
POLITECNICO DI MILANO
SCHOOL OF INDUSTRIAL AND INFORMATION

ENGINEERING
Master Degree in Automation and Control Engineering

Posted Pricing with Time-Discounted
Valuations and Poisson Arrivals

Supervisor: Prof. Nicola Gatti
Co-Supervisors: Giulia Romano, Alberto Marchesi

Master Thesis of:
Gianluca Tartaglia

ID 899867

Academic Year 2018-2019





Sommario

In questa tesi definiamo dei meccanismi economici detti di posted-price al
fine di vendere un unico bene entro un certo periodo di tempo. Un esempio
pratico è quello degli affitti a lungo termine di camere e/o appartamenti.
Il nostro obiettivo è quello di progettare meccanismi che siano in grado di
massimizzare il guadagno. Si assume che gli agenti arrivino nel mercato in
modo sequenziale, secondo un processo di Poisson e venga offerto loro un
take-it-or-leave-it price. Le loro valutazioni sono ignote al venditore e tempo
varianti. In particolare sono assunte decrescere nel tempo secondo una fun-
zione di sconto. Definiamo e analizziamo due scenari che differiscono nelle
assunzioni sulle valutazioni. Questi scenari sono studiati sia con un approc-
cio teorico, che tramite programmazione matematica.
Inizialmente, studiamo lo scenario Identical Valuation, dove tutti gli agenti
hanno la stessa valutazione del bene, ignota al venditore. In questo scenario,
proponiamo il meccanismo ottimo, secondo una worst-case competitive anal-
ysis, nel caso di generica funzione di sconto. Nel caso di sconto lineare del
tempo, il meccanismo ottimo, che chiamiamoM1, ha una strategia di prezzo
continua nel tempo. Nello stesso scenario, viene presentato un approccio
tramite programmazione matematica che approssima arbitrariamente bene
il meccanismo ottimo.
Successivamente, studiamo lo scenario Random Valuation, dove le valutazioni
degli agenti sono estratte da un’ignota distribuzione di probabilità F che
presenta monotone non-decreasing hazard rate. Proponiamo un nuovo mec-
canismoM2 con una strategia di prezzo costante a tratti, nel caso di sconto
lineare nel tempo delle valutazioni. Studiamo le prestazioni di M1 e M2,
calcolando due lower bounds per il fattore competitivo. Questi valori risul-
tano costanti rispetto alla scelta di F . Lo scenario Random Valuation viene
studiato anche da una punto di vista di programmazione matematica.
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Abstract

In this thesis, we design economic mechanisms said of posted-price in order
to sell a unique good in a finite period of time. A practical example is the
long-term rental of rooms and/or apartments. The aim of the mechanisms
is to maximize the seller’s revenue. We assume agents sequentially arrive
to the market according to a Poisson process and are offered a take-it-or-
leave-it price. Their valuations are unknown to the seller and time-variant.
In particular, they are assumed to be decreasing over time according to a
discount function. We define and analyze two different scenarios which differ
in the assumptions made on the valuations. The settings are studied both
with theoretical and mathematical optimization approach.
We first study the Identical Valuation setting, where all agents have the same
valuation for the item, that is unknown to the seller. We provide the optimal
pricing mechanism according to a worst-case competitive analysis, in the case
of a generic discount function. We specify the optimal mechanismM1 when
the discount linearly depends on time. M1 has a pricing strategy that is
continuous over time. In the same scenario, a mathematical programming
approach is presented. This method turns out to approximate arbitrarily
well the optimal mechanism.
Then, we study the Random Valuation setting, where agents’ valuations
are drawn from an unknown distribution F with monotone non-decreasing
hazard rate. We provide a new mechanism M2 that propose a staircase
pricing strategy, in the case of linear discount. We study the performances
ofM1 andM2, deriving two lower bounds for the competitive ratios. These
values turn out to be constant with respect to the choice of F . The Random
Valuation setting is also studied from an optimization perspective.
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Chapter 1

