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Abstract

This thesis deals with the problem of exploring unknown environments by

means of a team of robots. Specifically, attention is given to the coordina-

tion among them to complete the exploration as fast as possible. Starting

from two already existing coordination mechanisms, we propose some vari-

ants, based on a different approach to the proactive use of the idle robots

before they are actually needed in the exploration. The aim of the proposed

variants is to exploit what is known about the environment during the ex-

ploration in order to improve the base coordination mechanisms. The idea is

to determine a convenient waiting location for idle robots, from which they

can move when they are needed. To do this, a representation of the environ-

ments using graphs has been introduced. They are built on the partial rep-

resentation of the map and updated as the exploration goes on. The robots

not currently needed are moved to a location computed through the values

of centrality measures for these graphs. We analyze two different types of

graphs, as well as two centrality measures. Their combination produces four

variants for each coordination mechanism considered. The proposed variants

have been compared to the base coordination mechanisms according to the

time required to complete the exploration of a number of environments. Re-

sults obtained show that the proposed variants do not enhance performance

in general, but they perform better than the corresponding base mechanisms

in some specific environments.
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Sommario

Questa tesi riguarda il problema di esplorare ambienti sconosciuti mediante

un gruppo di robot, ponendo l’attenzione su come i robot si coordinano per

eseguire tale compito nel minor tempo possibile. Partendo da due mecca-

nismi di coordinamento già esistenti, proponiamo delle varianti degli stessi.

In particolare, l’aspetto su cui questo lavoro si fonda è un utilizzo proattivo

dei robot inizialmente non necessari ai fini dell’esplorazione. L’obiettivo è

quello di sfruttare esplicitamente, rispetto ai meccanismi di base, le cono-

scenze relative all’ambiente che si sta esplorando al fine di far attendere tali

robot in una posizione conveniente da cui partire, una volta che saranno

necessari. Per far s̀ı che essi siano posizionati in maniera efficace, abbia-

mo rappresentato l’ambiente con dei grafi, costruiti a partire dalla mappa

parziale dell’ambiente ed aggiornati con il proseguire dell’esplorazione. Il

miglior punto in cui posizionare i robot non necessari è poi individuato

mediante il calcolo di metriche di centralità sui grafi ottenuti. Abbiamo

analizzato due differenti tipi di grafi, cos̀ı come due metriche di centralità.

Le loro combinazioni hanno permesso di ottenere quattro varianti per ognu-

no dei meccanismi di coordinamento considerati. Tali varianti sono state

confrontate con i meccanismi di coordinamento di partenza sulla base del

tempo richiesto per completare l’esplorazione di diversi ambienti. I dati ot-

tenuti dal loro confronto mostrano che le varianti proposte non migliorano

l’esplorazione in generale, ma almeno una tra le varianti proposte fornisce

risultati migliori rispetto al corrispondente meccanismo di coordinamento di

partenza in specifici ambienti.
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Chapter 1

Introduction

The use of mobile robots is increasing consistently in the last years. They

are used in a wide variety of scenarios, like search and rescue, logistics,

surveillance, exploration, just to mention few of the applications. Some of

the most interesting examples of such systems in recent times are represented

by PMORPH and Colossus (Figure 1.1). PMORPH is a robot employed in

the disaster site of Fukushima to investigate the situation in sectors of the

nuclear power plant unaccessible by humans, due to the high radioactivity

values [41]. Colossus is a firefighter robot employed as a first responder

during the Notre-Dame de Paris fire. Given the high temperatures reached

in the interiors of the cathedral, it was impossible for human firefighters

to enter [32]. Both these robots are teleoperated, thus, a person is needed

to control them, and it is a hard task. Moreover, teleoperation imposes

limits in such scenarios. This happened different times on the Fukushima

disaster site, as the cables used to control the robots got stuck, and the

use of wireless communication was not possible. For this reason, a certain

degree of autonomy is desirable.

Both the examples presented above exploit a single robot. When dealing

with scenarios like the exploration of an unknown environment or search and

rescue, the use of a team of robots is usually beneficial to the completion of

the task [10,24,34]. In both these contexts, the aim is to build a map of the

environment, and the presence of more robots allows to speed up the cover-

age of a bigger area in the same amount of time. Moreover, a team of robots

is able to produce a map more accurate because of the increased amount of

redundancy in the measurements [7]. The advantages of employing a team,

rather than a single robot, point out, even more, the need for autonomy.

Considering that teleoperating a team of robots is an extremely complex

operation [12], robots should be able to autonomously coordinate both to



(a) PMORPH. Image taken from [41] (b) Colossus. Image taken from [26]

Figure 1.1: Examples of teleoperated robots

reduce the time required to complete the task, and to avoid collisions.

The setting of this thesis is the one just described, the exploration of

an unknown environment through a team of robots. The focus is on the

coordination mechanisms regulating the behavior of the team of robots.

The coordination mechanisms considered split the team of robots into two

sets, an active set and an idle set, following the idea originally introduced

in [33]. The first one is composed of the robots which are exploring the

environment. While robots which are not yet needed for the exploration

form the idle set. These robots wait for the moment when they are assigned

to explore a location. A good location where moving the idle robots is the

main aspect considered in this thesis. Moving them proactively towards a

suitable location is beneficial to the performance of the exploration, in the

case in which that location represents a good spot from where to start once

needed.

The aim of this thesis is to include information about the topology of

the explored environment in the proactive allocation of idle robots. This is

done by the definition of two graphs and the computation of two centrality

measures on them. The combination of these elements produces four possible

ways of computing the location where to move the idle set. Their application

has been tested on two coordination mechanisms in which the proactive

movement of the idle robots is done according to a naive approach. Further

analysis is carried on to relate some features of the explored environment to

metrics that can be obtained during the exploration itself.

The coordination mechanisms on which this thesis is based are the proac-

tive versions proposed by [13] of the reserve and buddy system mechanisms,
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introduced originally in [33]. In the case of [13], the proactivity is imple-

mented by moving the idle robots to the barycenter of the polygon whose

vertices are the locations of the active agents. In their original formulations,

both reserve mechanism and buddy system mechanism keep the idle robots

waiting at the initial location. The results reported by [13] shown how a

proactive movement of the idle set of robots provides an enhancement to

performance, particularly in the case of reserve. Given this result and the

consideration that proactivity through the barycenter computation does not

directly take into account any aspect of the environment, being only based

on the locations of the active robots, through this thesis we inspect whether

the inclusion of topological aspects may enhance the exploration even more.

Coordination mechanisms represent just one of the main components

in the solution of the exploration problem, and they are present only in

the case of multi-robot exploration, as they address the problem of deciding

which robot goes where. In the exploration of an unknown environment, two

further components needed are the SLAM algorithm and the exploration

strategy.

The SLAM algorithm solves the Simultaneous Localization And Map-

ping problem. It comes out because, as a robot moves in the environment,

its location is hard to determine even if it knows its initial pose, due to

uncertainty in the odometry. Moreover, this is complicated by the fact that

the complete map is not known, thus only a partial knowledge of the envi-

ronment is available to the robot. The SLAM algorithm provides a solution

to this problem, allowing to integrate the data coming from sensors to si-

multaneously localize the robot on the partial map built up to that moment

and update that same map. A wide range of different algorithms for solving

SLAM problems have been proposed in the literature [7, 39], and they also

differ in the kind of map produced. Models for the map can be topologi-

cal or metric. In the former case, the output of the SLAM algorithm is a

graph [23], which provides information about the structure of the environ-

ment. In the latter case, the output is a map providing the exact locations

of the obstacles [28]. Once a partial map is available to the robots, they

have to decide the next locations to explore. This is done by following an

exploration strategy [22, 43, 47, 48]. It takes as input the output map of a

SLAM algorithm and detects a set of candidate locations to explore. It also

provides the policy to select the next one to explore. When dealing with a

team of robots, once the candidate locations are identified by the exploration

strategy, the coordination mechanism decides how the robots of the team

should be allocated to them. They basically answer to two different ques-

tions: Where to go next? for the exploration strategy and Who goes where?
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for the coordination mechanism. In [3], it is analyzed the relative impact

of the exploration strategy and the coordination mechanism on the explo-

ration, assessing that the first one affects more the performance on highly

structured indoor environments. On the other hand, the role of coordination

mechanisms is dominant in less structured indoor environments.

Graphs are widely employed in the literature about exploration [5,6,14,

19], as they are particularly useful to get rid of the geometrical aspects of

the environment and to focus only on its structural properties. By doing

so, it is also possible to reduce the spatial complexity of the map with

respect to a metric representation of the same environment [14]. Once a

topological representation of the environment is provided, it is possible to

define exploration strategies that identify nodes of the graph as candidate

locations [5, 22]. They are a strong modeling tool that we consider able to

include information about the environment to enhance the proactivity in

the coordination mechanisms. Two graphs are tested, the topological graph

and the visibility graph. The first one is a graph aimed at capturing the

connectivity between regions, generated from the occupancy grid produced

by the SLAM algorithm. The second graph is a historical graph whose nodes

are both located in the positions where the robots moved and represent the

candidate locations identified by the exploration strategy. These graphs

are included in the coordination mechanisms through centrality measures,

which are measures aimed at identifying the most central nodes in a graph.

Depending on the centrality measure employed, the concept of central node

varies. Among all the existing centrality measures, the two considered here

are closeness and betweenness. The first one considers as central a node

whose average distance from all the other nodes is low. While the second

one considers as central a node along the largest number of shortest paths

between two other nodes. These two measures are considered as worth to be

tested for their capacity of providing a good location where to proactively

locate the idle robots. They are applied largely in social network analysis,

being able to track the most influential nodes in a network or the ones most

crucial to grant the connectivity of the network [21,29,30].

To evaluate the impact of the proposed graph-based approaches with

respect to the barycenter-based mechanisms of [13], we perform a series

of experiments, testing each possible combination of graphs and centrality

measures on both the coordination mechanisms considered. In this way,

it is possible to analyze the relative impact of a different graph or a dif-

ferent centrality measure on performance. All the experiments have been

performed in MRESim, a simulator for multi-robot exploration of 2D en-

vironments [35], which allows us to test the proposed mechanisms over a
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number of environments for varying team sizes. The metric we consider

in the evaluation of the goodness of a certain mechanism is the number of

discrete time steps required to complete the exploration. Moreover, also

availability and interference are evaluated, as defined in [13]. Even though

they result not to be a discriminating factor among the various mechanisms,

unless when distinguishing between reserve and buddy system.

When considering the whole set of environments tested, the proposed

variants to the proactivity provide no benefits in general, making the ap-

proaches based on the barycenter to be preferable, given also their intrin-

sic lower complexity. If the focus is restricted to single environments, our

experiments show that the exploration may benefit from the adoption of

the proposed coordination mechanisms, in some cases. Among the proposed

graph-based mechanisms, the best one is the one using the topological graph

and the betweenness as centrality measure, as it grants results even better

than the corresponding barycenter-based mechanism on some environments,

and tend not to worsen on the others. On the contrary, the visibility graph

as defined in this thesis results not to be a good approach for two main rea-

sons. In general, it does not provide any enhancement to exploration with

respect to the topological graph in terms of completion time. Moreover, its

higher number of nodes and edges than the topological graph makes the

computation of the centrality measures slower.

This thesis is structured as follows. In Chapter 2, the state of the art

for the two main aspects regarding multi-robot exploration is reported. The

chapter starts with some of the exploration strategies presented in the liter-

ature, giving particular attention to the one employed in our experiments.

Then, the attention shifts to coordination mechanisms, showing the dif-

ferences between online and offline mechanisms. In Chapter 3, a formal

definition of the exploration problem considered in this thesis is provided.

It is also highlighted the setting of the experiments, starting from the repre-

sentation of the environments given as output by the SLAM algorithm and a

presentation of the features used to discriminate among them. Then, agents

are described, as well as the exploration strategy employed. The last section

of the chapter illustrates the coordination mechanisms proposed by [33] and

their extensions by [13]. Chapter 4 contains the description of the graphs

employed and the centrality measures employed. It is also reported the

definition of interference and availability. In Chapter 5, it is provided an

in-depth analysis of the coordination mechanisms, pointing out the com-

mon structure which characterizes them all and the modifications needed

to implement each mechanism considered in this thesis. In the end, some
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needed optimizations for the proposed mechanisms are reported. Chapter 6

contains the results of the whole set of experiments performed. In the last

section, it is also reported a possible interpretation of some of the metrics

considered, and their relation with the features of the environments. Chap-

ter 7 reports the conclusions about the results obtained, together with some

possible future work.
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Chapter 2

State of the art

The exploration of an unknown environment pursued by a team of robots is

a complex problem, tackled in different ways across the literature. It can be

informally defined as the process of producing a representation of the envi-

ronment, in the following referred to as map, which can be used for future

navigation. The map can fall into two categories; it is said to be topological

if it is a graph modeling connectivity between regions, while it is metric if

it provides the exact locations of obstacles. Two of the most used metric

models for the map are occupancy grids and coverage maps. Occupancy

grids model the environment as a grid where each cell can be marked as

free or obstacle if already scanned through sensors, or unknown if it has not

been scanned yet. Also, coverage maps are a grid-based representation of

the environment, where each cell contains the posterior probability of be-

ing covered by an obstacle. This provides different advantages compared to

occupancy grids, like for example the possibility to finely model a wall not

parallel to x- or y-axis of the grid, without the need of enlarging it to match

the discretization.

The mapping process is carried on by one or more robots able to perceive

the environment utilizing sensors of different types. The most common are

lasers [11, 22] and sonars [24], even if other types of sensors are sometimes

used, like a laser-limited sonar [47,48] which is a combination of the two, or

a Microsoft Kinect sensor [33], which provides 3D measurements based on

an RGB camera and a depth sensor. The map is progressively updated by

including the information obtained from sensors on the partial map known

at that moment.

Looking at exploration from a conceptual point of view, two main phases

can be identified. The first one concerns the detection of the best locations

to explore next in the partial map built so far. The other one deals with



the allocation of robots to these candidate locations. Thus, the whole explo-

ration can be seen as an iterative two-step procedure where, once the map

is updated, a set of possible points of interest are chosen, based on some

criteria, and then to each robot is assigned a goal location. These two steps

are repeated until the exploration can be considered finished. The explo-

ration strategy is the algorithm that selects the candidate locations, while

the coordination mechanism is the one allocating the robots to them.

2.1 Exploration strategy

As previously described, the exploration strategy is an algorithm providing

the candidate locations robots should visit to maximize their knowledge

about the environment. There are two crucial aspects in this, that are the

definition of a candidate location and the criterion used to choose the best

one.

How a candidate location is defined depends strongly on the representa-

tion of the environment. As presented in the previous section, this can be

divided into two categories, topological or metric, which turns into graph-

based or grid-based representations, even if other data structures are possi-

ble, like in [2] where the map is stored as two lists of line segments.

The first step of the exploration strategy consists in generating a set of

candidate locations. Its generation has a high impact on the definition of

the algorithm and it is the core in frontier-based strategies [22, 43, 47, 48],

where the focus is mostly in this generating step, rather than in the choice

of the next location among the possible candidates. Other strategies, on

the contrary, skip the generation of this set by considering the whole set of

known cells or a portion of them. This is possible because of the particular

implementation of the criterion used to choose the next best location [36].

The choice of the next location to explore among the set of candidate

ones is done in different ways across the literature. An example of this

in a metric representation is in [2], where a comparative review of four

strategies for single robot exploration is performed, distinguishing among

a random approach (used as benchmark), a greedy one and two complex

ad hoc procedures, testing their performance over different environments.

Therefore, the choice can be done according to different criteria and the

two main factors affecting it are the amount of expected new information

obtainable from the location, usually referred to as utility, and the cost of

reaching it. In a topological representation, strategies like a Depth-First

Search [18] and Breadth-First Search [44] are naturally possible algorithms
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on undirected graphs, while [1] proposes an interesting approach to solve

the exploration problem on directed graphs.

In the following, some exploration strategies are presented, distincted

into three categories: information gain-based, frontier-based and topological

strategies. We give particular attention to the second one, being the one

used in this work.

2.1.1 Information gain-based strategies

Information gain-based strategies as presented in [36] are probabilistic strate-

gies usually employed on coverage maps, and consequently extensible to oc-

cupancy grids. Candidate locations are chosen among the known cells of the

grid, according to the expected change in the entropy obtainable by moving

a robot there. Given a posterior probability distribution p(c) of a cell c, its

entropy H(p(c)) is defined as

H (p (c)) = −
∫
c
p (c) log p (c) dc

While, the information gain for a given cell c and measurement z taken

from the pose x is

I (c, x, z) = H (p (c))−H (p (c|x, z))

Then, each known cell in the grid is considered as a possible candidate

location and the one providing the highest expected entropy reduction, i.e.,

information gain, is selected. This method provides suitable locations be-

cause the information gain for a completely known cell is near zero, thus the

approach tends to assign candidate locations in the proximity of uncertain

cells, increasing the knowledge of the environment. This partially justifies

the absence of care in generating the set of candidate locations, rather it is

preferred to take the whole set of known cells and to check the information

gain each one can provide.

