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Sommario

Il rilevamento di oggetti è uno dei maggiori compiti di visione artificiale su
cui è stata fatta una approfondita ricerca negli ultimi decenni. La svolta,
in questo campo, è arrivata dopo l’introduzione di reti neurali convolutive
profonde (DCNN) nel flusso di lavoro dei riconoscitori, e le loro prestazioni
sono in continuo miglioramento da allora. Al giorno d’oggi, gli algoritmi per
il riconoscimento di oggetti sono applicati a svariate applicazioni della vita
reali, dalle auto con guida autonoma a rischiose procedure mediche. È evi-
dente che questi algoritmi di apprendimento profondo sono molto sensibili
al fallimento visti i compiti rischiosi che svolgono. In questo lavoro propo-
niamo una libreria per la valutazione del riconoscimento di oggetti chiamata
Detector Metrics Evaluator (DME). DME permette di valutare i risultati
di questi algoritmi attraverso alcune metriche tipiche e altre più specifiche.
Tale analisi potrà aiutare i ricercatori ad ottenere una valutazione profonda
del flusso di lavoro del loro riconoscitore, così da incrementare al massimo
accuratezza e precisione. L’implementazione di DME prende in ingresso un
set di dati di Ground Truth (nel formato Pascal VOC o COCO) e il gruppo
di proposte predette dal riconoscitore. Inoltre, durante l’implementazione in
Python di DME abbiamo applicato un design generico per lasciare aperta
la possibilità agli sviluppatori di adattare lo strumento; aggiungendo nuove
metriche o includendo un altro formato per i set di dati. Abbiamo provato il
nostro strumento con i dati provenienti da Pascal VOC 2007 e iSAID insieme
ai framework di apprendimento Detectron2 e MMDetection, mostrando, con
buoni risultati, la sua natura disaccoppiata da uno specifico set di dati o
strumento di sviluppo del riconoscitore.
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Abstract

Object detection is one of the major tasks that has been researched in depth
in the last decades in Computer Vision. The breakthrough into the field ar-
rived after the introduction of Deep Convolutional Neural Network (DCNN)
into detectors pipelines, and its performance improvement has gone on the
upswing since then. Nowadays, various real-life applications are applying
object recognition algorithms from self-driving cars to even healthcare haz-
ardous procedures. It is noticeable that these Deep Learning algorithms are
highly sensitive to failure because of the natural hazardous tasks that they
perform. In this work we propose a framework library for the evaluation of
Object Detection denominated Detector Metrics Evaluator (DME). DME al-
lows to evaluate object detection results through typical and other more spe-
cific metrics. Such analysis would allow researchers an in-depth assessment of
their object detector pipelines so as to increase their accuracy and precision
at maximum. The implementation of DME takes as inputs a Ground Truth
dataset (in PASCAL VOC or COCO format) and the set of the detector
predicted proposals. Moreover, the DME python implementation applied a
generic design to let open the option to developers to make the tool to scale;
by adding new metrics or implementing another dataset format. We have
tested our tool with Pascal VOC 2007 and iSAID datasets along with Detec-
tron2 and MMDetection training frameworks, showing its decouple nature to
the specific dataset or framework for the detector implementation with good
results.
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Chapter 1

Introduction

Computer Vision (CV) is a branch of artificial intelligence that enables com-
puters to see and identify images, processing them as humans would. Using
images or videos from a sensing devices (e.g. a camera), deep learning models
enable machines to accurately identify and classify the objects.

In CV, the main objective is to take the input (image or video) and to
understand and infer something about the image and its contents [1]. In
Figure 1.1 we can see an scheme of a simple comparison between Human
Vision (HV) and Computer Vision (CV). While in HV a person interprets
through his or her brain what their eyes captures, in CV, a sensing device
plays the role of the eyes capturing the image from the outside world and
then a computer interprets the information through algorithms. In this case
the inferred sample is just bowl with a bunch of delicious fruits [1].

Nowadays CV applications in real-life along with technology are vast.
Thanks to CV along with machine learning, the improvement in various
fields are truly impressive.

• Automobile industry for self-driving cars : now the well-know electric
cars company producer Tesla 2 is recognized from their autopilot fea-
ture set in their units. Thanks to cameras and sensors installed in
their units and by applying CV algorithms they can provide to drivers
the comfortable feature of autopilot. Another company named Waymo

2https://www.tesla.com/
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Figure 1.1: Computer Vision analogy to human vision.

1, a subsidiary from Google, utilizes cameras and sensors into cars in
order to make driving experience for drivers safer. It is thought that
20% of road’s accident are caused by fatigue drivers [2]. Thus, through
hardware and CV they are reducing this statistic figures.

• Healthcare: CV is being used to help diagnose health conditions. Gauss
Surgical has developed a solution that can monitor blood loss in real-
time through the use of cloud-based computer vision algorithms. They
are using this cellphone application to maximise blood transfusions
in real-life scenarios such as Cesarean deliveries [3]. Another study
made with Google’s AI tools published recently [4] has shown skills of
detection of breast cancer which are similar if not better than those of
a trained doctor. They have considerably reduced false negatives and
false positives doctors diagnostics.

1https://waymo.com/journey/
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• Retail Industry : Amazon Go 1 has just released the first smart-store in
2018 in the US. By applying CV, deep learning along with hardware
technology (cameras and sensor) in the store they were able to create
a just-walk-out store. By tracking a customer as they walk around the
store, CV systems keep track of every customer and records the items
a customer takes. Then, when they have completed their shop, the
customer simply leaves the store without interacting with a cashier for
the payment.

• In-store inventory : Walmart 2 is expanding the use of Bossa Nova
Robotics shelf-scanning robots to 350 of their stores. These robots
are able to identify products with missing labels as well as items that
are out of stock or incorrectly priced. CV enables this process to take
place while also helping the robots to safely navigate the stores without
bumping into customers.

• Warehouse management : Gather AI 3 is a Pittsburgh based company
that is developing autonomous drones to conduct warehouse inventory
management. These operate autonomously and are able to integrate
with existing warehouse management systems and devices such as mo-
tion sensors. CV systems then scan the recorded images, allowing for
an accurate record of available inventory to be created. According to
the company’s CEO, around 60% cheaper than traditional management
methods [5].

• Industries & factories : are also using CV for predictive maintenance of
their equipment and gears. Many oil and gas producers such as Shell
are taking advantage of ML and sensors to keep their their equipment
and gears in prime condition [6, 7].

• Security & video surveillance is another well-know application area in
which CV and ML combination have been applied to reduce thieves

1https://www.amazon.com/
2https://www.walmart.com/
3https://gather.ai/
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in-house and public places. It has been strongly researched through
pedestrians detector works like [8, 9, 10, 11] and showed impressive
results.

There are even more fields of applications that cannot be completely men-
tioned in this work, but one important fact that can be inferred is that there
exist no room for errors and mistakes in these tasks. Thus, researchers must
keep the robustness of their algorithms in a high level to be able to perform
such risky and delicate tasks; reducing false positives and false negatives as
much as possible and improving accuracy in its maximum.

Diving into the technical CV terminologies, object detection is a main
visual recognition problem [12] and there has been a lot of research on it in
the last decades in order to arrive in such previous described applications.
Object detection’s main goal is to find objects of a certain target class (or
category) with precise localization in a given image and specify to each object
instance a corresponding class label, and generally along with a confidence
value.

It is important to recall some definitions in Computer Vision to avoid
confusion. Image classification aims to assign an image one or multiple la-
bels corresponding to the presence of a category in the image; it does not
localize the object position within images. Semantic segmentation aims to
predict pixel-wise classifiers to assign a specific category label to each pixel,
thus providing a finer understanding of an object in a image. Last but not
least, instance segmentation identifies different objects and set each of them
a separate categorical pixel-level mask being this the most detailed object
identification in images. This last can be seen as an special case of object
detection where instead of wrapping the object with a bounding box, a pixel-
level classification is proposed. In Figure 1.2 the definitions are depicted in
samples images for each case. In this work we will mostly focus on object
detection.

A lot of effort has been developed during last two decades researching
detectors for object recognition in CV applying deep learning [13]. Authors
in the field usually test their algorithms in open datasets. Mostly, researchers

4



Figure 1.2: Definitions of visual recognition tasks in Computer Vision.
(a) Image classification only need to identify if a category of object exist in an
image. (b) Object detection identify + localize each instance with bounding boxes.
(c) Semantic segmentation makes a pixel-wise classification in the image for the
categories. (d) Semantic segmentation is similar to (c) but also discriminates each
object instance. Source: Pascal VOC 2007 [13]

have conducted their detectors evaluation applying base well-known metrics
in the field such as recognition accuracy [14] and average precision [13]. These
metrics provides an overall evaluation and gives a broad score of the detec-
tor’s accuracy over a dataset. Nonetheless, these metrics are not enough to
asses the performance and identify the strength and weaknesses for specific
behaviours of their detectors. Moreover, such performance summaries do not
specify why one method outperforms another or help understand how it could
be improved [15]. Sometimes researchers are interested in comprehending in
depth how their detectors works addressing specific characteristics of objects.
They may be interested in answering the following questions:

• What is the performance of my detector over small-size objects?

• Is my detector able to localize partially-occluded and truncated ob-
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jects?

• Can I tune-up my detector to reduce false positive cases like confusion
with the background or confusion with other objects, and how will this
impact in the overall mean-average-precision (mAP) value?

