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That quite definitely is the answer.

I think the problem, to be quite honest with you,

is that you’ve never actually known what the question is.

Douglas Adams





Abstract

In a standard Reinforcement Learning problem, an agent learns how to successfully

behave in an environment through exploration by maximizing the expected return

over trajectories. While this might be the optimal approach in some cases, there

are scenarios in which it is convenient to include some notion of risk in the agent’s

optimization problem. For example, a car learning how to drive itself should not

head full speed towards a wall just because it has not tried that yet. This concern

led to the formulation of functions of the return (objective functions) that, when

optimized, induce a more conservative approach in the exploration phase.

In this work, we focus on the Inverse RL problem for risk-averse agents. The

goal is to infer the parameters of the reward function when the objective function

is a known risk measure, by observing the behavior of an agent (expert). We

follow a gradient-based approach that takes advantage of the fact that an expert’s

policy gradients are zeroed out at convergence. The intuition is that, since the

real parameters of the reward induce the zero equality, we can search for them

by minimizing some norm of the policy gradients w.r.t. such parameters. We

present an empirical evaluation of this approach with several risk measures (Mean-

Variance, Mean-Vola, ERM) and different environments (Portfolio Management,

Trading, Grid World).
Keywords: Inverse Reinforcement Learning, Risk-Averse, Gradient-Based, Mean-

Variance, Mean-Volatility, Entropic Risk Measure, Trading, Portfolio Management



Estratto

In un classico problema di Reinforcement Learning, un agente impara a comportarsi

in modo proficuo all’interno di un ambiente tramite l’esplorazione con l’obbiettivo di

massimizzare il valore medio di ritorno sulle proprie traiettorie. Questo approccio può

risultare ottimo per certi ambianti, ma spesso conviene includere il concetto di rischio

nell’ottimizzazione dell’agente. Per esempio, un veicolo autonomo che sta imparando a

muoversi sulla strada non dovrebbe dirigersi a piena velocità verso un muro, solo perché

non ne ha ancora esplorato le conseguenze. Questo aspetto ha portato alla formulazioni

di funzioni del ritorno (objective functions) che, quando massimizzate dall’agente, ind-

ucano in esso un comportamento avverso al rischio e quindi anche una maggior cautela

nella fase di esplorazione dello spazio.

In questo lavoro ci concentriamo sul problema inverso di trarre informazioni da agenti

esperti (agenti che hanno imparato un comportamento proficuo) tramite l’osservazione

delle loro traiettorie. Cioò che vogliamo dedurre da queste osservazioni sono i pesi che

caratterizzano la funzione di reward quando l’obbiettivo dell’agente e’ una risk-averse

objective function. Utilizzeremo un approccio gradient-based che si basa sul fatto che

i gradienti log-policy di un agente esperto siano identicamente uguali a zero. Cerchi-

amo quindi nello spazio delle reward, i pesi che minimizzano la norma dei gradienti

calcolati su un batch di traiettorie dell’esperto. Presentiamo una valutazione empirica

dell’approccio utilizzando diverse misure di rischio (Mean-Variance, ERM, Mean-Vola)

su diversi ambienti (Portfolio Management, Trading, Grid World).

Parole Chiave: Inverse Reinforcement Learning, Risk-Averse, Gradient-Based,

Mean-Variance, Mean-Volatility, Entropic Risk Measure, Trading, Portfolio Manage-

ment
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Chapter 1

Introduction

There are two steps to solving a problem. The first is to find a good representation of the

problem and the second one is to find a solution through this representation. The first

step can be sometimes overlooked because for humans it often happens unconsciously and

in a very personal manner, but it is paramount for Machine Learning algorithms. The

elements of Reinforcement Learning allow us to represent the classic Artificial Intelligence

problems in a very succinct and effective way: an agent lives in an environment, performs

actions, receives observations, and tries to optimize some objective. The agent learns by

choosing among the actions it is capable of performing and by observing the outcome of

its behavior. Every time the agent performs an action, its state changes and it receives a

reward. By performing an action at every time-step and seeing which state-action pairs

determine which reward, the agent learns how to behave to maximize, along a trajectory

of several time steps, a function of the reward: the Objective Function. The first phase

of this learning process is highly explorative as the agent has yet to learn how the

environment works. When dealing with a simulation there is no concern regarding this

aspect of the learning process, but there are situations where catastrophic outcomes are

best to be avoided. Along with this idea, Risk Measures were introduced. Risk Measures

allow the agent to gain insight into the most negative possible outcomes of its actions

and help to avoid them. Risk-averse agents seek to maximize an Objective Function

which is a trade-off between the expected cumulative return and some measure of risk.

It is fascinating that an artificial agent can learn by itself in a way that is very relatable

to how we as humans learn. However, we are still missing one of the fundamental aspects

of this training process: pedagogy. Just as we learn by observing our peers, an agent

can learn by observing an expert. This process is called Inverse Reinforcement Learning

(IRL). The work of this thesis focuses on the IRL problem for risk-sensitive agents and

in particular aims to estimate the reward function that induced the expert’s policy to

converge towards a certain behavior. Starting from an existing approach that operates
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with risk-neutral agents ([13] and [14]), we aim to extend the framework to risk-averse

agents. The challenge arises from the fact that risk-averse objectives are non-linear with

respect to the reward, making the inverse problem harder to tackle.

1.1 Contributions

We can summarize the contributions of our work in two main sections. The first one

envelops the theoretical advancements, while the second one concerns the empirical eval-

uations of this theory. From the theoretical point of view, we have devised a framework

for solving the Risk-Averse Inverse Reinforcement Learning problem using an approach

that is completely model-free and without posing any constraint on the objective function

optimized by the expert. We provide the formulations for three different risk measures

that allow us to simultaneously estimate both the weights of the reward function op-

timized by the expert and its level of risk aversion. Empirically, we evaluate all three

risk measures on various domains of increasing complexity: a Grid World environment,

a Portfolio Management environment, and a Trading simulation based on real data from

the S&P500 index.

1.2 Outline of the Thesis

The Thesis is structured as follows. The next two chapters are dedicated to providing

the necessary background knowledge and context on which the work builds upon. In

particular, we will firstly cover some definitions of sequential decision problems, which

are at the basis of the Reinforcement Learning problem formalization. We will then

move on to a brief overview of the most relevant concepts of Reinforcement Learning,

drawing attention to the concepts of risk-aversion and Inverse Reinforcement Learning.

In particular, we will explore in detail the various risk measures that we have used in

our framework.

Following these two chapters, we dedicate some time to exploring the current liter-

ature concerned with Risk-Averse Inverse Reinforcement Learning (RA-IRL), which is

the branch of RL in which this thesis falls. Since there are not many publications for

this particular field, we have broadened the scope of our literature overview to the areas

of Risk-Averse Reinforcement Learning (RA-RL), and Inverse Reinforcement Learning

(IRL). Some of the papers mentioned in this chapter provide the fundamental blocks for

the work presented in this thesis.

Finally, we move onto the chapters that contain the novel contributions of our work.

Here, we present in great detail the theoretical principles and mathematical formulations

that we derived for our solution to the RA-IRL problem. In particular, we do so for
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the three risk measures we decided to use to test our approach. We then move onto the

actual implementation of the approach, describing the environments and main elements

at play within the simulations. This portion of the Thesis contains the empirical results

obtained and their respective evaluations. The last chapter contains the conclusions,

dedicated to summarize and comment on the work we have done and the results we

obtained.
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Chapter 2

Sequential Decision Problems

As the name states, in a Sequential Decision Problem (SDP) the decision-maker (agent)

must take a sequence of decisions that will allow it to progress within an environment.

The agent’s utility (what it wants to maximise), depends on the whole history of decisions

(trajectory). In a scenario where there is complete knowledge of the environment and the

consequence of actions (the agent’s decisions) is deterministic, the problem reduces to

simple action planning. Things become more complex and interesting when uncertainty

is added to the environment. Every time the agent performs an action, it changes its

state, for example, a pawn moving forward on a chessboard. When the environment

transitions are stochastic, the agent’s actions affect the state in unpredictable ways.

Therefore a fixed sequence of actions (action plan) is insufficient to successfully navigate

the environment. The agent needs something called a policy which is nothing more than

a mapping from states to actions. The Sequential Decision Problem can be effectively

represented by the Markov Decision Process.

2.1 The Markov Decision Process

The MDP can be formally defined as follows:

Definition 2.1.1. (Markov Decision Process). A Markov Decision Process (MDP) is a

discrete time stochastic control process, defined by the tuple < S,A, P,R, γ >, where

• S is defined as the State Space.

• A is defined as the Action Space.

• P : S ×A× S → R is a Markov transition kernel, i.e.

– for every s ∈ S and a ∈ A, P defines a distribution over the state space S.
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Figure 2.1: The Markov Decision Process

– for every B ∈ S, (s, a)→ P (s, a,B) is a measurable function on S → A.

• R : S ×A→ R is the reward function.

• γ ∈ (0, 1) is the discount factor.

It is worth to focus for a moment on a few of the elements that have been introduced.

The Markov transition kernel P defines the dynamics of the environment as it describes

how the state of the agent will evolve at every step, given the action it performs. One

should note the fact that the transition is stochastic and that the agent’s action may,

but won’t necessarily, influence the transition. Another important characteristic of the

Markov transition kernel is that the transition to a new state only depends on the

previous state the agent was in and the action it performed. The path that has led the

agent to the previous state and all of the history of the environment is not taken into

account. It is this history independence that makes the model ”Markovian” and it is a

fundamental property to limit the dimension of the problem which would explode if one

had to account for all possible histories and keep track of them.

The discount factor γ, instead, is crucial to the foresight of the agent. The higher

the value, the more the agent will tend to compromise its desire to act greedily with

the value it gives to future opportunities. This will be discussed in more detail after the

policy and the Objective Function have been introduced.

Definition 2.1.2. (Policy). A policy is a function π : S ×A→ R such that

• for every s ∈ S, π(s) defines a probability distribution over the action space A.

• for every C ∈ A, s→ π(s, C) is measurable.

In practice, the policy maps the state of the system to a probability distribution

over the actions that the agent can perform in that particular state. One should note

that just as the transition kernel, the policy does not take history into account and
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only depends on the state. This is because we are considering Markovian, stationary

policies. Some policies may depend on the history (history-dependent Policies) or on

the time-step (non-stationary policies) but these lie outside of the scope of our work.

Intuitively, the policy determines the behavior of the agent in the environment and the

ultimate goal of the RL problem is to find the best policy. To understand how a policy

is evaluated, let’s explore further the reward function and the metrics that derive from

it.

Definition 2.1.3. (Trajectory) Given an initial state s0 in S and a policy π, a trajectory

is a random sequence of state action pairs Tt = {(St, At)}t≥0 defined on a probability

space that is tied to π and the transition kernel P , such that for t = 0, 1, ...
S0 = s0

At ∼ π(St, ·)
St+1 ∼ P (St, At, ·)

(2.1)

‘

Definition 2.1.4. (Return) The Return is the cumulative reward, multiplied by the

discount factor γ, obtained along a trajectory starting at time-step t.

Gt =
inf∑
i=t

γiRi (2.2)

In the common scenario, the agent will try to find the trajectory that yields the

greatest return and it will do so by maximizing the expected return over trajectories.

Since the policy indirectly determines a probability distribution over the trajectories, we

can evaluate a policy based on its expected return, weighted on the trajectory probabil-

ities.

It is now clear how the discount factor can be used to distribute the attention over the

future rewards along a trajectory to be followed. If γ = 0 then the agent will only build

its policy considering the immediate reward (it will act greedily). On the other hand,

if gamma = 1 the agent will assign equal importance to immediate and future rewards,

which is usually suboptimal in a stochastic environment. The best value lies in between

these two extremes and is problem-dependent.

From the Return, we can derive two fundamental metrics.

Definition 2.1.5. (State-Value Function) The State - Value function V : S → R is the

expected cumulative reward from a given state.

Vπ(s) = E[Gt|st = s] (2.3)
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The State-Value function allows the agent to evaluate the states, but since the agent

only has control over the actions, we need also the Q function.

Definition 2.1.6. (Q-Value function) The Q-value function Q : S × A → R ts the

expected cumulative reward starting from a state s ∈ S and performing an action a ∈ A.

Qπ(s, a) = E[Gt|st = s, at = a] (2.4)

In both these metrics, the subscript π indicates that the expectation is evaluated

over a given policy π. The two values are tied together by the following relationship:

Vπ(s) =

∫
A
π(a|s)Qπ(s, a)da (2.5)

Now that we have defined these metrics, we shall see how they can be computed for

a given environment. It is necessary to note that the following equations assume that

the transition kernel P is known.

Definition 2.1.7. (Bellman Expectation Equations) At the core of solving an MDP

are the Bellman Equations. These equations provide a recursive definition of the value

functions that make it possible to evaluate the state space through recursive algorithms

that we will see later on. The idea is that the value of a state (or state-action pair)

should be the sum of the values of the other states, weighted by the probability of

reaching them.

