
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Scuola di Ingegneria Industriale e dell’Informazione

Multi-Team Games in Adversarial

Settings: ex-ante coordination and

independent team members algorithms

Relatore: Prof. Nicola Gatti

Correlatore: Dott. Andrea Celli

Tesi di Laurea di:

Giovanni Probo

Matricola 893698

Anno Accademico 2018-2019

To my family

Ringraziamenti

Per questo lavoro di tesi vorrei ringraziare innanzitutto il mio relatore, prof.

Nicola Gatti, per questa opportunità che mi ha concesso e mi ha permesso di

approfondire una materia che è per me molto interessante. Ringrazio inoltre

Andrea, per avermi seguito con costanza durante questo anno, il suo aiuto

è stato fondamentale.

Ringrazio la mia famiglia, che in questi sei anni mi è sempre stata vicina,

anche a mille chilometri di distanza, e che mi ha sostenuto sempre nelle scelte

che ho fatto, fin da piccolo, da quando a 11 anni ho voluto partecipare ai

Giochi Matematici a quando l’anno scorso ho deciso di partire per l’Erasmus,

questa tesi è soprattutto merito vostro.

Ringrazio Anna, che è per me una persona speciale e che dopo tanti anni

è ancora al mio fianco. Devo a te molte scelte negli ultimi anni. È grazie a

te se mi sono appassionato al campo dell’intelligenza artificiale, quando ci

vedemmo insieme il film ’Ex Machina’.

Grazie mille per tutto il supporto che mi avete dato.

I

II

Sommario

L’interesse della comunità scientifica verso i sistemi multi-agente è in crescita

negli ultimi tempi. Questo lavoro si concentra su sistemi in cui gli agenti

cooperano come una squadra per affrontare più avversari, che collaborano

per ridurre al minimo l’utilità dei primi.

Per modellare questo problema ci avvaleremo degli strumenti della Teoria

dei Giochi. Studieremo il campo degli adversarial team games, e analizzer-

emo il team max-min equilibrium con correlation device, che viene utilizzato

per descrivere il comportamento delle squadre che sono in grado di correlarsi.

Presenteremo alcuni algoritmi di Reinforcement Learning, che rappre-

sentano lo stato dell’arte, progettati per giocatori indipendenti, al fine di

mostrare la loro capacità di adattarsi agli adversarial team games.

Presenteremo un algoritmo, il Fictitious Team Play, che è in grado

di trovare una soluzione negli adversarial team game e ne analizzeremo

le prestazioni dal punto di vista teorico, dimostrando che converge verso

l’equilibrio; valuteremo i suddetti algoritmi in un ambiente simulato e ne

confronteremo le prestazioni, dimostrando che, in questo particolare con-

testo, le prestazioni degli algoritmi di Reinforcement Learning sono simili a

quelle del Fictitious Team Play.

III

IV

Abstract

Studies in multi-agent systems are increasing in recent times in Artificial

Intelligence community, because they can model a wide range of real world

scenarios. This work focuses on systems in which agents cooperate as a

team in order to face multiple adversaries, which collaborate to minimize

the utility of the former.

In order to model this problem we resort to tools from Game Theory.

We study the field of adversarial team games, and we analyze as a concept

of solution the team max-min equilibrium with correlation device, which is

used to describe the behavior of teams whose team members can correlate

their strategies.

We first present some state-of-the-art Reinforcement Learning algorithms,

that were designed for players that choose their action independently, with-

out any correlation with the teammates, in order to show their capability

to adapt to adversarial team setting.

We introduce an algorithm, namely, Fictitious Team Play, that finds a

solution in an adversarial team game and we analyze its performance from a

game-theoretical point of view, proving that it converges to an equilibrium.

We evaluate the aforementioned algorithms in a simulated environment

and we compare their performance, showing that, in this particular setting,

performance of reinforcement learning algorithms are similar to the one of

Fictitious Team Play.

V

VI

Contents

Sommario IV

Abstract VI

1 Introduction 1

1.1 Overview . 1

1.2 Structure of the Thesis . 2

2 Preliminaries 3

2.1 Game Theory . 3

2.1.1 Basics of games . 4

2.1.2 Team games . 12

2.1.3 Solution concepts . 13

2.2 Computational Complexity 18

2.2.1 Computational complexity concepts 18

2.3 Fictitious Play . 20

2.3.1 Description of the algorithm 20

2.3.2 Generalised Weakened Fictitious Play 21

2.4 Regret Minimization . 21

2.4.1 What is regret? . 22

2.4.2 Regret Matching . 23

2.4.3 Counterfactual Regret Minimization 23

2.5 Deep Reinforcement Learning algorithms 25

2.5.1 Deep Counterfactual Regret Minimization 26

2.5.2 Policy Gradient . 27

2.5.3 Neural Fictitious Self-Play 27

3 Multi-Team Adversarial Team Games 33

3.1 Problem setting . 33

3.2 Fictitious Team Play . 34

3.2.1 Single-Team Single-Adversary Fictitious Team Play . 34

VII

3.2.2 Multi-team settings 34

3.2.3 Proof of equivalence 36

3.2.4 Double-team Fictitious Team Play 39

3.2.5 Best-response oracles 40

3.2.6 Approximation algorithm 44

4 Experimental Analysis 47

4.1 Benchmark . 47

4.1.1 Team Kuhn Poker . 47

4.1.2 Exploitability . 48

4.2 Independent-players algorithms 48

4.2.1 Experimental results 49

4.3 Experimental results for Fictitious Team Play 53

4.4 Fictitious Team Play with approximation best-response oracle 58

5 Conclusions 61

5.1 Conclusions . 61

5.2 Future work . 62

Bibliography 63

VIII

List of Figures

2.1 Extensive form representation of a game. 7

2.2 Imperfect-information perfect-recall extensive-form game. . . 8

2.3 Imperfect-information imperfect-recall extensive-form game. . 9

2.4 Bach or Stravinsky? Used in Example: 1 15

2.5 Structure of the game in Example 2 17

3.1 Structure of auxiliary game Γ∗. 36

3.2 Structure of the game in Example 4 with utility UT 41

3.3 Structure of the game in Example 4 with marginalized utility

U
ω̄Topp
T . 41

3.4 Structure of the game in Example 5 with marginalized utility

U
ω̄Topp
T . 44

4.1 Exploitability of Fictitious Team Play with MILP Best-response

Oracle (Blue: Team 1, Orange: Team 2). 54

4.2 Exploitability of Fictitious Team Play with ILP Best-response

Oracle (Blue: Team 1, Orange: Team 2). 55

4.3 Exploitability of Fictitious Team Play with Approximation

Best-response oracle. 59

IX

X

List of Tables

2.1 Normal form representation of a game. 4

2.2 Reduced normal form representation of a game. 6

2.3 Bach or Stravinsky? (Example: 1) 15

2.4 Rock, Paper, Scissors. 22

4.1 Exploitability for Team 1 of Reinforcement Learning algorithms. 51

4.2 Exploitability for Team 2 of Reinforcement algorithms. 52

4.3 Compute time for Fictitious Team-Play. 55

4.4 Exploitability when Neural Fictitious Self-Play and Fictitious

Team-Play act as Team 1. 57

4.5 Exploitability when Neural Fictitious Self-Play and Fictitious

Team-Play act as Team 2. 58

XI

XII

Chapter 1

Introduction

1.1 Overview

This work addresses problems in the field of Artificial Intelligence. In par-

ticular, it tackles issues about the behavior of multiple agents in strategic

settings. We analyze the setting in which multiple cooperating agents have

to face multiple cooperating adversaries. The goal is to develop an algo-

rithm with theoretical guarantees to cope to with this scenario. We also

compare the proposed algorithm with state-of-art methods and provide an

experimental analysis with simulate environments.

Settings in which many agents cooperate against several adversaries is very

common in real-world scenarios. Imagine, for example, different security

agents that want to protect an area from a criminal organization (see,

e.g., (de Cote et al., 2013; Basilico et al., 2016, 2017c)). Agents have the

same objective. In particular, they want to protect the area in the best

possible way. Also criminals have a common goal: sneaking in the area and

doing the crime. Both security agents and criminal attackers have to plan

their strategies, to coordinate their actions.

Game Theory and its theoretical tools allow us to formally model this prob-

lem and solve it. Reinforcement Learning enables us to find approximations

in a reasonable time.

The goal of this thesis is to provide a theoretical solution to the aforemen-

tioned problem and to analyze state-of-art Reinforcement Learning algo-

rithms from a theoretical point of view.

In this work, we first define a particular setting of game, the double-team

game, in which two teams face each other. This setting is a generalization

of the single-team, single-adversary problem originally studied by Basilico

et al. (2017a,b); Celli and Gatti (2018). We show that it is possible to extend

1

2 Chapter 1. Introduction

the Fictitious Team Play algorithm by Farina et al. (2018b) to the double-

team setting. This algorithm allows teammates to correlate and obtain the

maximum possible expected utility, and we show that this algorithm con-

verges to a team-maxmin equilibrium with coordinated strategies, providing

both a theoretical and an empyrical analysis for it. Finally, we compare our

algorithm with some state-of-the-art Reinforcement Learning algorithms,

in order to understand whether they are capable to adapt to double-team

game settings. Our results show that a Reinforcement Learning algorithm,

the Neural Fictitious Self-Play by Heinrich et al. (2015), has performance

that are similar to the exact algorithm.

1.2 Structure of the Thesis

This thesis is structured as follows:

• in Chapter 2 we provide the preliminaries for our work. We introduce

some concepts on Game Theory and Algorithmic Game Theory. More-

over we present some state-of-art Reinforcement Learning algorithms;

• in Chapter 3 we propose a novel approach: Fictitious Team Play, an

algorithm designed to find an exact solution of a double-team game,

and then we provide a computational analysis;

• Chapter 4 presents the experimental analysis of the algorithms pre-

sented in the previous chapters;

• in Chapter 5 we summarize our work and we provide the conclusions,

then we highlight some possible future work.

Chapter 2

Preliminaries

2.1 Game Theory

According to the definition in (Myerson, 1997), Game Theory is “the study of

mathematical models of conflict and cooperation between intelligent rational

decision-makers”.

Agents are described as rational, meaning that each agent is aware of

every possible alternative, is able to form expectations about any random

events, has clear preferences over the outcomes and chooses his actions in

order to maximize his reward. In the absence of uncertainty, the following

elements provide a basic model of rational choice (Osborne and Rubinstein,

1994):

• A set of actions A available to the agent;

• A set C of possible consequences (outcomes) to these actions;

• A consequence function g : A → C that determines the consequence

of each action;

• A preference relation % over the set of possible outcomes C.

Usually decision-makers’s preferences are expressed with a utility function

U : C → R, which defines a preference relation over the outcomes by the

condition x % y ⇔ U(x) ≥ U(y). To model situations of decision-making

under uncertainty, this model of rationality is adapted, according to von

Neumann and Morgenstern (1944), by letting each decision-maker maximize

her expected utility.

3

4 Chapter 2. Preliminaries

2

a1 b1
A1A2A3 (2,3) (2,3)

A1A2B3 (2,3) (2,3)

A1B2A3 (2,3) (2,3)

1
A1B2B3 (2,3) (2,3)

B1A2A3 (4,1) (2,6)

B1A2B3 (4,1) (1,2)

B1B2A3 (1,5) (2,6)

B1B2B3 (1,5) (1,2)

Table 2.1: Normal form representation of a game.

2.1.1 Basics of games

A strategic game is a description of an interaction which limits the actions

available to each decision-maker and defines the decision-maker’ interests

but it does not describe the actions that decision-maker will take. In order

to understand how the game will be played we need to define a solution

which describes how players choose their strategies.

The Normal Form

A game in normal (strategic) form describes a strategic interaction in which

each agent chooses his plan of action once and for all, and these choices are

made simultaneously.

Definition 1. The normal-form representation of a game consists of a

triplet 〈N, (Ai), (%i)〉 where:

• N = {1, 2, . . . , n} is the set of players;

• for each player i ∈ N , Ai = {ai,1, ai,2, . . . , ai,m} is the set of actions

available to player i;

• for each player i ∈ N , %i is the preference relation on A = ×j∈NAj
of player i.

Definition 2. An action profile a is a tuple (a1, a2, . . . , an) with ai ∈ Ai,
containing an action per player.

An action profile a−i is a tuple (a1, a2, . . . , ai−1, ai+1, . . . , an), containing an

action per player except for player i.

2.1. Game Theory 5

Under a wide range of circumstances the preference relation %i can be

represented by a payoff function (utility function) ui : A → R such that

ui(a) ≥ ui(b) whenever a %i b. In such cases we denote the game as

〈N, (Ai), (ui)〉.
A player can make multiple decisions during a game, a plan define an

action per each possible decision of a player.

Definition 3. A plan pi of player i, is a tuple specifying one action a ∈ Ai
per decision node of player i.

Definition 4. A strategy σi : Ai −→ [0, 1] with σi ∈ ∆(Pi) is a function

returning the probability with each plan Pi ∈ Pi is played by player i.

Recall that ∆(Pi) denotes the simplex over Pi, which is defined as fol-

lows.

∆(Pi) = {(s1, s2, . . . , sm) ∈ Rm|
m∑
j=1

sj = 1 and ∀j ∈ Pi sj ≥ 0}.

Strategies such that there is an action plan p ∈ Pi with σi(p) = 1 is called

pure. A strategy is called mixed otherwise.

We denote by Xi the normal-form strategy space for player i.

Definition 5. Two pure strategies σi, σ
′
i for player i are realization equiva-

lent, if they reach the same outcome for any given pure strategy profile σ−i
for the opponents.

The Reduced Normal Form

Definition 6. Given the normal-form representation with plans P1, P2, . . . Pn
of a game Γ, the reduced normal form representation is formed from a subset

of plans P ′1, P
′
2, . . . P

′
n, with P ′i ⊆ Pi such that:

• there not exist p1
i , p

2
i ∈ P ′i with p1

i 6= p2
i , that are realization equivalent;

• for every pi ∈ Pi \ P ′i , there exists a p′i ∈ P ′i that is realization equiva-

lent.