Considering the scenario in the last question, a strong improvement in
one characteristic of recognition may generate only a small improvement
in the overall performance, thus a clarification of such case before hand is
needed. For this there have been various metrics evaluation and other metrics
proposals for object recognition [15]. Authors in [15] considers the evaluation
of object size, aspect ratio, point-of-view and occlusion.

Therefore, we find the need to centralize diverse metrics for object detec-
tion to better evaluate results when assessing ground-truth and predictions.
The contribution of this thesis can be summarized as follows:

• We study and summarize the state of the art of metrics and tools
available for object detection evaluation in Computer Vision.

• Given a dataset ground-truth (GT) and its predicted proposals, we de-
veloped an framework library tool, named Detector Metrics Evaluator
(DME), that centralize the evaluation of typical and other specific met-
rics in object detection. The user can run a group (or all) metrics from
a list of available ones inferred according to the input dataset.

• To prove independence of training frameworks and specific datasets, the
tool has been tested over the results of Detectron2 [16] and MMDetec-
tion [17] training frameworks over Pascal VOC [13] and iSAID [18]
datasets.

The structure of this document is detailed as follows. In Chapter 2
the state-of-the-art is presented. We detail a summary of metrics in most-
recognized works in object detection. Moreover, we give a briefly description
of most used training and evaluation frameworks in the field. In Chapter 3 we
provide the theoretical background of the most used metrics, including the

6



implemented ones. Then, in Chapter 4 the tool architecture and implemen-
tations are detailed. We explain all implemented metrics in the framework.
Then, in Chapter 5 an evaluation of the tool was made, and the results are
presented. Last but not least, in Chapter 6 we wrote the conclusions and
proposed future works.

7



Chapter 2

State of the art

In Section 2.1 we review the most notorious research in Object Detection,
from the first attempts without Deep Learning (DL) methods till nowadays
ones highlighting their evaluation metrics. In Section 2.2 we give a bried
description of the most common datasets and metrics evaluation in Object
Detection. Then, in Section 2.3 we describe the most used libraries and
training frameworks. Finally, in Section 2.4 we describe current evaluation
frameworks available in the literature, and how our tool is differentiated from
them.

2.1 Detectors in Object Detection and their

metrics

Before the Deep Learning (DL) era, first development of algorithms for object
detection was based in a three stage pipeline:

1. proposal generation.

2. feature vector extraction.

3. region classification.

In the first stage the core goal was to search locations by applying intuitive
sliding windows methods [19, 20, 21, 22, 23]. Moreover, input images were

8



resized into different scales and multi-scale windows were also applied in order
to capture information about aspect ratios and the scale nature of objects.
The idea was to scan the whole image and localize regions that might contain
objects (called regions-of-interest, ROI). In [20] they evaluated their face-
detectors applying Receiver Operator Characteristic (ROC) curve. The ROC
curve shows the trade-off between sensitivity (or True-Positive-Rate, TPR)
and specificity (1 – False Positive Rate, FPR). Detectors that give curves
closer to the top-left corner in the graph indicate a better performance. A
more detailed explanation on this would be boarded in the Chapter 3.

In the second step, on each part of the image, a fixed-length feature vec-
tor was obtained from the sliding window. The aim of this was to capture
semantic information from the region covered. This feature vector was usu-
ally encoded by low-level visual descriptors such as: SIFT (Scale Invariant
Feature Transform) [24], HOG (Histogram of Gradients) [22], Haar [25], or
SURF (Speeded Up Robust Features) [26], which showed a considerable ro-
bustness to scaling, illumination and rotation variances. Again papers [24,
25, 26] centered their evaluation performance through the ROC curve.

Last but not least, in the third step the region classifiers were learned
to assign labels to the regions covered. Support Vector Machine (SVM) [27]
were commonly utilized because of their good performance in small scale
training data. Others classification techniques like adaboost [28], bagging
[29] and cascade learning [23] were employed in the region classification stage
providing an improvement in accuracy. In [28, 29, 23] works metrics such as
error vs pseudo loss curve, typical error-rate and ROC-curve were utilized to
compare their results with other works respectively. In [28] authors defined
a sophisticated error measure called pseudo loss that focus the loss analysis
over specific miss-rate that are harder to discriminate.

Various datasets were born in the cradle of image challenges competition
starting from 2007. This type of competitions provided a huge number of
annotated images which filled the previous vacuum of lacking datasets for
evaluation in the community. Moreover, thanks to these challenges, strong
detectors algorithms with considerable performances in would be born in
the following years. Besides the images that they provided, also evaluation

9



metrics were created in order to assess the challenges winners. Among them,
one dataset that gained big popularity in the field is Pascal VOC [13] (See
section 2.2 for more datasets in Object Detection). [13] is an open dataset
utilized for benchmarking and training object detectors. After its creation
[13], most of the papers that applied or benchmarked their detector on the
dataset, began to assess their work with mean-average-precision (mAP). This
metric was introduced in the competition in 2007 1 as the core evaluation
metric.

Most of the traditional methods for object detection that achieved a good
performance applied feature descriptors to obtain embedding for a region of
interest. When good feature representations were applied with a robust re-
gion classifier, remarkable results [30] were achieved over Pascal VOC dataset
[13]. For instance, deformable part based machines (DPM) method algo-
rithms obtained the first place in the Pascal VOC competition from 2007-
2009. Getting more in details, DPM algorithms learn and integrate multiple
part models with a deformable loss, and mine hard negatives examples with
a latent SVM for training. Even though in 2008-2012 period in the Pascal
VOC challenge, competitors applied DPM approaches but gained minor im-
provement in every year that passed, thus leaving bare DPMs limitations.
Some of the limitations seen in the DPM methods can be summarized in the
following:

• a high numbers of proposals were generated in the first phase, even
redundant ones which led to a high number of False Positive during
classification stage. Furthermore, authors set the window scales heuris-
tically, and has constrains detecting various specific sizes of objects.

• capturing semantic relevant information in complex context was dif-
ficult. Researchers hand-crafted the feature detectors just using low
level visual cues [31, 32].

• the optimization along the pipeline was made separately. Hence not
achieving a whole optimal solution.

1Pascal VOC challenge: http://host.robots.ox.ac.uk/pascal/VOC/
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So far we have detailed more traditional algorithms that did not apply
handcrafted feature representation. However, in 2012 there was a transition
from these method to deep learning [33] approaches, which generated a huge
margin improvement in detectors.

Deep Convolutional Neural Network (DCNN) is a biologically inspired
structure for computing hierarchical features [34]. By applying DCNN in
image classification, works such as [35, 36, 37] achieved great performances.
AlexNet architecture [35] have become one of the most influential papers in
the area after achieving a nearly 50% reduction in the error-rate in the Ima-
geNet Challenge [38] dataset, which was unprecedented progress at the time.
Then, for object detection task, the pipelines that became the breakthrough
were R-CNN [39] and Faster R-CNN [40].

In Figure 2.1 a timeline of the discussed methods is provided in which
most recognized works, datasets and most-used metrics are ordered from
works that applied traditional handcrafted features till the most represen-
tative deep learning works. It is important to mention that the metrics in
the timeline are set in the year in which the first appearance in a Object
Detection work happened and not the year in which they were invented.

2.2 Object detection datasets and evaluation

metrics

In this section we provide a description of the most common benchmarks for
general object detection, and the evaluation metrics in these. Most of these
datasets were gather with goals of providing an annual challenge for CV
tasks (object detection, object sementation, instance segmentation). Thus,
metrics evaluations are also provided along with the datasets. We did not
add datasets for specific detection cases such as face detection or pedestrian
detection.

• Pascal VOC 2007 [42] is a mid scale dataset for object detection with
20 object categories. As in most benchmarking datasets, it has been

11



Figure 2.1: Timeline of the most recognized works (blue), datasets (green)
& evaluation metrics (orange). In 2012 there was a change from handcrafted
feature representation to Deep Convolutional Neural Network by the intro-
duction DCNNs for image classification by Krizhevsky et al. [35] with the
AlexNet pipeline. Source: adapted from [41]

separated in three groups: training, validation and test with 2,501,
2,510 and 5,011 images, respectively. In total there are 9,963 images
containing 24,640 annotated objects.

• Pascal VOC 2012 [42] is a mid scale dataset for object detection and
segmentation that has the same 20 categories of the previous Pascal
VOC2007, but with more images added. It has been splitted in training,
validation and test with 5,717, 5,823 and 10,991 images, respectively.
However, the annotation information of the test dataset is not available.
The train/val data has together 11,530 images containing 27,450 ROI
annotated objects and 6,929 segmentations.

• MSCOCO [43] is a large scale dataset for objects detection, panop-
tic segmentation and image captioning. There are various versions of

12



datasets depending of the year. The last and bigger dataset version
dates from 2018, splitted in training, validation and test, it counts
with 118,287, 5000 and 40,670 images respectively. MSCOCO18 has
a total of 860,001 + 6,781 annotations for training + validation sets.
The test set is not annotated though.

• Open Images [44] contains 1.9M images with 15M objects in 600 cate-
gories. In object detection purposes, only 500 most frequent categories
are used to evaluate detection benchmarks, and more than 70% of these
categories have over 1000 training samples [45].

• LVIS [46] is a new collected benchmark with 164,000 images and 1000+
categories based on MSCOCO 2017 [43] images with the original train-
validation-test split.