Introduction

1.1 Research Area and Main Problem

In this thesis we design economic mechanisms said of posted-price for selling
a unique good within a finite period of time. We study such mechanisms
in an online setting, in the sense that agents’ arrival time has a dynamic
behavior that is modeled by a Poisson process and the valuations are un-
known to the seller. The seller interacts with agents by sequentially offering
a take-it-or-leave-it price. The mechanism terminates when an agent accepts
the offer and buys the item or the deadline expires. If an agent rejects the
offer, she leaves the market and never returns. In particular, agent i buys
the item if the resulting utility vi − pi is positive, where vi is her personal
valuation of the good and pi is the price posted by the seller. If the utility
is negative, the agent rejects the offer.
The aim of the mechanism is to maximize the seller’s revenue that, in this
setting, is equivalent to maximize the social welfare. Asking agents to report
their true values as prescribed by classical mechanism design is unrealistic:
they have no incentives to reveal more information than necessary. There-
fore, we use the bids as a proxy for their unknown valuations in order to find
the welfare-maximizing outcome. In this scenario the bid is the price paid
by the agent accepting the offer. Hence, the revenue-maximizing mechanism
also maximizes the social welfare. Posted-price auctions are also dominant-
strategy incentive-compatible (DSIC ), individually rational and weakly bud-
get balanced. In this setting the DSIC property means that acting truthfully
is a dominant strategy: buying or leaving reflects agents’ true preferences.
Even if valuations are not reported, we know that there is no strategic be-
havior.
Another advantage of the posted-price mechanisms is that they are robust

1



2 Chapter 1. Introduction

with respect to collusion, (a.k.a. group strategyproof ). An agent could help
another one only refusing an offer that could be convenient for her. But this
should be in contrast with her own utility.
Our mechanism is model-free because it does not rely on the assumption of
knowing the distribution of valuations, which would be highly improbable for
our setting. Indeed, in a single-item single-unit scenario there is no possibil-
ity of learning the demand curve, therefore, the seller cannot have accurate
beliefs about the distribution of valuations. Even in a repeated scenario it
could be difficult collecting samples. This explains why a Bayesian approach
cannot be used.
A further advantage of posted pricing is that agents do not need to wait
the outcome of the mechanism. Similarly to non-parametric learning, in
posting pricing the main computational effort is offline. Consequently, the
online computational effort is practically negligible and the agents immedi-
ately know whether they buy the item or not.
We propose for the first time in literature a time-variant model. We con-
sider a time-dependent behaviour of the agents’ valuations. Specifically, a
time decreasing discount is applied to the initial valuations of the agents.
This meets two possible interpretations and corresponding microeconimic
settings. In the first one the agents’ willingness to pay an item decreases
over time. In the second one the agents’ valuations are constant; but it is
crucial for a seller the time instant at which the item is sold. Specifically, the
later the item is sold, the smaller the revenue of the seller. It is to the latter
interpretation that we refer the motivating example. The time-dependency
challenge also highlights the role of the deadline. The presence of a deadline
clearly modifies the mechanism. The pricing strategy should be tuned with
respect to how much time there is before reaching the deadline.
Following the literature, the present work deals with two models. The first
one is the Identical Valuation scenario, in which all agents have the same
unknown discounted valuation. The second one is the Random Valuation
scenario, in which the undiscounted valuations are drawn from an unknown
probability distribution F . We suppose the widely recognised assumption
that F is a Monotone Hazard Rate - MHR - distribution.

1.1.1 Motivating Example

The long-term rental market in specific metropolitan areas is widespread
and fast growing. Handling the market changes and the dynamic of the
demand in an online manner, and simultaneously guaranteeing the revenue
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maximization could be hard in several real microeconomic scenarios. An
economic mechanism able to automatically solve this challenge could be a
good choice in terms of efficiency and revenue guarantees. A first possible
instance of this problem is that of a seller which aims to rent a room or
an apartment within a deadline. The potential buyers have their private
valuations over that room. The number of these agents are not a-priori
known to the seller who cannot even know the arrival time instants of these
agents. The private valuation of an agent could be assumed constant with
respect to a fixed amount of time, a month for example, or it could abruptly
change depending on the seasons. If for a buyer the number of rental months
is a mere question of need, for a seller it is a crucial point. A seller would
largely prefer to rent a room at the minimum price for twelve months rather
than for a month at the maximum price. It is clear that the time assumes
an essential role. A possible solution could be considering the cumulative
buyers’ valuations decreasing with respect to time. This thesis tries to solve
this problem when the seller have no information about the willingness-to-
pay of the customers.

1.2 Original Contributions

In the Identical Valuation framework, several alternative settings are consid-
ered. We propose the optimal mechanism with general shapes of continuous
decreasing private valuations. This mechanism represents the Upper Bound
on the basis of Competitive Analysis. This means that no mechanism reaches
a competitive ratio higher than the ours. In the case of linear discounting
valuations, we call the optimal mechanismM1. We also consider seasonabil-
ity of the market. We suppose the agents’ valuations could change abruptly.
This means that they have not a smooth behaviour in time. We propose an
analysis of this scenario and a mechanism able to achieve a constant com-
petitive ratio.
In the Random Valuation scenario we take into account the case of linearly
dependent valuations. In this framework we evaluate mechanismM1 which
exhibits a constant lower bound of the competitive ratio, independently from
the unknown MHR F . We also present a new mechanismM2 able to reach
a higher constant lower bound for the competitive ratio.
We also present an automated mechanism design method to both the set-
tings. We provide a flexible tool which can be adapted to different variants
of the model and/or additional constraints. In Identical Valuation, follow-
ing a mathematical programming approach, we introduce an algorithm able
to optimize the competitive ratio and reaching an estimate - both a lower
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and an upper bound - very close to the one of the optimal mechanism in a
reasonable amount of time. We call this algorithm the Maximum Valuation
Algorithm, or MVA. We also propose a mechanism handling a variant of the
model, in which seller cannot continuously change the price over time. We
adapt the MVA also in the Random Valuation scenario, proposing a new
possible interpretation of the model in this framework.

