
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di laurea in Ingegneria Informatica

Trimming the bit:
optimizing high-level synthesis of

floating-point based descriptions by
extending value range analysis

Relatore: Prof. Fabrizio Ferrandi

Tesi di laurea di
Michele Fiorito
Matr. 893957

Anno Accademico 2018/2019

Abstract

Field Programmable Gate Arrays are one of the most interesting and power-
ful pieces of hardware available today to the computer science community:
they allow an incredibly fine-grained tuning of the implementation bringing
development process from high-level description down to the architectural
hardware specification. Such a definite level of description sets up the way for
deeper analysis on applications to squeeze performance out of every line and
smooth every bit achieving the most out of the silicon.

To easily exploit this highest detailed implementation capability an au-
tomated tool is mandatory for developers: while standard compilers have
been optimized and refined to abstract software to CPU level language, new
High-Level Synthesis tools have been developed to bring on this abstraction a
step further to the hardware description language and to extend and increase
available optimizations to achieve the best possible result at this new layer.

One of the optimizations already available from a standard compiler is
that of value range analysis, meaning a program is analyzed to compute nu-
merical bounds on each one of its variable: this information can be exploited
to perform dead code elimination, branch prediction and avoid the insertion of
arithmetic operation checks which would slow the execution of the compiled
software. The purpose of this thesis work is to bring all of the available capa-
bilities of value range analysis inside a High-Level Synthesis tool and to extend
them taking advantage of the more powerful description language available
at this new implementation level. The fact that we are actually building hard-
ware arithmetic operators from scratch enables this analysis to be applied in a
finer-grained flavor and to better analyze floating-point operations too, allow-
ing the use of shrunk numerical encoding, thus tinier, faster and less power
demanding architectures. Furthermore, this work will allow the application of
optimizations directly on standard IEEE 754 floating-point values, without the
need for a fixed-point representation.

iii

Abstract in italiano

Le schede Field Programmable Gate Array (FPGA) si possono considerare
l’hardware più interessante e versatile nel campo dell’informatica moderna:
garantiscono agli sviluppatori la possibilità di descrivere non solo le specifiche
di alto livello di un’applicazione ma anche di progettare l’architettura nei min-
imi dettagli. Grazie a queste superiori capacità descrittive è possibile effettuare
nuovi tipi di analisi sulle applicazioni in modo da ottimizzare al meglio ogni
bit ed ottenere le massime prestazioni possibili.

Per sfruttare al meglio il livello di dettaglio implementativo offerto dalle
schede FPGA è sicuramente necesssario automatizzare la progettazione. Come
i compilatori odierni sono stati raffinati per tradurre le applicazioni in linguag-
gio macchina, così i moderni software di sintesi ad alto livello contribuiscono
a raffinare questo processo arrivando a produrre una descrizione architetturale
delle applicazioni, migliorando di pari passo anche le ottimizzazioni e le analisi
effettuate durante tale processo per sfruttare al meglio le maggiori possibilità
offerta dall’hardware.

Tra le ottimizzazioni già disponibili nei compilatori odierni è di parti-
colare interesse l’analisi dei valori: tramite questa analisi è possibile ottenere
informazioni sui valori assunti dalle variabili durante l’esecuzione del pro-
gramma e, grazie a questo livello di consapevolezza, eliminare numerosi
controlli normalmente effettuati su tali variabili durante le operazioni arit-
metiche, effettuare branch predictions più accurate e determinare in modo più
preciso le parti di codice non raggiungibili, ottenendo così un’applicazione più
efficiente e performante. L’obiettivo di questa tesi è di trasportare all’interno
di un programma di sintesi ad alto livello questo tipo di analisi, estenden-
done le capacità, per poter sfruttare appieno il miglior livello descrittivo a
disposizione. Nel nuovo ambiente di sviluppo l’architettura delle operazioni
aritmetiche viene concepita durante il processo di compilazione, sarà dunque
possibile sfruttare questo tipo di analisi per effettuare ottimizzazioni più ap-
profondite. Sarà inoltre possibile ottimizzare gli operatori a virgola mobile,
non accessibili ai normali compilatori, adattandone la precisione e le specifiche
per ottenere unità aritmetiche su misura a seconda delle necessità. Infine un
metodo di modifica diretto della specifica floating-point IEEE 754 sarà svilup-
pato per semplificare l’adattamento della rappresentazione alle necessità delle
applicazioni, senza l’obbligo di ripiegare su soluzioni a virgola fissa.

v

Ringraziamenti

Vorrei ritagliare questo piccolo spazio tra le pagine della mia tesi per ringraziare
tutte le persone che mi hanno supportato e offerto la possibilità di migliorare
sia dal punto di vista personale che professionale durante questi anni al Po-
litecnico di Milano.

Innanzitutto ringrazio il professor Ferrandi per avermi affiancato e guidato
verso la conclusione del percorso di studi, grazie a lui mi sono appasionato
ancor di più al campo dell’ingegneria e della ricerca.

Ringrazio i miei compagni di studi e colleghi, con i quali ho trascorso
tutti gli anni al Politecnico, dai primi momenti della triennale a Cremona fino
agli ultimi esami della magistrale a Milano. Con loro ho condiviso le difficoltà
e i successi accademici, e insieme siamo arrivati alla realizzazione dei nostri
obiettivi.

Mando un abbraccio ai miei amici più cari con i quali ho vissuto molte
avventure al di fuori degli ambiti accademici. Insieme a loro sono cresciuto e
ho condiviso innumerevoli momenti della vita e, anche se i nostri percorsi sono
diversi, rimaniamo comunque complici e sempre in contatto per condividere
vittorie e sconfitte.

Infine il ringraziamento più grande va sicuramente alla mia famiglia, e
in particolare a mia madre, che mi ha sempre sostenuto e spronato ad affrontare
nuove sfide e mi ha permesso di raggiungere questi risultati.

vii

Contents

1 Introduction 1

2 Definitions 5
2.1 High-Level Synthesis . 5

2.1.1 Generic compiler . 6
2.1.2 HLS tool . 7

2.2 Interval arithmetic . 9
2.3 Floating-point arithmetic internals 11

3 State of the art 13
3.1 Value Range Analysis . 13

3.1.1 Static Range Analysis . 14
3.1.2 Dynamic Range Analysis 15

3.2 Abstract interpretation algorithm 16
3.2.1 Range Definition . 17
3.2.2 Constraints Definition . 19
3.2.3 Extended SSA . 20
3.2.4 Solving Range Analysis Problem 24

3.3 Bit Value Inference . 29
3.4 Conclusions . 30

4 Proposed solution 33
4.1 Range Analysis at HLS Level . 33

4.1.1 Design Choices . 34
4.2 Value Range Analysis Algorithm 35

4.2.1 Range representation . 36
4.2.2 Generating e-SSA . 40
4.2.3 Constraints graph definition 41
4.2.4 Floating-point range constraints 45
4.2.5 Resolution algorithm . 47

ix

Contents

4.2.6 BitValue Inference enhancement 50
4.3 Floating-point encoding customization 52
4.4 Conclusions . 53

5 Results 55
5.1 Experimental setup . 55
5.2 Benchmark suite . 56

5.2.1 Single operators . 56
5.2.2 Complete applications . 57

5.3 Result evaluation . 57
5.4 Conclusions . 68

6 Conclusions and future work 69
6.1 Design flow evaluation . 69
6.2 Future developments . 70

References 74

x

List of Tables

5.1 CHStone benchmark suite list . 57
5.2 Customized floating-point representations test for double preci-

sion division operator . 58
5.3 Customized floating-point representations test for single preci-

sion division operator . 59
5.4 CHStone benchmark detail for GCC 4.9. AREA 61
5.5 CHStone benchmark detail for Clang 4. AREA 61
5.6 CHStone benchmark detail for GCC 4.9 frontend. PERFORMANCE 63
5.7 CHStone benchmark detail for Clang 4 frontend. PERFORMANCE 63
5.8 CHStone benchmark detail for GCC 4.9 frontend. PERFORMANCE-

MP . 64
5.9 CHStone benchmark detail for Clang 4 frontend. PERFORMANCE-

MP . 64
5.10 CHStone benchmark detail for GCC 4.9 frontend. BALANCED . 66
5.11 CHStone benchmark detail for GCC 4.9 frontend. BALANCED-MP 66
5.12 CHStone benchmark detail for Clang 4 frontend. BALANCED . . 67
5.13 CHStone benchmark detail for Clang 4 frontend. BALANCED-MP 67

xi

List of Figures

2.1 IEEE 754 32bit floating-point representation 11

3.1 (a) Example program. (b) Control Flow Graph in e-SSA form. (c)
Constraints extracted from the program. (d) Possible solution to
the range analysis problem. 21

3.2 (a) Example program. (b) SSA form. (c) e-SSA form. (d) u-SSA
form. 22

3.3 Constraints graph genereted from constraints in Figure 3.1 (c) . . 25

3.4 Resolution phases snapshots of the last SCC of Figure 3.3. (a)
After removing control dependence edges. (b) After running the
widening phase. (c) After running future resolution phase. (d)
After running narrowing phase. 28

3.5 The bit values lattice. The ordering is defined by the "information
content". 29

3.6 A C function and the associated data-flow graph. The types in-
ferred by forward(backward) propagation are shown in the left
(right) figure. We assume that a char has 8 bits. 30

4.1 (a) Ranges from set T without anti-range. (b) Ranges from set TA

with anti-range. 41

4.2 (a) Sample function code. (b) Corresponding constraints graph. . 42

4.3 (a) Sample function code. (b) Function code in e-SSA form. (c)
Constraint graph after build stage. (d) Solved constraints graph. 43

4.4 (a) e-SSA form code. (b) Constraints graph with future ranges
and control dependence edges. 44

4.5 (a) e-SSA form code. (b) Constraints graph with symbolic con-
straints. 45

4.6 (a) Common unpacking sequence. (b) Constraints graph from the
unpacking sequence. 46

xiii

LIST OF FIGURES

4.7 (a) Standard lattice. (b) Extended lattice. 49
4.8 . 50
4.9 (a) Simple cycle code. (b) Range analysis (upper) and BitValue

inference (lower) results for variable i 51
4.10 (a) Pragma mask quick reference. (b) Custom floating-point spec-

ification example. 52

5.1 CHStone benchmark overview for GCC 4.9 (left side) and Clang
4 (right side) frontends. AREA . 60

5.2 CHStone benchmark overviw for GCC 4.9 and Clang 4 frontends.
PERFORMANCE setup (above) and PERFORMANCE-MP (be-
low) . 62

5.3 CHStone benchmark overviw for GCC 4.9 and Clang 4 frontends.
BALANCED setup (above) and BALANCED-MP setup (below) . 65

xiv

Chapter 1

Introduction

In modern computer science, even the most powerful CPU is no longer the
best choice to perform a sequence of operations, newer and more specific
hardware is required in some cases to achieve a higher level of performance:
this is the case where FPGAs come into play, enabling developers to fine-tune
hardware architecture and push performance to the limit. While standard
CPUs do offer an efficient general-purpose solution, FPGAs offer the possibility
to build ad-hoc hardware design to achieve the best out of the silicon, thus a
deeper knowledge is required to the user to be able to exploit it completely. To
overcome the enormous effort required by the architecture design process, new
design tools have been implemented and optimized nowadays: as compilers
helped in the process of translating from high-level specifications to CPU lan-
guage, new High-Level Synthesis tools do the same generating optimized and
efficient architectures from software specifications. Thanks to the finer-grained
approach granted by FPGAs and High-Level Synthesis tools, it is possible to ex-
plore newer and deeper analyses and optimizations to improve performances,
reduce power consumption and obtain tinier hardware designs.

Among the vast set of available optimizations, this thesis work aims to
explore enhancement capabilities offered from value range analysis. The goal
of this analysis is to gather information about the set of values associated with
each program variable at runtime: to know this information at compile-time

1

Chapter 1. Introduction

can be extremely useful to carry out numerous optimizations, such as branch
prediction, numerical checks and array bounds checks elimination, dead code
elimination, security checks and many more. While there are simple imple-
mentations targeting common compilers for CPUs, there are none concerning
hardware design and HLS tools in the current state of the art. Furthermore
none of the current works on value range can deal with standard floating-point
representations, leaving a big gap in possible utilization scenarios.

The main purpose of this thesis work is to exploit value range analysis
applying it inside a high-level synthesis design flow. This work will produce
an efficient implementation starting from the state of the art algorithms and en-
hancing value range analysis with new features and capabilities: a new abstract
interpretation engine will be designed to achieve an optimal trade-off between
precision and performance, all available variables and operations will be con-
sidered, including both integers and floating-point types, a new floating-point
tuning feature will be tested to enable compile-time floating-point representa-
tion customization, furthermore an inter-procedural propagation technique will
assure global awareness leading to better optimizations. Finally, the considered
design flow will be featured by a bit value inference algorithm, which will be
upgraded too to support new floating-point designs and to strictly cooperate
with value range analysis to achieve the maximum level of optimization. Given
these premises a significant reduction in the bitwidth of program variables
is expected, resulting in smaller resources utilization and better performance
for all types of applications. Concerning floating-point applications only, a
new level of customization will be available through the tunable floating-point
representation feature introduced, thus an even more pronounced performance
and resources gain is expected, not only because smaller functional units will
be generated, but even thanks to the inter-procedural approach which will
result in globally optimized applications.

2

Chapter 1. Introduction

From the above a summary of this thesis contributions can be drawn as follows:

• Integration of a static value range analysis algorithm into an existing HLS
tool deisgn flow

• Enhancement of the value range algorithm to improve analysis efficacy on
integers

• Upgrade of the value range analysis to include floating-point variables as
part of the analysed values

• Enhancement of an existing BitValue Inference algorithm to include
floating-point types

• Adaptation of the HLS tool design flow to enable value range and BitValue
inference cooperation

• Design of a new method for compile-time floating-point representation
customization

The thesis document is composed by this introduction, a chapter containing
some background definitions and information about concepts and algorithms
discussed in the thesis core, an initial review on the current state of the art in
the field of value range analysis, High-Level Synthesis tools and current imple-
mentations, then the actual implementation proposed is explained discussing
design choices and new features introduced, experimental results are described
and compared with state of the art and finally conclusions are drawn and pos-
sible future implementations are discussed.

3

Chapter 2

Definitions

2.1 High-Level Synthesis

The process of translating a software specification into a hardware description is
called high-level synthesis: this operation begins from a software specification,
commonly written using a high-level language such as C/C++, which is then
translated into a hardware specification of an RTL design, most likely VHDL
or Verilog. The obtained RTL design specification can be subsequently used to
program an FPGA or to support an ASIC design.

The high-level synthesis process is composed of many translation and opti-
mization steps which progressively build a hardware design which corresponds
exactly to the input software representation: this procedure is pretty complex
and difficult to be done by hand and most likely requires an expert RTL designer
to produce a decent outcome, but, as common high-level code compilation, it
can be automated and optimized as well. After many years of development
and improvements, so-called HLS tools can now produce top performance RTL
designs from high-level software specifications exploiting an automated flow:
thanks to these tools high-level developers can easily take advantage of hard-
ware design to enhance performances without the need to become RTL design
experts.

In the following some general information on how standard compilers and
HLS tools work are discussed.

5

Chapter 2. Definitions

2.1.1 Generic compiler

A common compiler outline can be subdivided into three main components:
a frontend, which parses the input specification, an intermediate core, where
optimizations take place, and a backend, which takes care of the output gen-
eration. In more detail, a frontend produces an initial translation from a given
input specification language, such as C++, to a generic intermediate representa-
tion (IR) defined by the compiler; many frontends can be exposed from a single
compiler to handle different input languages which are then translated to the
same IR. Thanks to this unique IR the intermediate part of the compiler will al-
ways deal with the same type of representation while performing transforma-
tions and optimizations: it strictly depends on compiler implementation, but
commonly the IR is pretty similar to a generalized assembly language, com-
posed by standard mathematical operations, branch and jump instructions and
memory access primitives, only load and store in most cases. The IR represents
the internal backbone of a compiler and all operations performed will be based
on it: it is commonly free from real assembly languages’ constraints such as
limited number of registers or calling conventions, furthermore IR instructions
are generally expressed in SSA form, which significantly eases most of the anal-
yses performed. When compiler transformations are completed the backend
part comes into play to finally translate the obtained IR into specific assembly
code and subsequently binary code: as for the frontend, many backends can
be exposed by the same compiler, enabling the user to produce executables for
different architectures. Thanks to this modular approach, a modern compiler is
versatile and can be easily integrated with new components: as an example, if a
new programming language needs to be handled it is only necessary to imple-
ment a new frontend for the compiler to translate this language to the compiler
IR, then all existing optimizations and transformations are still valid and each
backend module will be reusable to produce a specific architecture output from
the new input language.

While frontends and backends are pretty simple, it is necessary to describe
in more detail the compiler internals: after IR is generated there an incredible
amount of transformations which can be performed to analyze and improve

6

2.1. High-Level Synthesis

the input application, but they cannot be applied randomly. Each optimization
is implemented and performed by what is called a step: each step can mod-
ify the IR, thus invalidating previously executed steps or requiring new ones
to be triggered. To manage these inter-step dependencies a dependencies flow
is generated and updated during compilation process to correctly perform all
required steps; compilation ends when generated steps flow is completed and
each step has no more transformations to apply: only at this point IR is ready
to be handled by the backend. It may seem a pretty complex procedure, but
this guarantees an incredibly efficient interaction between steps which can of-
ten improve each other adding information to the IR on subsequent runs; as
an example a dead code elimination step can produce a much better result if
executed after constants propagation has been completed, thus ensuring this
precedence rule will result in a better IR.