• ImageNet [47] is an important dataset with 200 categories in 516,840
high scale images.

• iSAID [18] is a large-scale dataset for object detection and instance
segmentation. The images are originally from aerial images from the
DOTA dataset [48], and the annotation is based in the MSCOCO for-
mat [43]. iSAID counts with 665,451 object instances for 15 categories
across 2,806 high-resolution images.

2.2.1 Evaluation metrics

In Table 2.1 we show a summary of the metrics used for evaluation in these
datasets. One of the most common metrics after the PascalVOC dataset
was mean Average Precision (mAP). For VOC 2007 [42], VOC 2012 [42] and
ImageNet [47], the metric Intersection-over-Union (IoU) threshold of mAP
is set to 0.5, and for MSCOCO [43] dataset, a variation of the mAP metric
is employed. For the latter [43] there is a variation of IoU threshold 0.5, 0.75
in mAP, and also MSCOCO distinguishes among the AP for object sizes
depending on the size (small, medium and large based on their pixel’s area).
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Sym. Meaning Description
IoU Intersection-over-union The IoU threshold to evaluate localization
D All predictions Top pedictions returned by the detectors with highest confidence score.
TP True Positive Correct predicions from proposals.
FP False Positive False predicion from proposals.
P Precision The ratio of TP out of total proposals.
R Recall The ratio of TP out of all positive samples.
AP average precision Obtain by computing e different levels of recall.
mAP mean average precision Average value of AP across all clases.
TPR True positive rate The ratio of positive rate over positive samples.

Object detection challenges metrics

mAP mean average precision

VOC 2007 & VOC 2012 mAP at 0.5 IoU threshold over all 20 classes
OpenImages mAP at 0.5 IoU threshold over 500 most frequent classes

MSCOCO & iSAID

APCOCO: mAP avg over ten IoU values
AP50: mAP at 0.50 IoU threshold
AP75: mAP at 0.75 IoU threshold
APS: APCOCO for small object of area smaller than 322

APM: APCOCO for object of area between 323 and 962

APL: APCOCO for large objects of area bigger than 962

Table 2.1: Summary of common evaluation metrics for object detection in
general image datasets. Source: modified from [41]

Just to remark, inference speed is usually used to evaluate detectors as
well. Nonetheless, we just considered detection accuracy metrics in this work
because of the nature of our framework analyzer.

2.3 Libraries, training & evaluation frame-

works

Nowadays, in order to train a detector, researchers have two main options,
implement themselves the detector pipeline for a CV task, or just make use
of already developed and optimized training framework.

In the first hand, the development of a detector’s pipeline is independent
of the programming language or library. There is not a single criterion for
determining the best development for deep learning. Each tool was designed
and built to address the needs perceived by the developers and also reflects
their skills and approaches to problems [50]. However,there have been certain
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Figure 2.2: Top open-source libraries for deep learning implementation. Top
open source deep learning libraries by Github stars and contributors, using
log scale for both axes. The color of the circle shows the age in days (greener
- younger, bluer - older), computed from Start date given on github under
Insights / Contributors. Source: [49]

preference of the community for the interpreted Python1 language for the
implementation of pipelines of general use [49]. In Figure 2.2 we can see a
top analysis of the most used open-source libraries used in the community
in GitHub2 open-code reposity. Along the top three most-used libraries that

1Python https://www.python.org/
2Github: https://github.com/
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has been written in Python, we can cite: TensorFlow1, PyTorch2 and Keras3.
On the other hand, a lot of effort has been incurred in the lasts years for

implementing generic training frameworks by the community. These frame-
works have been implemented by researcher in open and collaborative repos-
itories, and they made extensive use of the previous libraries. Most of the
detectors mentioned in the previous Section 2.1 are implemented and it is
possible to train pipelines for, besides our main focus object detection, differ-
ent CV tasks (image classification, and both image & instance segmentation).
The main advantages of these framework are that they have been tried for a
lot of contributors and are free of biases in their implementation and some
undesired bugs. Although some of these training framework are still green
in development and not all feature options or parameters have been devel-
oped, skilled researchers can put hand an small changes to the tools can
bring impressive results, instead of reinventing the wheel. Among the most
used training frameworks we can cite: MMDetection [17], Detectron2 [16],
maskrcnn-benchmark [51], simpledet [52] and matterport/Mask_RCNN [53].

An usual feature in these training frameworks is that, besides generat-
ing the training statistics and bounding boxes proposals, they provide some
basic statistics and broad evaluations metrics for users to understand their
training results. However, these values sometimes are not enough for a deep
evaluation and more sophisticated evaluation need to be done; it is here were
our proposed framework enter in the game (See Chapter 4 for the tool de-
tails). Some metrics provided by these training frameworks, such as mAP,
IoU, precision, recall are already summarized in Table 2.1 since most of the
evaluation techniques sourced were implemented from datasets toolkits.

In this work we have made extensive use of Detectron2 [16] and MMDe-
tection [16]. The author of this thesis have made various changes to MMDe-
tection in order to add features that later was applied to train models. The
changes made are out of the scope of this book.

As this work’s title claims, we propose an evaluation framework for Object
1TensorFlow: https://www.tensorflow.org/
2Pytorch: https://pytorch.org/
3 Keras: https://keras.io/
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Detection. The main difference between training framework and evaluation
framework is that the former mainly focus on training detectors and saving
their statistics as output, and the later focus in taking the training statistics
and generating insights from these; the output from training frameworks can
be used as input for evaluation frameworks.

Moreover, since skilled-coding researchers can rely on their own imple-
mentation of the pipelines, the statistic training inputs should be generated
through the libraries mentioned above.

2.4 Evaluation frameworks and similar works

There have been various works that have developed evaluation frameworks
in the field [54, 55, 15, 56], in this subsection we describe them and provide
the differences with our proposed tool with its features.

First of all, Mariano et al. [54] describe a tool named ViPER(Video
Performance Evaluation Resource), it is developed in JAVA1 and it has and
open-source code available online2. Authors implemented seven metrics vari-
ation based on base metrics, such as precision, recall, but adapted to the
video context, such that the metrics take into account the evolution of the
video frames for the computation of these metrics. This work falls out of the
scope of object detection in images.

Secondly, Wolf et al. [55] proposed a 3D performance graphs based on
precision, recall and harmonic mean metrics. The harmonic mean is lineal
combination of the precision and recall which allows to emphasize the min-
imum of of both values (check [55] for the formula). In order to generate a
fair comparison among detectors, a scalar single value is generated from the
3D graph, thus the score is used for comparison purposes. They have tested
their metrics over text recognition dataset ICDAR 2003 [57]. Even though
authors in that specific work declares that the metrics can be used for any
kind of object in object recognition with rectangles bounding-boxes, their

1JAVA https://java.com/
2ViPER source code: https://sourceforge.net/projects/viper-toolkit/files/viper-

toolkit/
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metrics have been applied only to text recognition works and not general
object detection.

Thirdly, Hoiem et al. [15] implemented a framework and proposed power-
ful new metrics for object detector analysis. The code is open-source written
in MATLAB1. They follow a fixed structure modular and the code specs all
the inputs for the datasets that needs extra annotations. Besides their pro-
posed metrics, basic metrics are not provided. Our framework implement all
the metrics in [15] plus the base metrics with Object-Oriented-Programming
(OOP) paradigm in Python2.

Last but not least, the most similar work to ours has recently been pub-
lished at the beginning of 2020. Authors in [56] developed a generic frame-
work for evaluation in Python2. They found the need to centralize the eval-
uation metrics for object detection tasks in order to standardize implemen-
tation for researchers. However, they centered their efforts in gathering only
metrics from four main challenges, specifically: Pascal VOC Challenge[58],
GoogleImageV4 [44], COCO Detection Challenge [43], ImageNet Object Lo-
calization Challenge [47]. The metrics implemented falls in the category of
base metrics in our framework, and have been cited in Table 2.1. In our
proposed framework, besides implementing the typical base metrics 2.1, we
provided all the metrics implemented for True Positive and False Positive
categories analysis [15]. Also, because some of the metrics implemented need
extra annotations, a tool was added in order to annotate these to image
datasets.

1MATLAB https://www.mathworks.com/
2 Python http://www.python.org
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Chapter 3

Evaluation metrics

In this chapter we present the theoretical background and definitions for
the most utilized metrics in CV for Object Detection. In Section 3.1 we
review the typical object detection’s metrics definition and formulas. Later,
in Section 3.2, more in-depth performance metrics are detailed.

3.1 Base Metrics

We summarize under the set of Base Metrics the most well-known and widly
user metrics for Object Detection. Before going deeper into the detail, it is
important to refresh some concepts (confusion metrics, true positives, false
positives, among others). In Machine Learning and in problems of statistical
classification is quite common to find a confusion matrix (also called error
matrix ) [59] describing predicted solution. This matrix shows the basic per-
formance of an algorithm: each row of the matrix represents the instances in
a predicted class, while the columns corresponds to the instances in an actual
class [60]. The confusion matrix name stems from the fact that it depicts if
the algorithm is mislabeling a class. In predictive analytics, a table of con-
fusion (sometimes also called a confusion matrix ), is a table with two rows
and two columns that reports the number of false positives, false negatives,
true positives, and true negatives.

In Table 3.1 we can find the typical confusion matrix which contains the
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Table 3.1: Table of confusion (or confusion matrix) [59].

following categories:

• True Positive (TP): equivalent to a hit.