The Extensive Form

The normal-form representation does not include any notion of time. The

extensive-form is an alternative representation that makes sequential struc-

ture explicit. Indeed, a game in extensive-form is a tree, in which each node

6 Chapter 2. Preliminaries

2

a1 b1
A1 ∗ ∗ (2,3) (2,3)

B1A2A3 (4,1) (2,6)

1 B1A2B3 (4,1) (1,2)

B1B2A3 (1,5) (2,6)

B1B2B3 (1,5) (1,2)

Table 2.2: Reduced normal form representation of a game.

represents the choice of a player, each edge represents a possible action and

each leaf represents a final outcome.

The following paragraphs give an overview of the game in extensive-form,

required to understand the following chapters. For a broader presentation

of these topics see (Shoham and Leyton-Brown, 2008).

Definition 7. A (finite) perfect-information game in extensive-form is a

tuple Γ = (N,A, V, L, ι, ρ, χ, U) where:

• N is a set of n players;

• A is a (single) set of actions;

• V is a set of nonterminal decision nodes;

• L is the set of terminal (leaf) nodes, disjoint from V;

• ι : V −→ N is the player function, which assigns to each nonterminal

node a player i ∈ N who takes an action at that node;

• ρ : V −→ 2A is the action function, returning to each node a set of

available actions;

• χ : V × A −→ V ∪ L is the successor function, which maps a choice

node and an action to a new choice node or a terminal node such that

∀h1, h2 ∈ H ∀a1, a2 ∈ A, if σ(h1, a1) = σ(h2, a2) then h1 = h2 and

a1 = a2;

• U = {U1, . . . , Un} is the set of utility functions in which Ui : L −→ R
specifies utilities over terminal nodes for player i.

2.1. Game Theory 7

(2, 3)

A1

(4, 1)

A2

(1, 5)

B2

a1

(2, 6)

A3

(1, 2)

B3

b1

B1

1.1

2.1

1.2 1.3

Figure 2.1: Extensive form representation of a game.

Definition 8. An imperfect-information game in extensive form is a tuple

Γ = (N,A, V, L, ι, ρ, χ, U,H), where:

• (N,A, V, L, ι, ρ, χ, U) is a perfect-information extensive-form game;

• H = {H1, H2, . . . ,Hn} is the set of information sets, in which Hi is

a partition of Vi with the property that ∀x1, x2 ∈ Vi, ρ(x1) = ρ(x2)

whenever there exists a h ∈ Hi where x1 ∈ h and x2 ∈ h

Definition 9. Let Γ = (N,A, V, L, ι, ρ, χ, U,H) be an imperfect-information

extensive-form game. Then the pure strategies of player i consist of the

Cartesian product×hi∈Hi ρ(hi).

A pure strategy for a player selects one of the available actions in each

information set of that player.

Definition 10. Let Γ = (N,A, V, L, ι, ρ, χ, U,H) be an imperfect-information

extensive-form game. Behavioral strategies, denoted as πi(i.h, a) specify a

probability distribution over action ρ(i.h) available at information set i.h of

player i.

Definition 11. The strategy of a player i, denoted by πi, is a tuple (πi.1, πi.2, . . . , πi.|Hi|).

Definition 12. A strategy profile π is a tuple (π1, π2, . . . , πn), containing

one strategy per player. Strategy profile π−i is a tuple specifying a strategy

per player except for player i.

Definition 13. Player i has perfect recall in an imperfect-information game

Γ if for any two nodes h, h′ that are in the same information set for player i,

for any path h0, a0, h1, a1, . . . , hn, an, h from the root of the game to h (where

hj are decision nodes and aj are actions) and any path h0, a
′
0, h
′
1, a
′
1, . . . , h

′
m, a

′
m, h

′

from the root to h’ it must be the case that:

8 Chapter 2. Preliminaries

(1, 0)

s

(2, 3)

t

a

(0, 1)

s

(−1, 0)

t

b

1

2.1 2.2

Figure 2.2: Imperfect-information perfect-recall extensive-form game.

• n = m;

• For all 0 ≤ j ≤ n, hj and h′j are in the same equivalence class for

player i;

• For all 0 ≤ j ≤ n if ι(hj) = i (that is, hj is a decision node of player

i), then aj = a′j

Definition 14. Γ is a game of perfect recall if every player has perfect recall

in it.

Clearly, every perfect-information game is a game with perfect recall.

For example, we can observe the perfect-recall game in Figure 2.2 and the

imperfect-recall game in Figure 2.3. In the first, player 2 has perfect recall.

Indeed, the information set that contains two decision nodes, labeled as

2.1 and 2.2, can be reached through the two paths that comply with the

conditions of Definition 13.

In the latter, player 1 has no perfect recall. Indeed, the only information

set of player 1 can be reached from the root node through two paths with

different length (1.1 and 1.1, a, 1.2), for this reason an imperfect-recall player

is also said absent-minded.

Informally speaking, player 1 forgets about her first action when she chooses

the action to play in node 1.2.

The Sequence Form

Both normal form strategies and behavioral strategies suffer from compu-

tational issues. In the next two sub-sections we introduce two forms that

allow us to express strategies in a complexity that is linear in the size of the

tree. The first alternative form is sequence form (Von Stengel, 1996).

2.1. Game Theory 9

(1, 0)

a

(2, 3)

b

a

(0, 1)

s

(−1, 0)

t

b

1.1

1.2

1

2.1

Figure 2.3: Imperfect-information imperfect-recall extensive-form game.

Definition 15. Given an extensive-form game Γ = (N,A, V, L, ι, ρ, χ, U,H)

a sequence for player i, defined by a node vi ∈ V , is the subset of A specifying

player i’s actions on the path from the root to vi.

Definition 16. A sequence is said terminal if, considering the sequence of

the other players, leads to a terminal node.

We denote the set of sequences of player i by Qi, that are the sequence-

form actions of player i. We denote by q∅ the fictitious sequence leading

to the root node and with qa ∈ Qi the extended sequence obtained by

appending the action a ∈ A to the sequence q ∈ Qi.
We define the sequence-form strategy as follows.

Definition 17. The sequence-form strategy, said realization plan, is a func-

tion ri : Qi −→ R associating each sequence q ∈ Qi with its probability of

being played.

Definition 18. A sequence-form strategy ri is said well-defined, if the fol-

lowing constraints hold:

• ri(q∅) = 1;

• for each information set h ∈ Hi and each sequence q leading to h,

−ri(q) +
∑

a∈ρ(h) ri(qa) = 0;

• for each sequence q, ri(q) ≥ 0.

Property 1. Constraints are linear in the number of sequences and can be

written as

Firi = fi

where

10 Chapter 2. Preliminaries

• Fi is a matrix with size |Qi|×(|Vi|+1) where Vi is the set of decision

nodes of player i;

• fi is a vector of length |Qi|.

The Realization Form

Another form capable to reduce the complexity of a game is the realization

form (Farina et al., 2018b). This form enables one to represents the strategy

space of a player in a number of variables that is linear in the size of the

game tree. Realization form strategies specify the probabilities with which

each player reaches the different terminal nodes. The mapping from normal-

form strategies to realization-form allows us to reduce the action space from

Xi, which has a number of variables that is exponential in the game size,

to a space that has one coordinate for each terminal node. The following

observation is required to construct the realization-form.

Observation 1. Let Γ be a game and l ∈ L be a terminal node. Given a

normal-form strategy profile x = (x1, . . . , xn) ∈ Xi× . . .×Xn the probability

of reaching l can be uniquely decomposed as the product of the contributions

of each player and the chance. Formally:

px(l) = pxcc
∏
i∈N

pxii (l).

Definition 19. Let Γ be a game. The realization function of player i ∈ N
is the function fΓ

i : Xi −→ [0, 1]|L| that maps every normal-form strategy for

player i to the corresponding vector of realizations for terminal node:

fΓ
i : Xi 3 x 7→

(
pxi (l1), . . . , pxi (l|L|)

)
.

We define the realization polytope of player i as the range of fΓ
i

Definition 20. Player i’s realization polytope ΩΓ
i in game Γ is the range of

fΓ
i , that is the set of all possible realization vector for player i: ΩΓ

i := fΓ
i (Xi).

We call an element ωi ∈ ΩΓ
i a realization-form strategy, or simply realization

of player i.

We can now define formally the realization-form.

Definition 21. Given an extensive-form game Γ, its realization form is a

tuple (N,L,U,ΩΓ), where:

• N is a set of n players;

2.1. Game Theory 11

• L is the set of terminal node;

• U = {U1, . . . , Un} is the set of utility functions;

• ΩΓ = {ΩΓ
1 , . . .Ω

Γ
n} is the set of the realization polytopes, where ΩΓ

i

specifies the realization polytope of player i.

It is important to notice that for players with perfect recall, the real-

ization form is the projection of the sequence form, where the variables of

non-terminal sequences are dropped. Thus, if a player is not absent-minded,

it is possible to switch between realization-form and sequence-form using a

linear transformation. See also Celli et al. (2019c) for a connection between

imperfect-recall players and teams in imperfect-information games.

As for normal-form strategies, we can also construct a realization-form

starting from behavioral strategies.

Definition 22. Let Γ be a game. The behavioral-realization function of

player i is the function f̃Γ
i : Πi 3 π 7→

(
pπi (l1), . . . , pπi (l|L|)

)
∈ [0, 1]|L|.

Accordingly, the behavioral-realization set of player i is the range of f̃Γ
i , that

is Ω̃Γ
i := f̃Γ

i (Πi). This set is generally non-convex.

Zero-Sum Games

The following chapters make extensive use of the class of games known as

zero-sum games. If we consider the simple setting of a 2 players game, a

zero-sum game is a game in which, for every outcome, one player’s reward

is exactly the opposite of what the other gets. This class of games, although

very simple, may be used to model situations, such as sporting events, in

which players have conflicting interests. More formally:

Definition 23. An extensive-form game Γ = (N,A, V, L, ι, ρ, χ, U,H) is

zero-sum if, for each terminal node l (i.e. for each outcome), the following

property holds:
∑

i∈N Ui(l) = 0.

Definition 24. An extensive-form game Γ = (N,A, V, L, ι, ρ, χ, U,H) is

zero-sum if, for each terminal node l (i.e. for each outcome), the following

property holds:
∑

i∈N Ui(l) = constant.

It is important to notice that every constant-sum game can be reduced

to an equivalent zero-sum game by an affine transformation, as shown by

von Neumann and Morgenstern.

12 Chapter 2. Preliminaries

2.1.2 Team games

The following definitions by Celli and Gatti (2018) generalize the concept

of team game as presented in (von Stengel and Koller, 1997).

Definition 25. Given an extensive-form game Γ = (N,A, V, L, ι, ρ, χ, U,H),

a team T ∈ N is a subset of players sharing the same utility function, which

is maximal under inclusion. More formally, for any i, j ∈ N , i, j ∈ T ⇔
Ui = Uj = UT , where UT is the utility of each player in the team T .

Definition 26. A team game is an extensive-form game in which at least

one team is present.

Team games describe the frequent scenario where players pursue equal

objectives like, for instance, the card game of Bridge.

A specific setting of team game is the zero-sum, single-team, single-adversary

team games (STSA-TG), which are formally defined as follows:

Definition 27. A zero-sum, single-team, single-adversary team game (STSA-

TG) is an extensive-form game Γ = (N,A, V, L, ι, ρ, χ, U,H) such that:

• N = T ∪ {n}, where T = {1, . . . , n − 1} is the team and player n is

the adversary;

• all the players in T share the same utility function UT ;

• the adversary has utility function Un(l) = −(n− 1)UT (l) ∀l ∈ L.

A simple interpretation is that, if the team, as a whole, gets a payoff of

p, then the adversary should pay p
(n−1) to each team member.

To achieve the objective, players can correlate. In extensive-form games,

three forms of correlation are possible (Forges, 1986): preplay and intraplay

communication, when a communication device receives input from the team-

mates about the information they observe during the play, and sends them

recommendations about the action to play at each information set; only

pre-play communication, when a correlation device communicates a plan

of actions to each teammates before playing the game; no communication,

when each player plays independently from the others but she is aware of

the presence of her teammates. We define the devices as follow:

Definition 28. A communication device is a triple (HT , AT , R
Com) where:

• HT is the set of inputs (information sets) that teammates sends to the

mediator;

2.1. Game Theory 13

• AT is the set of outputs (actions) that the mediator can recommend to

the teammates;

• RCom : 2HT × 2AT −→ ∆(AT) is the recommendation function that

associates each information set h ∈ HT with a probability distribution

over ρ(h), as a function of information sets previously reported by

teammates and of the actions recommended by the mediator in the

past.

Definition 29. A correlation device is a pair ({Pi}i∈T , RCor), where:

• Pi is the set of plans of player i;

• RCor :×i∈T Pi −→ ∆(×i∈T Pi) is the recommendation function which

returns a probability distribution over the jointly-reduced plans of the

teammates.

Jointly-reduced plans

Given a generic single-team single-adversary extensive-form team game Γ

with a team T = {1, 2, . . . , t} and an adversary A, let us denote with

P ′ = {P ′1, . . . , P ′t , P ′A} the set of actions of the reduced normal forms of

Γ.

We define the set of joint reduced plans of the team as×i∈T P
′
i . Let

terminal : P ′A × {×i∈T P
′
i} → L, be a function that for a given pair (pA, p)

returns the terminal node reached when the adversary plays the plan pA
and all the team members play according to the joint plan p.

We can define equivalence classes over×i∈T P
′
i by the relation ∼ defined as

follows:

Definition 30. The equivalence relation ∼ over×i∈T P
′
i is such that, given

two plans p1, p2 ∈×i∈T P
′
i , p1 ∼ p2 if and only if, for each plan of the

adversary pA, terminal(pA, p1) = terminal(pA, p2).

We can now define the set of jointly-reduced plans of the teammates (Basil-

ico et al., 2017a):

Definition 31. The set of jointly-reduced plans Pj ⊆×i∈T P
′
i is obtained

selecting exactly one plan from each equivalent class of ∼.

2.1.3 Solution concepts

The goal of Game Theory is to find a solution to a certain game. In this

subsection we present some useful solution concepts that will be widely used

in the following chapter.

