 

$ts   0.0062 $tag2 0 

$tr   0.09 $tag3 0 

$n 7.0 $tag4 0 

$x1 $x2 $x3 0  1 0   

 

Once the structure itself is complete, the gravity load is applied by defining a 

timeSeries object and the load pattern. The value of the gravity load is 

governed by the sum of the masses of the telescope pier and the main structure. 
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#Define timeSeries 

timeSeries Linear 1 

#Create a plain load pattern for static analysis 

pattern Plain 1 1 { 

load 1 0.0 [expr -$P] 0.0 0.0 0.0 0.0}; 
 

To execute a dynamic analysis, additional timeSeries objects are defined using 

records of the ground motion in all directions of a severe earthquake. To be 

specific, the earthquake in question is the one from El Centro (1940), since its 

elastic response spectra in the horizontal directions is quite similar to the 

spectrum of El Cerro Armazones for the value of the horizontal period defined 

for the ELT in this thesis.  

 

 

 

Figure 6.2: Superimposition of horizontal pseudoacceleration elastic response spectra. 
 
 

Figure 6.2 shows the ground accelerations during the El Centro earthquake in 

East-West, North-South and vertical direction.  
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Figure 6.3: El Centro accelerograms in the three directions. 

 

These accelerograms are implemented in the OpenSees analysis as follows: 

 

#Set constant gravity loads and reset time in the domain 

loadConst -time 0.0 

#Define the time interval 

set dt 0.02 

#Define the time series path 

timeSeries Path 10 -dt $dt -filePath elcentroNS.txt 

-factor $0.4g; 

timeSeries Path 20 -dt $dt -filePath elcentroUP.txt 

-factor $0.4g; 

timeSeries Path 30 -dt $dt -filePath elcentroEW.txt 

-factor $0.4g; 
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#Create load patterns for dynamic analysis 
 

pattern UniformExcitation  2 1 -accel 10 

pattern UniformExcitation  3 2 -accel 20 

pattern UniformExcitation  4 3 -accel 30 

 

The relevant results from the analysis are monitored and extracted through 

recorder objects that can record various parameters for a certain node or 

element. The nodes of interest are the ones to which are assigned the point 

masses of the telescope pier and the main structure, for which the 

displacements and accelerations are recorded in all three directions. The 

elastomeric bearings whose behavior is monitored are the ones farthest apart 

on the global 𝑥 and 𝑧 axes for both azimuth rings, leading to a total of 8 

bearings. 

 

#Create recorder to monitor outputs 

recorder Node -file telescope_pier_displacement.out -time -

node 1 

-dof 1 2 3 4 5 6 disp; 

recorder Node -file telescope_pier_acceleration.out -time -

node 1 

-dof 1 2 3 4 5 6 accel; 

recorder Node -file main_structure_displacement.out -time -

node 3 

-dof 1 2 3 4 5 6 disp; 

recorder Node -file main_structure _acceleration.out -time -

node 3 

-dof 1 2 3 4 5 6 accel; 

recorder Element -file ELTForce.out -time 

-ele 73 basicForce; 

recorder Element -file ELTDisplacement.out -time 

-ele 73 basicDisplacement; 

recorder Element -file ELTParam.out -time 

-ele 73 Parameters. 

 

The output of the recorders is provided in text documents, where the specified 

parameters are given as a function of time at each time step 𝑑𝑡. Afterwards 

these parameters are represented in Excel graphs, again as a function of time. 

Following is a representation of the obtained results.  
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6.2 Analyses and Results 
 

The ELT model as described in the previous section is studied through a 

transient analysis and the results are obtained via recorders that were 

previously introduced. The first performed analysis disregards the variation of 

the buckling load, horizontal and vertical stiffness. The analyses after that 

examine the behavior of the structure including a single parameter variation at 

a time. To clarify the following output, the eight bearings whose behavior is 

presented are named according to the azimuth ring they belong to and the 

degree of the angle they are located on, if the angle starts from the positive 𝑥 

axis of the global coordinate system. Their names and locations are as follows: 

 

        

Figure 6.4: E-ELT model layout 

 