• False Positive (FP): equivalent to a false alarm. A negative case that
was classified as positive.

• False Negative (FN): equivalent to a miss. A positive case that was
miss classified.

• True Negative (TN): equivalent to a correct rejection.

3.1.1 Intersection Over Union

Intersection Over Union (IoU) is a measure based on Jaccard Index [61]
that evaluates the overlap between two bounding boxes. It requires a ground
truth bounding-box Bgt and a predicted bounding box Bb. By applying the
IoU we can tell if a detection (or proposal) is valid (True Positive) or invalid
(False Positive). IoU is given by the overlapping area between the predicted
bounding box and the ground truth bounding box divided by the area of
union between them:

IoU =
Bb ∩Bgt

Bb ∪Bgt

(3.1)

Analogous to the formula in Equation 3.1, we illustrate the IoU between
a ground truth bounding box (in green) and a detected bounding box (in
red). Notice the area of union of both bounding boxes. Hence, an IoU of
1 implies that the predicted and the ground truth bounding boxes perfectly
overlap.
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When describing the IoU, it is usually defined along with what is called
threshold. The threshold is just a restriction value that defines what is the
minimum value of IoU that we consider to be a correct detection or True
Positive (TP). Depending on the metric, it is usually set to 50%, 60%, 75%
or 95%. We define below how the values in a confusion matrix are defined in
taking into account the IoU.

• True Positive (TP): A correct detection. Detection with IOU ≥ thresh-
old.

• False Positive (FP): A wrong detection. Detection with IOU < thresh-
old

• False Negative (FN): A ground truth not detected. For instance, when
a ground truth is present in the image and model failed to detect the
object.

• True Negative (TN): Does not apply. It would represent a correct
misdetection. In the object detection task there are many possible
bounding boxes that should not be detected within an image such a
the background. Thus, TN would be all possible bounding boxes that
were correctly not detected (so many possible boxes within an image).

3.1.2 Precision and recall

Precision and recall are metrics to evaluate the detection performance in
detectors. Precision is defined as the ability of a model to identify only
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the relevant objects. It is the percentage of correct positive predictions in a
certain class and is given by:

Precision =
TP

TP + FP
=

TP

All_detections
(3.2)

Recall (also known as Sensitivity or True-Positive-Rate) is defined as the
ability of a model to find all the relevant cases (all ground truth bounding
boxes). It is the percentage of true positives detected among all relevant
ground truths in a certain class and is formulated as:

Recall =
TP

TP + FN
=

TP

All_ground_truths
(3.3)

3.1.3 Precision-Recall curve

The precision-recall curve is a way to evaluate performance of an object
detector as the confidence value is changed in intervals by plotting a curve
for each object class [62].

An object detector of a particular class is considered good if its precision
stays high as the recall increases, which means that if you vary the confidence
threshold, the precision and recall will still be high. Another way to identify
a good object detector is to look for a detector that can identify only relevant
objects (0 FP = high precision), finding all ground truth objects (0 FN =
high recall).

A low performance detector needs to increase the number of detected
objects (increasing FP = lower precision) in order to retrieve all ground-
truth objects (high recall). For this reason, the precision-recall curve usually
starts with high precision values, decreasing as recall increases. A perfect
performance in a Precision-recall curve would be a curve that reach the
right-top-corner; the closer the curve to the top-right corner, the better.

In Figure 3.1 an example of this metrics is depicted along three different
classes. This figure was generated by our DME framework after evaluating
a detector result. In this case, the airplane class (blue lines) performs better
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Figure 3.1: Precision Recall Curve example. The airplane class (blue lines)
performs better than the other classes as the confidence value decreases. On
the other hand, the chair (green lines) class perform worse. Source: DME
framework.

than the other classes in the graph as the confidence value decreases. On
the other hand, the chair class performs worst among them. Notice that the
lines in read is an average among the three classes. This kind of curve is
utilized within the PASCAL VOC 2012 challenge [58] as metric evaluator.

3.1.4 Average precision & mAP

Another form for comparing the performance of object detectors is to calcu-
late the area under the curve (AUC) of the Precision- Recall curve. As AP
curves are often zigzag curves going up and down, comparing different curves
(different detectors) in the same plot usually is not a trivial task because the
curves tend to cross each other much more frequently. Thus, a numerical
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metric such as Average Precision (AP) is a better option to compare the
overall performance different detectors. In practice AP, is the precision av-
eraged across all recall values in the range [0-1].

From the AP the mean-Average-Precision (mAP) is obtained. The well-
known metric mAP corresponds to the mean of the AVs along all classes
analyzed by a single detector in a single running.

There are two ways of calculating the AP. The first method is done by
calculating 11-points of interpolation, and the second method is computed by
calculating the interpolation of all points in the precision-recall curve. The
last method is the one that has been used in the Pascal VOC Challenge since
2010 [58].

3.1.4.1 Interpolating 11-points method

The 11-point interpolation tries to summarize the shape of the precision-
recall curve by averaging the precision at a set of eleven equally spaced recall
levels [0, 0.1, 0.2, 0.3, ... , 1] [13].

AP =
1

11

∑
r∈{0,0.1,...,1}

pinterpol(r) (3.4)

with

pinterpol(r) = max
r̃:r̃≥r

p(r̃) (3.5)

where p(r̃) is the measured precision at recall r̃. The AP is obtained by
interpolating the precision only at the 11 levels taking the maximum precision
whose recall value is greater than .

3.1.4.2 Interpolating all points method

The second method consisting in all points defined in the following equation:

1∑
r=0

(rn+1 − rn) pinterpol(r) (3.6)
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with

pinterpol(r) = max
r̃:r̃≥rn+1

p(r̃) (3.7)

where p(r̃) is the measured precision at recall r̃ [13].
In this case, instead of using the precision observed at only few points,

the AP is now obtained by interpolating the precision at each level, taking
the maximum precision whose recall value is greater or equal than its current
recall value. Hence, the area under the curve is obtained. In the Figure 3.2
a visual example on how the total interpolation looks like over a Precision-
Recall graph. This last option is the one implemented in the DME framework.

Figure 3.2: Average-Precision total interpolation example. From this graph,
the Area-under-the-curve is obtain to finally computer the AP.
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3.1.5 ROC curve

As it was mentioned in Chapter 2, a useful tool when predicting the proba-
bility of a binary outcome is the Receiver Operating Characteristic curve or
ROC curve.

Basically, the ROC curve is a plot of the false positive rate (x-axis) versus
the true positive rate (y-axis) for a number of different threshold values in
range [0.0 - 1.0]. In other words, it plots the false alarm rate versus the hit
rate.

The True Positive Rate (TPR) is an alternative name for the recall or
sensitivity. As defined in Equation 3.3, it is calculated as the number of
true positives divided by the sum of the number of true positives and the
number of false negatives. It describes how good the model is at predicting
the positive class when the actual outcome is positive.

The False Positive Rate (FPR) can be defined as:

FPR =
FP

FP + TN
(3.8)

It is also called the false alarm rate as it summarizes how often a positive
class is predicted when the actual outcome is negative.

The ROC curve importance relies on the fact curves of different models
can be compared directly in general, or even for different thresholds. More-
over, the area under the curve (AUC) can be used as a summary of the model
performance.

When we predict a binary outcome, it is either a correct prediction (TP)
or not (FP). There is a tension between these options, the same occurs with
TN and FN. In general, good models are represented by curves that bow up
to the top left corner of the plot. The closer the lines to the top-corner, the
better. See Figure 3.3 for a simple example.
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Figure 3.3: ROC curve graphs the TPR vs FPR. Lines for a poor Classifier
(blue dotted lines) and a Logistic Regression Model classifier (orange lines).
Source: modified from [63]

3.2 Other performance metrics

In this section we introduce more specific metrics that allows in-depth assess-
ment in object detection. Based on the metrics in [15], we have implemented
the evaluation platform that take as a base project the metrics in [15]. The
work in [15] analyses metrics for False Positive (FP) and True Positives (TP)
cases.

3.2.1 Analysis of False Positives

False positives (FP) are one of the major types of errors found when analysing
computer vision detectors. The work in [15] addressed the category of FP
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depending on the value of the IoU (overlap) with the ground truth object.
They types of FPs are classified as follows:

1. Localization error an object from the target category is detected with
a misaligned bounding box (0.1 <= IoU < 0.5). Duplicate detections
(two or more detections for the same object) are also included in this
category.

2. Confusion with similar objects, when the IoU is at least 0.1 and it
is confused with an object in the same category. In the Figure 3.4
examples of this scenario is seen. All the detections were confused with
objects from similar category to cow from the PASCAL VOC 2007
categories. Images source: Pascal VOC 2007 [13].

3. Confusion with dissimilar categorized objects when the overlapping ra-
tio is at least 0.1 and the object corresponds to a different category.

4. Confusion with background or other not labeled object.

For items 2 and 3, a previous grouping of similar object categories is
necessary. For example, in Pascal VOC dataset [13] the following semantic
categories were created: all vehicles, animals including persons, furniture
chairs, dining tables, sofas, flying objects aeroplanes, birds. Examples of
these metrics analysis can be found later in in Chapter 4, in which the metrics
implementation are explained.