1.3 Thesis Structure

The Thesis is structured in the following way:

• Chapter 2 lays the theoretical groundings on which this work is based.
It presents some key concepts from Mechanism Design and Automated
Mechanism Design, presenting some methods to handle pricing prob-
lems from the literature.

• In Chapter 3 the identical Valuation scenario is studied. We provide
the optimal mechanism in three different scenario. Then we study the
case in which the agents’ valuation abruptly change.

• In Chapter 4 the same problem is addressed from a mathematical pro-
gramming point of view. It is presented an algorithm able to optimize
the competitive ratio, the MVA. Then some experimental results are
shown. We consider also possible variations of our model, including
one in which there is one more constrained, i.e. the price cannot be
modified continuously over time.

• Chapter 5 deals with the Random Valuation scenario in the case of
linear decreasing valuations. We discuss the role of the benchmark
mechanism, propose a new mechanismM2 and evaluate bothM1 and
M2.

• In Chapter 6 the Random Valuation scenario is treated applying an
optimization approach. We propose an interpretation of the model
with a Markov chain and a new version of the MVA.

• In Chapter 7 we draw conclusions. We summarize the main results of
our work and we propose some future developments.



Chapter 2

Preliminaries

Our work refers to a general and common microeconomic scenario, well-
known in some engineering fields, such as, for example, Economic Mecha-
nism Design, Algorithmic Game Theory and Multi-Agent Systems. In this
scenario, an agent - the seller - aims to sell an item, when some other agents
- the buyers - are interested in purchasing that item. Every agent is self-
interested. In general, it does not necessarily mean that they want to cause
harm to each other, or even that they care only about themselves. Instead, it
means that each agent has his own description of which states of the world he
likes—which can include good things happening to other agents—and that
he acts in an attempt to bring about these states of the world. In order to
represent the grade of happiness of an agent, the utility theory is the com-
mon practice. A utility function is a mapping from states of the world to
real numbers: each agent has a private valuation, or type over the item, that
represents her willingness-to-pay. The seller is a profit-maximizer.
In literature, many instances of this basis scenario have been studied. We
underline the main features considered. We may have one seller (monopoly),
multiple sellers (oligopoly) or many sellers (perfect competitive market). One
could be interested in selling one item, multiple items, and/or multi units of
a single item. The private valuations over these items should be considered
in a Bayesian scenario, where the buyers’ valuations are samples from some
probability distributions, which may be known, or unknown.
The theoretical approaches studied to manage these kinds of scenarios are
many. Obviously, they have similar characteristics, but at the same time,
they can be very different. We underline four main approaches’ techniques:
Mechanism design, Online mechanisms, Learning approach and Dynamic
Programming. It is worth mentioning the fact that strategies from different
approaches could share the same characteristics.

5



6 Chapter 2. Preliminaries

2.1 Economic Mechanism Design

Mechanism Design is a subfield of economic theory that is rather unique
within economics in having an engineering perspective, (Nisan et al., 2007).
We consider a scenario with a finite set of agents which are asked to declare
their type; but they may do truthfully or not. A simple example is that of
sealed-bid auction for a single item. Mechanism design is the art of design-
ing the rules of the game so that the agents are motivated to report their
type preferences truthfully, and a desirable outcome is chosen, (Conitzer and
Sandholm, 2004). This is the kind of question that a mechanism designer
tries to answer. Mechanism design has to decide two things: who wins what
and who pays what, that is basically the ultimate task of any pricing strate-
gies.
Consider the following scenario:

• N = {1, . . . , n} set of agents;

• O is a set of outcomes;

• Θ = Θ1 × · · · ×Θn is a set of possible joint type vectors;

• f is a probability distribution over Θ;

• u = u1, . . . , un, where ui : O × Θ 7−→ R is the utility function for each
player i;

• A = A1 × · · · ×An, where Ai is the set of actions available to player i;

• g: A1 × · · · ×An 7−→ O is the outcome function.

The first fundamental concept is that one of social choice function. It is
a function that maps the preferences of the players into an outcome.

Definition 1. (Social Chioce Function) A social choice function over N
and O is a function C : Θ 7−→ O.