The impact on the performance of this brute-force search is high, for this

reason, in [36], besides the basic strategy presented so far, two modifications

are also introduced. The first one reduces the number of candidate locations

from the whole set of known cells in the grid to the ones in a local window,

which has to be completely explored before moving on. Rather than reducing

the set of candidate locations, the second one modifies the way in which the

next one to explore is chosen by introducing the cost to reach that location

from the robot pose.

19



In [4], it is presented the A-C-G strategy which defines a conceptually

similar approach but takes explicitly into account the contribution to en-

tropy of the points sensed from the candidate location, discriminating be-

tween already sensed points and the ones sensed for the first time. It also

includes a factor proportional to the distance from the robot location and

the candidate one.

In [37], an information gain strategy is integrated into the localization

and mapping phase. This allows deciding which action to perform at each

step of the exploration, by taking into account the trajectory and map un-

certainty.

2.1.2 Frontier-based strategies

As presented above, information gain-based strategies mainly focus on the

process of deciding the next location to explore, giving less attention to the

definition of the set of candidate locations. This is clear by considering

the base strategy of [36], where all the known cells in the grid are possible

candidate locations and the method implicitly cuts out the ones not provid-

ing new knowledge. In frontier-based strategies, the focus is shifted to the

creation of a good set of candidate locations.

As defined in [47], the paper originally introducing this strategy for sin-

gle robot exploration, a frontier is the boundary region between explored

and unexplored space. The idea is that, by assigning a robot to its closest

frontier as location to explore, the line between explored and unexplored

space is pushed continuously, until the whole environment is mapped. In

that case, occupancy grids are used to model the environment and with that

representation, it is pretty straightforward to find out a frontier, identifiable

as a cluster of adjacent free cells whose neighbors are unknown.

This simple idea works extremely well in practice and for this reason,

it has been used widely in the literature, producing a lot of extensions and

adaptations to the various cases, like [48] where the strategy is extended to

multi-robot scenarios.

In [43], the Leader-Follower exploration algorithm is presented. It fo-

cuses on the roles assumed by the robots during the exploration, which can

be dynamically changed, according to the distance from the assigned lo-

cation. Candidate locations detection is done by identifying frontiers and,

differently from the strategy of [47] and [48], the next to explore is not cho-

sen as the nearest one. Indeed, it looks for the pair of frontiers maximizing

the sum of the rewards for the leader and the follower, where the reward

function is composed of a utility term minus the cost to reach the frontier.
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[22] provides an extension of this exploration strategy to topological

maps, rather than occupancy grids. An interesting aspect of this is in the

strict relation between the frontiers and the nodes of the graph. As the

environment is progressively mapped, frontiers are detected and classified

according to geometric information about the environment into free area

or transit area, defined as the area where the robot transits between two

spaces (rooms, corridors, and so on). Once classified in one of these two

categories, the next frontier to explore is selected through a cost-utility

function, composed of three terms: the geometric and the semantic utility,

and the topological cost. The geometric utility corresponds to the size of the

frontier; a bigger frontier offers a bigger range to acquire new information.

The semantic utility is related to the classification of the frontier, being a

transit area preferable over a free area, despite its smaller size. The topolog-

ical cost is a cost term associated with the connectivity between frontiers. It

assigns a fixed small cost to consecutive frontiers, while if to reach a frontier,

a robot has to pass by other frontiers, the cost of that one is proportional

to the number of crossed frontiers. Once a frontier has been explored, it is

added as a node in the graph. The proposed cost-utility function is then

linearly related to the utilities and the relation with the cost factor is a re-

verse exponential. The algorithm guided by this function is shown to have

good performance both in terms of exploration time and traveled distance

against some benchmark algorithms.

2.1.3 Topological strategies

Topological strategies rely on a graph-based representation of the world.

This is useful to neglect the geometrical features of the environment and to

focus on its structure. As shown in [14], the complexity of using geometric

maps grows exponentially as the environment becomes larger and this justi-

fies the use of topological maps. Moreover, the use of a directed graph can

also simulate the case of one-way streets, where the robot is allowed to go

in one direction and not in the opposite one [6], which would be impossible

to describe just relying on geometric maps.

In this kind of strategies, candidate locations are nodes of the graph and

the next one to explore is decided in various ways, strongly depending on the

type of graph used. In fact, in the literature, both undirected and directed

graphs are used, with a further distinction whether or not the vertices are

identifiable. A vertex is identifiable if it can be recognized by a robot when

revisited. This is not always guaranteed because the robot may have limited

sensor capabilities or the appearance of vertices may change.
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Undirected graphs with distinguishable vertices are the most straight-

forward case. Each vertex is labeled uniquely and the robot is allowed to

traverse the edges in both ways [18, 20]. In [9] it is presented an extension

of the Depth-First Search algorithm to the multi-robot scenario both for

graphs and trees. A particular aspect of the model used is that edges are

considered as opaque, this means that from either end, it is not clear where

the edge goes. In [5] it is analyzed the problem of piecemeal exploration, this

states that the robot can traverse a limited number of edges before going

back to the source vertex. It is a realistic context in which the robot has a

limited amount of fuel or battery and needs to refill it after a fixed number

of steps or traveled distance. The algorithm proposed for this problem is

based on Breadth-First Search and another important aspect is the use of

the concept of frontier vertex, defined as a vertex incident to unexplored

edges.

Undirected graphs with anonymous vertices introduce some difficulties

and to get rid of them, markers are needed to distinguish between explored

and unexplored area [19,25,44]. In [19] it is shown that one marker is suffi-

cient to allow the robot to build a graph isomorphic to the environment in

low-order polynomial time and the use of multiple markers may improve the

performance. In [44] two enhancements are presented both to single-robot

and multi-robot exploration in such environments, provided by the use of a

Breadth-First Search and the exploitation of local neighbors information.

In the case of directed graphs, the robot movement is strongly limited

with respect to undirected graphs. Clearly, Depth-First Search is not always

possible because backtracking is not guaranteed to be applicable. Different

algorithms have been proposed to deal with these models [1, 6, 17]. In [1] it

is proposed an algorithm to visit all nodes and edges with a subexponential

upper bound on the number of edge traversals. In [6] it is defined an al-

gorithm able to explore a directed graph with anonymous vertices by using

two robots through the simultaneous learning of the graph and a homing

sequence. This is done by keeping multiple possible maps, updating them

through a sequence of movements, then checking their correctness. It also

states that it is not possible to efficiently learn the same kind of graph

utilizing a single robot with a constant number of pebbles without prior

knowledge on the number of vertices. In this case, pebbles are used simi-

larly to the markers stated above. They can be dropped by a robot at a

certain vertex to make it recognizable when revisited and eventually, they

can be also picked up by the robot to place them at another node. Previ-

ously it has been presented [19], which shows that same problem solvable

with one marker in low-order polynomial time in the case of an undirected
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graph.

2.2 Coordination mechanisms

In a multi-robot scenario, once candidate locations are detected on the map,

it comes out the problem of how the robots in the team have to be assigned to

them in order to maximize the knowledge about the environment. Moreover,

even if a random allocation is possible, it is clearly preferable an assignment

of agents to candidate locations which minimizes some metrics like the time

taken to explore the environment or the distance traveled by the robots.

The answer to this is provided by the coordination mechanism, which

is the algorithm that assigns robots to candidate locations according to

some criteria. Coordination mechanisms are distinguished into online and

offline. Online mechanisms assign robots to candidate locations by tak-

ing into account the actions currently done by the other members of the

team [10, 11, 34]. In offline mechanisms, in contrast, roles are assigned to

robots before the exploration starts and offline coordination can be divided

into two further categories, fixed and variable [40]. In fixed offline coordi-

nation, robots act according to the roles defined before the beginning of the

exploration and they stick to these roles, without altering them [24,31,33,42].

In variable offline coordination, robots can exchange their roles dynamically

as the exploration goes on [43].

Coordination based on an online mechanism is weighed down by the

need for more communication among the agents. Before an allocation is

made, an agent has to know other agents poses and targets locations. On

one hand, this implies a lot of communication to make proper assignments;

on the other hand, this allows to perform choices aimed at maximizing the

performance of the system. To clarify this, it is interesting to anticipate

the algorithm proposed in [34] and analyzed more in-depth in the following

section. This algorithm provides that every time the map is updated and the

set of candidate frontiers is detected, each robot communicates its expected

gain obtainable from the exploration of each frontier in the set. After having

received them all, the central executive computes the next location for each

robot, in a way to provide the highest possible gains for the whole system.

Through the use of roles, offline mechanisms require little to no commu-

nication once the exploration is started, making the robots and the whole

system easier to implement. The other side of the coin is that robots move

almost freely, with the possibility of interference among them and the re-

dundancy of assignments to the same target location.
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The relation between exploration strategy and coordination mechanism

is quite tight and the relative impact each one has on the performance is

hard to establish. A work in this sense is [3], where different exploration

strategies and coordination mechanisms are compared in two different en-

vironments. What comes out is that in structured environments, like an

office one with a lot of rooms and corridors, the detection of good candidate

locations is preferable over a good assignment of robots to them. In an open

environment, the contrary holds, being the coordination mechanism able to

increase the amount of area explored in the same amount of time, making

the impact of the exploration strategy less relevant.

2.2.1 Online mechanisms

Online coordination mechanisms allocate robots to target locations exploit-

ing current information about other robots actions. To achieve this, robots

need to communicate with each other. This has been done in different ways

across literature, using different techniques [10,11,34].

In [34] the communication is performed through the use of bids. Every

time a robot receives a map update from the central mapper, it sends a bid

with a list of costs and information gains for each frontier to the central

executive. As the central executive gets all the bids, computes the assign-

ment maximizing the difference between information gain and cost for any

robot and assigns the frontier to that robot. Once an assignment is fixed,

the other bids are discounted by a certain value to take it into account. This

procedure is iterated as long as there are no remaining robots or tasks. The

discount factor is fundamental, being the main factor introducing the online

coordination aspect of this algorithm, in fact, if bids were not discounted,

each robot would go towards the frontier with the highest estimated utility,

not taking into account other robots assignments. Also [10] and [11] per-

form coordination by considering the utility of each frontier computed as

the difference between the information gain it can provide and the cost to

reach it.

In [10] every time a robot is assigned to a certain frontier, the utility of

the other frontiers is discounted by a value proportional to the probability

of being in the visibility area from the assigned one. In [11] this approach

is extended to limited communication scenarios.

[46] differs from the previous works because the algorithm proposed uses

a topological map, rather than a metric one. The topological map is built as

the Voronoi graph of the partial map, known up to that moment. A Voronoi

graph is a graph in which nodes consist of points of the free space equidistant
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from the closest obstacles. An edge connects a pair of nodes if they are

adjacent in the map. Once the Voronoi graph is computed, it is segmented

in a way to create frontiers at critical points, like doorways. At this point,

for each robot is computed the cost for reaching each map segment and the

optimal allocation is then found by applying the Hungarian method, which

is an algorithm able to provide the optimal solution with minimal cost.

2.2.2 Offline mechanisms

Offline coordination mechanisms provide a definition of roles prior to the

beginning of the exploration. By sticking to these roles, coordination among

robots needs little to no communication, which is one of the main advantages

of this approach. Roles definition may also be modified at run-time, like how

is done in the Leader-Follower algorithm [43] presented above, where the role

depends on the distance from the assigned frontier.

Two major works following this approach for this thesis are represented

by [33] and the further extension provided by [13]. In [33] three coordina-

tion mechanisms, namely reserve, buddy system, and divide and conquer are

presented. The reserve mechanism splits the team into two smaller teams

where one is left idle at the initial position, while the second one is sent to

explore frontiers. As new frontiers are found, idle robots are progressively

turned into active agents and assigned to them. Once all the initially idle

robots are active agents, the exploration is carried out without further co-

ordination. Buddy system works in a similar way, with the difference that

rather than considering single robots, pairs of robots are considered. At

the start of the exploration, some pairs are sent to explore frontiers, while

the others remain idle at the starting position. Once a branching point is

found, that is a zone of the environment where different spaces meet, like a

T-shaped junction, for example, the pair is split and each robot explores a

different branch. If another branching point is found, one branch is explored

by the single robot which discovered it, and the other one is assigned to a

pair from the idle set, which then turns into active. In divide and conquer,

at the beginning of the exploration, all the robots move together following a

leader, then as a branching point is found, the team splits into two halves.

A new leader for the second team is decided and each team is assigned to a

branch. This splitting approach goes on while there are teams composed of

more than one robot and, after that, they proceed in an uncoordinated way.

[13] modified these mechanisms proposing respectively proactive reserve,

proactive buddy system, and side follower. The idea behind the first two

mechanisms is to move the idle set from the starting position, towards a
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better position, nearer to the possible branching points. This would allow

the robots turned into active to reach the assigned frontiers in less time,

once they are called. The waiting position for the idle team is computed

as the barycenter of the locations of the active agents. This thesis expands

this approach modifying the way in which this waiting position is computed

by taking the topology of the environment into account. Differently from

divide and conquer, the side follower mechanism organizes the agents into

groups of three, rather than a single group. The idea is that each robot in

the group has a preferred direction for the frontier to explore: the left robot

tends to explore frontiers on the left, the right robot prefers the ones on

the right and the robot in the center explores the ones in front of it. These

modifications are shown to have very good performance when compared with

the benchmark ones, particularly proactive reserve which is usually better

than all the other considered strategies. Proactive buddy system outperforms

the simple buddy system mostly on open environments, resulting in similar

or worst performance on the others. Side follower also performs generally

better than divide and conquer, particularly on the environments reflecting

the structure for which it is designed, that is a central corridor with spaces

on the sides.
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Chapter 3

Problem setting

3.1 Exploration problem

The exploration problem can be defined as the problem of mapping an un-

known environment by means of a team of robots. Thus, the objective is the

construction of a map of the environment but this introduces further prob-

lems, concerning for example the localization of each robot dealing with

the various sources of uncertainty, how to distribute the team, and how to

coordinate them. These are three of the main aspects considered in the

development of a solution to this problem, providing the major impact on

performance. To compare different approaches the main metric used is the

time taken by the exploration [11, 13, 33], but also the distance traveled by

the robots is sometimes considered [5].

A formal definition of the exploration problem, in the following abbrevi-

ated as EP, can be provided through a 4-ple 〈A,E, P0, T 〉 where:

� A is the set of robots used for the exploration;

� E is the environment to explore;

� P0 is a vector of the initial poses of the robots of the team;

� T is the termination criterion.

These four elements characterize the instance of EP addressed, while the

solution of the same consists in producing a map M of the environment E.

To do this, each robot is able to perceive the environment through one or

more sensors, characterized by the size of the spanned area. The map M

consists in a 2D occupancy grid representing the areas of E. The center of

each cell c is characterized by its coordinates in a global coordinate system,

provided as a vector (xc, yc). Each cell contains a value which tells if that



cell is free, occupied by an obstacle, or still unknown. Clearly, the first two

values refer only to already explored cells, while the third value refers to

those cells which are still not scanned by any robot of the team.

The experiments presented in this work are run on MRESim, a 2D sim-

ulator aimed at testing multi-robot exploration scenarios [35]. In particular,

it allows to create an instance of EP through a configuration file which

provides the robots in the team, their initial poses and a PNG image rep-

resenting the environment to explore. The vectors P0 employed have in

common the disposition of the robots along a straight line suitably spaced

to make them start from the same initial location. The termination criterion

used is the percentage of explored area and it can be modified by varying a

variable in the code.

The following sections describe the system used for the experiments, fo-

cusing at first on the environment and the agents, then moving the attention

to the exploration strategy and the coordination mechanisms considered in

this thesis.

3.2 Localization and mapping

The problem of mapping an unknown environment and simultaneously lo-

calize a single robot on the partial map built is one of the fundamental

problems of robotics, called SLAM problem, from Simultaneous Localization

And Mapping. The robot knows its initial pose and, as it moves, the un-

certainty about its pose increases, due to uncertainty in the odometry. For

this reason it becomes necessary to localize the robot on the map, even a

partial one. A formal description of it, as provided in [39], is suitably done

in a probabilistic framework and distinguishes two versions, the online and

the full SLAM problem.

Let X, U , and Z be three statistical variables representing respectively

the sequence of poses assumed by the robot, i.e., the path, the sequence

of odometry measurements, and the sequence of measurements provided

by the sensors. Let also µ be the true map of the environment. The full

SLAM problem is then defined as the problem of estimating the posterior

probability of the map together with the whole path traveled by the robot,

that is p (X,µ|Z,U). The online SLAM problem aims at estimating the

posterior of the actual location x of the robot, rather than the whole path,

together with the map. Thus, p (x, µ|Z,U).

What happens in practice is that as the robot moves in an unknown

environment, it perceives the surroundings through its sensors, has an esti-

mate of its pose from its odometry measures and these are used to reduce
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the uncertainty both about the map built and the location of, or the path

followed by, the robot, depending on the version of the SLAM algorithm

implemented. As the exploration goes on, the partial map approaches to a

complete map of the environment and it is also possible to get rid of the

noise in the measurements.

The model used for the map can be both topological [23] or metric [28].