Vπ(s) = Rπ(s) + γ ·
∫
A
π(a|s)

∫
S
P (s′|s, a)Vπ(s′)ds′da (2.6)

Qπ(s, a) = R(s, a) + γ ·
∫
S
P (s′|s, a)

∫
A
π(a|s′)Qπ(s′, a)dads′

= R(s, a) + γ ·
∫
S
P (s′|s, a)Vπ(s)ds′ (2.7)

where

Rπ(s) =

∫
A
π(a|s)R(s, a)da (2.8)

From the Bellman Expectation Equations, we can derive the following update rule

which will allow us to iteratively compute the State-Value function (and analogously the

Q-Value function).

vk+1(s) =
∑
a∈A

π(a|s)

(
R(s, a)γ

∑
s′∈S

P (s′|s, a)vk(s)

)
(2.9)

It can be proven that, for k → inf, vk will converge to the true value Vπ.
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2.2 Dynamic Programming

Dynamic Programming is a mathematical optimization method, conceived by Richard

Bellman, which makes use of the homonymous Bellman Equations to solve a large prob-

lem by splitting it into smaller problems which are solved recursively.

Applied to SDPs, DP algorithms are guaranteed to converge to the optimal solution

with an infinite number of iterations. This property makes them very desirable, but

it comes with a cost. As a matter of fact, the iterative approach, which requires the

state values to be re-computed at every iteration, is very computationally expensive.

When the state space is large enough (e.g. the game of Chess) the approach becomes

infeasible. Furthermore, DP algorithms rely on the strong assumption that the agent

has complete and perfect knowledge of the environment. This means knowing a priori

the transition kernel P . This limitation is often unmet in real-world applications, which

resulted in the development of different approaches to solve SDPs. Nevertheless, The

principles of DP are fundamental concepts that subsequent approaches build upon and

their understanding is therefore of paramount importance. In the next sections, we

introduce these concepts.

2.2.1 Evaluating the Policy

To find the ”best” policy we must be able to evaluate one. One of the ways we can

evaluate a policy is computing the value function that derives from it by iteratively

applying the Bellman equations.

vk+1(s) =
∑
a∈A

π(a|s)(Ras + γ
∑
s′∈S

P ass′vk(s
′))

vk+1 = Rπ + γP πvk

(2.10)

The value function can be seen as a vector of the dimension of the environment’s

state space. It is initialized with all values set to zero and at every iteration, each element

of the vector representing a state s is updated to contain the reward obtained from s,

plus the sum of the values of all elements representing the states s′ reachable from s,

weighted by the probabilities given by the policy. The process will converge to the real

Value function. The quality of the policy can be then estimated from the value of the

starting state v(s0) which corresponds to the discounted return the agent can expect to

incur starting from that state and following policy π.

2.2.2 Improving the Policy

The value function we just computed can then be used to improve the policy. Following

the new value function, the policy is updated so that for each state, it will greedily prefer

8



the action that leads to the reachable state with the highest value v(s). The quality of

actions is formalized in the Q-function.

qπ(s, a) = R(s, a) + γ ·
∑
s∈S

P (s′|s, a)Vπ(s) (2.11)

This back and forth procedure will eventually converge to an optimal policy for the

environment into consideration. While the convergence is guaranteed, it is quite slow

since every time the policy is updated, the new value function must be computed ground

up.

2.2.3 Value Iteration

To reduce the computational burden of the approach we just saw, the policy can be taken

out of the equation. Instead of evaluating a state by weighting on the actions based on

the current policy (π(a|s)), the Value Iteration algorithm simply uses the action that

leads to the best next state (of course, still taking into account the stochasticity of the

environment). This algorithm drastically speeds up the convergence to the real value

function, from which the optimal policy can easily be derived through greedy selection.

The new update rule can be formalized as such:

vk+1(s) = max
a∈A

(Ras + γ
∑
s′∈S

P ass′vk(s
′))

vk+1 = max
a∈A

Ra + γP avk
(2.12)

2.2.4 Generalised Policy Iteration

The general approach of DP algorithms consists of a two-step phase where the policy

is firstly evaluated and then improved with respect to this evaluation. This concept is

denoted as Generalised Policy Iteration (GPI) and it effectively describes not only DP

algorithms but most RL approaches.

Figure 2.2: Convergence to optimality in a Generalised Policy Iteration process.
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Chapter 3

Reinforcement Learning

At the basis of the human learning scheme, is the ability to interact with the environ-

ment and observing how it changes as a consequence of the interaction. As we gather

experiences, we become more aware of the relational cause-effect link that exists between

our actions and how the environment evolves around us. As the famous idiom states ”we

learn by making mistakes”. Reinforcement Learning (RL) is the algorithmic equivalent

of this fundamental concept. The subject of this process is the Agent, and its goal is to

learn how to successfully interact with the environment it lives in. Initially oblivious to

the dynamics of the world that surrounds it, the agent must gain experiences through

which it can learn profitable strategies. In RL this process is effectively represented

by the Markov Decision Process. The MDP models the interactions between an Agent

and the Environment. In this framework, the experiences of the agent are modeled as a

Sequential Decision Process. Time is discretized into steps and at every step, the agent

can perform an action and observe how the environment evolves. This observation is not

active on the part of the agent, but rather passive, as it is the environment that receives

the action and returns a limited description of the new state of the environment (the

Observation). Together with the observation, the agent receives from the environment

a very important element, the reward. The reward is a numerical value through which

the Agent can evaluate the interaction and deem it as successful or not. The goal of the

agent is to develop an interaction strategy (so-called policy) to maximize some function

of the reward over a succession of time steps (which may be finite or infinite).

3.1 Model Free Reinforcement Learning

Reinforcement Learning lies somewhat in between the two main paradigms of Machine

Learning which are Supervised and Unsupervised Learning. It does not rely on labeled

data and in this way it differs from Supervised Learning, but at the same time, as
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the agent becomes more knowledgeable of the environment, the training becomes more

conscious of what data represents (good or bad states and actions in trajectories). This

leads to what is known as the exploitation-exploration trade-off. The agent must choose

whether to explore unseen states and actions, or whether to exploit the knowledge it

has gained so far from the environment to optimize its strategy within the limits of

its knowledge. The idea is that the agent should vary this trade-off over time. An

initial highly explorative phase will allow it to gain a broader view of what the possible

strategies lead to, while as the training progresses, a more conservative approach can

yield better results more quickly by avoiding returning to states that have already shown

to be less proficuous.

Algorithms used to solve the problem of finding the optimal policy, lie in two major

categories: Model-free and Model-based approaches. Model-based approaches require

previous knowledge of the model such as the state space S and the transition kernel P .

These approaches are usually more efficient and yield better results but aren’t always

applicable. It is often the case that the model cannot be known and a policy must be

derived simply by exploring the environment. So all the information in posses of model-

free approaches is the trajectories of the agent that is being trained. To this end, the

problem can be tackled in three ways:

• Model approximation: this approach consists in estimating the transition matrix

P and the entire state space S through a large number of randomized trajectories.

Once the model has been estimated, any standard model-based approach can be

used to derive a policy. The shortcoming of this approach is that a good estimate of

the model requires a large number of trajectories. In real-world applications, data

efficiency is highly desirable (this becomes even more true in risk-averse settings),

therefore this limitation is very strong.

• Direct RL approaches: this class of model-free approaches completely overcomes

the necessity of a model and only rely on trajectories provided by the expert.

Within this class, we can find value approximation algorithms, which try to esti-

mate the value function (V or Q) from which to derive the optimal strategy and

policy approximation algorithms, which directly optimise the policy.

Direct RL techniques are split in two main categories: online and offline approaches.

Both of these approaches rely on observed trajectories to update the policy or value-

function. The difference lies in the fact that the former performs a parameter update with

every new step observation while the latter works in a batch-fashion as it collects a large

number of trajectories before performing an update based on the average performance

of these trajectories. Online approaches are useful in scenarios where sample efficiency

is essential, but they require more attention concerning the exploration-exploitation

trade-off we introduced earlier because updates are performed even when the collected

11



Figure 3.1: Model Free RL Scheme

data is small and the agent still has very limited experience of the model. Batch based

approaches instead allow for a more robust descent but require a larger amount of tra-

jectories to be collected. For the scope of this thesis, we decided to implement Offline

batch-based methods since they are well suited for simulated environments such as the

ones we will be dealing with in chapter 6.

3.1.1 Policy Gradient Methods

As we have stated, policy gradient methods directly act on the policy by updating its

parameters to iteratively improve its performance measured by the objective function.

The value of the policy is given by the objective function itself:

J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

π(a|s)Qπ(s, a) (3.1)

where dπ(s) is the state distribution given the policy π. This parameter is tricky to

estimate given that the model is unknown. Luckily, the gradient of the objective function

with respect to the policy parameters does not depend on the transition model at all as

stated in the Policy Gradient Theorem [21]:

∂J(θ)

∂θ
=

∫
S
dπ(s)

∫
A

∂π(a|s)
∂θ

Qπ(s, a)dads (3.2)

At every iteration, the parameters θ of the policy are updated using the well-known

gradient ascent (descent) so as to maximize (minimize) the objective function value.

θ∗ = argmax
θ∈Θ

J(θ) (3.3)

θk+1 = θk + αk∇θJ(θ) (3.4)
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REINFORCE

REINFORCE, also known as Monte Carlo Policy Gradient, relies on sampled trajectories

to estimate the gradients. Since the expectation computed over N samples corresponds

to the actual gradient, this approach has been proven to converge, for an infinite number

of samples, to the real gradient of the objective function. In the case of a finite horizon,

for a given trajectory τ , we have:

θ∗ = argmax
θ

E
τ∼πθ

[G(τ)]

= argmax
θ

J(θ) (3.5)

where r(τ) is the cumulative reward over the trajectory τ . Using Monte Carlo roll-

outs, we can estimate J(θ) from the trajectories.

J(θ) = E
πθ

[G(τ)] ∼ 1

N

N∑
i=1

G(τi) (3.6)

∇θJ(θ) = E
πθ

[∇θlog(πθ(τ))G(τ)]

∼ 1

N

N∑
i=1

[∇θlog(πθ(τi))G(τi)] (3.7)

Intuitively, what is happening here is that we are fitting the model to estimate the

return. The left-hand side term is simply a Maximum Likelihood Estimator which tries

to fit θ so to maximize the probability of a given example trajectory τi. The return G(τi)

acts as a weight to increase the probability of profitable trajectories.

An improvement that will yield a much faster convergence can be achieved by adding

a baseline to the reward. The baseline acts as a means of comparison for the reward.

Since the reward acts as a weight to the MLE, instead of assigning large positive weights

to good trajectories and small positive weights to bad ones, the baseline will act so

that bad trajectories are weighted negatively, effectively reducing their probability of

occurrence rather than increasing it slightly.

∇θJ(θ) ∼ 1

N

N∑
i=1

[∇θlog(πθ(τi)) (G(τi)− b)] (3.8)

A simple but effective baseline is the average reward of the return over the batch of

trajectories.

b =
1

N

N∑
i=0

G(τi) (3.9)
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GPOMDP

One of the shortcomings of Monte Carlo policy methods is the high variance of the policy

gradient. An effective countermeasure consists in taking into consideration the causality

of actions. The unrolling of a trajectory from a given state should not be influenced

by the rewards encountered up to that moment but only from the future rewards. The

notion of causality can be introduced as follows:

∇θJ(θ) ∼ 1

N

N∑
i=1

[
T∑
t=1

∇θlog(πθ(τi))

(
T∑
t′=t

G(sit′ , ait′)− b

)]
(3.10)

Equation 3.10 formalizes the well know Gradient of the average reward in Partially

Observable Markov Decision Processes. Here, half of the cross products are effectively

removed from the equation, yielding a much more stable gradient descent (ascent) com-

pared to the simpler REINFORCE approach.

Natural Policy Gradient

As we have seen, reducing the variance of policy gradient methods significantly improves

their performance allowing for faster and smoother convergence. Nevertheless, these

improvements do not help to tackle large plateaux in the return landscape. In these

regions of the objective function, gradients become very small and stall the learning

curve. The Natural Gradient technique allows us to redefine the meaning of the step

size, resulting in a much more efficient gradient descent that tends to avoid pitfalls such

as these plateaux. This technique was firstly introduced in the RL setting in [5] and

later applied to actor-critic algorithms in [12].

In regular policy gradient methods, the policy parameters are changed by an amount

that depends on the magnitude of the computed gradient of the objective function. How

much these changes will affect the behavior of the policy is not taken into account.

Natural Policy Gradient follows a completely different approach by defining a step size

that depends on the behavior shift magnitude, in other words, it penalizes changes in the

parameters that result in drastic changes of the policy’s behavior. Since policies define a

probability distribution over actions (and implicitly over states), it is reasonable to make

use of the Kullback-Leiber divergence to measure the difference between πθ and πθ+∇θ.

The Fisher Information Matrix allows us to measure this divergence with respect to the

policy parameters θ.

The idea is that fixed the value of the KL-divergence, among all the possible param-

eter combinations that induce the desired value, we choose the ones that maximise the

objective function.