 D1_0 belongs to the inner azimuth ring and is located on the positive 

𝑥 axis 

 D1_90 belongs to the inner azimuth ring and is located on the positive 

𝑧 axis 

 D1_180 belongs to the inner azimuth ring and is located on the 

negative 𝑥 axis 

 D1_270 belongs to the inner azimuth ring and is located on the 

negative 𝑧 axis 

 D2_0 belongs to the outer azimuth ring and is located on the positive 

𝑥 axis 

 D2_90 belongs to the outer azimuth ring and is located on the positive 

𝑧 axis 
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 D2_180 belongs to the outer azimuth ring and is located on the 

negative 𝑥 axis 

 D2_270 belongs to the outer azimuth ring and is located on the 

negative 𝑧 axis 

 

It is important to note that the accelerations from the El Centro records in the 

North-South direction coincide with the 𝑥 axis of the global coordinate system 

in OpenSees, whereas the accelerations in the East-West direction coincide 

with the global 𝑧 axis. 

The absolute displacements and accelerations are recorded for the nodes 

containing the masses of the telescope pier and the main structure, and those 

nodes will be called simply “telescope pier” and “main structure” in the 

following output contents.  

 
6.2.1 Analysis with no Variation 

 

This analysis considers the buckling capacity to be constant and equal to the 

one obtained in Equation (5.23). The same stands for the vertical and 

horizontal stiffness, which are considered as 𝐾𝑣 = 𝐾𝑣0 =
𝐸𝑐𝐴

𝑇𝑟
  and 𝐾𝐻 =

𝐾𝐻0 =
𝐺𝐴

𝑇𝑟
.  

Following are graphs containing the force-displacement curves for the 

aforementioned bearings obtained through a 50 second simulation of the El 

Centro (1940) earthquake: 

 

 

Figure 6.5: D2_0 force-displacement curve in vertical direction for no variation. 
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Figure 6.6: D2_0 force-displacement curve in North-South direction for no variation. 

 

 

 

Figure 6.7: D2_0 force-displacement curve in East-West direction for no variation. 
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Figure 6.8: D2_90 force-displacement curve in vertical direction for no variation. 

 

 

 

Figure 6.9: D2_90 force-displacement curve in North-South direction for no variation. 
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Figure 6.10: D2_90 force-displacement curve in East-West direction for no 

variation. 

 

 

 
Figure 6.11: D2_180 force-displacement curve in vertical direction for no 

variation. 
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Figure 6.12: D2_180 force-displacement curve in North-South direction for no 

variation. 

 

 
Figure 6.13: D2_180 force-displacement curve in East-West direction for no 

variation. 
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Figure 6.14: D2_270 force-displacement curve in vertical direction for no 

variation. 

 

 

 
Figure 6.15: D2_270 force-displacement curve in North-South direction for no 

variation. 
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Figure 6.16: D2_270 force-displacement curve in East-West direction for no 

variation. 

 

 

 
Figure 6.17: D1_0 force-displacement curve in vertical direction for no variation. 
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Figure 6.18: D1_0 force-displacement curve in North-South direction for no 

variation. 

 

 
Figure 6.19: D1_0 force-displacement curve in East-West direction for no 

variation. 
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Figure 6.20: D1_90 force-displacement curve in vertical direction for no variation. 

 

 
Figure 6.21: D1_90 force-displacement curve in North-South direction for no 

variation. 
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Figure 6.22: D1_90 force-displacement curve in East-West direction for no 

variation. 

 

 
Figure 6.23: D1_180 force-displacement curve in vertical direction for no 

variation. 

 

-5.00E-01

-4.00E-01

-3.00E-01

-2.00E-01

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

-6.00E+02 -4.00E+02 -2.00E+02 0.00E+00 2.00E+02 4.00E+02 6.00E+02

D
is

p
la

ce
m

en
t  

[m
]

Force  [kN]

D1_90
force-displacement

Z direction

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

-800 -600 -400 -200 0 200 400

D
is

p
la

ce
m

en
t 

 [
m

]

Force  [kN]

D1_180
force-displacement

vertical direction



75 
 

 

 

 
  

 
Figure 6.24: D1_180 force-displacement curve in North-South direction for no 

variation. 

 

 
Figure 6.25: D1_180 force-displacement curve in East-West direction for no 

variation. 
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Figure 6.26: D1_270 force-displacement curve in vertical direction for no 

variation. 