Figure 3.4: Confusion with similar object examples. In these pictures all the
FP detections were confused with objects from similar category to cow from
the PASCAL VOC Category.
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3.2.2 Analysis of True Positives

Just to recall, false negatives (FN) are ground truth objects that are detected
with a low confidence or completely missed by the detector. On the other
hand, true positives (TP) are objects proposals that were correctly detected.
According to [15], we can analyze certain intuitive characteristics in images
that may cause a detector not to detect objects correctly or miss them com-
pletely. Thanks to these metrics, it is possible to analyze both TP and FN
at the same time. These characteristics in the images could be:

1. Occlusion: when a part of an object is obscured by another surface.
Possible classifications are as follows: N (none), L (low), M (medium),
H (high). In the Figure 3.5 the difference among these levels can be
seen.

2. Truncation: when a part of an object is outside the image. Options: N
(not truncated), T (truncated). Check Figure 3.6 for picture examples.

3. Bounding-box area: Object size is measured as the pixel area of the
bounding box. It is formulated as the product of width-height. Ac-
cording to their size, they can be classified into: XS (extra small), S
(small), M (medium), L (large), XL (extra-large).

4. Aspect ratio: opposite to the previous metrics, the Aspect ratio corre-
sponds to the width-height ratio. Possible classifications are as follows:
XT (extra-tall/narrow), T (tall), M (medium), W (wide), XW (extra
wide).

Figure 3.5: Examples of occlusion levels in airplanes. Levels: N (none), L
(low), M (medium), H (high). Source: Pascal VOC2007 [13] dataset
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Figure 3.6: Examples of two truncated cats in two images. Truncation occurs
because the object is stays out of the boundaries in an image. Source: Pascal
VOC2007 [13] dataset

5. Parts visible: it defines whether a certain part an object is visible.
This depend specifically on the physical characteristics of the object.
For instance, possible options for a cat class can be: body, ear, face,
leg, tail. In Figure 3.6 both cat faces and ears are visible, but not their
tails and either their four legs.

6. Viewpoint : tells the point-of-view of object position in the image. Pos-
sible options are: bottom, front, rear, side. Still we can add more
point-of-view according to our needs.

For metrics such as occlusion, truncation and part-visiblity some extra
annotations in the metadata dataset are needed. Usually such information is
not provided in the regular images dataset. Thus, researchers in [15] had to
extend the dataset adding the options cited above, except for the truncation
metric which is already provided in the Pascal VOC [13]. This task was done
by the same person in order to avoid subjectivity and potential biases.

3.2.3 Normalized precision measure

In subsection 3.1.4 and subsection 3.1.5 we defined the typical definition of
AP and ROC curve, respectively. When we want to analyze sensitivity of
objects characteristics this metrics are not enough. AP is sensitive to the
number of positives samples, and ROC curves are tough to summarize. In
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[15] they proposed a way to normalize precision so that a comparison along
with objects characteristics can be done fairly.

Based on the Equation 3.3 of recall and the Equation 3.2 of precision, it
is true that:

P (c) =
R(c).Nj

R(c).Nj + FP
(3.9)

where:

P (c) = precision, fraction of correct detections
R(c) = recall, fraction of objects detected
Nj = number of objects in the class or all Ground Truths
F (c) = number of incorrect detections or False-Positives

Thus, according to [15], in order to apply a comparison among objects
with various number and because of class imbalance [64], Nj should be nor-
malized to a general value N . Hence, the normalized precision PN can be
defined as:

PN(c) =
R(c).N

R(c).N + FP
(3.10)

where Nj corresponds to the previous normalized Nj.
For PASCAL VOC 2007 [13], [15] proposed a value of N = 0.15 which is

close to the average of Nj over all object in the 20 categories in the dataset.
Moreover, by just computing a simple average of the normalized precision PN

we can obtain the average normalized precision APN . This normalization is
crucial for the computation and class comparison along TP and FP metrics
later explained in Chapter 5.
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Chapter 4

The tool

In this chapter we present the framework tool named as Detector Metrics
Evaluator (DME). In Section 4.1 we describe the architecture of DME. Then,
in Section 4.2 the tool design is outlined, and in the followed Section 4.3,
implementation details are explained. In Section 4.4 we provide a short
example on how to make use of the framework.

4.1 Framework analysis architecture

The proposed DME framework tool can be seen as a box that takes inputs
data, make analysis from these and then generates graphs and reports. In
Figure 4.1 an outline of the tool can be observed.

Firstly, two types inputs must be provided to the tool in order to work:
ground truth and detection proposals. The ground truth corresponds to the
actual dataset annotated with bounding-boxes. In Section 2.2 we cited a
number of open datasets available in the literature. Then, the second input
to provide are the detection proposals or object proposals that the trained
model generates as output when applied for inference on a set of images.
This data can come from one of two sources:

• Researches own-implementation of pipelines that like to code from zero.
The most common approach is to utilize python libraries, such as Ten-
sorflow or Pytorch.
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Figure 4.1: General architecture of the DME framework analysis. It can be
seen as a box that receives input and generates outputs. The inputs: Ground
Truth (from datasets), and Proposals (generated by detectors implementa-
tions). As outputs it generates the analysis as graph or reports.

• Already implemented training frameworks, such asMMdetection [17] or
Detectron2 [13] (See section 2.3 for libraries and training frameworks
details). Probably this is the most preferred method for nowadays
researchers.

Secondly, in the center of Figure 4.1 we have the DME Analysis Frame-
work which was designed to be scalable and usable. It is implemented in
Python language. The types of Analysis that can be executed are divided
into three groups: base metrics, true Positives and false Positives. More
details would be given in the following subsections.

Finally, the DME outputs correspond to the graphs and reports generated
thanks to graphic libraries that are used along with other Python libraries.

In the following section we explain the DME design, and later, the im-
plemented metrics are described in detail.
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4.2 DME design

The DME tool was designed applying basic Object Oriented Programming
(OOP) paradigm. Because of the relative simplicity of the code, two main
classes were generated: Analyzer & Dataset.

Figure 4.2: Class diagram from DME. There are two basic classes: Ana-
lyzer(a) and Dataset(b). The later is implemented for each type of dataset
format.

In Figure 4.2 a class diagram from the DME design is depicted. First of
all, the class Analyzer, which implements the AnalyzerInterface, is in charge
of the whole analysis and graphics drawing tasks using the data from the
Dataset class. The Analyzer receives an instance of the Dataset class when
an instance is created. Analyzer implements every metric through their pri-
vate and public methods, and calls the public methods from Dataset instance.
The class was implemented taking as the core dataset PASCAL VOC [13].
We decided this because the metrics from the groups True Positive and False
Positive based in the implementation from [15] were already implemented
with this format [13]. Moreover, PASCAL VOC 2007 [13] counts with one
more attribute than MSCOCO [43]; the truncation attribute. This is con-
venient because one more analysis is possible to execute in this way (See
subsection 4.3.2 for more details about the metrics implemented).
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Secondly, the class Dataset inherits from the interface with the same
name. Even though only one class inherits from the interface, we considered
appropriate to add it to the design since we wanted to let researchers the
possibility to add others implementations of analyzer with others formats
and options. Dataset goal is to save the path parameters from both, ground-
truth from bounding boxes, so it can load the data into memory and save
the data to a dictionary in a specific format so that Analyzer can make use
of it. As can be seen in Figure 4.2.(b), an implementation for every dataset
format is needed. Currently there are two formats implementations of dataset
available: DatasetVOC and DatasetCOCO which implements PASCAL VOC
[13] and MSCOCO [43] formats, respectively.

4.3 DME implementation

In this section we state the implementation details from the language used
to the main analysis methods and parameters.

4.3.1 Programming language

Based in the design explained, DME was implemented in Python1 language.
We have chosen Python as the language for implementation because of the
following reasons:

• Python is an interpreted language and it has been one of the most
preferred by the Deep Learning research community [49]. Thus, inte-
gration with other modules from other Deep Learning tools would be
an added advantage.

• The language flexibility allows to apply Object Oriented Programming
(OOP) principles.

• Python code readability can help to ease researchers tasks. When ap-
plying coding standards such as PEP8 2 when coding, it increases its

1 Python http://www.python.org
2 Python PEP8 https://www.python.org/dev/peps/pep-0008/
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readability and contribute to its usability.

4.3.2 Metrics implemented

In this subsection we detail the metrics that have been implemented within
DME framework. These have been classified into three groups as follows:
base metrics analysis, true positive analysis and false positive analysis.

We implemented part of the DME platform based in metrics evaluation
in [15]. The work in [15] analyses metrics for True Positive (TP) and False
Positive (FP) cases which have been included in the groups with the same
name.

4.3.2.1 Base metrics analysis

In this group we added all the base metrics that have been widely applied in
the field of object detection such as precision and accuracy recognition (see
Table 2.1). The base metrics are as follows:

Intersection-over-Union
As it was described in Subsection 3.1.1, Intersection-over-Union (IoU) de-
fines intersection between the Ground-truth object and the Bounding-Box
proposal, divided by the union of the same two. Even though no graphic was
generated for this metric, the computation of it is done when other method
are called and use as a base this metric. IoU implementation was based the
formulas in Equation 3.1.

Average-Precision
The AP is a metric that helps to evaluate the overall performance of a detec-
tor (see Subsection 3.1.4). In our proposed framework the AP and mean-AP
are both calculated. In order to apply this calculation, precision and recall
are calculated first based on Equation 3.2 and Equation 3.3, respectively.
Later, the computation of the AP and mAP are both based in the formulas
of Equation 3.6 and Equation 3.7 taking into account the last implementa-
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tion of the PASCAL VOC 2012 Challenge [58]. The result is then saved for
the analysis for the following metrics.