Basically, given the preferences of the agents, a social choice function in-
vestigates ways in which they can be aggregated, respecting some properties,
such as efficiency or individually rationality. When studying the properties of
social choice functions, one assume to have perfect information of the types
of the agents. We start talking about strategic agents when we consider a
mechanism.

Definition 2. (Economic Mechanism) An economic mechanism is a tuple
(A,O, g).

Definition 3. (Bayesian Game) A bayesian game is a tuple (A,O, g,Θ, f, u).



2.1. Economic Mechanism Design 7

A social choice function chooses the outcome only considering the types
of the players, regardless the fact that a player should misreport her type. We
say that a mechanism implements a social choice function only if there exists
an equilibrium such that the outcome chosen by g is the same of the social
choice function. The aim of mechanism design is to select a mechanism,
given a particular Bayesian game setting, whose equilibria have desirable
properties, (Shoham and Leyton-Brown, 2008).

Definition 4. (Direct economic mechanism) Given a social choice func-
tion C, a direct (revelation) economic mechanism is a mechanism (Θ, O,C).

Thanks to the concept of direct mechanisms, we can now define the
following;

Definition 5. (Incentive compatibility) A social choice function C is in-
centive compatible (or truthfully implementable) if the Bayesian game in-
duced by the direct revelation economic mechanism (Θ, O,C) has a pure
equilibrium (according to some solution concept, e.g. dominant-strategy)
s∗1, . . . , s

∗
n such that s∗i (θi) = θi for every player i and type θi.

For a mechanism to be DSIC - dominant strategy incentive compati-
ble - means that for the players truthfully responding is a dominant strat-
egy, no matter what other players do. Moreover, every truthfully players is
guaranteed non-negative utility. A theorem by Gibbard and Satterthwaite,
known as impossibility theorem - (Gibbard), (Satterthwaite, 1975) - forces
the research to make more assumptions on the utility function (actually the
theorems maintains that other assumptions are possible, but they should
be too restrictive). We consider the case of quasi-linear environment, and
specifically single-parameter linear environment; the latter is a special sub-
class of the former and corresponds to the single-item single-unit case. With
this environment, Myerson achieves a fundamental result, (Myerson, 1981),
providing the optimal auction. The Myerson’s mechanism is the milestone of
economic mechanism design, the foundation on which the most of the next
mechanisms are built.
There are successful applications of economic mechanism design, for exam-
ple the Sponsored Search Auctions (SSAs) - see (Farina and Gatti, 2017)
or (Gatti et al., 2015). Similar approaches are based on Game Theory, for
example we mention the bargaining problem, - see (Giunta and Gatti, 2006),
or (An et al., 2016).
Myerson’s mechanism and, more generally, Vickrey auctions1 satisfy the sur-

1In a specific scenario the Myerson optimal auction is a Vickrey auction with an opti-
mally chosen reserve price.
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plus maximization property if the players report truthfully. Even though the
bidder valuations were a priori unknown to the auctioneer, the auction nev-
ertheless successfully identifies the bidder with the highest valuation. Unfor-
tunately, the assumptions made are too strong to be implemented in several
real economic scenarios2. This is the great weakness of Myerson’s mecha-
nism. See for example (Ausubel et al., 2006) with its very expressive and
meaningful title ’The lovely but lonely Vickrey auction’.
Vickrey auctions have several weaknesses. Varying the scenarios of interest,
these weaknesses can be more or less relevant. For instance, it should be
considered a multi-unit selling, or the presence of competitors in the market,
or some of the assumptions may be unrealistic, e.g the knowledge on the
probability distribution from which the buyers sample their private valua-
tions. Moreover, they are vulnerable to collusion by a coalition of losing
players and to the use of multiple bidding identities by a single bidder. It is
quite interesting another objection made by (Kleinberg et al., 2016). Theory
neglects the uncertain investment required to investigate purchases. Indeed,
information acquisition costs play a very important role in many economic
mechanisms. They propose an interesting connection with a real option.
In any case, the two main issues are the following: 1) very often it is not
possible to consider that all the agents are in the market in a specific time
instants, and that they wait until the end of the auction. Moreover, in some
settings, taking an auction is considered unfair. This is the case of the rent,
for example. 2) asking agents to report their valuations might be unfeasible.
Very often, buyers are unwilling to report their valuations. This encourages
alternative mechanisms.
To solve the last two issues a new kind of online mechanism has been studied:
the Posted-Pricing Mechanism, or Posted Price Auction.