In particular in this thesis, the representation provided as output by the

SLAM algorithm is metric, consisting in an occupancy grid.

3.2.1 Environments

This work considers only indoor environments. Reasons behind this restric-

tion are related to the work of [13], of which this thesis is an extension, in

order to provide a comparison in the same type of environments. Moreover,

this focus is justified by the application contexts, being the exploration of

indoor environments more common with respect to outdoor ones.

The representation of the map provided by the SLAM algorithm used

in this work is a two-dimensional occupancy grid. Moreover, being applied

to a multi-robot scenario, it comes out the difficulty of merging the maps

computed by solving the SLAM problem for each agent. The solution to

this is a centralized approach by means of a base station, which collects all

the individual local maps and combines them into a single global map.

Similarly to [13], the environments are classified according to some fea-

tures characterizing them. In particular, the aspects considered are the size,

the openness, and the parallelizability. The first one is easy to formally

define. For the second and the third one, a formal definition can hardly be

provided being influenced by many factors. To make the definitions more

readable, recalling that M denotes the map of the environment modeled as

an occupancy grid, let s : M → R be an auxiliary function which takes as

input a cell of the map and provides its area. The features considered can

be defined in the following way.

� Size: the amount of free area in the map. Thus, S(M) =
∑

i s(fi)

with fi being a free cell. The size of the environment clearly affects

the average time taken by robots to explore it. The smaller the envi-

ronment, the lower the amount of resources needed to map it. From

this, the distinction into small (S) and large (L) environments.

� Openness: the property of an environment to be composed of large

open spaces (O) rather than cluttered ones (C). It is also related to

the possibility for the agents to follow different paths in the case of an
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open environment, opposed to a channeled exploration towards specific

directions for a cluttered one.

� Parallelizability: the property of an environment to enforce the spread-

ing of the robots during the exploration. A formal definition to this is

hard to provide, but it can be informally presented considering that if

the environment allows the team to spread, it is highly parallelizable

(HP). Otherwise, if the robots are forced to stick together, it is lightly

parallelizable (LP).

To make these distinctions clearer, it is worth looking at some of the

environments used in this work and at how they are classified according to

these features. In Figure 3.1, two very different environments are presented.

The environment in Figure 3.1a is a simple maze, composed of a series of

few corridors. This is classified as S-C-LP, because its dimension is small and

the corridors make the exploration to be channeled into specific directions.

Thus, robots are not allowed to spread into it, forced by the long corridors,

justifying the classification as cluttered and lightly parallelizable.

The second one (Figure 3.1b) is likely to be the map of an office. It is

composed of a lot of rooms, corridors and spaces with different sizes. It is

classified as L-C-HP because the amount of free area is really large and is

mainly composed of rooms and limited spaces. For the configuration of the

corridors, the robots tend to spread in different directions, without sticking

close to each other. For this reason, the environment is classified as highly

parallelizable.

Given the difficulty in providing a formal definition for the openness

and the parallelizability, the possibility to correlate them with some metrics

measurable during the exploration is analyzed in-depth in Chapter 6.

3.2.2 Agents

In MRESim, an agent is characterized through:

� a number and an ID to uniquely identify it;

� its pose, expressed by a vector P = [x, y, φ], where (x, y) are the coor-

dinates of the grid cells occupied by the robot and φ is its orientation;

� the sensing range, set to the default value;

� the communication range, assumed to be infinite;
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(a) S-C-LP environment

(b) L-C-HP environment

Figure 3.1: Example of two different environments
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� the battery life, assumed to be infinite as well;

� its type, it can be the base station, a relay, or an explorer.

The communication range and the battery life are assumed to be infinite

because the focus of this work is on the results provided by the use of

different coordination mechanisms. In this way, it is possible to simplify the

mechanisms not to consider scenarios in which the robots run out of fuel or

they are unable to communicate, even if these situations are of particular

interest in a more realistic context and object of study as in [5] and [11],

respectively.

As stated above, the type of the robot, not to be confused with its

role, can be: base station, relay, or explorer. The relay type is never used

in the simulations performed for this work, being useful in cases in which

communication between a robot and the base station is not possible using

a direct link. Indeed, each team used is composed of one base station and

from four to eleven explorers.

The base station is the central coordinator of the team and stores the

global map computed by merging the partial maps provided by the agents.

It is configured similarly to other agents but its pose is fixed to the initial

one. It is important for the purpose of exploration because allows agents

to coordinate by means of a centralized unit, rather than a decentralized

approach, which would make the merging of the map way more difficult.

An example of a decentralized approach is in [7], where only as soon as two

robots meet, they are able to merge their maps and then proceed with the

exploration based on this updated map.

The explorer is the main kind of agents employed, being the one which

moves in the environment to map it. Apart from the configuration param-

eters presented above, it is also characterized by a finite speed. Explorer

are equipped with a laser range sensor allowing them to scan a semicircle of

radius equal to the sensing range in front of them. The value for the sensing

range is specified in the configuration file. Sensor readings are obtained after

every step and, as an explorer perceives previously unknown cells with its

laser sensor, it communicates the measurements to the base station which

merges them with the current map and updates it. The updated map is

then sent to each agent.

3.3 Exploration strategy

The frontier-based exploration presented in [48] is applied to identify the

candidate locations to explore. A frontier is the boundary region between
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Figure 3.2: Frontiers detected on the map

known and unknown space and by moving towards frontiers, this boundary

is pushed forward accordingly.

As highlighted in the previous section, the model for the map is an

occupancy grid. Each robot has its own local map, updated through the

sensor measurements, and merged at the base station to provide a global

map, which is the one used in the frontiers identification phase.

Frontiers are identified by at first drawing the contour of the known

space. The contour, represented by the pink line in Figure 3.2, depicts a clear

distinction between the known space, the yellow one, and unknown space,

the gray one. Then, the contour is split into smaller segments such that each

segment is included within two obstacles. Due to the representation based

on occupancy grids, segments are composed of a series of cells, whose centers

are used as vertices of a polygon. If the area of this polygon is higher than

a certain threshold, then the cell located at its barycenter is a frontier. In

the figure, the identified frontiers are indicated with the little squares. The

presence of three frontiers in the room on the right is due to the obstacle

in the middle of that room, which splits the contour into three segments.

Another aspect to notice is that the lower frontier on the left is located in

the middle of the known space, not on the border, and this is due to the

shape of the polygon, being it convex.

3.4 Coordination mechanisms

A coordination mechanism is the algorithm providing the allocation of robots

to the possible frontiers computed by the exploration strategy. Together

with the SLAM algorithm and the exploration strategy, this completes the

view on the system needed for the exploration. In fact, the process of ex-

ploring an unknown environment starts with the robots scanning an area

through their sensors and these data, together with the initial locations,

33



are used as input to the SLAM algorithm, which provides a partial map as

output. This is given to the exploration strategy that, as stated above, per-

forms a discretization of the polygon enclosing the known area and computes

the frontiers, excluding the ones too small. At this point, the coordination

mechanism is applied to find out an allocation of robots to frontiers.

The coordination mechanisms are the main focus of this work. In the

following, the coordination mechanisms we consider are presented both as

the original mechanisms from [33] and their extensions provided by [13].

3.4.1 Original mechanisms

In [33], three coordination mechanisms are presented, namely reserve, buddy

system, and divide and conquer. They are all focused on how proactive the

team members not strictly needed for the exploration are. The team can be

separated in two sub-teams, the active and the idle set, with the first one

composed of the robots whose goal is to explore one of the frontiers detected,

while the second one is made up by the remaining robots. An example is

useful to clarify this distinction and it is provided by Figure 3.3.

This is a snapshot of the exploration right after the one of Figure 3.2.

Five frontiers are detected: one located between the robots G and H, one

in the central corridor and three on the right. To each frontier is assigned a

robot, except for the three frontiers on the right, which are assigned to one

robot, rather than three. Being the distance among them within a certain

clustering threshold, only a robot is turned into active and assigned to the

nearest frontier of the three. Thus, a total of three robots is turned into

active, depicted in purple in the figure, and assigned to a frontier, while the

remaining five robots compose the idle set, depicted in blue.

Figure 3.3: Separation into active set and idle set. Purple triangles are the

robots of the active set. Each one is assigned to a different frontier and the

red line is the path from the robot position to it. Blue triangles are the

robots composing the idle set

The policy for the active set is the same for all the mechanisms, to explore
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the closest frontier. The differences come out dealing with the idle set, in

fact the way in which robots are proactively moved allows to distinguish

among each mechanism. Moreover, this theme of a proactive use of the idle

set is the leitmotiv linking the work started in [33] and extended both by [13]

and this thesis.

Reserve is the less proactive mechanism because as the name implies,

each robot composing the idle set is left as a reserve at its initial location.

As the exploration starts and the first frontiers are detected, the robots are

split into the active set and the idle set, in a similar way to the example

provided before. Then, the robots in the active set move towards their

assigned frontiers and the ones in the idle set wait at their initial positions.

As the exploration goes on and new frontiers are found, their number may be

higher than the size of the active set, making some or all the robots from the

idle set needed, which are then turned into active and assigned to a frontier.

Once the idle set is empty and all the robots are active, the exploration

proceeds in an uncoordinated way. This means that each robot is assigned

to the closest frontier, without taking into account whether another robot

has been already assigned to it.

Divide and conquer is the most proactive mechanism presented in that

work because the idle set moves together with the active set. At the begin-

ning of the exploration, active agents are assigned to the frontiers and the

idle set is split in several subsets, one for each active agent. For example,

assume that at the beginning, only a frontier is found. Then, an agent is

marked as leader and assigned to explore it. The other robots follow it as

it moves towards its frontier, until at least another frontier is detected. For

the sake of the example, assume that at this point there are two frontiers.

In this case, a robot from the idle set is turned into active and marked as

leader. The idle set is split in two: one half follows the first leader, the

other half follows the other one. This goes on until the idle set is empty,

after which the exploration proceeds in an uncoordinated way. Differently

from the reserve mechanism, this approach allows to have robots from the

idle set nearer to the frontier to which they are going to be assigned. In

this sense, the idle team members are considered to be more proactive with

respect to reserve, where waiting at the initial location makes the distance

between the robot turned into active and the assigned frontier higher.

Buddy system is considered to be halfway between the two previous

mechanisms for what concerns proactivity of the agents. This comes clearer

by looking at how the mechanism handles the idle set. As soon as robots

are deployed on the environment, pairs are formed, composed of a robot

marked as leader and another marked as follower, each one is the buddy
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(a) The orange pair is moving towards

the frontier, depicted as a red dot

(b) The pair reaches the assigned frontier

(c) The pair is split assigning the follower

to the green dot and the leader to the

pink one

(d) The two robots move each one to-

wards its own assigned frontier

Figure 3.4: Buddy split

of the other. Once frontiers are identified, the minimum number of leader

agents is turned into active and assigned to them. Each follower follows its

own leader towards the assigned frontier. The other pairs remain still at the

initial location, similarly to the idle set in the reserve mechanism. When a

branching point is met, that is a point where there are two or more frontiers,

the pair is split and the leader is assigned to a frontier, while the follower to

the other one. Here, the analogy with the divide and conquer mechanism

can be seen.

An example of this situation is shown in Figure 3.4. The orange pair is

going towards the assigned frontier highlighted by the red dot in Figure 3.4a.

As this is reached (Figure 3.4b), being the number of frontiers high, the

orange pair is split, assigning to each robot the closest frontier. These are

represented as a green dot for the robot which previously was the follower,

and as a pink one for the leader (Figure 3.4c). At this point, each robot

goes towards its own frontier (Figure 3.4d).

If a robot split from its buddy finds another branching point, a pair

from the idle set is called and assigned to one of the two frontiers, while the

36



single robot goes towards the other. This clarifies why the buddy system

can be seen as a mix of the reserve mechanism and the divide and conquer

mechanism. It both keeps the idle set waiting at the initial location until

the moment at which it is needed, as reserve, and each leader goes with a

follower from which splits when a branching point is met, similarly to divide

and conquer. In this way, when a follower is turned into active, it is already

near to the assigned frontier, providing a similar advantage of divide and

conquer, without the disadvantage of having the whole team moving close.

3.4.2 Proactive mechanisms

In [13], three modifications for the mechanisms presented in [33] are intro-

duced. As stated previously, they focus on enhancing the proactivity of the

idle set. The way in which this is done is pretty straightforward for what

concerns reserve and buddy system, while it is a little more tricky for di-

vide and conquer. The mechanisms proposed are named proactive reserve,

proactive buddy system, and side follower.

The main problem with reserve mechanism is that, once a robot from

the idle set is turned into active, it has to move from the initial location

to its assigned frontier. The distance it has to travel may be lower if the

robot is moved to a nearer position while it is still idle. This is exactly

what this modified mechanism tries to do by moving the idle robots to the

barycenter of the polygon whose vertices are active robots positions. In this

way, they are likely to be nearer to the newly detected frontiers which have

to be explored.

The buddy system faces a similar problem as the reserve mechanism:

the robots in the idle set wait to be turned into active at the initial location.

Thus, the proactive version of the buddy system moves the idle pairs at

the barycenter of the polygon formed by the active agents locations, for the

same reason explained above concerning the proactive reserve.

The problem of divide and conquer is different, being related to the

interference caused by moving the whole team of robots together. Therefore,

the team of robots is split into groups of three at the beginning of the

exploration and roles are assigned to them. The central robot is the leader,

the right one is the right follower and the left one is the left follower. These

roles are statically determined and never modified. Moreover, they affect

the assignment of frontiers to the group members, being the frontiers along

the direction of the movement assigned to the leader, the ones on its right

assigned to the right follower and the ones on the left to the left follower

symmetrically. In this way, there is a trade-off between the interference
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caused by the number of robots moving together and the distance from the

frontiers, reducing the first one without affecting too much the second one.
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Chapter 4

Modeling and evaluation

In the previous chapter, the coordination mechanisms developed in [13] have

been presented, giving particular attention to the contribution provided by

proactivity. Concerning buddy system and reserve mechanisms, their proac-

tive versions move the idle set at the barycenter of the polygon formed by

the positions of the active agents. This ensures good results when compared

with the original mechanisms of [33], in particular for proactive reserve.

However, the location for the idle set is computed naively and might be

exploiting only a part of the available information on the structure of the

environment. For example, the barycenter of the positions of the active

robots may fall into a small room, from which a robot in the idle set would

have to get out once turned into active, making the move into the room al-

most useless. On the contrary, we are more interested in moving the robots

in the idle set towards vantage positions providing good starting points for

them.

To include the structure of the environment discovered so far directly

into the coordination mechanism, graphs are considered. They provide a

representation of the free space and, by computing some suitable metrics,

called centrality measures, it is possible to find out a subset of nodes more

influential on connectivity between spaces. In this way, the location where

the idle set is proactively moved is a central point of the environment. The

concept of centrality varies accordingly to the centrality measure used to

compute such subset of nodes.

In the following, the graphs and the centrality measures used in this

work will be presented and described in-depth. The last section is dedi-

cated to providing an overview of the criteria used to evaluate the different

coordination mechanisms tested.



4.1 Graphs

The use of graphs allows including a topological component in the coordi-

nation, which is done employing an embedded graph. A graph G embedded

to a surface Σ is a representation of G on Σ such that points of Σ and arcs

in it are associated with vertices and edges of G, respectively. We exploit

this idea by creating a graph G embedded on the map M and then through

the measures of the centrality of a node, nodes are ranked based on their

values for the two centrality measures used in this work.

The definition of an embedded graph is independent of the correspon-

dence between points and nodes, and between arcs and edges, which leaves

the freedom to adapt it on the needs. Based on this, two different types of

graphs are defined in the next sections.

These graphs differ strongly on how they are defined and how they model

the environment. The topological graph is more focused on the topological

properties of the environment, nodes and edges represent the structure of

the known free space. The model it provides is not strictly affected by

team-dependent factors like agents distribution or team size, being built

only considering the connectivity properties of the map built so far. On the

contrary, the visibility graph defined below is built according to the positions

of the agents moving in the environment. In this way, it includes information

related to the disposition of the agents and the paths they followed. It is

indirectly affected by the structure of the environment, being the agents

only capable of moving in the free space.

4.1.1 Topological graph

From now on, we call topological graph a graph isomorphic to the graph used

by the simulator to compute the paths followed by the agents during the

exploration. As presented in [35], the construction of this graph is based

on the structure of the occupancy grid known up to that moment, and its

building will be discussed in detail in Chapter 5.

On one side, the use of this graph is backed up by the implementation

of the navigation system, because it is computed just once for both navi-

gation and proactivity. In this way, it does not introduce further costs in

the building and the update. On the other side, it is pretty limited in its

representation. It provides a topological view of the environment, but it is

hard to extend with elements like frontier nodes or information about the

location of the robots. These two aspects characterize the second kind of

graph tested, the visibility graph.
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In Figure 4.2a, the topological graph of the environment is shown. This

one has been produced by applying the building procedure on the whole map

of the environment, when it has been completely mapped. This has been

considered to show more clearly the properties of this graph. The disposition

of the nodes is almost uniform and this can be particularly noticed by looking

at their distribution in the large open area, as opposed to the room in the

upper right corner. In the large open area, nodes tend to form a grid around

the columns, and the disposition of the nodes is more dense in proximity

of the lateral walls. On the contrary, in the small room in the upper right

corner, as well as in the three openings in the lower part, the nodes are more

coarse, and also the number of edges is reduced.