Precision-recall curve
The precision-recall curve allows to evaluate a detector performance by plot-
ting the precision (y-axis) and recall (x-axis) lines while the value of the
confidence is decreased; the closer the line to the top-right, the better (see
Subsection 3.1.3).

Figure 4.3: Precision-recall curve output after executing method anal-
yse_precision_recall_per_class().

There are two methods that can be invoked to obtain the Precision-Recall
analysis:

• analyse_precision_recall(): returns the overall precision-recall curve
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by analysing all the classes in the dataset, and theses classes are taken
as one. It allows to evaluated the overall performance of a detector.

• analyse_precision_recall_per_class(category_selected=, images_grouped=):
generates the precision recall per class. It might need two not mandatory
parameters:

category_selected : an array of classes indicating the classes to draw
the curves. If it is not specified, it takes the first six classes in the
dataset ordered by name.

images_grouped : flag to generate the P-R curves in just a single
image, or separated images. By default, it is set to True.

After calling analyse_precision_recall_per_class(category_selected=..., im-
ages_grouped=...), a graph such as in Figure 4.3 is generated.

4.3.2.2 True Positive metrics implementation

In subsection 3.2.2 we explained all the types of TP analysis that can be done
based on the work [15] along with their parameters and their graph output.
A brief description of the graph is discussed to depict how can the metric be
used. As it was already mentioned before, the APn (AP normalized) version
is applied here, and all metrics in the TP analysis group make use of it (see
subsection 3.2.3 to recall the APN formula).

Before getting into the methods details, we introduce here their common
parameters. Since all methods invoke the respective analysis and generate
its corresponding graph, each of them receives the same optional parameters.
These parameters are:

• category_selected : an array of string with the classes names. If it is
not set, the first six classes in the list are taken.

• graph_localization_level : it defines the localization criteria to consider:
’strong’ or ’weak’. ’Strong’, the default value, considers the dupli-
cate detection as localization errors, otherwise with the’weak’options,
it does not.
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The following TPs metrics have been implemented:

Occlusion
The occlusion method checks how has been the performance for a class in
occluded and non-occluded objects. To generate the analysis, just call the
method analyze_occlusion(), and the graph as in Figure 4.4 would be gen-
erated. In the graph we can check the APn value in the Y-axis, and in the
X-axis, the possible options of the occlusion according to the class (see sub-
section 3.2.2 for the occlusion options). The blue lines link the performance
depending on the options APn score. The dotted black horizontal lines in-
dicates the average APn per class. Last but not least, the red vertical lines
specify the standard error. As an example, this detector had problems iden-
tifying High-Occluded airplanes, instead it had no problem with identifying
None-occluded airplanes. Furthermore, along the seven classes, the bicycle
category showed more robustness against occlusions. It achieved only 0.69
APn for the lowest performance in the occlusion options.

Truncation
The truncation method checks how has been the performance for a class
with truncated and non-truncated objects. To generate the analysis, just
call the method analyze_truncation(), and a graph as in Figure 4.5 would
be generated. Analogous to the line-colors in the previous analysis, in this
graph example we can check that most classes were better identified when
there was no-truncation in their images. Among them, the cat class was no
susceptible to truncation. Moreover, the class table that worked remarkably
even better with truncation. The chair class was the most susceptible to
truncation and also the worst performing one.

Bounding-box area
The Bounding-box area method analyzes the performance level of a detec-
tor depending on the object pixels area per class. Call the method ana-
lyze_bbox_area(), and the graph such as in Figure 4.6 would be generated.
The line colors are the same than in the previous analysis. The sizes ranges
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Figure 4.4: Occlusion graph generated after executing method ana-
lyze_occlusion(). In the X-axis the occlusion options per class are shown:
None, Low, Medium, High. The Y-axis shows the APN . Black dashed lines
indicate overall APN . Standard error bars are in red.

are listed below the graph according to the categories. These ranges are the
result of the product width-height, thus they are measured in square-pixels.
Figure 4.6 shows an example, the line-colors are the same than in the previous
analysis. In the example, we can observe that the classes airplane, cat and
table had the same increasing performance when varying from extra-small to
extra-large area sizes. From this type of graph, one could infer for example,
that the bigger is the object the easier it is to identify it; or find that at a
certain threshold, the size of the object does not provide any improvement.
This could help us to tune the model up or add some more images with a
certain size to the dataset to improve.

Aspect ratio
The aspect-ratio method analyzes the performance level of a detector de-
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Figure 4.5: Truncation graph generated after executing method ana-
lyze_truncation(). The X-axis options are: N (Non-truncated), T (Trun-
cated). The Y-axis shows the APN . Black dashed lines indicate overall APN .
Standard error bars are in red.

pending on the object aspect-ratio (width/height). Call the method ana-
lyze_aspect_ratio(), and the graph as in Figure 4.7 would be drawn. Anal-
ogous to the line-colors in the previous analysis, in the example we can ob-
serve that bicycles with extra-thin characteristic where less identified along
the other aspect ratio classification. Its best performance was acquire with
the Medium classification (ranges [0.87-1.43]). That means bounding-boxes
closer to a perfect square aspect ratio basis.

Parts visible
The Parts-visible method analyzes the performance level of a detector de-
pending on what part of the object is seen in the images. Calling the method
analyze_parts_visible() to make the analysis and a graph as in Figure 4.8
would be drawn. The line-colors are the same than in the previous analysis.
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Figure 4.6: Bounding-box area graph generated after executing method an-
alyze_bbox_area(). The X-axis options are: XS (extra-small), S (small), M
(medium), L (large), XL (extra-large). The Y-axis shows the APN . Black
dashed lines indicate overall APN . Standard error bars are in red. Sizes
ranges are listed below the graph according to the categories in square-pixels
unit.

The X-axis shows the parts that depend on the class category. Notice that
in the example airplanes have four parts (body, head, tail, wing), and tables
only two (table-leg, table-top). We can see in the case of airplanes that for
all the four parts, when they are visible the accuracy improves, also that
the parts that were not seen in the images that compromise the most the
performance are head and wings. With this type of graph we could under-
stand and discriminate which are the parts of the object that makes it more
recognizable, and have the most relevance for a detector in order to identify
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it.

Viewpoint
The viewpoint method analyzes the performance level of a detector depend-
ing on which side of the object is seen in the images. That means, what
point-of-view is adopted in the line sight to the object. Calling the method
analyze_sides_visible() to make the analysis and a graph as in Figure 4.9
would be the output. Analogous to the line-colors in the previous analysis,
in the example we can observe that airplanes more or less had the same
performance depending on which angle was seen in the image (≈ 0.86 APn

in average). In the case of the table class, we can see that the absence of the
top point-of-view is the one with the higher negative impact in performance

Figure 4.7: Aspect ratio analysis graph generated after calling method ana-
lyze_aspect_ratio(). The X-axis options are: XT (extra-thin), T (thin), M
(medium), W (wide), XW (extra wide). The Y-axis shows the APN . Black
dashed lines indicate overall APN . Standard error bars are in red. Sizes
ranges are listed below the graph according to the options.
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Figure 4.8: Parts-visible analysis graph generated after calling method an-
alyze_parts_visible(). The X-axis indicates the visible parts of an object
which depends on category. The Y-axis shows the APN . Black dashed lines
indicate overall APN . Standard error bars are in red.

which is remarkably noticeable. Cases like this might urge to the researcher
how to improve it, or if that is even relevant for his/her particular use case.

Sensitive and Impact over the overall AP
The sensitive and impact plot is summary graph that joins all the values
from the previous analysis into one. The goal of this is to show how would
improve the overall APn if a certain metrics is improved to the maximum
and no misses occurs. In Figure 4.10 an example of the graph is showed.

In the figure, there are two values showed for each analysis. The maximum
and minimum represent the performance in each type of metrics. The average
values is computed among all the evaluated classes. The difference between
the maximum value and the minimum value represents the sensitiveness, and
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Figure 4.9: Viewpoint analysis (or sides visible) graph generated after calling
method analyze_sides_visible(). The X-axis indicates view points options
which depends on the object category analyzed. The Y-axis shows the APN .
Black dashed lines indicate overall APN . Standard error bars are in red.

the difference between the maximum value and the average corresponds to
the impact over the APn. For instance, we can see that in the Figure 4.10,
the detector is more sensitive to occlusion (0.87 - 0.446 = 0.424). Moreover,
the metric which can be improved the most is size, which can get to reach
an impact of 0.111 APn. This graph is usually more useful when comparing
more than two detectors in general.

All True Positives metrics
If you want just to execute all the possible True Positives (TP) methods,
you can just call analyse_all_true_positives() which would execute all the
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Figure 4.10: Sensitive and Impact analysis graph generated after calling
method analyze_avg_sensitivity_impact_plot(). The X-axis indicates the
type of evaluation. The Y-axis shows the APN . Black dashed lines indicates
the overall APN . Difference between max value and min value indicate the
sensitiveness; difference between max value and the average corresponds to
the impact over the APn.

methods explained previously withing TP analysis group. Moreover, it is
possible also to gather all the previous TPs analysis in a single graph grouped
by class. In Figure 4.11 an example of a grouped graph of the class chair
in PASCAL VOC 2007 [13] is showed. If you need this last graph, it can
be invoked by the method analyze_tp_per_class(). This last method would
generate a graph such as in the figure for each class.