2.2 Online Mechanisms

Online mechanisms handle a dynamic environment, in the sense of online
algorithm. Agents may arrive or departure, there is uncertainty about the
types of the players and, more in general, there is uncertainty about the
future. Information is revealed online and decisions must be made dynam-
ically. There are two main frameworks in which to study the performance
of online mechanisms. The first is model-free and is useful when a designer
does not have good probabilistic information about future agent types. The

2In some cases they can be used and are currently implemented, for example in con-
textual advertising, by Google and Facebook.
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second is model-based performing in a data-rich environment. It is reason-
able to believe that the seller can build an accurate model to predict the
distribution on types of buyers.
One of the most important type of mechanisms is the Posted-Pricing. In
this mechanism the seller offers a take-it-or-leave-it price to each potential
buyer facing the mechanism. The buyer either accept or rejects the offer. If
she accepts the offer then she wins the item; otherwise, if she rejects, she
leaves the market and the seller waits for the next player. In posted-price
mechanisms with single item, bidders have a dominant strategy to accept
any offer which is below their values, and reject it otherwise. Note that the
bidders are not expected to reveal their exact valuation, but only to send a
reject or accept message, (Babaioff et al., 2011).
From this point on, we will focus only on the posted-pricing, underlying some
of the most interesting works in literature. Basically there are two possible
ways to handle the dynamic of the demand. The first one, the simplest way,
is consider a certain number of agents that sooner or later appear in the
market. The dynamic behaviour of the demand is consider simply trough
a sequence of agents. The second one - ours choice - considers the arrival
times of the agents as a stochastic process, a common practice in literature
is the Poisson process.

A first typology of posted-pricing is the Sequential Posted pricing Mech-
anism, or SPM. SPMs has been studied by (Sandholm and Gilpin, 2003)
and (Blumrosen and Holenstein, 2008), but we refer our attention on ’Multi-
parameter Mechanism Design and Sequential Posted Pricing’, (Chawla et al.,
2010). In SPM only the question when the agents arrive is uncertain. The
questions how many agents or whether they arrive or not have certain an-
swers. Note that in our work also the last two are uncertain. Moreover,
the authors consider a data-rich environment, hence a model-based frame-
work. SPM offers in sequence take-it-or-leave-it prices to the agents, defining
both the the prices and the sequence. They reach a very good approxima-
tion with respect to the optimal auction. They also consider the so-called
Oreder-oblivious Posted pricing Mechanisms, or OPMs, in which it is not
possible to define the sequence of the agents facing the mechanism. How-
ever, the main results are reached by proposing an intuitive and quite simple
way to switch from single-parameter to multi-parameter scenario, using the
lens of approximation. The basic idea is that each multi-dimensional agent
is represented by many independent single-dimensional agents. An interest-
ing discussion regards the incentives of the agents. If in single-parameter
truthfully responding is a dominant strategy, in multi-parameter this does
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not hold anymore. They propose a method to preserve this guarantee.

An exciting connection exists between the theory of SPM and the so-
called Economic Prophet Inequalities, from the optimal stopping theory.
(Hajiaghayi et al., 2007) notice a natural analogy between the single-item
posted price problem and this theory proven in the 70s. Actually the anal-
ogy is much larger, including also the multi-parameter scenario. We refer
to (Lucier, 2017) for a good summary. Prophet inequalities theory basically
considers the following setting, let us call it the Treasure Game: ’there are
n locked treasure chests, each contain a treasure prize. Every chest has a
non-negative distribution over the possible prize. The values of the chest are
drawn independently. It’s possible to open a chest at a time. If you accept
the prize, the game ends; if you refuse the prize, it is lost to you forever.’
The pricing analogy is evident.

A similar setting is studied by Kleinberg and Leighton in their ’The Value
of Knowing the Demand Curve’, (Kleinberg and Leighton, 2003). They con-
sider n buyers potentially interested in a single-item with unlimited supply
in a model-free environment. Notice a very different assumption of unlimited
available units. They examine an additive regret E[S] − E[Sbench], where
S is the strategy of the studied mechanism, and Sbench is the strategy of
the benchmark. The interpratation proposed is very interesting: in the case
where buyers’ valuations are i.i.d. from a fixed unknown probability distri-
bution - usually specified by a demand curve - one can interpret the additive
regret as how much the seller should be willing to pay for knowledge of the
demand curve.

