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Abstract

The objective of this study was the relative comparison of different mod-
eling approaches in estimating the air pollution exposure for epidemio-
logical studies on cancer. Values estimated by a dispersion model (SIR-
ANE), a LUR model and other less elaborated approaches (regional model
CHIMERE, interpolation and proximity models) on 785 members of the
E3N cohort within the Lyon Metropolitan Area were compared, as well
for multiple virtual populations. The pollutant considered were NO,, O;
and PM,, and the comparison was set between annual average values for
the year 2010 and 2000. The land use type and a socioeconomic factor
(average income) were investigated as possible sources of misclassifica-
tions between SIRANE and LUR. The variation in odds ratio (theoretical
risk of breast cancer due to the exposure to NO, and PM,,) was assessed
by replacing SIRANE exposure value by LUR exposure value over 10 000
virtual subjects, with an iterative procedure.

Good correlation was observed between SIRANE and LUR (r >0.7, p
>0.8, wk >0.6) for all pollutants both in 2010 and 2000, while other models
demonstrated lower agreement. The LUR model showed a tendency to
overestimate PM,, and not to capture fine-scale ozone spatial variability.
Furthermore, it was observed that LUR overestimate NO, within a con-
tinuous urban fabric. The epidemiological outputs comparison indicated
that LUR slightly underestimate odds ratios with respect to SIRANE, po-
tentially leading to mis information in breast cancer risk estimation. Con-
sidering highly exposed populations, the loss of significance was impor-
tant.

The LUR model has been evaluated as a good alternative to a disper-
sion model in estimating exposure values for epidemiological studies, al-
though showing an inferior capacity to capture small-scale variation that
make it less feasible to studies focusing only on populations exposed to a

small range of concentration values.



Abstract ITA

Il presente studio ha avuto come obiettivo il confronto di differenti ap-
procci modellistici per la stima dell’esposizione all'inquinamento urbano
in studi epidemiologici sul cancro. Sono stati confrontati i valori di es-
posizione stimati da un modello di dispersione (SIRANE), un modello
land use regression (LUR) e altri approcci (modello CHIMERE, mod-
ello “Nearest-AQMS”, modelli di prossimita) su 785 membri della coorte
“E3N”, residenti nella zona metropolitana della citta di Lione, e su al-
tre popolazioni create virtualmente. Gli inquinanti considerati sono stati
NO,, PMy, e O3 e il confronto & stato impostato tra i valori medi annuali
per gli anni 2010 e 2000. Per quanto riguarda SIRANE e il modello LUR,
il tipo di uso del suolo e fattori socioeconomici (reddito medio) sono stati
valutati come possibili fonti di disaccordo tra i due modelli mediante anal-
isi geografiche. Le differenze nel calcolo degli odds ratio (rischio teorico di
cancro al seno legato all’esposizione all'inquinamento) tra i due modelli &
stata valutata sostituendo ai valori SIRANE con quelli stimati da LUR su
10000 soggetti, applicando una procedura iterativa.

Lo studio ha mostrati buoni livelli di correlazione per SIRANE-LUR (r
>0.7, p >0.8, wk >0.6) sia per il 2010 che per il 2000, mentre gli altri modelli
hanno dato risultati peggiori. Il modello LUR ha mostrato una tendenza a
sovrastimare il PM;, e a non descrivere precisamente la variabilita spaziale
dell’ozono. Inoltre, si & osservato che il modello LUR sovrastima 1'NO,
nel tessuto urbano continuo. La stima degli output epidemiologici ha in-
dicato che il modello LUR sottostima leggermente gli odds ratio rispetto
a SIRANE, causando una sottostima del rischio di cancro . Considerando
popolazioni fortemente esposte, si € osservata una perdita di significativ-
ita epidemiologica importante.

Il modello LUR é stato valutato come una valida alternativa ai mod-
elli di dispersione per quanto riguarda la stima dell’esposizione per fini
epidemiologici, mostrando comunque un’inferiore capacita di descrivere
variazioni a piccola scala che lo rende meno adatto a studi con popolazioni

esposte solamente a range di concentrazione ristretti.
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1 Introduction

1.1 The burden of air pollution and its principal

effects on human health

Outdoor air pollution is a major public health problem leading to adverse
health effect The World Health Organization defined in 2016 air pollution
as the biggest environmental risk in to health, underlying that 90% of peo-
ple in the world breath air that does not comply with the WHO Air Quality
Guidelines [WHO, 2016]. In 2015, air pollution related diseases were re-
sponsible for about 6.4 million premature deaths, with 4.2 million due to
ambient air pollution and 2.8 million to indoor pollution, being more than
10% of all worldwide deaths.

Lelieveld et al published in 2020 a study that compares the loss of
life expectancy from air pollution with other risk factors, such as tobacco
smoking and AIDS [Lelieveld et al., 2020]: for air pollution, a global LLE
(Loss of Life Expectancy) of 2.9 years was observed, higher than those
found for tobacco smoking and AIDS, respectively 2.2 and 0.7.

The YLL (Years of Life Lost) spatial distribution all over the world (fig-
ure 1.1) shows that air pollution impact almost every country in the world,
with Central Asia, East Asia as the most affected regions.

From the perspective of environmental justice, the reduction of air
pollution is also key, since it is recognized that the poorest and most
vulnerable people are the most affected by pollution (92% of pollution-
related deaths occur in low-income and middle-income countries [Landri-
gan et al., 2018]). The number of deaths is projected to increase without

10
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Figure 1.1: Annual years life lost from air pollution all over the world
[Lelieveld et al., 2020]

strong politic strategies, mainly as a result of the exponential growth of
cities and of energy demand in developing countries.

Furthermore, high-risks of pollution-related diseases are also related to
children during periods of great vulnerability in pregnancy and in early
infancy, most of the times in terms of respiratory infections and childhood
asthma [WHO, 2017],[Landrigan et al., 2019]. The most frequents causes
of morbidity and mortality due to long-term exposure to air pollution are
those related to NCDs (Non-Communicable-Diseases, chronic diseases of
long duration [Forouzanfar et al., 2016]), principally of respiratory and car-
diovascular nature. Most frequent NCDs due to air pollution are chronic
obstructive pulmonary disease, ischemic heart disease, lung cancer and
lower respiratory infections (figure 1.2).

11
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Figure 1.2: Percentages of total ambient air pollution burden in 2012;
ALRI: acute lower respiratory disease; COPD: chronic obstructive pul-
monary disease; IHD: ischemic heart disease [WHO, 2016]
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1.2 Environmental epidemiology

Air pollution is composed by a huge variety of chemical species and de-
rives from several sources. Adverse effect on health given by different
pollutant are consequently extremely complex and not properly under-
stood [Bernstein et al., 2004]. The risk assessment for air pollution expo-
sure is usually conducted investigating statistical associations between air
pollutant levels and various outcomes, such as the number of hospital ad-
missions. Epidemiology is the science that studies distributions, patterns
and causes of diseases in a defined population, identifying risk factors for
public health and providing targets for health care strategies. The branch
of epidemiology that is in charge of determining how environmental ex-
posures impact on human health is called environmental epidemiology.