This almost uniform distribution highlights strongly the difference in

structure with the visibility graph, shown in Figure 4.2b, where nodes are

provided with varying concentrations among the various spaces.

4.1.2 Visibility graph

The visibility graph as defined in this work consists of a graph built on the

notion of visibility, rather than on that of the navigability from node to

node. It is composed of two different types of nodes, the pose nodes and the

frontier nodes.

The first kind is the one composing the vast majority of the graph and

each pose node has an historical meaning, being a pose assumed by an active

robot during the exploration. As active agents proceed in their mapping

task, their locations are stored as pose nodes every time a re-plan for one of

them or a new location for the robots in the idle set is needed. These two

events happen quite frequently in the initial part of the exploration, and

thus they trigger the graph building function several times. However, the

frequency with which this is done is variable, for this reason, the distribution

of the pose nodes might be coarse in some spaces and more dense in others.

This allows keeping the number of pose nodes in the graph reduced with

respect to the case in which every time an active agent moves, its pose is

used to set up a pose node. This helps in dealing with the computational

complexity of the centrality measures, even if some more precautions need to

be taken, as will explained in Chapter 5. To enforce this aspect, the location

of an active agent is added as a pose node as long as there are no other pose

nodes within a certain radius. Once a pose node is added to the graph,

it is fixed and never modified as the exploration goes on. The motion of

agents in the idle set is excluded to avoid an excessive concentration of pose

nodes in some crucial areas, which would negatively affect the computation
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Figure 4.1: Visibility graph at the beginning of the exploration. Green dots

represent pose nodes, connected by the straight black lines representing

edges. Red dots are the frontier nodes

of centrality measures.

The second kind of nodes are the frontier nodes. As the name suggests,

they allow to include the frontiers computed by the exploration strategy

into the graph. This is a fundamental characterization of this graph that

distinguishes it from the topological one. At each step in which the list of

frontiers is updated, the same is done for the list of frontier nodes: the old

ones which have been explored are removed and the new ones are added,

making this type of nodes variable in time, differently from pose nodes which

are fixed once they are put in the graph.

An edge models the notion of visibility: two nodes n1 and n2 are linked

by an edge if and only if n1 is within the sensing range of a robot placed in n2
and there are no obstacles along the straight line segment connecting them.

Moreover, it is excluded the possibility for an edge to go through unknown

cells. This would be equivalent to assume free space in correspondance

of the unknown space, and it would produce edges connecting nodes that

are separated by obstacles not discovered yet. The relation of visibility is

symmetric, thus the visibility graph is an undirected graph by construction,

as the topological one. Edges are also characterized by a weight equal to

the Euclidean distance between the nodes.

An example of visibility graph built in the initial steps of the explo-
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ration is reported in Figure 4.1. Due to the definition of the graph, both the

number of nodes and edges is high with respect to the topological graph.

This makes the representation of the graph hard to distinguish. For this

reason, it is handful to see a small visibility graph, composed of few nodes,

on which it is also possible to depict the edges connecting them. On the

contrary, Figure 4.2b shows the same visibility graph at the end of the ex-

ploration. In this case, the high number of edges makes their representation

not possible, therefore, they have been omitted. Accordingly to what stated

previously, the distribution of nodes depends strongly on the paths followed

by the robots and on the frequency with which the graph is updated. The

structural differences with the topological graph in Figure 4.2a are clear just

by looking at the two figures and all relate to the distribution of nodes, be-

ing widely less uniform. Moreover, there is also a remarkable difference in

the number of nodes and edges between the two graphs, both being more in

the visibility graph. The presence of frontier nodes, here painted in red, are

also a discriminating factor between the two.

4.2 Centrality measures

Centrality measures have been exploited widely in the literature, especially

in fields related to social networks [21], power grids [29], diseases [16], and

computer virus spreading [45]. This is possible since centrality measures

are applicable as long as the system is modeled by means of a graph and

they provide a ranking of the nodes according to the metric applied. In fact,

different measures may provide different rankings, depending on the network

topology, because of the elusive concept of central node. An example of this

is provided by the kite graph [27]. It is a simple graph composed of 10 nodes

and 18 edges and it is depicted in Figure 4.3. The particularity of it is to be

the smallest possible graph for which the nodes having the highest values

of the three most basic centrality measures, namely degree, closeness, and

betweenness, are all different.

To the author’s knowledge, there are no previous works trying to apply

the use of centrality measures to enhance the coordination of a team of

robots performing exploration and due to the variability depending on the

centrality measure used, in this work both closeness and betweenness have

been tested. In the following sections, they are formally introduced with the

reasons for their use.
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(a) Topological graph. Green dots represent the nodes. Adjacent

nodes are connected by an edge

(b) Visibility graph. Green dots represent the nodes, red ones are

the frontier nodes. Edges are omitted for clarity reasons

Figure 4.2: Examples of graphs at the end of the exploration
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Figure 4.3: Kite graph. The pink node has the highest degree, the orange

node has the highest betweenness and the blue nodes have the highest close-

ness. Green nodes are the remaining nodes

4.2.1 Closeness

The closeness centrality of a node is defined as the reciprocal of the sum of

the lengths of the shortest paths between the node and all the other nodes

in the graph [21]. This definition is strongly dependent on the number of

nodes N in the graph, thus closeness is usually normalized by multiplying

for N − 1. In this way, closeness of a node can be defined as the reciprocal

of the average distance between the node and all the other nodes and allows

to compare its value for graphs of different sizes.

Formally, let m and n be nodes of the graph, and let d be a real-valued

function which provides the length of the shortest path connecting two

nodes, then the normalized closeness value C (n) is defined as

C (n) =
N − 1∑

m6=n d (n,m)

with N the total number of nodes in the graph, as defined above.

The original formulation of closeness centrality considers only unweighted

graphs, but it has been extended to be applied also to weighted ones. The

formal definition is the same assuming an appropriate modification in the

implementation of the distance function d. Indeed, in an unweighted graph,

it simply has to count the number of edges along the shortest path linking
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the two nodes in input, while on a weighted graph the cost of traversing an

edge is equal to its weight and thus it has to be accounted accordingly [30].

In the latter case, the distance function d is d (m,n) =
∑

e∈E w (e), where m

and n are nodes of the graph, E is the set of edges of the graph composing

the shortest path from m to n, and w is a real-valued function returning the

weight of an edge.

Closeness tends to consider central nodes the ones whose distance from

all the other nodes is lower on average. Therefore, going back to an explo-

ration context, placing an agent at the location corresponding to the highest

closeness node makes it possible to reach an assigned position, not known

before, in an expected time lower than any other starting location with a

lower closeness. This reasoning has been applied to the idle set of robots,

which, placed in the node with the highest closeness, are likely to already

be in a good spot when turned into active.

In Figure 4.4 an example of the high closeness nodes is shown for each

kind of graph. For the sake of the example, as high closeness nodes are con-

sidered nodes with a value of closeness higher than the 75% of the max value.

It is interesting to point out how these nodes are distributed mostly on the

whole central area of the large open room for the topological graph (Fig-

ure 4.4a), while the pose nodes with high closeness are located in a narrower

region of the central area in the visibility case (Figure 4.4b). Moreover, the

distance between the nodes with highest closeness is significantly different

for the two graphs.

4.2.2 Betweenness

Betweenness centrality for a node of the graph measures how many of the

total number of shortest paths between other nodes passes through that

node [21]. Let m, n, and v be three nodes in a connected graph, σmn be

the total number of shortest paths connecting m and n, and σmn (v) be the

number of those paths which go through v, then the betweenness B (v) for

the node v is defined as

B (v) =
∑

m 6=v 6=n

σmn (v)

σmn

where the sum is performed over each pair of nodes in the graph. The graph

needs to be connected, otherwise, one σmn where m or n is a disconnected

node would result in a division by zero. However, this is always granted in

the context of this thesis because of the way in which graphs are built.

Betweenness followed an evolution similar to the one of closeness, being

at first defined on unweighted graphs [21] and then extended to the case of
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(a) Topological graph closeness

(b) Visibility graph closeness

Figure 4.4: Distribution of nodes with a closeness higher than the 75% of

the max value for the topological and the visibility graphs. Purple dots are

the highest closeness nodes, orange dots are the ones with a high value of

closeness but not the maximum. Green dots are the nodes with a low value

of closeness, and red dots are the frontier nodes. For the visibility graph,

edges are omitted for clarity
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weighted ones [30]. In the case of weighted graphs, weights impact on how

shortest paths are computed, making it necessary the use of algorithms like

Dijkstra’s or Breadth-First Search to deal with them. Once the shortest

paths are provided, the algorithm to compute the betweenness is the same.

This is similar to closeness, where the introduction of weights on the edges

only affects the computation of the distances between nodes.

The idea behind this metric is to assign higher importance to the nodes

which are along more shortest paths linking pairs of other nodes. In different

works about social networks analysis [21], betweenness is used to find out

which are the nodes having more control over the information flow. Nodes

with a high value of betweenness are along more shortest paths, thus more

information goes through them and their possible disconnection may cause

loss of information or a separation of the graph into two sub-graphs. In other

words, a node of this kind is likely to be fundamental for what concerns the

connectivity of the graph, differently from a node with low betweenness.

According to this, the approach based on betweenness has been conceived.

Being interested in an effective positioning of the idle set of robots, a location

with a high value of betweenness is an ideal candidate because it represents

a crucial point for the connectivity of the environment and when the robots

of the idle set are turned into active, it is likely that they are in a good

position to navigate towards the assigned frontier.

In Figure 4.5, the nodes with high betweenness are plotted over the

representation of the graphs provided before. The first thing that catches

the eye is the difference in the number of this kind of nodes between the

topological and the visibility graphs, being a lot more in the first one. This

can be justified by considering the reduced size of the graph in that case,

which makes every node likely to be on more shortest paths, thus with a

higher value of betweenness.

4.3 Comparative metrics

The different coordination mechanisms proposed are compared based on a

practical measure, as the time taken to fulfill the termination criterion, and

on theoretical-based measures, namely interference among robots and their

availability.

The use of time as comparison metric is intuitive when looking at some

of the application contexts. Teams of robots are often used in search and

rescue scenarios, where the time needed to complete the exploration is a

fundamental aspect to take into account [10,33,38]. Thus, a faster approach

is overall preferable to a slower one in such a scenario.
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(a) Topological graph betweenness

(b) Visibility graph betweenness

Figure 4.5: Distribution of nodes with a betweenness higher than the 50%

of the max value for the topological and the visibility graphs. Blue dots are

the nodes with highest betweenness, yellow dots are the ones with a high

value of betweenness but not the maximum. Green dots are the nodes with

a low value of betweenness, and red dots are the frontier nodes. For the

visibility graph, edges are omitted for clarity
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In the simulations run in this work, the termination criterion used is

the exploration of the 95% of the environment. At the end of each run,

the number of discrete time steps taken is stored and then compared dur-

ing the analysis of the results. The decision of considering the number of

time steps rather than the absolute time taken by the exploration has been

carried on to exclude machine-dependent aspects from the results. The

mechanisms implemented, in particular those computing betweenness, are

way more computationally intensive than the ones based on the barycen-

ter computation, and comparing their results on the effective time taken

would have been faked by the computing capability of the machine running

simulations.

Time taken to complete the exploration has been considered sufficient

to characterize from a practical point of view each mechanism analyzed.

Nevertheless, two further measures are used to evaluate the mechanisms,

which are named interference and availability. They are at first introduced

in [33] and formalized in [13].

4.3.1 Interference

Interference quantifies the average distance held by agents during the ex-

ploration and the higher the distance, the higher the value. A high value

of interference is desirable because as the average distance among robots

increases, it reduces the possibility of crashes and the complexity in the

management of the system. Moreover, it is also an indirect measure of

how parallel the exploration is being carried on because it increases as the

robots are spread on the environment. According to this, the value of in-

terference for a particular coordination mechanism can provide useful infor-

mation about the amount of parallelizability exploited as compared to other

mechanisms. The value of interference can also be correlated to the fea-

tures of the environment presented in Chapter 3, and may provide insights

useful to classifiy an environment according to those features, as shown in

Chapter 6.

The value of interference λ for an agent a is computed at each step t of

the exploration by calculating the average distance between a and all the

other agents a′ in the team A, thus it can be formally written as

λt (a) =
1

|A| − 1

∑
a′∈A|a′ 6=a

d
(
pt (a) , pt

(
a′
))

where |A| is the size of the team, pt is a function providing the position of an

agent at time t, while d is the function that computes the distance between

two positions of the environment.
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This definition only relates to one agent at a particular instant of the

exploration. To completely characterize the value of interference for the

whole exploration, it needs to be at first generalized over the set of agents

composing the team and then over the entire time needed to complete the

exploration. In this way, its value computed for a specific coordination

mechanism is comparable with the ones provided by other mechanisms over

the same exploration problem.

The first generalization consists in extending the definition of interference

to all the robots in the team, rather than considering only a single robot,

and this is simply done by averaging the values of interference of each agent:

λt =
1

|A|
∑
a∈A

λt (a)

At this point, it is possible to integrate this expression over the entire

time interval taken by the exploration, which is considered to take values in

[0, . . . , tT ] with tT being the time step of the fulfillment of the termination

criterion T . The definition of the interference for the coordination mech-

anism applied to a specific instance of the exploration problem considered

is

λ =
1

tT + 1

tT∑
t=0

λt

This states that the interference for the whole exploration can be com-

puted by averaging over the total time taken the values of interference for

the team. In this way, the value of interference obtained can be exploited

to compare different coordination mechanisms, avoiding that differences in

the duration of the exploration impact on this measure.

4.3.2 Availability

Availability is a measure of the distance between an agent and its assigned

location. It can be formally defined at first for a single agent a at a certain

time step t as

αt (a) = d (pt (a) , gt (a))

where α is the symbol used for the availability and gt is a function returning

the location of the frontier assigned to the agent in input, if it is an active

agent, or the location where the agent is proactively moved, if it is an idle

agent. The two auxiliary functions d and pt are the same presented in the

previous section to define the interference.

Similarly to what done for the interference, this definition can be gen-

eralized to the whole team and the whole exploration. Following similar
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reasoning and with the same meaning of the symbols, the availability for

the whole team at a certain instant t of the exploration is

αt =
1

|A|
∑
a∈A

αt (a)

recalling that A is the set of agents composing the team and |A| is its

cardinality. Averaging this result over the whole exploration time tT defines

availability for a coordination mechanism applied to a specific instance of

the exploration problem, thus it turns out to be

α =
1

tT + 1

tT∑
t=0

αt

This value of the availability is independent of the time taken to meet

the termination criterion and therefore allows a comparison among different

coordination mechanisms, without being affected by their respective perfor-

mance in terms of time. It is important to highlight how availability has

the opposite trend of interference. Indeed, a mechanism with low availabil-

ity assigns robots to locations near their current positions. In this way,

agents can scan unknown portions of the environment sooner with respect

to a mechanism with an higher value of availability because of the shorter

distance to travel to reach the assigned location.

This metric has a two-fold interpretation. From one side, it shows

whether a coordination mechanism assigns robots to far or close targets. On

the other side, it can provide insights on the effectiveness of the proactivity

when comparing two mechanisms which differ only in this aspect. This, in

particular, is the setting of this thesis. The differences of the mechanisms

analyzed concerns only the proactive allocation of the idle set, and thus a

mechanism that has a lower value of availability is likely to place this set of

robots in a position nearer to the frontiers. Strong evidence of this relation

between proactivity and availability is provided by [13] in the comparison

between reserve and proactive reserve, where by moving the idle set towards

the barycenter of locations of the active agents, the latter method ensures

agents to travel a shorter distance once turned into active with respect to

the former mechanism.

It is worth to point out also that the absolute value of both the avail-

ability and interference is highly affected by the particular configuration of

the environment explored and by the team size, for this reason, comparisons

among mechanisms based on them do make sense only if done on the same

instance of exploration problem.
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Chapter 5

Coordination mechanisms

This thesis is aimed at exploiting measures related to the environment into

a proactive allocation of idle agents. This tries to be a further improvement

of the mechanisms proposed in [33], with respect to [13]. The proposed

mechanisms are analyzed in detail in this chapter, giving particular attention

to how the various elements presented before, namely graphs and centrality

measures, are employed.

At first, a common structure for the coordination mechanisms previ-

ously introduced in Section 3.4 is defined, and it is shown how a different

implementation of the various functions allows the definition of the single

mechanisms. This is done starting from reserve and buddy system, as pre-

sented in [33], being the building blocks of the other mechanisms proposed.

Then, the focus shifts to the proactive versions developed by [13]. At this

point, it is presented how the proposed proactive mechanisms modify some

components of this common structure to include the use of topological as-

pects.

5.1 Original mechanisms

Reserve and buddy system have been introduced intuitively in Section 3.4.1,

and here a more detailed account of how they are implemented is given.