14 Chapter 2. Preliminaries

Nash Equilibrium

The Nash Equilibrium (Nash, 1951) is the most commonly used solution

concept in game theory. The basic idea is to define an equilibrium point in

such a way that no player can profitably deviate given the actions of the

other players. Formally:

Definition 32. A Nash equilibrium 〈N, (Ai), (%i)〉 is an action profile a∗

such that for every player i ∈ N the following holds:

(a∗i ,a
∗
−i) %i (ai,a

∗
−i).

It is useful to provide the following alternative definition, which makes

use of the concept of best-response function i.e. the optimal answer to re-

spond to the adversaries’ strategies.

Definition 33. The best-response function of player i is the set-valued func-

tion Bi such that:

Bi(a−i) = {ai ∈ Ai : (ai,a−i) %i (a′i,a−i) ∀a′i ∈ Ai}.

Definition 34. A Nash equilibrium is an action profile a∗ for which

a∗i ∈ Bi(a−i∗) ∀i ∈ N.

A fundamental result in game theory, due to the seminal work (Nash,

1951), is that any game with a finite set of players and a finite set of ac-

tions has at least a Nash equilibrium in mixed strategies. In particular, the

following holds:

Theorem 1. The strategic game 〈N, (Ai), (%i)〉 has a Nash equilibrium if,

for all i ∈ N , the set Ai of actions of player i is a nonempty compact convex

subset of a Euclidean space and the preference relation %i is continuous and

quasi-concave on Ai.

The Nash equilibrium is stable, meaning that, once the players are play-

ing such a solution, they do not have any incentive to individually deviate

from it. On the other hand, a game may admit multiple Nash equilibria

and, some of them, may be inefficient in terms of players reward.

Example 1. Consider the classical Bach or Stravinsky game: two people

wish to go out together to a concert of music by either Bach or Stravinsky.

They are willing to go out together, but one person prefers Bach and the

2.1. Game Theory 15

Player 2

Bach Stravinsky

Player 1
Bach (2, 1) (0, 0)

Stravinsky (0, 0) (1, 2)

Table 2.3: Bach or Stravinsky? (Example: 1)

(2, 1)

Bach

(0, 0)

Stravinsky

Bach

(0, 0)

Bach

(1, 2)

Stravinsky

Stravinsky

1

2.1 2.2

Figure 2.4: Bach or Stravinsky? Used in Example: 1

other person prefers Stravinsky. The situation is modeled with the normal-

form game (we report its payoff matrix) in Table 2.3 and with the equivalent

extensive-form game in Figure 2.4.

This game turns out to have three Nash Equilibria: 2 of them are in pure

strategies, namely when both players choose Bach or when they both choose

Stravinsky, the remaining equilibrium is in mixed strategies, specifically s1 =

(2
3 ,

1
3) and s2 = (1

3 ,
2
3).

The problem of computing a Nash equilibrium has emerged as a key

problem in the AI community. There are various works studying computa-

tional aspects of the problem. See, for instance: Daskalakis et al. (2009);

Chen and Deng (2006); Ceppi et al. (2010); Celli et al. (2017). This also

originated a rich literature on the computation of related solution concepts

such as Correlated equilibria (Von Stengel and Forges, 2008; Celli et al.,

2019a), Bayesian persuasion problems (Dughmi and Xu, 2016; Celli et al.,

2020; Castiglioni et al., 2020) and many others.

Maxmin equilibrium

In the setting of zero-sum games, it is useful to define the maxmin equilib-

rium. This solution concept is based on the conservative assumption that

adversaries will hurt player i as much as possible and so i chooses her ac-

tion by maximizing the worst case scenario. In this way the payoff that i

16 Chapter 2. Preliminaries

can guarantee herself is at most the amount that other players can hold her

down to.

Definition 35. Given a n-player constant-sum game, the maxmin strategy

of player i is given by:

s∗i = arg max
si

min
s−i

Ui(si, s−i).

It is interesting to notice that, in 2-players zero-sum games, maxmin

strategy profiles and Nash equilibria coincide and give to player 1 the same

utility.

Team-maxmin Equilibrium

The concept of maxmin equilibrium can be easily extended to adversarial

team games.

Definition 36. Consider an extensive-form game Γ = (N,A, V, L, ι, ρ, χ, U,H).

Let T = 1, . . . , t, T ⊂ N be a team and πT = (π1, . . . , πt) a strategy profile for

the team. The team-maximin strategy profile for team T , when teammates

are not correlated, is defined as:

π∗T = arg max
π1,...,πt

min
π−T

UT (π1, . . . , πt, π−T).

Once again, since it is an adversary setting, the team plays defensively

by maximizing its worst-case payoff.

von Stengel and Koller (1997) provide useful theoretical properties in the

specific setting of zero-sum, single-team, single-adversary team games. The

main results provided in (von Stengel and Koller, 1997) can be summarized

in the following two results:

Theorem 2. In any STSA-TG the team-maxmin strategy πT is always part

of a Nash equilibrium and this equilibrium is called team-maxmin equilib-

rium.

In other words: if the team members use a team-maxmin strategy pro-

file, then the adversary has a mixed strategy so that no team member can

increase payoffs by changing his strategy unilaterally. Moreover, since it

is an equilibrium point, the adversary can only hurt herself by diverging

unilaterally, and since the game is zero-sum, that can only help the team.

Each STSA-TG has at least one team-maxmin equilibrium but there may

be other Nash equilibria that are not team-maxmin equilibria. However, the

following holds:

2.1. Game Theory 17

C D

A

C D

B

l

C D

A

C D

B

r

A

1

2

1 −k −k 1 1 −k −k 1

Figure 2.5: Structure of the game in Example 2

Theorem 3. The team-maxmin equilibria are precisely the Nash equilibria

of the game with the highest payoff to the team.

The previous theorem shows that in any STSA-TG the team-maxmin

equilibrium is also the best Nash equilibrium for the team.

Another interesting result provided in (von Stengel and Koller, 1997)

is that the team-maxmin equilibrium is unique except degeneracy. This

property is very appealing in real-world settings, allowing players to avoid

the equilibrium selection problem of Nash equilibria.

Team-maxmin Equilibrium with Correlation Device

Resorting Definition 29, we define the following.

Definition 37. Given a correlation device for the team, a Team-maxmin

equilibrium with correlation device (TMECor) is a Nash equilibrium in which

all teammates follow their recommendations.

As shown in (Celli and Gatti, 2017), the space of lotteries over the out-

comes achievable by using a correlation device includes the space of lotteries

achievable without any device. Moreover, let vNo and vCor the utility of

the team at, respectively, the Team-maxmin equilibrium and TME-Cor, the

following holds.

Theorem 4. The game values obtained from TME and TMECor are such

that vCor ≥ vNo

Example 2. Consider a zero-sum game in which a team T = {1, 2} plays

against an adversary A. In Figure 2.5 is depicted the structure of this game.

18 Chapter 2. Preliminaries

At each terminal node is reported the utility for the team. In particular, team

achieves 2, if A plays l, 1 plays A and 2 plays C, or if A plays r, 1 plays B

and 2 plays D; if 1 plays A and 2 plays D, or if 1 plays B and 2 plays C,

the team will get −k, where k ∈ N+; the team obtains 0 otherwise.

If 1 and 2 can not correlate, the team-maxmin equilibrium is achieved when

π1 =

{
A, with probability 1

2

B, with probability 1
2

; π2 =

{
C, with probability 1

2

D, with probability 1
2

;

πA =

{
l, with probability 1

2

r, with probability 1
2

That leads to an expected utility for the team E [UT] = 1−k
2 .

In our example, a possible ex-ante coordination is as follows. The team

tosses an unbiased coin: if heads come up, 1 plays action A and 2 plays

action C; if tails, 1 and 2 play actions B and D, respectively. If team

members follows the recommendations of the coin, then the team-maxmin

equilibrium with correlation device is the following:

πT =

{
AC, with probability 1

2

BD, with probability 1
2

; πA =

{
l, with probability 1

2

r, with probability 1
2

.

The expected utility for the team with this strategy plan is E [UT] = 1.

Thus, the expected utility of TMECor is arbitrarily larger than the expected

utility of TME.

2.2 Computational Complexity

When we study the computation of solution concepts, we are interested in

the amount of resources needed to solve the problem. Typically, this anal-

ysis is concerned with the computational and the spatial complexity of a

problem, where the former is evaluated as the number of elementary oper-

ations needed, and the latter as the memory space required for the process

to be executed.

In the following paragraphs we will present the basic notions of computa-

tional complexity.

2.2.1 Computational complexity concepts

To understand the computational complexity we need to define the following:

2.2. Computational Complexity 19

Definition 38. An algorithm is polynomial if, in the worst case, it requires

a number of elementary operations which is O(nd), where d is a constant

and n is the size of the problem instance to be solved.

Definition 39. An algorithm is exponential if it requires, in the worst case,

a number of elementary operations which is O(2n, where n is the size of the

problem instance to be solved.

Problems can be divided in three classes:

• Decision problems: problem for which a YES/NO answer is required;

• Function (Search) problems: problem defined as a relation R(x, y),

R ⊂ Σ∗ ×Σ∗, where Σ∗ is an arbitrary alphabet. An algorithm solves

a function problem if, for every input x such that there exist a y

satisfying (x, y) ∈ R, the algorithms outputs y;

• Optimization problems: problem in which the best solution has to be

found among all the feasible.

We define the complexity of a decision problem by introducing the following

classes:

• P: set of decision problems that can be solved by a deterministic

Turing machine using a polynomial amount of time;

• NP: set of decision problems such that, for every instance with a

positive solution, there exist a certificate (proof) which allows to verify

in polynomial time that the answer is YES. Equivalently, we can define

it as the set of decision problems solvable in polynomial time by a non-

deterministic Turing machine;

• CO −NP: a decision problem belongs to CO −NP if and only if

its complement π− is in NP. Recall that π− is the decision problem

obtained by reverting YES/NO instances.

With similar steps we can define classes FP, FNP and CO − FNP for

function problems and PO, NPO and CO −NPO for optimization prob-

lems.

To understand how hard is a problem we need to introduce the concept

of reduction.

Definition 40. Let π be a problem defined over a generic finite alphabet Σ.

A problem π′ is polynomial-time-reducible to π, if and only if the following

conditions hold:

20 Chapter 2. Preliminaries

• there exists f : Σ → Σ such that, for all w ∈ Σ, w is a solution of π′

(π′ ≤P π) if and only if f(w) is a solution of π;

• f is computable in polynomial time.

This concept allows us to reason about complexity, by reducing problems

to known ones. Indeed, if π′ ≤P π and π ∈ P, then also π′ ∈ P.

We can now define the following complexity classes.

Definition 41. A decision problem π is NP−hard if every problem in NP
is polynomial-time-reducible to it.

Definition 42. A decision problem π is NP − complete if and only if:

• π is in NP;

• π is NP − hard.

A NP−hard problem is at least as hard as the hardest problem in NP.

2.3 Fictitious Play

We consider an algorithm described by (Brown, 1951) known as fictitious

play for finding a Nash Equilibrium in a two-player zero-sum game.

2.3.1 Description of the algorithm

Informally speaking, fictitious play algorithm will play a finite game repeat-

edly, at each repetition players choose best response against the strategy of

the opponent.

Algorithm 1 Fictitious Play

1: function Fictitious Play

2: Initialize x(0) and y(0)

3: t←− 0

4: while convergence do

5: it+1 = BR(y(t))

6: jt+1 = BR(x(t))

7: x(t+ 1) = t
t+1x(t) + 1

t+1 it+1

8: y(t+ 1) = t
t+1y(t) + 1

t+1jt+1

9: end while

2.4. Regret Minimization 21

The algorithm 1 shows a formal definition of Fictitious Play algorithm.

x and y are the strategies of player 1 and player 2 respectively, while it and

jt are the action chosen at time t from player 1 and player 2 respectively.

Fictitious Play is proven to converge to a Nash Equilibrium when t→∞ in

a two-player zero-sum game.

2.3.2 Generalised Weakened Fictitious Play

Leslie and Collins (2006) introduced generalised weakened fictitious play,

a mechanism to speed up the convergence of fictitious play in two players

zero-sum games.

Generalised weakened fictitious play makes use of ε-best-responses BRi
ε(π−i),

defined as follows

BRi
ε(π−i) = {πi ∈ ∆i : Ui(πi, π−i) ≥ Ui(BR(π−i), π−i)− ε}

That is, the strategy that player i performs in order to obtain an utility not

more worse than ε with respect to the best response (·).
The updating rules for strategies x(t+ 1) and y(t+ 1) are the following

x(t+ 1) = (1− αt+1) x(t) + αt+1

(
BR1

εt(y(t)) +Mt+1

)
y(t+ 1) = (1− αt+1) y(t) + αt+1

(
BR2

εt(x(t)) +Mt+1

)
where αt → 0 and εt → 0 as t→∞,

∑∞
t=1 αt =∞ and Mt is a perturbation

such that for any K > 0,

lim
t→∞

sup
n

{
n−1∑
i=t

αt+1Mt+1 :

n−1∑
i=t

αt+1 ≤ K

}
= 0

Clearly, fictitious play is a generalised weakened fictitious play with εt =

Mt = 0 and αt = 1
t for all t > 0.

Leslie and Collins (2006) proved that generalised weakened fictitious play

converges to a Nash equilibrium as t→∞ in two-players zero-sum games.

2.4 Regret Minimization

Hart and Mas-Colell (2000) introduced the algorithm of Regret Matching.

Using this algorithm, players reach the equilibrium by keeping tracks of re-

grets from previous plays and choose actions proportionally to their positive

regrets.

22 Chapter 2. Preliminaries

2.4.1 What is regret?

It is important to provide the definition of regret. During a game, the regret

of not having chosen an action is the difference between the utility of that

action and the utility of the action that we actually chose.

Definition 43. Given a normal-form game Γ, and given an action profile

σ, let σi be player i’s strategy and σ−i the strategy of all other players. Let

σ′i be another strategy profile of player i. Thus, player i’s regret of not having

played σ′i is

Ui(σ
′
i, σ−i)− Ui(σi, σ−i).

Example 3. We consider the classic Rock, Paper, Scissor game, in which

two players choose simultaneously one action between rock, paper or scissors.