To improve public health and develop prevention policies, environ-
mental exposures of the population are increasingly being monitored
through measurements and simulations. In this context, studies on the
links between air pollution and health risks are increasing. On the other
hand, this movement is supported by a better reduction of environmental
risks for the general public following the appearance of several environ-
mental disasters in Europe, the US and the world since the 1960s.

Most of these analyses are carried out in urban environment, which
is usually associated with high concentrations of outdoor air pollutants
due to the great number of pollutant sources that are distinctively proper
of densely populated areas [Ezzati and Organitzacié Mundial de la Salut,
2004]. In urban environments and especially in those areas where popu-
lation and traffic density are relatively high (near busy traffic axis in city
center), the urban topography and the urban microclimate contribute to
develop poor air dispersion conditions and create concentration hotspots
[Vardoulakis et al., 2003]. Since the world population is becoming more
and more urbanized (fully half of the world’s population now live in ur-
ban areas [Gilbert and Wendell, 2014]), epidemiological studies in urban
environment are increasingly developing to support public authorities in

the decision making process.

13
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Urban air pollution is mainly due to combustion processes and its ma-
jor sources are traffic (mobile sources), industrial processes and building
heating (stationary sources), emitting into the atmosphere a complex mix-
ture of pollutants, that could vary depending on the relative contribution
of different sources and on the effect of climatic factors. Most frequently
and routinely monitored air pollutant include particulate matter (PM), ni-
trogen dioxide (NO,) and ozone (O3). Others are carbon oxide, lead, black
smoke and soot.

PM;

Atmospheric particulate matter consists of any dispersed matter, solid or
liquid, in which the individual aggregates range from molecular clusters
of 0.005 ym diameter to coarse particles up to about 100 ym. Particulate
matter (PM) can be emitted directly as carbonaceous soot particles from in-
complete combustion, or it can be formed into the atmosphere (for exam-
ple when gaseous NO, and SO, are transformed through heterogeneous
reactions in sulfates or nitrates). Although particles may have a very ir-
regular shape, their size can be described by an equivalent aerodynamic
diameter determined by comparing them with perfect spheres having the
same setting velocity. The particles of most interest have aerodynamic di-
ameter in the range of 0.1 ym up to 10 ym. Particles smaller than 2.5 ym
(PM;5) are referred to as fine particles, while PM;, refers to all particu-
late matter with aerodynamic diameter below 10 ym. The impact of PM;j
on human health is strictly correlated at the size of the particles inhaled.
Larger particles that enters the respiratory system can be trapped by the
hairs and lining of the nose and then cough off. Smaller particles that ar-
rive to the tracheobronchial system can be captured by mucus or other
defense mechanisms but may also be able to traverse it and deposit into
the lungs. Particulates aggravate existing respiratory and cardiovascular
diseases and damage lung tissue. Additionally, due to their nature, some
are carcinogenic. Associations between exposure to PM and cancer oc-

currence has been observed my multiple studies [Andersen et al., 2017a],

14
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[Raaschou-Nielsen et al., 2016], [Weinmayr et al., 2018].

NO,

Among the several oxides of nitrogen that are known to occur, only NO
and NO, are important air pollutants. There are two sources of nitro-
gen oxides (also named NO,) when fossil fuels are burned: thermal NO,,
which are created when nitrogen and oxygen in combustion air are heated
to very high temperature (>1000 K), and fuel NO,, which results from the
oxidation of nitrogen compounds chemically bound in the fuel molecules.
95% of anthropogenic emissions of NO,, are in form of NO, a colorless gas
that has no known adverse effects on human health. However, NO read-
ily oxidize to NO,, that can irritate lungs, cause bronchitis and pneumo-
nia and lower the system resistance to respiratory infections [Kampa and
Castanas, 2008]. NO, has also been linked to breast cancer development
in a meta-analysis of individual data from 15 European cohorts [Ander-
sen et al., 2017b]. Other consequences due to NO, presence in air are its
reactions with volatile organic compounds in presence of sunlight to form
photochemical oxidants that have adverse health effects as well.

O;

The simultaneous presence of organic compounds, NO, and sunlight can
initiate a complex set of reactions that produce a number of secondary pol-
lutants known as photochemical oxidants, of which Ozone (O3) is the most
abundant. Ozone pollution is therefore mainly associated with warmer
months, when the weather conditions that favor the formation of ground-
level ozone are present. O3 in ambient air has been associated with a va-
riety of transient effects on the human body, namely asthma, bronchitis,
heart attack and other cardiopulmonary problems. Furthermore, long-
term exposure to ozone has been shown to increase risk of death from
respiratory illness: a study of 450000 people living in United States cities
saw a significant correlation between ozone levels and respiratory illness

over a 18-year follow-up period, revealing that people living in cities with
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high ozone levels had an over 30% increased risk of dying from lung dis-
ease [Jerrett et al., 2009]. One of the main characteristics of ozone is that
higher surface O3 concentrations are measured in rural areas than in urban
areas because ozone levels are higher downwind of its precursors’ sources
at distances of hundreds of kilometers [Monks et al., 2015].

16
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1.3 Risk of breast cancer associated with am-
bient air pollution exposure: the XENAIR

project

Breast cancer and air pollution

Global cancer statistics estimated that in 2018 breast cancer (BC) was the
most common among women, with 2.09 million new cases diagnosed in
the world [Bray et al., 2018]. In France, its incidence has continuously
increased: this has been associated with mass screening, menopausal hor-
monal therapy but also with societal changes impacting lifestyles. A cru-
cial role of lifestyle and environmental factors on the occurrence of BC
has been suggested by epidemiological studies [Harvie et al., 2015] [Je-
mal et al., 2010], including ambient air pollution. However, the fact that
exposure to environmental pollutants may play a role in BC development
has been supported by both epidemiological and scientific findings [Brody
et al.,, 2007] and is now evidenced. In 2013 the International Agency for
Research on Cancer (IARC) classified the outdoor pollution as a whole (as
well as PM) as carcinogenic to humans, principally based on studies on
lung and bladder cancers [Loomis et al., 2014].

Epidemiological findings suggested associations between breast can-
cer occurrence and NO, from traffic-related air pollution [Nie et al., 2007].
Moreover, it has been reported that women with extremely dense mam-
mography density, that is a proved risk factor for breast cancer, were
less likely to have high levels of exposure to ozone [Yaghjyan et al,
2017].  Other pollutant species that were linked with BC are PCBs,
benzo[a]pyrene, cadmium, PAHs [Amadou et al., 2019].