2.1.2 HLS tool

A High-Level Synthesis tool is pretty similar to a standard compiler in most
of its aspects, same outline of frontend, intermediate and backend is still used,
but operations performed have been adapted to the new architecture. Frontend
still translates a high-level input specification into a compiler-specific IR which
will then be modified from internal compiler steps, but this new IR has to be
much richer in information to be efficient once hardware synthesis is triggered.
A standard compiler IR is commonly based on a generic assembly language
which abstracts common instructions found in all assembly languages related to
real CPU architectures; when talking about HLS the "real architecture" assembly
emulation is not an option as it is up to the HLS tool to define the architecture it-
self based on the application, but architecture definition itself is constrained by
available components offered by the target hardware (the FPGA board), thus
from its so-called components library. These components libraries expose what
components can be implemented into an actual piece of hardware, an FPGA
for example, thus they represent the new "assembly language" to be emulated by
HLS tool IR: exposed component can vary pretty much in complexity, ranging
from simple logical gates to complex mathematical operators, furthermore, the

7

Chapter 2. Definitions

same component can be found for different operands’ bitwidth, enabling much
more complex optimizations to be carried out during the design process. It is
clear now why the IR needs to be much more informative to enable a deeper
optimization process and a more accurate design of the final architecture.

Back to the synthesis process, as said above, after the IR has been gener-
ated from the input, internal analysis can begin. The greatest power of HLS
is the ability to deeply parallelize operations, but to do so a correct and accu-
rate detection of parallelizable operations is a central concern: data dependen-
cies needs to be defined, thus a Control and Data Flow Graph has to be gener-
ated. This graph is composed by basic blocks, which are sequences of instruc-
tions without conditional statements, and these blocks are connected by edges
which represent the application control flow; this graph helps to detect which
operations can be executed in parallel thanks to the clear definition of blocks
of instructions and flows of execution. Finally, when compiler analysis and
transformations have been completed on the IR it is time to generate the actual
hardware design; while standard compilers translate IR to the specific assem-
bly language of the target architecture, performing simple register allocation,
the backend of an HLS tool needs to perform three strictly entangled operations
before generating the output RTL design: resource allocation, scheduling and
binding. Resource allocation consists of selecting necessary hardware compo-
nents from RTL libraries to execute all operations performed by IR instructions;
as said before, more components performing the same operation can be present,
thus the choice depends on timing, area, and power consumption constraints.
Scheduling procedure is necessary to define operations timing: each operation
is associated to a clock cycle, or a subsequent number of cycles if necessary, de-
termining actual operations parallelism; furthermore, data forwarding ability
between subsequent operations is checked and load and store operations are
added and scheduled when direct forwarding is not possible. Next, the binding
process takes care of better exploiting available resources and optimize occu-
pied area: first module binding is performed, which associates each operation
to a functional unit considering timing and parallelism, then register binding is
computed to allocate resources needed from functional units to carry out their
operations and store results. It is clear how these three steps are strictly related

8

2.2. Interval arithmetic

and should be performed together to obtain an optimal result, but this would
require an excessive computational power, thus these operations are executed
sequentially, first resource allocation, then scheduling and finally module and
register binding, exploiting particular heuristics to estimate information which
are not yet available. The process may seem rough, but it can still produce good
results and generate performing architecture designs. Finally the output hard-
ware specification is generated by the HLS tool and the process is completed:
obtained hardware design can be then synthesized on an FPGA generating and
uploading the actual bitstream on the board through the manufacturer software.

2.2 Interval arithmetic

The main problem to be solved by value range analysis is to find bounds for all
program variables: in a program each variable can be an external input, a con-
stant or the result of an operation between one or more variables. Given that
each variable is the result of an operation, there is the need to be able to propa-
gate bounds of the operands to the operation’s result: this bounds propagation
technique is exactly what interval arithmetic defines.

Standard arithmetic deals with single numbers, which are then combined
through operations and produce another number as result. Interval arithmetic
is an extension of standard arithmetic where the basic block is no longer a single
number, but an interval of subsequent numbers enclosed between two bounds,
thus operations will now combine multiple intervals to produce a new interval
as a result. As it will be explained later, this thesis work will need to deal with
integer values only, as computer architectures do not consider the set R of num-
bers nor set Q, even if floating-point values are there, they are only generated
by an encoding of multiple integer numbers, then the focus is moved on integer
interval arithmetic in the following.

First it is necessary to point out what an interval is in integer interval arith-
metic. An integer interval I represents the set of subsequent integers between
two numbers and it is defined as follows:

l, u ∈ Z, I = {x ∈ Z|l ≤ x ≤ u}

9

Chapter 2. Definitions

Interval I is composed by all numbers between l and u and l and u themselves,
which are then called respectively lower and upper bound of the interval I.
Given the set definition of an integer interval, which is pretty long to write, it is
convenient to give a more concise representation for intervals, which is the one
that follows:

I = [l, u]

In this compact definition of interval I, symbols l and u still represent lower and
upper bounds respectively, while square brackets represent the fact that given
bounds are contained inside the interval. Furthermore to easily represent lower
and upper bound of a range I it is possible to write I↓ and I↑ respectively.

Now it is possible to give a definition of what is an operation between two
intervals and what is its result: applying an operator to two intervals gives, as
a result, another interval which is the union of results obtained applying the
same operator from standard arithmetic between each of the numbers from the
two operands:

∀x ∈ Ix, ∀y ∈ Iy : x� y = r ∈ Ir = Ix � Iy

While computing Ir could be done applying operator � to every single combi-
nation of numbers from Ix and Iy, main advantage of interval arithmetic is that
it is defined to avoid this. To compute a valid result it is necessary to manip-
ulate only bounds of intervals of the operands. As an example, the addition
operation between two intervals is defined as follows:

[l1, u1] + [l2, u2] = [l1 + l2, u1 + u2]

Thanks to interval operators it is possible to reduce the computational complex-
ity of interval operations and make it constant. It may not be so simple to obtain
the same result for more complex operations, but it is always possible to reduce
the computational effort and obtain a valid result with the correct computation
on interval bounds only, thus in constant-time independently of the size of the
intervals considered.

10

2.3. Floating-point arithmetic internals

2.3 Floating-point arithmetic internals

While binary integer arithmetic goes directly to the computation of result from
given operands, standard IEEE 754 floating-point representation requires many
checks and processing before and after the actual result computation takes
place. Binary integers’ straightforward representation enables as well a sim-
ple arithmetic architecture, which can be directly applied to input operands,
without the need to decode contained numerical information: this brings great
computational performance at the cost of a relatively small range of possible
numbers to be represented. When a wider numerical range is required, floating-
point representation is best suited to solve the problem, but with some cost in
performance due to the added representation complexity.

31 30 23 22 16 15 8 7 0
S E E E E E E E E M

Exponent Significand

Figure 2.1: IEEE 754 32bit floating-point representation

Taking as an example a 32bit IEEE 754 floating-point, it can be split in three
ranges representing sign (1bit), exponent (8bits) and significand (23bits), as
shown in Figure 2.1, which become parameters in the following formula:

(−1)S × 2(E−127) × (1 + M/223) (2.1)

Thanks to this particular encoding it is possible to represent a much wider
range of numbers, with the addition of some special numbers, such as positive
and negative ∞, NaN, and denormal numbers through the particular encod-
ing of exponent and significand bits. Because of this complex representation,
each floating-point operation needs to unpack its operands and check for special
cases described above before eventually performing the actual mathematical
operation between the operands. At this point the obtained values for the sign,
exponent and significand need to be packed back together to form the output
floating-point representation. These pre-processing and post-processing oper-
ations are called respectively unpacking and packing and they consist in some
bit-shifts and logical operations to respectively extract and merge sign, expo-

11

Chapter 2. Definitions

nent and significand values from/to the input/output representation.
It is now clear why floating-point numbers require a much bigger effort to

be computed than binary integers: because of this complexity most of the actual
CPUs have dedicated functional units to perform floating-point operations on
standard IEEE 754 32bits, 64bits and even 128bits representations. The worst
downside of these dedicated floating-point FUs is that they force the program
to use one of the supported representation format, even when less precision or
numerical range would be acceptable for the application: this issue is not ad-
dressable in standard CPUs, but it is of main interest in FPGAs, which enable to
design ad hoc FUs based on the application needs. In FPGA design it is possi-
ble to choose the most suitable representation needed for numerical operands,
effectively tweaking exponent and significand bitwidths, and design perfectly
sized floating-point FUs. It would be possible too to remove unneeded spe-
cial numbers, as ∞ or NaN, to streamline the logic avoiding related checks and
special behaviors.

12

Chapter 3

State of the art

The following will explain the range analysis problem and currently proposed
algorithm and implementations to solve it: since it is not a new problem, many
approaches have been proposed through the years, here only the most signif-
icant ones are reported. Finally a brief introduction to BitValue inference is
present, because of its complementary role about program variables’ state def-
inition and proven enhancement brought by its application along with range
analysis.

3.1 Value Range Analysis

Value range analysis is the problem of finding lower and upper bounds to nu-
merical values that variables can assume during program execution: this type
of analysis has been know for quite a long time, since the ’70s, so it has been
already implemented and used to statically detect security issues, to avoid inte-
ger overflow checks, to remove array bounds checks and to enhance dead code
elimination procedures. Knowing what values will be inside a certain variable
at compile-time can help to perform much deeper and precise optimizations,
but it can be quite difficult to compute and many methods are there to carry out
this operation. Two main approaches can be used to achieve a valid result for
value range analysis: a static analysis, which only requires the application to
be analyzed at compile-time, and dynamic analysis, which requires instead the

13

Chapter 3. State of the art

application to be examined at runtime to extract value range information which
is then used to support a second compilation. Both these approach can be use-
ful and effective, but they have different requirements and different outcomes
in terms of computational complexity, result accuracy and final application ex-
ecution correctness.
Existing approaches for both cases will be discussed in the following, pointing
out strengths and downsides of each.

3.1.1 Static Range Analysis

Performing a static analysis means that all information has to be gathered from
the application specification coming from the user, thus it is necessary to rely
on some sort of abstract interpretation of the code which can produce these in-
formation. The most common way to extract value range information from the
specification is to read instructions into it as constraints: translating every in-
struction into a constraint which puts used variables in relation between each
other. There can be other ways to generate constraints on program variables,
such as considering conditional statements to produce scoped constraints de-
pending on the branch taken after the condition is evaluated, or even more
complex procedures, such as exploiting pointer analysis to deduce variable rela-
tionships. Independently of methods used to obtain these range constraints on
program variables and despite their complexity, what discriminates the most
between static abstract interpretation methods is how constraints are merged
and solved; there are mainly two possibilities: to initialize a Satisfiability Mod-
ulo Theory (SMT) solver and let it do the job or to design an ad hoc algorithm
to solve the constraints’ system.

While it may seem a pretty straight forward decision to take advantage of
an SMT solver, it has to be considered that such a tool is supported by a re-
ally computational intensive backbone; as pointed out in [1], where an SMT
solver has been configured to solve value range analysis constraints’ system,
this method is the most accurate when looking at results, but because of the in-
ner complexity it is viable only when program variables’ set is relatively small.
SMT solver method’s performances heavily degrades with the growth of pro-

14

3.1. Value Range Analysis

gram variables number leading to unacceptable computational requirements
for large programs, thus it can not be considered as a general solution to the
value range analysis problem.

Conversely designing an ad hoc algorithm to handle the abstract interpreta-
tion can be an incredibly performing and scalable approach while still achieving
reasonably precise results. To define an efficient and accurate algorithm will not
be as simple as feeding an SMT solver, but the effort will be worth it, as shown
by Campos et al. [4], who customized an abstract interpretation method from
Cousot and Cousot [5] to adapt to value range analysis problem and success-
fully solve it in linear time complexity with respect to the number of program
instructions. This excellent ad hoc solution is capable of computing quite ac-
curate results and scales well even with large applications: the main idea of
the algorithm is that of representing the problem as a graph where nodes de-
fine variables and constraints and edges represent relationships between them;
thanks to this intuition it is possible to drive the computation and consistently
cut its complexity. While the core idea is quite simple, there are many more
aspects related to constraints definition, graph generation and about the actual
solution algorithm to be discussed, thus the full algorithm will be exposed in
detail in section 3.2.

3.1.2 Dynamic Range Analysis

A simple and extremely effective solution to the value range analysis problem
is to dynamically detect value ranges at runtime and use them to optimize the
application at compile time. To gather such accurate and specific information
about the runtime state of internal variables it is necessary to have the capability
to perform this profile operation on a running application or it is possible to em-
ulate instructions in software and collect information from that. In both cases
the application is first compiled without any value range based optimization,
then it is executed with a given set of inputs while value range information is
collected, finally gathered information is exploited during a second compilation
process, which produces the optimized version of the application. Following
this procedure much more aggressive optimizations are carried out at the cost

15

Chapter 3. State of the art

of general application correctness: as stated before the information gathering
process is performed running the application on a given set of inputs, which
is often quite small compared to the full set of possible inputs, consequently
the optimized application generated will not be generally correct, but it will be
valid only for tested inputs. As just outlined the main downside of a dynamic
analysis approach is the loss of correctness, thus this method is only suitable
for scenarios where an application receives predictable input values which can
be as well used during the analysis procedure to ensure the optimized applica-
tion will be correct on those inputs. However a much better performance gain
can be achieved with dynamic analysis, when applicable, as shown by Gort
and Anderson [6], who point out an average 25% improvement over the static
analysis implementation. Another similar approach has been proposed by Roy
and Banerjee [10]: in this case, a dynamic value range analysis is applied onto a
MATLAB application to detect ranges of floating-point variables; this informa-
tion is then exploited to support a quantization algorithm, which converts the
floating-point representation into a fixed-point one, trying to minimize the er-
ror. Furthermore, an enhanced version of this last algorithm is discussed in [8],
where both floating-point and integer variables are considered by the dynamic
value range analysis, but it is still underlined by the authors how resulting ap-
plications are correct only for a restricted set of inputs, not far from the input
training set used during the dynamic analysis process. In conclusion, it is clear
how dynamic value range analysis can be a very effective tool, but only for
application domains with predictable inputs.

3.2 Abstract interpretation algorithm

As discussed previously, when dealing with a static approach to the range anal-
ysis problem, abstract interpretation is necessary to extract value ranges from
the application specification. Moreover to implement an efficient and scalable
algorithm to carry out necessary computation an ad hoc design is mandatory.
In the following section a range analysis ad hoc approach from Campos et al.
[4] will be explained in detail because of its prominent performance in terms of

16

3.2. Abstract interpretation algorithm

both accuracy and computational complexity: the proposed algorithm grants a
linear time complexity in the number of program instructions and still a quite
high grade of precision in resulting ranges. The solution procedure is composed
of a consistent pre-processing phase necessary to extract constraints from the
application specification and to build a particular graph to represent them, af-
ter that the core resolution algorithm begins to compute value ranges exploiting
the constraints graph to efficiently drive the computation. The pre-processing
phase is composed of two steps: generation of an Extended Static Single As-
signment (e-SSA) representation for program instructions and a subsequent in-
struction translation to constraints, which are then used to build a graph rep-
resentation. The main algorithm is split into three operations: range widening,
future resolution, and range narrowing. All these phases will be explained in
detail in the following.

3.2.1 Range Definition

Before starting to navigate through the algorithm steps it is necessary to define
some useful symbols and conventions. To define ranges the convention from
section 2.2 will be used, thus range I = [l, u] will denote the set of values con-
tained between l and u included. In previously defined integer interval arith-
metic a lattice composed by numbers in Z was used, but because of the actual
context, it is necessary to extend the lattice with two more symbols to allow the
representation of a generalized maximum and minimum respectively through
+∞ and −∞ symbols. These generic extreme bounds are necessary to express
unconstrained ranges, which include the whole set of numbers in Z. The new
lattice Z can now be defined as follows:

Z = Z∪ {−∞,+∞}
Given newly introduced symbols it is therefore required to define their behavior
in operations as follows, where −∞ < x < +∞:

x +∞ = +∞ x−∞ = −∞ (3.1)

17

Chapter 3. State of the art

x × ∞ = sign(x)×∞ 0×∞ = 0 (3.2)

When both operands are ∞ the operation loses meaning, thus it is not useful to
define it in this context.

Being necessary to define new range operators, not considered by previously
defined interval arithmetic, it is useful to define ranges within the product lat-
tice Z2 as follows:

Z2 = {∅} ∪ {[z1, z2] | z1, z2 ∈ Z , z1 ≤ z2} (3.3)

Given lattice Z2 it is now possible to define union operator ∪ and phi operator
φ as follows:

[l1, u1] ∪ [l2, u2] = [min(l1, l2), max(u1, u2)] (3.4)

φ([l1, u1], [l2, u2]) = [l1, u1] ∪ [l2, u2] (3.5)

It can be observed that the union operator can significantly reduce accuracy
when intervals are not overlapping, in this case numbers contained between the
two operands but not included in them are however included in the resulting
interval. Finally the intersection operator ∩ is defined as follows:

[l1, u1] ∩ [l2, u2] =

[max(l1, l2), min(u1, u2)] , if l1 ≤ l2 ≤ u1 or l2 ≤ l1 ≤ u2

∅ , otherwise
(3.6)

As last tool for range definition, it is necessary to set a convention to declare
an uninitialized range, this can be defined by using the bottom symbol ⊥ for
both the upper and lower bounds; furthermore the phi operator φ needs to be
extended too to allow uninitialized ranges to be considered:

Ru = [⊥, ⊥] φ([l, u], [⊥,⊥]) = [l, u]

All other operators do not need to consider the uninitialized range, because
such a case will never be possible given the resolution algorithm explained later,
which will ensure every range is initialized before being used in a non-phi op-

18

3.2. Abstract interpretation algorithm

eration.
Given these definitions and conventions about ranges, it is now possible to pro-
ceed with adequate tools to actual constraints’ definition for the range analysis
problem.