4.3.2.3 False Positive analysis

In subsection 3.2.1 the FPs analysis categories were explained. There are
two types of FPs analysis that can be called: analyse_fp_impact() and anal-
yse_fp_trending(). These two methods method receives the same parameters
as the TPs analysis above.
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Figure 4.11: True Positive analysis per class generated after calling method
analyze_tp_per_class(). The X-axis options depending of the metrics eval-
uated. The Y-axis shows the APN . Black dashed lines indicate overall APN .
Standard error bars are in red.

First, The method analyse_fp_impact(), after producing the analysis,
draws two types of graphs per each class. An example can be seen in the
Figure 4.12 in which two analysis were carried; each analysis is composed of
two graphs. The pie shows the fraction of top-ranked false positives that are
due to poor localization (Loc), confusion with similar objects (sim), confu-
sion with other category (Other) or confusion with background or unlabeled
objects (BG). Moreover, the horizontal bar displays the absolute AP improve-
ment by removing all FPs of one type. B removes confusion with background
and non-similar objects. The first L part segment display improvement if du-
plicate or poor localizations are removed; the second displays improvements
if the localization error were corrected, this means turning FPs into correct
detections.

To give a brief comparison between the two classes, in the Figure 4.12
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we can observe that the airplane category would have a better improvement
of 0.06 AP if all localization errors are corrected, rather than in the cat
category which just would improve in 0.034 AP. This also can be reviewed
when observing the two category’s pies. There are more Location errors in
the airplane class than in the cat category in general.

Figure 4.12: False positive impacts analysis generated after calling method
analyse_fp_impact(). It draws two different types of graphs. The pie shows
the percentage of FP depending on the category. Bar graphs display absolute
AP improvement by removing all FP of one type. B: removes confusion with
background and non-similar objects. L: the first bar segment displays im-
provement if duplicate or poor localization are removed; the second segment
in lighter blue display improvement if the localization error were corrected,
turning false detections into positives.

Sencondly, the method analyse_fp_trending() generates an analysis in
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how the trending occurs while the FP cases where identified during the anal-
ysis. This analysis draws two different types of graphs. The stacked-area
shows the accumulated percentage of FP versus the number of FP cases pre-
sented in cuts of: 25, 50, 100, 200, 400, 800, 1000, 3200. These figures were
chosen in order to make comparable the different graphs from all the classes.
The scatter plot represents the same information as the graph above, but not
in an non-stacked way basis. These graphs could be useful in order to under-
stand the behaviour of false positive per class specific in the specific dataset.
In the Figure 4.13 we can see an example of these graphs in airplanes and
cat classes as in the previous analysis.

Figure 4.13: False positive trending analysis generated after calling method
analyse_fp_trending(). It draws two different types of graphs. The stacked-
area shows the accumulated percentage of FP vs the number of FP cases.
The scatter plot represents the same information as the graph above, but not
stacked.
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4.4 Brief Tutorial

In this section we show a brief tutorial on how to call the previous methods.
DME have been developed thinking in researchers that would like to improve
their detector rather than working on the evaluation tool modification. As
can be seen in Code Snippet 4.1, we only need to follow the steps below:

1. Import the classes: Analyzer and DatasetVOC/DatasetCOCO.

2. Provide the path parameters for the Dataset class.

3. After generating an instance of the Analyzer, you can call load() with
the analyzer instance. Load() will check the paths and, according to
the annotations available, it will load the data into memory.

4. Call any analysis you would like try from the previous section. You can
also call analyse_all_true_positive() or analyse_all_false_positive()
which would proceed to analyse every metric possible, according to the
dataset available. In case that a metric might not be possible to run
because of the lack of some extra annotation, the user would be notified
in this case.

1 from dme import DatasetVOC , Analyzer

2 ...

3 my_dataset = DatasetVOC(dataset_gt_param =[path],

4 proposal_path =[path])

5

6 my_analyzer = Analyzer(’my_analyzer ’, my_dataset)

7 my_dataset.load()

8 my_analyzer.analyze_occlusion () # call the analysis

9 my_analyzer.analyze_all_true_positive ()

Snippet 4.1: DME snippet sample.
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Chapter 5

Testing & Results

In this chapter we present the testing and results obtained with our devel-
oped framework Detector Metrics Evaluator (DEM). First, we present three
testings settings in Section 5.1. Then, the training and validation of the
three settings are described in Section 5.2. Finally in Section 5.3, the testing
results are presented for the three testing scenarios.

5.1 Testing settings

In order to test the DME framework we propose three testing settings sum-
marized in Table 5.1. The main goal of these three configurations is to prove
the independence of DME with respect to the the training framework and
datasets.

For these Settings, two different datasets were utilized. Firstly, the well-
known Pascal VOC 2007 [13] is a mid-scale dataset for general object classifi-
cation and detection divided in 20 categories. The three splits (training, val-

Dataset Pipeline Training Framework
Setting 1 Pascal VOC 2007 FasterRCNN: R50-C4 Detectron2
Setting 2 Pascal VOC 2007 FasterRCNN: R50-FPN MMDetection
Setting 3 iSAID FasterRCNN: R50-FPN Detectron2

Table 5.1: Training settings summary.
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idation and tests) counts in total with 10,022 images annotated with 24,540
objects. Secondly, iSAID dataset is a large-scale dataset for object detection
and instance segmentation. The images are originally to aerial images from
the DOTA dataset [48], and the annotation is based in the MSCOCO format
[43], which DME implemented. iSAID counts with 665,451 object instances
in 15 categories across 2,806 high-resolution images.

Regarding the two training frameworks employed, on the first hand, De-
tectron2 [16] is one of the most used ones because of its speed and relative
good documentation available online. It is developed and maintained by
Facebook Research Lab 1 based on PyTorch 2. On the other hand, MMDe-
tection [17] is an open source object detection toolbox also based on PyTorch
2. It is part of the OpenMMLab project developed and maintained by the
Multimedia Laboratory, CUHK (Chinese University of Hong Kong). Both
are well-known projects with their own pros and cons.

5.1.1 Hardware settings

The hardware settings of the running machine was an instance of Ubuntu
18.0.4 Server deployed over Docker. The processor was an Intel(R) Core(TM)
i9-9900K CPU @ 3.60GHz with 64GB of memory. The server counted with
two NVIDIA GeForce RTX 2080 Ti 3 with 11GB each. The dataset was
stored in a Solid-State-Drive (SSD) to improve read/write latency.

5.2 Training & validation

In this section we are going to describe each setting training and validation
from Table 5.1.

1https://github.com/facebookresearch/detectron2
2https://pytorch.org/
3https://www.nvidia.com
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5.2.1 Setting 1: Detectron2

For training and validation using the PascalVOC 2007 dataset, we applied
the weights from a model that was already trained & validated in both Pas-
calVOC 2007-2012 (train-val sets) available in the repository from the train-
ing framework 1. According to the log in the previous repository, the model
reached a mAP of 51.9% over the testing dataset.

5.2.2 Setting 2: MMDetection

The MMDetection [17] pipeline was trained from a pretrained baseline
ResnNet50 (48 Convolution layers along with 1 MaxPool and 1 Average Pool
layer). We run 20 epochs, from which the best epoch turn out to be the
iteration number 11. This last achieved a 65.70% mAP performance over the
validation dataset, which was the one used for the testing purporses. The
initial learning rate was set to 0.01.

5.2.3 Setting 3: iSAID dataset

We let Detectron2 to train the instances for 100,000 epochs for the Faster
RCNN pipeline [40] over iSAID training dataset (1411 high-scale aerial im-
ages). Since the 11Gb memory from our available GPU were not enough
to fit the high-resolution images for the runnings, we patched the images
into 800x800 pixels sizes. During training, we applied transfer learning [65]
by using the weights from a pretrained setting of the same pipeline over
MSCOCO dataset [43]. Even though we did not necessarily aim to get a
high precision accuracy in the training due that this testing were oriented
to test DME framework, the last epoch achieved an mAP of 39.8% over the
iSAID validation dataset. The initial learning rate was configured to 0.001.

1https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md
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5.3 Test results

In this section we present our testing inference running & the analysis over
the three proposed settings. In subsection 5.3.1 the TP analysis for both
Setting 1 and Setting 2 are showed. Then in the following subsection 5.3.2
a FP evaluation is explained. A discussion of the previous TP and FP is
outlined in subsection 5.3.3. Finally in subsection 5.3.4 a last testing result
is showed for Setting 3.

5.3.1 Setting 1 & Setting 2: True Positives Analysis

In this section, the True Positives Analysis for both Setting 1 (S1) & Setting 2
(S2) are showed. The goal is to test the DME framework with results coming
from different training-frameworks (S1, Detectron2 [16] and S2, MMDetec-
tion [17]) to prove the neutrality of our tool with respect to the training
framework. Even though the results were grouped, there are not intentions
to compare both S1 and S2 settings considering that the parameters and
number of training were not even similar.

5.3.1.1 Aspect ratio

In Figure 5.1 we can see the results of the Aspect Ratio (width/height ratio)
analysis in both Setting 1 (S1) and Setting (S2). Both detectors had their
best performance identifying the cat class. Nevertheless, both had problems
identifying chairs. If we check the class airplane in both graphs, we see that
S1 performed better when the airplane had thin aspect, but S2 preferred
extra-wide airplanes. Overall we can see that in both settings, the classes
behaved similarly.