Main limitations of epidemiological studies are the lack of information
about confounding personal risk factors (smoking, body weight, familiar
cancer history, eating habits) and about pollutant to which subjects are ex-
posed (often, only one pollutant or source is considered). Furthermore, the

retrospective exposure reconstruction is made difficult by the lack of his-
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torical exposure measures. Studies suggested that this limitation could be
overcame by considering the urban residence as a surrogate for air pollu-
tion exposure due to urban sources, in order to investigate periods where
historical air pollution records are unavailable [Binachon et al., 2014]. An-
other limit of most of studies on BC development is the consideration of
adulthood exposures within short observation periods, while the exposure
occurring during biological time windows of greater sensibility (during
childhood, in utero) have been suggested to be more strongly correlated
with BC risk [Potischman and Troisi, 1999]

XENAIR project

The XENAIR project is an interdisciplinary research project involving 6
different équipes, focusing on epidemiology, expology, geography and bio-
statistics:

* Département Cancer et Environnement, Centre Léon Bérard, Lyon
o Equipe Générations et santé - Inserm UMR 1018

e Equipe AIR, LMFA, Ecole Centrale de Lyon, Ecully, France

e INERIS, Verneuil-en-Halatte, Oise, France

* Leicester University, Center for Environment, Sustainability and
Health, UK

e ISPED, Université de Bordeaux, France

The objective of the XENAIR project is to investigate chronic long-term
effects of the exposure to multiple ambient air pollutants and risk of breast
cancer in a nested case-control study within the E3N (Etude Epidémi-
ologique auprés de femmes de la Mutuelle Générale de I'Education
Nationale) cohort. Selected ambient air pollutants are PM, NO,, O;,
benzo[a]pyrene, dioxins, PCB and Cd.
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The study analyzes trajectory profiles of individual exposure values
over time since recruitment, estimating BC risk associated with their expo-
sure profile using the residence address as a surrogate for exposure assess-
ment. This project is one of the largest prospective studies to date investi-
gating ambient air pollution exposure and breast cancer risk, and it should
significantly contribute to increase current knowledge on the health effects
of air pollution.

The XENAIR project has received a financing from the call
“CANC’AIR”of the ARC foundation for cancer research in 2015, covering
a 4-year period (2016-2020).
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1.4 Air pollution modeling for epidemiological

studies

One of the most critical issues of epidemiological studies associating air
pollution to health effects is the evaluation of the population exposure to
a given pollutant. An increasingly quantity of studies has been carried
out to assess exposure at individual level, showing that very different ap-
proaches are feasible.

The first dominant approach was the application of an exposure value
at a central site to the entire population of the study domain, assuming
that pollutants are homogeneously distributed within large urban areas.
Several studies suggested that greater variations are present at intra-urban
level and that this method may lead to the misclassification of the personal
exposure and significantly alter the health outcomes in the epidemiologi-
cal results [Briggs et al., 2000]. Great attention is then given to modeling
approaches that describe the spatial and temporal variability of a certain
pollutant specie within a certain domain, which results in air pollution
maps with a given resolution. Models outputs can predict future expo-
sure or reconstruct historical exposure [Zou et al., 2009]. Furthermore, the
degree of complexity (pollutants considered, spatial resolution) can be de-
fined in function of the assessment needs and of the available input data.
The nature of exposure modeling can be both statistical and determinis-
tic and there is an increasingly diffused tendency to couple models with
Geographical Information System (GIS), allowing to manage both the pol-
lutant concentration data and the distribution of the epidemiological co-

hort’s subjects.

Geographic Information Systems in Environmental Epidemiology

Advances in geographic information systems technology facilitate epi-
demiologists to study associations between environmental exposure and
the spatial distribution of a certain disease. A geographic information

system (GIS) is a system designed to capture, store, manipulate, analyze,
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manage, and present spatial or geographic data. GIS applications are tools
that allow to create maps, do spatial analyze and edit data. In the context
of air pollution impact assessment on human health, due to the high spa-
tial variability of air pollutants, one of the key aspects is to have a high
precision in term of subject’s geolocalisation. Cohort members are usually
geolocated through the geocoding process, which is the turning of textual
address data into geographic representations, estimating its location coor-
dinates. The validity of epidemiological studies on air pollution impact
strictly depends both on the proportion of addresses that can be geocoded
and on the positional accuracy of the geocoding process [Bonner et al.,
2003]. Location data for the study population are corresponding to the
actual residence of the cohort’s subjects or, alternatively, to a set of geopo-
litical units (addresses, census blocks, neighborhood centroids) [Nuckols
John R. et al., 2004].

Ward et al. [2005] compared Global Positioning System (GPS) measure-
ments with locations obtained by geocoding subjects” addresses with the
GIS and concluded that, despite having some inherent problems, most of
the addresses located in towns can be geocoded without large errors. Bon-
ner et al. [2003] conducted a similar study in Western New York State indi-
cating a median distance between GPS and GIS of 38 meters and conclud-
ing that, for the most part, geocoding of addresses is a very accurate pro-
cess. On the contrary, a case-study in Orange Country (Florida) investigat-
ing the geocoding quality in exposure for children living near high traffic
roads suggested that typical street geocoding is insufficient for fine scale
analysis [Zandbergen, 2007]. However, the recent improvements of the
GIS software have permitted to increase the accuracy and the complete-
ness of located addresses. A study recently conducted into the Auvergne-
Rhone-Alpes region (France) demonstrate that geocoded addresses, even
though not initially designed to be used for environmental exposure as-

sessment, could be feasible in epidemiological studies [Faure et al., 2017].
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Proximity and spatial interpolation models

Proximity modeling is a very simple approach for the exposure estimation
to air pollution. A proximity model measures the distance of a receptor
to a pollution source assuming that the exposure at a location nearer to an
emission source is greater than at further locations, creating a proxy vari-
able which is proportional to the exposure level of the population’s mem-
bers. Pless-Mulloli et al. [1998] investigated the occurrence of lung cancer
among people that lives close to industries in Teesside and Sunderland
(UK) categorizing subjects in three “zones”(near, intermediate, farther)
in function of their distance to industrial areas. Other studies were per-
formed considering the proximity to incinerators, hazardous waste sites
or heavy-metals-emitting industries. Residential proximity to roads is the
most widespread surrogate variable in epidemiological studies, as urban
exposure to air pollution is mainly dominated by traffic emissions [Colvile
et al., 2001]. Evidences that proximity to traffic could be a valuable proxy
variable are diffused in literature. For example, Miyake et al. [2002] corre-
lated distance from major roads with a series of health effects on Japanese
adolescents. A similar study was published by Dadvand et al. [2014]: it as-
sociated the residential proximity to roads with term Low Birth Weight in
Barcelona, observing that living within 200 m of major roads increase the
term LBW risk of about 46%. A study in England and Wales investigated
the association between air pollution and stroke mortality, adopting the
distance from main roads as a proxy variable and observing that around
990 stroke deaths per year would have been attributable to road traffic
pollution [Maheswaran and Elliott, 2003].

Another simple GIS-based approach to exposure assessment are spa-
tial interpolation models. These methods estimate the value at a given
location as a function of the values measured at surrounding monitoring
stations. Spatial interpolation models are quite diffused because of their
capacity to be adapted to each situation in function of available data or of
the complexity which is required. Interpolation methods occupy a very

widespread range of modeling approaches, that go from a very simple
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Nearest-Air Quality Monitoring Station (AQMS) assessment to the krig-
ing process.