Then the winner is selected in the following way:

• If a player chooses rock and the other chooses scissors, the player who

chose rock wins;

• If a player chooses paper and the other chooses scissors, the player

who chose scissors wins;

• If a player chooses rock and the other chooses paper, the player who

chose paper wins;

• If both players choose the same action, the game ends with a tie.

The utility matrix of this game is shown in Figure 2.4. We suppose that

player 1 chooses Rock and player 2 chooses Paper, the game ends and

U1 = −1. Player 1 regrets that she did not play Paper or Scissors to

obtain a higher utility.

r1(Paper) = U1(Paper)− U1(Rock) = 0− (−1) = 1

r1(Scissors) = U1(Scissors)− U1(Rock) = 1− (−1) = 2

Player 2

Rock Paper Scissors

Player 1

Rock (0, 0) (−1, 1) (1,−1)

Paper (1,−1) (0, 0) (−1, 1)

Scissors (−1, 1) (1, 1) (0, 0)

Table 2.4: Rock, Paper, Scissors.

2.4. Regret Minimization 23

2.4.2 Regret Matching

When we play a generic game, we might prefer to choose an action that

we previously regret. Regret matching exploits this concept, by selecting

randomly with a distribution that is proportional to positive regrets. In

Example 3, player 1 regrets for rock, paper and scissors are 0, 1 and 2,

respectively. Thus, the probabilities according to regret matching are 0, 1
3

and 2
3 , respectively, which are normalized positive regrets. Suppose that in

next game player 1 chooses scissors (with probability 2
3) and the opponent

chooses rock. Adding these regrets to positive regrets we obtain cumulative

regrets, in our example, are 1 for rock, 3 for paper and 2 for scissors, therefore

the strategy for the next game is
(

1
6 ,

3
6 ,

2
6

)
.

Regret matching through self-play minimize expected regret and converges

to a correlated equilibrium (Hart and Mas-Colell, 2000; Celli et al., 2019b).

Algorithm 2 shows the pseudocode of regret matching.

Algorithm 2 Regret Matching

1: function Regret Matching

2: Initialize R←− (0, . . . , 0)

3: Initialize t←− 0

4: Initialize π ←− (0, . . . , 0)

5: for number iterations do

6: if ∃i, Ri > 0 then

7: πt ←− Normalized Positive Regret

8: else

9: πt ←− 1
|A|

10: end if

11: π ←− π + πt

12: Sample at ∼ random(πt)

13: Rt ←− Compute regrets(at)
14: R←− R+Rt

15: t←− t+ 1

16: end for

17: return π
t

2.4.3 Counterfactual Regret Minimization

Regret matching algorithm was designed to tackle the problem of one-time-

action games. A sequential game can be reformulated as a one-time-action

game by using pure strategies as a single meta-action, the set of meta-actions

24 Chapter 2. Preliminaries

is equal to the cartesian product of all actions in each information set.

In order to apply Regret Matching to sequential games, Zinkevich et al.

(2008) introduced Counterfactual Regret Minimization algorithm (CFR)

which has become the de facto standard in solving imperfect-information

games (see, e.g., Brown and Sandholm (2017a,b)

Given an extensive-form game Γ and a strategy profile σ, let x ∈ V ∪ L be

a node, we define as πσ(x) the reach probability of node x given the strat-

egy profile σ. Let πσ(h) the reach probability of information set h ∈ H,

i.e. πσ(h) :=
∑

x∈H π
σ(x). Given two information set h, h′ ∈ H such that

there is a path from h to h′, we define as πσ(h, h′) the reach probability

from information set h to information set h′ with strategy profile σ. The

counterfactual reach probability of information set h ∈ H, denoted by πσ−i(h)

is the probability of reaching h, when all players, except player i, follow the

strategy profile σ, while player i’s actions to reach the information set have

probability 1.

Definition 44. Given an extensive-form game Γ, let l ∈ L be a terminal

node and let a proper prefix v @ l be a non-terminal node.

We define the counterfactual value of non-terminal node as follows:

v(σ, v) =
∑

z∈Z,h@z
πσ−i(h)πσ(h, z)Ui(z).

The counterfactual regret of not taking an action a at non-terminal node

v ∈ V is then:

r(v, a) = v ((σi→a,σ−i), v)− v(σ, v),

where σi→a is the strategy of player i when action a is chosen.

The counterfactual regret of not taking an action a at information set h ∈ H
is:

r(h, a) =
∑
v∈H

r(v, a).

Let rti(h, a) refer to the regret when players use a strategy profile σt of

not taking action a at information set h belonging to player i after t time

steps of the algorithm. The cumulative counterfactual regret is defined as:

RTi (h, a) =
T∑
t=1

rti(h, a).

If we consider the nonnegative counterfactual regretRT,+i (h, a) = max(RTi (h, a), 0),

then we apply regret matching to obtain the new strategy:

σt+1
i (h, a) =


RT,+i (h,a)∑

a′∈ρ(h)R
T,+
i (h,a′)

, if
∑

a′∈ρ(h)R
T,+
i (h, a′) > 0

1
|ρ(h)| , otherwise

.

2.5. Deep Reinforcement Learning algorithms 25

For each information set, CFR applies this equation to evaluate action prob-

abilities in proportion to the positive regrets. For each action, the algorithm

produces the next state in the game and computes utilities of each action.

Then, regrets are computed from returned values and the value of playing

the current node is finally computed and returned.

Counterfactual regret minimization algorithm is presented in details in Al-

gorithm 3. CFR is a recursive function, that takes as parameters the current

information set h, the learning player i, the time step t, the reach probabil-

ities for player 1 and 2, the cumulative regret R and the strategy profile σ.

Function Solve initialize the cumulative regret and the strategy profile, then

for each time step and each player run CFR function, we denote as ∅ the

root node of the game; then, for each player the average of the strategies

σ obtained at each time step is evaluated. The obtained strategy profile is

proven to converge to a Nash Equilibrium.

2.5 Deep Reinforcement Learning algorithms

Reinforcement Learning is a field of Machine Learning that tries to find

an action in a certain situation, in order to maximize a reward. It is easy

to observe that Reinforcement Learning and Game Theory have the same

objective, the difference between these two fields is in the way to reach it.

The former, for each state, tries to approximate the expected reward of each

action by a trial-and-error search, then it selects the action that maximize

the approximate expected utility; the latter explores the game, or an its

portion, to find a strategy that maximize the reward.

In last decades, Reinforcement Learning algorithms have reached better per-

formance than expert players in many games, e.g. backgammon, chess and

heads-up poker. One of the leading paradigms is deep reinforcement learning

(DeepRL), that makes use of deep learning to train functions that approxi-

mate policies or rewards.

In the following paragraphs we present a set of algorithms that represent

the state-of-the-art in DeepRL.

Notation of Reinforcement Learning

We introduce some reinforcement learning notation that will be widely used

in the following subsections.

• Q(h, a) : H × A → R is the action-value function that represents the

expected rewards after playing action a ∈ A in state h ∈ H.

26 Chapter 2. Preliminaries

• V (h) : H → R is the state-value function that given a state, returns

its expected reward.

• π : H → ∆(A) is a function that returns for each state h ∈ H, a

probability distribution over A.

Given a state h and a strategy π, the following equation holds:

V (h) =
∑
a∈A

π(h, a)Q(h, a).

2.5.1 Deep Counterfactual Regret Minimization

Brown et al. (2018) introduced Deep Counterfactual Regret Minimization

(Deep CFR), an algorithm that uses neural networks in order to approxi-

mate the behaviour of Counterfactual Regret Minimization without calcu-

lating regrets at each information set. Algorithm 4 shows the pseudocode

of Deep Counterfactual Regret Minimization.

On each iterationt, for each player n, Deep CFR runs a constant number of

traversals of the game tree (Line 5–8). The path of the traversal is deter-

mined according to strategy profile σ. At each information set h it encoun-

ters, it plays according to a strategy σt(h) determined by regret matching

on output of a neural network, called advantage network, V : H → R
|A|

defined by parameter θt−1
p (Line 23 and 32). The goal of this network is to

be approximately proportional to the cumulative regret at time step t − 1

Rt−1(h, a).

When a terminal node is reached the utility value is passed back up (Line

17–18). If a chance or opponent information set is traversed, the value is

passed back up unaltered. In traverser information sets, the value passed

back up is the weighted average of all action values according to the strategy

σt(h) (Line 25). This creates samples of regrets for different actions, then

samples are added to a memory MV,n (Line 30).

Once a player’s traversals are completed, a new network is trained by scratch

to evaluate parameters θtn by minimizing Mean Square Error between the

predicted advantage Vn(h, a|θt) and the samples of regrets from previous

iterations t′ ≤ t, r̃t′(h, a), drawn from the memory (Line 10).

In addition to the advantage network, a separate network Π : H ← R
|A|,

called policy network, approximates the average strategy at the end of the

process (Line 12). This is empirically shown to converge to a Nash Equilib-

rium in two-player settings.

2.5. Deep Reinforcement Learning algorithms 27

2.5.2 Policy Gradient

Policy gradient methods are a type of reinforcement learning techniques that

are based on optimization of parameterized policies with respect to expected

utility by gradient descent.

State-of-the-art Policy Gradient algorithms are based on Advantage Actor-

Critic (A2C) algorithm defined by Srinivasan et al. (2018). This algorithm

introduces in addition to the learning of a policy(actor) a parameterized

critic, an estimation of state-value vπ(s), which is used as a control baseline

that reduces the variance of estimated rewards.

Algorithm 5 shows the pseudocode of a generic actor-critic policy gradient

algorithm. In the following paragraphs, we present some actor-critic policy

gradients algorithms, which differ only in the update of dθ, δ.

The following are the values of δ for each different algorithm:

• Q-based Policy Gradient

∇QPGθ (h) =
∑
a∈ρ(h)

[∇θπ(h, a|θ)]

q(h, a|w)−
∑

a′∈ρ(h)

π(h, a′|θ)q(h, a′|w)

 ;

• Regret Policy Gradient

∇RPGθ (h) = −
∑
a∈ρ(h)

∇θ

q(h, a|w)−
∑

a′∈ρ(h)

π(h, a′|θ)q(h, a′|w)

+

;

• Regret Matching Policy Gradient

∇RMPG
θ (h) =

∑
a∈ρ(h)

[∇θπ(h, a|θ)]

q(h, a|w)−
∑

a′∈ρ(h)

π(h, a′|θ)q(h, a′|w)

+

;

• Advantage Actor-Critic

∇A2C
θ (h) =

∂ (R−Q(s, a|θ))2

∂θ

Where R =

{
Ui(h) if h is terminal

maxa∈ρ(h)Q(h, a|w) otherwise
.

2.5.3 Neural Fictitious Self-Play

Heinrich et al. (2015) introduces a reinforcement learning algorithm based

on generalised weakened fictitious play, Fictitious Self-Play (FSP). This al-

gorithm replaces the main operations of generalised weakened fictitious play,

28 Chapter 2. Preliminaries

the best response computation and the average strategy update, with a re-

inforcement learning algorithm and a supervised classification algorithm,

respectively.

Heinrich and Silver (2016) presented an algorithm that combines Fictitious

Self-Play with neural function approximation, Neural Fictitious Self-Play

(NFSP).

Algorithm 6 shows the pseudocode of NFSP. An NFSP agent stores its ex-

perience in two different memories MRL and MSL. The former is treated

as dataset for reinforcement learning, while the latter is the dataset of a

supervised classification.

The agent trains a neural network, Q(·|θQ), that predict action values using

off-policy reinforcement learning to the memoryMRL. This network defines

an approximate best response strategy

ε− greedy(Q) =
ε

|ρ(h)|
+ (1− ε) max

a∈ρ(h)
Q(h, a|θQ).

Moreover, the agent trains a separated neural network Π(·|θΠ) to imitate

past best-response actions, through a supervised classification on memory

MSL. This network defines the agent’s average strategy Π.

Neural Fictitious Self-Play is known to converge to an approximate Nash

Equilibrium in two-player settings.

2.5. Deep Reinforcement Learning algorithms 29

Algorithm 3 Counterfactual Regret Minimization

1: function CFR(h, i, t, π1, π2, R,σ)

2: if h is terminal then

3: return Ui(h)

4: else if h is a chance node then

5: Sample a single outcome a ∼ σN (h, a)

6: return CFR(ha, i, t, π1, π2, R,σ)

7: end if

8: vσ ← 0

9: v ((σi→a,σ−i), h)← 0 for all a ∈ ρ(h)

10: for a ∈ ρ(h) do

11: if ι(h) = 1 then

12: v ((σi→a,σ−i), h)← CFR(ha, i, t, σt(h, a) · π1, π2, R,σ)

13: else

14: v ((σi→a,σ−i), h)← CFR(ha, i, t, π1, σ
t(h, a) · π2, R,σ)

15: end if

16: vσ ← vσ + σt(h, a) · v ((σi→a,σ−i), h)

17: end for

18: if ι(h) = i then

19: for a ∈ ρ(h) do

20: R(h, a)← R(h, a) + π−i · (v ((σi→a,σ−i), h)− vσ

21: end for

22: σt+1
i (h, a) =


RT,+i (h,a)∑

a′∈ρ(h)R
T,+
i (h,a′)

, if
∑

a′∈ρ(h)R
T,+
i (h, a′) > 0

1
|ρ(h)| , otherwise

23: end if

24: return vσ

25:

26: function Solve:

27: Initialize R(h, a)← 0 ∀h ∈ H, a ∈ ρ(h)

28: Initialize σ1(h, a)← 1
|ρ(h)| ∀h ∈ H, a ∈ ρ(h)

29: for t ∈ {1, 2, . . . , T} do

30: for i ∈ {1, 2} do

31: CFR(∅, i, t, 1, 1, R,σ)

32: end for

33: end for

34: σ ← average(σ)

35: return σ

30 Chapter 2. Preliminaries

Algorithm 4 Deep Counterfactual Regret Minimization

1: function DeepCFR

2: For each player n initialize advantage network V (h, a|θn)

3: Initialize an advantage memory MV,n for each player n

4: Initialize strategy memory MΠ

5: for t ∈ {1, 2, . . . , T} do

6: for n ∈ {1, 2, . . . , N} do

7: for k ∈ {1, 2, . . . ,K} do

8: Traverse(∅, n, θ1, . . . , θN ,MV,n,MΠ)