Mathematically, The Fisher Information Matrix is the second derivative of the KL

divergence of the updated policy parameters with respect to the original parameters:
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Algorithm 1 Natural Policy Gradient

Input: initial policy parameters θ0, learning rate αk
Output: approximated optimal parameters θ∗

repeat
Approximate Fisher Matrix Fθ
Approximate vanilla policy gradient: ĝ ≈ ∇θJ(θk)

Approximate natural policy gradient: ĝN = F−1
θ ĝ

Approximate parameters using gradient ascent: θk+1 = θk + αkĝN
k ← k + 1

until convergence;

dKL(πθ, πθ+δθ) ∼
1

2
δθTFθδθ (3.11)

Therefore, the problem to be solved which is constrained by a fixed value c of the

KL-divergence is:

δθ = argmax
δθ:dKL=c

J(θ + δθ) = αF−1
θ ∇θJ(θ) (3.12)

Given that the Fisher matrix can be approximated as:

Fθ(s) = E
πθ(a|s)

[
∂logπθ(a|s)

∂θi

∂logπθ(a|s)
∂θi

]
(3.13)

it can be approximated from a batch of trajectories as follows:

Fθ(s) =
1

N

N−1∑
i=0

[
T−1∑
t=0

(
t∑

t′=0

∇θlogπθ(aj |sj)

)
∇θlogπθ(ai|si)T

]
(3.14)

TRPO and PPO

While ensuring some exceptional theoretical advantages, Natural Gradient does not scale

well due to the computational burden given by the second-order derivative matrix. When

the problem state space is large, the approach becomes unusable. To tackle this short-

coming, two efficient algorithms were developed: TRPO [16] and PPO [17]. The former

relies on the trust-region method: the policy update is performed within a region that en-

sures the KL-divergence resulting from the policy update won’t exceed a given threshold.

Furthermore, following the conjugate gradient method, the algorithm ensures that every

gradient step is orthogonal to previous steps to maximise step efficiency. The drawback

of this approach is that to allow for the trust-region to have an acceptable size, some

of the constraints are loosened up resulting in the possibility of performing degrading
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steps. PPO, instead, follows another approach by using a tradeoff rather than imposing

a hard boundary to limit the policy step divergence. The divergence is included in the

objective function as a penalty so that the agent is drawn to minimize it. This approach

makes it possible to use simpler gradient descent methods that are easier to implement

and more computationally efficient.

Stochastic Policies and Boltzmann

The gradient descent approaches we have just seen only work when the policy into con-

sideration is stochastic, meaning that it will output a distribution over the admissible

actions that is not deterministic (i.e. π(a|s) > 0∀s ∈ S∀ admissible a in s). This restric-

tion does not allow us to use deterministic policies which can be quite limiting. Ways

to overcome this limitations are using hyper-policies or Deterministic Policy Gradient

[18]. Nevertheless, it is not of our concern for the scope of the project since we will be

exploring environments where stochastic policies are well suited. A common choice for

discrete action spaces that we have chosen to use for this work is the Boltzmann policy

(also known as Softmax) [8].

πθ(s, a) =
eθ
Tφ(s,a)∑

b∈A e
θTφ(s,b)

(3.15)

where φ(s, a) is a feature vector that identifies a specific state-action pair. The likelihood

gradient of the policy can be formalized as

∇θ log πθ(s, a) = φ(s, a)−
∑
b∈A

πθ(s, b)φ(s, b) (3.16)

3.2 Inverse Reinforcement Learning

Consider a Markov Decision Process as defined in 2.1.1 by the tuple < S,A, P,R >.

This time though, the reward function is not provided, we have an MDP in the form of

< S,A, P > and, along with the model, we can observe an expert acting in the environ-

ment. In particular, we have access to a set of its trajectories τi(i ∈ [0, N ]). Differently

from the goal of classic Reinforcement Learning approaches, we have seen, here the ob-

jective is to estimate the reward function, given a set of demonstrations (trajectories)

form an optimal agent. Instead of learning through exploration, IRL is concerned with

learning through observation. This setting is useful for learning optimal behaviors in

applications for which it might be difficult to define an objective function that expresses

the trade-off that the expert wants to optimize.
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A fundamental paper for IRL is Algorithms for Inverse Reinforcement Learning by

Andrew Ng. et al. [9]. In this work, the authors devise a set of algorithms to tackle

the IRL problem both when the policy is known and in the case where the only infor-

mation provided is the expert’s observations. The key issue that arises is degeneracy :

the observed behavior can be optimal for a large space of reward functions, making it

impossible to provide a single solution to the problem. The authors partially overcome

this obstacle through heuristic approaches. A different approach has been presented by

Ziebart et al. in [30] where the IRL problem is solved through a probabilistic method

based on the principle of maximum entropy. The authors test the algorithm in an in-

teresting environment derived from real data collected from taxi drivers in a metropolis.

Other approaches have been proposed in [19] and in [13]. In particular, we will concen-

trate on the GIRL algorithm presented in [13] and extend its applicability as we shall see

later on. It is worth noting that some approaches suffer from the drawback of requiring

the solution to the forward problem (solving the MDP). This step is very computation-

ally expensive and approaches that manage to avoid it (such as GIRL [13]) present a

clear advantage.

3.2.1 IRL vs Behavioural Cloning

It is worth to stress the fact that Inverse Reinforcement Learning is not concerned with

estimating the policy of the agent, which is a process defined as Behavioural Cloning.

There are cases in which behavioral cloning can be the right choice, for example when

we have a large number of samples and very little domain shift but it is not necessarily

the most generalized representation of the task. The observation might miss out on the

salient part of the behavior, this means that if our agent learns to mimic the expert, it

will mimic every aspect of the expert’s behavior, whether it was relevant to the task or

not. Finally, the expert might have capabilities that our agent does not. In these cases,

knowledge of the objective rather than the behavior will be more effective and will allow

for a better transition to new domains (improved generalization). So rather than dealing

with an imitation problem, we are dealing with an intent inference problem.

3.3 Risk-Aversion in Reinforcement Learning

As previously stated, a strategy which maximises the expected return on trajectories

may not be optimal for some applications. For example, it can be useful to avoid risk

in environments where catastrophic scenarios are not recoverable. In Markov Decision

Processes the concept of risk comes from two distinct uncertainties. The first one,

called ”inherent uncertainty”, derives from the stochasticity of the environment itself.

Tackling this type of uncertainty requires a transformation of the objective function.
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It is important to note that the probability distribution of the reward could remain

the same or change over time, in the former case we talking of static risk, while in

the latter of dynamic risk. The second type of uncertainty is Model uncertainty or

parametric uncertainty. It is defined for robust MDPs and derives from uncertainty over

the parameters of the model.

There are several ways to account for risk:

• Utility Approach: the standard value function is replaced with the expected

value of a utility function of the return that contains the notion of risk.

• Risk Measures: this strategy consists in the addition of a nonlinear term that

describes the risk. Examples of these terms are the Variance or the Conditional

Value at Risk.

• Robust MDPs: in this context, there is no risk term added. The risk is accounted

for by considering the worst possible case scenario for the parameters of the model.

3.3.1 Utility functions

This approach builds on the Utility Theory, introduced in [3]. At every time-step, the

agent is presented with a set of alternatives in the form of actions. A utility function

provides a way of assigning a preference order to this set of alternatives so that the agent

can choose the action that maximises the utility. These functions can be formulated so

that some notion of risk is included in the valuation of the alternatives. An example is

the variability of the outcome that follows each choice. The idea behind this approach

to Risk-Averse RL is to apply these utility functions to the cumulative return so that

the optimization process will yield risk-averse policies.

The risk aversion of a utility function is directly tied to its convexity as decision-makers

optimising concave functions are prone to diversification which is a risk-averse attitude.

The following formula expressed the concept of convexity as diversification.

ρ(βX + (1− β)Y )) > βρ(X) + (1− β)ρ(Y ) (3.17)

Where X and Y are two random variables representing two choices and β is the

probability to take the first one. It is possible to choose a utility function that best suits

our needs, for example, the exponential function u(x) = eλx applied to the return is a

popular choice as its second-order approximation is equal to the common mean-variance

optimization problem.

U(T, π) = Eπ[R] + λV arπ[R] +O(λ2) (3.18)
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3.3.2 Risk Measures

The risk measures approach explicitly incorporates the concept of risk.

We can see our risk measure as a mapping ρ : Z → R from a random variable Z to the

domain or real numbers.

Variance

A popular risk measure is the Variance of the return. This measure effectively incorpo-

rates the notion of risk defined as uncertainty in the outcome. When the return value

over trajectories is unstable this means that the process is less controllable and less pre-

dictable, and therefore, in some way, riskier. Mathematically, the return variance can

be formalised as follows:

V ar(G) = E[(G− Jπ)2] = E[G2]− J2
π (3.19)

From the above formulation, we can derive a new objective function called Mean-

Variance [25], which tries to maximize a trade-off parametrized by lambda between the

expected return value and its variance.

MeanV ar = Jπ − λV arπ[G] (3.20)

This approach does have some shortcomings, primarily given by the fact that re-

turn values at the extremes of the distribution are weighted equally without considering

whether they are positive or negative (it is symmetric). Nevertheless, its simplicity and

intuitiveness make it a risk measure worth exploring.

Entropic Risk Measure

As the Variance, this measure allows taking into account higher-order statistics of the

reward that give a better insight into the riskiness of a policy. The ERM induces risk-

averse behaviors by overestimating negative outcomes, thanks to the exponential utility

function. The formulation is the following:

ERM(G) =
1

λ
log E [exp(−λG)] (3.21)

where the parameter λ determines the level of risk aversion induced by this measure.

It is worth noting that the second Taylor expansion of the ERM with respect to the risk

aversion parameter λ is equal to the Mean Variance objective function:

ERM(G) ≈ E[G] + λV ar[G] +O[λ2] (3.22)
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Reward Volatility

Introduced in [1], the reward volatility has a very similar meaning to the measures

we have just seen with the difference that instead of describing the uncertainty of the

accumulated return over whole trajectories, it is concerned with the level of step-wise

uncertainty. It is defined as the variance of the step reward under the state-occupancy

measure:

ν2
µ,π = E

s∼dµ,π
s∼π(·|s)

[
(R(s, a)− Jπ)2

]
(3.23)

Sharpe Ratio

Another popular measure is the Sharpe ratio in which the expected value is divided by

the inverse of the square root of the Variance. This measure is widely used in finance

because it provides an effective way of evaluating the performance of a portfolio with

respect to its riskiness. In practice, it measures how well the return compensates any

added risk compared to a portfolio composed of risk-free assets only. It is defined as:

Sh =
Eπ[G]√
V arπ[G]

(3.24)

uguale alla var ma non lo usiamo perche’ e’ piu’ scomodo perche’ ha una fomrulazione

con un gradiante complesso per dia della divisione

Coherent Risk Measures

In [23], the authors identify four useful properties that risk measures should abide to in

order to be ”rational”. Risk measures that satisfy these properties are called Coherent

Risk Measures and the properties are:

1. Convexity: ∀α ∈ [0, 1], ρ(αX + (1− α)Y ≤ αρ(X) + (1− λ)ρ(Y )

This property defines how diversification leads to reduced risk.

2. Monotonicity: if X ≤ Y , then ρ(X) ≤ ρ(Y ) This property means that to higher

costs are associated higher risks.

3. Translation invariance: ∀b ∈ R, ρ(X + b) = ρ(X) + b This property ensures that

the constant part of the cost does not influence risk.

4. Positive homogeneity: if α ≥ 0, then ρ(αX) = αρ(X) This property ensures that

an outcome times a multiplicative factor α has alpha times the risk.

Where X and Y ∈ Z, the space of random variables
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3.3.3 Robust MDPs

As we have seen, Sequential Decision Problems can be effectively described by Markov

Decision Processes, which are models parametrized by the transition probabilities and

reward function. These parameters are often estimated from noisy data (which might

render them unreliable) and may even change during a simulation. To tackle this prob-

lem, the framework of robust MDPs has been devised in [10] and [4]. The robust MDP

framework assumes that the parameters of the MDP exist within an uncertainty set U

and therefore the optimization process must be performed with respect to the worst

realization of the parameters within the set. The main drawback of this approach is

that, if the uncertainty set is too large, it can lead to policies that are too conservative.

Some works have successfully mitigated this issue such as [20] and [29]. An interesting

publication by Takayuki Osogami [11] explores the connection between robustness and

risk sensitivity. The author shows how a risk-sensitive MDP that minimizes an iterated

risk measure (composed of coherent risk measures which abide by certain restrictions)

behaves equally to a robust MDP that minimizes the worst-case expectation when the

possible deviation from nominal values is characterized by a concave function. Further-

more, he demonstrates how the particular case of an MDP that minimizes the expected

exponential utility function is equivalent to a robust MDP that minimizes the worst-case

expectation with a penalty from deviation (measured by the KL-divergence) of uncertain

parameters from their nominal values.
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Chapter 4

Literature Review

In this chapter, we are going to present the main related works about Policy Gradient

algorithms for Mean-Variance optimization and other interesting works within Risk-

Averse Inverse Reinforcement Learning. We will deeply analyze only those works that

are strictly connected to our solution while giving a brief overview of other relevant

researches.

4.1 Forward RL

In this section, we focus on some works in the area of forward Reinforcement Learning,

i.e. the process of training an agent to perform successfully in a given environment.

In particular, we draw the attention to three publications concerning the optimization

of risk-averse agents through the risk measures we introduced in chapter 3: Variance,

Volatility, and Entropic Risk. The approaches presented have been used in this thesis

to generate the experts from which the Inverse RL process can begin.