5.3.1.2 Truncation evaluation

In Figure 5.2 we can see the truncation analysis for both Setting 1 (S1) and
Setting (S2). If we compare an overall behaviour of both settings detector
we can see that every class except airplanes had the same behaviour. We can
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(a) Setting 1: Aspect Ratio

(b) Setting 2: Aspect Ratio

Figure 5.1: Setting 1 & 2: Aspect ratio evaluation from 7 classes: airplane,
bicycle, bird, boat, cat, chair, table. Pascal VOC 2007 dataset [13].

55



see that S1 preferred non-truncated airplanes, while S2 identified truncated
ones better.

5.3.1.3 Occlusion Evaluation

The occlusion assessment is showed in Figure 5.3. For both Setting 1 (S1)
and Setting 2 (S2) detectors the classes bicycle, bird, chair and table had the
same descendant behaviour for the identification of the occlusion category
(see that blue form). Both S1 and S2 identify bicycles better when they have
low occlusion (probably when there is a person riding the bike). Moreover,
the worst performance in the same category occurs when medium-occlusion
was present.

5.3.1.4 Bounding-box area evaluation

In Figure 5.4 we can observe the graphs from the Bounding-Box area evalua-
tion. The area is defined as the product width-height. In setting 1 (S1), the
airplane class had a 100% performance when identifying areas in the range
Large [63,441-114.958 ps] (notice the options range below the figure). While
for the same class Setting 2 (S2) achieved a 95%. Moreover, if we focus on
the boat category, S1 achieved a great performance in various of the area
sizes with an average of 0.79 APN . Nonetheless, S2 obtain a 0.56 APN in
average.

5.3.1.5 Sensitive and Impact

As the last TP evaluation for for both Setting 1 (S1) and Setting 2 (S2), we
propose to analyze the Figure 5.5. As explained in section 4.3.2.2, the analysis
joins all the possible TP positive analysis and give an overall perspective
of the metric assessment. First, if we focus in the S1 graph, we can see
that it achieved a good overall performance in all the studied metrics being
truncation the less sensitive one.

Regarding Setting 2 (S2) detector. If we check the area size, we can see
that S2 is quite sensitive to it (0.586 APN) in comparison to the other metrics.
Furthermore, S2 area size have an impact of 0.185 APN . This means that the
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(a) Setting 1: Truncation

(b) Setting 2: Truncation

Figure 5.2: Setting 1 & 2: Truncation evaluation from 7 classes: airplane,
bicycle, bird, boat, cat, chair, table. Pascal VOC 2007 dataset [13].
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(a) Setting 1: Occlusion

(b) Setting 2: Occlusion

Figure 5.3: Setting 1 & 2: Occlusion evaluation from 7 classes: airplane,
bicycle, bird, boat, cat, chair, table. Pascal VOC 2007 dataset [13].
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(a) Setting 1: Bounding-box area

(b) Setting 2: Bounding-box area

Figure 5.4: Setting 1 & 2: Bounding-box area evaluation from 7 classes:
airplane, bicycle, bird, boat, cat, chair, table. Pascal VOC 2007 dataset [13].
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mAPN could be improved a lot if we focus on improving the performance in
Bounding-boxes area metric rather than the other metrics. As occurs with
S1, the truncation turns to be less sensitive among the other metrics.

(a) Setting 1: Sensitive and Impact evaluation

(b) Setting 2: Sensitive and Impact evaluation

Figure 5.5: Setting 1 & 2: Sensitive and Impact evaluation evaluation from
7 classes: airplane, bicycle, bird, boat, cat, chair, table. Pascal VOC 2007
dataset [13].
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5.3.2 Setting 2: False Positives testing results

The False Positives analysis provide more insight when they are used to
evaluate just one detector performance. In Figure 5.6 we can see the airplane
and dinning-table classes FP impact analysis.

In the airplane class we can see that most of the FP was due to Location
misses (27%). If we work to remove the location type errors from the category,
we would get an improvement of 0.139 AP which is a considerable amount.
Even though dining table had most of only 53% correct, the performance in
the location errors would be a little bit less than the airplane category (0.13
AP ); this happens because there are more airplanes objects than dinning,
285 and 206 respectively. Regarding the similar categories in Pascal VOC,
the detector in Setting 2 got confused a lot with sofas and chairs. Moreover,
S2 found a considerable number of misses with background or other similar
objects. Even though this number may seems a lot, the possible impact to
the AP would be just 0.06 if we get to correct this flaw from it.

5.3.3 True Positive and False Positive analysis discus-

sion

The main goal for the previous TP and FP analysis applying the Setting 1
and Setting 2 was to prove that our DME implemented framework is detached
to the training framework. After generating the input format for the DME
from both Detectron2 and MMDetection, we have proved the previous goal.

Overall, there were some insights that showed the robustness of the anal-
ysis, independently of the setting. For example, in both settings we can see
that the size of the object can have a noticeable impact on the performance,
and that could be one direction in which the user could dig into to improve
on further experiments. In this case, small tables are the ones that performed
the worst, so maybe some data augmentation could be applied to improve
in this aspect. It is important to mention that these were random setting
that we decided to apply to focus mostly in the tool testing. Even though we
have just compared two different training frameworks, we can let the model
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Airplane Dining-table

Figure 5.6: False Positive impact evaluation of two PASCAL VOC classes
with Setting 2 detector.

fix and vary just one parameter to check if it has some influence in specific
size/aspect ratio of objects.

5.3.4 Setting 3: Testing

In this section, the goal is to test the DME framework works with another
dataset besides Pascal VOC 2007 [13]. The chosen dataset for this was
iSAID [18] to assess the behaviour of the pipeline (FasterRCNN [40]) with
Detectron 2 [16].
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5.3.4.1 iSAID testing dataset preparation

Before getting into the testing inference task, we had to apply a modification
to the famous train-val-testing sets for Setting 3. Since iSAID testing test do
not count with annotations, we half-splitted the validation set to use one of
the halves as testing purposes, and the other half as the validation set. After
applying inference to our testing dataset (half-split of the original validation
set, 229 high-scale images), we achieve a 38.351 mAP. Over the predicted
bounding boxes as proposals and our testing ground-truth dataset as inputs
for the DME framework, we obtained the following analysis evaluation below.

5.3.4.2 Setting 3: Testing results

In this subsection, we show the results after analyzing the precision-recall
curves along with the TPs results displayed per class graphs with Setting 3
context.

Precision recall curves and per-class True Positive Analysis
In Figure 5.7 you can find the precision-recall curve from Setting 3 (S3) de-
tector. In the figure, we see that tennis-court class achieved the best perfor-
mance identifying objects from its categories. When checking Figure 5.8.(a),
we can see that S3 preferred extra-thin tennis court. This could be a good
starting point to check if the training dataset counts more with thinner aspect
ratios tennis court rather than wider ones.

Regarding the bridges class in S3 result, the class acquired the worst per-
formance Figure 5.7. When checking the Figure 5.8 we can see the Medium
Aspect-ratio bridges were the best identified with only 0.54 APN .
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Figure 5.7: Precision-recall evaluation from Setting 3 detector over iSAID
classes
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(a) Setting 3: Tennis-court category classes

(b) Setting 3: Bridge category

Figure 5.8: Setting 3: Per class True Positive analysis over the best and
worst classes performed in the testing results.
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Chapter 6

Conclusion and future works

In this work we have proposed and developed a framework library tool for
evaluating object detection pipelines in CV. The Detector Metrics Evalua-
tor has proved to be a versatile and practical tool for researchers that would
like to analyze their detector proposals with the ground-truth dataset. These
inherent advantages comes from the interpreted almost natural language pro-
gramming as Python.

Moreover, because it has been design utilizing Object Programming Prin-
ciples (OOP), it provides to developers the possibility to scale it by adding
new datasets and metrics over the already implemented platform. Currently
it supports two types of dataset formats: Pascal VOC 2007 and MSCOCO
formats.

We have tested our tool with three tests settings which included a pipeline
such as FasterRCNN with two training framework (Detectron2 and MMDe-
tection) two different datasets (PASCAL VOC 2007 and MSCOCO). We have
proved that the tool can generate interesting analysis and provide powerful
feedback to researches in order to improve their performance, and even fine
tuning them. Moreover, with these testing settings, we have validated the
neutrality of DME with respect to the training framework and the dataset
as well.

Nowadays, the wide use of Object Detection algorithms in real-life situ-
ation has pushed to researchers in public and even private companies, incre-
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ment the robustness of their algorithm, and DEM has proved to be a suitable
tool for that task.

To continue with this work we envision the following:

• First, we would like increase the scope of our framework by adding
the possibility to evaluate not only object detection scenarios, but also
apply it to image segmentation cases. We have analyzed the developed
modules and we believe that with small changes to them we can achieve
to include image segmentation evaluations in the series of options al-
ready available.

• Second, we would like to let the code into an open repository such that
other researches in CV can make use of it, and also extend it by adding
more dataset formats, and metrics evaluations.

• Third, add a GUI component over the DME library aimed to non-
coders so that they can make use of the tool by just setting the param-
eters through an user interface.

• Last and the most ambitious one, we would like to add an intelligent
component to suggest, where possible, interpretations and model cor-
rective actions based on the value of specific metrics.
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