3.2.2 Constraints Definition

To solve the range analysis problem it is first necessary to define the actual prob-
lem formally. Range analysis is about associating a value range to each program
variable, thus it is necessary to define a mapping from variables to ranges. Let
program variables be part of set V and define ranges from product lattice Z2

previously discussed: it is now possible to represent mapping I and evaluation
function e from program variables to ranges as follows:

I : V 7→ Z2 I[V] = [l, u] e : V → Z2 e(Y) = [l, u]

Given the new set V of program variables, it is necessary to define its relative
arithmetic as follows:

∀Y, X1, X2 ∈ V | Y = X1 � X2, R = I[X1]� I[X2] =⇒ e(Y) = R

Arithmetic of set V strictly relays on Z2 arithmetic defined in the previous sec-
tion, in fact operations between variables will actually modify their associated
range to the resulting one obtained from the required operation applied to in-
tervals associated to operands. The just defined arithmetic on set V will include
all operators from interval arithmetic plus the additional operators defined in
the previous section, such as phi operator φ, union operator ∪, and intersection
operator ∩, which can be all used as shown above. Furthermore, it is useful to
define even operators between V and Z2 as follows:

∀Y, X ∈ V , ∀T ∈ Z2 | X = Y� T, R = I[Y]� T =⇒ e(X) = R

Now it is possible to arbitrarily define any type of constraint between program
variables in V and between V and Z2, thus it is time to give the formal defi-

19

Chapter 3. State of the art

nition for range analysis problem as follows: given a set of constraints C over
variables set V with associated ranges from Z2, value range analysis is defined
as the problem of finding a mapping I such that ∀V ∈ V , ∃ e(V) = I[V].

As stated by the definition a set C of constraints has to be given to solve
the problem, thus it is necessary to derive them from the input specification, as
the current algorithm is based on a static analysis approach. The application
specification will then be accessible from its IR produced inside the compiler,
as previously discussed, which is in SSA form: this particular form of repre-
sentation enables to directly map each IR statement to an equivalent constraint
for range analysis problem, thus the whole specification can be translated to the
needed set C of constraints. An example of this process is shown in Figure 3.1,
where the input specification (Figure 3.1 (a)) is first translated into compiler IR
in e-SSA form, an extended SSA form which will be explained just below, from
which the constraints set can be directly derived through a one-to-one mapping
from IR statements; Figure 3.1 (d) shows a possible solution to the constraints
set for completeness.

3.2.3 Extended SSA

As outlined in section 2.1.1, compilers commonly use Single Static Assignment
(SSA) as the standard form for their intermediate representations, because of
its clarity in highlighting data dependencies. This peculiarity of SSA form is
really useful when it comes to constraints definition for range analysis, but it is
not sufficient to extract all possible information from program instructions. To
better expose data flow split due to conditional branches it is useful to write in-
termediate representation in Extended SSA form, as defined by Bodik et al. [2].
This particular form requires each variable which is used both inside a branch
condition and after it to be renamed in branches after the conditional statement.
This means a new variable is added after each branch statement to shadow all
usages of branch condition variables: the new variable will be initialized as
equal to its associated branch variable and will replace it in all subsequent use
statements. Thanks to this variable renaming the data flow split produced by
the branch is explained through the renaming instruction into the IR; this allows

20

3.2. Abstract interpretation algorithm

(a) (b)

k = 0

while k < 100

i = 0

j = 0

while i < j

i = i + 1

j = j - 1

k = k + 1

print k

k0 = 0
k1 = φ(k0, k2)
(k1 < 100)?

kt = k1 ∩ [−∞, 99]
i0 = 0
j0 = kt

i1 = φ(i0, i2)
j1 = φ(j0, j2)

(i1 < j1)?

k2 = kt + 1

it = i1 ∩ [−∞,ft(j1)−1]
jt = j1 ∩ [ft(i1),+∞]

i2 = it + 1
j2 = jt - 1

k f = k1 ∩ [100,+∞]
print k f

t
f

f

t

(c) (d)

K0 = 0

Kt = K1 ∩ [−∞, 99]

K f = K1 ∩ [100,+∞]

K1 = Φ(K0, K2)

I0 = 0

J0 = Kt

I1 = Φ(I0, I2)

J1 = Φ(J0, J2)

I f = I1 ∩ [−∞,ft(J1)−1]

Jt = J1 ∩ [ft(I1),+∞]

I2 = It + 1

J2 = Jt − 1

K2 = Kt + 1

I[i0] = [0, 0]

I[i1] = [0, 99]

I[i2] = [1, 99]

I[it] = [0, 98]

I[j0] = [0, 99]

I[j1] = [−1, 99]

I[j2] = [−1, 98]

I[jt] = [0, 99]

I[k0] = [0, 0]

I[k1] = [0, 100]

I[k2] = [0, 100]

I[kt] = [0, 99]

I[k f] = [100, 100]

Figure 3.1: (a) Example program. (b) Control Flow Graph in e-SSA form. (c)
Constraints extracted from the program. (d) Possible solution to the range analysis
problem.

to express this splitting constraint even during constraints generation for range
analysis.

An example of e-SSA form is shown in Figure 3.2 (c), where it is clearly vis-
ible how branch variable renaming helps range propagation through the two
branches: variable v0 is redefined in each branch after the conditional state-
ment, so that these two new variables can be associated with the two different
parts of v0’s split range.

As seen from the example above, live range split when considering a vari-
able and a constant, such as v0 > 0, is pretty straight forward, but when two
variables are compared by a conditional statement a further step to enhance ac-

21

Chapter 3. State of the art

(a) (b)

v = •
(v > 0)?

u = v + 10 u = •

• = u
• = v

v = •
(v > 0)?

u0 = v + 10 u1 = •

u2 = φ(u0, u1)
• = u2
• = v

(c) (d)

v0 = •
(v0 > 0)?

v1 = v0 ∩ [−∞, 0]

u0 = v1 + 10

v2 = v0 ∩ [1, ∞]

u1 = •

u2 = φ(u0, u1)
v3 = φ(v1, v2)
• = u2
• = v3

v0 = •
(v0 > 0)?

v1 = v0 ∩ [−∞, 0]

u0 = v1 + 10

v4 = v1 ∩ [−∞, max− 10]

v2 = v0 ∩ [1, ∞]

u1 = •

u2 = φ(u0, u1)
v3 = φ(v4, v2)
• = u2
• = v3

Figure 3.2: (a) Example program. (b) SSA form. (c) e-SSA form. (d) u-SSA form.

curacy is necessary. Starting from the example in Figure 3.2 (c) it is possible
to say that for a comparison such as v>c, where c is a constant, the live range
split is represented by range [−∞,c] in the false branch and by [c+1,+∞] in the
true branch. That is not possible when constant c is substituted by variable w:
considering now the new comparison v>w it is still possible to define v and w
associated ranges as respectively v∩[−∞, ft(w)−1] and w∩[ft(v)+1,+∞] for
false branch and v∩[ft(w),+∞] and w∩[−∞,ft(v)] for true branch. Because
it is not possible to know the actual value of variables v and w before con-
straints computation takes place during the resolution phase of the algorithm,
the new concept of futures has been introduced by Campos et al. [4]: notation
ft(v) seen above is used to represent the value which variable v will have once
the analysis has defined it, thus when the algorithm will compute a valid range
for variable v the correct value will be replaced to each occurrence of ft(v) to
complete the so-called future range. Thanks to future ranges it is possible to keep

22

3.2. Abstract interpretation algorithm

the relationship created by a conditional statement between two variables and
avoid precision loss by effectively propagating results once they are ready; in
the following the resolution of futures will be explained in detail as part of the
resolution algorithm. An actual example of future ranges is shown by Figure
3.1, where ranges for variables i and j can be exactly derived by range analysis
thanks to this new concept.

A further step in live range split enhancement can be performed to high-
light constraints implicitly subsumed by binary integer mathematical opera-
tions performed by IR statements. This type of inference is thus applicable
only to programs that are not exploiting integer overflow as a feature: in these
cases it is possible to deduce additional information about operands after each
usage in mathematical operations. To correctly propagate these constraints it
is necessary to redefine each operand variable after each use statement, like
e-SSA does after branch statements for conditional variables used there: this
new representation is called u-SSA form and subsumes e-SSA too. Thanks to
u-SSA it is possible to expose constraints defined by mathematical operations
on operands, exploiting the fact that overflow would cause an exception at run-
time, thus it is not an acceptable case during the correct run of the application.
Figure 3.2 (d) shows an example of u-SSA form: if instruction u0 = v1 + 10 does
not result in an overflow, causing the program to terminate, it is correct to say
v4 =v1 ∩ [−∞, max− 10], where max is the maximum value for v1 integer type
(ex. 127 for an 8bit signed integer). It is again clear how renaming of v1 into v4

helps to associate the new range constraint to variable v generating a new data
flow after the considered instruction.

Exploiting these new representation forms can significantly improve results
of range analysis because of the increased number of constraints considered,
but the more the constraints the higher the complexity, thus it is important to
analyze performance impact of these transformations compared to their effec-
tive contribution to the final result precision. Because range analysis is imple-
mented inside a compiler it is assumed that SSA form comes for free, as it is
already generated by the compiler which is using it in the standard compilation
process, whilst it is not the case for e-SSA form and u-SSA forms which should
be specifically generated to support the analysis and would affect compiler ef-

23

Chapter 3. State of the art

ficiency because of the added statements. Considering a generic program, it is
reasonable to say branch instructions are about 15% of total and branch condi-
tions will contain at most two conditional variables (example: a > b, x != 0), thus
moving from SSA to e-SSA will increase program size of approximately 30%.
Considering now numerical operations in a generic program to be about 50%
of the total and saying that most of them are binary operations, it is reasonable
to say u-SSA form will increase program size of 130%. Finally it is important to
consider new constraints introduced in the range analysis constraints set: about
two constraints per branch with e-SSA and about two constraints per numerical
operation with u-SSA. In conclusion it has to be taken into consideration that e-
SSA will increase program size of about 30%, while u-SSA will increase the size
of 130%, as well as constraints set size, which is increased of the same percent-
age because of the one to one relation between instructions and constraints.

3.2.4 Solving Range Analysis Problem

Once the constraints set C has been populated with constraints gathered from
IR statements it is time for the last pre-processing step before the core resolution
algorithm can be applied. Starting from the formal problem definition given in
section 3.2.2 it is necessary to build a so-called constraints graph, as defined by
Su and Wagner [11] to move from a generic set of constraints C to an organized
structure which can be used to consciously drive the computation through the
final solution. The constraints graph is composed of nodes, which are variables
from set V and constraints from set C, connected by edges based on constraints
relationships: if a constraint C defines variable V, then edge

−→
CV is added to the

graph, conversely if variable V is used by constraint C, then edge
−→
VC is added.

Furthermore this graph representation has been enhanced by the addition of
control dependence edges: this new type of edge is used to explicitly represent
the relation between the future variable and the future range associated to it,
thus when variable V is used by future ft(V) an edge from V to the future range
containing ft(V) will be in the graph. An example of constraints graph built
starting from constraints set in Figure 3.1 is shown in Figure 3.3: solid edges

24

3.2. Abstract interpretation algorithm

represent standard data dependencies as defined above, while dashed edges
represent control dependencies generated by futures.

0 k0 φ k2 +1

kt[−∞, 99]k1[100,+∞]k f

=j00 i0

φφi2 i1 j1 j2

+1 it [−∞,ft(j1)−1] -1jt[ft(i1),+∞]

Figure 3.3: Constraints graph genereted from constraints in Figure 3.1 (c)

After constraints graph has been built from constraints set, the last step is
necessary before the actual resolution algorithm can be applied to produce the
final result. It is now necessary to check for Strongly Connected Components
(SCCs) inside the graph, then once they have been detected, considering them
as supernodes, a topological ordering of nodes has to be computed: this order
will drive the resolution algorithm through the problem as each node will be
solved subsequently propagating obtained results forward until the last node
in the topology where the computation ends. Given this topologically ordered
digraph composed by nodes and SCCs, it is now possible to outline the reso-
lution algorithm which will be applied to each of the nodes to produce results
and propagate them through the graph until all nodes have been explored and
solved. Because of the topological ordering and the SCCs supernodes, each
node needs to be visited only once to correctly compute the final result: the pro-
posed method has been described by Cousot and Cousot [5] and consists of two
steps known as widening and narrowing, Campos et al. [4] have introduced
an intermediate step between these two to take care of future resolutions; this
particular step requires ranges of variables associated to futures to be already
solved before they are needed, thus it is necessary that nodes associated with
these variables are solved in advance or during the same run of the algorithm:
this precedence is ensured by the presence of control dependence edges, which

25

Chapter 3. State of the art

force related variables to be in the same SCC or strictly before the node with the
associated future with respect to the topological ordering.

Then the resolution algorithm is actually split into three steps: widening,
futures resolution and narrowing; an example of each algorithm step result is
shown in Figure 3.4 for last SCC of the constraints graph of Figure 3.3, starting
from the uninitialized situation, where only ranges of entry points i0 and j0 have
been computed, through the final result obtained after narrowing step.

Widening: this phase is needed to initialize all ranges of variables and deter-
mine their growth direction, if there is one. This step is performed by applying
the widening operator as defined by Cousot and Cousot [5], which is described
below:

I[Y] =

e(Y) , if I[Y] = [⊥,⊥]

[−∞,+∞] , if e(Y)↓ < I[Y]↓ and e(Y)↑ > I[Y]↑

[−∞, I[Y]↑] , if e(Y)↓ < I[Y]↓

[I[Y]↓,+∞] , if e(Y)↑ > I[Y]↑

The operator evaluates each variable and updates bounds of its associated range
to meet the actual growth direction, as shown by Figure 3.4 (b): after the opera-
tor has been applied to the example it is clear that i1, i2 and it are strictly growing
variables, while j1, j2, and jt are strictly decreasing variables and finally i0 and j0
are constants, because none of their bounds have been modified by the operator.
Standard widening operator shown above only uses−∞ and +∞ as a lattice to
change evaluated range bounds, but a more accurate technique called jump-set
widening, which consists in an extension of this lattice, will be shown later on.
Both standard and jump-set widening operators have constant time complex-
ity, thus widening step itself will have linear time complexity in the number of
nodes contained in the analyzed SCC.

Future resolution: after widening operator has defined growth direction, it
is possible to propagate range bounds required by futures to complete ranges
initialization. It is reasonable to presume that future variable ranges have been
already initialized at this point because of the dependence edges introduced in
the constraints graph: thanks to them future variables will be part of the same

26

3.2. Abstract interpretation algorithm

SCC where dependent variables belong. Formal future replacement rules can
be schematized as follows:

Y = X ∩ [l, ft(V) + c] =⇒ Y = X ∩ [l, I[V]↑ + c]

Y = X ∩ [ft(V) + c, u] =⇒ Y = X ∩ [I[V]↓ + c, u]

As shown in Figure 3.4 (c), lower bound of i1 is constant, because the variable
is strictly increasing, thus it is possible to resolve lower bound future for the
conditional range of jt, similarly upper bound future for conditional range of it

is resolved with j1 fixed upper bound, leading to a complete initialization of all
ranges.

Narrowing: after growth direction has been determined and all ranges have
been initialized, it is now possible to apply constraints derived from conditional
tests through the narrowing operator. A standard narrowing operator as de-
fined by Cousot and Cousot [5] is shown below:

I[Y] =

[e(Y)↓, I[Y]↑] , if I[Y]↓ = −∞ and e(Y)↓ > −∞
[I[Y]↓, e(Y)↑] , if I[Y]↑ = +∞ and e(Y)↑ < +∞
[e(Y)↓, I[Y]↑] , if I[Y]↓ > e(Y)↓

[I[Y]↓, e(Y)↑] , if I[Y]↑ < e(Y)↑

For narrowing as well as for widening step it is possible to increment preci-
sion by using a jump-set narrowing operator with an extended lattice without
changing time complexity with respect to the number of nodes contained in the
analyzed SCC. In Figure 3.4 (d) it is shown how exact ranges for it and jt are
computed intersecting respectively i1 and j1 with their conditional ranges to ob-
tain it = [0, 98] and jt = [0, 99].

Thanks to this three-steps algorithm it is possible to solve each one of the
topologically ordered nodes and SCCs and obtain a result with a linear time
complexity with respect to the number of constraints graph nodes. Further-
more it has been shown experimentally by Campos et al. [4] that performing a
preliminary abstract interpretation step before starting the widening phase can

27

Chapter 3. State of the art

lead to more accurate results and even lead to a fixed point solution making
it possible to abort any further computation for the current SCC and directly
pass to the next. Finally as said above it is possible to use jump-set widening
and narrowing operators instead of standard ones to further improve accuracy:
jump-set operators perform the same operation of standard ones, but on a lat-
tice with more components, thus each application of the operator will result in a
gradual increment or decrement of affected bounds values enabling a finer tun-
ing along available lattice components. In Campos et al. [4] implementation the
jump-set operators lattice is generated on each execution of the resolution algo-
rithm including all program constants present into the considered SCC along
with −∞ and +∞ from the standard operators lattice; thanks to this specific
procedure it is possible to generate a lattice including only meaningful compo-
nents for considered constraints, avoiding useless additions which would slow
down computation for no reason.