Attention is given in finding whether a model simply based on the
nearest air quality monitoring station measure could be a feasible and
sufficiently accurate modeling approach for air pollution exposure assess-
ment in epidemiological studies. This is of course justified by the fact that
such a model is extremely easy to manage, requiring almost no input data.
Since air pollution concentration are often measured on quite regular ba-
sis in many cities and data and statistics are often made available by the
public authorities, this method is applicable to retrospective epidemiolog-
ical studies in a very simple way. Nonetheless, results are controversial:
Nearest-AQMS approaches are in fact extremely sensitive to the spatial
resolution of the monitor network, and a low number of monitors within
a certain domain could lead to great misclassification of the subjects ex-
posure. Nerriere et al. [2005] conducted a study in 2005 comparing per-
sonal exposure data (taken by the subjects through samplers installed in
rucksacks) and data provided by fixed monitors and concluded that some
caution is needed in using the latter method. The main issue is related
with the capability of the methods basing on monitoring stations datasets
to capture spatial variability between subjects, since most of times AQMS
measurements are representative only of pollution levels in the immediate
proximity of the stations [Lebret et al., 2000].

More complex spatial interpolation method are those implying the
Inverse Distance Weighting (IDW), that calculate the value at an un-
known location as a weighted average of the measures at the surround-
ings monitoring stations, therefore assuming that the exposure value es-
timated is more influenced by the close measurements than the distant
ones. Hoek et al. [2002] applied a model considering both the inverse-
distance-weighted interpolation method and the proximity to roads to
estimate concentrations of black smoke and nitrogen dioxide within the
Netherlands. They observed some associations between air pollution and
mortality due to cardiopulmonary diseases.

A more accurate weighted interpolation of measurements at surround-
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ing monitors is named kriging. Kriging is a technique that assigns a certain
weight at each concentration by maximizing the correlation among the
measurement. It generates both estimates and standard errors that quan-
tify the degree of uncertainty of the model. Kiinzli et al. [2005] published
in 2005 a study associating ambient air pollution and atherosclerosis in Los
Angeles and applied for exposure assignment a combination of universal
kriging model with a multiquadric radial basis function model. This study
represented the first epidemiological evidence of an association between

atherosclerosis and air pollution.

Land Use Regression Models

More recently developed models called Land Use Regression Models
(LUR) have combined proximity measurements with geographical factors
(road type, land use, traffic variables), leading to the development of in-
creasingly complete approaches that estimate the exposure level as func-
tion of the characteristics of the surrounding environment. The develop-
ment of a LUR is made through the construction of multiple regression
equations describing the relationship between the measured value at the
monitor and a series of selected prediction variables. Typical variables
considered are both related to the proximity of a pollution source and to
other environmental factors that could be related with air pollution. Ryan
and LeMasters [2007] identified typical classes and definitions of common
geographic variables frequently included in land use regression models
(table 1.1).

Many times, variables are chosen simply basing on the availability of
data: for example, Briggs et al. developed a LUR model for Prague in-
cluding the traffic as a predictor variable, while the model for Amsterdam
refers on road length because no data were available about traffic [Briggs
et al., 1997], [Briggs et al., 2000].

24



CHAPTER 1. INTRODUCTION

Section 1.4

Class Variable used Variable definition
Road type = Road type 1 Road serving >25000 people
Road type 2 Road serving 5000 - 25000 people
Road type 3 Road serving 1000 - 5000 people
Highways Undefined
Major roads Undefined

Major roads
High traffic roads
Minor road

Bus route
Traffic count Weighted traffic volume

Traffic volume

Traffic count on nearest highway

Average daily traffic count

Traffic intensity

Heavy vehicle traffic intensity

Average daily truck count
Elevation Altitude
Land cover  Land cover factor

Land cover
Industrial use land
Open space land
Commercia use land

Government/industry land

Household density
Population density

Land use

Distance to coast

Average daily traffic count >50,000 people
Road serving 10000 - 25000 people
Undefined

Public transportation route

15 * (Traffic volume <40 m) +

(Traffic volume 40-300 m)

Traffic volume (1000 vehicle km hr-1)
Undefined

Average number of cars traveling in

both directions/weekday (vehicle-km/hr)
Vehicles/day

Heavy traffic/day

Average number of trucks traveling in
both directions

Meters above sea level

Weighted sum of the areas of industrial and
high density residential land

Area of built up land

Area of land designated for industrial use
Area of land designated for industrial use
Area of land designated for commercial use
Area of land designated for government
or industrial use

Number of houses in area

Population in area

Area covered by industry, heavy industry,
multi-family residential housing

Distance to coast

Table 1.1: Classes and definitions of common geographic variables in-

cluded in land use regression models [Ryan and LeMasters, 2007]

The classic equation provided by an LUR model to describe the pollu-

tion concentration is the following;:
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C = o121 + aoxs + a3z + ... + ann

where X; are the different predictors and «; are the coefficients resulting
from the multivariate linear regression. The objective is to adjust the type
and number of parameters and the coefficients to minimize the bias and
increase the correlation with measurements.

After a LUR equation is formulated, a crucial step of its developing
is the validation process, that consist in testing the model performance
within the domain re-running the models after some monitors are re-
moved. This step is called “cross-validation”: despite there is not a uni-
versal procedure to conduct a cross-validation on LUR models and dif-
ferent studies often propose different methods, the Leave-One-Out-Cross-
Validation (LOOCYV) is one of the most diffused in literature [Wang et al.,
2012], [Johnson et al., 2010].

LUR models have become quite a good alternative for air pollution ex-
posure assessment in epidemiological research, being a very cost-effective
method to explain the spatial variation in air pollution [Marshall et al.,
2008]. On the contrary, one of the limitations that are often observed in
LUR models is the fact of being quite site-specific. Moving between ar-
eas with different land use type and topology reveals the necessity to cali-
brate the model with local parameters, depending also on data availability
(and on data quality of course) at the different locations. Other limitations
are represented by the fact that they usually produce annual averaged (or
biennial) estimation, while deterministic models can provide hourly con-
centration values. Furthermore, the development of a LUR models strictly
needs a homogeneous distribution of measurement stations within the
considered domain.

The European Study of Cohorts for Air Pollution Effects (ESCAPE) pre-
sented in 2013 a study describing a standardized way for LUR models de-
veloping applied to 36 study areas in Europe [Beelen et al., 2013]. The R?
calculated for the models ranged from 55% to 92% for NO,, with an aver-
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age number of included predictors of 4 (all models included at least one
traffic-related variable). Since the increasingly spatial resolution of GIS
has considerably improved the precision and availability of traffic inten-
sity data linked to digital road networks, a future improvement in land
use regression models” performances is surely expected. Liu et al. devel-
oped in 2019 a land use regression model for the city of Xi’an in China,
resulting in a 5 predictors model showing a R? > 0.85 [Liu et al., 2019].

Epidemiological studies using land use regression models for exposure
assessment are increasingly diffused in literature. For example, Coogan
et al. researched in 2016 a correlation between long term exposure to
NO, and diabetes incidence, using both a dispersion model and a land
use regression model to estimate concentration levels at residence address
[Coogan et al., 2016]. Forastiere et al. investigated in 2019 the associ-
ation with mortality of annual average air pollution exposure given by
two different LUR models in Rome, a Europe-wide LUR and a local one
[Forastiere et al., 2019]. They observed significant hazard ratios using both
models for PM, 5 and NO,.