Recalling that the buddy system is conceived as a mix from reserve and

divide and conquer mechanisms, it is clear why they share some algorithms.

The general structure for the coordination mechanisms analyzed can be

roughly summarized of four elements:

� planning function;

� activation function;



� goal function;

� proactivity function.

For some aspects, the planning function works as a common interface

provided by the mechanism. As the simulation requires an agent to move,

the step to take is returned by this function. It calls the appropriate function

coherently with the state of the agent, whether it is active or idle. It also

initializes the exploration by setting the starting agent and forming the

active and the idle sets.

The remaining three functions allow characterizing a specific coordina-

tion mechanism. They enclose the logic about the assignment of frontiers to

active agents, what triggers idle agents to be turned into active, and where

they are waiting until that moment.

In particular, the proactivity function is the focus of this work. In the

previous chapter, the importance of graphs and centrality measures has been

introduced. The last section of this chapter shows how these elements are

included in the proposed coordination mechanisms, giving also attention to

some optimizations performed to avoid an excessive impact of their compu-

tation.

5.1.1 Reserve

Reserve mechanism divides the team of robots into two sub-teams, one com-

posed of active agents and the other composed of idle ones. This separation

is done by the planning function as soon as the exploration begins, once the

first set of frontiers is computed.

At first, the distance of each agent from each frontier is computed, then

the agent of the pair with the lowest distance is set as the starting agent

and assigned to that frontier. This assignment is iterated until every frontier

is assigned to an agent or vice versa. The set of assigned agents composes

the active set, while the remaining agents if any, form the idle set. After

this initialization step, the planning function is invoked either every time

an agent has reached its goal or a certain amount of time has passed since

the last planning. In both cases, it is in charge of calling the right function

among the activation function, the goal function, or the proactivity one.

Once an agent is active, which frontier is assigned to it is computed by

the goal function. To do this, the planning function provides it with the

updated list of frontiers. The assignment is simply done considering the

closest frontier to the agent location.
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The activation function can be invoked only for agents of the idle set,

being the function aimed at turning them into active. This function checks

whether there are any unassigned frontiers and, if so, the agent is turned

into active and assigned to the closest one. If this is not the case and all the

frontiers are assigned, the proactivity function is called.

The reserve policy is such that the idle set waits at the initial location

and thus, the proactivity function always returns the current position of

the agent. In this way, agents of the idle set stay still, until the activation

function assigns them to a frontier.

5.1.2 Buddy system

Buddy system proceeds in a way similar to the reserve one. This method is

characterized by the use of paired robots and each robot in the pair is the

buddy of the other, from this the name of the mechanism. Pairs are created

before the exploration begins, by assigning a role to each robot of the team.

The roles are two, either an agent is a leader or a follower and they are

assigned to split the team into two halves. In the case of odd number of

robots, the extra agent is assigned leader role.

Apart from this division into leaders and followers, the team is also split

into an active set and an idle set. The active set is composed of leaders

assigned to frontiers and their buddies. The idle set is composed of the

pairs waiting at their initial locations.

The first call to the planning function selects the starting pair. This is

done similarly to the reserve mechanism, by looking for the robot of the

team whose distance from the closest frontier is lower. If it is a leader, it is

assigned to that frontier. If it is a follower, its buddy is retrieved and being

it the leader, it is assigned to that frontier. As for reserve, this approach is

iterated as long as there are no more leaders or frontiers to assign. All the

leaders assigned to a frontier and their buddies compose the active set. The

idle set is composed of the pairs whose leader is not assigned to a frontier,

if any.

Further calls to the planning function distinguish whether the calling

agent is a leader or a follower. In the former case, it simply invokes the goal

function, while in the latter it checks whether the pair needs to be split.

This happens when the two closest frontiers are enough distant from each

other. This is a branching point and the pair is split. The leader is assigned

to the closest frontier. The follower is now considered a leader itself and is

assigned to the second closest frontier. In the case in which the two closest

frontiers are not enough distant from each other, the point is evaluated not
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to be a branching point, then the goal function for the follower is called.

In fact, the goal function is implemented differently whether the considered

agent is a leader or a follower.

The goal function for leaders is the same as reserve. It assigns the agent

to the closest frontier, while the goal function for the follower moves the

agent towards the frontier assigned to its leader. This makes the pair go

together in the direction of the assigned frontier.

The activation function for the buddy system follows the same principle

of the reserve one. If there are unassigned frontiers, the closest idle leader

to each one is computed and turned into active by assigning that frontier to

it. This has the side effect of turning into active also its buddy because the

goal function will now make the follower follow its leader.

Buddy system keeps the idle set waiting at the initial position. Therefore,

when called by an agent, the proactivity function simply returns the current

location of that agent.

5.1.3 Base proactive mechanisms

Both the proactive buddy and the proactive reserve employ the same acti-

vation, planning and goal functions described for the original mechanisms.

The only difference is in the proactivity function.

The proactivity function in the previous mechanisms is trivially imple-

mented and consists only of returning the position of the agent calling it.

This makes the agents stay still at their initial locations until the activa-

tion function turns them into active. As discussed in the previous chapters,

this makes the average distance between the agents and the assigned fron-

tiers higher, penalizing performance. To overcome this, a new proactivity

function has been proposed in [13]. Robots of the idle set are moved to a

position likely to be nearer the future assigned frontiers. This position will

be referred to as proactivity goal in the following. Experimental results show

this modification to actually be an enhancement in the case of reserve mech-

anism. The proactive version outperforms the base version on almost every

environment on which it has been tested. The proactive buddy system, on

the contrary, is impacted less by the proactivity.

For both proactive reserve and proactive buddy system, the proactivity

function assigns to idle agents a proactivity goal computed as the barycenter

of the polygon whose vertices coincide with the locations of the active agents.

It can be formalized as

gt(a) =
1

| Act |
∑

a′∈Act

pt(a
′)
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recalling the notation from the previous chapter, where a and a′ are agents,

in particular, a is an idle agent and a′ iterates over Act, the set of active

agents. pt (a′) is a function providing the location of the agent a′ at the

time t and gt (a) is the proactivity goal assigned to the idle agent a at

time t. The subscript t for the goal function is possible since the locations

of the active agents at time t are used to compute the barycenter. This is

coherent with the communication capabilities assumed for the agents, which

are always able to communicate, and there is no delay in the propagation of

the information.

This proactivity function is characterized only by the actual locations of

the active agents. The environment is not explicitly included in this formula.

To take its features into account directly, an approach based on graphs and

centrality measures is proposed in the following section, characterized by a

different implementation of the proactivity function.

5.2 Proposed proactive mechanisms

The proposed proactive mechanisms differ from the previously defined ones

mostly for the proactivity function. There are no other conceptual differ-

ences in the other elements of the structure. However, a small variation to

the implementation of the goal function is introduced, as it will be pointed

out in the next section.

The proactivity function is modified in a way to include the computation

of either the closeness or the betweenness and to use their values to obtain

the proactivity goal for an agent. Independently of the measure needed,

the proactivity function follows the same steps. At first, it is checked if

the graph representing the environment has been modified since the last

computation. If not, the proactivity goal returned is the same as the previous

step, avoiding useless computations. Otherwise, a new proactivity goal has

to be evaluated. This is done by determining the value of the considered

measure for the nodes of the graph and then retrieving the most central one,

i.e., the one with the highest value of the measure. If more than one node is

found, the returned point is their barycenter. However, this case has a very

low frequency and the number of nodes in a tie never exceeds two during

the experiments.

As presented in the previous chapter, the proposed proactive mechanisms

exploit two different types of graphs, combined with two centrality measures.

All their combinations have been tested both applied to the reserve and

the buddy system, for a total of four different proposed variants for each

mechanism.
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In the following sections, it is presented how the mechanisms have been

adapted to include the generation of the graphs and some optimizations

aimed at allowing an efficient computation of the centrality measures. These

were needed because of the high complexity of the algorithms used, which

made the average simulation cycle to greatly increase its duration.

5.2.1 Graph building process

In the proposed mechanisms, two types of graphs are tested. As already

stated in Chapter 4, they are referred to as topological graph and visibility

graph. Both have been implemented and tested to check how their use

would affect performance. Their structures are built to enforce different

aspects of the environment. The topological graph is built on the notion of

navigability, that is, it aims at capturing the connections among spaces. The

visibility graph is based on the concept of visibility, which is more related

to the possibility for the robots to perceive a certain location from another

one through their sensors.

Recalling that the map is modeled as an occupancy grid, each node

is characterized by its coordinates in the global coordinate system. Both

graphs have been implemented employing adjacency lists [15]. Each node

holds a list containing all the nodes linked to it and the Euclidean distance

separating them. This has been preferred over a representation through

adjacency matrices because both the graphs tend to be sparse, in particular

the topological one. To confirm this, the average degree of the nodes of the

topological graph is two, whereas it has a high variability for the visibility

graph. However, even in open environments, where the number of nodes

visible from a node is high, the average degree is always lower than half of

the total number of nodes.

In the following, how these graphs are built is shown in detail, starting

from the topological graph, then focusing on the visibility graph.

Topological graph

The topological graph is a graph isomorphic to the one used by the naviga-

tion system to compute the paths followed by robots [35]. In the following,

this last one is referred to as navigation graph to avoid confusion. Whether

it is toward a frontier for an active agent or toward a proactivity goal for an

idle one, every time the path from an agent position to its goal is needed, the

navigation graph is checked. In case the time since the last update is higher

than a threshold or the occupancy grid of the environment has changed, it

is recomputed. This is done in the following way. The obstacle cells of the
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(a) Skeleton of the free space, repre-

sented by the black line

(b) Navigation graph. Green dots repre-

sent the nodes

Figure 5.1: The skeleton of the free space, and the navigation graph obtained

from it through discretization

occupancy grid are progressively enlarged until the skeleton of the free space

is found. An example of skeleton is shown in Figure 5.1a. It is a line con-

necting the various sections of the environment, through the free space. The

skeleton is then discretized into a set of nodes that are going to be the nodes

of the navigation graph. Discretization starts by selecting the first kind of

nodes corresponding to branching points, then it looks for points filling the

gaps among them. These points are added as nodes if the distance from the

closest node is higher than a certain fixed value. At this point, the set of

nodes for the navigation graph is complete but a further pruning is applied

to remove the nodes too close to an obstacle. Each cell of the occupancy grid

is then mapped to the nearest node and this provides a partition of the map

into different polygons, each one associated with a node, which is useful in

speeding up the computation of the shortest paths. Two nodes are adjacent

if the polygons associated with them share one side and this allows finding

the edges of the graph, completing its construction. The navigation graph

computed on the same skeleton of Figure 5.1a is reported in Figure 5.1b. In

this way, it is possible to compare how the skeleton is discretized, and the

way in which nodes are connected through edges.

Once the navigation graph is computed, the topological graph is built

with the same set of nodes and with the same adjacency relations. The

only difference is that the edges of the navigation graph do not keep track

of the distance between nodes, while the edges of the topological graph do.

Indeed, the topological graph is a weighted undirected graph, where the

weight function is a distance function. Given the structure of this graph,

the difference between Euclidean distance and the effective length of the
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path between the two nodes is negligible, thus the first one has been used

for efficiency reasons.

The update of the topological graph is equivalent to the computation

of a new navigation graph and it is done every time a path for an agent is

needed. Thus, referring to the general structure of a coordination mechanism

presented before, it may be done by each of the four functions because each

one implies the computation of a path for the agent. This ensures the

topological graph be updated frequently.

Visibility graph

As presented in Chapter 4, the visibility graph is composed of pose nodes and

frontier nodes. Pose nodes represent the positions assumed by the robots

at various time instants. Frontier nodes are used to include the location of

frontiers known at a certain moment into the graph.

It is initialized at the beginning of the exploration, considering as pose

nodes the set of initial positions of the robots. The frontier nodes are in-

cluded as soon as the first scan provides the first set of frontiers. After this,

it is never rebuilt from scratch, like it happens for the topological graph,

rather the visibility graph is progressively updated to match the movements

of the robots, the discovery of new frontiers, and the exploration of old ones.

This holds because its construction is carried on entirely during the calls to

the goal function. In both the reserve and the buddy system, this func-

tion comprises the update of the list of frontiers to properly assign robots.

This provides the possibility to remove old frontier nodes and include the

new ones. During this step, also the actual locations of active robots are

used to generate pose nodes of the graph and to add them. Once all these

nodes have been included, edges are generated. They model the notion of

visibility, thus an edge links two nodes if and only if a robot located in one

node is able to perceive the other node. This is a restrictive condition, in

fact if two nodes are linked by an edge, then it is granted the existence of

a straight path connecting them. On the contrary, knowing that exists a

path connecting two nodes provides no information about the possibility for

a robot located in one node to perceive the other node. A simple example

of this is the case of two nodes located on opposite sides of a wardrobe. It

is clearly possible to define a path connecting them, but the sensors of a

robot placed on one side cannot provide measurements about what is on

the other side. Moreover, edges built in this way are straight lines and as

for the topological graph, the distance function providing their weight is the

Euclidean distance.

60



5.2.2 Centrality measures

The main problem with closeness and betweenness is related to their com-

putational complexity. They require the knowledge of the shortest paths

connecting each pair of nodes and of their length. This is particularly true

for betweenness, while closeness only needs the last piece of information. As

the size of the graph grows, it may be difficult to compute the proactivity

goal in a reasonable amount of time. For this reason, two major optimiza-

tions have been performed. The first one is to compute the matrix of the

distances between each pair of nodes in an efficient way and store it, allow-

ing to avoid the repeated computations of the length of the shortest paths.

The second one relates to how betweenness is computed.

Distance matrix

The distance matrix is a square matrix containing the distances between

each pair of nodes of a graph. Both the topological and the visibility graphs

are weighted undirected graphs, thus it is useless to have a square matrix,

being it symmetric by construction. Moreover, the weights considered are

always non-negative, for this reason, the distance of a node from itself is

always zero. This allows reducing the size of the matrix from N ×N to an

(N − 1)× (N − 1) triangular matrix, where N is the number of nodes.

This data structure is essential in speeding up the computation of close-

ness. Recalling that the closeness of a node is defined as the inverse of the

average distance of it from all the other nodes, it can be computed as

C (n) =
1

avg [row (n) ∪ col (n)]

where row (n) and col (n) provide respectively the elements of the row and

the column of the distance matrix associated to node n. While avg is simply

the function computing the average. The union is to ensure considering each

element, being the distance matrix triangular. Thus, in a single sweep of

the whole matrix, the value of the closeness of each node can be computed.

The main issue about the distance matrix is its construction. It is an

instance of the All Pairs Shortest Path problem, that is the problem of

finding the shortest paths linking each pair of nodes. An algorithm able to

solve this is the Floyd-Warshall algorithm [15].

Consider a graph G which nodes are V = {1, 2, . . . , N} and a subset

K = {1, 2, . . . , k} of V for a generic k. Let m and n be two nodes of G,

and p the shortest path connecting them composed only of vertices in K.

The path p is an ordered sequence of nodes p = {m, i1, . . . , ij , n}, starting
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with m, the source node, and ending with n, the arrival node. The subset

of nodes {i1, . . . , ij} is the set of intermediate nodes. It is composed of the

set of nodes composing a path without the starting and the arrival nodes.

At this point, k can be an intermediate node of p, or not.

If k is an intermediate node of p, then the length of the path from m

to k, plus the length of the path from k to n is lower than the one from

m to n having nodes in K \ {k} as intermediate nodes. This holds because

the path p going through k is the shortest path between m and n. On the

contrary, if k is not an intermediate node, then this last path is shorter. By

progressively increasing the value of k to consider the whole set of nodes as

possible intermediate nodes, it is possible to find all the shortest paths for

each pair of nodes of the graph.

The complexity of the algorithm is Θ
(
N3
)
, where N is the number

of nodes in the graph. This is manageable in the case of the topological

graph because N is limited by the graph building algorithm. On the other

hand, the number of nodes in the visibility graph is much higher because

no pruning is applied. A possible solution consists of forcing a minimum

distance within pose nodes. However, as the exploration goes on, N might

be sufficiently high to make the application of the Floyd-Warshall algorithm

heavy. To overcome this issue, two factors allow to come up with an efficient

solution.

First of all the visibility graph is updated at every step and is never built

from scratch, after the initialization. The second main aspect is that the

Floyd-Warshall algorithm is an example of dynamic programming, thus the

solution provided for the graph at time t1 can be used as a starting point to

compute the solution for the graph at time t2 > t1. In fact, paths computed

with a reduced set of intermediate nodes, suppose {1, 2, . . . , k − 1}, are the

shortest paths possible if the graph had nodes in {1, 2, . . . , k − 1}. Then,

the extension of the intermediate nodes to {1, 2, . . . , k} provides the optimal

solution for the graph with nodes in {1, 2, . . . , k}. This idea can be applied

by looking at the graph at time t1 like the one with intermediate nodes in

{1, 2, . . . , k − 1}, while the one at time t2 > t1 as the one with intermediate

nodes in {1, 2, . . . , k}.
In this way, the distance matrix of the visibility graph is computed at

the beginning of the exploration and consequently updated as new nodes are

added to the graph. The complexity of each update is linear in the number

of nodes, including the new ones.