(a) (b)

[0, 0]
(i0)

φ

i1[⊥,⊥]i2[⊥,⊥]

[−∞,ft(J1)−1]

it[⊥,⊥]+1

[0, 99]
(j0)

φ

j1[⊥,⊥] j2[⊥,⊥]

[ft(I1),+∞]

jt[⊥,⊥] -1

[0, 0] φ

i1[0,+∞]i2[1,+∞]

[−∞,ft(J1)−1]

it[0,+∞]+1

[0, 99]φ

j1[−∞, 99] j2[−∞, 98]

[ft(I1),+∞]

jt[−∞, 99] -1

(c) (d)

[0, 0] φ

i1[0,+∞]i2[1,+∞]

[−∞, 98]

it[0,+∞]+1

[0, 99]φ

j1[−∞, 99] j2[−∞, 98]

[0,+∞]

jt[−∞, 99] -1

[0, 0] φ

i1[0, 99]i2[1, 99]

[−∞, 98]

it[0, 98]+1

[0, 99]φ

j1[−1, 99] j2[−1, 98]

[0,+∞]

jt[0, 99] -1

Figure 3.4: Resolution phases snapshots of the last SCC of Figure 3.3. (a) After
removing control dependence edges. (b) After running the widening phase. (c) After
running future resolution phase. (d) After running narrowing phase.

In conclusion, the ad hoc algorithm proposed by Campos et al. [4] to solve
range analysis problem succeeds in providing a scalable and still quite accurate
method to find a solution to the value range analysis problem.

28

3.3. Bit Value Inference

3.3 Bit Value Inference

A complementary analysis which is often associated with the implementation of
range analysis is the bitvalue inference: the algorithm described by Budiu et al.
[3] is designed to detect useful and useless bits in program variables enabling a
more efficient use of hardware resources. The algorithm is based on an iterative
data-flow analysis approach on a given lattice of four symbols: 1, 0, x (don’t
care), u (don’t know).

X

0 1

U

Figure 3.5: The bit values lattice. The ordering is defined by the "information content".

The data-flow input is fed with 〈u〉 bits and output bits are computed using
direct transfer functions according to data-flow operators (forward propaga-
tion), then computed output bits are backward propagated through operators’
inverse transfer functions back to the input: this forward/backward operation
is iterated until no change in bits value is detected. Following this iterative pat-
tern a representation in the 1/0/x/u lattice will be computed for all variables
in the data-flow showing exactly which one of the bits is constant, useless, or
useful. More specifically forward propagation helps in defining don’t care bits
through the output variables, while backward propagation task is to discover
don’t cares of the inputs starting from previously computed outputs: to correctly
perform this process without modifying the results it is necessary that propa-
gation functions are monotone and conservative, as shown by Budiu et al. [3].
An example of forward and backward propagation for a C function is shown
by Figure 3.6.

Because of the bitwise approach, this analysis is not aware and can not com-
pute program variables bounds, which instead could be useful too in the ef-
fort to reduce computation: range analysis is committed in performing exactly
this task, so these two types of analysis match perfectly to produce a complete
variable state analysis. Considering an iterative compilation process it is also

29

Chapter 3. State of the art

Figure 3.6: A C function and the associated data-flow graph. The types inferred by
forward(backward) propagation are shown in the left (right) figure. We assume that a
char has 8 bits.

possible that these two analyses cooperate leading to a more accurate result.
While BitValue inference is more suitable to detect useless and constant bits,
range analysis is better when variables bounds are needed, such as in condi-
tional checks for branches, array bounds, and integer operations.

3.4 Conclusions

As seen in this chapter, many implementations of range analysis have been
tested, from simple cases as in [4], where range analysis is implemented from
scratch, or in [1], where the analysis is implemented through an SMT solver,
to more complex ones where it is implemented and paired with BitValue in-
ference, as in [6, 3]. However current implementations are mostly based on
an Intermediate Representation which is not built to represent a reconfigurable
architecture, but a standardized and fixed one, thus fine-tuning and internal
manipulation of floating-point operations is not possible, because most of the
underlying complexity of the hardware is hidden into instructions themselves,
which are already fixed in standard CPUs. While some fixed-point tweaking
approaches have been tested, such as the one in [1], trying to push the limit

30

3.4. Conclusions

of current methods, they are still black-box approaches, which are not effec-
tively dealing with the underlying hardware directly. As will be explained in
the following, the purpose of this thesis work is to apply some of these methods
inside an HLS tool to exploit an IR nearer to the hardware and achieve a better
and finer grade of manipulation over the output hardware design.

31

Chapter 4

Proposed solution

Starting from the state of the art algorithms, this thesis work approach will
be explained, pointing out new challenges encountered and new features im-
plemented to set up the ultimate algorithm to solve the value range analysis
problem. Each aspect of the implementation will be discussed from the main
algorithm choice to smaller implementation details, which will grant more ac-
curate results with the least complexity increment possible. Finally, a peek on
the new floating-point customization will be there, explaining its capabilities
and interesting features.

4.1 Range Analysis at HLS Level

Currently explored range analysis implementations are mainly focused on a
high-level intermediate representation directly generated from common com-
pilers: while it already brings great improvements to exploit the analysis at this
level, this approach could be pushed even more applying range analysis on a
lower-level intermediate representation. Exploiting the HLS process it is pos-
sible to have a deeper and more accurate view of the operations performed by
a program, so that even improvements can become more precise and specific.
The purpose of this thesis work is to explore what enhancements can arise from
the application of range analysis at HLS level, with a specific focus on floating-
point operations. While high-level representation hides these types of opera-

33

Chapter 4. Proposed solution

tions inside single instructions, as explained in section 2.3, HLS design tools are
indeed actively involved in the design of floating-point functional units, thus
their intermediate representation is actually defining each internal step of these
operators: thanks to this internal view it is possible to enhance range analysis
and apply deeper optimizations based on input operands value ranges, such
as special floating-point symbol removal, constant operators optimization and
other customization over standard IEEE 754 representation, such as significand
or exponent bitwidth manipulation. In the following it will be explained how
value range analysis has been integrated into PandA Bambu HLS tool and cou-
pled with the already implemented BitValue inference to verify potential im-
provements given by the application of such an approach inside an HLS tool;
furthermore a new method to customize and manipulate standard IEEE 754
floating-point representation with user-defined hints will be discussed.

4.1.1 Design Choices

There are two main decisions to take before starting the actual implementa-
tion of this thesis work: choose an HLS tool where it is possible to implement
a value range analysis algorithm and what type of algorithm to implement.
The first choice quickly falls on the home competitor in the field of HLS tools:
PandA Bambu is an HLS tool entirely implemented and maintained at Politec-
nico di Milano by professors and researchers, it already supports and integrates
many versions of GCC and LLVM compilers, along with many optimizations
to translate OpenMP descriptions and some CNN descriptions to hardware de-
signs, furthermore an implementation of the BitValue inference, as described by
Budiu et al. [3], is present in this tool, thus it can be effortlessly entangled with
value range analysis to contribute for a better overall optimization. Because of
its wide range of input specifications and the solid framework it offers, PandA
Bambu is the best place for this thesis work to be integrated into and tested.

As for the choice of a method to implement value range analysis, it has to
be considered what type of programs this work will target: given a generic
approach is preferable, it has to be considered that this thesis work is mainly
focused on enhancement and manipulation of floating-point functional units,

34

4.2. Value Range Analysis Algorithm

which are quite complex thus it is necessary that the implemented algorithm
can handle large numbers of program variables easily. Because of these con-
siderations an SMT solver approach has been excluded: while it offers the best
precision it is not scalable, thus it is not viable in this case. Furthermore, a static
approach is preferred over a dynamic one for the moment, because it is impor-
tant for this work to explore what improvements can be achieved without sacri-
ficing program correctness: a dynamic approach could give better performance
for sure, but it imposes a loss in generality on the set of inputs of considered
applications, which is not an intent of this thesis work. Finally, while it could
have been an option to implement a new algorithm from scratch, it is not worth
it because of the ad hoc method proposed by Campos et al. [4]: the algorithm
they presented already ensures a linear time complexity in the number of pro-
gram instructions and quite a good accuracy in results, thus it is exactly what
requirements for this thesis work ask for. Furthermore, this ad hoc solution will
be easily customizable to consider floating-point variables too and manipulate
them as necessary to explore the efficiency of modified IEEE 754 floating-point
representations. In conclusion, it has been decided to implement a modified
version of Campos et al. [4] algorithm inside the PandA Bambu HLS tool to
explore and test the capabilities of a value range analysis algorithm including
floating-point manipulation and BitValue inference interaction. In the follow-
ing the actual implementation of such an algorithm will be discussed in detail,
highlighting similarities with existing approaches and new features added, and
describing how existing BitValue inference algorithm has been entangled in the
optimization process; finally, the new method introduced to customize IEEE 754
floating-point encoding through input specification will be presented.

4.2 Value Range Analysis Algorithm

As explained before, an enhanced version of Campos et al. [4] algorithm for
value range analysis will be implemented in this thesis work: the main algo-
rithm outline will actually be the same as explained in section 3, but some addi-
tions have been implemented trying to optimize the overall computation and to

35

Chapter 4. Proposed solution

introduce the floating-point handling features required. Each step of the algo-
rithm will be explained in the following, pointing out the main implementation
details and discussing newly introduced features: a formal definition of range
and constraint will be given, then pre-processing steps, extended SSA and con-
straints graph generation, and core resolution algorithm will be discussed.

4.2.1 Range representation

Starting from the range representation defined in section 3.2.1, where ranges
belong to set Z2, it is first necessary to extend this set to include a new value as
part of the range. While the mathematical meaning of bounds is still the same,
when dealing with binary integers from a program it is necessary to define even
their bitwidth, which is necessary to carry out some specific bitwise operations
such as bit shift or truncation and to consider even overflow, which can occur
in fixed binary integers. Thus it is required to compose a new set T defined as
follows:

T = {∅} ∪ {[z1, b , z2] | [z1, z2] ∈ Z2, b ∈ N∗}

Given T it is clear how z1 and z2 still represent respectively the lower and upper
bounds of the interval, while the new component b represents range bitwidth;
again lower and upper bounds of range R can be respectively referred to as R↓
and R↑, while bitwidth will be R∗. As well as for set Z2 a new arithmetic needs
to be defined for set T : that will not be a standard arithmetic anymore, because
of the binary integer behavior which needs to be reproduced. As for program
variables, arithmetic of set T only allows operations between ranges with the
same bitwidth value, furthermore, a modulo arithmetic is applied on ranges,
where the modulo value is given by the bitwidth of the operands. Thus modulo
arithmetic of set T can be defined as follows:

∀R1, R2 ∈ T , R1 � R2 =

R1
b
� R2, , if R1∗ = R2∗

unde f ined , otherwise
(4.1)

36

4.2. Value Range Analysis Algorithm

The
b
� symbol in 4.1 represent the equivalent modulo operator of �, where

the modulo value is given by b, which will be equal to the bitwidth value of

the operands; furthermore resulting range from
b
� operator will still have b as

bitwidth value. Intended modulo arithmetic for the set T is again non-standard
given the fact it has to reproduce exactly binary integers’ behavior which has
a different modulo depending on the sign of the operand: as an example, an
8bit binary integers allows a value of −128, while it does not allow a value
of 128 which would result in an overflow. Because of this particular complex-
ity brought by the custom modulo arithmetic necessary for set T to perform
correctly, this section will just report some simple examples, without giving
complete definitions for all arithmetic operators available to avoid unnecessary
complexity and still keep the focus on value range analysis algorithm.

The following example will show the difference between the plus operator
applied between two ranges from Z2 and the equivalent custom modulo oper-
ator applied on two equivalent 8bit ranges from T :

[56, 126] + [3, 3] = [59, 129] (4.2)

[56, 8, 126] + [3, 8, 3] = [−∞, 8, −127] ∪ [59, 8, +∞] (4.3)

It is quite clear as result of 4.3 is different from that of 4.2, in fact the overflow
behavior of 8bit binary integers is not considered by the standard arithmetic,
while the same instance of the operation with ranges from T is indeed generat-
ing the expected overflow behavior of an 8bit signed integer variable. Thanks
to this example is thus possible to outline a common problem which arises from
the application of modulo arithmetic: when an overflow occurs, such as in 4.3,
the resulting range is composed by two ranges representing the two sections of
the actual result, in 4.3 the left part of the result represents the "overflowed" range
while the right part the standard range produced by sum operator; because of
this "split" result it would not be possible to represent it with a single range
from set T , thus a new notation has been defined to allow a compact definition
of such a case with a single range. While set T , as well as set Z2, is representing
inclusive ranges, where numbers included into an interval goes from the lower

37

Chapter 4. Proposed solution

bound to the upper bound, as previously defined, it is convenient to define an
extended set TA to include the anti-range notation as follows:

TA = T ∪ {)z1, b, z2(|)z1, b, z2(= [−∞, b, z1 − 1] ∪ [z2 + 1, b,+∞]}

Arithmetic of set T needs to be extended as well to consider this new notation
too. Thanks to the anti-range notation it is possible to represent exclusive ranges
as well, where the range enclosed between lower and upper bounds is excluded
from the actual represented range: given range)l, b, u(the actual set of numbers
considered by this range is the full set considered by bitwidth b without the
range of values represented by [l, b, u]. Thus given new set TA, it is possible to
rewrite 4.3 as follows:

[56, 8, 126] + [3, 8, 3] =)− 126, 8, 58(

Furthermore anti-range notation allows a better live range split which can im-
prove range analysis accuracy in some cases, as it will be explained later. As
far as it is concerned for ranges of integer variables, set TA as it has just been
defined, with its related arithmetic, is sufficient to successfully support value
range analysis algorithm, thus it is now necessary to define another ranges set
which will handle floating-point variables.

It is then necessary to define product set P = T 3
A ×N∗ as follows:

P = {[S, E, M, b] | S, E, M ∈ TA, b = S∗ + E∗ + M∗}

A floating-point range from set P just defined is composed by three ranges
from set TA which are defined as S, E and M and respectively represent sign,
exponent and significand components ranges, as the three parts of the IEEE
754 encoding does; furthermore the last component of the range from set N∗

does represent the overall bithwidth value of the floating-point range. As well
components of a given range R can be referred to as Rs for the sign related
range, Re for the exponent range, Rm for the significand range and R∗ for the
bitwidth value. Conversely from previously defined range sets, in this case, it
is not necessary to define an arithmetic over set P because all floating-point

38

4.2. Value Range Analysis Algorithm

operations will be performed through a set of integer operations after the actual
floating-point value has been decoded, it is thus necessary to define only union
operator ∪, intersection operator ∩ and phi operator φ as follows:

R1
b
∪ R2 = [R1s ∪ R2s, R1e ∪ R2e, R1m ∪ R2m, b] , b = R1∗ = R2∗

R1
b
∩ R2 = [R1s ∩ R2s, R1e ∩ R2e, R1m ∩ R2m, b] , b = R1∗ = R2∗

φb(R1, R2) = R1
b
∪ R2 , b = R1∗ = R2∗

As per set T and TA any operator is applicable between ranges with the same
bitwidth value only and will produce a result with that bitwidth value. Fur-
thermore, it is necessary to define the generic view convert unary operator
w in its two versions, one to convert ranges from set P to set TA is defined
as wT : P → TA while the opposite view convert operation is defined as
wP : TA → P and has two versions wP32 and wP64, representing the actual IEEE
754 32bit and 64bit encoding respectively; their behavior is described below:

wT(R) = RS � (RE∗ + RM∗)|RE � RM∗|RM, wT(R)∗ = RS∗ + RE∗ + RM∗
(4.4)

wP32(R) = [R[31,31], R[23,30], R[0,22], 32] , R∗ = 32 (4.5)

wP64(R) = [R[63,63], R[52,62], R[0,51], 64] , R∗ = 64 (4.6)

Operators� and | in 4.4 represents respectively left shift and bitwise inclusive
or operators from TA set arithmetic and they are used there to compose the
three internal ranges inside the floating-point range from set P to build a single
range of set TA. Conversly in 4.5 and 4.6 notation R[a,b] represents the range of
values of bits from index a to index b of the integer range R and has a bitwidth
value of b− a + 1; it is clear how wP32 and wP64 operators allow to convert an
integer range into a floating-point range from set P extracting each component
defined by the IEEE 754 encoding. For clarity generic results obtained after the
application of wP32 and wP64 are shown below respectively as range R32 and
R64:

R32 = [[ls, 1, us], [le, 8, ue], [lm, 23, um], 32]

39

Chapter 4. Proposed solution

R64 = [[ls, 1, us], [le, 11, ue], [lm, 52, um], 64]

As previously said, no other operator will be defined for set P because those
just explained are sufficient for the value range analysis algorithm to work as
expected, thus it is now possible to proceed to the actual algorithm discussion.

4.2.2 Generating e-SSA

First pre-processing step necessary to optimize range analysis is the generation
of e-SSA form from the input program representation: as explained in section
3.2.3, a further step after e-SSA form could be u-SSA form, but it is only appli-
cable in specific cases when overflow is not exploited, furthermore, it implies
a much greater effort in terms of implementation and computation time be-
cause of the significant increment in the number of constraints. Thus e-SSA
form has been chosen as base representation to support value range analysis in
constraints inference, because of the lack of limitation on the input program and
its good trade-off between added accuracy and complexity.