We want now to report other two fascinating works, which face issues not
yet solved in posting pricing, a possible strategic behaviour of agents and the
presence of competitors in the market. Let us consider the first issue, report-
ing a work by Mohri and Munoz, (Mohri and Munoz, 2014). They proposed
a quite different single-unit setting, in which the seller and a buyer face each
other in a real trade. They suggest that this scenario has three possible
interpratations: 1. a Second-Price Auction with reserve with one bidder -
even if there can be many potential buyers there’s always a 1vs1 situation;
2. Two-player repeated non-zero sum game with incomplete information and
3. a Multi Armed-Bandit problem, since only the reward for the price chosen
is accessible by the seller. The assumption that the valuations of the agents
are samples from an unknown distribution is broken. An agent should act
strategically against the seller, because they are in a two-player repeated
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game. The proposed idea is to consider a tree, where every node is labelled
with a price that is offered to the buyer. When a price is rejected, the seller
offers the same price for a specific number of rounds. The second work is a
recent study by Rong, Qin and An, (Rong et al., 2018). This study focus
on a competitive market. They consider a dynamic demand which implies
dynamic inventories for reusable resources. For each provider, they consider
a Birth Death process - a special Markov process - modelling the dynamic
supply. Since each provider aims to maximize her expected revenue, the op-
timal policy is supposed to be a pure strategy Nash equilibrium. Clearly, the
providers have not full information to compute such an equilibrium, the idea
proposed is an approximate Nash equilibrium that reaches very good results.
The goodness of this model is inside its intuitive way of representation of
the demand and the market competition, from the price sensitivity, to the
providers’ attractiveness.

Finally, we briefly discuss the two closest works with respect to our set-
ting, (Babaioff et al., 2011) and (Zheng et al., 2016). Both of them consider
a model-free single-unit scenario. They suppose the private valuations of the
agents to be samples i.i.d. from an unknown probability distribution, from
the family of Monotone Hazard Rate. Some of the results reached in these
works will be generalised in the present thesis.

2.3 Learning approach

This section is dedicated to briefly report some methods that use Machine
Learning techniques to solve pricing problems. It is clear that many learning
techniques are actually online methods. Nevertheless, we want to distinguish
the following approaches to that ones of the previous section because the for-
mer are more data-oriented.
First of all, note that a learning approach is possible only in a multi-unit
scenario. In posted pricing, when a player is interested in selling a single
unit of an item - or even few units - the learning ability is limited, because
the mechanism ends with the first accept message. Moreover, different from
the common mechanism design scenario, the players do not reveal their exact
valuations. Hence, we can only learn from a reject message and consequently
infer that the private valuation might be below that price. In other settings -
like the ours - these reject messages are not available because when an agent
faces a too high price, she simply leaves the market. Hence, the only way to
learn is to turn upside down a well-known proverb into a new formulation:
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silence gives dissent.
A further consideration about mechanism design and learning. In an auction
mechanism, if an agent knows that a revenue optimization algorithm is used,
she can decide to misreport her valuations. Indeed, consistent empirical evi-
dence of strategic behaviour by advertisers has been found by (Edelman and
Ostrovsky, 2007).

We now present a quite different posted pricing scenario with respect to
the ours, in which an unlimited inventory is available. There is no deadline,
and the assumption that there is a best price that can be chosen. Note that
such a best price may change during time. A currently used technique in
many real economic settings is the A/B/n testing which is an offline learning
technique. A huge amount of data is collected, then analysed and finally the
best candidate is chosen. A/B/n testing has several weaknesses. A much
more efficient method is Multi Armed Bandit.
One of the main works dealing with bandits from pricing actually has been
already mentioned, (Kleinberg and Leighton, 2003). We want now to refer
to two more recent works, (Trovo et al., 2015) and (Trovo et al.).
In a bandit problem, there is a finite number of prices candidates - the arms
- and at each time instant an algorithm should chose an arm. The goal is
the minimization of the regret, i.e. the loss the seller incurs in the choice of
a suboptimal arm. The Clairovoyant algorithm is defined as the ideal seller
which a-priori knows the expected value of each candidate and every time
selects the best one. Consider the following notation:

• A is a set of arms;

• at is the arm played at time t;

• a∗ is the optimal arm;

• µa is the expected reward of arm a;

Given an algorithm U , the cumulative regret after T roundsRT (U) is defined
as follows:

RT (U) = Tµa −
T∑
t=1

µat (2.1)

The assumptions made is the monotonicity of the demand curve and the
presence of a-priori information about the order of magnitude of the con-
version rate, i.e. the probability that a buyer purchases the good. MAB
techniques like UCB or Thompson sampling can be used, ensuring the min-
imization of the regret.
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Finally, we briefly present some machine learning techniques in second-
price auctions, (Medina and Mohri, 2014) and (Cesa-Bianchi et al., 2014).
The problem is to set the reserve price in a sequence of auctions. The pro-
posed idea is quite intuitive: by setting the reserve price low, the second
highest bid is observable. Hence it is possible to estimate the second highest
bid distributions. This allows to set a better reserve price. In order to fa-
cilitate future exploration, the new reserve price has to be set at the lowest
potentially optimal value.
Another very interesting work in auction is (He et al., 2013). In the frame-
work of sponsored search, a game theoretic machine learning approach is
presented. The authors propose to learn a Markov model from historical
data to describe how advertisers change their bids in response to an auc-
tion mechanism. They basically want to learn the strategic behaviour of the
players, avoiding the so called second order effect. Then, use the predicted
future bids to learn the auction mechanism.