4.1.1 Variance Adjusted Actor-Critic Algorithms

The first paper we are going to present from Tamar [25] concerns the derivation of the

gradient for the variance risk measure. The authors present an actor-critic algorithm

that optimizes the variance penalized expected return. The approach is novel being the

first actor-critic framework that, through the newly introduced concept of compatible

features, extends the PGT to optimize the true objective function through gradients

that require a single trajectory for the estimation. In particular, the work extends pre-

vious policy gradient algorithms [24], that simultaneously estimate the reward to go and

the second moment of the reward to go, to the variance penalized objective.
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The algorithm develops over a few assumptions:

• The standard MDP is modified so to always have a terminal state which yields a

0-valued reward and from which the agent cannot exit once entered.

• Both the state space S and the action space A are finite.

• Both the reward function and the policy gradient are deterministic and bounded.

• Each state s ∈ S has a positive probability of being reached in an infinite number

of steps.

it is based on the following definitions (some of which, have already been introduced):

G =
T−1∑
t=0

γtR(st)

Jθ(s) = E
θ

[
G|s0 = s

]
Vθ(s) = V arθ

[
G|s0 = s

]
Mθ(s) = E

θ

[
G2|s0 = s

]
and the objective is

η(θ) = Jθ(s0)− λVθ(s0) (4.1)

Since we know that the variance of the return can be expressed in terms of the

expected return and the expected second moment, we have that:

V (s0) = E[s2
0]− (E[s0])2 (4.2)

dV

dθ
=
dE[s2

0]

dθ
− 2E[x]

dE[s0]

dθ
(4.3)

dη(θ)

dθ
=
dMθ(s0)

dθ
− 2Jθ(s0)

dJθ(s0)

dθ
(4.4)

The next step consists in providing an extension of the policy gradient theorem that

uses Jθ(s) and Mθ(s). The authors provide formulations derived from expectations over

trajectories:

Jθ(s0)
∂Jθ(s0)

∂θj
= E

θ

[
Jθ(s0)

inf∑
t=0

∂logπθ(at|st)
∂θj

Jθ(st, at)

]
(4.5)
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∂Mθ(s0)

∂θj
=E

θ

[
inf∑
t=0

∂logπθ(at|st)
∂θj

Mθ(st, at)

]

+ 2E
θ

[
inf∑
t=0

∂logπθ(at|st)
∂θj

Jθ(st, at)
t−1∑
t′=0

] (4.6)

The equations we have just seen allow us to perform a gradient update to the policy

πθ by observing a trajectory and using the estimated value functions Jθ(s) and Mθ(s).

Within the actor-critic framework, this step is defined as the actor update. The role

of the critic, instead, is to keep track of the value functions J and M . When the state

space is very large, some approximations must be used to make the problem tractable.

The paper tackles the difficulties that arise from these approximations leveraging on the

concept of compatible features. Nevertheless, the issue lies outside the scope of this thesis

and will therefore not be explored. For further information, the reader can refer to [24].

4.1.2 Entropic Risk Measure in Policy Search

Among the risk measures, we decided to test with the Inverse framework is the Entropic

Risk Measure (ERM) [2]. It is worth noting that the ERM is not a Coherent Risk

Measure, but rather a Convex Risk Measure (CRM) which is a less restrictive class of

risk measures where the notions of Sub-additivity and Positive Homogeneity are replaced

by the Convexity.

In [7], the authors derive the gradient of this measure, allowing for the applicability

of policy gradient methods. This step is essential for our approach since through these

gradients we can create the experts and derive the formulations that allow us to solve

the Inverse problem, given the experts. Given the general sense of this measure, we can

now dive into some definitions.

U(G) = exp(−γG) (4.7)

4.7 is the Exponential Utility function, which received much attention from various

fields [27]. The risk factor γ regulates the level of risk sensitivity and depending on

the sign, determines whether U(R) should be minimised (γ > 0) to induce a risk-averse

behavior or maximised (γ < 0) to induce a risk-seeking behavior.

JERM (G) = U−1 E[U(G)]

= −1

γ
log E[exp(−γG)]

(4.8)

When γ > 0, equation 4.8 induces a risk averse behaviour and is called the Entropic

Risk Measure[2] while for γ < 0 it induces a risk seeking behaviour. From this formula-

tion, given a parametrized policy πθ, the authors derive the log-likelihood gradient:
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∇θJERM = E
[
∇θlogπθ

{
−1

γ
e−γ(G−Ψγ(πθ))

}]
(4.9)

Where the term inside the curly braces is the log-partition function [26]:

Ψγ(πθ) = −γ−1log E
θ
[exp(−γG)] (4.10)

A very useful interpretation of 4.9 is that it can be viewed as a risk neutral policy

gradient where the reward has been transformed with the exponential function:

Gexp = −1

γ
e−γ(G−Ψγ(πθ)) (4.11)

We can note that Ψγ(πθ) has the role of a multiplicative baseline which smooths out the

convergence of the policy search. As mentioned in chapter 3, an interesting interpretation

of the Entropic Risk Measure is given by Osogami in [11] where the author highlights

the strong connection between the ERM and robust MDPs.

In the next chapter, we will see how from this formulation we derived the gradients

used to solve the Inverse problem for reward parameters estimation.

4.1.3 Mean - Volatility

Finally, we decided to test out our IRL pipeline with the Mean-Vola risk measure in-

troduced in [1]. This measure differs from the previously seen Mean-Variance and ERM

because it allows the agent to take into account the short-term risk in addition to the

long term one. Mean-Vola is defined as the variance of the step reward under the state-

occupancy measure. This formulation helps to reduce the step-wise variance of the

expert while bounding the variance of the total return over trajectories. The authors

provide a linear formulation of the Bellman Equations under the Mean-Vola objective

function that makes it possible to implement it with policy gradient algorithms that

guarantee a continuous improvement such as TRPO and PPO.

The first element we should take into consideration is the discounted state-occupancy

measure induced by a policy π. This measure is the cumulative sum over time of the

probability of reaching a certain state s at time-step t.

dµ,π(s) := (1− γ)

∫
S
µ(s0)

∞∑
t=0

γtpπ(s0 →t s)ds0 (4.12)

Where (s0
t→ s) is the probability of reaching state s at time-step t, starting from

state s0 and following policy π. Following this equation, we can formally define the

previously mentioned expected reward under the state occupancy measure:
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Jπ := (1− γ) E
s0∼µ

at∼π(·|s)
st+1∼P (·|st,at)

[
inf∑
t=0

γtR(st, at)

]

= E
s∼dµ,π
s∼π(·|s)

[R(s, a)]

(4.13)

Where (1 − γ) is the normalization factor used to take into account the time-step

discount γ when computing the expected return over trajectories which is Jπ/(1− γ).

Given equation 4.13, we can proceed to define the Reward Volatility in terms of the

distribution dµ,π:

ν2
µ,π = E

s∼dµ,π
s∼π(·|s)

[
(R(s, a)− Jπ)2

]
(4.14)

from which we derive the Mean-Vola objective function for policy π:

ηπ := Jπ − λν2
µ,π (4.15)

where the parameter λ > 0 regulates the level of risk aversion that the objective

induces. An important lemma provided in the paper shows how the minimization of this

measure sets an upper bound to the variance of the return, effectively showing the dual

benefit of the Mean-Vola objective function.

σ2
π ≤

ν2
µ,π

(1− γ)2
(4.16)

The takeaway here is that the Reward Volatility does not account for the tempo-

ral correlations between rewards, therefore allowing for the definition of the Bellman

Equations used for policy gradient methods, nevertheless, it retains the desired effect of

reducing the return variance. Given these preliminaries, the authors move on to defining

two more measures that allow formulating the Mean-Vola policy gradient.

Xπ(s, a) = E
st+1∼P(·|st,at)
at+1∼π(·|st+1)

[ ∞∑
t

γt
(
R(st, at)− Jπθµ

)2|s, a] , (4.17)

Wπ(s, a) = E
at∼π(·|st)

st+1∼P(·|st,at)

[ ∞∑
t

γt
(
R(st, at)− Jπµ

)2|s]

= E
a∼π(·|s)

[
Xπ(s, a)

] (4.18)
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The newly introduced Xπ(s, a) is the action-volatility, which corresponds to the

volatility we expect to observe starting from state s and performing action a and following

π thereafter. Wπ(s) is the state-volatility, of which the meaning is evident from Xπ.

Following the derivation of [1], we can write the gradient of ηπθµ using a trade-off

between the action-value Qπθ and the action-volatility Xπθ .

Qλπ(s, a) := Qπ(s, a)− λXπ(s, a) (4.19)

The Mean-Vola objective function gradient can be now written as:

∇ηπθµ = E
s0∼µ

at∼πθ(·|st)
st+1∼P(·|st,at)

[
∇ log πθ(at|st)Qλπ(st, at)

]
, (4.20)

for which in [1], the authors provide an unbiased estimator:

∇̂Nηπθµ =
1

N

N−1∑
i=0

T−1∑
t=0

γt

(
T−1∑
t′=t

γt
′−t
[
Rit′ − λ

1− γ
1− γT

(Rit′ − Ĵ)2

])
∇θ log πθ(a

i
t|sit) (4.21)
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4.2 Inverse RL

In this section, we will present some of the approaches that have been proposed recently

in the field of Inverse Reinforcement Learning. The works we will talk about are not tied

to the solution presented in this thesis but serve the purpose of giving a general idea of

how this space of research is being explored.

4.2.1 Maximum Entropy Inverse Reinforcement Learning

The work [30] presented by Ziebart et al. explores a novel approach for the Inverse RL

problem, addressing a very important ambiguity issue that had not been confronted pre-

viously. The authors follow a probabilistic approach, based on the concept of maximum

entropy to recover the parameters of the utility function optimized by an expert, given

a set of demonstrations. More generally, the aim is to find the parameters that induce

a behavior which is similar to the one observed.

Every state of the MDP, where the expert demonstrated its behaviour, is described

by a set of features. Along a trajectory, many states are visited and the features observed

can be summed up to form the trajectories’ feature count. Using a state-only dependant

reward function, its formulation with respect to the feature count follows immediately:

fτ =
∑
st∈τ

fst (4.22)

G(fτ ) = ωTfτ =
∑
st∈τ

ωTfst (4.23)

f̃ =
1

N

N−1∑
i=0

fτi (4.24)

Given a large set of trajectories, as required to solve the IRL problem, one can define

the empirical feature count as the average observed feature count. It is worth noting

that the features do not univocally identify a state, and therefore the feature count does

not identify a single trajectory but rather a set of possible trajectories. Consequently,

recovering the reward features ω is an ill-posed problem because many weight config-

urations lead to a particular distribution over trajectories and many distributions over

trajectories leading to a particular feature count. This problem becomes even more

evident when the expert providing the demonstrations is not behaving optimally. As

a solution to this ambiguity, the authors propose that, among the possible trajectory

distributions that satisfy the feature count constraint, the distribution with the highest

entropy should be chosen. The idea is that the estimated weights should not induce any

preference over the trajectories that is not implied by the given demonstrations. Under
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this assumption, further ambiguity over distributions with the same feature count and

entropy, trajectories yielding a higher reward are exponentially preferred to others.

Equation 4.25 defines the visitation probability over trajectories, depending on the

partition function Z(ω).

P (τ |ω, T ) =
1

Z(ω, T )
eω

T fτ
∏

st+1,st,at∈τ
PT (st+1|st, at) (4.25)

When the partition function converges, this distribution over trajectories defines a

stochastic policy where the probability of choosing an action in a particular state is

weighted by the expected exponential return of all trajectories starting from that state-

action pair. The maximisation problem is then formulated as such:

ω∗ = argmax
ω

L(ω) = argmax
ω

∑
examples

logP (τ̂ |ω, T ) (4.26)

The derivative of this loss function and can be expressed in terms of the feature

count and of the state visitation frequencies ds, making it possible to utilize classic

gradient-based optimization methods.

∇L(ω) = f̂ −
∑
τ

P (τ |ω, T )fτ = f̂ −
∑
si

dsifsi (4.27)

4.2.2 Risk-sensitive Inverse Reinforcement Learning via Semi-

and Non-Parametric Methods

Another interesting research work is the one carried out by Singh et al. in [19]. The idea

behind it is to provide a framework for Risk-Averse Inverse Reinforcement Learning with

models based on coherent risk measures. The goal is to find the expert’s risk measure

and reward function through the maximum likelihood approach.

Coherent Risk Measure Representation Theorem

As explained in chapter 3, Coherent Risk Measures (CRMs) are mapping functions of

random variables to Real values that satisfy some suitable properties. Those properties

are Monotonicity, Translation Invariance, Positive Homogeneity, and Subadditivity. One

of the most frequently used CRM is the Conditional Value at Risk (CVaR):

CV aR1−τ (Z) = E[Z|Z ≥ vτ (Z)] (4.28)

where vτ (Z) = inf{z ∈ R|P (Z ≤ z) ≥ τ} is the so-called Value-at-Risk, which represents

the τ -quantile of the cost distribution. Intuitively, the CVaR is the average value of the
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tail of the cost distribution, where the tail is delimited by the Value at Risk. The posi-

tion of V aR is determined by the value of τ , where the two extremes are reached with

τ = 0 (V aR positioned at the smallest value of the distribution) and with τ = 1 (V aR

positioned at the highest value of the distribution). Since we are optimising the average

of what is to the right of V aR, it is evident that with τ = 0 we are optimising the aver-

age cost (risk neutrality) and with τ = 0 we are minimising the highest cost (worst case

criterion). Everything in between is a tradeoff between these two approaches. An inter-

esting aspect of Coherent Risk Measures is highlighted by the representation theorem

stated in [19], which shows that optimising a CRM can be interpreted as optimising the

Expected Value (EV) of a random variable over several probability distributions taking

the worst-case distribution. The final formulation is the following

ρ(Z) = max
ζ∈B

Eqζ [Z] = max
ζ∈B

|Ω|∑
i=1

p(i)ζ(i)Z(i) (4.29)

where Z is the usual Random variable, qζ is a distorted distribution qζ = p · ζ, in

which ζ is in the set B, defined as the polytope. In other words, the coherent Risk

Measure can be interpreted as computing the worst-case expectation considering the

distorted distribution. The goal of [19] is to estimate this set of distribution through the

derivation of the polytope B. This allows one to develop an algorithm to find the cost

function and the risk measure adopted by the expert.