PandA Bambu is already fed with a standard SSA form of the input pro-
gram, thus it is possible to avoid a full SSA computation applying only ex-
tended features to existing SSA representation. As previously seen, e-SSA re-
quires renaming for conditional variables, thus it is necessary to analyze con-
ditional statements only and luckily in PandA Bambu IR conditional branch
instructions can be found only at the end of a basic block, further reducing re-
quired effort. Thanks to this representation feature, a simplified three-phases
algorithm can be applied: first the dominator tree for function’s basic blocks
is computed from Control Flow Graph (CFG), as in standard SSA algorithms,
then each basic block is visited following a depth-first search path and check-
ing for conditional branches in the last statement, while annotating conditional
variables, finally annotated variables and their relative uses are topologically
ordered with respect to the depth-first search ordering acquired during the tree
scan and the resulting stack is used to rename uses when necessary. Given
the depth-first search following the structure of the dominator tree, the result-
ing ordering of statements guarantees that precedence also implies dominance,
thus renaming can be performed easily proceeding through the list of annotated

40

4.2. Value Range Analysis Algorithm

variables. Thanks to this approach only conditional variables and their uses are
considered during the scan, without considering the whole IR during the re-
naming procedure.

Proposed e-SSA form generation procedure explained above performs the
IR formatting with the smallest possible overhead, while providing a signifi-
cant improvement to the overall result facilitating live range splitting after con-
ditional branches. Furthermore, thanks to the newly introduced anti-range nota-
tion, an even more accurate range constraint can be generated after equality and
inequality conditional checks, as shown by Figure 4.1, where renamed variable
xt is now able to be constrained too, as well as variable x f .

(a)

x0 = •
(x0 != 0)

xt = x0
• = xt

x f = x0
⋂
[0, 0]

• = x f

t
f

(b)

x0 = •
(x0 != 0)

xt = x0
⋂
)0, 0(

• = xt

x f = x0
⋂
[0, 0]

• = x f

t
f

Figure 4.1: (a) Ranges from set T without anti-range. (b) Ranges from set TA with
anti-range.

4.2.3 Constraints graph definition

A second and last pre-processing phase is necessary to transform e-SSA form
program instructions into the constraints graph used to solve range analysis.
This process is pretty simple: each instruction is decomposed to extract its
operands and result variables, which are now added to the constraints graph
as nodes with an associated range and connected by an operation node corre-
sponding to the initial operation carried out by the e-SSA instruction. Figure
4.2 shows how a little code snippet could be translated into constraints graph
form.

As seen above, statements involving standard numerical and logical oper-
ators can be simply translated into their corresponding graph representation:
an uninitialized range is associated with each variable, using the convention

41

Chapter 4. Proposed solution

(a)

uint8_t func()

uint8_t a;

uint8_t b;

{

uint8_t x = a + 5;

uint8_t y = x & b;

return y;

}

(b)

a[⊥, 8,⊥] 5 [5, 8, 5]

+

x[⊥, 8,⊥] b [⊥, 8,⊥]

&

y[⊥, 8,⊥]

Figure 4.2: (a) Sample function code. (b) Corresponding constraints graph.

explained in section 4.2.1, and to each constant is assigned its constant range
counterpart as well. The whole graph is built reading all available statements
from each program function, as already pointed out in section 3.2.2, but this
procedure is slightly different in some cases to enhance accuracy.

The first peculiar behavior is that enabled by e-SSA form: when a condi-
tional variable is used again after a branch condition a new range inferred from
that condition is associated with the variable; this range can be both a common
range in case of a conditional check against a constant or a future range in case
of two variables being compared. To correctly perform this association between
conditional branch range and renamed conditional variable, while statements
are scanned, branch conditions are stored and any time a renaming statement
is detected stored conditions are checked to look for a valid constraint to asso-
ciate: when the statement can be associated with an active conditional variable,
its inferred range from the branch condition is propagated to the new variable.
Thanks to this procedure live range split produced by the e-SSA form is ex-
ploited to propagate conditional constraints successfully.

As shown in Figure 4.3, sample function cond has a branch condition com-
paring parameter a and a constant value, which means a0 range can be split
immediately during constraint building procedure associating restricted ranges
to both a1 and a2. While scanning the e-SSA form in Figure 4.3 (b) conditional
statement a0 > 5 is stored, then renaming definition of a1 is read and a0 is found
to have live conditional constraints in a1 scope, thus these constraints are di-
rectly applied to a1, as shown by the resulting graph in Figure 4.3 (c). Thanks

42

4.2. Value Range Analysis Algorithm

(a)

uint8_t cond()

uint8_t a;

{

uint8_t r;

if(a > 5) {

r = 5 + a;

}

else {

r = a;

}

return r;

}

(b)

uint8_t cond()

uint8_t a0;

{

if(a0 > 5) {

uint8_t a1 = a0;

uint8_t r1 = 5 + a1;

}

else {

uint8_t a2 = a0;

uint8_t r2 = a2;

}

uint8_t r0 = PHI <r1, r2 >;

return r0;

}

(c)

a0

[⊥, 8,⊥]
[6, 8,+∞]

⋂
a1[⊥, 8,⊥] 5 [5, 8, 5]

+

r1[⊥, 8,⊥]

[−∞, 8, 5]

⋂
a2 [⊥, 8,⊥]

=

r2 [⊥, 8,⊥]
φ

r0 [⊥, 8,⊥]

(d)

a0

[−∞, 8,+∞]
[6, 8,+∞]

⋂
a1[6, 8,+∞] 5 [5, 8, 5]

+

r1)6, 8, 10(

[−∞, 8, 5]

⋂
a2 [−∞, 8, 5]

=

r2 [−∞, 8, 5]
φ

r0)6, 8, 10(

Figure 4.3: (a) Sample function code. (b) Function code in e-SSA form. (c) Constraint
graph after build stage. (d) Solved constraints graph.

to this propagation enabled by the e-SSA form it is clearly visible how range
of r0 is affected observing the graph solution presented in Figure 4.3 (d) where
ranges show the final results from the analysis; solving the graph without con-
straints inferred from conditional statement would lead to an unrestricted range
solution for r0.

While conditional statements involving constant values are immediately
propagated as standard ranges into the graph, when two actual variables are
compared in a statement the process slightly changes: propagation of condi-
tional range constraint derived is delayed attaching a future range to the re-
named variable. As explained in section 3.2.4, future ranges enable range cor-

43

Chapter 4. Proposed solution

relation to be expressed inside the constraint graph through control dependence
edges associated to them.

(a)

uint8_t cond()

uint8_t a0;

uint8_t b0;

{

if(a0 > b0) {

uint8_t a1 = a0;

uint8_t r1 = 5 + a1;

}

else {

uint8_t a2 = a0;

uint8_t r2 = a2;

}

uint8_t r0 = PHI <r1, r2 >;

return r0;

}

(b)

b0 [⊥, 8,⊥]

a0

[⊥, 8,⊥]
[ft(b0 + 1), 8,+∞]

⋂
a1[⊥, 8,⊥] 5 [5, 8, 5]

+

r1[⊥, 8,⊥]

[0, 8,ft(b0)]

⋂
a2 [⊥, 8,⊥]

=

r2 [⊥, 8,⊥]
φ

r0 [⊥, 8,⊥]

Figure 4.4: (a) e-SSA form code. (b) Constraints graph with future ranges and control
dependence edges.

In Figure 4.4 a modified version of the previous example is shown, where the
conditional check is now performed between two variables: it is clear how the
new conditional statement involving two actual variables is translated into the
new constraints graph where control dependence edges now appear highlighting
the correlation between b0 and conditional constraints associated with a1 and
a2. These future ranges will be solved during the second phase of the resolution
algorithm from Campos et al. [4] as explained in section 3.2.4.

All previously discussed propagation enhancements are relative to an intra-
procedural point of view, thus significant improvements can be achieved by ap-
plying an inter-procedural propagation. As in most of the proposed implemen-
tations discussed in chapter 3, this implementation provides inter-procedural
range propagation too: each function call is stored and used to compute a vir-
tual phi operation to merge ranges from real parameters to compute ranges of
formal parameters; the same procedure is applied to return values: each return
statement is stored and their ranges are merged by a virtual phi and propa-
gated after each function call to the return variable. In Figure 4.5 an example of
inter-procedural propagation involving function cond from Figure 4.4 is shown.

44

4.2. Value Range Analysis Algorithm

(a)

uint8_t proc()

uint8_t x0;

{

uint8_t t0 = cond(x0, 5);

return t0;

}

(b)

b0

[⊥, 8,⊥]
φ

5 [5, 8, 5]

a0

[⊥, 8,⊥]

φ
x0 [−∞, 8,+∞]

[ft(b0 + 1), 8,+∞]

⋂
a1[⊥, 8,⊥] 5 [5, 8, 5]

+

r1[⊥, 8,⊥]

[0, 8,ft(b0)]

⋂
a2 [⊥, 8,⊥]

=

r2 [⊥, 8,⊥]
φ

r0 [⊥, 8,⊥]
φt0[⊥, 8,⊥]

Figure 4.5: (a) e-SSA form code. (b) Constraints graph with symbolic constraints.

When the function call instruction is detected its real arguments and return
variable are stored and associated with formal parameters and variable from re-
turn statements inside the called function once the constraints graph is built for
it. From the constraints graph of Figure 4.5 (b) it is clear how real parameters x0

and 5 are associated through phi operators to their formal counterparts a0 and
b0; as well r0, which is the returned variable from function cond, is connected to
the actual return variable t0 from the call statement. Thanks to inter-procedural
propagation a much better and complete constraints graph can be built from
the IR analysis, thus resulting in a more accurate final result.

4.2.4 Floating-point range constraints

Furthermore, it is important for this thesis work to correctly propagate ranges
of floating-point representation components during packing and unpacking oper-
ations, as defined in section 2.3: to store and propagate floating-point range in-
formation a new type of range has been introduced, as defined in section 4.2.1:
through this new type of range it is possible to correctly propagate range in-
formation for floating-point variables through the range analysis and perform
better when handling this type of representation. To apply this new type of
propagation it is first necessary to detect when it needs to be done, thus it is
necessary to detect when packing and unpacking operations are performed into

45

Chapter 4. Proposed solution

the IR. Starting with packing operation, it is quite difficult to detect it, because
such an operation is not always performed following a standard pattern, thus
a generic sequence of IR instructions can not be outlined as a packing operation
easily, in fact, the actual sequence of operations depends on the particular ma-
nipulation which has been performed on the floating-point representation. All
considered it would require an unjustified effort to correctly detect this proce-
dure, thus its operations will be just considered as common instructions by the
implemented range analysis algorithm. Anyway, it is not completely lost, be-
cause exploiting the backpropagation mechanism of the BitValue inference, it
will be anyhow possible to propagate information correctly through floating-
point variables, as it will be explained later on in section 4.2.6. On the other
hand unpacking operations are easier to detect: they always begin with a view
convert operation followed by some shiftings and bit-masking operations to ex-
tract each component of the floating-point representation into a new variable.
Then it is possible to trace operations involving the view converted value of
the floating-point variable, storing this sequence of operations and detecting
when an exact slice of the initial floating-point value is obtained: at this point
the corresponding range from the composite floating-point range is associated
directly with the new variable skipping intermediate operations, thus avoiding
any information loss.

(a)

double d;

int64_t v = *((int64_t *)((* double)(&d)));

bool s = v < 0;

int64_t b = v >> 52;

int16_t c = (int16_t)b;

int16_t e = c & 2047;

int64_t m = v & 4503599627370495;

(b)

d

[[0, 1, 0], [0, 11, 2046], [−∞, 52,+∞], 64]

wT v

[0, 64, 263 − 1]⊕

s

[0, 1, 0]

⊕

e

[0, 11, 2046]

⊕

m

[−∞, 52,+∞]

Figure 4.6: (a) Common unpacking sequence. (b) Constraints graph from the
unpacking sequence.

As an example, Figure 4.6 shows a common unpacking procedure for a 64-bit
IEEE 754 floating-point representation: starting from variable d its view con-
verted value is stored in v, then the sign is tested and stored in s through a

46

4.2. Value Range Analysis Algorithm

conditional operation, exponent bits are extracted through a sequence of shift,
cast and bitmask application into variable e, finally significand bits are stored
in m. This case shows one of the simplest unpacking sequences, there could be
many, but for the sake of range analysis it is not important the sequence, but the
accuracy deriving from the fact that it is possible to skip these sequences of op-
erations and directly assign the correct range from d to either s, e and m without
losing precision on single ranges. Furthermore, the sequence of operations per-
formed is of no importance, because thanks to the tracing procedure explained
above, the constraint generation algorithm implemented can detect when any
sequence of instructions results in a range containing exactly one of the range
which compose the initial floating-point range. Finally the view convert opera-
tion is still included in the constraints graph, because this value could be used
in other operations apart from the unpacking ones.

4.2.5 Resolution algorithm

Once the constraints graph has been generated, the last pre-processing step can
be carried out before the actual computation can start. As defined in the al-
gorithm proposed by Campos et al. [4], it is necessary to detect Strongly Con-
nected Components (SCCs) inside the constraints graph, so that they can be
solved as supernodes when encountered during the main computation, and to
topologically order the resulting graph, now composed of both standard nodes
and SCCs. Thanks to this last procedure, as explained in 3.2.4, it will be pos-
sible to efficiently drive the computation and obtain final results with a single
application of the core algorithm to each node; furthermore the SCC supern-
odes will ensure the future resolution step can be carried out correctly, without
the possibility to find uninitialized variables linked to control dependence edges.
To perform SCCs search and their topological ordering as a single operation,
a modified version of Nuutila’s algorithm has been implemented, which finds
SCCs and directly stores them in topological order exploiting the depth-first
search ordering generated from the algorithm. Finally the core resolution algo-
rithm from Campos et al. [4], as previously defined in section 3.2.4, has been
fully implemented: proposed enhancements have been added such as jump-set

47

Chapter 4. Proposed solution

widening and narrowing operators and the preliminary abstract interpretation
phase to achieve a better initialization of ranges. In the following, each step of
the core algorithm will be explained again to point out the main implementa-
tion details.

As first step some preliminary abstract interpretation iterations are per-
formed, thus each operation is evaluated propagating results as defined by
range arithmetic: thanks to these preliminary iterations it is possible to initialize
all ranges and in some cases even reach a fixed point solution, which allows to
skip any other computation and immediately proceed with the next node. The
addition of this preliminary step has been proven to be effective from experi-
mental evidence by Campos et al. [4]. Now the main algorithm can begin, first
the widening phase will continue the growth process started during prelimi-
nary abstract interpretation, but this time the actual widening operator will be
used to quickly detect growth directions of ranges; after that future resolution is
performed to complete the initialization of future ranges replacing futures with
actual bounds from related variables; finally when all ranges have been initial-
ized, narrowing phase is carried out to refine ranges and obtain final results.

About the widening phase, it is useful to point out what is the difference be-
tween standard and jump-set widening operators: while the standard widening
operator, as defined by Cousot and Cousot [5], works on a minimal lattice, as
shown in Figure 4.7 (a), thus it will always set unrestricted bounds in case of
growth detection, a jump-set widening operator is stepping on a more complex
lattice, as the one in Figure 4.7 (b), which has more components, thus offers
the possibility of finer adjustments in between the starting value of considered
bounds and the unrestricted case, eventually leading to shorter ranges with re-
spect to standard widening operator.

The extended lattice is more accurate, but more complex to traverse too for
the widening operator. To generate a functional extended lattice it is necessary
to have some information about the specific problem to be solved, a generic
approach is not viable, thus, as suggested by Campos et al. [4], it is possible
to exploit constant values to build a custom lattice based on the input speci-
fication. While gathering all application constant values into a unique lattice
could be a simple approach, the performance impact of such a lattice on widen-

48

4.2. Value Range Analysis Algorithm

(a)

[−∞,+∞]

[−∞, c] [c,+∞]

[c1, c2]

[⊥,⊥]

(b)

[−∞,+∞]

[−∞, 0] [0,+∞] [1,+∞][−∞, 1]

[0, 1]

[0, 0] [1, 1]

[⊥,⊥]

Figure 4.7: (a) Standard lattice. (b) Extended lattice.

ing operator has to be considered too: as shown by Figure 4.7 (a), the standard
lattice is pretty simple, but adding just two constant values pushes complex-
ity far away from starting point (Figure 4.7 (b)), thus considering all program
constants would not have a good performance and would not be even useful
because each part of the program would need only a small part of them in most
cases. Because of these aspects, it is possible to exploit previously computed
SCCs, in fact, they include strictly related constraints, which can be considered
singularly during the resolution process, thus a significant lattice can be com-
puted for each one of these supernodes, considering only its constant values
and so reducing actual lattice size. Thanks to this approach, accuracy enhance-
ment granted from the extended lattice is not affected, because all interesting
constants for the currently analyzed slice of the graph are still considered, but
lattice size is consistently reduced and so is the widening operator complexity.
The same approach is used for the narrowing operator too, which exploits the
same lattice previously generated for the widening operator. An example of im-
proved accuracy given by this approach is shown in Figure 4.8 where given pro-
gram is analyzed using both standard lattice from Figure 4.7 (a) and extended
lattice from Figure 4.7 (b).

Range bounds computed using standard lattice fail to return a strict interval
on variable tooLong (Figure 4.8 (c)), while with a properly generated extended
lattice tighter results can be obtained, as shown in Figure 4.8 (d).