2.4 Dynamic Programming approach

The last possible approach is the so called automated mechanism design.
A classical pricing setting can be seen as an optimization problem. The
parameters of mechanism design become the input, while the output is a
nonmanipulable mechanism that is optimal with respect to some objects.
Basically, there are two kinds of objects. A benevolent designer aims to
maximize the social walfare; a self-interested designer has an utility function
that depends only on the final outcome. There are two main advantages
with respect to the previous approaches: flexibility, i.e. the applicability to
a broader set of problems and efficiency, shifting the burden of a classical
method from humans to a machine.
We refer to (Conitzer and Sandholm, 2004). The authors present a very
intuitive representation of the optimization problem, identifying the Indi-
vidual rationality and the Incentive compatibility constraints. They study
the case of a self-interested designer, showing that the payment-maximizing
AMD problem is closely related to an interesting variant of the optimal
combinatorial auction design problem, where the bidders have “best-only”
preferences.
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2.5 Competitive Analysis

We conclude this chapter exposing the evaluation criteria commonly used in
literature. If the economists have traditionally assumed that buyers’ valua-
tions are i.i.d. samples from a known probability distribution, computer sci-
entists adopted the worst-case model for buyers’ valuations. Our approach,
following (Kleinberg and Leighton, 2003) and (Babaioff et al., 2011), stays
in the middle. The i.i.d. hypothesis is preserved but the probability distri-
bution is unknown to the seller. The evaluation criterion follows is that one
of worst-case, and, more in general, of the Competitive Analysis.
In online problems the input is only partially available, some relevant input
data will be accessible only in the future. Competitive analysis is a powerful
tool to analyze the performance of an online mechanism. The idea is to com-
pare such an online mechanism to an offline one, which knows in advance
the input. This comparison is made through the concept of competitive ratio.

Definition 6. (Competitive Ratio) For a specific set of instances I, pos-
sibly infinite, let E[R(M)] be the expected value of a given mechanism M;
let bench be the expected revenue of the offline benchmark mechanism; we
say thatM has competitive ratio cM if:

cM = min
I

{
E[R(M)]

bench

}
(2.2)
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Identical Valuation

3.1 The Model

We consider the following scenario, both for Identical and Random Valua-
tion. A seller is interested to sell a single item within a finite period D, and
the item is single unit. At any t ∈ [0, D] the seller offers a take-it-or-leave-it
price. We use p(t) : [0, D]→ R+ to denote the pricing strategy of the seller.
Agents arrive online according to a Poisson process defined by parameter
λ. Since λ is a measure of the expected arrival rate of the agents, it can
be easily estimated and it’s considered known. It is worth underlining the
fact that we don’t know both the exact arriving times of the agents and the
number of total arrivals, but we have probability distributions over these
events, modeled with a Poisson process.
Each agent has a private valuation v(t) of the item. If she arrives at time t,
she buys the item if and only if v(t) ≥ p(t). It is important to stress the time
dependency of the private valuations. We assume a dependency of this type:
v(t) = ṽ · η(t) where η(t) : [0, T ] → [0, 1] is a non increasing function s.t.

η(0) = 1, η(T ) = 0. We call η(t) discounting valuation rate or discounting
rate and it is constant for all agents. ṽ is the undiscounted private valua-
tion. The posted price mechanism in a single parameter scenario is clearly
incentive compatible. This is no longer true when we are in multi-parameter
scenario. Here an agent could face a strategic dilemma of whether to accept
an offer early on or wait for a later offer. The seller doesn’t know the private
valuations and she can’t learn or infer any information about them. There
are different reasons why. First of all, we are in a Single-Item Single-Unit
scenario, hence there’s no way to infer something on an agent, given the in-
formation collected on the previous ones. Secondly, in this model, we don’t
ask the agents to reveal their private valuations, not even when one of them

15
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buys the item. In that case, one can only say that the private valuation
is above the price. Indeed asking agents to report their private valuations
might be unrealistic. Moreover, an agent has no incentive to reveal it, as she
may plan to participate in similar markets in the future.
The undiscounted private valuations of the agents Ṽ belong to the range[
Ṽmin, Ṽmax

]
, which is conventionally normalized in [1, h], where h = Ṽmax

Ṽmin
.

From this point on we call ṽ the undiscounted normalized private valuation
belonging to [1, h]. We consider ṽ drawn from a unique distribution F , which
is the cumulative distribution function. F belongs to the family F . Such a
distribution is unknown to the seller.
The definition of the family F splits our problem into the two sub-problems:
in the Identical Valuation scenario, F is the family of all possible Dirac delta
function distributions over [1, h], in the Random Valuation scenario, F is the
family of Monotone Hazard Rate distributions.