Dispersion Modeling

On the contrary to land use regression modeling that use a stochastic ap-
proach, dispersion models are the result of a deterministic process. Dis-
persion models simulate the physical and chemical processes of the dis-
persion and transformation of atmospheric pollutants so that they predict
their concentration variability in space and time. They require both emis-
sion data and the basic meteorology, along with a simplified description of
the domain geometry. Emission data can include both stationary and mo-
bile sources: the first being local pollution sources (industries, waste sites,
home heating), the seconds mainly related to traffic (usually estimated by
road type, traffic flow, vehicle type). An important input data is also the
ambient background concentration [Tchepel et al., 2010].

Common dispersion modeling methodologies are box models (where

the domain is considered as a box in which pollutant are emitted and un-

27



CHAPTER 1. INTRODUCTION Section 1.4

dergo chemical and physical processes), lagrangian and eulerian models
(define a region of air containing an initial pollutant concentration and
then follow its trajectory as it moves downwind) and computational fluid
dynamic models (CFD, provide analysis of fluid flow based on conser-
vation of mass and momentum by resolving Navier-Stokes equations in
three dimensions) [Holmes and Morawska, 2006].

However, dispersion models vary depending on the mathematics used
the development, and the most commonly used are the Gaussian-based
ones. These models are based on the fact that the time averaged pollutant
concentration downwind from a source can be modeled using a normal
(or Gaussian) distribution curve. The basic Gaussian dispersion model
applies to a single punctual source (figure 1.3), but it can be modified to

account for line sources o area sources [Gilbert and Wendell, 2014].

Plume

Pollutant centerline

concentration .

profiles

Z A

H. - Effective stack height

H.=H, + Ab
Al - plume rise

+y

H, - Actual stack height
_y (release height)

Figure 1.3: Plume dispersion coordinate system, showing Gaussian dis-
tributions in the horizontal and vertical directions [Gilbert and Wendell,
2014]

The normal distribution of the plume is modified at greater distances
due to the effects of turbulent reflection from the surface of the earth and
at the boundary layer when the mixing height is low. The width of the
plume is determined by coefficents (cy,,) defined by stability classes of the
atmosphere.
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Lots of Gaussian-based dispersion models have been developed by
public authorities: the California Departement of Transportation devel-
oped a Line Source Dispersion Model named CALINE to predict concen-
tration of CO, NO, and PM near highways and arterial streets [Benson,
1988]. American Meteorological Society and the Environmental Protection
Agency proposed a near field steady state model for particle dispersion
named AERMOD in 2005 [Cimorelli et al., 2005], that was lately expanded
to gas phase pollutants.

One of the major challenges for dispersion modeling development is
the description of pollutant behavior in street canyons, which is a term
frequently used for urban streets flanked by buildings on both sides. Lots
of dispersion models were specially developed or simply used to street
network applications, as reviewed by Vardoulakis et al. [2003]. SIRANE
is an air pollution dispersion model for an urban environment: it decom-
poses the domain in a urban canopy (where pollutant flows are simulated
into a simplified geometry of the street network) and the external atmo-
sphere, where street intersection and stationary sources are modeled as
Gaussian plumes [Soulhac et al., 2011]. Further details on SIRANE are

given in section 2.3.

Comparison between LUR models and Dispersion Models

High resolution concentration maps over large periods of time have now
become crucial in environmental epidemiology to realize precise risk as-
sessments, since measurement of individual participants are often impos-
sible (especially for retrospective studies). As explained in the previous
sections, dispersion modeling and land use regression (LUR) modeling
are two of the approaches that are currently widely used for small-scale
spatial variations in air pollution concentrations.

Dispersion models are very accurate but cannot cover large areas, be-
ing rather specifically applied for urban-scale simulations. LUR models
are increasingly used since they allow to simulate pollutant concentrations

over countries or even continents [Beelen et al., 2013], taking into account
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that national-scale simulations unavoidably imply a loss of information at
local scale. Moreover, since those two methods are conceptually opposite
(while LUR models are empirical, statistical models, dispersion models are
based upon physical principles and their mathematical description) the
comparison between these two approaches is extremely useful to observe
their relative performances in estimating air pollution concentrations at
small-scale within a urban domain, assigning exposure values to cohort’s
members. The purpose of studies comparing LUR and dispersion models
is to quantify these differences and their relative importance, mainly fo-
cusing on assessing whether and how much they have an impact on the
results of epidemiological studies.

Since now, only a few studies compared the performances of LUR mod-
eling and dispersion modeling in estimating air pollution concentrations.

Cyrys et al. [2005] used both a stochastic model and a dispersion model
(IMMIS™¢t/¢™) to predict NO, and PM;, concentrations in Munich, Ger-
many, at 1669 addresses of the participants of two ongoing birth cohort
studies. IMMIS"™*/*™ describes the dilution and transport of pollutants
from point, line, and area sources as a stationary process, using a Gaus-
sian normal distribution. The results showed a strong correlation between
stochastic- and dispersion- modeled concentrations for both pollutants.

Marshall et al. [2008] compared three approaches for estimating
within-urban variability in ambient concentrations of NO, NO,, CO, Os at
56099 postal codes in Vancouver (Canada): a GIS-based model for spatial
interpolation of monitoring data, a LUR model and an eulerian grid model
(CMAQ). In general, the three approaches reflected different spatial scales:
urban-scale variations for interpolated ambient monitoring data and the
dispersion model, neighborhood-scale variations for LUR. Differences in
means and standard deviations among the methods were modest, even if
LUR exhibited higher spatial resolution than the other methods.

Beelen et al. [2010] compared the performances of a LUR model and a
dispersion model (URBIS Information System) in estimating NO, concen-
trations in a Dutch urban area (Rijmond area, corresponding to Rotterdam

and surroundings). The regional background was obtained by interpola-
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tion of regional measurements and concentration data were estimated for
70000 centroids on a regular grid of 100x100m. A moderate agreement
was found (Pearson’s r = 0.55) especially for the central part of the expo-
sure values’ distribution: the main differences were observed to be due to
the land use category industry into the LUR predictors and to the different
treatment of the NO-NO, conversion.

de Hoogh et al. [2014] explored the differences between LUR and Dis-
persion Models estimates for NO,, PM;y and PM; 5 within the European
Study of Cohorts for Air Pollution (ESCAPE project), developing LUR
models basing on a standardized methodology. 13 areas were involved
for NO,, 7 PM;y and 4 for PM,5: LUR and dispersion model estimates
correlated on average well for NO,, with median Pearson’s r and Spear-
man’s p respectively equal to 0.75 and 0.77 (this implies that both methods
may be useful for epidemiological studies of small-scale variations of out-
door combustion related air pollution, typically from road traffic) but only
moderately for PM, with large variability across different areas.

Wang Meng et al. [2015] compared the agreement between long-term
air pollution exposure estimates for NO,, PM;,, PM,5 and soot based on
dispersion modeling and LUR modeling. Also, they evaluate whether as-
sociations between long-term air pollution exposures and lung function in
children differ depending on the exposure modeling approach used. Par-
ticipants were included from the Dutch PIAMA (Prevention and Incidence
of Asthma and Mite Allergy) birth cohort study, counting 3963 newborns.
Overall, the LUR model predictions correlated well with the estimates of
the dispersion models for all the pollutants. Also, in this study, a better
agreement was observed for NO, (r = 0.86 for NO,, 0.57 for PMj).