In conclusion, the complete algorithm can be summarized as follows: ex-
tended SSA form is generated from each program function, constraints graph is

49

Chapter 4. Proposed solution

(a)

int main(int N) {

int i = 0;

while (1) {

int tooLong = 0;

while (i <= N) {

if (i == N) {

tooLong = 1;

}

}

if (tooLong) {

break;

}

}

return i;

}

1 tooLong0

φ

0

φ

tooLong1

(b)

1 tooLong0[0,+∞]

φ

0

φ

tooLong1[−∞, 1]

(c)

1 tooLong0[0, 1]

φ

0

φ

tooLong1[0, 1]

(d)

Figure 4.8

built extracting constraints and variables from statements and generating nec-
essary inter-procedural relations from function calls, then the graph is searched
for SCCs and the resolution algorithm is applied to nodes and supernodes in
topological order. Finally, the resolution algorithm is composed of the fol-
lowing: a preliminary abstract interpretation phase to initialize range bounds,
which in a case can immediately lead to a valid fixed point result, then the
jump-set widening step, followed by the future resolution, which completes
range bounds initialization, and finally a jump-set narrowing phase to finalize
results. For completeness even a simple version based on standard widening
and narrowing operators as defined by Cousot and Cousot [5] has been imple-
mented.

4.2.6 BitValue Inference enhancement

Along with range analysis, also a BitValue inference algorithm, similar to that
described by Budiu et al. [3], has been implemented inside PandA Bambu:
while this is not part of this thesis work because it was already up and running
inside the HLS tool, it has been teamed with the new range analysis implemen-
tation to achieve the best result out of a static analysis approach. While range
analysis is more focused on word’s meaning to detect its numerical bounds,
thus it can perform best in trimming most significant bits in a word, BitValue

50

4.2. Value Range Analysis Algorithm

inference is better suited to analyze bitwise behaviors which lead to the loss of
the big picture, but enables to detect useless bits even in the lower part of the
word.

(a)

uint8_t i = 0;

while(i < 32) {

i += 4;

}

(b)

I[i] = [0, 32]
BV[i] = 000UUUXX

Figure 4.9: (a) Simple cycle code. (b) Range analysis (upper) and BitValue inference
(lower) results for variable i

As an example the code snippet in Figure 4.9 can be considered, where vari-
able i is incremented each time the loop is executed: the range analysis approach
would correctly report the needed range is [0, 32], without caring about the in-
crement, conversely BitValue inference would immediately point out the two
lowest bits of i are useless in this context because they are not changed nor read
during the execution. Observing results from the two types of analysis in Fig-
ure 4.9 (b) it is clear that with both pieces of information variable i can be fully
described, while with only one of them the picture is incomplete.

During range analysis implementation a sharing mechanism has been inte-
grated enabling already available information to be used during analysis ini-
tialization steps and new information acquired from results to be merged with
existing one to enable an improvement in accuracy on each iteration. In fact dur-
ing the High-Level Synthesis process both range analysis and BitValue inference
are executed and they can both require a further iteration of their counterpart
to check for possible improvements: this circular execution environment is the
key which brings, through multiple subsequent iterations, to a more accurate
and effective final result, which can improve both performance and efficiency
of the output design.

51

Chapter 4. Proposed solution

4.3 Floating-point encoding customization

While previously described analysis are considering the input program "as-is",
acting to improve it as much as possible without affecting its correctness, it is
in the interest of this thesis work to explore the possibility to arbitrarily ma-
nipulate standard IEEE 754 floating-point encoding customizing exponent and
significand bitwidth or removing unnecessary symbols such as NaN or ∞. To
actually define these custom requirements into the program specification, some
pragma annotations have been defined: each function definition can be anno-
tated specifying necessary customization for each function parameter and the
return value when present. Thanks to these pragmas it is possible to inject
user-customized floating-point representations into the HLS tool which will
take care, through range analysis and BitValue inference, to perform all oper-
ations needed to remove unnecessary logic from standard floating-point opera-
tors and from the whole program through inter-procedural propagation process
previously described in section 4.2.3. Figure 4.10 (a) shows available pragma
annotations which can be used to customize standard IEEE 754 floating-point
representation.

(a)

#pragma mask <par_name > sign {0,1}

exponent <lower_bound > <upper_bound >

significand <bitwidth >

(b)

#pragma mask a exponent -1023 1023

#pragma mask a significand 35

#pragma mask b exponent -1023 1023

#pragma mask b significand 35

#pragma mask @ exponent -1023 1023

#pragma mask @ significand 38

double custom_func(double a, double b)

{...}

Figure 4.10: (a) Pragma mask quick reference. (b) Custom floating-point specification
example.

An example of customized double where NaN and ∞ symbols have been re-
moved and significand bitwidth has been reduced to 35 is shown in Figure 4.10

52

4.4. Conclusions

(b); furthermore the same customization has been applied to the return value of
custom_func, specified by the special symbol @: NaN and ∞ have been removed
as well, while significand bitwidth has been decreased to 38 bits. Through these
simple annotations, it is possible to easily tweak float and double representa-
tions to match the application needs, removing what is unnecessary and limit-
ing the range of values and precision strictly to what is needed, avoiding un-
necessary logic in the final design to achieve better performance, lower power
consumption, and a smaller footprint.

4.4 Conclusions

A fully functional value range analysis algorithm has been implemented in this
thesis work, successfully reproducing the approach proposed by Campos et al.
[4] with new features, such as anti-range and floating-point variables handling;
furthermore the existing BitValue inference algorithm already present in the
chosen HLS tool has been upgraded and linked to this implementation to coop-
erate and allow a better overall awareness which leads to better optimizations
on the output hardware design generated. Finally, a new set of pragma anno-
tations have been defined to allow developers to fine-tune floating-point oper-
ations into their applications and let them use only what they need, enabling
the HLS tool to remove unnecessary logic further improving performance, area
footprint and power consumption of the output design.

53

Chapter 5

Results

The experimental setup used during all tests will be illustrated in the follow-
ing, then the new benchmark suite will be outlined and discussed to explain
how each test included will be useful to evaluate different aspects of the im-
plemented design flow. Finally, the obtained test results will be described and
analyzed.

5.1 Experimental setup

The algorithm discussed in chapter 4 has been entirely implemented into PandA
Bambu, the High-Level Synthesis tool under development at Politecnico di Mi-
lano. This tool offers the possibility to use many versions of both GCC and
LLVM compilers as a frontend for the synthesis process, then a common mid-
dleware is fed with the resulting IR and finally the actual RTL design flow takes
place. Furthermore, many configurations regarding memory allocation and ac-
cess policies, optimization policies that favor area footprint or application per-
formance, and other specific tweaks are available in PandA Bambu and will be
specified for each testing environment. It is thus important to say that all ex-
periments will be performed starting from a software defined math library to
allow the newly implemented design flow to deeply analyze each arithmetic
operation gaining a complete overview of the tested application. Starting from
scratch should grant a precise and authentic result on what are the capabilities

55

Chapter 5. Results

offered by the implementation.
Therefore a modified version of PandA Bambu v0.9.7-dev will be used in

the following with both GCC and LLVM frontends; experiments will take place
on a dual Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz machine with 256GB of
RAM and generated RTL designs will be synthesized on some FPGAs from Xil-
inx, Altera and Lattice through their proprietary RTL synthesis software. Any
specific configuration parameter will be specified with each test, including fron-
tend compiler version and the FPGA board used for the synthesis.

5.2 Benchmark suite

The purpose of the proposed test suite is to evaluate the capabilities of the im-
plemented design flow, enabling a better understanding of what type of im-
provements can be achieved thanks to the discussed algorithm. Enhancements
are expected both on performances and on area footprint of generated designs,
furthermore, a particular focus on the new possibility of floating-point repre-
sentation customization is necessary to verify the efficacy of this approach. All
considered, a complete benchmark suite was put together to cover both full-
fledged applications and arithmetic operators alone to better observe results
from each aspect of the implemented design flow. While complete applications
are useful to check the overall gain in performance and resources consumption,
testing arithmetic operators as stand-alone functions gives the advantage of a
more specific peek on actual gain brought by custom floating-point representa-
tions.

5.2.1 Single operators

The first part of the proposed benchmark suite is composed of a subset of stan-
dard floating-point arithmetic operations available in libm library: these opera-
tions are synthesized as stand-alone functions during tests to specifically eval-
uate custom floating-point representations. When a single function is compiled
it is not possible to exploit the full capabilities offered by value range analysis
and the new design flow, but it is easier to appreciate what can be achieved with

56

5.3. Result evaluation

floating-point representation tuning. Proposed tests will show how each arith-
metic operation is affected when modifying floating-point precision through
significand bitwidth manipulation and when removing special symbols such as∞ and NaN.

5.2.2 Complete applications

The second part of the benchmark suite is composed of standard programs to
allow a full evaluation of the implemented design flow. When a complete appli-
cation is synthesized it is possible to exploit the whole set of features and opti-
mizations offered by the new design flow and observe how the inter-procedural
approach behaves in real-world scenarios. To perform these experiments the
well-known CHStone HLS benchmark suite has been chosen. Each application
will be tested with different parameters to gather significant results. The 12
programs from CHStone benchmark suite are selected from various application
domains such as arithmetic, media processing, security, and microprocessors;
they are relatively large applications, compared to the standard from HLS liter-
ature, thus they offer quite a challenging environment to test this thesis work
implementation. The complete CHStone benchmark suite is listed by Table 5.1.

Benchmark Name Description Source
DFADD Double-precision floating-point addition SoftFloat
DFMUL Double-precision floating-point multiplication SoftFloat
DFDIV Double-precision floating-point division SoftFloat
DFSIN Sine function for double-precision floating-point numbers CHStone group, SoftFloat
MIPS Simplified MIPS processor CHStone group
ADPCM Adaptive differential pulse code modulation decoder and encoder SNU
GSM Linear predictive coding analysis of global system for mobile communications MediaBench

JPEG JPEG image decompression The Portable Video Research Group,
CHStone group

MOTION Motion vector decoding of the MPEG-2 MediaBench
AES Advanced encryption standard AILab
BLOWFISH Data encryption standard MiBench
SHA Secure hash algorithm MiBench

Table 5.1: CHStone benchmark suite list

5.3 Result evaluation

The first test results are about stand-alone floating-point arithmetic operators;
each test consists of the synthesis of a floating-point operator with different

57

Chapter 5. Results

customized representations to mainly evaluate area footprint reduction. The
actual synthesis is performed on a Xilinx Zynq xc7z020-1clg484 FPGA board,
Bambu is configured to use GCC 7 as fronted, and -lm and –soft-float parameters
are passed to the HLS tool to force the usage of software implemented floating-
point operators. Thanks to these measures the proposed design flow will have
complete control over operators design during the synthesis process. Results
obtained from a test on the floating-point double precision division operator
are shown in Table 5.2.

Benchmark Name Cycles LUTs Slices Registers DSPs BRAMs Frequency Clock Slack
fdiv64 33 803 267 654 0 0 119.50 1.63
fdiv64-wo_nan 33 655 223 654 0 0 112.93 1.14
fdiv64_45 33 749 250 612 0 0 114.48 1.27
fdiv64_40 33 699 251 582 0 0 117.65 1.50
fdiv64_35 33 644 219 552 0 0 118.55 1.56
fdiv64_30 33 548 207 522 0 0 116.40 1.41
fdiv64_23 33 482 170 480 0 0 118.25 1.54

Table 5.2: Customized floating-point representations test for double precision division
operator

Test fdiv64-wo_nan from Table 5.2 shows how removing special symbols, such
as NaN and infinity, from standard double-precision representation can help
reducing area footprint. Value range analysis is exploited to specify a smaller
range for the exponent, [−1023, 11, 1023] in this case, and propagate it through
the operator logic: specifying an exponent range deprived of the 1024 value
means all conditional checks about special symbols of the IEEE 754 representa-
tions will be removed, thus eliminating the relative computational logic. Fur-
thermore, tests labeled as fdiv64_X deal with a customized representation fea-
turing an X bits significand, thus a reduced precision representation which can
be used when full precision is unnecessary, to lower resources requirements and
improve power consumption. A quite consistent area reduction can be obtained
by the combination of shorter significand bitwidth and special symbology re-
moval from the standard representation. It is interesting too to observe that
the area gain from significand bitwidth reduction is directly proportional to the
number of removed bits, thus floating-point precision and resource utilization

58

5.3. Result evaluation

are linearly related. Finally, a single-precision test result is reported too in Table
5.3.

Benchmark Name Cycles LUTs Slices Registers DSPs BRAMs Frequency Clock Slack
fdiv 17 383 117 312 0 0 121.82 1.79
fdiv-wo_nan 17 325 105 290 0 0 123.49 1.90
fdiv_17 17 313 100 270 0 0 122.09 1.81
fdiv_12 17 266 86 234 0 0 118.57 1.57
fdiv_8 17 228 80 206 0 0 115.59 1.35

Table 5.3: Customized floating-point representations test for single precision division
operator

As seen previously for the double-precision case, similar conclusions can
be drawn from the proposed benchmark: the relation between significand
bitwidth and area reduction is still directly proportional even for the single
precision customization case.

The same type of tests have been executed with other compilers as fronted,
such as GCC 4.9, Clang 4, and Clang 7, and relative results observed above
where confirmed: running with GCC 7 gave the best absolute results in terms
of area footprint among the four tested frontends.

For the second part of the benchmark, the CHStone suite was synthe-
sized on a Xilinx Zynq xc7z020-1clg484 FPGA board, while PandA Bambu was
tested with many configurations which will be described in the following. As a
baseline for the comparison, the same programs were synthesized with value
range analysis disabled. Experimental results are presented in two forms for
each test configuration:

Box plot: gives a quick overview of how the experiment performed in
global terms; each graph features five statistics about the generated designs
reported as percentual difference from the baseline. Covered aspects are overall
design area (lower is better), an Area*Time metric value, which helps to figure
out the overall optimization behavior both in terms of area and latency (lower
is better), frequency, which represents the expected clock frequency of the
generated design (higher is better), registers count (lower is better), and slices
count (lower is better).

Table list: a detailed report of each benchmark along with its related

59

Chapter 5. Results

baseline, to better visualize absolute values of generated designs. The table
reports ten different aspects for each benchmark: total design latency, number
of required clock cycles, some detailed information about area footprint, such
as LUTs, slices, registers, DSPs and BRAMs count, design clock frequency and
clock slack and finally the HLS time, which reports PandA Bambu design time.

The first configuration proposed will be addressed as BAMBU-AREA and
is concerned about producing the smallest possible design from the synthesis.
Figure 5.1 shows results for this type of build performed using GCC 4.9 and
Clang 4 as frontends for the HLS tool; Table 5.4 and Table 5.5 report detaild
results about the test.

Area
Area*Time

Frequency

Registers

Slices

−0.05

0

0.05

0.1

0.15

In
cr

em
en

t(
%

)

GCC 4.9 BAMBU-AREA

Area
Area*Time

Frequency

Registers

Slices

−0.2

−0.1

0

0.1

0.2

In
cr

em
en

t(
%

)

Clang 4 BAMBU-AREA

Figure 5.1: CHStone benchmark overview for GCC 4.9 (left side) and Clang 4 (right
side) frontends. AREA

It is immediately clear how results are quite sparse, this is due to a par-
ticular application dependant behavior of the proposed design flow: it has
been observed that effectiveness can be pretty high for some programs, while
being insignificant for others. This is related to the fact that it is not always
possible to apply effective constraints to program variables without affecting
the correctness of results, nor it is always possible to propagate constraints
successfully if memory operations are frequent. Anyhow, good results have
been observed on affected programs, which presented an area reduction of
4.5% on average at the cost of some latency.