9: end for

10: Train θtn on loss L(θtn) = E

[
t′
∑

a∈A

(
r̃t
′
(a)− V (h, a|θtn)

)2
]

11: end for

12: Train θΠ on loss L(θΠ) = E

[
t′
∑

a∈A

(
σt
′
(a)−Π(h, a|θΠ)

)2
]

13: end for

14: return θΠ

15:

16: function Traverse(h, n, θ1, . . . , θN ,MV,n,MΠ)

17: if h is terminal then

18: return Un(h)

19: else if h is a chance node then

20: a ∼ σ(h)

21: return Traverse(h · a, n, θ1, . . . , θN ,MV,n,MΠ)

22: else if ι(h) = n then

23: Compute σ(h) using Regret Matching from V (h, a|θn)

24: for a ∈ ρ(h) do

25: v(a)←Traverse(h · a, n, θ1, . . . , θN ,MV,n,MΠ)

26: end for

27: for a ∈ ρ(h) do

28: r̃(h, a)← v(a)−
∑

a′∈ρ(h) σ(h, a′) · v(a′)

29: end for

30: Add action advantage (h, r̃(h)) to MV

31: else

32: Compute σ(h) using Regret Matching from V (h, a|θ−i)
33: Add action probability (h, σ(h)) to MΠ

34: Sample a ∼ σ(h)

35: return Traverse(h · a, n, θ1, . . . , θN ,MV,n,MΠ)

36: end if

2.5. Deep Reinforcement Learning algorithms 31

Algorithm 5 Actor-Critic Policy Gradient

1: function Policy Gradient(πi)

2: for t ∈ {1, 2 . . . , T} do

3: Initialize h← ∅
4: Initialize gradients dθ ← 0, dw← 0

5: while h is not terminal do

6: Sample ah ∼ πθ(·|h, θ)
7: h← h · ah

8: end while

9: G =

{
Ui(h) if h is terminal∑

a∈A πθ(a|h, θ)Q(h, a|w) otherwise

10: for each explored h do

11: dθ ← dθ + δ

12: dw← dw +∇w

(
G− q(h, ah|w)

)2
13: end for

14: Update critic: w← w − αdw

15: Update actor: θ ← θ + βdθ

16: end for

17: return πθ

32 Chapter 2. Preliminaries

Algorithm 6 Neural Fictitious Self-Play

1: function NFSP

2: Initialize memories MRL and MSL

3: Initialize average-policy network Π(h, a|θΠ) with random parameters θΠ

4: Initialize action-value network Q(h, a|θQ) with random parameters θQ

5: Initialize target network parameters θQ
′ ← θQ

6: Initialize anticipatory parameter η

7: for t ∈ {1, 2, . . . T} do

8: σ ←

{
ε− greedy(Q) with probability η

Π with probability 1− η
9: h0 ← ∅

10: i← 0

11: while hi is not terminal do

12: Sample ai ∼ σ
13: Play action ai and observe reward ri and next state hi+1

14: Add (hi, ai, ri, hi+1) to MRL

15: if σ = ε− greedy(Q) then

16: Add (hi, ai) to MSL

17: end if

18: Update θΠ on loss L(θΠ) = E∼MSL

[
−logΠ(hi, ai|θΠ)

]
19: Update θQ on loss

L(θQ) = E∼MRL

[(
r + max

ai+1

Q(hi+1, ai+1|θQ
′
)−Q(hi, ai|θQ)

)2
]

20: Periodically update target network parameters θQ
′ ← θQ

21: i← i+ 1

22: end while

23: end for

Chapter 3

Multi-Team Adversarial

Team Games

In Chapter 2 we introduce some algorithms to tackle the problem of games

in which two players play against each other. In this Chapter we discuss

about the setting in which multiple teams play against each other.

3.1 Problem setting

In Section 2.1 we introduce the Single-Team Single Adversary game, to

model strategic interactions between agents with the same objective, that

face an adversary.

We extend STSA games, in order to model the problem of multiple teams

playing against each other, and we define Multi-Team team games (MT-

TG).

Definition 45. A game Γ = (N,A, V, L, ι, ρ, χ, U,H, T) is a Multi-Team

team game if

• T = {T1, T2, . . . , Tt}, is the set of t teams

• T ∈ P(N), the set T is a partition of the set of players N

This problem can be tackled by making use of DeepRL algorithms pre-

sented in Section 2.5. Those algorithms are not designed for team settings,

in fact they train each agent independently of each other member of the

team. As we have already showed in Section 2.1, the absence of correlation

among team members could lead to an expected utility for the team that is

arbitrarily lower than a strategy with correlation.

33

34 Chapter 3. Multi-Team Adversarial Team Games

3.2 Fictitious Team Play

In this section, we introduce an algorithm to face the problem of Multi-Team

games and we show that this algorithm converges to a TMECor.

3.2.1 Single-Team Single-Adversary Fictitious Team Play

To approach Multi-Team games, we first analyze Single-Team Single-Adversary

settings.

(Farina et al., 2018a) introduced Fictitious Team Play that is an algo-

rithm which is inspired by Fictitious Play. It applies to Single-team Single-

adversary setting. The pseudocode of this algorithm is shown in Algorithm

7. Given a zero-sum STSA-TG Γ, this algorithm creates an auxiliary zero-

sum 2-player game Γ∗ with perfect recall. This auxiliary game is shown to

be realization-form equivalent to Γ. Hence, Fictitious Play is applied to Γ∗

to find a NE that is equivalent to finding a TMECor in Γ.

Von Stengel and Forges (2008) proves that computing the equilibrium

that maximizes the team’s utility in an adversarial team game is NP−hard,

in case of at least two teammates. Thus, a best-response oracle for the team

is executed in exponential time with respect to the game size.

Algorithm 7 Fictitious team-play

1: function FTP

2: Initialize ω̄A
3: λ̄←− (0, . . . , 0)

4: t←− 1

5: ω̄T ,σ ←− (0, . . . , 0) ∀σ ∈ Σ1

6: while computational budget do

7: (σt, ωtT)←− BRT (ω̄A)

8: λ←−
(
1− 1

t

)
λ̄+ 1

t1σt

9: ω̄T ,σt ←−
(
1− 1

t

)
ω̄T ,σt + 1

tω
t
T

10: ωtA ←− BRA
(
λ̄, {ω̄T ,σ}σ

)
11: ω̄A ←− (1− 1

t)ω̄A + 1
tω

t
A

12: t←− t+ 1

13: end while

3.2.2 Multi-team settings

We now focus on four-player zero-sum double-team team game, we will show

a possible algorithm and prove its convergence to a TMECor.

3.2. Fictitious Team Play 35

Given a four-player double-team game Γ prove that it is possible to create

an auxiliary game Γ∗ such that:

• it is a two-player perfect-recall game between T1 and T2

• for both players, the set of behavioral strategies is as expressive as the

set of normal-form strategies in Γ (i.e. team members achieve ex ante

coordination)

To accomplish this, we introduce two information sets, the root node φ1 and

its child information set φ2, whose branches correspond to the normal-form

strategies of the first player of team 1 and team 2, respectively. Using this

representation, it is possible for each team to express any probability distri-

bution over the following subtrees, and leads to an equivalence between the

behavioral strategies in this two-player perfect-recall game and the original

four-player double-team game.

Consider a generic game Γ with N = 1, 2, 3, 4, where T1 = {1, 2} and

T2 = {3, 4}. We will refer to Player 1 and Player 3 as pivot player of Team 1

and Team 2 respectively. For any σ ∈ Σ1×Σ3, we define Γσ as the two-player

game with N = {2, 4} that we obtain from Γ fixing the actions of Player

1 and Player 3 as follows: ∀h1 ∈ H1 and ∀a1 ∈ ρ(h1), if a1 = σ(h1) then

π1,σ(h1, a1) = 1, π1,σ(h1, a1) = 0 otherwise; and ∀h3 ∈ H3 and ∀a3 ∈ ρ(h3),

if a3 = σ(h3) then π3,σ(h3, a3) = 1, π3,σ(h3, a3) = 0 otherwise. Once π1,σ

and π3,σ have been fixed in Γσ, decision nodes belonging to Player 1 and

Player 3 can be considered as if they were chance nodes. We define Γ∗ the

auxiliary game of Γ as follows.

Definition 46. The auxiliary game Γ∗ is a two-player game obtained from

Γ in the following way:

• N = {T1, T2};

• the root node φ1 is a decision node of Player T1 with ρ(φ1) = {aσ1}σ1∈Σ1;

• the information set φ2 is a decision information set of Player T2 with

ρ(φ2) = {aσ3}σ3∈Σ3;

• each pair of action σ = (a1, a3) is followed by a subtree Γσ;

• T2 does not observe the action a1 chosen by T1 at φ1;

• T1 does not observe the action a3 chosen by T2 at φ2.

36 Chapter 3. Multi-Team Adversarial Team Games

φ1

a1

a3

Γσ

φ2

Figure 3.1: Structure of auxiliary game Γ∗.

In Figure 3.1 the basic structure of an auxiliary game tree is shown. In

games with a team j with more than two team members, information set φj
has a number of choices equal to the Cartesian product of the normal-form

plans of all team members except one.

3.2.3 Proof of equivalence

We show that the double-team game Γ is realization-form equivalent to the

auxiliary game Γ∗.

Theorem 5. Games Γ and Γ∗ are realization-form equivalent. For each

team Tj: ΩΓ
Tj

= ΩΓ∗
Tj

.

The proof is structured into three lemmas.

Lemma 6. Realization function fΓ
i is a linear function and realization poly-

tope ΩΓ
i is a convex polytope.

Proof. We start proving that the realization function fΓ
i is linear. Fixed a

terminal node l ∈ L, we define Σ∗i (l) as the subset of pure normal-form plans

Σi of player i for which for each other players there exists at least a pure

normal-form plans, such that the game terminates in l. Given a normal-form

strategy x ∈ Xi, the contribution of player i to the probability of the game

ending in l is

pxi (l) =
∑

σ∈Σ∗i (l)

xσ

which is linear in x.

We now show that the realization polytope is convex. By definition ΩΓ
i =

fi(Xi) is the image of a convex polytope under a linear function. Thus, it is

a convex polytope itself.

3.2. Fictitious Team Play 37

Lemma 7. Consider a game Γ. If player i has perfect-recall, then the

realization polytope and the convex hull of the behavioral-realization polytope

are equivalent:

ΩΓ
i = co

(
Ω̃Γ
i

)
.

Proof. We start proving that ΩΓ
i ⊆ co

(
Ω̃Γ
i

)
.

As a direct consequence of Lemma 6, ΩΓ
i = co{fi(σ) : σ ∈ Σi}. We recall

that every pure normal-form plan is also a behavioral strategy, for all σ ∈ Σi

fi(σ) ∈ Ω̃Γ
i . Thus, ΩΓ

i = co{fi(σ) : σ ∈ Σi} ⊆ co
(

Ω̃Γ
i

)
.

We now prove that ΩΓ
i ⊇ co

(
Ω̃Γ
i

)
.

Since ΩΓ
i is convex, it is enough to show that ΩΓ

i ⊇ Ω̃Γ
i . If player i is not

absent-minded, this is well-known, as it was proven in Theorem 6.11 in the

book by Maschler et al. (2013).

Lemma 8. For any four-player double-team game Γ, for each team Tj ∈
{T1, T2}:

ΩΓ
Tj = co

(⋃
σ

ΩΓσ
Tj

)
,

where σ ∈ Σ1 × Σ3.

Proof. We will prove this for team T1, the proof is similar for T2.

We first show that ΩΓ
T1
⊇ co

(⋃
σ ΩΓσ

T1

)
. For all σ1 ∈ Σ1 we have, as a

consequence of Lemma 6,

ΩΓσ
T1

= co
(
{fΓ
T1(σ1, σ2) : σ2 ∈ Σ2}

)
⊆ co

(
{fΓ
T1(σ′1, σ2) : σ1 ∈ Σ1, σ2 ∈ Σ2}

)
= ΩΓ

T1

Hence, ⋃
σ

ΩΓσ
T1
⊆ ΩΓ

T1

and therefore,

co

(⋃
σ

ΩΓσ
T1

)
⊆ co

(
ΩΓ
T1

)
as a result of the monotonicity of the convex hull function. Thus,

co

(⋃
σ

ΩΓσ
T1

)
⊆ ΩΓ

T1

38 Chapter 3. Multi-Team Adversarial Team Games

considering the convexity of ΩΓ
T1

(Lemma 6).

We now prove that ΩΓ
T1
⊆ co

(⋃
σ ΩΓσ

T1

)
. Considering ω ∈ ΩΓ

T1
, we show

that ω ∈ co
(⋃

σ ΩΓσ
T1

)
, by exhibiting a convex combination of points in the

polytope {ΩΓσ
T1

: σ ∈ Σ1×Σ3}, that is equal to ω. By definition of realization

function (Definition 19), ω is the image of a normal-form strategy of the team

T1, α ∈ ∆|Σ1×Σ2|. Thus, due to the linearity of the realization function fT1
(Lemma 6),

ω =
∑

σ1∈Σ1,σ2∈Σ2

ασ1,σ2f
Γ
T1(σ1, σ2).

Now we define

βσ1 :=
∑
σ2∈Σ2

ασ1,σ2

for each σ1 ∈ Σ1. It is important to notice that
∑

σ1∈Σ1
βσ1 = 1 and each

βσ1 ≥ 0. Thus,

ω =
∑

σ1∈Σ1,βσ1>0

βσ1ξσ1

where

ξσ1 :=
∑
σ2∈Σ2

ασ1,σ2
βσ1

fΓ
T1(σ1, σ2).

Hence, if we show that for all σ1 ∈ Σ1 and βσ1 > 0, ξσ1 ∈ ΩΓσ
T1

the proof is

complete. We observe that ξσ1 is a convex combination of points in the set

{fΓ
T1

(σ1, σ2) : σ2 ∈ Σ2} ⊆ ΩΓσ
T1

. As already proved in Lemma 6, we know

that ΩΓσ
T1

is convex. Thus, ξσ1 ∈ ΩΓσ
T1

, concluding the proof.

From Lemma 8, we prove Theorem 5.