Hennig et al. [2016] compared a LUR and a Dispersion and Chemistry
Transport Model (DCTM) in the Ruhr area, Germany, using 4809 resi-
dences’ coordinates. The correlation they observed was weak to moder-
ate, attributed to the fact that LUR and DCTM models do not represent
identical aspects of air pollution: while DCTM represents an area aver-
age similar to urban background concentrations, the ESCAPE-LUR was

designed to predominantly estimate variability in local traffic-related air
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pollution.

Objectives of the study

It is certainly important to carry out further analyses in comparing disper-
sion and land use regression modeling approaches, with the aim of better
understanding how the choice of the model can impact the estimation of
the risk of breast cancer occurrence related with high air pollution expo-
sure, and so affect public decisions about healthcare strategies.

This work is part of the XENAIR project and has the objective of com-
paring the results of a national Land Use Regression model with those of
a dispersion model (SIRANE). The focus will be on the loss of information
when passing from a deterministic model providing spatially refined esti-

mated concentrations in a relatively small domain to a stochastic national

approach (table 1.2):
model  Spatial resolution Temporal resolution Domain dimension
SIRANE 10 meters Hourly time-step  Lyon metropolitan area
LUR 50 meters Yearly average France

Table 1.2: Spatial and temporal resolution of SIRANE and the LUR model
simulations’ results

A retrospective comparison have been made between annual average
exposure values estimated in 2010 and 2000 for a real case-control cohort
(E3N, [Clavel-Chapelon and E3N Study Group, 2015]), further investigat-
ing if the loss of information could be attributable to specific land use types
or socioeconomic factors. The pollutant considered were nitrogen diox-
ide (NO;), ozone (O3) and particulate matter with aerodynamic diameter
smaller than 10um (PM;). Proximity and interpolation models were also
involved into the comparison for the year 2010. Additionally, to quantify
the impact of this difference on epidemiological results, the two models
underwent a comparison for the calculus of typical epidemiological indi-
cators (odds ratio).
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Figure 2.1: Lyon position in Europe

Lyon is the third largest city and second-largest urban area of France
and the capital of the Auvergne-Rhone-Alpes region, located in the coun-
try’s east-central part (figure 2.1). In 2017, Lyon had a population of
516,092 habitants (2,326,223 for the metropolitan area). The climate is clas-
sified as semi-continental with mediterranean influences. Lyon’s geog-
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raphy is dominated by the Rhone and Sadne rivers that converge to the
south of the city center forming a peninsula, and two large hills are situ-
ated at the north and at the west of the downtown. The study domain is a
rectangular area of around 1190 km? that extends in latitude from Givors
up to the north of Lyon and in longitude from the countryside at the east
of the city to the Saint-Exupéry airport. The domain includes 143 munic-
ipalities and occupies three French departments: Rhone-et-Loire, Isere and
Loire. Outputs of various modeling approaches have been applied within
the domain showed in figure 2.2b, that is the intersection of all the models’

domains.

Kiion (Besancon

Figure 2.2: Study domain

The domain presents both rural and urban areas: following the
CORINE Land Cover protocol [Biittner, 2014], there are artificial surfaces
for the 38.46 % of the surface. Others are agricultural areas (49.65 %), forest
and seminatural areas (9.31 %), water bodies (2.42 %) and wetlands (0.07
%).
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2.2 Model CHIMERE

The model CHIMERE, in addition to being included in the comparison for
the year 2010, is of crucial importance for the operation of the LUR and
SIRANE models, as explained in section 2.3 and 2.4. CHIMERE is an at-
mospheric pollution model, dedicated to studies about events at regional
scale. Those are resulting of high emissions (both anthropogenic and nat-
ural), stagnant meteorological condition but also of the kinetics and effi-
ciency of the chemistry and the deposition. More specifically, CHIMERE
is an Eulerian off-line chemistry-transport model (CTM). As input data,
the model considers the primary pollutant emissions, the meteorological
fields and the chemical boundary conditions. The domain can vary from

continental to local (from 1 km to 1 degree resolution).

Menedatory input deaia

Boundary conditions Area limited Anthropogenic
Initial conditions simulation domain Emissions
Global model / measurements: Mesh, topography,
; . . (masses/surface)
chemical concentrations soil and landuse properties
Pre—processing “~a| Emissions fluxes e
¥ .
Meteorology e — anthropogenic
— biogenic
Pressure, humidity, wind, temperature = — mineral dust
— forest fires
— volcanos
Chemistry—transport integration ' i
" CHIMERE -
Transport, turbulent mixing
Emissions, chemistry, deposition Measurements:
. - surface stations
U Ny P — airborne
(el 0™ el = - satellites
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Figure 2.3: General principle of a chemistry-transport model; [c],..q and
[c]ops are the modelled and the observed chemical concentrations fields,

respectively

Atmospheric concentration fields of tens of gaseous and particulate
pollutant species are the outputs of the simulation, and the processes

that mainly affect the results are the emissions, the transport phenomena,
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the chemical reactions and the deposition. Figure 2.3 presents a general
principle of CTM. The first version of the model was released in 1997 in-
cluding only gaseous species and covering the Paris area [Vautard et al.,
2001]. Now the CHIMERE model is considered a state-of-the-art model
[Menut et al., 2013], being involved in numerous studies all over the world
([Schaap et al., 2007], [Zyryanov et al., 2012], [Hodzic et al., 2009]). In this
study, CHIMERE simulation for the year 2010 were used for NO,, PMj
and O; exposure estimation, focusing on annual average values.
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Figure 2.4: CHIMERE grid within France; legend values are in pg/m?

Meteorological and flux data were given from the European Monitor-
ing and Evaluation Program (EMEP) and concentrations were provided
with a spatial resolution of approximately 7 km x 7 km, which is a quite
fine grid for a CTM model given the overall extension of the domain.
Schaap et al. performed in 2015 a study to investigate the impact of
using finer grids resolution in CTM, comparing four models including
CHIMERE [Schaap et al., 2015]. They observed that decreasing the grid
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scale is very helpful for underlying the “urban signal”, namely the differ-
ence between high emission areas and their surroundings, especially for
PM; and NO,. On the contrary, ozone concentrations are less affected by
model resolution [Queen and Zhang, 2008]. CHIMERE outputs was im-
plemented into the GIS is in form of a punctual layer, with the points set
as a grid all over the domain, as displayed in figure 2.4 for France and in
tigure 2.5 for the study domain.

Figure 2.5: CHIMERE grid within the domain

The exposure assignment method starting from the CHIMERE grid
within the domain was computed with the GIS and is explained in sec-
tion 2.6

Even though the grid employed in this study has a quite fine resolution
for a CTM model, it belongs to a simulation made at a regional scale and
logically shows a weaker resolution level compared with others fine scale
models that will be presented.
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2.3 Model SIRANE

SIRANE is an urban dispersion model, developed by the Laboratoire de Mé-
canique des Fluides et Acoustiques of the Ecole Centrale de Lyon and presented
in 2011 [Soulhac et al., 2011]. The model is based on a decomposition of
the domain in two parts: the urban canopy and the external atmosphere,
managed by two independent modules.