60

5.3. Result evaluation

Benchmark Name Tot. Latency Num Cycles LUTs Slices Registers DSPs BRAMs Clock Frequency Clock Slack HLS Time(s)
adpcm 2.881 · 102 21575 4085 1463 3348 30 3 74.88 1.64 43.93
adpcm-base 2.908 · 102 21575 4290 1452 3468 30 3 74.19 1.52 34.12
aes 5.180 · 101 4032 3264 1222 2534 0 4 77.83 2.15 27.65
aes-base 5.184 · 101 4032 3085 1123 2496 0 4 77.77 2.14 21.65
bf 2.073 · 103 155524 3669 1169 2542 0 11 75.02 1.67 21.70
bf-base 2.129 · 103 155524 3672 1181 2542 0 11 73.04 1.31 15.01
dfadd 5.336 · 100 400 2133 741 1768 0 0 74.97 1.66 36.57
dfadd-base 5.171 · 100 400 2128 709 1757 0 0 77.36 2.07 17.69
dfdiv 2.382 · 101 1990 3216 1172 2985 12 0 83.54 3.03 37.46
dfdiv-base 2.400 · 101 1990 3213 1200 2975 12 0 82.90 2.94 19.46
dfmul 1.773 · 100 124 2039 658 1210 10 0 69.93 0.70 30.55
dfmul-base 1.785 · 100 124 2022 663 1209 10 0 69.47 0.61 14.05
dfsin 8.145 · 102 57033 7564 3062 7132 15 0 70.02 0.72 92.26
dfsin-base 7.987 · 102 57033 7555 2690 7116 15 0 71.41 1.00 23.77
gsm 5.152 · 101 3462 3804 1222 2328 22 1 67.20 0.12 40.77
gsm-base 5.110 · 101 3462 3821 1219 2343 22 1 67.75 0.24 16.08
jpeg 9.104 · 103 635367 10551 3348 5964 5 44 69.79 0.67 190.37
jpeg-base 9.212 · 103 635393 10672 3321 5976 5 44 68.98 0.50 90.56
mips 2.957 · 101 2680 1152 337 397 4 2 90.65 3.97 8.99
mips-base 2.957 · 101 2680 1152 337 397 4 2 90.65 3.97 5.99
mpeg2 3.288 · 101 2221 1822 613 967 0 1 67.54 0.20 8.04
mpeg2-base 3.158 · 101 2221 1799 597 973 0 1 70.33 0.78 5.09
sha_driver 2.088 · 103 160075 2094 727 1811 0 9 76.65 1.95 8.52
sha_driver-base 2.115 · 103 160075 2093 733 1808 0 9 75.70 1.79 6.22

Table 5.4: CHStone benchmark detail for GCC 4.9. AREA

Benchmark Name Tot. Latency Num Cycles LUTs Slices Registers DSPs BRAMs Clock Frequency Clock Slack HLS Time(s)
adpcm 2.817 · 102 19342 6924 2524 5641 73 5 68.67 0.44 54.06
adpcm-base 2.992 · 102 19842 7186 2976 5814 73 5 66.31 −0.08 47.00
aes 5.421 · 101 4250 2918 1159 2250 0 4 78.39 2.24 36.94
aes-base 4.853 · 101 4250 2979 1204 2298 0 4 87.58 3.58 31.00
bf 1.717 · 103 152494 3486 1158 2515 0 11 88.83 3.74 15.57
bf-base 1.717 · 103 152494 3486 1158 2515 0 11 88.83 3.74 15.01
dfdiv 2.452 · 101 1822 3240 1087 2019 14 0 74.29 1.54 39.82
dfdiv-base 2.324 · 101 1822 3262 1060 2046 14 0 78.41 2.25 28.33
dfmul 1.291 · 100 105 1420 460 737 10 0 81.33 2.70 33.21
dfmul-base 1.237 · 100 105 1530 479 766 10 0 84.90 3.22 34.41
dfsin 6.788 · 102 46684 8650 2642 4307 27 0 68.78 0.46 87.61
dfsin-base 6.653 · 102 46867 8984 2806 4425 27 0 70.44 0.80 50.09
gsm 5.259 · 101 3531 4466 1463 2418 28 1 67.14 0.11 78.07
gsm-base 5.225 · 101 3523 4641 1482 2555 27 1 67.43 0.17 55.38
jpeg 8.841 · 103 624116 13524 4652 8808 6 55 70.60 0.84 160.87
jpeg-base 9.103 · 103 624119 13850 4826 8881 5 55 68.56 0.41 110.96
mips 2.803 · 101 2679 1156 401 544 3 2 95.58 4.54 13.02
mips-base 2.803 · 101 2679 1156 401 544 3 2 95.58 4.54 11.34
mpeg2 2.433 · 101 2244 1634 609 1150 0 1 92.22 4.16 10.45
mpeg2-base 2.380 · 101 2244 1730 694 1274 0 1 94.30 4.40 9.07
sha_driver 1.873 · 103 155701 2147 789 1786 0 9 83.14 2.97 13.04
sha_driver-base 1.842 · 103 155701 2148 771 1832 0 9 84.52 3.17 11.74

Table 5.5: CHStone benchmark detail for Clang 4. AREA

61

Chapter 5. Results

Considering a more aggressive setup for PandA Bambu, called BAMBU-
PERFORMANCE, which instead instructs the design flow to privilege perfor-
mance at the expense of the area, the value range analysis performed better
overall, generating smaller designs and positively affecting performance too
with respect to the baseline. Some of the programs failed to be optimized also
in this case, but no significant degradation was observed. Figure 5.2 show re-
sults for GCC 4.9 and Clang 4 frontends; Table 5.6 and Table 5.7 show detailed
results.

Area
Area*Time

Frequency

Registers

Slices

−0.2

−0.1

0

0.1

In
cr

em
en

t(
%

)

GCC 4.9 BAMBU-PERFORMANCE

Area
Area*Time

Frequency

Registers

Slices

−0.2

−0.15

−0.1

−0.05

0

In
cr

em
en

t(
%

)
Clang 4 BAMBU-PERFORMANCE

Area
Area*Time

Frequency

Registers

Slices

−0.1

0

0.1

0.2

In
cr

em
en

t(
%

)

GCC 4.9 BAMBU-PERFORMANCE-MP

Area
Area*Time

Frequency

Registers

Slices

−0.2

−0.1

0

0.1

In
cr

em
en

t(
%

)

Clang 4 BAMBU-PERFORMANCE-MP

Figure 5.2: CHStone benchmark overviw for GCC 4.9 and Clang 4 frontends.
PERFORMANCE setup (above) and PERFORMANCE-MP (below) .

While the BAMBU-PERFORMANCE setup presented above features a
single-channel memory access design, also a similar one offering dual-channel
memory access has been tested (BABMU-PERFORMANCE-MP). As shown

62

5.3. Result evaluation

Benchmark Name Tot. Latency Num Cycles LUTs Slices Registers DSPs BRAMs Clock Frequency Clock Slack HLS Time(s)
adpcm 7.633 · 101 5034 13339 4180 7677 126 3 65.95 −0.16 124.20
adpcm-base 7.266 · 101 4934 12758 3944 7031 117 3 67.91 0.27 82.06
aes 4.188 · 101 3082 5525 2279 4698 0 4 73.60 1.41 39.82
aes-base 4.155 · 101 3082 5543 2320 4679 0 4 74.17 1.52 33.19
bf 2.065 · 103 150595 3661 1215 2494 0 13 72.92 1.29 21.83
bf-base 2.024 · 103 150595 3671 1243 2494 0 13 74.40 1.56 16.95
dfadd 3.014 · 100 203 1949 608 804 0 0 67.35 0.15 100.27
dfadd-base 3.013 · 100 203 2019 648 791 0 0 67.38 0.16 62.66
dfdiv 2.440 · 101 1785 3045 950 1777 18 0 73.14 1.33 56.92
dfdiv-base 2.534 · 101 1785 2841 919 1680 18 0 70.44 0.80 45.60
dfmul 1.213 · 100 85 1433 443 566 10 0 70.08 0.73 33.60
dfmul-base 1.534 · 100 105 1451 457 571 10 0 68.47 0.39 22.35
dfsin 7.061 · 102 45339 10339 3147 5097 41 0 64.21 −0.57 288.72
dfsin-base 6.796 · 102 45156 11256 3344 5165 41 0 66.44 −0.05 132.00
gsm 3.557 · 101 2328 8318 2767 4918 50 5 65.45 −0.28 527.79
gsm-base 3.604 · 101 2322 8551 2879 4832 55 5 64.43 −0.52 310.76
jpeg N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
jpeg-base N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mips 3.431 · 101 2670 1178 355 470 4 2 77.82 2.15 13.96
mips-base 3.521 · 101 2670 1177 353 470 4 2 75.84 1.81 10.66
mpeg2 1.475 · 101 1171 1479 494 928 0 2 79.40 2.41 9.19
mpeg2-base 1.545 · 101 1171 1485 484 934 0 2 75.78 1.80 5.46
sha_driver 1.521 · 103 116897 3474 1455 3065 0 9 76.84 1.99 132.06
sha_driver-base 1.387 · 103 116897 3446 1398 3064 0 9 84.27 3.13 108.83

Table 5.6: CHStone benchmark detail for GCC 4.9 frontend. PERFORMANCE

Benchmark Name Tot. Latency Num Cycles LUTs Slices Registers DSPs BRAMs Clock Frequency Clock Slack HLS Time(s)
adpcm 2.475 · 102 17045 7907 2820 6031 75 5 68.88 0.48 122.08
adpcm-base 2.611 · 102 17545 8041 2884 5959 74 5 67.21 0.12 88.96
aes 5.337 · 101 4183 3185 1200 2238 0 4 78.38 2.24 67.29
aes-base 5.315 · 101 4183 3217 1261 2332 0 4 78.70 2.29 54.80
bf 1.788 · 103 152494 3490 1174 2507 0 11 85.28 3.27 24.75
bf-base 1.788 · 103 152494 3490 1174 2507 0 11 85.28 3.27 23.14
dfadd 3.313 · 100 224 2533 771 854 0 0 67.60 0.21 87.95
dfadd-base 3.295 · 100 224 2663 841 1098 0 0 67.99 0.29 64.70
dfdiv 2.429 · 101 1794 3207 1036 1967 18 0 73.87 1.46 63.16
dfdiv-base 2.409 · 101 1784 3198 1028 1923 18 0 74.07 1.50 43.24
dfmul 1.216 · 100 90 1353 435 660 10 0 74.04 1.49 55.22
dfmul-base 1.232 · 100 91 1466 482 693 10 0 73.89 1.47 54.18
dfsin 6.623 · 102 44843 10322 3219 4416 31 0 67.71 0.23 229.95
dfsin-base 6.689 · 102 45111 10944 3374 4625 31 0 67.44 0.17 114.64
gsm 5.229 · 101 3537 4573 1499 2565 27 1 67.65 0.22 203.94
gsm-base 4.993 · 101 3537 4750 1543 2644 28 1 70.84 0.88 189.41
jpeg 7.643 · 103 545328 16765 5934 10958 11 55 71.35 0.98 272.23
jpeg-base 7.577 · 103 545921 16974 6193 11118 5 55 72.05 1.12 166.38
mips 3.350 · 101 2679 1220 422 564 3 2 79.97 2.50 19.02
mips-base 3.350 · 101 2679 1220 422 564 3 2 79.97 2.50 17.66
mpeg2 3.192 · 101 2205 7144 2680 4857 0 1 69.07 0.52 64.36
mpeg2-base 3.162 · 101 2207 7223 2657 4975 0 1 69.80 0.67 51.97
sha_driver 1.917 · 103 155437 1875 684 1550 0 9 81.07 2.66 18.89
sha_driver-base 1.928 · 103 155441 2089 773 1686 0 9 80.63 2.60 19.17

Table 5.7: CHStone benchmark detail for Clang 4 frontend. PERFORMANCE

from tables in Figure 5.2, an increased overall optimization was obtained on
dual-channel memory designs. Peaks observed in BAMBU-PERFORMANCE-
MP graphs are due to an anomalous behavior of the adpcm program, which
experienced a consistent degradation with respect to the baseline synthesis.
Table 5.8 and Table 5.9 show detailed results.

63

Chapter 5. Results

Benchmark Name Tot. Latency Num Cycles LUTs Slices Registers DSPs BRAMs Clock Frequency Clock Slack HLS Time(s)
adpcm 6.038 · 101 4266 16500 4945 9534 120 6 70.66 0.85 120.22
adpcm-base 6.063 · 101 4216 16146 4923 9007 106 6 69.53 0.62 78.19
aes 2.185 · 101 1595 5625 2114 4212 0 8 73.00 1.30 39.11
aes-base 2.215 · 101 1595 6045 2032 4409 0 8 72.00 1.11 32.79
bf 1.280 · 103 89799 3557 1241 2618 0 20 70.16 0.75 20.83
bf-base 1.309 · 103 89799 3579 1247 2618 0 20 68.62 0.43 16.11
dfadd 2.819 · 100 203 1926 567 783 0 0 72.00 1.11 94.23
dfadd-base 2.920 · 100 203 2019 606 843 0 0 69.53 0.62 57.04
dfdiv 2.478 · 101 1785 3153 1017 1811 18 0 72.02 1.12 55.46
dfdiv-base 2.432 · 101 1785 3225 995 1809 18 0 73.41 1.38 44.58
dfmul 1.488 · 100 105 1489 468 631 10 0 70.54 0.82 32.18
dfmul-base 1.499 · 100 105 1547 480 622 10 0 70.07 0.73 21.38
dfsin 6.679 · 102 45522 10403 3217 5148 41 0 68.16 0.33 283.01
dfsin-base 6.721 · 102 45339 11012 3370 5221 41 0 67.46 0.18 128.05
gsm 3.104 · 101 2048 9421 3033 5267 56 10 65.97 −0.16 517.49
gsm-base 3.125 · 101 2042 9655 3020 5276 59 10 65.33 −0.31 306.94
jpeg 6.446 · 103 450799 21915 6907 12241 7 58 69.94 0.70 222.84
jpeg-base 6.662 · 103 450802 21959 7152 13043 7 58 67.66 0.22 126.40
mips 3.154 · 101 2471 1085 338 406 4 4 78.34 2.23 13.98
mips-base 3.006 · 101 2471 1077 326 406 4 4 82.21 2.84 10.30
mpeg2 1.634 · 101 1162 1842 609 1165 0 4 71.10 0.94 8.97
mpeg2-base 1.498 · 101 1162 1702 584 1170 0 4 77.55 2.11 5.64
sha_driver 1.071 · 103 82480 4158 1579 3370 0 10 77.01 2.01 131.04
sha_driver-base 1.086 · 103 82480 4315 1589 3369 0 10 75.94 1.83 108.27

Table 5.8: CHStone benchmark detail for GCC 4.9 frontend. PERFORMANCE-MP

Benchmark Name Tot. Latency Num Cycles LUTs Slices Registers DSPs BRAMs Clock Frequency Clock Slack HLS Time(s)
adpcm 2.408 · 102 16333 10762 3994 8848 81 10 67.83 0.26 119.41
adpcm-base 2.537 · 102 16934 10655 3981 8610 69 10 66.75 0.02 87.52
aes 3.280 · 101 2890 4092 1567 3087 0 8 88.10 3.65 67.70
aes-base 3.294 · 101 2881 4054 1558 3161 0 8 87.47 3.57 54.85
bf 9.522 · 102 87056 3607 1330 2874 0 12 91.42 4.06 23.90
bf-base 9.522 · 102 87056 3607 1330 2874 0 12 91.42 4.06 21.77
dfadd 3.174 · 100 224 2442 769 995 0 0 70.58 0.83 86.32
dfadd-base 3.013 · 100 224 2390 737 995 0 0 74.34 1.55 64.97
dfdiv 2.456 · 101 1806 3142 1038 1902 18 0 73.54 1.40 61.52
dfdiv-base 2.303 · 101 1784 3160 1040 1922 18 0 77.45 2.09 42.04
dfmul 1.186 · 100 90 1198 394 613 10 0 75.88 1.82 53.13
dfmul-base 1.237 · 100 91 1458 491 693 10 0 73.54 1.40 51.81
dfsin 6.632 · 102 44843 10452 3201 4436 31 0 67.61 0.21 226.19
dfsin-base 6.726 · 102 45111 10822 3319 4594 31 0 67.07 0.09 112.72
gsm 4.092 · 101 2908 5105 1691 2987 32 3 71.07 0.93 208.92
gsm-base 4.098 · 101 2900 5421 1814 3033 31 3 70.77 0.87 191.51
jpeg 7.426 · 103 500903 19548 6571 10922 12 84 67.45 0.17 643.74
jpeg-base 7.321 · 103 501487 19759 6961 11259 9 84 68.50 0.40 168.90
mips 3.061 · 101 2488 1035 367 521 3 4 81.29 2.70 19.43
mips-base 3.061 · 101 2488 1035 367 521 3 4 81.29 2.70 17.47
mpeg2 2.792 · 101 2205 7223 2737 5274 0 1 78.99 2.34 60.70
mpeg2-base 2.610 · 101 2205 7376 2770 5412 0 1 84.49 3.16 49.59
sha_driver 1.311 · 103 109206 2790 924 2112 0 10 83.27 2.99 18.50
sha_driver-base 1.279 · 103 109210 2902 981 2232 0 10 85.40 3.29 18.13

Table 5.9: CHStone benchmark detail for Clang 4 frontend. PERFORMANCE-MP

Finally, an intermediate setting has been tested, again with both single-
channel and dual-channel approaches, to observe the proposed design behavior
in balanced scenarios. As in the BAMBU-PERFORMANCE case, an unexpected
degradation was detected with the adpcm program, thus peaks observed in
the results are due to this particular case; all other programs experienced an

64

5.3. Result evaluation

improvement in performance and resource utilization, as shown by presented
data. Furthermore, it has been interesting to observe that affected programs
from all previously described tests experienced an improvement regarding
slack timings. In the following, Figure 5.3 shows box plots for BAMBU-
BALANCED and BAMBU-BALANCED-MP configurations for GCC 4.9 and
Clang 4; Table 5.10, Table 5.11, Table 5.12, and Table 5.13 report detailed results.