 

 
Figure 6.27: D1_270 force-displacement curve in North-South direction for no 

variation. 
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Figure 6.28: D1_270 force-displacement curve in East-West direction for no 

variation. 
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Figure 6.29: Telescope pier displacements in vertical direction for no variation. 

 

 
Figure 6.30: Telescope pier accelerations in vertical direction for no variation. 
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Figure 6.31: Telescope pier displacements in North-South direction for no 

variation. 

 

 
Figure 6.32: Telescope pier accelerations in North-South direction for no 

variation. 
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Figure 6.33: Telescope pier displacements in East-West direction for no 

variation. 

 

 
Figure 6.34: Telescope pier accelerations in East-West direction for no variation. 
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largest displacement for the vertical direction is 0.006𝑚 downward. As for the 

horizontal plane, the North-South ground motion causes a larger displacement 

of 0.103𝑚, compared to 0.093𝑚 in the East-West direction. 

 

 
Figure 6.35: Main structure displacements in vertical direction for no variation. 

 

 
Figure 6.36: Main structure accelerations in vertical direction for no variation. 
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Figure 6.37: Main structure displacements in North-South direction for no 

variation. 

 

 
Figure 6.38: Main structure accelerations in North-South direction for no 

variation. 
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Figure 6.39: Main structure displacements in East-West direction for no variation 

 

 
Figure 6.40: Main structure accelerations in East-West direction for no variation 

 

The largest vertical displacement experienced by the main structure is 0.008𝑚 

downward. Horizontally, the nodal displacement is 0.104𝑚 in both the North-

South and the East-West direction. 
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6.2.2 Analysis with Variation in Horizontal Stiffness, 
Vertical Stiffness and Buckling Load Capacity 

 

The following analysis reports the behavior of the structure with the included 

variations of the stiffness in both directions, as well as the critical buckling 

load. Their values are computed at each time step according the Equations 

(3.1), (3.7) and (3.8) reported in Chapter 3. To avoid unnecessary data clutter, 

a single bearing’s response is reported from the analysis. The bearing of choice 

is D2_180, and the obtained results are as follows: 

 

 
Figure 6.41: D2_180 force-displacement curve in vertical direction for variation in 

Kv, Kh and Pcr 
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Figure 6.42: D2_180 force-displacement curve in North-South direction for 

variation in Kv, Kh and Pcr 

 

 
Figure 6.43: D2_180 force-displacement curve in East-West direction for 

variation in Kv, Kh and Pcr 
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downward, with a value of 0.015𝑚, corresponding to an axial force of 953𝑘𝑁. 

In the horizontal plane, the bearing behavior clearly again portrays the bi-linear 

shape. The largest recorded displacement is in the North-South direction with 

a value of 0.77𝑚, caused by a horizontal force of 900𝑘𝑁. In the East-West 

direction the displacement is 0.144𝑚 with a maximum force of 172𝑘𝑁. 

The impact of the lowered horizontal stiffness and critical load can be seen by 

the increase in the maximum lateral displacement in comparison to the one 

obtained through the analysis with stationary parameters.  

Interestingly, the vertical displacement is quite close, and even slightly smaller 

than the one recorded in the analysis with no variations, which can be seen as 

a result of good vertical stiffness, considering the thickness chosen for the 

bearing’s rubber layers. 

The recorded nodal displacements and accelerations for the telescope pier are 

as follows: 

 

 
Figure 6.44: Telescope pier displacements in vertical direction for variation in Kv, 

Kh and Pcr. 
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Figure 6.45: Telescope pier accelerations in vertical direction for variation in Kv, 

Kh and Pcr. 

 

 
Figure 6.46: Telescope pier displacements in North-South direction for variation 

in Kv, Kh and Pcr. 
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Figure 6.47: Telescope pier accelerations in North-South direction for variation in 

Kv, Kh and Pcr. 

 

 
Figure 6.48: Telescope pier displacements in East-West direction for variation in 

Kv, Kh and Pcr. 
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Figure 6.49: Telescope pier accelerations in East-West direction for variation in 

Kv, Kh and Pcr. 
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Figure 6.50: Main structure displacements in vertical direction for variation in Kv, 

Kh and Pcr. 

 

 
Figure 6.51: Main structure accelerations in vertical direction for variation in Kv, 

Kh and Pcr. 
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Figure 6.52: Main structure displacements in North-South direction for variation 

in Kv, Kh and Pcr. 