Pollutant transfers within and across those modules are parametrized,
as a function of meteorological data (wind speed and direction, tempera-
ture, cloud cover and precipitation intensity). Pollutant dispersion and de-
position (both dry and wet) is simulated with an hourly time-step. Source
typologies considered in SIRANE are both industrial emissions, repre-
sented as elevated point sources, and traffic emissions, as line sources dis-
tributed on a road network. Miscellaneous diffuse sources (such as domes-
tic heating) are also considered and represented as areal sources at ground
level.

The model performs a simplified description of the urban geometry,
where streets are modelled as a simplified network of connected segments
which are represented by boxes, as showed in figure 2.6.

Figure 2.6: Simplification of urban geometry in SIRANE. a) Box model for
each street with relative flux balance. b) Network of streets [Soulhac et al.,
2011]

The mass transport simulation considers three mechanisms: a convec-
tive flux along the streets (due to the parallel component of the external
wind speed, the green arrow in figure 2.6a), a turbulent transfer across the

boundary urban canopy - external atmosphere (blue arrow in figure 2.6a)
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and a convective transport at street intersection [Salizzoni et al., 2009],
[Soulhac et al.,, 2009]. An important assumption is that the pollutant is
assumed to be perfectly mixed inside each street segment.

In the external atmosphere, the flow is described by the Monin-
Obukhov similarity theory [Pahlow et al., 2001]. As a roughness sub-layer
is not considered above the urban canopy, the external flow is assumed to
be uniform and the dispersion of the pollutant advected or diffused within
the external atmosphere is described with a Gaussian plume model (figure
2.7).

—_—
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Figure 2.7: Gaussian plume modelling for pollutant transport above the

urban canopy [Soulhac et al., 2011]

The model has been validated, comparing its results to field data mea-
sured within an urban district in Lyon, France [Soulhac et al., 2012]. A
measurement campaign 15-day long conducted in the VI arrondissement
(named LYON®) provided information about traffic fluxes and cars emis-
sions, meteorological conditions, background pollution levels ad spatial
variability of pollutant concentrations. The overall comparison between
model predictions and field measurements was classified as ‘good” follow-
ing criteria from Chang and Hanna [2004]. The same result was obtained
during another validation study over a whole urban agglomeration (Lyon)
in the year 2008 for nitrogen dioxide [Soulhac et al., 2017].

One of the major problems for the modelling of pollutant concentra-
tions at urban scale is to estimate a background concentration [Tchepel
et al., 2010]. This concentration is associated to the contribution of all pol-
lutant sources located outside the studied domain, in the way that the

values predicted by the model exactly correspond to the excess above the
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background ones. Possible approaches to define background concentra-
tions for local scale models are to use monitoring air quality data or us-
ing simulation results from larger domain models [EPA, 2005]. In case of
estimation via measurement stations, it is crucial that those stations are
placed at the border of the domain, far away from traffic axes [Dedelé and
Miskinyte, 2015]. For the validation study over Lyon in 2008, the back-
ground concentration value was measured at the Saint-Exupéry Airport,
located at the east border of the domain (approximately 30 km from the
city center) [Soulhac et al., 2017].

Models simulation realized for the XENAIR study

For the year 2010, simulation outputs of two different results of SIRANE
were available: the “Saint-Exupéry”(SE), in which the background concen-
trations included were the average values measured at the Saint-Exupery
airport, and the “Extraction”(EXT), that instead uses concentrations esti-
mated by a CHIMERE simulation in correspondence of the same location.

Table 2.1 presents background values for the two results of SIRANE

NOZ 03 PM10
SIRANE Saint-Exupéry | 14.52 1191 25.06
SIRANE Extraction 1590 951 1591

Table 2.1: Averaged background concentration values for SIRANE results
in 2010; all values are in pug/m?

Figure from 2.8 represent the simulation results over the city of Lyon
for NO, in EXTRACTION, while figure 2.9 show a zooming within the
downtown and superposed with satellite images. All the results for both
versions are presented in Appendix C.
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Figure 2.8: Result of the SIRANE EXT simulation in 2010 for NO,
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Figure 2.9: Result of SIRANE EXT simulations in 2010 for NO,. zoom
within the city center

The main difference between the two results of SIRANE are surely re-
lated to the PM;( concentration estimation, given the quite relevant differ-
ence in term of background concentration among them, almost equal to 10
pg/m?3 (25.06 vs 15.91 ug/m?, see table 2.1).

Since a SIRANE output with measured background was not available
for the year 2000, the choice was to include into this study the EXT one.
This is justified by the fact that, since the XENAIR project involves retro-
spective studies with exposure simulation every 5 years from 1990 to 2010,
comparisons between different periods need to be performed among mod-
els whose background values were defined using the same method. Figure
2.11 shows results for SIRANE EXT in 2000.
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Figure 2.10: Result of SIRANE simulations in 2010 for PM;y; a) version EXTRACTION; b) version SAINT-
EXUPERY
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Figure 2.11: Result of SIRANE EXT simulation in 2000 for NO,
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2.4 Land Use Regression Model

The second model applied within the domain to explore spatial variabil-
ity of NO,, O3 and PM;, was the land use regression model developed
and applied under the XENAIR project. The model covers all the Euro-
pean area of the French territory (figure 2.12), estimating several pollutant

concentrations with a 50x50 meters resolution.
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Figure 2.12: Result of the LUR for NO; in 2010 considering the whole sim-

ulation domain
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Technically, the model can be classified as a “hybrid”model, be-
cause concentration values estimated by the CHIMERE model were in-
volved into the predictors. This technique was also applied for a
LUR model developing in the Ruhr area [Henning et al.,, 2018]. The
model domain occupies an area slightly wider than the French terri-
tory (figure 2.12). The building of the model referred to the measured
values given by AirBase, the air quality database maintained by the
European Environmental Agency, using around 360 monitors all over
France [https://www.eea.europa.eu /data-and-maps/data/airbase-the-
european-air-quality-database].

Considering the LUR model developing procedure, variables must be
chosen in order to minimize the difference between observed and pre-
dicted concentrations. This is usually done using statistical indicators as
R? and RMSE. The procedure starts from a univariate regression analy-
sis between the measured concentrations and all the potential variables.
Then, a first predictor is defined, which is the variable giving the great-
est R?, and having previously defined its direction of effect (for example,
positive for major road length).

The remaining variables are then added separately and the increase of
the model accuracy (R?, RMSE, Fractional Bias) is each time assessed: only
variables leading to a R? increase of a minimum pre-defined value (usually
1%) are kept into the model. Finally, variables which had a low p-value are
usually excluded.

The model is then validated through a variation of LOOCV (Leave-
One-Out-Cross-Validation), consisting in re-applying the model versus
the monitors that have been used to build it, each time leaving 20% of
them, and assessing the average R? resulting from all the applications.