Area
Area*Time

Frequency

Registers

Slices

−0.2

−0.1

0

0.1

In
cr

em
en

t(
%

)

GCC 4.9 BAMBU-BALANCED

Area
Area*Time

Frequency

Registers

Slices

−0.2

−0.1

0

0.1

In
cr

em
en

t(
%

)

Clang 4 BAMBU-BALANCED

Area
Area*Time

Frequency

Registers

Slices

−0.05

0

0.05

0.1

In
cr

em
en

t(
%

)

GCC 4.9 BAMBU-BALANCED-MP

Area
Area*Time

Frequency

Registers

Slices

−0.2

−0.1

0

0.1

0.2

In
cr

em
en

t(
%

)

Clang 4 BAMBU-BALANCED-MP

Figure 5.3: CHStone benchmark overviw for GCC 4.9 and Clang 4 frontends.
BALANCED setup (above) and BALANCED-MP setup (below)

65

Chapter 5. Results

Benchmark Name Tot. Latency Num Cycles LUTs Slices Registers DSPs BRAMs Clock Frequency Clock Slack HLS Time(s)
adpcm 2.378 · 102 16535 7443 2393 5234 49 3 69.55 0.62 66.89
adpcm-base 2.331 · 102 16485 6595 2181 4703 41 3 70.72 0.86 47.21
aes 5.316 · 101 4031 3309 1205 2472 0 4 75.82 1.81 35.44
aes-base 5.548 · 101 4031 3135 1135 2464 0 4 72.66 1.24 28.12
bf 1.990 · 103 149934 3621 1176 2498 0 11 75.36 1.73 21.94
bf-base 2.035 · 103 149934 3613 1229 2498 0 11 73.68 1.43 17.12
dfadd 3.014 · 100 203 1949 608 804 0 0 67.35 0.15 100.30
dfadd-base 3.013 · 100 203 2019 648 791 0 0 67.38 0.16 61.85
dfdiv 2.440 · 101 1785 3045 950 1777 18 0 73.14 1.33 56.93
dfdiv-base 2.534 · 101 1785 2841 919 1680 18 0 70.44 0.80 45.33
dfmul 1.213 · 100 85 1433 443 566 10 0 70.08 0.73 33.77
dfmul-base 1.534 · 100 105 1451 457 571 10 0 68.47 0.39 21.74
dfsin 7.061 · 102 45339 10339 3147 5097 41 0 64.21 −0.57 287.21
dfsin-base 6.796 · 102 45156 11256 3344 5165 41 0 66.44 −0.05 130.95
gsm 3.276 · 101 2346 4226 1395 2348 26 1 71.60 1.03 64.80
gsm-base 3.466 · 101 2346 4117 1324 2348 26 1 67.69 0.23 32.79
jpeg 7.109 · 103 504693 15665 5066 9674 7 44 71.00 0.91 215.61
jpeg-base 6.939 · 103 504696 15546 4890 9580 7 44 72.73 1.25 115.58
mips 3.574 · 101 2679 1221 375 494 4 2 74.96 1.66 13.64
mips-base 3.574 · 101 2679 1221 375 494 4 2 74.96 1.66 10.76
mpeg2 2.988 · 101 2200 1661 541 991 0 1 73.64 1.42 9.84
mpeg2-base 2.907 · 101 2200 1633 545 997 0 1 75.69 1.79 5.76
sha_driver 2.111 · 103 155437 2013 719 1768 0 9 73.62 1.42 22.53
sha_driver-base 2.023 · 103 155437 2046 727 1770 0 9 76.82 1.98 12.74

Table 5.10: CHStone benchmark detail for GCC 4.9 frontend. BALANCED

Benchmark Name Tot. Latency Num Cycles LUTs Slices Registers DSPs BRAMs Clock Frequency Clock Slack HLS Time(s)
adpcm 2.186 · 102 15452 9556 2939 6415 55 10 70.70 0.86 65.65
adpcm-base 2.215 · 102 15252 8748 2752 5684 45 10 68.86 0.48 45.86
aes 3.285 · 101 2635 4193 1434 2762 0 8 80.21 2.53 34.31
aes-base 3.153 · 101 2635 4138 1397 2713 0 8 83.56 3.03 27.28
bf 1.186 · 103 89157 3362 1056 2141 0 18 75.20 1.70 21.54
bf-base 1.203 · 103 89157 3362 1082 2141 0 18 74.12 1.51 16.30
dfadd 2.819 · 100 203 1926 567 783 0 0 72.00 1.11 93.44
dfadd-base 2.920 · 100 203 2019 606 843 0 0 69.53 0.62 58.77
dfdiv 2.478 · 101 1785 3153 1017 1811 18 0 72.02 1.12 55.64
dfdiv-base 2.432 · 101 1785 3225 995 1809 18 0 73.41 1.38 44.63
dfmul 1.488 · 100 105 1489 468 631 10 0 70.54 0.82 32.26
dfmul-base 1.499 · 100 105 1547 480 622 10 0 70.07 0.73 21.10
dfsin 6.644 · 102 45522 10416 3152 5098 41 0 68.51 0.40 284.21
dfsin-base 6.721 · 102 45339 11012 3370 5221 41 0 67.46 0.18 130.61
gsm 3.339 · 101 2303 4750 1515 2708 31 3 68.98 0.50 63.28
gsm-base 3.278 · 101 2303 4736 1519 2710 30 3 70.25 0.77 32.10
jpeg 6.119 · 103 458799 15815 5149 9358 7 58 74.98 1.66 208.24
jpeg-base 6.530 · 103 458802 15788 5162 9351 7 58 70.26 0.77 109.84
mips 3.163 · 101 2484 1084 333 454 4 4 78.54 2.27 13.05
mips-base 3.163 · 101 2484 1084 333 454 4 4 78.54 2.27 10.71
mpeg2 2.879 · 101 2189 2027 650 1257 0 1 76.02 1.85 9.45
mpeg2-base 2.851 · 101 2189 2026 651 1262 0 1 76.78 1.98 6.12
sha_driver 1.343 · 103 113318 2265 769 1794 0 12 84.36 3.15 21.88
sha_driver-base 1.403 · 103 113318 2309 778 1794 0 12 80.79 2.62 12.55

Table 5.11: CHStone benchmark detail for GCC 4.9 frontend. BALANCED-MP

66

5.3. Result evaluation

Benchmark Name Tot. Latency Num Cycles LUTs Slices Registers DSPs BRAMs Clock Frequency Clock Slack HLS Time(s)
adpcm 2.583 · 102 17445 7832 2756 5715 79 5 67.53 0.19 122.17
adpcm-base 2.542 · 102 17345 7782 2806 5710 69 5 68.23 0.34 88.28
aes 4.931 · 101 4183 3133 1168 2238 0 4 84.82 3.21 67.54
aes-base 5.040 · 101 4183 3337 1289 2335 0 4 83.00 2.95 54.68
bf 1.717 · 103 152494 3486 1158 2515 0 11 88.83 3.74 24.29
bf-base 1.717 · 103 152494 3486 1158 2515 0 11 88.83 3.74 22.71
dfadd 2.562 · 100 188 1854 566 686 0 0 73.37 1.37 74.54
dfadd-base 2.688 · 100 188 1986 619 869 0 0 69.95 0.70 48.38
dfdiv 2.467 · 101 1782 3092 999 1915 18 0 72.24 1.16 62.80
dfdiv-base 2.409 · 101 1784 3198 1028 1923 18 0 74.07 1.50 42.50
dfmul 1.216 · 100 90 1353 435 660 10 0 74.04 1.49 55.44
dfmul-base 1.232 · 100 91 1466 482 693 10 0 73.89 1.47 53.97
dfsin 6.512 · 102 46065 8455 2613 4119 31 0 70.74 0.86 181.25
dfsin-base 6.677 · 102 46248 8932 2757 4235 31 0 69.26 0.56 93.73
gsm 5.265 · 101 3523 4503 1496 2536 27 1 66.92 0.06 207.11
gsm-base 5.172 · 101 3523 4538 1489 2568 28 1 68.12 0.32 193.30
jpeg N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
jpeg-base N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mips 3.350 · 101 2679 1220 422 564 3 2 79.97 2.50 19.79
mips-base 3.350 · 101 2679 1220 422 564 3 2 79.97 2.50 17.75
mpeg2 3.179 · 101 2201 7128 2657 4859 0 1 69.23 0.56 64.06
mpeg2-base 3.162 · 101 2207 7223 2657 4975 0 1 69.80 0.67 52.58
sha_driver 1.808 · 103 155439 1875 686 1541 0 9 85.98 3.37 17.96
sha_driver-base 1.943 · 103 155441 2050 759 1678 0 9 80.02 2.50 18.32

Table 5.12: CHStone benchmark detail for Clang 4 frontend. BALANCED

Benchmark Name Tot. Latency Num Cycles LUTs Slices Registers DSPs BRAMs Clock Frequency Clock Slack HLS Time(s)
adpcm 2.547 · 102 16737 10464 3510 7886 78 14 65.72 −0.22 138.10
adpcm-base 2.451 · 102 16284 9298 3438 7371 73 14 66.44 −0.05 89.01
aes 3.207 · 101 2881 4065 1545 3093 0 8 89.84 3.87 68.84
aes-base 3.481 · 101 2881 4050 1590 3190 0 8 82.75 2.92 53.19
bf 9.912 · 102 92256 3343 1107 2267 0 14 93.08 4.26 24.00
bf-base 9.912 · 102 92256 3343 1107 2267 0 14 93.08 4.26 22.46
dfadd 2.853 · 100 210 1821 557 720 0 0 73.61 1.41 69.87
dfadd-base 2.837 · 100 210 1915 600 772 0 0 74.02 1.49 47.11
dfdiv 2.323 · 101 1794 3165 999 1966 18 0 77.24 2.05 64.39
dfdiv-base 2.489 · 101 1784 3199 1020 1921 18 0 71.67 1.05 42.85
dfmul 1.186 · 100 90 1198 394 613 10 0 75.88 1.82 54.15
dfmul-base 1.237 · 100 91 1458 491 693 10 0 73.54 1.40 52.24
dfsin 6.652 · 102 46065 8324 2571 4142 31 0 69.25 0.56 180.15
dfsin-base 6.685 · 102 46248 8736 2672 4289 31 0 69.18 0.54 90.48
gsm 3.978 · 101 2894 4568 1534 2566 31 5 72.75 1.25 204.24
gsm-base 4.001 · 101 2886 4678 1568 2617 32 5 72.13 1.14 188.04
jpeg 7.402 · 103 507940 17375 5625 9582 12 84 68.62 0.43 725.52
jpeg-base 7.346 · 103 507935 17967 6050 9743 11 84 69.14 0.54 131.66
mips 3.061 · 101 2488 1035 367 521 3 4 81.29 2.70 18.96
mips-base 3.061 · 101 2488 1035 367 521 3 4 81.29 2.70 17.40
mpeg2 2.846 · 101 2201 7173 2650 5275 0 1 77.33 2.07 65.96
mpeg2-base 2.625 · 101 2203 7374 2803 5412 0 1 83.93 3.09 52.36
sha_driver 1.312 · 103 113318 2106 731 1609 0 12 86.34 3.42 19.14
sha_driver-base 1.357 · 103 113322 2246 805 1729 0 12 83.53 3.03 18.86

Table 5.13: CHStone benchmark detail for Clang 4 frontend. BALANCED-MP

67

Chapter 5. Results

5.4 Conclusions

The first set of benchmarks revealed the efficacy of the proposed floating-point
customization technique, enabling the HLS design flow to remove unnecessary
logic when a lower precision level is required from the application or when spe-
cial symbols offered by IEEE 754 representation are not required. Furthermore,
the overall efficacy of the proposed design flow has been proved, as shown by
the CHStone benchmark suite. It is important to point out that tests on CH-
Stone programs where performed from a completely non-optimized starting
point, thus the design flow proved to be able to efficiently deduce and propa-
gate value range constraints during the design process generating an efficient
result compared with already optimized library functions.

68

Chapter 6

Conclusions and future work

A final summary about this thesis work will be presented, analyzing main goals
reached through the proposed HLS design flow implementation, followed by
some possibilities which could be interesting to explore with future develop-
ment work.

6.1 Design flow evaluation

As a first consideration of this thesis work it is worth saying that the possibility
to perform a static value range analysis inside an HLS design flow has been
successfully proven. The discussed algorithm has been fully implemented and
integrated into PandA Bambu HLS tool and the new design flow has proven to
be effective after testing on the proposed benchmark suite.

Taking up contributions listed in the introductory chapter, a full-fledged
algorithm starting from the state of the art has been implemented inside an
existing HLS tool design flow, enabling the value range analysis to gather nec-
essary information from the new Intermediate Representation (IR) considered.
Furthermore, the algorithm implemented to solve the value range analysis
problem has been proven to have a linear time complexity with respect to the
number of instructions of synthesized programs, as pointed out during the
algorithm discussion.

69

Chapter 6. Conclusions and future work

Many enhancements to the state of the art proposals have been implemented
along with the standard algorithm, to achieve a better efficacy in both integer
and floating-point value range analysis. A new range representation has been
designed to support a more accurate description of value ranges and to include
floating-point representation as a new feature.

The existing BitValue inference algorithm featured in PandA Bambu HLS
tool has been successfully upgraded to support floating-point representation
analysis and to allow an effective propagation of constraints also through
floating-point operations. Moreover, a profitable interaction between value
range analysis and BitValue inference has been implemented, enabling cooper-
ation of the two algorithms to achieve a better result through data sharing.
Additionally, thanks to the new capabilities included in the design flow, it has
been possible to design a floating-point representation customization interface,
which has been proven to be effective as shown by proposed experiments on
floating-point arithmetic operators.

In conclusion, the overall efficacy of the proposed design flow has been
illustrated through the specifically arranged benchmark suite exposed in chap-
ter 5, proving expected results which certify the capabilities of the proposed
implementation.

6.2 Future developments

The proposed implementation could still be enhanced to improve awareness
on values stored in variables loaded from memory: current implementation
can not track memory interactions of programs, thus it is quite inaccurate when
dealing with values loaded from memory. It would be of great impact to per-
form a pointer analysis to track values associated with pointers by load and
store operations, to gain a deeper knowledge of memory structure and allocated
values: thanks to this information it would be possible to propagate constraints
even through memory operations.

Furthermore, it could be of interest to add support for a dynamic value range
analysis, along with the static one, to enable more aggressive optimizations,

70

6.2. Future developments

when global correctness is not required by the applications. As explained be-
fore, a dynamic analysis would allow an emphasized optimization at the cost
of correctness outside the input training set used during the evaluation pro-
cess. This type of analysis can give better results when program inputs are well
known and restricted to a small subset of the possible ones.

Finally, it could be very useful for critical applications to implement the pos-
sibility to statically check for undesired overflows, unwanted memory location
accesses and all value range related undesired behaviors, which could be de-
tected during the abstract interpretation of the program performed by the value
range analysis algorithm. Thanks to these types of checks, developers could ex-
ploit the analysis to fix numerous issues which normally require much more
effort because of the need to design ad-hoc tests.

71

References

[1] V. Benara, S. Rampalli, Z. Choudhury, S. Purini, and U. Bondhugula. Syn-
thesizing power and area efficient image processing pipelines on fpgas
using customized bit-widths. CoRR, abs/1803.02660, 2018. URL http:

//arxiv.org/abs/1803.02660.

[2] R. Bodik, R. Gupta, and V. Sarkar. Abcd: Eliminating array bounds
checks on demand. SIGPLAN Not., 35(5):321 – 333, May 2000. ISSN
0362 - 1340. doi: 10.1145/358438.349342. URL https://doi.org/10.1145/

358438.349342.

[3] M. Budiu, M. Sakr, K. Walker, and S. C. Goldstein. Bitvalue inference: De-
tecting and exploiting narrow bitwidth computations. In A. Bode, T. Lud-
wig, W. Karl, and R. Wismuller, editors, Euro-Par 2000 Parallel Processing,
pages 969–979, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN
978-3-540-44520-3. doi: 10.1007/3-540-44520-X_137.

[4] V. Campos, R. Rodrigues, I. de Assis Costa, and F. Pereira. Speed and
precision in range analysis. In Francisco Heron de Carvalho Junior and
Luis Soares Barbosa, editors, Programming Languages, pages 42–56, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-33182-4. doi:
10.1007/978-3-642-33182-4_5.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages, POPL ’77, pages 238 – 252, New York, NY,
USA, 1977. Association for Computing Machinery. ISBN 9781450373500.
doi: 10.1145/512950.512973. URL https://doi.org/10.1145/512950.

512973.

[6] M. Gort and J. H. Anderson. Range and bitmask analysis for hardware
optimization in high-level synthesis. In 2013 18th Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 773–779, 2013. doi: 10.
1109/ASPDAC.2013.6509694.

[7] R. Rodrigues, V. Campos, and F. Pereira. A fast and low-overhead tech-
nique to secure programs against integer overflows. In Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), pages 1–11, 2013. doi: 10.1109/CGO.2013.6494996.

73

http://arxiv.org/abs/1803.02660
http://arxiv.org/abs/1803.02660
https://doi.org/10.1145/358438.349342
https://doi.org/10.1145/358438.349342
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973

References

[8] L. Rosa and V. Bonato. A method to convert floating to fixed-point ekf-
slam for embedded robotics. Journal of the Brazilian Computer Society, 19, 06
2012. doi: 10.1007/s13173-012-0092-4.

[9] S. Roy and P. Banerjee. An algorithm for converting floating-point com-
putations to fixed-point in matlab based fpga design. In Proceedings of
the 41st Annual Design Automation Conference, DAC ’04, pages 484–487,
New York, NY, USA, 2004. Association for Computing Machinery. ISBN
1581138288. doi: 10.1145/996566.996701. URL https://doi.org/10.1145/

996566.996701.

[10] S. Roy and P. Banerjee. An algorithm for trading off quantization error
with hardware resources for matlab-based fpga design. IEEE Transactions
on Computers, 54(7):886–896, 2005.

[11] Z. Su and D. Wagner. A class of polynomially solvable range con-
straints for interval analysis without widenings and narrowings. In
Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 280–295, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg. ISBN 978-3-540-24730-2. doi: 10.1007/
978-3-540-24730-2_23.

[12] Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd edi-
tion, 2012. ISBN 0321842685.

74

https://doi.org/10.1145/996566.996701
https://doi.org/10.1145/996566.996701

	Title Page
	Contents
	Introduction
	Definitions
	High-Level Synthesis
	Generic compiler
	HLS tool

	Interval arithmetic
	Floating-point arithmetic internals

	State of the art
	Value Range Analysis
	Static Range Analysis
	Dynamic Range Analysis

	Abstract interpretation algorithm
	Range Definition
	Constraints Definition
	Extended SSA
	Solving Range Analysis Problem

	Bit Value Inference
	Conclusions

	Proposed solution
	Range Analysis at HLS Level
	Design Choices

	Value Range Analysis Algorithm
	Range representation
	Generating e-SSA
	Constraints graph definition
	Floating-point range constraints
	Resolution algorithm
	BitValue Inference enhancement

	Floating-point encoding customization
	Conclusions

	Results
	Experimental setup
	Benchmark suite
	Single operators
	Complete applications

	Result evaluation
	Conclusions

	Conclusions and future work
	Design flow evaluation
	Future developments

	References