 

 
Figure 6.53: Main structure accelerations in North-South direction for variation in 

Kv, Kh and Pcr. 
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Figure 6.54: Main structure displacements in East-West direction for variation in 

Kv, Kh and Pcr. 

 

 
Figure 6.55: Main structure accelerations in East-West direction for variation in 

Kv, Kh and Pcr. 
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compression at the beginning of the simulation, with a value of 0.007𝑚. The 

largest lateral displacement is again in the East-West direction with a value of 

0.146𝑚, whereas the displacement in the North-South direction is 0.119𝑚.  

 

6.3 Summary of the Obtained Results 
 

According to the force-displacement curve in the vertical direction of the 

bearings for both the case with no variation in parameters and the case with 

variation in stiffness and buckling capacity, it can be concluded that the 

vertical behavior of the bearings is elastic, and can be modelled as such.  

As for the horizontal behavior, the curves resemble that of the ideal bi-linear 

behavior, with small deviations noticeable for directions tangent with respect 

to the bearings’ location in the azimuth ring. 

 

It is important to note that in the analysis with variable stiffness and buckling 

capacity, which is the closest representation of the real situation, the point mass 

representing the main structure with the vibration-sensitive instruments 

exhibits a vertical period of 0.32𝑠 and a horizontal period of about 2.4𝑠, which 

are very good values inside the required long range intervals for both 

directions. In correlation to this, the same analysis shows that the bearing 

D2_180 is subjected to the maximum vertical and horizontal forces in different 

time intervals. The largest vertical force of −953𝑘𝑁 occurs at 49.56𝑠, when 

the horizontal force is 277𝑘𝑁. The reverse check finds the largest horizontal 

force of 900𝑘𝑁 at 38.92𝑠, which corresponds to a vertical force of −201𝑘𝑁. 

This proves the fundamental theory of the alternative design approach to be 

true, since the vertical and horizontal periods are within the long range and the 

maximum vertical and horizontal loads indeed occur at different time steps, 

thus ensuring that the safety has not been compromised by following this 

approach. 

 

As for the stability criteria defined by EN15129, it can be considered satisfied 

since the maximum axial force of 953𝑘𝑁 is quite smaller than half of the 

critical buckling load which is  
𝑃𝑐𝑟

2
= 2523.5𝑘𝑁. 

  

The largest lateral displacements of the bearings are within permissible limits, 

however they clearly surpass the design values obtained with respect to the 

European Standards. This can be regarded as a clear indication of the 

complexity of predicting the behavior of a 3D isolation system, and shows that 

such task requires a serious and detailed approach.  
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Chapter 7 

 
Conclusions 

 
A design for a base isolation system using elastomeric bearings has been 

proposed in in accordance with the European Standards for earthquake 

engineering. However, notable deviations have been made with respect to the 

practices defined within these standards. Mainly, a shape factor with a quite 

low value is assumed (𝑆 = 3.33) in order to stay true to the scope of this thesis, 

which is a design that will provide sufficient isolation in both the horizontal 

and the vertical direction. To reach this value for the shape factor, the thickness 

of the rubber layers has been assumed to be large, with the intention to arrive 

at a lower stiffness in the vertical direction of the bearings. An additional 

deviation from the European Standards has been made by relying on a 

hypothesis that allows a relief from the strict requirements of the standards at a 

rational reduction of their safety. This hypothesis states that since the values of 

the isolation periods in vertical and horizontal direction are so far apart, the 

maximum earthquake-induced loads in vertical and horizontal direction are not 

expected to occur simultaneously and can be considered separately. Following 

this logic, the earthquake contributions in the two directions have been 

individually added to the self-weight of the structure to create two independent 

values for the design axial load. The design procedure can then be executed 

using only one of those values, however the following procedure according to 

the European Standards must be satisfied.  

To thoroughly test the seismic isolation system that is discussed, it is 

implemented in a structure of immense importance and size, with large 

sensitivity to vibrations in all directions. The structure in question is the 

European – Extremely Large Telescope (E-ELT) funded by the European 

Southern Observatory (ESO) and expected to be the largest telescope in the 

world to date. The complex design of the structure has been simplified to ease 

the design process and its elements have been superimposed to two point 
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masses, further known as telescope pier and main structure. The equipment in 

the building is supported by two concentric azimuth rings, whose interface with 

the foundations has been chosen for the location of the elastomeric bearings.  