Risk Envelope

Now let’s focus on the definition of Polytope. First of all, given the |Ω|−dimensional

probability simplex

∆Ω = q ∈ RΩ|
Ω∑
i=1

q(i) = 1, q ≥ 0} (4.30)

If we absorb the density ζ in q we can derive the following representation of the risk

measure (that we can rename as polytopic risk measure):

ρ(Z) = max
q∈P

Eq[Z] (4.31)

in which P is a polytopic subset of the probability simplex ∆Ω

P = {q ∈ ∆Ω|Aineqq ≤ bineq} (4.32)

where Aineq and bineq determine the halfspace constraints. The polytope P is also known

as risk envelope and can show different degrees of risk-aversion from risk-neutral (P=p)
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to worst-case scenario (P = ∆|Ω|). Thus if we find an estimation of the risk envelope we

can derive the expert’s behavior with respect to the risk.

Risk-Averse IRL: One step

The optimization problem of the expert can be expressed as

τ∗ = min
a0∈A

ρ(C(s0, a0)) = min
a0∈A

max
q∈P

Eq[C(s0, a0)]

= min
a0∈A

max
q∈P

g(s0, a0)T q
(4.33)

As we can see, the inner optimization problem is linear in q, so the optimal value τ∗

is derived when we are in the vertex of the Polytope P.

This allows us to rewrite 4.33 as

min
a0∈A,τ

τ s.t. τ ≥ g(s0, a0)T vi, i ∈ {1, ..., NV } (4.34)

in which vert(P ) = {vi} are the set of vertices of the risk envelope. Now we can use

the Karush-Kuhn-Tucker (KKT) conditions to constraint where the vertices of P should

be, knowing that the state-action pairs that we are considering (x∗, u∗) are optimal for

problem 4.33. The derived optimization problem can be seen as an iterated halfspace

pruning, in which we are approximating the risk envelope more and more precisely.

[19] shows also the case in which we don’t know the cost function and so we use the

same solution but with weighted features to express it.

Risk-Averse IRL: Multi step

For the multi-step case, we should analyze the behavior of the human expert with respect

to the disturbance within the environment. The authors generalise the approach for the

single step scenario to one where a disturbance is sampled every N steps and held

constant interim. [19] split the expert’s policy in two: the ”prepare” phase and the

”react” phase. The former is concerned with the moments preceding the disturbance,

where the agent ought to find a balanced state from which it will be able to handle the

disturbance. The latter instead focuses on the moments following the disturbance where

the main goal is to recover and re-gain a stable regime.

For this reason, the Dynamic Risk Measures are presented. Starting from the definition

of Coherent One-Step Conditional Risk Measures, with the same properties of CRMs

but as a mapping ρt = Zt+1 → Zt, we can derive the following formulation

ρt:t′ = Zt + ρt(Zt+1 + ρt+1(Zt+2 + ...+ ρt′−1(Zt′)...))

ρt ◦ ... ◦ ρt′−1(Zt + ...+ Z ′t)
(4.35)
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This is a really important property for the two phases structure we explained before.

Indeed, denoting with k′ ∈ [tN, (t + 1)N − 1] the steps of the ”prepare-react” policy,

with t representing the stage number (a stage is one ”prepare-react” sequence) and N

the time-steps of the stage itself, and knowing that the disturbance is sampled at N−nd
step of the considered stage, we have that the cumulative cost over times step k′ is

CtN :(t+1)N−1(xtN |k, π̂t(·)) =

(t+1)(N−1)∑
k′=tN

C(xk′|k, π̂t(xk′|k)) (4.36)

Then we can define the optimization problem of the expert as

min
π̂t,t∈[0,T−1]

ρ0

(
C0:N−1(·, π̂0) +ρ1(CN :2N−1(·, π̂1) + ...+ρT−1(C(T−1)N :TN−1(·, π̂T−1)))...

)
(4.37)

At this point, we are not able to use the KKT conditions because the problem

has become non-convex. Hence, we need to, first of all, define the semi-parametric

representation of the Coherent Risk Measure

Pr = {v ∈ ∆L|aTj v ≤ b(j)− r(j), j = 1, ...,M} (4.38)

where r is a parameter vector with dimension M.

Then, applying the Constrained Maximum Likelihood as defined in [19] we will be able

to find the optimal values of these parameters r that can suitably approximate the

Risk-envelope as in the one-step case.

4.2.3 Risk-Sensitive Inverse Reinforcement Learning via

Gradient Methods

The work presented by Mazumdar et. al. [15] introduces an effective framework for solv-

ing the Inverse RL problem of estimating the parameters of a decision-making model

from a batch of given demonstrations. The paper focuses in particular on models that

accurately describe the human decision-making process although the proposed approach

is extendable to other objective functions. Briefly stated, the approach consists of min-

imising a loss metric that measures the distance between the estimated policy and the

observed behavior.

The classic RL model, where the objective is to find the policy parameters that

maximise the expected cumulative value of some utility function of the reward over a

trajectory 4.39, is transformed so to incorporate relevant aspects of the human decision-

making process such as loss aversion, reference point dependence, framing effects.
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θ∗ = argmax
θ

E
πθ

[
T−1∑
t=0

γtu (R(st, at))

]
(4.39)

To this end, the authors make use of a particular class of value functions that effec-

tively capture some of these aspects: the value functions of the Prospect Theory. The

general definition for the value function in Prospect Theory is defined as follows:

u(y) =

{
c+(y − y0)ρ+ , y > y0

−c−(y − y0)ρ− , otherwise
(4.40)

where y0 is the reference point that the decision-maker compares the outcome to

evaluate its success, while the parameters c and ρ determine the level of risk aversion

that the value function induces the agent to. Furthermore, the authors introduce the

valuation functions, which extend the classical value functions to better capture risk sen-

sitivity and, in particular, employ the shortfall valuation. The authors generate several

risk-sensitive Q-learning agents that model human decision-makers, presenting different

levels of risk aversion.

These definitions allow for the introduction of a new set of generalized Bellman

equations for risk sensitive Q-learning, through which the agents are trained to generate

the experts. Given a set of experts demonstrating different levels of risk aversion, the

inverse process can begin. Since the method proposed is based on gradient descent, there

must be some metric of performance over which to compute the gradients. In particular,

the authors define a loss function which depends on the parameters we want to optimize

(in this case the parameters θ of the policy π) and the available data, i.e. the batch of

trajectories generated from the experts D .

`(πθ; D) (4.41)

The authors then proceed to define two suitable loss functions: the negative log-

likelihood of the demonstrated behaviour 4.42 and the Kullback Leibler divergence 4.43

between the empirical distribution of state-action pairs (given by the batch of trajecto-

ries) and the theoretical distribution induced by the estimated policy.

`(θ) =
∑

(s,a)∈D

n(s, a)

N
log(πθ(x, a)) (4.42)

`(θ) =
∑
s∈D

DKL(π̂(·|s)||πθ(·|s)) (4.43)
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Both of these measures revolve around the idea of measuring a distance between the

expected behavior of the estimated policy and the behavior demonstrated by the experts.

4.2.4 Gradient based Inverse Reinforcement Learning (GIRL)

The following paper is the foundation on which the work presented in this thesis builds

upon. The authors of the GIRL algorithm [13] present a novel and effective approach

to the IRL problem in the case of objective functions that are linear w.r.t. the reward

features. As we shall see later on we extend the approach to the nonlinear space.

The main idea behind GIRL is that, given a policy that is optimal for a certain

reward, then the log policy gradient computed with the said reward function w.r.t. the

objective function should be identically equal to zero. In a common RL problem, the

reward function is known and the policy can be found through gradient descent algo-

rithms. The situation is the opposite in the case of IRL where the reward must be

estimated, given the fixed policy of the expert. The authors solve the problem by ap-

plying the same principle, finding a reward function that yields zeroed out gradients of

the known policy. The reward is computed by minimizing the L2 norm of the policy

gradient calculated with the estimated reward. The key advantages of this approach are

that the optimization problem is quadratic, given reasonable assumptions on the reward

that will be discussed in further detail, and that it does not need to solve the forward

MDP problem and it is completely model-free. This means that all that is needed for the

reward estimation is a batch of trajectories provided by the expert. Since the problem

is solved in a single step, collecting a large batch becomes feasible and this translates

into accurate gradient estimation and reliable results. Furthermore, the whole process is

extremely fast compared to approaches that require estimation of the model or solution

of the forward RL problem.

As we said, the GIRL algorithm aims at estimating the parameters of the reward

function of an MDP, by observing the demonstrations (trajectories) of an expert agent.

To understand how the algorithm works, we should first observe how the expert’s be-

haviour is characterized.

Given a MDP and and agent’s policy π, we can evaluate the performance of the policy

as such:

JD(π) =

∫
S

∞∑
t=0

γtPr(st = s|s0, π)

∫
A
π(a|s)R(a, s;ω)dads (4.44)

The JD value gives us the expected cumulative reward over an infinite trajectory, starting
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from state s0. The definition can be easily extended to the finite horizon case. Given a

parametrized policy πθ, differentiable in θ, we can write the gradient of JD with respect

to πθ and R(·,w) as:

∇θJD(πθ,w) =

∫
S

T−1∑
t=0

γtPr(st = s|s0, π)

∫
A
∇θπθ(a|s)Qπ(a, s;ω)dads (4.45)

Given that we are using a model-free approach, the gradients of the policy must be

estimated through a set of the expert’s trajectories. This can be achieved using any

standard policy gradient approach such as REINFORCE [28] or A3C [6]. For this work,

we will be using the GPOMDP algorithm.

ĝGPOMDP =
1

N

N−1∑
i=0

T−1∑
t=0

∇θlogπθ(s
(m)
t , a

(m)
t )

(
T−1∑
t′=1

γt
′
r

(m)
t′+1 − b

)
(4.46)

If we assume that the expert’s policy πEθ is optimal with respect to the reward function

R(s, a,ωE) then we can state that the associated policy gradient ∇θJ will be identically

equal to zero.

∇θJD(πEθ ,ω) = 0 (4.47)

Given that fact that the expert’s policy πEθ is a stationary point for ∇θJ , the goal of the

GIRL algorithm is to find the unknown reward weights ω that yield that same stationary

point. This is achieved by solving the following minimization problem:

ωA = argmin
ω

Cyx(πEθ ,ω) = argmin
ω

1

y

∥∥∇θJ(πEθ ,ω)
∥∥y
x

(4.48)

As previously hinted, one of the fundamental aspects of the GIRL algorithm is that the

only requirement for this minimization problem to be convex is that the reward function

R(a, s,ω) is convex with respect to the reward parameters ω. This restriction reduces

the admissible class of rewards but it is loose enough to still encapsulate many practical

applications.

4.2.5 In Case of Sub-optimality

It is worth to note that the expert providing the demonstrations may not be completely

optimal with respect to the reward function R(·, w). This may be the case for several

reasons. The first possibility is that the actual reward function optimized by the agent

lies outside the restricted class of convex functions that we confined our search to. An-

other scenario is the one in which the expert simply has not reached convergence. The

GIRL approach successfully overcomes these obstacles. The intuitive interpretation of
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the algorithm is that the solution to the minimization problem will yield with the re-

ward weights w that best fit the behavior demonstrated by the Expert. Nevertheless,

the approximation could lead to unreliable results. For the solution to be considered

reliable, it is required that the norm of the gradient does not exceed a given threshold

which is problem-dependent.