Average values for the year 2000 and 2010 were calculated for NO,,
O3 and PM,,. Figure 2.13 shows the NO, distribution into the domain for
2010, while all other figures are presented in Appendix C.
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Predictors resulting from the multiple regression performed for the XE-

NAIR LUR model are presented in table 2.2, with relative resulting R?:

Pollutant Predictor Buffer type (m) Global R?
PM,o CTM MACC Nearest point 0.59
Major road length 50
High density urban 500
Agriculture and forest 10000
NO, CTM MACC Nearest point 0.67
Road length 1000
Major road length 50
High density urban 500
Industry 10000
O CTM MACC Nearest point 0.6
Low density urban 3000

Table 2.2: Predictors and R? values for the XENAIR LUR model
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Figure 2.13: NO, LUR results for 2010 within the study domain
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2.5 Populations

2.5.1 Overview

One of the study’s objectives is to assess and compare different models’
performances in term of estimating the exposure to air pollution for epi-
demiological studies, making necessary to refer to an epidemiological co-
hort or to equally representative surrogates. Different vector layers were
implemented into the GIS referring to geocoded addresses, both represent-

ing real individuals addresses and randomly geocoded ones:

* One real population, composed by real subjects (members of the E3N
epidemiological cohort);

* One virtual population obtained by a random selection between

building’s addresses of the city of Lyon;

* Two “semi-random”population, obtained by a random points cre-
ation within the domain in function of the population density;

* One random population, fully randomly created within the domain.

The choice to use also other populations in addition to the real one is
justified by the need to verify that the results obtained by the comparisons
between different models are not affected by the way the sampled values

within the domain are chosen.

2.5.2 Real population

The real population has been built using the location of the members of
the E3N Study Group resident into the domain boundaries. The E3N
cohort (Etude Epidémiologique auprés des femmes de la Mutuelle Générale de
I'Education Nationale) was initiated in 1990 to investigate the risk factors
associated with cancer and other non-communicable diseases in women
[Clavel-Chapelon and E3N Study Group, 2015]. Nearly 100000 women

volunteered, required to fill questionnaires every 2-3 years and to submit
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a signed consent from providing permission to obtain personal informa-
tion (vital status, address, medical expense reimbursements from the in-
surance plan). The questionnaires are available at [http:/ /WWW.e3n.fr/].
Several studies have been performed basing on this cohort, both for epi-
demiologic issues related to the exposure to air pollution ([Amadou et al.,
2019], [Danjou et al., 2015]) and for specific investigations in medical con-
text (Fournier et al. researched in 2007 a possible relationship between the
risk of breast cancer and different hormone replacing therapies [Fournier
et al., 2008]).

In the XENAIR project, as said before, nearly 10000 women were involved
in France for the year 2010. In figure 2.14, the E3N cohort is showed, while
figure 2.15 presents the detail of the cohort members located within the

study domain, the intersection resulting in 785 subjects.
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Figure 2.14: Georeference of all the E3N cohort members
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Figure 2.15: Georeference of the 785 E3N cohort members within the study

domain

2.5.3 “Points d’addressage” population

The PA (Point d’addressage) populations have been created basing on the
data describing all the buildings addresses into the Métropole de Lyon area.
The original shapefile was provided by the site related to the data of Lyon
Metropolitan Area’s actors [data.grandlyon.com]. Since the huge quan-
tity of points contained in the original shapefile (around 190000) would
have been very heavy to manage into the GIS, a random extraction of 3000
points have been carried out. The PA population can be seen in figure 2.16.
The shape of the points” distribution is due to the administrative bound-
aries of the Métropole de Lyon area.
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Figure 2.16: Georeference of the PA population subjects into the study do-

main

2.54 Other virtual populations

While the E3N and the PA population are using real addresses, the other
three populations created have been only considered in order to check
the results. The first two are “semi-random”: the amount of points con-
tained in every municipality or neighborhood was selected as a function
of the population resident in that area. To have a better distinction into
the different areas within the municipality of Lyon (which of course is the
biggest and most populated), its area has been further divided, basing on
the boundaries of the conseils de quartier, in 36 different neighborhoods.
The tool that have been used on QGIS was the “Random point creation
into polygons”, given the polygon of different municipalities into the do-
main. The last population was fully randomly created within the study
domain (figure 2.18b). In order to have a sufficient statistical power, all
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those populations counts 2000 subjects.

Figure 2.17: Zoom of the PA population within the downtown

As expected, the fully random population shows some addresses in
non-logical places (figure 2.17 vs figure 2.18b). The resolution of the ad-
dresses contained in the shapefile of the Métropole de Lyon is 0.5 meters
(higher than those of all models implemented). The other virtual popula-
tions assess the constancy of results obtained with the two set of addresses,
and their data will not be showed except if exhibiting an inverse tendency
in results.
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Figure 2.18: Semi-random population (a) and fully random population (b)
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2.6 Spatial interpolation and proximity models

2.6.1 Nearest-AQMS and Nearest-CHIMERE modeling

The others modeling approach presented are spatial interpolation models,
assigning to each subject an exposure value in function of the distance to a
certain point where the pollutant concentration is known or estimated, for
example through measurement stations or regional models results. Mea-
surements from the monitoring stations were given by ATMO - Auvergne-
Rhone-Alps, the observatory for the air quality surveillance and informa-
tion of the region recognized by the French Ministry for the ecologic and
inclusive transition [https://www.atmo-auvergnerhonealpes.fr]. The Air
Quality Monitoring Station network in the city of Lyon is showed in figure
2.19.
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Figure 2.19: AQMS network for the Metropolitan Area of Lyon (ATMO -
Auvergne-Rhone-Alps)

55



CHAPTER 2. METHODS Section 2.6

In this study, each population’s subject is assigned the value of the
nearest air quality monitoring station. This has been performed in QGIS
3.4 applying the NN]Join plugin. It is to be noticed that not all AQMS pro-
vides measures both for NO,, O3 and PM;, consequently it is possible that
for the same subject the exposure to two different pollutant is provided by
two different AQMS.

The same procedure has been applied to assign exposure values for
the CHIMERE model. Actually, CHIMERE'’s output is inserted into the
GIS as a punctual layer, where points are disposed as a grid (figure 2.5).
Each point includes the average value for 2010 for NO,, O3 and PMy,.
One of the main interests of this work is to compare data from regional-
scale CTM model and AQMS, which are extremely susceptible to small
scale-variations, as the number of points on the same domain for the two
is similar (20 for CHIMERE, 18 for AQMS) and the exposure-assigning
method is the same (assign the value of the nearest point).

2.6.2 Proximity models

GIS are being more and more used in environmental epidemiological stud-
ies as a method of exposure assessment based on the residential proxim-
ity to distinct types of environmental sources, as traffic roads or indus-
trial facilities. These methods consider the same conceptual approach of
a LUR model, further simplifying the exposure assignment procedure by
only providing a ranking of the subjects. As exposure to air pollution can
be mostly determined by traffic emissions [Colvile et al., 2001], there is a
growing evidence that proximity to major roads could be used as a proxy
for the exposure to traffic-related air pollution [Miyake et al., 2002] [Venn
etal., 2005]. These methods refer both on simple distance-to-road criterion
but also on metrics that evaluates the road length in a certain dimension
buffer, created around the coordinates of the subjects and intersected with
the road network [Hochadel et al., 2006].

The proximity models considered in this study were the distance to
nearest road (NEAR), the distance to nearest major roa