The mathematical and numerical model of the bearing behavior have been 

adopted by Kelly et al. [2015], with certain modifications in an attempt to better 

present the realistic situation. These modifications refer to the manner in which 

the isotropic formulation considers the restoring forces. They are computed as 

the sum of a hysteretic and a viscoelastic component, where the latter is 

dependent on the viscous damping coefficient and the horizontal stiffness. The 

hysteretic component depends on the characteristic strength, which governs the 

hysteresis cycles and thus the energy dissipation. A problem arises due to the 

fact that the effective damping governs both the hysteretic component through 

the characteristic strength and the damping coefficient, which means that by 

using this model the damping effect is considered twice. For a case of high 

damping rubber bearings such as the ones considered in this thesis, the response 

in highly hysteretic, so the component that is eliminated in order to avoid the 

double damping effect is the viscous damping coefficient. 

In the implementing of the elastomeric bearings, due attention has been paid to 

the effect of the imposed high thickness of the rubber layers, that is required in 

order to achieve sufficiently low stiffness and to provide isolation in both the 

vertical and horizontal direction. This thickness leads to a large overall height 

of the bearing, which in turn assures that the lateral displacements during the 

ground motions cause a shear strain considerably smaller than 100%. Since the 

parameters of the hysteresis cycle are typically computed at 100% shear strain, 

they need to be re-evaluated in order to give a more accurate representation of 

the actual bearing behavior. To this aim, a value for the characteristic bearing 

strength needs to be established that will provide the energy dissipated per cycle 

that is in correspondence with the elastic strain energy defined by the effective 

damping, which is in fact established for the design lateral displacement. 

Pecchillo [2019] proposed an iterative process that begins by recognizing the 

actual lateral displacement and defines values for the characteristic strength 

until one is reached that presents the real effective damping. The lateral 

displacements increase, and with it also the elastic strain energy and the energy 

dissipated per each cycle, which leads to a decrease in the effective damping 

value initially assumed as 10%.  

After making this adjustment, the bearings have been implemented in the open 

framework OpenSees (Open System for Earthquake Engineering Simulation) 

through ElastomericX element objects. These objects are composed of two 

nodes with 12 DOFs, connected by six springs that represent the mechanical 

behavior in each direction. A dynamic analysis has been performed in 

OpenSees, using ground motions recorded in the three principal directions 

during the El Centro (1940) earthquake, which has been chosen due to the 

similarity in its response spectrum in the horizontal direction and the one for 
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the El Cerro Armazones, the location of the E-ELT. Two different analyses are 

performed, in particular the difference being the manner in which OpenSees 

considers the buckling load capacity and the stiffness in both directions. In the 

first analysis, these parameters have been defined as constant, with their values 

being the initial elastic ones. In the second analysis, these parameters vary and 

are computed at each new time step of the analysis, where the time step has 

been set to 0.02𝑠 in a simulation that lasts a total of 50𝑠. The force-

displacements curves of the several examined bearing devices have shown that 

the vertical behavior of the bearings develops in a perfect elastic fashion. The 

behavior in the horizontal plane clearly resembles the idealized bi-linear 

behavior, with minor deviations over the duration of the simulation. 

The periods in the vertical and horizontal directions of the main structure which 

is sensitive to vibrations are well within the desired specters that represent the 

long range, specified in order to avoid the dangerous modes of the structure. 

The more sophisticated of the two analyses that includes the variation in 

stiffness and buckling capacity has shown that the most severe earthquake-

induced loads in the vertical and horizontal directions occur at completely 

different time steps. This decoupling of the maximum forces in the two 

directions, along with the fact that both periods are within the long range, can 

justify the hypothesis of the alternative approach used for the design of the 

bearings.  

The OpenSees analysis has also shown that the maximum axial load 

experienced by the bearings is significantly smaller than half of the design 

critical buckling load, satisfying the main stability criteria defined in the 

European Standards. 

However, although within reasonable limits, the lateral displacements of the 

bearings in the OpenSees analysis have been recorded to be well over the ones 

defined in the design process. 

It can be concluded that predicting the behavior of a 3D seismic isolation 

system is a severely complicated task that requires a very detailed approach, 

accompanied by a sophisticated structural analysis software. 
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