Proof. Given any distribution over the actions at information set φ1 (i.e. a

choice Σ1 3 σ1 7→ λσ1 ≥ 0 and
∑

σ1
λσ1 = 1 and any realization {ωσ ∈

ΩΓσ
T1
}σ∈Σ1×Σ3 , we have that ∑

σ1∈Σ1

λσ1ωσ ∈ ΩΓ
T1 .

Given any ω ∈ ΩΓ
T1

, there exists a choice of λσ1 and realizations ωσ ∈ ΩΓσ
T1

such that ω =
∑

σ1
λσ1ωσ.

The next theorem follows immediately from Theorem 5.

Theorem 9. The set of payoffs reachable in Γ coincides with the set of

payoffs reachable in Γ∗. Indeed, any strategy {λσ1}σ, {ωσ}σ over Γ∗ is

payoff-equivalent to the realization-form strategy ω =
∑

σ1∈Σ1
λσ1ωσ in Γ.

3.2. Fictitious Team Play 39

Theorem 5 shows that there exists a connection between behavioral

strategies for the teams in Γ and Γ∗. In particular, they are realization-

form equivalent. Thus, finding a TMECor in Γ is equivalent to finding a

Nash Equilibrium in Γ∗.

3.2.4 Double-team Fictitious Team Play

In Section 3.2.3 we proved that Γ and Γ∗ are realization-form equivalent.

Thus, a zero-sum double-team team game is realization-equivalent to a zero-

sum two-player game. In this settings Fictitious Play is proved to converge

to a Nash Equilibrium, that is equivalent to a TMECor in the original game.

Our algorithm is basically a Fictitious Play algorithm applied on the auxil-

iary game Γ∗. Nevertheless, it does not make explicit use of Γ∗, it encodes

the best-response problem by means of oracles on the original game Γ.

The algorithm

Algorithm 8 Fictitious team-play for double-team EFGs

1: function FTP

2: ω̄T1 ←− realization of team T1 when playing uniform strategies

3: ω̄T2 ←− realization of team T2 when playing uniform strategies

4: t←− 0

5: while computational budget do

6: v̄T1 ←−
∑

l∈L ω̄T1(l)ω̄T2(l)UT1(l)

7: v̄T2 ←− k − v̄T1

8: vtT1, r
t
1, r

t
2 ←− BR(ω̄T2)

9: vtT2, r
t
3, r

t
4 ←− BR(ω̄T1)

10: ωtT1 ←− PROJECT(rt1, r
t
2)

11: ωtT2 ←− PROJECT(rt3, r
t
4)

12: ω̄T1 ←− (1− 1
t)ω̄T1 + 1

tω
t
T1

13: ω̄T2 ←− (1− 1
t)ω̄T2 + 1

tω
t
T2

14: t←− t+ 1

15: end while

The pseudocode of the algorithm is given in Algorithm 8, where BR(·)
is the subroutine that solves the best-response problems.

Our algorithm begins creating a uniform realization-form strategy for each

team (Steps 2, 3). During the main cycle, the current value of the game v̄T1
and v̄T2 is evaluated for both teams (Steps 6, 7), due to the realization-form

strategies of the two teams, the value is a simple vectorial product. Then, for

40 Chapter 3. Multi-Team Adversarial Team Games

each team, best-response oracles are applied to the opponent team realiza-

tion, obtaining a well-defined sequence-form strategy for each team member.

Through a linear transformation, these sequence-form strategies are mapped

to a realization-form strategy for the team (Steps 10, 11). Realization-form

strategies allow us to perform averaging more intuitively (Steps 12, 13).

The soundness of this algorithm is a consequence of the realization-equivalence

between the original game Γ and the auxiliary game Γ∗ shown in Theorem

5.

3.2.5 Best-response oracles

To tackle the best-response problems we used two different oracles, the first

is formulated as Integer Linear Program (ILP), the latter is a Mixed-Integer

Linear Program (MILP). In these oracles we assume that the utility is al-

ways positive. Indeed, it is always possible to switch from a zero-sum to

a constant-sum game by shifting the payoffs by a constant value, without

affecting best-response problems.

In the next paragraphs we call as T the current team and as Topp the oppo-

nent team.

ILP best-response oracle

The integer linear programming best-response oracle is formulated as fol-

lows:
arg max
r1,r2,x

∑
l∈L

U
ω̄Topp
T (l)x(l)

s.t. F1r1 = f1

F2r2 = f2

x(l) ≤ r1(q1) ∀l ∈ L,∀q1 ∈ path(l)

x(l) ≤ r2(q2) ∀l ∈ L,∀q2 ∈ path(l)

x(l) ∈ {0, 1} ∀l ∈ L

where U
ω̄Topp
T is utility vector of the team obtained by marginalizing over the

realization of the opponent team ω̄Topp and x(l) is a binary variable which

is equal to 1 if and only if, for all the sequence qi ∈ Qi necessary to reach

l, it holds ri(qi) = 1. The oracle returns a pure sequence-form strategy for

each team member.

Example 4. Consider a four-players game, in which each player has a single

information set. Figure 3.2 shows a possible game, on each leaf node utility

of team T1 is reported. Let there be two teams, T1 = {1, 2} and T2 = {3, 4}.

3.2. Fictitious Team Play 41

g h

e

g h

f

c

g h

e

g h

f

d

a

g h

e

g h

f

c

g h

e

g h

f

d

b

0 0 4 05 7 8 14 2 2 20 5 3 5

1

2

3

4

Figure 3.2: Structure of the game in Example 4 with utility UT .

c d

a

c d

b

0 3 2 2

1

2

Figure 3.3: Structure of the game in Example 4 with marginalized utility U
ω̄Topp

T .

42 Chapter 3. Multi-Team Adversarial Team Games

Figure 3.2 shows a possible game, on each leaf node utility UT of team T1 is

reported.

We define σ3 and σ4 as the strategies of Player 3 and Player 4, respectively.

As an example, let σ3(e) = 1, σ3(f) = 0 and σ4(g) = 1
2 , σ4(h) = 1

2 , we can

reduce the game tree and consider only the marginalized utility U
ω̄Topp
T . In

Figure 3.3, it is possible to observe the reduced game structure.

The Best-response ILP Oracle introduces a binary variable x(l), that is 1 if

and only if realizations r1, r2 to reach the leaf node l is 1. In other words,

this variable forces realizations to represent pure strategies. Indeed, if in

our example, Player 1 plays a mixed strategy r1(a) = α, r1(b) = 1− α with

0 < α < 1, constraint x(l) ≤ r1(q) force x(l) = 0 for each l ∈ L.

Thus, this oracle admits only pure strategies, and it searches for strategies

that maximize marginalized utility U
ω̄Topp
T . In our example, we will obtain

as result

r1 =

1

1

0

 , r2 =

1

0

1

 .
They are equivalent to pure strategies σ1 = a and σ2 = c, and the expected

utility is E [UT] = 3.

MILP best-response oracle

The mixed-integer linear programming best-response oracle is formulated as

follows:

arg max
w,r1,r2

∑
q1∈Q1

w(q1)

s.t. w(q1) ≤
∑
q2∈Q2

U
ω̄Topp
T (q1, q2)r2(q2) ∀q1 ∈ Q1

w(q1) ≤Mr1(q1) ∀q1 ∈ Q1

F1r1 = f1

F2r2 = f2

r2(q2) ≥ 0 ∀q2 ∈ Q2

r1 ∈ {0, 1}|Q1|

where U
ω̄Topp
T is the |Q1|×|Q2| utility matrix of the team obtained by marginal-

izing with respect to the given realization of the opponent team ω̄Topp . r1

is a |Q1|-dimensional vector of binary variables. This formulation is derived

3.2. Fictitious Team Play 43

starting from the problem

arg max
r1,r2

rT
1 U

ω̄Topp r2

s.t. F1r1 = f1

F2r2 = f2

r2(q2) ≥ 0 ∀q2 ∈ Q2

r1 ∈ {0, 1}|Q1|

Where the first three constraints are the usual constraints for a well-defined

sequence-form strategy, the last constraint force r1 to be a pure strategy.

We define aq1 :=
∑

q2
U
ω̄Topp
T (q1, q2)r2(q2) and w(q1) := r1(q1)aq1 . Then the

objective function becomes
∑

q1∈Q1
w(q1). We need to ensure that when

r1 = 0, then also w(q1). To do this, we introduce the constraints w(q1) ≤
Mr1(q1), where M is the maximum payoff of the team. Moreover, in order

to ensure that when r1(q1) = 1, w(q1) = aq1 , we introduce the constraint

w(q1) ≤ aq1 . It is enough to introduce upper bounds because of the objective

function that we are maximizing and since the utility is positive in each leaf

node.

Example 5. Let consider the same game of Example 4. In contrast of

ILP oracle, the MILP best-response oracle explicitly forces the realization

of Player 1 to be a pure strategy. This formulation introduces a continue

variable for each sequence of Player 1, w(q1). These variables represent the

utility obtained by the team if Player 1 play that sequence. The second con-

straint in the formulation of the oracle forces variables w(q1) to be positive

only if r1(q1) = 1 and 0 otherwise, while the first constraint restricts vari-

able w(q1) to be less or equal to the expected utility of the team when Player

2 plays realization r2. This constraint is an upper bound, however, due to

the fact that
∑

q1∈Q1
w(q1) is the objective function that we are maximizing,

w(q1) =
∑

q2∈Q2
U
ω̄Topp
T (q1, q2)r2(q2) for all q1 ∈ Q1 such that r1(q1) = 1. In

our example, w(a) + w(b) is the objective function. Due to the second and

the last constraints, only one between w(a) and w(b) is positive. By applying

the first constraint we obtain

w(a) + w(b) ≤

{
0 · r2(c) + 3 · r2(d), if r1(a) = 1

2 · r2(c) + 2 · r2(d), otherwise
.

And by maximizing the objective function we obtain r1(a) = 1 and r2(d) = 1,

that is equivalent to pure strategies σ1 = a and σ2 = d.

The main difference between MILP and ILP oracles in resulting strategies

is that the latter does not admit any mixed strategy, while the former imposes

44 Chapter 3. Multi-Team Adversarial Team Games

c d

a

c d

b

0 2 3 3

1

2

Figure 3.4: Structure of the game in Example 5 with marginalized utility U
ω̄Topp

T .

only Player 1’s strategy to be pure.

Let examine the game in Figure 3.4, there are two equivalent solutions, these

solutions can be reached by any action of Player 2, if Player 1 plays b. ILP

oracle may admit only two solutions:

rILP1 =

1

0

1

 r2 =

1

1

0

 or rILP1 =

1

0

1

 r2 =

1

0

1

 .
On the contrary, MILP oracle admits infinite solutions:

r1 =

1

0

1

 r2 =

 1

α

1− α

 ,
where 0 ≤ α ≤ 1.

Clearly, both solutions have the same expected utility, E [UT] = 3.

3.2.6 Approximation algorithm

We can create a simple approximation algorithm for the best-response prob-

lem by relaxing the binary constraints in ILP best-response oracle, and then

applying randomized rounding (Raghavan and Tompson, 1987). The result-

ing approximation best-response oracle is a linear programming (LP) and

therefore solvable in polynomial time.

3.2. Fictitious Team Play 45

The approximation algorithm can be formulated as follows:

arg max
r1,r2,x

∑
l∈L

U
ω̄Topp
T (l)x(l)

s.t. F1r1 = f1

F2r2 = f2

x(l) ≤ r1(q1) ∀l ∈ L,∀q1 ∈ path(l)

x(l) ≤ r2(q2) ∀l ∈ L,∀q2 ∈ path(l)

0 ≤ x(l) ≤ 1 ∀l ∈ L

Let (r∗1, r
∗
2, x
∗) be an optimal solution to the LP relaxation. We select a

pure realization-form strategy for each team member by selecting actions

according to probabilities specified by r∗1 and r∗2. This selection is repeated

a fixed number of times, then the solution with higher expected utility is

chosen. Algorithm 9 provides an implementation of randomized rounding

sub-routine.

This implementation allows us to find an approximated solution, however

there is no guarantee about convergence to a Nash Equilibrium.

Algorithm 9 Randomized rounding sub-routine

1: function randomized rounding(r∗1, r
∗
2, k)

2: for i in range(k) do

3: ri1 ←− random sampling(r∗1)

4: ri2 ←− random sampling(r∗2)

5: vi ←− expected utility(rS1 , r
S
2)

6: end for

7: return maximumv(r1, r2)

Example 6. Let consider the same game of Example 3.2. In the approxi-

mation algorithm, we relax the constraint of ILP oracle whose variables are

binary, achieving a linear programming. In ILP oracle, due to this con-

straint, x(l) = r1(q1) · r2(q2). In approximation algorithm, the relaxation

make the variable x(l) = min(r1(q1), r2(q2)).

As a result, in our example, the best solution is not the terminal node with

the highest utility. Indeed, the objective function
∑

l∈L U
ω̄Topp
T (l)x(l) is max-

imized when

x(ac) =
1

2
x(ad) =

1

2
x(bc) =

1

2
x(bd) =

1

2

and objective function is equal to 7
2 , greater than the one found with ILP

46 Chapter 3. Multi-Team Adversarial Team Games

oracle. This solution is possible according to the following realizations

r1 =

 1

0.5

0.5

 r2 =

 1

0.5

0.5

 .
These realizations have an expected utility E [UT] = 5

2 < 3.

After a solution to the linear program is found, randomized rounding is

applied. It sample randomly an action according to the realizations of Player

1 and Player 2, then, it select the sampled strategies with highest expected

utility. In our example, the highest expected utility is achieved when Player

1 plays a and Player 2 plays d. r1(a) = 0.5 and r2(d) = 0.5, hence, the

best strategy plan will be sampled with a probability p = 0.25. Thus, the

probability to randomly sample the best strategy plan among k samples at

least once is

Pbest = 1− (1− 0.25)k .

In our example, to achieve Pbest ≥ 0.95 we need at least 11 samples in

randomized rounding

k ≥ log(1− 0.95)

log(1− 0.25)
= 10.41.

Chapter 4

Experimental Analysis

In this chapter we empirically evaluate the algorithms introduced in Chapter

3. To do this, we define our benchmark, the exploitability and compare the

value of each algorithm.

4.1 Benchmark

To evaluate the ability of an algorithm to correlate, we now introduce our

benchmark game, the four-player Kuhn Poker.