4.2.6 The Linear-Reward Risk-Neutral Setting

When the reward can be expressed as a linear combination of basis functions, the es-

timation of the weights that multiply these basis functions, so as to minimize the L2

norm of the objective function gradient, reduces to a simple quadratic problem. To put

this into formulas we have:

R(s, a,ω) = ω · φ(s, a) (4.49)

In this case we can rewrite Q in this way:

Qπθ(s, a) = E
at∼πθ(·|st)

st+1∼P(·|st,at)

[ ∞∑
t

γt
q∑
i=1

ωiφi(st, at)|s0 = s, a0 = a

]

=

q∑
i=1

ωi E
at∼πθ(·|st)

st+1∼P(·|st,at)

[ ∞∑
t

γtφi(st, at)|s0 = s, a0 = a

]
,

(4.50)

and the optimization can be written as:

ωE = argmin
ω

1

y
‖∇θJθ‖yx

= argmin
ω

1

y

∥∥∥∥ E
s0∼µ

at∼πθ(·|st)
st+1∼P(·|st,at)

[ ∞∑
t

= ∇θ log πθ(at|st)Qπθ(st, at)

]∥∥∥∥y
x

= argmin
ω

1

y

∥∥∥∥ E
s0∼µ

at∼πθ(·|st)
st+1∼P(·|st,at)


∞∑
t

∇θ log πθ(at|st) E
ak∼πθ(·|sk)

sk+1∼P(·|sk,ak)
s0=st,a0=at

[ ∞∑
k=t

γk−tφ(sk, ak)

]
· ω


∥∥∥∥y
x

(4.51)

The objective is linear in ω, then the problem is convex. In particular, if the expert

is optimal and the real reward is linear, it is then possible to solve the problem in closed

form.
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Chapter 5

Risk Averse Gradient Based

Inverse Reinforcement Learning

The following chapter is dedicated to explaining the theoretical principles behind the

RA-GIRL algorithm proposed in this thesis. RA-GIRL comes as a direct extension of

the GIRL algorithm [13] presented in chapter 4. The paper introduces a fast, model-free

and sample efficient approach to the IRL problems that yields promising results when

dealing with objective functions that are linear in the reward. Our contribution is to ex-

tend the approach to the nonlinear space of objective functions to include risk measures

such as the Variance. This extension brings a new approach to the field of risk-averse

RL which is still greatly unexplored.

It is important to note that the work we present is based on two strong assumptions:

Both the policy and the objective function must be known a priori. Nevertheless, the

policy can be easily estimated through MLE.

5.1 Mean Variance with GIRL

Having presented the founding methods we studied and adopted it is time to expose the

actual theoretical solution we reached. As we explained before, the GIRL algorithm [13]

works within a risk-neutral setting, and its goal is to derive the unknown reward function

given the optimal policy of an expert. What we want to do is to move to a risk-averse

setting, where the expert is supposed to optimize some risk measure instead of the usual

expected return. In particular, the mean-variance objective function, which induces the

agent to adopt a behavior that optimizes a tradeoff between the expected return and

its variance. This trade-off depends on the parameter of risk aversion λ. The first task

will be to estimate λ, while knowing everything else (the policy and the reward). The
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second task will be to derive both the parameter and the reward function given only the

expert policy.

5.1.1 Risk-Averse optimization

The first step required is to generate the risk-averse expert. To do this, we used the

Mean-Variance gradients derived by Tamar [22]. The expert is obtained by training

an agent through any gradient descent approach (such as GPOMDP) with the Mean-

Variance objective function, until convergence. As the agent gets closer to convergence,

the accuracy and reliability of RA-GIRL improves drastically since it relies on the as-

sumption of zeroed-out gradients (total convergence). It is worth to note that the forward

problem is decoupled from the inverse one. The expert could be generated through any

optimization approach as long as it is optimising the same risk measure for which we

compute the gradients for the Inverse problem. Furthermore, as we will see, the approach

is easily extendable to other risk measures.

5.1.2 Estimating the Gradient of the Variance

The objective is to estimate the parameters of the environment’s reward when the ex-

pert is optimising the Mean-Variance objective function. To solve this problem using

the GIRL algorithm, it is first necessary to express the gradient of the mean-variance

objective function. Tamar’s publication [25] offers a clear formulation for this by extend-

ing the policy evaluation algorithms proposed in [22] to the variance-penalized objective

function. To this purpose, let us first introduce some new notations:

Definition 5.1.1. (Variance of the reward to go) The Variance of the reward to go is

the expected variance of the cumulative discounted return, following a given policy.

V θ(s) = V arθ[Gt|s0 = s] (5.1)

To derive the gradient of the variance, we also need to define the second moment of

the reward to go.

Definition 5.1.2. (Second Moment of the reward to go) The Second Moment of the

reward to go is the expected squared cumulative discounted return, following a given

policy.

M θ(s) = Eθ[G2
t |s0 = s] (5.2)

The goal of our risk-sensitive agent is to find a policy that optimizes the discounted

return-variance trade-off, parametrized by the risk aversion parameter λ which controls

the weight associated with the variance penalty.
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η(θ) = Jθ(s0)− λV θ(s) (5.3)

The gradient of the expected reward is well known and can be easily estimated from

a batch of trajectories using the GPOMDP algorithm mentioned earlier. The gradient

of the variance can be found starting from the following relation:

V = E[G2]− (E[G])2

= M − J2
(5.4)

Therefore we have that

∂V θ

∂θ
=
∂Mθ(x0)

∂θ
− 2Jθ(x0)

∂Jθ(x0)

∂θ
(5.5)

The gradient we just introduced can be estimated from trajectories.

Jθ(x0)
∂Jθ(x0)

∂θ
=

1

N

N−1∑
i=0

[
Jθ(x0)

T−1∑
t=0

∂logπθ(ut|xt)
∂θ

Jθ(xt, ut)

]
(5.6)

∂Mθ(x0)

∂θ
=

1

N

N−1∑
i=0

[
T−1∑
t=0

γ2t∂logπθ(ut|xt)
∂θ

M θ(xt, ut)

]

+ 2γ
1

N

N−1∑
i=0

[
T−1∑
t=1

(
γt
∂logπθ(ut|xt)

∂θ
Jθ(xt, ut)

t−1∑
t′=0

γ2tr(xt′)

)] (5.7)

5.1.3 Estimating risk parameter λ

As we said, the first task deals with the optimization of the risk-averse parameter that in

the case of Mean-Variance optimization is represented by λ. Indeed, it is the parameter

that balances the importance to give to the Variance in respect of the Mean Value in

the gradient computation.

Knowing both the policy of the expert (found by the GPOMD in the forward prob-

lem) and the reward function we need to derive a formula to find the approximated value

of λ. Starting from the mean-variance gradient, we have

∇θL(θ, λ) = ∇θJ(θ)− λ∇θV (θ) (5.8)

for which we want to find the minimum w.r.t. λ
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min
λ
||∇θL(θ, λ)||22 = min

λ

∑
d

(∇θdL(θ, λ))2

= min
λ

∑
d

(∇θdJ(θ)− λ∇θdV (θ))2

= min
λ
F (λ)

(5.9)

At this point, to minimize the function we have to compute the gradient of the

function F (λ) with respect to λ itself. The closed-form of this minimization problem

follows immediately by imposing the zero-equality. We can observe how the problem

only depends on the unchanged gradients of the average Return J and of the Variance

V .

dF (λ)

dλ
= −2

∑
d

(∇θdJ(θ)− λ∇θdV (θ))∇θdV (θ)

=⇒
∑
d

∇θdJ(θ)(∇θdV (θ))− λ
∑
d

∇2
θd
V (θ) = 0

=⇒ λ =

∑
d∇θdJ(θ) · ∇θdV (θ)∑

d∇2
θd
V (θ)

=⇒
∑

d∇θdJ(θ) · ∇θdV (θ)

||∇2
θd
V (θ)||

(5.10)

Having the possibility to compute the parameter in a closed-form is a good advantage

both for the simplicity of the computation and for the precision. The gradients computed

for the inverse problem can be estimated from a single very large batch of trajectories

since it is a 1-step procedure.

5.1.4 Estimating reward weights and risk parameter

Our second inquiry explores the possibility of finding the reward function used by a

Risk-Averse expert, observing only some trajectories sampled from its policy. We pose

ourselves in the case where the reward function is a linear combination of basis functions

(reward features). We want to know how to approximate the weights of the features

of this reward, together with the risk aversion parameter λ, knowing that the objective

function is now in the form of the well known Mean-Variance. The difficulty that arises

from this formulation is that the mean-variance objective function is no longer linear

with respect to the basis functions of the reward. This implies that the minimization

problem is not quadratic and cannot be solved with the straight forward methods we

have used so far.
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As in the risk neutral case, we are again minimizing the norm of the estimated

gradient of the objective function. Since we are still considering the linear reward case,

it is convenient to re-write M in the following way:

Mπθ(s, a) = E
at∼πθ(·|st)

st+1∼P(·|st,at)

( ∞∑
t

γt
q∑
i=1

ωiφi(st)

)2

|s0 = s, a0 = a


= E

at∼πθ(·|st)
st+1∼P(·|st,at)

( q∑
i=1

ωi

∞∑
t

γtφi(st)

)2

|s0 = s, a0 = a

 .
(5.11)

We can now write the optimization problem as:

ωE = argmin
ω

1

y
‖∇θJθ − λ(∇θM − 2J∇θJ)‖yx

= argmin
ω

1

y

∥∥∥∥ E
s0∼µ

at∼πθ(·|st)
st+1∼P(·|st,at)

[ ∞∑
t

∇θ log πθ(at|st)Qπθ(st, at)

]

−λ
(

E
s0∼µ

at∼πθ(·|st)
st+1∼P(·|st,at)

[ ∞∑
t

∇θ log πθ(at|st) Mθ(st, at)

]

+ 2γ E
s0∼µ

at∼πθ(·|st)
st+1∼P(·|st,at)

[ ∞∑
t=1

(
∇θ log πθ(at|st)Qθ(st, at)

t−1∑
k=0

γ2tR(sk)

)]

− 2Jθ E
s0∼µ

at∼πθ(·|st)
st+1∼P(·|st,at)

[ ∞∑
t

∇θ log πθ(at|st)Qθ(st, at)

])∥∥∥∥y
x

The PGT estimator can be trivially derived by approximating the expectations

through sampling as seen before.

41



ωE = argmin
ω

1

y

∥∥∥∥ 1

N

N−1∑
i=0

[
T−1∑
t=0

∇θ log πθ(at|st)ω ·
T−1∑
k=t

γk−tφ(sk)

]

−λ
(

1

N

N−1∑
i=0

T−1∑
t=0

∇θ log πθ(at|st)

(
ω ·

T−1∑
k=t

γk−tφ(sk)

)2


+ 2γ
1

N

N−1∑
i=0

[
T−1∑
t=0

∇θ log πθ(ak|sk)

(
ω ·

T−1∑
k=t

γk−tφ(sk)

)(
ω ·

t−1∑
h=0

γ2hφ(sh)

)]

− 2Jθ
1

N

N−1∑
i=0

[
T−1∑
t=0

∇θ log πθ(at|st) ω ·
T−1∑
k=t

γk−tφ(sk)

])∥∥∥∥y
x

(5.12)

Given that we are considering the squared Euclidean Norm, we are minimizing a

function of the form:

f(g(θ, ω)) = ‖g(θ, ω)‖22 =
(√

g(θi, ω)2 + ...+ g(θn, ω)2
)2

=
∑
i

g(θi, ω)2 (5.13)

We have that

g(θj ,ω) =
1

N

N−1∑
i=0

[
T−1∑
t=0

∇θ log πθ(at|st)ω ·
T−1∑
k=t

γk−tφ(sk)

]

−λ
(

1

N

N−1∑
i=0

T−1∑
t=0

∇θ log πθ(at|st)

(
ω ·

T−1∑
k=t

γk−tφ(sk)

)2


+ 2γ
1

N

N−1∑
i=0

[
T−1∑
t=0

∇θ log πθ(ak|sk)

(
ω ·

T−1∑
k=t

γk−tφ(sk)

)(
ω ·

t−1∑
h=0

γ2hφ(sh)

)]

− 2Jθ
1

N

N−1∑
i=0

[
T−1∑
t=0

∇θ log πθ(at|st) ω ·
T−1∑
k=t

γk−tφ(sk)

])
(5.14)

Grouping common factors, we can reduce this formula to a more compact form:
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g(θj ,ω) =

1

N

N−1∑
i=0

[
T−1∑
t=0

[
∂ log πθ(at|st)

∂θj

((
ω ·

T−1∑
k=t

γk−tφ(sk)

)
(

1 + 2λ

(
ω · 1

N

N−1∑
i′=0

T−1∑
t′=0

γt
′
i′φ(si′t′)

)
− λγt

(
ω ·

T−1∑
k=t

γk−tφ(sk)

)
− 2λγ

(
ω ·

t−1∑
h=0

γ2hφ(sh)

)))]]
(5.15)

where the derivative of g w.r.t ω can be written as:

∂

∂ωl
g(θj ,ω) =

1

N

N−1∑
i=0

[
T−1∑
t=0

[
∂ log πθ(at|st)

∂θj

(
(
T−1∑
k=t

γk−tφl(sk)

)
(

1 + 2λ

(
ω · 1

N

N−1∑
i′=0

T−1∑
t′=0

γt
′
i′φ(si′t′)

)
− λγt

(
ω ·

T−1∑
k=t

γk−tφ(sk)

)
− 2λγ

(
ω ·

t−1∑
h=0

γ2hφ(sh)

))

+

(
ω ·

T−1∑
k=t

γk−tφ(sk)

)
(

2λ

(
1

N

N−1∑
i′=0

T−1∑
t′=0

γt
′
i′φl(si′t′)

)
− λγt

(
T−1∑
k=t

γk−tφl(sk)

)
− 2λγ

(
t−1∑
h=0

γ2hφl(sh)

)))]]
.