Apart from computing all the distances between each pair of nodes, the

Floyd-Warshall algorithm also allows to keep track of the shortest paths link-

ing them. This is fundamental to optimize the computation of betweenness,
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as discussed in the following section.

Betweenness

Efficient computation of betweenness requires the preemptive computation

of the shortest paths between each pair of agents. Assume to have these

paths stored in a matrix, that, similarly to the distance matrix, is an

(N − 1) × (N − 1) triangular matrix. Even if this is available, finding the

betweenness B (v) of a node v requires to go through each pair of nodes m

and n, such that m 6= v 6= n, and retrieve the list of shortest paths link-

ing them. The number of paths composing this list is equal to the total

number of paths connecting the two nodes. This value has been referred to

as σmn in Section 4.2.2. To compute betweenness for the node v, it is also

needed σmn (v). Thus, the list of shortest paths linking m and n needs to

be iterated to count the number of shortest paths going through v. At this

point, the ratio of σmn (v) and σmn can be computed, and the result has

to be summed with the same value obtained from each other pair of nodes,

m and n different from v, in the graph. Similarly to the application of the

Floyd-Warshall algorithm, this algorithm may be a problem for the case of

a visibility graph, where the number of nodes N might increase enough to

make the computation unfeasible in a reasonable amount of time.

The main aspect of improvement is in the computation of σmn (v), the

number of shortest paths from m to n going through v. This is made possible

by the Bellman criterion [8], which states that a node v of a graph lies on a

shortest path between two nodes m and n, if and only if d (m,n) = d (m, v)+

d(v, n). Even if apparently obvious, this criterion allows to compute σmn (v)

as {
0 if d (m,n) < d (m, v) + d (v, n)

σmv · σvn otherwise

where σmv is the value of the count of the shortest paths from node m to

node v, and σvn is the analogous from v to n. The idea is that if v is along

a shortest path from m to n, then σmn (v) can be computed as the number

of shortest paths from node m to node v multiplied by the number of the

ones from v to n, to include all the possible combinations.

Exploiting this information, the betweenness can simply be computed

according to the definition in Section 4.2.2. This also allows avoiding the

storage of the whole list of shortest paths for each pair of nodes because

it is only needed their count and the distance matrix. The Floyd-Warshall

algorithm can be suitably modified to fill the matrix of counts by updating
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it as new shortest paths are found. This can be done while checking if the

length of the path going through the considered intermediate node is lower

than the previously known path. If the new path is lower, then the counter

is reset to one. If the length is equal, then the counter is increased by one.

If the new path is longer, then the counter remains equal because the new

path is not a shortest path.

Once both these matrices are completed, computation of the betweenness

for the whole set of nodes requires for each node to iterate over all the

possible pairs of other nodes. Thus, the computation has cubic complexity

in the number of nodes but it is independent of the length of the paths

considered. On the contrary, this would affect the computation in the case

the entire set of paths had to be scanned to check whether node v was

present or not.

Reduced node-set

The optimizations provided before to speed up the computation of the mea-

sures, in particular for betweenness, work well in practice. This happens

both for the topological graph and for the visibility graph, where the num-

ber of nodes is higher, even of two to three times. In some cases, this ratio

can also go up to four times, producing an impact on the computation. After

all, the complexity holds a cubic relation with the number of nodes.

Moreover, another aspect taken into consideration is related exclusively

to the visibility graph. The value of both the centrality measures for frontier

nodes is almost uninformative. This can be explained easily considering that

frontier nodes are marginal nodes on the edges of the graph, because of their

definition. Furthermore, being the sensing range longer than the distance a

robot covers in a time step, the distance between pose nodes is lower than

the distance between pose nodes and frontier nodes. Thus, the impact of

frontier nodes on the value of the centrality measures is negligible.

To deal with both these theoretical and empirical considerations, it has

been decided to restrict the set of nodes for which centrality measures are

computed. The reduced node-set R is then composed of pose nodes n such

that n either is adjacent to a frontier node nf or is adjacent to a pose node

n′ adjacent to nf . To have a clear definition of how this set is composed,

it is worth defining a function adj(n) for a node n of a graph returning the

set of nodes adjacent to n and indicating as F the set of frontier nodes. An

auxiliary set AF can be defined as the set of nodes adjacent to a frontier
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node, namely

AF =
⋃

nf∈F
adj (nf )

Then, the definition of R can be rewritten as

R =

AF ∪
⋃

af∈AF

adj (af )

 \ F
R composed in this way allows a trade-off between considering the whole

set of nodes and just the ones adjacent to a frontier node.

Thanks to all the tricks exposed so far, it has been possible to reduce

the average simulation cycle time of the proposed mechanisms to values

comparable to the ones of the mechanisms exploiting the barycenter and

used in [13].
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Chapter 6

Experimental evaluation

In this chapter, the experimental evaluations are presented. As already

pointed out, the considered coordination mechanisms enhanced through

proactivity are buddy system and reserve. The proposed proactive mecha-

nisms exploiting centrality measures of two different kinds of graphs are com-

pared to the barycenter-based coordination mechanisms presented in [13].

The configuration of a simulation is characterized by three aspects:

� size of the team of robots,

� environment,

� coordination mechanism

and each configuration has been tested ten times. All the simulations are

run in MRESim, a Java-based simulator.

To analyze the impact on the exploration of the team size, teams from

four to eleven robots have been used. Teams of two and three robots have

been excluded because there would have been no effect from proactivity,

being all the robots actively exploring, and none in the idle set. The en-

vironments used are presented in the next section, with a focus on their

features. Then, the results of the simulations are reported and compared.

In the end, it is studied the possible relation between the features of the

environment and some measurable quantities, like the number of frontiers

during the exploration and the value of interference.

6.1 Environments

To provide a more comprehensive analysis of the performance of each mech-

anism, they have been tested over the six indoor environments reported in



(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 4

(e) Environment 5 (f) Environment 6

Figure 6.1: Environments tested
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Environment 1 2 3 4 5 6

Size 150066 370879 520255 805367 1040954 1330885

Table 6.1: Amount of free cells for each environment

Figure 6.1, where the red dot represents the initial location of the team.

They have been classified according to the features presented in Chapter 3,

namely the size, the openness, and the parallelizability. In this way, it is

possible to highlight any possible relation between coordination mechanisms

and these features of the environment, as we do in the last section of this

chapter.

The first environment is a small office (Figure 6.1a). Apart from the

central corridor which traverses the environment horizontally, the spaces

are rooms linked by small apertures. Thus, it can be considered cluttered.

The starting point for the team is a room located in the upper right corner

of the environment. This makes the team split into two subteams. One

focuses on the cluster of rooms below the starting point and the other one

proceeds in exploring the left section of the environment. This behavior

forced by the structure of the environment makes the exploration to be

lightly parallelizable. Moreover, this environment is the smallest one among

those we considered, as shown in Table 6.1, where the amount of free area

for each environment is reported.

The second environment is a simple maze, reported in Figure 6.1b. It

provides a few points where the team can split, making the parallelizabil-

ity to be very low. The team starts from the leftmost vertical corridor

and moves on, following the structure of the maze. There are mainly two

branching points and a different split of the team in such points is the main

distinguishing factor between the various tested mechanisms. The size of

the environment is the double of the previous one, nevertheless it can be

considered small as well.

The third environment in Figure 6.1c can be a bunker characterized by

various rooms, each one built around a central structure, and connected by

corridors. The exploration starts in the upper room and the team mainly

moves towards the lower part. Every corridor represents a branching point

that directs a subteam to one of the lateral rooms. The exploration is

always channeled into specific directions, which justifies a classification as a

cluttered environment. The amount of free area is higher than the previous

environments, even though it can still be considered as a small environment.

The regular structure of this environment allows the exploration to benefit

from an increasing number of robots. Thus, it is highly parallelizable.
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Figure 6.1d shows the fourth environment. It is a large room, with some

regular columns, and a smaller room on the right. This is the first of the

three large environments considered. Robots are deployed in the large area,

in particular in the upper central part marked by the red dot. Due to the

size and the openness of the space, at the beginning of the exploration, the

number of frontiers is low. This is because a frontier is produced on the

contour separating known and unknown cells only for those segments of the

contour between two obstacle cells. Thus, this environment can intuitively

be classified as large and open. On the contrary, parallelizability is a little

trickier. At first sight, given its structure, the environment might appear

as highly parallelizable. This is because it allows the team to spread into

the large room. On the other hand, the effect of the increase in team size is

reduced with respect to other environments with high parallelizability.

The fifth environment is a large office and is represented in Figure 6.1e.

It is composed of mainly two sections, both composed of different contiguous

rooms, but in the upper section these are more and smaller than the ones in

the lower section. Thus, the environment is large and cluttered. Moreover,

it is also highly parallelizable because it allows robots to spread in different

directions. This is also reflected in the boost of performance provided by the

increase of the team size. Robots start from the upper right section, in the

proximity of a long corridor connecting the two sections of the environment.

This location is marked as the red dot in the figure. The priority given to

the exploration of this corridor has a high impact on the performance, as

will be shown more in detail later on.

The sixth environment is a large environment with a lot of randomly

placed obstacles in it, and it is reported in Figure 6.1f. It is the largest of

the tested environments. The high presence of obstacles allows us to classify

it not as an open environment, rather as a cluttered one. This is reflected in

the high number of frontiers discovered at the same time. For this reason,

the environment can also be classified as highly parallelizable. In fact, robots

tend to spread. Similarly to the fourth environment, this spreading is not

coupled with a decrease in the time needed to complete the exploration as

the size of the team increases.

These environments represent a wide variety of different scenarios in

which the exploration might be pursued, even if not exhaustive. A major

focus is given to the relation between the features used to classify the envi-

ronments and the variations in the performance of the various mechanisms.

The analysis will be carried on also considering other aspects like the number

of frontiers detected and the performance of teams of a given size.
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6.2 Mechanisms comparison

The mechanisms compared are the proactive versions of the buddy system

and reserve. The proposed variants are based on how the proactivity goal

is computed. The mechanisms presented in [13] are used as a benchmark

for the mechanisms developed in this thesis and are referred to as base

mechanisms. The proposed mechanisms are characterized by the kind of

graph built during the exploration and the centrality measure calculated

for it. Two graphs are used, the topological graph and the visibility graph.

Also the centrality measures are two, namely closeness and betweenness.

How these elements are included in the coordination mechanisms is widely

described in Chapter 4.

The main comparison metric considered is the number of steps required

to complete the exploration. In our case, exploration is completed when

the 95% of the free area is explored. Even other metrics are used, like

the interference and the availability, as presented in Chapter 4. Moreover,

some attention is also given to the relation between the features of the

environment, the team size, and the number of frontiers. It is shown how

this information, together with the interference, might provide insights on

the structure of the environment, particularly on the openness and on how

much parallelizable its exploration is.

The analysis starts at first with the proactive buddy system, then moves

on to the proactive reserve. Common notation is used to simplify the legends

in charts and the analysis of the results. T and V represent the type of

graph employed, the first one for the topological graph and the second for

the visibility one. Similarly, B and C are used to refer to the centrality

measure computed, betweenness in the first case and closeness in the second

one.

6.2.1 Proactive buddy system

It is important to state from the beginning of the analysis that, in general,

both the base proactive buddy system and the graph-based variants tested

perform similarly if looking at the average completion time. This holds as

long as we consider the whole sets of experiments, without focusing on a

single environment. Thus, in general, the steps required by a team explor-

ing an unknown environment are independent of the specific computation

employed for the proactivity goal, among the ones considered. On the con-

trary, if restricting the analysis to a particular environment, it is shown that

the exploration may benefit from the adoption of the proposed graph-based
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(a) Environment 1

(b) Environment 2

(c) Environment 3

Figure 6.2: Results for the proactive buddy system on the small environ-

ments
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(a) Environment 4

(b) Environment 5

(c) Environment 6

Figure 6.3: Results for the proactive buddy system on the large environments
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approaches. The number of steps required to completion by the different ap-

proaches to proactivity is reported in Figure 6.2 for the small environments,

and in Figure 6.3 for the large ones.

The first environment, the small office-like one, is the one where the use

of graph-based approaches provides more benefit with respect to the base

mechanism, as shown in Figure 6.2a. The reason behind this is that the

graph-based mechanisms tend to compute the proactivity goal in correspon-

dance of the branching point right after the exit of the starting room. This

is important because when the robots in the idle set are turned into active,

they are assigned to frontiers on the left side of the environment, and from

this position they are able to reach their destination in a small amount of

time. On the other hand, the base mechanism either places the idle set in

the middle of the vertical corridor or moves it to the right section of the

environment. This happens because the number of active robots allocated

to the right section of the environment is usually higher than the ones as-

signed to the left section, shifting the barycenter more towards this section.

Moreover, T B is the mechanism requiring less time and provides an average

improvement of 5%, computed over the whole team sizes tested. Another

aspect worth to be highlighted is that mechanisms exploiting betweenness

perform generally better than the ones using closeness on the same kind

of graph. In particular, for teams smaller than nine robots, V B performs

better than V C. This trend swaps as the team used becomes bigger. A

possible reason behind this behavior is related to the fact that, when using

teams of ten and eleven robots, V B locates the proactivity goal in the lower

part of the vertical corridor, in particular towards the right section. On the

contrary, V C moves the idle set in a position nearer to the left section of

the environment, and, as pointed out before, the frontiers to which the idle

robots are assigned once turned into active are located mostly on this side of

the environment. Recalling that the number of runs for each configuration is

fixed, it is also interesting to notice that the standard deviation for the base

mechanism is usually higher than the one of the graph-based mechanisms,

particularly for teams of up to eight robots. A higher standard deviation is

also shown by V C.

In the maze environment, the base mechanism completes the exploration

in a smaller amount of steps with respect to all the others (Figure 6.2b).

This holds for almost every team size. The base mechanism requires less time

to explore than graph-based approaches because whether using closeness or

betweenness, the idle set is located farther from the frontiers. While, due

to the structure of the environment, the active agents tend to be nearer one

another and the idle set is then moved closer to them with the base mech-
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anism. The effect of this small difference in the location of the idle set is

the variation in performance measurement. T B is the one requiring shorter

time concerning other graph-based approaches. The average difference be-

tween this mechanism and the base one is around 1%, thus they perform

similarly. Even though, the base mechanism appears to be preferable due

to the lower differences as the team size varies.

For the third environment, all the mechanisms perform in a similar way.

The chart of Figure 6.2c shows little differences among the mechanisms.

Even though, it is possible to notice that closeness-based mechanisms per-

form slightly better than the betweenness one, under the same graph. The

similarity in performance is easy to explain in this context and it is related to

the fact that, due to the regularity in the structure of the environment, the

distance between the barycenter and the proactivity goal computed through

centrality measures is small. Another reason is that, once the active robots

get out of the starting room, the number of frontiers increases, making the

robots of the idle set to be turned into active. This reduces the impact pro-

vided by the proactivity and, consequently, the possible differences between

the mechanisms.

Similarly to the previous environment, in the forth environment the

mechanisms show similar performance on average. From the chart of Fig-

ure 6.3a it emerges that for teams whose size is greater than eight robots,

T B tends to perform better than the others. This holds in particular when

comparing to the base mechanism, from which the improvement is of the

10%. A possible reason behind this behavior is related to the fact that start-

ing from the initial position, the first set of active agents tends to spread

in every direction. The barycenter of the polygon whose vertices coincide

with the positions of the active agents is located at a distance which can

be covered in a few steps below the initial position. On the other hand,

computing the proactivity goal as the highest betweenness node makes the

idle set to be placed between the two rows of obstacles. The closeness of

the same graph is such that the idle set is located almost halfway between

the proactivity goals computed by the base method and the betweenness-

based one. Another important factor is that, using the topological graph,

it is preferable to use the betweenness. The opposite holds for the visibility

graph. Due to the openness of the environment, the differences between

these two graphs are more marked with respect to what happens in a clut-

tered environment, which might explain this difference. However, as already

stated, all the mechanisms perform almost the same in general.

The fifth environment is the large office-like environment and the re-

sults on it are reported in Figure 6.3b. In this case, T C performs better
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than all the other methods. The benefit of this approach can be seen in

the comparison with the base mechanism, which is outperformed for every

team size except for the team of ten robots. The average improvement is

2%, but excluding the performance on the team of ten robots, the overall

improvement would have been 4%. For what concerns the topological graph,

T C requires 8% less time to complete exploration with respect to T B for

teams of up to eight robots. From that size on, they behave similarly. The

mechanisms using the visibility graph have almost similar performance. The

chart presents a particular aspect that is even team sizes tend to perform

worse than the odd ones. This is clear looking at what happens when the

team size is increased from seven to eight robots. All the methods get worse,

taking even more time in general than the case of a team of six robots. The

explanation is related to the long vertical corridor linking the upper and the

lower section of the environment, highlighted in the previous section. What

happens is that if the team is even, no robot is sent along that corridor, thus

the lower section of the environment remains unexplored until the very late

stages of the exploration, where the robots can reach it through the vertical

corridor on the left side. On the contrary, when the team size is odd, since

the beginning of the exploration at least one robot follows that corridor and

explores the lower section of the environment. This makes the exploration

to require less time. When the number of robots is equal to ten, this effect

is mitigated by the idle set which waits in a position near the initial location

and is able to reach the lower section faster. Moreover, due to the highly

fragmented structure of the environment, characterized by a lot of rooms,

the number of frontiers is generally high, turning the idle set into active in

the initial steps of the exploration.