Kuhn poker is a simplified version of poker theorized in its two-player form

by Kuhn (1950). We expanded this game to allows four agents to play.

4.1.1 Team Kuhn Poker

Our version of Kuhn Poker involves four players N = {1, 2, 3, 4}, divided in

two teams T1 = {1, 2}, T2 = {3, 4} and a deck ofR cardsD = {1, 2, 3, . . . , R}.
We define R as the rank of our game.

The game is structured as follows:

1. All players bet 1 as ante, then a single private card is dealt to each

player;

2. Each player can either check (no bet performed) or bet 1, until every-

body checks (in this case the game ends, see point 4) or a player bets

(3);

3. If a player betted, then all the other players can either fold (the player

choose to leave the game) or call (the player match the bet), the game

ends when all the players have chosen their action (4);

4. The game is ended, there are two possible cases:

47

48 Chapter 4. Experimental Analysis

• only a player remained in the game (all the other players folded),

then her team wins the entire pot;

• more than one players are still in the game, then the private cards

of the remaining players are shown, the higher card wins and the

team of its owner wins the entire pot.

4.1.2 Exploitability

We introduce the exploitability in order to evaluate the strategies generated

by the presented algorithms.

The exploitability eT (ωT , ωopp) evaluates how much a strategy ωT gains

against the current opponent strategy ωopp with respect to the best-response

strategy BR(ωT). Formally

eT (ωT , ωopp) = UT (ωT , ωopp)− UT (ωT ,BR(ωT)).

Considering that Team Kuhn Poker is a zero-sum game, we can define the

exploitability alternatively as follows

eT
(
ωT , ωopp

)
= Uopp

(
ωT ,BR

(
ωT
))
− Uopp

(
ωT , ωopp

)
.

We can easily observe that the exploitability is always positive, in fact, the

best-response BR(ωT) is the strategy that minimizes UT . In particular we

can notice that if
(
ωT , ωopp

)
∈ ω∗, where ω∗ is a Nash Equilibrium, then

ωopp = BR(ωT) and therefore the exploitability is equal to zero.

4.2 Independent-players algorithms

In this section we evaluate the DeepRL algorithms introduced in Section

2.5. To accomplish this, we employed OpenSpiel, a collection of environ-

ments and algorithms in reinforcement learning (Lanctot et al., 2019).

We created the OpenSpiel version of Team Kuhn Poker with rank R = 5.

We selected the algorithms from their library and we modified them in order

to make possible the evaluation of the exploitability for the teams.

The experiments were performed on a UNIX computer with 32 cores and

128 GB RAM.

To evaluate the exploitability of the selected algorithms, we added a

function that returns the entire strategy of the player. This is a recursive

function that traverses the entire game tree, starting from the root node of

4.2. Independent-players algorithms 49

the game. For each visited information set, this function stores the prob-

abilities of the available actions. Then, for each action, the child node is

obtained, and the recursive function is applied to that node.

To find the best set of parameters for each algorithm, we evaluated the ex-

ploitability at each time step. The implementation of this evaluation obliges

us to modify the source code of OpenSpiel for DeepCFR algorithm. Indeed,

with this algorithm, there was no possibility to obtain the strategies during

the training. Hence, we added in solve() function our exploitability evalua-

tion function. All the other algorithms explicitly define a step(·) function,

that is called every time step. This simplified the implementation of our

evaluation function.

4.2.1 Experimental results

For each algorithm, we trained different settings, then we selected the one

with the best performance, i.e. the one with lower exploitability.

The setting of the used algorithms are the following:

• Deep CFR

– Policy network: 7 fully connected layers with the following struc-

ture of neurons

[128, 192, 256, 128, 64, 64, 64]

– Advantage network: 7 fully connected layers with the following

structure of neurons

[128, 192, 256, 128, 64, 64, 64]

– Learning rate: 10−4

– Number of iterations: 3.2 · 104

– Number of traversals per iteration: 100

– Advantage Memory capacity: 104 samples for each player

– Strategy Memory capacity: 104 samples

• Q-based Policy Gradient

– Network: 8 layers with 256 neurons per layer

– Policy Learning rate: 10−3

– Critic Learning rate: 10−2

50 Chapter 4. Experimental Analysis

– Number of iterations: 3 · 106

– Number of update of Critic before an update of Policy: 8 updates

• Regret Policy Gradient

– Network: 7 layers with 256 neurons per layer

– Policy Learning rate: 10−3

– Critic Learning rate: 10−2

– Number of iterations: 3 · 106

– Number of update of Critic before an update of Policy: 8 updates

• Regret Matching Policy Gradient

– Network: 8 layers with 256 neurons per layer

– Policy Learning rate: 10−3

– Critic Learning rate: 10−2

– Number of iterations: 3 · 106

– Number of update of Critic before an update of Policy: 8 updates

• Advantage Actor Critic

– Network: 8 layers with 256 neurons per layer

– Policy Learning rate: 10−3

– Critic Learning rate: 10−2

– Number of iterations: 3 · 106

– Number of update of Critic before an update of Policy: 8 updates

• Neural Fictitious Self-Play

– Network: 2 layers with 128 neurons per layer

– Learning rate: 10−2

– Number of iterations: 3 · 106

– Reinforcement Learning Memory capacity: 2 · 105

– Supervised Learning Memory capacity: 2 · 106

– Anticipatory parameter η: 10−1

– Initial ε: 6 · 10−2

– Final ε: 10−3

– Update Action-Value Network every 64 iterations.

4.2. Independent-players algorithms 51

Team 2

Team 1

Exploitability

Deep

CFR

Q-based

Policy

Gradient

Regret

Policy

Gradient

Regret

Matching

Policy

Gradient

Advantage

Actor

Critic

Neural

Fictitious

Self-Play

Deep

CFR
1.3744 0.4836 0.4730 0.5240 0.5525 0.5749

Q-based

Policy

Gradient

0.9494 0.2241 0.2353 0.3708 0.2806 0.1859

T
e
a
m

1

Regret

Policy

Gradient

0.9554 0.2510 0.2553 0.3858 0.3104 0.1755

Regret

Matching

Policy

Gradient

1.2065 0.2848 0.2870 0.4278 0.3521 0.2424

Advantage

Actor

Critic

1.0641 0.2515 0.2612 0.3938 0.3104 0.2392

Neural

Fictitious

Self-Play

0.4916 0.1944 0.1912 0.2815 0.2220 0.0405

Table 4.1: Exploitability for Team 1 of Reinforcement Learning algorithms.

We trained the algorithms, then we make them play against each other

and we evaluate the exploitability. Table 4.1 shows the results that we

obtained for Team 1. For each algorithm for Team 2, we highlighted the

algorithm that for Team 1 achieves the lowest exploitability.

We can easily observe that in our settings Neural Fictitious Self-Play

outperforms all the other algorithms. The difference is noticeable especially

against Deep CFR, in which the second-best algorithm exploitability is al-

most the double (+93%), and against Neural Fictitious Self-Play, against

which the second-best algorithm has an exploitability more than four times

larger (+332, 76%).

Table 4.2 shows the results in terms of exploitability for Team 2. We

highlighted for each Team 1 algorithm the algorithm that has the lowest

exploitability for Team 2. Also in this case Neural Fictitious Self-Play

outperforms all the other algorithms. For Team 2 the difference is even

more pronounced with respect to Team 1. The relative difference between

Neural Fictitious Self-Play and the second-best algorithm is: +101% when

52 Chapter 4. Experimental Analysis

Team 2

Team 2

Exploitability

Deep

CFR

Q-based

Policy

Gradient

Regret

Policy

Gradient

Regret

Matching

Policy

Gradient

Advantage

Actor

Critic

Neural

Fictitious

Self-Play

Deep

CFR
0.8232 1.0159 0.9552 0.9826 1.0359 0.4085

Q-based

Policy

Gradient

0.6106 0.6378 0.5554 0.4983 0.6703 0.1600

T
e
a
m

1

Regret

Policy

Gradient

0.5967 0.6031 0.5275 0.4754 0.6326 0.1625

Regret

Matching

Policy

Gradient

0.5118 0.7354 0.6619 0.5995 0.7570 0.2616

Advantage

Actor

Critic

0.6020 0.7165 0.6355 0.5813 0.7465 0.2127

Neural

Fictitious

Self-Play

0.8128 0.4119 0.3438 0.3319 0.4732 0.0497

Table 4.2: Exploitability for Team 2 of Reinforcement algorithms.

4.3. Experimental results for Fictitious Team Play 53

Team 1 algorithm is Deep CFR, +211.44% against Q-based Policy Gradient,

+192.5% against Regret Policy Gradient, +95.58% against Regret Matching

Policy Gradient, +173.27% against Advantage Actor Critic and +567.67%

against Neural Fictitious Self-Play.

Team games in Reinforcement Learning is a field little investigated,

and similar analysis were never reported in the literature. All the previ-

ously presented algorithms have excellent performances in multiple inde-

pendent agents settings, for this reason, we expected similar performances.

Nonetheless, our experiments show that Neural Fictitious Self-Play is the

independent-player DeepRL algorithm that is the most capable to adapt to

multi-team settings.

4.3 Experimental results for Fictitious Team Play

We conducted experiments about algorithm introduced in Section 3.2 on

different examples of Team Kuhn Poker, in order to show empirically the

convergence to a TMECor.

We instantiated Fictitious Team-Play with both oracle described in Subsec-

tion 3.2.5. We let each best-response oracle run on the GUROBI 8.1.1 MILP

solver, within a time limit of 100 seconds, for 500 iterations. These experi-

ments were performed on a 32-core UNIX computer with 128 GB RAM.

In Figure 4.1 we show the performances of Fictitious Team Play with

a MILP best-response oracle, applied on an instance of Team Kuhn Poker

with deck rank equal to 5, 7, 15 and 23, respectively.

We observe that in all these instances the exploitability falls to less than

0.2 per play in less than 100 iterations. Moreover, for instances with deck

rank R ≤ 15 we observe that after 200 iterations we reach a plateau. In the

instance with deck rank R = 23 plateau is reached after 400 iterations.

In Figure 4.2 we present the graphical representation of the variation of

exploitability during time for Fictitious Team Play with a ILP best-response

oracle, in 5-card and 7-card Team Kuhn Poker. We show only these two in-

stances because, for larger rank, no solution is found within the time limit.

We observe that for deck rank R = 5 the behavior of Fictitious Team Play

with ILP best-response oracle is similar to the one with MILP best-response

routine. With regard to R = 7 the behavior is completely different. ILP

best-response FTP has some issues in reaching the plateau, that is achieved

after more than 300 iterations, but with an exploitability higher (around

54 Chapter 4. Experimental Analysis

(a) Deck rank = 5 (b) Deck rank = 7

(c) Deck rank = 15 (d) Deck rank = 23

Figure 4.1: Exploitability of Fictitious Team Play with MILP Best-response Oracle

(Blue: Team 1, Orange: Team 2).

0.2 per play) with respect to Fictitious Team-Play with MILP best-response

routine(< 0.1 per play).

Compute time comparison

Table 4.3 shows the differences between the two different Oracles in terms

of compute time. As we expect, MILP oracle has a lower computation time.

This difference is evident in case of Team Kuhn Poker with a deck rank

equal to 5. Indeed, in this case MILP oracle finds a solution within the time

limit. On the contrary, ILP routine cannot find the best-response solution

before time limit expires.

4.3. Experimental results for Fictitious Team Play 55

(a) Deck rank = 5 (b) Deck rank = 7

Figure 4.2: Exploitability of Fictitious Team Play with ILP Best-response Oracle

(Blue: Team 1, Orange: Team 2).

Deck rank

5 7 15 23

C
om

p
u

te

T
im

es

MILP

Best-response Oracle
∼ 5h ∼ 25h ∼ 2d ∼ 5d

ILP

Best-response Oracle
∼ 25h ∼ 26h N.A. N.A.

Table 4.3: Compute time for Fictitious Team-Play.

56 Chapter 4. Experimental Analysis

Comparison with Neural Fictitious Self-Play

In Section 4.2 we show that Neural Fictitious Self-Play is the algorithm,

among selected ones, that better perform in multi-team settings. We now

compare the behavior of Neural Fictitious Self-Play with the behavior of

Fictitious Team-Play, for which we proved convergence to TMECor.

Table 4.4 shows the exploitabilities reached by Neural Fictitious Self-Play

and Fictitious Team-Play when they act as Team 1 in a rank-5 Team Kuhn

Poker. From the results, we observe that NFSP performs better than FTP

in most of the cases. In particular, the former has a significantly higher

exploitability only against DeepCFR, in this case the relative increase is

about +54.6%, corresponding in a difference of exploitability equal to 0.17

per play. Against NFSP and FTP with MILP best-response oracle, there

is a relative increase of +14% and +6.4%; however, in these cases, the

difference of exploitability between NFSP and the best-performing algorithm

is very low: 0.005 against NFSP, and 0.0007 against MILP best-response

oracle. Against all the other considered algorithms, Neural Fictitious Self-

Play has better performances a lower exploitability: −29.4% against Q-

based Policy Gradient, −24.9% against Regret Policy Gradient, −4% against

Regret Matching Policy Gradient, −29.3% against Advantage Actor-Critic,

and −8.9% against Fictitious Team Play with ILP best-response oracle.

In Table 4.5 are reported the exploitabilities of the above mentioned algo-

rithms, when they act as Team 2 in a rank-5 Team Kuhn Poker. We observe

that against all the considered algorithms, Neural Fictitious Self-Play ex-

ploitability is lower than Fictitious Team Play one, with the only exception

of DeepCFR, for which the exploitability is higher by +3.5%, corresponding

to a difference of 0.0138. NFSP has a slightly lower exploitability than FTP

against all the other algorithms: −12% against Q-based Policy Gradient;

−12.5% against Regret Policy Gradient; −8.3% against Regret Matching

Policy Gradient; −9.4% against Advantage Actor-Critic; −14.75% against

NFSP, that correspond to a difference of exploitability of 0.0086; −7.8%

against Fictitious Team Play with MILP best-response oracle, that is a dif-

ference of 0.0013; −30.7% against FTP with ILP best-response oracle, that

is equal to 0.0056.