(5.16)

And its derivative w.r.t λ can be written as:

∂

∂λ
g(θj ,ω) =

1

N

N−1∑
i=0

[
T−1∑
t=0

[
∂ log πθ(at|st)

∂θj

((
ω ·

T−1∑
k=t

γk−tφ(sk)

)
(

2

(
ω · 1

N

N−1∑
i′=0

T−1∑
t′=0

γt
′
i′φ(si′t′)

)
− γt

(
ω ·

T−1∑
k=t

γk−tφ(sk)

)
− 2γ

(
ω ·

t−1∑
h=0

γ2hφ(sh)

)))]]
(5.17)

We can now write a birds-eye view of the minimization problem:
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ωE = argmin
ω

∑
j

g(θj ,ω)2 (5.18)

for which the gradient w.r.t. ω is

∂

∂ωl
f(θ, ωl) =

∑
j

2g(θj ,ω)
∂

∂ωl
g(θj , ωl) (5.19)

5.2 ERM with GIRL

Just as the Mean-Variance objective function, the ERM allows us to control the tradeoff

between average return and its variance over multiple trajectories. It can be seen as

a different representation of Mean-Variance with gradients that are easier to compute.

Following the formulations presented in [7], we derive the gradients with respect to

the weights of the reward features that allow us to estimate these weights through the

RA-GIRL framework.

As a reminder, these are the formulations presented in [7], already seen in chapter 4.

JERM (R) = U−1 E[U(R)]

= − 1

λ
log E[exp(−λR)]

(4.8)

∇θJERM = E
[
∇θlogπθ

{
− 1

λ
e−λ(R−Ψλ(πθ))

}]
(4.9)

Ψλ(πθ) = − 1

λ
log E[exp(−λG)] (5.20)

Note that the log-partition function Ψλ(πθ) is actually equal to JERM . We can therefore

re-write the gradient as:

∇θJERM = E
[
∇θlogπθ

{
− 1

λ
e−λ(R−JERM )

}]
(4.9)

As usual, we can estimate the expectation by averaging over a batch of sampled trajec-

tories using a reinforce-like estimator:

∇̂θJERM =
1

N

N−1∑
i=0

[(
T−1∑
t=0

∇θlogπit

)(
− 1

λ
exp(−λ(G(τi)− JERM )

)]
(5.21)

And the same goes for the log-partition function:
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ĴERM = − 1

λ
log

1

N

N−1∑
i=0

[exp(−λG(τi))] (5.22)

where, for both equations, G(τi) is the cumulative return over the trajectory τi.

Now, as seen for the Mean Variance objective, the goal is to find the reward feature

weights that minimize the L2 norm of the gradient:

ω∗ = argmin
ω
‖g(θ,ω)‖22

= argmin
ω

∑
i

g(θi,ω)2 (5.23)

where g = ∇̂JERM . To do so we must compute the derivatives with respect to the

weights of the reward features ω:

∂g

∂ωl
=

1

N

N−1∑
i=0

[(
T−1∑
t=0

∇θlogπ(sit, a
i
t)

)([
T−1∑
t=0

γtφl,t

]
+
∂JERM
∂ωl

)
exp(−λ(G(τi)− JERM )

]
(5.24)

∂JERM
∂ωl

=

∑N−1
i′

([∑T−1
t=0 γtφl,t

]
exp

(
− λG(τi′)

))
∑N−1

i′ exp
(
− λG(τi′)

) (5.25)

and with respect to the risk aversion parameter λ:

∂g

∂λ
=

1

N

N−1∑
i=0

[(T−1∑
t=0

∇θlogπ(sit, a
i
t)

)(
1

λ2
exp(Z(λ))− 1

λ

∂Z

∂λ
exp(Z(λ))

)]
(5.26)

where

Z(λ) = −λ(G(τi)− JERM ) (5.27)

∂Z

∂λ
= −(G(τi)− JERM ) + λ

∂JERM
∂λ

(5.28)

∂JERM
∂λ

=
1
N

∑N−1
i=0 log(exp (−λG(τi)))

λ2
+

1
N

∑N−1
i=0 G(τi) exp(−λG(τi))

1
N

∑N−1
i=0 exp(−λG(τi))

(5.29)

The formulations here derived can now be plugged in equations 5.18 and 5.19 to

solve for the reward feature weights.

45



5.3 Mean-Volatility with GIRL

Finally, we repeat the steps with the Mean-Vola risk-averse objective function. As we

have seen, the volatility risk measure is very interesting for the economic scenarios we

aim to test our approach because it helps to reduce step-wise variance.

We recall some formulations from chapter 4:

Jπ := (1− γ) E
s0∼µ

at∼π(·|s)
st+1∼P (·|st,at)

[
inf∑
t=0

γtR(st, at)

]

= E
s∼dµ,π
s∼π(·|s)

[R(s, a)]

(4.13)

ν2
µ,π = E

s∼dµ,π
s∼π(·|s)

[
(R(s, a)− Jπ)2

]
(4.14)

The estimator from which we will derive the necessary derivations has been provided

by the authors in [1]:

∇̂Nηπθµ =
1

N

N−1∑
i=0

T−1∑
t=0

γt

(
T−1∑
t′=t

γt
′−t
[
Rit′ − λ

1− γ
1− γT

(Rit′ − Ĵ)2

])
∇θ log πθ(a

i
t|sit) (4.21)

To simplify the representation, we bring the discount factor γt inside the time-step

sum and apply the following substitutions:

β =
1− γ
1− γt

(5.30)

A(ω) = Rit′ − Ĵ

= ω · φit′ −
1

N

N∑
i′′

T∑
t′′

γt
′′
ω · φi′′t′′

(5.31)

So that equation 4.21 becomes:

∇̂Nηπθµ =
1

N

N−1∑
i=0

T−1∑
t=0

(
T−1∑
t′=t

γt
′
[
ω · φit′ − λβA(ω)2

])
∇θ log πθ(a

i
t|sit) (5.32)

The minimization problem is the same as the one seen for the ERM:
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ω∗ = argmin
ω
‖g(θ,ω)‖22

= argmin
ω

∑
i

g(θi,ω)2 (5.23)

Where this time g = ∇̂Nηπθµ . The derivatives with respect to ω and the risk param-

eter λ follow immediately:

∂g

∂ωl
=

1

N

N−1∑
i=0

T−1∑
t=0

(
T−1∑
t′=t

γt
′
[
φl − λβ2A(ω)

∂A(ω)

∂ωl

])
∇θ log πθ(a

i
t|sit) (5.33)

where

∂A

∂ωl
= φl −

1

N

N∑
i′′

T∑
t′′

γt
′′
φl (5.34)

While the derivative with respect to λ is very simple since the factor only appears

once in linear form:

∂g

∂λ
=

1

N

N−1∑
i=0

T−1∑
t=0

(
T−1∑
t′=t

γt
′ [−βA(ω)2

])
∇θ log πθ(a

i
t|sit) (5.35)

Again, 5.18 and 5.19 can be used with the derivatives of Mean-Vola to solve the

Inverse problem. It is worth to mention that, just as for the case of the Mean-Variance

objective function, the parameter of risk aversion λ can be found through a closed form

equation. In the case of the Mean-Volatility this equation is quadratic instead of being

linear, but still offers a finite number of solutions. Nevertheless, we have not reported it

here because it did not result useful in our implementations.
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Chapter 6

Implementation and Results

6.1 General Domain description

The domain is where we define the Markov Decision Process of our IRL problem. This

includes the state space, the action space, the transition kernel, and the reward (cost)

function. We used the Gym library from Openai to implement the environments.

Every gym environment must offer an interface of four methods that make it conform

to the structure of a classical MDP: initialization, step, reset, and render.

• Initialization

This method is invoked at the beginning of the training process. All parameters

needed to set up the environment are passed and saved within the env. instance.

The starting position of the agent is assigned.

• Step

Intuitively, this method models the dynamics of the environment. At every time-

step, the agent chooses an action and forwards this choice to the step function.

The method returns a tuple describing the evolution of the environment that

followed the agent’s action: <observation, reward, done, info>.

observation: as we have already seen, the observation is a limited description

of the state (the observable part of it) that allows the agent to learn how its actions

influence the state.

reward : the reward is a real number that quantifies the value of the transition

so that the agent can understand whether it performed a good action or not.

done: this is a flag that tells us whether the agent has reached the end of the

simulation. Some environments have episodes of fixed length (and therefore the

flag is redundant) and environments where the end of the simulation depends on

the state of the agent (variable episode length that makes the flag necessary).
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info: this is a dictionary containing diagnostics information that is useful to

the developer for debugging but has no direct impact on the simulation.

• Reset

Every time the step method returns a positive done flag, the environment must

be set to its initial state. This is achieved through the reset method.

• Render

This method provides a graphical representation of the training process so that it

can be observed, analysed, and more easily understood by humans.

6.1.1 Feature Design

For all environments, we chose to generate a nonlinear policy implemented with a neural

network. The weights of the network represent the policy parameters and, differently

from policies with handcrafted features (e.g. linear policies), we cannot know what these

weights represent. The network architecture we adopted is a Multi-layer Perceptron with

2 hidden layers and 64 neurons as shown in figure (6.1).

Figure 6.1: MLP agent

In the following sections of this chapter, we will explore, one by one, the environments

we adopted to test our IRL approach. In every section, we will detail the logic and

dynamics of the environment and then present the empirical results, followed by some

considerations on the performance.
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6.2 Portfolio Management

In this environment, an agent has access to a limited resource called liquid asset, which it

must choose whether to invest or not in non-liquid assets to maximise the total liquidity

at the end of an episode. The assets are affected by an interest rate which increases

the value of the asset at every time step. The liquid asset has a fixed interest rate

rl wile the non liquid asset has a variable interest rate which can switch between two

values rlownl and rhighnl with probability pswitch. Every time the agent decides to invest in

a non-liquid asset, it can buy one quantity for a fixed price α. After a fixed number of

time-steps, the non-liquid asset reaches maturity and if it does not default (which can

happen with probability prisk), it is turned back into liquid. The agent can only buy a

single non-liquid asset at each time-step and can only own a maximum of M non-liquid

assets at the same time. The reward at every time-step t is given by the difference in

the total amount of liquid assets between the states st−1 and st. These dynamics can

be represented with a vector as we can see in figure 6.2 with a simple example. In this

scenario, the agent chooses to buy a single unit of non-liquid asset at time 0, the variable

interest rate remains fixed at 1.1.

Figure 6.2: Portfolio Management state dynamics.

The values for the variables that were chosen for our implementation are:

T = 50 rl = 1.001 N = 4

rhighnl = 2 rlownl = 1.1 M = 10

prisk = 0.005 pswitch = 0.1 α = 0.2
M

Table 6.1: Portfolio env. values

It is evident that never investing in non-liquid assets is the safest choice because the

agent would be guaranteed a steady positive reward given by the liquid’s fixed interest
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rate rl and could avoid completely the risk of ending up with less liquid than what it

started with. Nevertheless, a ”skilled” agent might be able to obtain a higher average

return by investing the right amount at the right moments. As we will see, the parameter

of risk aversion will play a fundamental role in balancing these two behaviors.

6.2.1 Numerical results

We trained our agents to optimize the mean-variance objective function. The train-

ing process was performed using the standard REINFORCE algorithm we introduced in

chapter 3. Several agents were trained with different values for the risk-aversion parame-

ter λ. The range was chosen empirically to create experts with distinguishable strategies.

This can be observed by the difference in the average return and return variance of the

five agents at convergence. The following graphs show the trend of the forward learning

process and we can see how the behaviors progressively drift apart from one another.

Figure 6.3: Portfolio forward problem: Gradient norm

Figure 6.4: Portfolio forward problem: Average cumulative return

In figure 6.3, we can observe the gradient descent progresses gradually zeroing out

the L2-norm of the gradient. This means that the agents are converging to an optimal

strategy for the objective function they are optimizing, i.e. they are becoming experts.

Since the inverse problem relies on the assumption that the expert has reached total
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Figure 6.5: Portfolio forward problem: Variance of cumulative return

convergence, the closer the gradients are to zero, the better. In figures 6.4 and 6.5

we can see that the objective function is being optimized and the magnitude of the

effect of risk aversion parameter over the performances. Agents optimizing a trade-off

on the higher spectrum of λ values shows a significant difference in the return variance

compared to the risk-neutral agent (λ = 0).

RA-GIRL

Once the experts have been generated, the second step of the problem consists of esti-

mating the feature weights ω of the environment’s reward function, together with the

parameter of risk aversion λ. This is achieved through the formulations seen in chapter

5. The reward function for the Portfolio environment is the following:

Rt = liquidst − liquidst−1 (6.1)

We can easily identify the two features (liquidst and liquidst−1) and the relative

weights (1 and −1). Since we want our weights to be o=confined to the unitary simplex

so to avoid degenerate solutions, we can re-formulate the reward function as such:

Rnormt(ω) = ω1(2 ∗ liquidst)− ω2(2 ∗ liquidst−1) (6.2)

so that the correct weights become ω1 = ω2 = 0.5.

We used the optimization library from SciPy, which allows us to specify the Jacobian

of the function we intend to minimize, to solve the minimisation problem. The results

are summarised in table 6.1.
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Portfolio Mean-Variance

Weights Expected Estimated Gradient

Configuration Values Values L2-norm

Weight 1 0.5 0.5345 1.54e-9

Weight 2 0.5 0.4655

λ 0 0.0091

0.5 0.4899 1.52e-9

0.5 0.5101

0.1 0.1020

0.5 0.4976 1.62e-5

0.5 0.5023

0.3 0.8175

0.5 0.4978 3.37e-7

0.5 0.5021

0.5 1.0483

0.5 0.5003 1.3e-5

0.5 0.4996

0.7 0.6923

0.5 0.4998 7.96e-8

0.5 0.5002

1 0.9865

Table 6.2:

In the table summarizing the results of the estimations, we can see that the weights

of the reward function have been accurately estimated for every agent. In the case of

the level of risk aversion determined by the parameter λ, some estimations resulted very

accurate while others were not. This can be due to the fact that the experts for which

the estimation is not precise have converged to a local optimum of the optimization

problem and are following a strategy that is not necessarily optimal for the level of risk
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aversion they were trained with.