The sixth environment, similarly to the third and the fourth environ-

ments, requires the same amount of time on average for each mechanism.

All the mechanisms tend to show a monotonic decreasing time to complete

the exploration in Figure 6.3c as the team size increases. Even though there

is a slight worsening for the team of eight robots, common to all the mech-

anisms. This is due to the fact that, for that particular team size, the team

is more channeled to explore the upper part of the environment, and then,

explores the lower section of the environment. While, for the other team

sizes, a subset of robots explores the lower section, making the exploration

faster. For the visibility graph, the performance is almost independent of

the centrality measure used. On the contrary, for what concerns the topo-

logical graph, for small teams of four and five robots, the betweenness seems

to provide better results, with an improvement of 5%. As the team size

increases, after a plateau measured for the teams of six, seven, and nine
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robots, closeness performs slightly better. Even though the differences are

small, being the improvement of 3%. The absence of significant differences

in the time required to complete the exploration by both the base mecha-

nism and the graph-based ones might be related to the fact that a lot of

frontiers are discovered in the early stages of exploration. This makes idle

robots to be turned into active soon. If the team size is sufficiently large

to still have an idle set, the various mechanisms compute proactivity goals

near to each other, or at least the distance between them is small as com-

pared to the size of the environment. Similar to what happens in the fourth

environment, with the active agents moving in almost every direction, the

barycenter of their positions and the node with the highest closeness tend

to be very close. The node with the highest betweenness is usually located

slightly lower in the environment, however along the same vertical axis. This

holds both for the topological and the visibility graph, in general, and is a

possible explanation of why performance is independent of how proactivity

goal is computed.

6.2.2 Proactive reserve

The usage of graph-based approaches in the proactivity function of the

proactive reserve mechanism affects performance negatively, in general. Sim-

ilarly to the proactive buddy system, this is true as long as we consider the

whole set of environments. When focusing on a single environment, employ-

ing one of the proposed mechanisms may enhance exploration performance.

The results of all the variants of the proactive reserve are shown in Figure 6.4

and Figure 6.5.

The first environment is characterized by the prevalence of the base

mechanism with respect to the proposed ones (Figure 6.4a). The time re-

quired to complete the exploration is almost the same for both the mecha-

nisms working on the topological graph and V C. The usage of V B causes

a worsening of performance, particularly for the configuration of ten robots,

because the idle set is moved to the right section of the environment. As

discussed for the proactive buddy system case, new frontiers are discovered

on the left section of the environment, thus moving the idle set on the right

makes idle robots when turned into active to be far from these frontiers.

On the contrary, the other mechanisms tend to place the idle set more on

the left side of the intersection at the lower part of the vertical corridor.

Moreover, except when the team is composed of six robots, the closeness

is always preferable over the betweenness for the visibility graph. This is

a substantial difference from the proactive buddy system case, where for
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(a) Environment 1

(b) Environment 2

(c) Environment 3

Figure 6.4: Results for the proactive reserve on the small environments
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(a) Environment 4

(b) Environment 5

(c) Environment 6

Figure 6.5: Results for the proactive reserve on the large environments

79



teams of less than nine robots, betweenness provided better results.

In the second environment, the simple maze, three mechanisms perform

better than the others in general. They are the base one, V C and T B.

Their results are plot in Figure 6.4b. It is interesting to notice that the

two graph-based mechanisms that perform better use a different centrality

measure. Similarly to the case of the proactive buddy, a possible explanation

to the worse results of the other mechanisms is related to the fact that in

these situations the idle set tends to remain too distant from the active set,

and consequently from the frontiers to which the robots of the idle set are

assigned once turned into active. A plus point for T B is that the standard

deviation is lower than the half for all the other mechanisms.

The results for the third environment in Figure 6.4c show that both the

base mechanism and T B have the best performance. Closeness-based mech-

anisms are just slightly worse. T B is preferable over the base mechanism,

except for teams of ten robots. For this environment, the same considera-

tions done for the proactive buddy system still hold, in particular the fact

that the proactivity goals computed by the various mechanisms tend to be

near one another, making the differences between their performance reduced

with respect to other environments. However, the usage of V B shows to

provide worse performance for almost every team size with an average time

8% longer than the two best mechanisms. The explanation to this is related

to the fact that the idle set is usually placed in a position in the middle of

the two squared lateral rooms, while all the other mechanisms place it more

in the proximity of the central room.

In the fourth environment (Figure 6.5a), all the mechanisms seem to have

very similar performance. Due to the reduced amount of time required for

large teams, T B provides a slight improvement with respect to the others,

while T C is usually the worse. This one has the peculiarity of worsening

performance as the team size increases. Even if this happens also for the

V C, the worsening for T C is higher. As a consequence of this, under the

same kind of graph, using betweenness is preferable over closeness.

The fifth environment is the only one where V B shows the best perfor-

mance, which is the 4% better than the base mechanism. The chart with

the results is the one in Figure 6.5b. Differently from the proactive buddy

system case, for the proactive reserve, every graph-based approach provides

an enhancement in the performance with respect to the base mechanism.

Moreover, T C, which is the best for the proactive buddy system, is the

second-best one in this case and provides benefits to the exploration that

result in a performance slightly worse than that of the visibility graph-based.

For the sixth environment, the base mechanism and T C perform better
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than the others, with an improvement from 3% to 5%. In Figure 6.5c, it

is possible to see that they both show a monotonic decreasing of the effort

required for exploration as the team size increases, and reach a plateau for

teams of more than six robots. Their performance is similar for every team

size, except for the teams of eleven robots, where the base mechanism out-

performs the other. For what concerns the visibility graph, its usage makes

the exploration slower in general. Even though for teams from six to ten

robots, V B provides performance similar to the one of the base mechanism.

On the other hand, V C seems to make the exploration completely unaf-

fected by the variations in the team size. In fact, for teams with more than

seven robots, the number of steps is almost the same. Also for the other

mechanisms, there is a plateau, as already pointed out, but this one is flat,

while the others are slightly decreasing.

6.2.3 Coverage

Even if the main comparison metric is the time used to complete the explo-

ration, it is also of interest to look at a few examples of how the coverage

evolves over time. This allows to check whether a mechanism maps the

environment faster than another one, then it requires more time to cover

the last spots. Also in this case, the results reported are obtained averaging

over ten runs for each configuration.

Figure 6.6 reports the trend of the coverage for the proactive buddy

system in the first environment. The team sizes shown are respectively of

nine (Figure 6.6a) and ten robots (Figure 6.6b).

In the first figure, it is interesting to notice that the two best performing

mechanisms are T B and V C, whether the remaining three mechanisms

require more time. The trend for T B and V C is slightly different as the

first one is slower in covering the same amount of area up to almost the 70%,

then it requires less time to map the last areas. This behavior might be due

to the covering of the rooms in the left section, as T B usually moves there

one robot more than V C. Another interesting behavior is the one shown by

T C, as it is similar to the one of V C and even slightly faster for most of

the exploration, then to fill the remaining 5% it takes more time than V C.

The time to complete the exploration is similar to the base mechanism and

V B in the end. A possible explanation to this is that the subteam allocated

to explore the left section focuses more on the rooms on the top side, which

provide a small amount of explored area, rather than prioritizing the ones

on the bottom side.

Figure 6.6b depicts a different scenario, as the trends of the mechanisms
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(a) Team of nine robots

(b) Team of ten robots

Figure 6.6: Trend of the coverage for the proactive buddy system in the first

environment

(a) Team of eight robots

(b) Team of ten robots

Figure 6.7: Trend of the coverage for the proactive reserve in the first envi-

ronment
82



after the 70% of the area has been covered behave quite differently. T B is

able to cover the remaining 30% in a small amout of time, which suggests

a good positioning of the robots. This is opposed to the behavior of the

base mechanism and V B. Similarly to the case of nine robots, this happens

because robots are moved more to explore the top side of the left section,

rather than the bottom one.

In Figure 6.7, the trend for the proactive reserve on the same environ-

ment is shown. In this case, the team sizes reported are eight and ten

robots.

Figure 6.7a allows to see that the base mechanism covers an area higher

than all the other mechanisms in a reduced amount of time since the be-

ginning of the exploration. This is because of the spreading of the robots,

which is more efficient with respect to the other mechanisms. Robots are

evenly distributed among the left and the right sections, while all the pro-

posed graph-based mechanisms tend to move a smaller subteam to the left

section. Moreover, given that the differences are present since the begin-

ning, it suggests that proactivity may play an important role in this case.

The proactivity goal computed with the base mechanism is located in a more

suitable position than the ones computed through centrality measures, mak-

ing all the graph-based mechanisms to behave poorly. This also confirms

what noticed in Section 6.2.2.

A different behavior is shown in Figure 6.7b, in which all the mechanisms

have a similar trend. However, to complete the exploration, once the 80%

of the environment is known, V C and T B are able to do this faster than

the others. V B takes a lot of time to cover the remaining unknown area,

particularly the last 5%, which is usually represented by one of the two

rooms on the left side of the environment. It is also worth to notice the

case of V C. In the number of steps it covers the 65% of the area, the other

mechanisms cover the 70%. From that point on, the slope of the curve is

smoother than the other mechanisms, and ends up being one the fastest. A

possible explanation to this is related to a different prioritization given to

rooms either on the top side of the left section or to the right section.

Figure 6.8 reports the trend of the coverage for the proactive buddy

system in the third environment. The team sizes shown are respectively

of eight (Figure 6.8a) and of ten robots (Figure 6.8b). In Figure 6.9, it

is reported the same charts for the proactive reserve, considering the same

team sizes.

Figure 6.8a has an interesting trend, as all the mechanisms differ strongly

once explored the 70% of the environment. Even though, they end up almost

in the same time. T B is the fastest in reaching that value of percentage,
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(a) Team of eight robots

(b) Team of ten robots

Figure 6.8: Trend of the coverage for the proactive buddy system in the

third environment

(a) Team of eight robots

(b) Team of ten robots

Figure 6.9: Trend of the coverage for the proactive reserve in the third

environment
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then the amount of time required to cover a 5% of the area is higher than all

the other mechanisms. This is because the robots are allocated to frontiers

in a way to push them more towards the lower section of the environment,

allowing them to cover large areas in a reduced amount of time. After this,

they have to move back to fill some remaining frontiers in the lateral rooms.

On the other hand, the base mechanism tends to spread the robots more

uniformly, avoiding a backtrack to complete the exploration. The remaining

three mechanisms have a behavior which is a mixture of these two, and

the amount of backtracking required is what makes the differences in the

completion time.

The chart in Figure 6.8b depicts a case in which the trend of the explo-

ration is independent of the proactive mechanism used. Even though there

are some variations in the slope of the curves, the time required to complete

the exploration is the same in the end. This confirms what stated in Sec-

tion 6.2.1. The proactivity goals computed by all the mechanisms are near

to each other. Thus, for large teams the impact of proactivity is reduced,

while, in the case of Figure 6.8a, it is possible to see how a different position-

ing of the idle robots with a smaller team may affect how the exploration is

carried on, even though it does not affect the total time required to complete

it.

Figure 6.9a shows a behavior similar to the one of Figure 6.8b. All the

mechanisms have similar trends, even if with some variations. Nevertheless,

the time required to complete the exploration is the same, except for V B.

The time it requires to cover the same amount of area is higher than all

the other mechanisms almost at any step of the exploration. Also the slope

of the curve for V B seems similar to the other ones, thus this indicates

that the behavior shown by the robots is similar to the other mechanisms,

but with some delay. It might be caused by a worse positiong of the robots

computed by the proactivity function because the delay is present since the

initial stages of the exploration.

In Figure 6.9b two groups can be identified. One is composed of the

mechanisms employing the visibility graph, and the other composed of the

remaining ones. Similarly to the case of V B with the team of eight robots

described previously, these mechanisms have a certain delay since the be-

ginning. This is probably due to a slight variation in the proactivity goal,

which makes the exploration slower. On the other hand, the other mecha-

nisms almost have the same behavior and completion time.

Even if the analysis of this section is restricted to few cases, it highlights

some interesting behaviors, which are mostly two. Either the differences in

area covered are there since the beginning, or happen in the last stages of
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the exploration. In particular, the first case is highly marked in Figure 6.7a

and Figure 6.9b. A similar behavior happens also in Figure 6.6a for T B,

which is slower in the beginning, but then, the initial allocation is beneficial

on the long run as this mechanism is one of the best performing in this case.

The second case is shown in Figure 6.6b, Figure 6.7b, and Figure 6.8a. The

last one is particularly interesting because after the 70% of the coverage up

to the 90%, mechanisms behave quite differently, but they reach the end of

the exploration almost in the same number of steps.

This analysis allows to infer that a different computation of the proactiv-

ity goal affects the exploration in various ways, and the differences might be

mitigated as the exploration goes on, or affect directly the time to complete

it. Moreover, it also suggests that the time required to complete the explo-

ration is not a metric able to capture all the differences produced by the

variations in the proactivity function. In fact, some of them can be found

only by looking at the trend of the coverage over time.

6.3 Environment features

The analysis carried on up to this moment focused on the general perfor-

mance provided by the various mechanisms with respect to the base versions.

The results give us a hint about some possible relations between the features

of the environment and some aspects strictly related to the exploration.

6.3.1 Parallelizability

As presented in Chapter 3, the parallelizability of an environment is related

to the spreading of the agents during the exploration. At the same time,

it might be intuitive to think that if the exploration of an environment is

highly parallelizable, then it may benefit from larger teams, rather than

smaller teams. On the other hand, if it is lightly parallelizable, then the

effect of increasing the team size should be reduced or it might even affect

negatively the performance. An example of this negative behavior is the

maze environment. Both Figure 6.2b and Figure 6.4b show that for the

team of five robots, the exploration time is at a minimum point. As the

team size increases, also the time required increases. This is an important

example because it happens both for the proactive buddy system and the

proactive reserve, which allows in a certain sense to claim that it could be a

property of the environment, rather than of the particular mechanism used.

Another example in this sense is represented by the forth environment.

It is an open environment, thus it might be intuitive to say that it is highly
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Environment 1 2 3 4 5 6

Maximum number 17 6 18 13 23 31

Average number 9 2 8 7 16 22

Table 6.2: Maximum and average number of frontiers for each environment

parallelizable. Looking at the performance of the different mechanisms in

Figure 6.3a and Figure 6.5a, it is possible to notice two major aspects. First

of all, T B reaches a minimum for the team of eleven robots, both for the

proactive reserve and the proactive buddy system. The second aspect is that,

for the proactive buddy system, an increase in the team size causes a slight

improvement in performance, in general, while for the proactive reserve the

best performing team is the one composed of five robots. This might be

counterintuitive when considering the structure of the environment. On

the contrary, the explanation to this is that, being the environment almost

free from obstacles, each robot can perceive a large amount of space with

each scan. This makes the use of a lot of robots redundant, in general.

However, as already pointed out, a mechanism like T B is able to overcome

this redundancy and get better performance with teams of big sizes.

Rather than trusting the intuition, a possible way to relate the paralleliz-

ability of the environment to a measurable metric is the number of frontiers

detected during the exploration. In particular, the maximum and the av-

erage number of frontiers for each environment are reported in Table 6.2.

These have been measured during the whole set of experiments, for each

configuration.

The second environment is obviously the one with the lowest amount of

frontiers. The fourth environment is the second last. The fact that in these

two environments an increase in the team size corresponds to a worsening of

the performance and the fact that they are the ones with the lower amount

of frontiers are likely to be related in some way. Also because of the extreme

differences in the structure. The first and the third environment have almost

the same number of frontiers, both the maximum and the average. Never-

theless, the third environment benefits more from increasing team sizes than

the first one. The reduction in the number of steps required from the team

of eleven robots to the one of four robots is 30% for proactive reserve on

the first environment, while it is of 34% for the third one. For the proactive

buddy system, the variation is equal for the two environments and is 43%.

However, the number of frontiers alone provides only one point of view, it

does not capture the whole picture. In fact, the sixth environment is the one

with the highest number of frontiers, both for the maximum and the aver-
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age values. Despite this, the difference in the performance of the proactive

reserve for the teams of eleven robots with respect to the team composed

of four robots one is only of the 18%. A value that is comparable to the

one of the second environment, the maze. This is explicative of the intrinsic

difficulty of providing a quantitative measure for such an elusive concept

as the parallelizability. For this reason, also the values of interference and

availability are taken into account.

6.3.2 Interference and availability

The interference and availability as defined in Chapter 3 can also provide

some help in discriminating among the various kinds of environments. There

are no major differences in the values of interference and availability for the

single variants of the proactive buddy or the proactive reserve. Thus, they

have been averaged and the interference for each environment is reported in

Figure 6.10a, while the availability is plotted in Figure 6.10b.