These results show that is in this setting, NFSP has a better performance

than FTP against almost all the considered algorithms. We recall that in

Subsection 3.2.3 we prove the convergence of Fictitious Team Play to the

4.3. Experimental results for Fictitious Team Play 57

Team 1

Exploitability

Team 1

Neural

Fictitious

Self-Play

Fictitious Team-

Play MILP

BR Oracle

Fictitious Team-

Play ILP

BR Oracle

Deep

CFR
0.4916 0.3274 0.3179

Q-based

Policy Gradient
0.1944 0.2797 0.2752

T
ea

m
2 Regret

Policy Gradient
0.1912 0.2580 0.2545

Regret Matching

Policy Gradient
0.2815 0.2986 0.2932

Advantage

Actor Critic
0.2220 0.3140 0.3132

Neural Fictitious

Self-Play
0.0405 0.0355 0.0360

Fictitious Team-Play

MILP BR Oracle
0.0114 0.0138 0.0107

Fictitious Team-Play

ILP BR Oracle
0.0113 0.0134 0.0124

Table 4.4: Exploitability when Neural Fictitious Self-Play and Fictitious Team-Play

act as Team 1.

58 Chapter 4. Experimental Analysis

Team 2

Exploitability

Team 2

Neural

Fictitious

Self-Play

Fictitious Team-

Play MILP

BR Oracle

Fictitious Team-

Play ILP

BR Oracle

Deep

CFR
0.4085 0.3947 0.4045

Q-based

Policy Gradient
0.1600 0.1818 0.1881

T
ea

m
1 Regret

Policy Gradient
0.1625 0.1857 0.1883

Regret Matching

Policy Gradient
0.2616 0.2852 0.2879

Advantage

Actor Critic
0.2127 0.2347 0.2407

Neural Fictitious

Self-Play
0.0497 0.0583 0.0608

Fictitious Team-Play

MILP BR Oracle
0.0154 0.0167 0.0208

Fictitious Team-Play

ILP BR Oracle
0.0126 0.0203 0.0182

Table 4.5: Exploitability when Neural Fictitious Self-Play and Fictitious Team-Play

act as Team 2.

team-maxmin equilibrium with correlation device. Thus, the experiments

showed empirically that agents using NFSP can implicitly correlate and,

therefore, the strategy plan generated from Neural Fictitious Self-Play is a

TMECor in rank-5 Team Kuhn Poker.

4.4 Fictitious Team Play with approximation best-

response oracle

In Section 3.2.6 we introduce an approximation best-response routine that

relaxed the integer constraints of the ILP best-response oracle. The re-

laxation reduces the compute time of the algorithm; the drawback is that,

applying this relaxation, the resulting problem has a set of solutions that is

larger with respect to the original problem.

Figure 4.3 compares the exploitability of Fictitious Team-Play with approx-

imation best-response with the one of random agents. As we can observe,

in rank-4 Team Kuhn Poker (Figure 4.3(a)), FTP Team 1 performs better

than random agents, the exploitability in this case is ∼ 1.1, while random

agent exploitability is ∼ 1.3; on the contrary, FTP Team 2 has a similar be-

4.4. Fictitious Team Play with approximation best-response
oracle 59

(a) Deck rank = 5 (b) Deck rank = 7

Figure 4.3: Exploitability of Fictitious Team Play with Approximation Best-

response oracle.

havior to random agents, its exploitability is ∼ 0.8. Nonetheless, the value

of exploitability for this algorithm, both for Team 1 and Team 2, is higher

than any other algorithm presented in this work, with the only exception of

DeepCFR.

Figure 4.3(b) presents the behavior of the exploitability in case of a rank-7

Team Kuhn Poker. Once again, Fictitious Team Play Team 1 has a lower

exploitability (∼ 1.1) than random players (∼ 1.3). FTP Team 2, instead,

has a worse performance than random players. FTP Team 2 has an ex-

ploitability of ∼ 0.9, while players that act randomly has an exploitability

of ∼ 0.8.

60 Chapter 4. Experimental Analysis

Chapter 5

Conclusions

5.1 Conclusions

Adversarial multi-team games model several real-world scenarios. Nonethe-

less, this field is almost completely unexplored. Adversarial multi-team

games can describe the interactions of multiple agents cooperating to face

multiple adversaries, without the possibility of communication during the

play.

We focused on team max-min equilibrium with correlation device. We

selected the most interesting state-of-the-art Reinforcement Learning algo-

rithms, that are designed for independent-players settings, i.e. settings in

which players choose their actions independently, without any correlation

with the teammates. Then, we evaluated them in correlated games and

we observed that Neural Fictitious Self-Play outperformes in terms of ex-

ploitability all the other algorithms. We also proposed an algorithm to find

a solution to multi-team games, Fictitious Team Play, and we provided a

theoretical analysis, proving that it converges to a TMECor by use of mixed-

integer linear programming or integer linear programming as best-response

routine. However, the complexity of this algorithm increases exponentially

as the dimension of the game tree increases. We then suggest a possible

linear relaxation of the best-response oracle, which allows us to find an ap-

proximate solution in polynomial time, but its performances are far from

the ones of the exact oracles. Indeed, we showed that this relaxation has a

behavior slightly better than random players.

Moreover, we compared Neural Fictitious Self-Play, the most promising

Reinforcement Learning algorithm, with Fictitious Team Play, showing that

the former behavior is similar to the latter one, which is proven to converge

to a TMECor.

61

62 Chapter 5. Conclusions

5.2 Future work

This work is only the first step to understand adversarial multi-team games.

Many possibilities are available to extend this work.

First of all, it could be interesting to analyze TMECor in games with

special settings, such as polymatrix games or congestion games.

Another possible future work would be the development of Reinforce-

ment Learning algorithms designed to multi-team settings. We studied the

performances of independent-players algorithms, but specific multi-team al-

gorithm would exploit these settings to reach better performances.

Also, in this work, we considered a simple game as a benchmark. Hence,

the correlation was very limited. For this reason, Fictitious Team Play had

worse performance than Neural Fictitious Self-Play. It would be interesting

to study these algorithms in a more complex game, such as the game of

Bridge.

Finally, it would be interesting to analyze real-world applications, such

as security environments in which agents and attackers cannot communicate

during the action.

Bibliography

N. Basilico, G. De Nittis, and N. Gatti. A security game combining patrolling

and alarm-triggered responses under spatial and detection uncertainties.

In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

N. Basilico, A. Celli, G. De Nittis, and N. Gatti. Team-maxmin equilibrium:

efficiency bounds and algorithms. In AAAI, 2017a.

N. Basilico, A. Celli, G. D. Nittis, and N. Gatti. Computing the team–

maxmin equilibrium in single–team single–adversary team games. Intel-

ligenza Artificiale, 2017b.

N. Basilico, A. Celli, G. D. Nittis, and N. Gatti. Coordinating multiple

defensive resources in patrolling games with alarm systems. In AAMAS,

2017c.

G. W. Brown. Iterative solution of games by fictitious play. Activity analysis

of production and allocation, 13(1):374–376, 1951.

N. Brown and T. Sandholm. Safe and nested subgame solving for imperfect-

information games. In Advances in Neural Information Processing Sys-

tems (NeurIPS), pages 689–699, 2017a.

N. Brown and T. Sandholm. Superhuman AI for heads-up no-limit poker:

Libratus beats top professionals. Science, page eaao1733, 2017b.

N. Brown, A. Lerer, S. Gross, and T. Sandholm. Deep counterfactual regret

minimization. arXiv preprint arXiv:1811.00164, 2018.

M. Castiglioni, A. Celli, and N. Gatti. Persuading voters: It’s easy to

whisper, it’s hard to speak loud. In AAAI, 2020.

A. Celli and N. Gatti. Computational results for extensive-form adversarial

team games. CoRR, abs/1711.06930, 2017. URL http://arxiv.org/

abs/1711.06930.

63

http://arxiv.org/abs/1711.06930
http://arxiv.org/abs/1711.06930

64 BIBLIOGRAPHY

A. Celli and N. Gatti. Computational results for extensive-form adversarial

team games. In AAAI, 2018.

A. Celli, A. Marchesi, and N. Gatti. On the complexity of nash equilibrium

reoptimization. In UAI, 2017.

A. Celli, S. Coniglio, and N. Gatti. Computing optimal ex ante correlated

equilibria in two-player sequential games. In AAMAS, 2019a.

A. Celli, A. Marchesi, T. Bianchi, and N. Gatti. Learning to correlate in

multi-player general-sum sequential games. In NeurIPS, 2019b.

A. Celli, G. Romano, and N. Gatti. Personality-based representations of

imperfect-recall games. In AAMAS, 2019c.

A. Celli, S. Coniglio, and N. Gatti. Bayesian persuasion with sequential

games. In AAAI, 2020.

S. Ceppi, N. Gatti, G. Patrini, and M. Rocco. Local search methods for find-

ing a nash equilibrium in two-player games. In 2010 IEEE/WIC/ACM

International Conference on Web Intelligence and Intelligent Agent Tech-

nology, volume 2, pages 335–342. IEEE, 2010.

X. Chen and X. Deng. Settling the complexity of two-player nash equilib-

rium. In 2006 47th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’06), pages 261–272. IEEE, 2006.

C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity

of computing a nash equilibrium. SIAM Journal on Computing, 39(1):

195–259, 2009.

E. M. de Cote, R. Stranders, N. Basilico, N. Gatti, and N. R. Jennings.

Introducing alarms in adversarial patrolling games. In AAMAS, pages

1275–1276, 2013.

S. Dughmi and H. Xu. Algorithmic Bayesian persuasion. In ACM STOC,

pages 412–425. ACM, 2016.

G. Farina, A. Celli, N. Gatti, and T. Sandholm. Ex ante coordination and

collusion in zero-sum multi-player extensive-form games. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

editors, Advances in Neural Information Processing Systems 31, pages

9638–9648. Curran Associates, Inc., 2018a.

BIBLIOGRAPHY 65

G. Farina, A. Celli, N. Gatti, and T. Sandholm. Ex ante coordination and

collusion in zero-sum multi-player extensive-form games. In NeurIPS,

2018b.

F. Forges. An approach to communication equilibria. Econometrica: Journal

of the Econometric Society, pages 1375–1385, 1986.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated

equilibrium. Econometrica, 68(5):1127–1150, 2000.

J. Heinrich and D. Silver. Deep reinforcement learning from self-play in

imperfect-information games. arXiv preprint arXiv:1603.01121, 2016.

J. Heinrich, M. Lanctot, and D. Silver. Fictitious self-play in extensive-form

games. In International Conference on Machine Learning, pages 805–813,

2015.

H. W. Kuhn. A simplified two-person poker. Contributions to the Theory

of Games, 1:97–103, 1950.

M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay,

J. Pérolat, S. Srinivasan, F. Timbers, K. Tuyls, S. Omidshafiei, D. Hennes,

D. Morrill, P. Muller, T. Ewalds, R. Faulkner, J. Kramár, B. D. Vylder,

B. Saeta, J. Bradbury, D. Ding, S. Borgeaud, M. Lai, J. Schrittwieser,

T. Anthony, E. Hughes, I. Danihelka, and J. Ryan-Davis. OpenSpiel: A

framework for reinforcement learning in games. CoRR, abs/1908.09453,

2019. URL http://arxiv.org/abs/1908.09453.

D. S. Leslie and E. J. Collins. Generalised weakened fictitious play. Games

and Economic Behavior, 56(2):285–298, 2006.

M. Maschler, E. Solan, and S. Zamir. Game theory (translated from the

hebrew by ziv hellman and edited by mike borns). Cambridge University

Press, Cambridge, pp. xxvi, 979:4, 2013.

R. B. Myerson. Game theory - Analysis of Conflict. Harvard University

Press, 1997.

J. Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–

295, September 1951.

M. J. Osborne and A. Rubinstein. A course in game theory. The MIT Press,

Cambridge, USA, 1994.

http://arxiv.org/abs/1908.09453

66 BIBLIOGRAPHY

P. Raghavan and C. D. Tompson. Randomized rounding: a technique for

provably good algorithms and algorithmic proofs. Combinatorica, 7(4):

365–374, 1987.

Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press, USA,

2008. ISBN 0521899435.

S. Srinivasan, M. Lanctot, V. Zambaldi, J. Pérolat, K. Tuyls, R. Munos,

and M. Bowling. Actor-critic policy optimization in partially observable

multiagent environments. In Advances in neural information processing

systems, pages 3422–3435, 2018.

J. von Neumann and O. Morgenstern. Theory of Games and Economic

Behavior. Princeton University Press, 1944.

B. Von Stengel. Efficient computation of behavior strategies. Games and

Economic Behavior, 14(2):220–246, 1996.

B. Von Stengel and F. Forges. Extensive-form correlated equilibrium: Defini-

tion and computational complexity. Mathematics of Operations Research,

33(4):1002–1022, 2008.

B. von Stengel and D. Koller. Team-maxmin equilibria. Games and Eco-

nomic Behavior, 21(1):309 – 321, 1997.

M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret mini-

mization in games with incomplete information. In Advances in Neural

Information Processing Systems (NeurIPS), pages 1729–1736, 2008.

	Sommario
	Abstract
	Introduction
	Overview
	Structure of the Thesis

	Preliminaries
	Game Theory
	Basics of games
	Team games
	Solution concepts

	Computational Complexity
	Computational complexity concepts

	Fictitious Play
	Description of the algorithm
	Generalised Weakened Fictitious Play

	Regret Minimization
	What is regret?
	Regret Matching
	Counterfactual Regret Minimization

	Deep Reinforcement Learning algorithms
	Deep Counterfactual Regret Minimization
	Policy Gradient
	Neural Fictitious Self-Play

	Multi-Team Adversarial Team Games
	Problem setting
	Fictitious Team Play
	Single-Team Single-Adversary Fictitious Team Play
	Multi-team settings
	Proof of equivalence
	Double-team Fictitious Team Play
	Best-response oracles
	Approximation algorithm

	Experimental Analysis
	Benchmark
	Team Kuhn Poker
	Exploitability

	Independent-players algorithms
	Experimental results

	Experimental results for Fictitious Team Play
	Fictitious Team Play with approximation best-response oracle

	Conclusions
	Conclusions
	Future work

	Bibliography