6.3 S&P 500 Trading

The second environment we decided to implement is a Trading system that runs on

historical data, in particular the daily prices of the S&P index from the 1980s, until

2019. At every time-step the agent must choose among three possible actions: long,

short or flat. Note that we assume that selling an action we do not own (short selling) is

allowed. The amount invested when going short or long is fixed, meaning that the gains

(and the losses) are not reinvested. Therefore, the total return over a trajectory is the

accumulated sum of the step-wise rewards. At every step, the value of the asset at time

t is pt, and the reward is equal to

Rt = Pt
pricet − pricet−1

pricet−1
− f |Pt − Pt−1|, (6.3)

where Pt is the portfolio value at time t and f is the proportionality constant, set to

7 · 10−5. The state consists of the last 10 days of percentage price changes, with the

addition of the previous portfolio position as well as the time remaining until the end

of the episode, with episodes 50 days long. Intuitively, the most risk-averse behavior

consists in always choosing to flat.

6.3.1 Numerical Results

Using the same network structure seen at the beginning of the chapter, we trained our

agents to optimize two different risk-sensitive objective functions: Mean Variance and

Mean Volatility. These measures share the fact that they employ a risk parameter that

regulates the level of risk aversion induced. For each measure, we generated several

experts with different levels of risk aversion and then applied the GIRL algorithm to

estimate the reward weights. In figure 6.7, we can see the pareto frontier generated by

the experts, which highlights the different trade-offs the experts converge to between

average return and variance of the return.

RA-GIRL

We then computed the policy gradients for each of the experts by generating a batch of

49000 steps (1k trajectories) for each expert and used the formulations from chapter 5

to estimate the reward weights ω and level of risk aversion given by λ.

The reward function for the Trading environment is similar to the Portfolio manage-

ment’s one, except for a small fee given for every transaction. As seen before, we should

re-formulate equation 6.3 so to be compatible with normalized feature weights:
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(a) Mean-Variance frontier

(b) Average return frontier (c) Return variance frontier

Figure 6.6: Trading: Mean-Variance Pareto frontiers

Rnormt(ω) = ω1(n ∗ Pt
price

pricet−1
)− ω2(n ∗ Pt)− ω3|Pt − Pt−1|, (6.4)

Where n = 2 + 7e − 5 is the normalization factor. The corresponding weights are

ω1 = 4.99982501e− 01, ω2 = 4.99982501e− 01, ω3 = 3.49987750e− 05. In tables 6.3 and

6.4 we present the results of the predictions based on these features.
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(a) Mean-Volatility frontier

(b) Average return frontier (c) Reward Volatility frontier

Figure 6.7: Trading: Mean-Volatility Pareto frontiers
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Trading Mean-Variance

Weights Expected Estimated Gradients

Configuration Values Values L2-norm

Weight 1 0.499982501 0.5004 0.02465

Weight 2 0.499982501 0.4996

Weight 3 3.50e-05 4.23-18

λ 1 0.0

0.499982501 0.5002 0.04384

0.499982501 0.4997

3.50E-05 13.65e-5

4 7.5232

0.499982501 0.5002 0.03020

0.499982501 0.4998

3.50E-05 8.47e-22

6 15.2795

0.499982501 0.5001 0.01984

0.499982501 0.4999

3.50E-05 0.0

20 21.2222

0.499982501 0.5001 0.00135

0.499982501 0.4997

3.50E-05 2.08e-4

100 2.5507

Table 6.3:
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Trading Mean-Volatility

Weights Expected Estimated Gradients

Configuration Values Values L2-norm

Weight 1 0.499982501 0.4994 2.4e-7

Weight 2 0.499982501 0.4973

Weight 3 3.50e-05 3.26e-3

λ 10 0.0837

0.499982501 0.5009 3.5e-10

0.499982501 0.4991

3.50E-05 4.07e-23

20 5.8117

0.499982501 0.5002 1.25e-9

0.499982501 0.4993

3.50E-05 4.72e-4

27 6.8618

0.499982501 0.5036 3.5e-17

0.499982501 0.4963

3.50E-05 3.31e-5

30 17.9961

0.499982501 0.5017 3.0e-16

0.499982501 0.4976

3.50E-05 7.18e-4

50 29.5076

0.499982501 0.5020 3.4e-7

0.499982501 0.4873

3.50E-05 1.07e-2

130 189.9996

Table 6.4:

For this environment we obtained similar results for both of the two risk measures
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we tested. The reward weights are estimated quite well for all agents, although we can

see that the solutions were less precise for the third feature weight. This is probably due

to the fact that the third weight (representing the transaction fees of the environment)

has a value that is on a smaller scale compared to the others. In the future, we will

try to reformulate the reward features so that all the weights are on the same scale.

Regarding the parameter of risk aversion, although the estimations are not precise, the

result is quite satisfying when viewed comparatively. In fact, the estimations follow the

same increasing trend as the real values, which means that the level of risk aversion of

every expert compared to the other experts was estimated correctly.

6.4 Grid-World

The Grid World environment is a standard environment in RL literature as it offers an

intuitive layout where behaviors are easy to interpret. The environment consists of a

map with a finite number of locations in which the agent can find itself. Some of these

locations can be more or less harmful to the agent, while others can be advantageous

(for example a goal state). As we can see in figure (6.8), our environment has three

types of cells. Safe cells (in light gray) give a reward of −0.1. Obstacle cells instead

give a reward that is ten times as negative (−1.0). The goal state, instead, is a terminal

state (the agent cannot exit the cell once entered) and it yields a reward of 0 for every

time instant the agent is in it. Since our agent wants to maximise the total return,

it will try to find the quickest path to the goal, trying to avoid the obstacles. Here,

the stochasticity of the environment comes into play. Every action of the agent has a

probability of failing, in which case the agent moves either to the right of to the left of

the desired direction. This will push the agent towards paths that do not come close

to the obstacles. Again in figure 6.8, we can see three different paths that reach the

goal from the starting point. The paths are progressively more risk-averse, trading a

higher step count to avoid stepping on the obstacles. As we will see later on, these three

behaviors were observed for experts optimising different values of λ.

Figure 6.8: Grid-World map
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6.4.1 Generating the Experts

For this particular environment we chose to generate a set of experts that optimize the

Entropic Risk Measure (ERM) defined in equation 4.8. This choice followed from em-

pirical evaluation of the performance of different risk measures (ERM, Mean-Variance,

and Mean-Volatility) which showed the ERM to be the most suited in generating distin-

guishable behaviors for different levels of risk aversion. Figures 6.9, 6.10 and 6.11 show

how the training process reached convergence on different levels of average return and

variance of the return during a training process of one thousand iterations. Figure 6.12

gives us a better understanding of how the parameter of risk aversion affected the overall

performance of the agent at convergence. As λ increases, the average return decreases as

the agent progressively chooses longer paths that stay away from obstacles, this in turn

also decreases the return variance. Overall there is a clear trade-off relation between the

two performance metrics J and V .

Figure 6.9: Grid World: Average return

Figure 6.10: Grid World: Variance of return
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Figure 6.11: Grid World: Policy gradient convergence

(a) Mean-Variance frontier

(b) Average return frontier (c) Return variance frontier

Figure 6.12: Grid World: Pareto frontiers
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6.4.2 RA-GIRL

As seen for the previous environments, the goal here is to retrieve the weights that

characterize the reward function of the environment. In this case, the estimate for the

level of risk aversion has not been computed due to experimental difficulties. For the

map, we generated the reward is composed of two features corresponding to regular step

tiles and obstacle tiles. The goal and starting state are not part of the equation. We can

visualize how these two features are mapped out on the grid in figure 6.13. It is easy to

see that the real weights for the step tile and obstacle tile features are respectively 0.1

and 1 (which, when normalised, become 0.09 and 0.90). The final step consisted of using

the policy gradients obtained from a batch of 5000 steps performed by the experts and

applying the equations seen in chapter 5 to estimate the feature weights. The results

are summarized in table 6.5.

(a) Step tile feature (b) Obstacle tile feature

Figure 6.13: Grid World: Reward features
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Grid World Entropic Risk Measure

Weights Expected Estimated Gradient

Configuration Values Values L2-norm

Weight 1 0.09 0.3933 9.5457

Weight 2 0.90 0.6066

λ 0.3

0.09 1.0256e-17 149.48

0.90 1.0

0.5

0.09 0.1396 3.3876

0.90 0.8604

0.7

0.09 0.1230 5.202

0.90 0.8760

1

0.09 0.1633 165.9

0.90 0.8367

2

Table 6.5:

For the Grid World Environment we had a hard time obtaining precise results due

to the difficulties encountered in obtaining a good convergence for the forward problem.

In Particular the gradients of the experts were not small enough for a decent estima-

tion, even after a very long period of training. We, therefore, decided to reduce the

dimensionality of the inverse problem by only trying to estimate the reward weights

while providing the real value for the parameter of risk aversion λ. We can see that the

estimation correctly identifies the higher cost of holes compared to the regular tiles of

the grid. As we can see from the numbers obtained, the estimates improve for higher

levels of risk aversion. This is probably due to the fact that the parameter λ appears

as a denominator in equation 5.22 and this complicates the estimate when λ is close to

zero.
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Chapter 7

Conclusions and Future Works

In a reality where human-machine interaction is becoming ever more present, the role of

Inverse Reinforcement Learning grows of importance. A novel approach to IRL proposed

in [13] is the GIRL algorithm, which allows one to estimate the weights that characterize

a linear reward of an agent in a batch-based and model-free manner. These characteristics

of GIRL make it very interesting to explore and expand because it is often the case, for

real world applications, that the model is not known and cannot be easily estimated. The

GIRL algorithm has been shown to work for the case in which the agent is optimizing

a reward function that can be expressed as a linear combination of basis functions with

a standard risk-neutral objective function. The focus of this thesis has been to explore

whether the approach can be extended to the space of nonlinear objective functions.

The non-linear space embraces a much broader set of functions, including ones that

contain a notion of risk. This extension is extremely relevant in the applicability of the

approach to scenarios where the experts are humans. Humans have been shown to be

very sensitive to risk and therefore being able to solve the IRL problem in a risk-sensitive

framework is a fundamental step in this field of research. In particular, we focused our

attention on three different risk measures: Mean-Variance, Entropic Risk Measure, and

Mean-Volatility. Upon this premise we set ourselves two goals: derive the level of risk

aversion of our experts, and estimate with sufficient precision the weights of the reward

features, given that we are now dealing with a non-linear combination.

The analysis unfolded as follows: for each of the risk measures mentioned, we gen-

erated several experts presenting different levels of risk sensitivity (from risk neutrality

to extreme risk aversion). We repeated this process for three different environments:

Portfolio Management, Stock Trading, and Grid World, selecting the appropriate risk

measure(s) for each of them. The different sensitivities yielded a set of distinguishable be-

haviors for every environment in which the agents were trained. Totaling over 20 experts

for the various risk-measure - environment combinations, we proceeded with solving the
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inverse problem of estimating the weights that characterize the environment’s reward

function, and the parameter of risk aversion in the objective function, by observing the

expert acting within the environment.

From this intent, comes the first contribution of our work: starting from the trajectory-

based gradient estimators seen in Chapter 5, which we obtained from an adaptation of

the formulations found in [23] for the variance, and extended to the other risk measures,

we derived the formalization for the inverse problem and devised a framework in which

to solve it. For the case of the Mean-Variance objective function, we also provided a

closed-form equation to compute the level of risk aversion of the expert when the reward

function is known. The relevance of this contribution comes from the fact that we pro-

vide a unified approach to the problem of risk-sensitive Inverse Reinforcement Learning

which, while still maintaining the properties of being model-free and batch based, can

be applied on any class of risk measures, unlike [15] which is limited to Coherent Risk

Measures. Our approach is also flexible, allowing one to easily reduce the estimation

to the reward weights only, when the parameter of risk aversion is known, and vice-

versa, to estimate accurately the parameter of risk aversion when the reward is known.

In particular, the estimation of the risk aversion, given the reward weights, has been

formalized as a quadratic problem which has a single optimal solution, yielding a very

robust estimation.

This brings us to the second contribution of our work, which consists of the empirical

evaluation of the proposed theoretical framework. We proceeded to implement and test

the GIRL algorithm through the gradient-based minimization problem that allowed us

to estimate, at the same time, both the expert’s level of risk aversion and the parameter

weights of the reward function. For all scenarios and risk measures we achieved a good

degree of precision of the estimations, as can be seen in the results tables of Chapter 6.

The results obtained in this work pave the way for future research in several di-

rections. Examples include testing out new risk measures, different environments, and

further analysis of the correlation between the expert’s gradient norm and the accuracy

of the predictions. Regarding the reward function, in particular, our work could be ex-

tended to focus on studying how to choose the best reward features and how their shape

influences the estimations. Finally, our approach could be generalized to non-linear

reward functions so to encode the notion of risk within the reward function itself.
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