The interference plot shows that the environments can be clustered into

three groups. The first one is composed of the first and the second envi-

ronment, providing the least amount of interference. The second group is

composed of the third, the fifth, and the sixth environment, which have val-

ues of interference higher than the first group, but significantly lower than

the forth environment. This one alone composes the third group.

The low spreading of the second environment is a direct consequence of

it being a simple maze. For the first one, the interference measure is so

low because the team tends to divide into two subteams, one exploring the

section on the right and the other one the one on the left. However, the

distance among robots in each subteam is low and this explains the value

of interference. Such value is very similar to the one obtained using the

proactive buddy system on the fifth environment.

As already explained in Section 6.2.1, in the fifth environment, the proac-

tive buddy shows a very different behavior depending on the parity of the

team. In the case of even teams, the whole team of robots explores the upper

part of the environment, making them be near to each other, reducing the

value of interference, which turns out to be comparable to the one of the first

environment on average, despite the difference in the size of the two. For

this reason, the value of interference for the proactive reserve turns out to

be more reliable to try to characterize the environment with respect to the

proactive buddy one, being less affected by characteristics of the particular

mechanism.

That being said, the second group of environments is composed of the
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(a) Interference

(b) Availability

Figure 6.10: Values of interference and availability for each environment

third, the sixth, and, for what explained above, the fifth environment con-

sidering the proactive reserve. The most counterintuitive aspect is that the

average distance between agents in the third and the sixth environment is

almost the same, despite the size. However, this is explicable by consid-

ering that in the third environment robots are allowed to spread into the

lateral rooms, while some robots keep exploring towards the lower part of

the environment. In the sixth one, robots proceed from the left part of the

environment to the right and the team of active robots is almost distributed

along a vertical line. This makes the distance among them relatively small.

For the fourth environment, the higher value of interference is due to the

openness which characterizes it. Robots are able to go in different directions,

making the average distance among them high with respect to the other
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environments.

The availability seems to provide no possible insights on the classification

of the environments. The chart of Figure 6.10b allows retrieving two aspects.

First of all the value of availability for the proactive reserve is higher than

that of the proactive buddy system one on each environment. This is due

to the presence of the buddy in the buddy system, whose aim is exactly to

reduce the availability, being already near the frontier to which it is assigned.

Apart from this consideration, similarly to what has been done with the

interference, it is possible to notice that the environments can be divided

into two groups. The first one composed of the first, the fifth, and the sixth

environment, while the second one composed of the remaining ones. Even

though, the lower magnitude of the differences in the values of availability

for each environment with respect to the interference case makes it hard to

consider availability as a discriminatory element.

In conclusion, the value of interference, together with the number of

frontiers, both the maximum and the average value, can help in retrieving

some features of an environment. In fact:

� a low value of interference paired with a low amount of frontiers suggest

that the environment is characterized by few branching points and

that robots are likely to be forced to follow a certain path, without

spreading;

� a low value of interference with a high number of frontiers may char-

acterize an environment composed of contiguous rooms or with a lot

of near obstacles;

� a high value of interference coupled with a low number of frontiers

indicate that robots spread in different directions and the environment

is not fragmented, but it is composed of large spaces, otherwise, the

number of frontiers would be high;

� a high value of interference and a high number of frontiers may repre-

sent the case of an environment with many obstacles, where frontiers

are discovered along different directions and the robots spread.

Relating this to the classification of the features provided in Chapter 3,

only the third case of the list, that is a high value of interference coupled with

a low number of frontiers, suggests that the environment can be classified

as open. All the other cases refer to a cluttered environment. Dealing with

parallelizability, only the forth case of the list suggests that the environment
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considered is highly parallelizable, even though this relation is more elusive

and harder to get than the one for openness.

This is a possible interpretation of the results and it is not intended to

be exhaustive. The idea is that the underlined aspects might provide an

insight to classify the environments, but they are likely not to capture all

the aspects.

91



92



Chapter 7

Conclusions

This thesis aims to extend the concept of proactivity developed in [13]

through the use of graphs. The coordination mechanisms considered are

the proactive buddy system and the proactive reserve. The proposed co-

ordination mechanisms are compared to the benchmark ones according to

the number of time steps required to complete the exploration. This is

considered as the main metric in discriminating between the different mech-

anisms. The decision of considering the number of time steps rather than

the absolute time taken by the exploration has been carried on to exclude

machine-dependent aspects from the results. Two more metrics have been

taken into account to completely characterize the various mechanisms, in-

terference and availability.

7.1 Mechanisms comparison

For both the proactive buddy system and the proactive reserve, none of

the proposed modifications to the proactivity functions seem to significantly

enhance performance in general. Averaging the time taken by each mech-

anism over the whole set of environments tested, it comes out that all the

mechanisms perform similarly in the case of the proactive buddy system.

On the other hand, graph-based approaches tend to affect negatively proac-

tive reserve, making the exploration slower. For this reason, the proposed

coordination mechanisms are not definitely preferable to the base proactive

mechanisms. This is also backed up by the increased computational effort

required by the graph-based approaches. Even though all the optimizations

explained in Chapter 5, the computation of centrality measure is more de-

manding than the one of the barycenter of a few points. Thus, even if the

number of steps required to complete the exploration is similar, the time



required by the graph-based approaches would be higher than that of the

base mechanisms. This holds in particular for the visibility graph, where

both the number of nodes and edges of the graph are higher than those of

the topological one. Therefore, without prior information about the envi-

ronment, the use of the base mechanisms is preferable. As already pointed

out in Chapter 6, if restricting the analysis to some specific environments,

the graph-based approaches can actually enhance performance.

For the proactive buddy system, there are some differences in the behav-

ior of the proposed mechanisms with respect to the base mechanism in the

first, the second, and the fifth environment. They are all cluttered environ-

ments, and both the first and the second are lightly parallelizable, differently

from the fifth, which is highly parallelizable. Nevertheless, both the first and

fifth are office-like environments. In the remaining three environments, all

the mechanisms perform similarly. The base mechanism is outperformed on

the first environment mostly by every graph-based approach, except for V C.

In particular, the best performer is T B. The enhancement provided on this

environment is of particular interest because the base proactive buddy sys-

tem is slower than the base proactive reserve, while T B is even better than

this last one. In the fifth environment, T C performs better than the base

mechanism but, given the high variability of the runs in this environment

as opposed to the small enhancement provided, this is not as significant as

in the case of the first environment. For the second environment, all the

graph-based approaches take more time than the base mechanism, except

T B. Thus, for what concerns the proactive buddy system, T B can be

considered the best candidate among the proposed mechanisms because the

enhancement in performance on the first environment is significant, being

around 5%, and the performance on the other environments is comparable

to the base mechanism. At the same time, V C is the worst-performing as

it affects negatively the performance on the second environment and, on all

the other environments, it requires an amount of time similar to the base

mechanism.

For the proactive reserve, the base mechanism is the best performing

one, as already pointed out. The second-best mechanism is T B, which is

also the second-best for the proactive buddy system. This happens because,

in all the environments, the performance of T B is similar to that of the

base mechanism. There are some consistent differences in the fourth and

sixth environments. In the fourth one, T B provides an increase of 3%,

while in the sixth the opposite holds, as the base mechanism requires the

2% less time than T B. In the case of proactive reserve, the worst mechanism

is V B. Even if it requires less time than the base mechanism on the fifth
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environment, it makes the exploration slower in all the other environments.

Apart from the base mechanisms that is preferable over the proposed

mechanisms, an interesting aspect that emerges is that T B provides the best

performance among the graph-based mechanisms, both for the proactive

buddy system and the proactive reserve. Moreover, the performance of T

B is comparable to the one of the base mechanism, in the context of both

the proactive buddy system and the proactive reserve. This makes this

mechanism worth to be inspected more, and a good starting point for future

works in this sense.

The use of the visibility graph makes the exploration require more time

to be completed. Thus, the visibility graph, as defined in this thesis, appears

to be a model not able to provide useful information in computing a good

allocation for the idle set. This is shown in particular by the proactive

reserve, where this kind of graph is outperformed by all other mechanisms.

A possible improvement in this model might be in the criteria with which

the pose nodes to add to the graph are selected. In fact, knowing that the

topological graph provides such an improvement with respect to the visibility

graph, it might be worth trying to apply a discretization to the pose nodes

similar to the one applied in the building of the topological graph. In this

way, the distribution of pose nodes over the map would be more regular than

the one of the visibility graph considered in this work, and the centrality

measure might provide a better allocation of the idle set.

Results obtained also point out some interesting aspects in comparing

proactive buddy system and proactive reserve. The first one appears to be

preferable in highly structured environments. On the contrary, the proac-

tive reserve tends to behave better on open environments, and on all those

environments which allow robots to spread. This is a direct consequence of

the idea on which these mechanisms are based. In fact, the proactive buddy

system is conceived to optimize the exploration of T-shaped junctions, which

are likely to be present in highly structured environments. The proactive

reserve allows robots to spread more since the beginning of the exploration,

and from this comes out the more efficiency in exploring open environments.

Even if the main comparison metric used is the time required to com-

plete the exploration, we analyzed also the trends of the coverage for all the

coordination mechanisms on two environments. Even if in some cases the

exploration is carried on in a similar way, independently of the usage of a

graph-based mechanism or the base mechanism, interesting cases in which

there are differences in these trends are present. In fact, this analysis al-

lowed us to notice two different behaviors related to the variations in the

proactivity function considered: either the differences are mitigated as the
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exploration goes on or they affect directly the time to complete it. These

conclusions are interesting because the first one indicates that differences

in the proactivity goal may impact only how the exploration is carried on,

rather than affecting the time taken to complete it. On the other hand,

the second conclusion comes from the fact that, in some cases, the trend

of the coverage is similar among the mechanisms, but some of them are

characterized by a certain delay. This is likely to be a direct consequence of

the different computation of the proactivity goal. Therefore, what emerges

from this analysis is that in comparing the performance of the coordination

mechanisms, including the evolution of the coverage, may provide a deeper

understanding of the consequences of using different proactivity functions,

more than focusing only on the total time required to complete the explo-

ration.

7.2 Interference and availability

For each mechanism considered in the experiments, both the base mecha-

nisms and the proposed ones, the values of interference and availability have

been evaluated and compared. These values have been taken into account

to analyze the whole set of mechanisms under different perspectives. The

aim of including graphs and centrality measures was to reduce the value of

availability for the robots in the idle set. In this way, when they are turned

into active, the distance to the assigned frontiers is expected to be lower

than in the case of the base mechanisms. For what concerns interference,

no major differences were expected. In fact, even if the proactivity goal is

computed differently, the distance between robots in the team is expected

to be similar on average.

Concerning the values of interference and availability, the only signifi-

cant differences come out when comparing the proactive buddy system and

proactive reserve in the same environment. This is a result already known

from [13], and confirmed by our experiments. What emerges from our ex-

perimental phase is that the values of interference and availability are not

affected by the variations of the proactivity function. Dealing with the

proactive buddy system, this is somehow coherent with the results of the

time required by the exploration we obtained because, as pointed out previ-

ously, both the base mechanism and all the graph-based approaches perform

similarly. On the other hand, the base proactive reserve performs generally

better than the proposed variants, except T B. However, this is not captured

by the interference and availability measures, whose values differ of few units

from the base mechanism to the graph-based ones. The magnitude of the
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difference is so small that it can hardly be used to justify the differences in

performance. Moreover, in some cases, the evaluation of these metrics fa-

vorites slightly one of the graph-based approaches with respect to the base

mechanism, but the latter takes less time to explore than the former.

This confirms the idea that the measures of interference and availability

are not able to fully capture the dynamics of the exploration. They do

not provide enough information when comparing coordination mechanisms

differing only for some aspects, like proactivity in our case. A possible

explanation of this is related to the reduced impact of proactivity on these

measures. In fact, in our experiments, proactivity is usually needed in the

first quarter of the exploration (at most). Thus, the remaining 75% of the

exploration affects more both interference and availability than the first

25% does. To confirm this, it is worth to point out the case of the first

environment, as an example, for the proactive buddy system. For all the

teams with less than ten robots, all the pairs in the idle set are turned

into active in the first 20% of the time required to complete the exploration.

When the team is of ten and eleven robots, there is at least one idle pair up to

the 30% of the total time required for exploration. For this reason, these two

metrics are not capable of providing insights about the differences in the base

mechanisms when compared to the graph-based variations. Nevertheless,

they are a useful metric of comparison to analyze coordination mechanisms

that present strong differences in their structure, as shown in Chapter 6.

7.3 Environment features

The extended testing performed with the whole set of considered mecha-

nisms allowed us to focus also on the possibility of correlating some features

of an environment to the metrics taken during the exploration. The features

on which we focused are the ones described in Chapter 3, namely the size,

the openness, and the parallelizability.

For the size, a practical measure has been provided together with its

formal definition, it is simply the amount of free area. A rough estimate

of it can be known prior to the beginning of the exploration. If this is not

available, its value can be evaluated as the exploration goes on, even though

the exact value would be known only at the end of the exploration, in such

a case.

The openness has been defined as the characteristic of an environment

to be composed of open spaces, rather than cluttered ones. Knowing this

before the exploration begins might be exploitable as some coordination

mechanisms perform better than others in this kind of environment. Re-
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lating this consideration to the mechanisms considered, it is true for the

proactive reserve as opposed to the proactive buddy system, being this last

one conceived to speed up the exploration of branching points. On the other

hand, in Chapter 6, it has been proposed a possible relationship among the

number of frontiers, the interference, and openness. The first two quantities

can be computed during the exploration, and their values can be used to

provide a rough estimate of the openness of the environment, whether it

is open or rich in obstacles. Then, such an estimate might be exploited to

adjust the coordination mechanism employed as the exploration goes on.

The parallelizability is the third feature considered. It is intuitively pre-

sented as the property of an environment to enforce the spreading of the

robots during the exploration. This definition would be strictly related to

the value of interference measured, being it the average distance among the

robots during the exploration. However, as explained in Chapter 6, this

intuitive definition could be enriched by considering that, if an environ-

ment is highly parallelizable, its exploration should benefit more from larger

teams than a lightly parallelizable environment. Obtaining such knowledge

requires to run the exploration with varying team sizes and then analyze

whether the exploration is faster with larger teams, or not. Such analysis

is only possible a posteriori and it cannot provide information exploitable.

For this reason, similarly to what done with the openness, the suspect is

that there is a possible relation between the interference and the number of

frontiers, even though this relation is more elusive and harder to get than

the one for openness.

As already pointed out, knowing before the exploration begins that the

environment which is going to be explored is open makes the proactive

reserve to be preferable to the proactive buddy system, as it provides better

performance on this kind of environments. Something similar can be told if

it is known that the environment is highly parallelizable. Also in such a case

the proactive reserve seems to be a better choice. On the other hand, if we

know that the environment is highly structured and lightly parallelizable,

the proactive buddy system might provide better performance.

7.4 Future work

This thesis is an early work in the introduction of centrality measures into

the proactivity functions. There are a lot of possible modifications that can

be tested, both dealing with the definition of the graphs and the centrality

measures used. An example might be the inclusion of frontier nodes into

the topological graph. Having this kind of graph shown in general to have
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better performance than the visibility one, it might be the case to test

whether the inclusion of frontiers allows enhancing the performance even

more. Moreover, among all the proposed variations, T B seems to be a good

starting point for future works.

The centrality measures used are just a small example of all the possible

ones which can be tested. Other examples in this sense are degree centrality

or the eigenvector centrality, which both relate the concept of the centrality

of a node to the number of connections it has with the other nodes. They

are less related to the distances between nodes, differently from closeness

and betweenness, thus might exploit differently the structure of the graph,

and, consequently, of the environment. Other aspects which might be fur-

ther investigated are related to the extensive use of the graphs during the

exploration, and not limiting their use only to the proactivity function.

From the analysis on the coverage emerged that the completion time

does not capture all the consequences of different implementations of the

proactivity function. Thus, including the trend of the coverage can help

to completely characterize a comparison between mechanisms differing for

this aspect. Moreover, a consistent analysis of this kind may also point

out the possibility to define a coordination mechanism which dynamically

changes during exploration, behaving like one of the base mechanisms at

the beginning, then switching to a graph-based approach in later stages, for

example.

The features of the environment considered in this thesis are size, open-

ness, and parallelizability. They are just some of the features which can be

possibly considered. In fact, the openness just discriminates whether the

environment is composed of large spaces or is rich of obstacles. A further

distinction might be in the nature of the obstacles, like if they are walls

which split the space into rooms, or just random objects. Moreover, given

the intrinsic difficulty both in the definition and in the exploitation of the

parallelizability, it may be worth to consider different aspects affecting it,

like the spreading of the agents coupled with the amount of area explored

by each one. These two aspects, together with the modifications proposed

for the openness might provide a more comprehensive characterization of

the environment. In the case in which all these aspects can suitably be

evaluated during the exploration, they might be used as building blocks to

the definition of a coordination mechanism able to dynamically adapt to the

features of the environments on which it is employed.
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