The goal of the seller is to define the pricing strategy that maximizes the
profit via competitive analysis with respect to an omniscient seller, which
has knowledge of the distribution F and the discounting rate. From this
point on we refer to her pricing strategy as the benchmark. In this chapter
we focus on the Identical Valuation scenario.

3.2 Three Different Scenarios

In the Identical Valuation scenario, all buyers’ undiscounted valuations ṽ
are equal. This settings is already studied in literature, see (Kleinberg and
Leighton, 2003) or (Babaioff et al., 2011). This value is unknown to the seller.
Notice that this doesn’t mean that the valuations of the buyers are equal.
Indeed, even if both ṽ and η(t) are equal to all agents, the arriving times
are different1. The benchmark knows F , hence the undiscounted valuation
ṽ, but it does not know the arriving times.
In this chapter we analyse three different scenarios - Figure 3.1, one for each
choice of the discounting rate η(t):

(a) η(t) = 1: is the undiscounted valuation case in which the valuations
are always equal to the undiscounted private valuations. This case has
already been discussed in (Zheng et al., 2016);

1The Poisson distribution is also called Law of Rare Events, where the rare event is not
the arrival of an agent, but the event that a certain person arrives. Hence in the Poisson
model, the probability that two events happen at the same time instant is considered null.
In our setting, this means that it is impossible that two buyers have the same valuation.
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(b) η(t) = 1− t
T : the linear discounting rate case;

(c) generic η(t)

Without loss of generality, we consider D = T . From this point on, where
not specified, we use the parameter T and we call it deadline. Hence T is
both the time within we have to sell the item and the time at which the
valuations of all players vanish - except for the undiscounted valuation case.

t

v

h

1

ṽ

T

(a) η(t) = 1

t

v

h

1

ṽ

T

(b) η(t) = 1− t
T

t

v

h

1

ṽ

T

(c) generic η(t)

Figure 3.1: The three different scenarios

3.3 The Upper Bound

We provide three different results in the following theorems, one for each
scenario. The third one is a generalization of the first two.

Theorem 1. In the Identical Valuation scenario with discounting rate η(t) =

1, the deterministic posted-price mechanism that achieves the best competitive
ratio is the one that posts:

p(t) =

{
h

1− t
t0 t ∈ [0, t0)

1 t ∈ [t0, T ]
(3.1)

where t0 ≤ T is the time s.t. 1 − e−λ(T−t0) = k and k ≤ 1 is a number
depending on λ, h and t0. Such a mechanism achieves a costant competitive
ratio of k

1−e−λT .

Theorem 2. In the Identical Valuation scenario with discounting rate η(t) =

1− t
T , the deterministic posted-price mechanism that achieves the best com-

petitive ratio is the one that posts:

p(t) =

{
h ·
(
1− t

T

)
· eλ(1− 1

k )t+ λ
2kT

t2 t ∈ [0, t0)

1− t
T t ∈ [t0, T ]

(3.2)
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where t0 ≤ T is the time s.t. 1 − 1
λT

(
1 + λt0 − e−λ(T−t0)

)
= k and k ≤ 1

is a number depending on λ, h, T and t0. Such a mechanism achieves a
competitive ratio of k

1− 1
λT (1−e−λT )

. Let us call this mechanismM1.

Theorem 3. In the Identical Valuation scenario with discounting rate η(t),
the deterministic posted-price mechanism that achieves the best competitive
ratio is the one that posts:

p(t) =

{
A · e

∫
f(t)dt t ∈ [0, t0)

η(t) t ∈ [t0, T ]
(3.3)

where A is a constant, f(t) = λ − λ
kζ(t) −

ζ′(t)
ζ(t) and ζ(t) = 1

η(t) . k ≤ 1

is a number depending on λ, h, T and t0. Such a mechanism achieves a
competitive ratio of k

kbench
. kbench is the expected revenue of the benchmark

when ṽ = 1.

Before reporting the proofs of these theorems, we first refer to the fol-
lowing (Babaioff et al., 2011):

Observation 1. A posted-price mechanism should set the minimum price
p(t) = η(t) for a non null time interval. Otherwise the competitive ratio is
zero.

Indeed, consider a mechanism that never sets the minimum price and a
set of agents having undiscounted valuation ṽ = 1. Here, the necessary and
sufficient condition v(t) ≥ p(t), s.t. an agent buys the item, never holds.
Hence the expected revenue is zero, and so the competitive ratio. In our
setting, using the notation of (Zheng et al., 2016), the time interval in which
we set the minimum price is [t0, T ].
We now present two lemmas that highlight two crucial properties which
characterize optimal posted-price mechanisms in the IV setting.

Lemma 4 implies that the pricing strategy of an optimal mechanism
must be such that the undiscounted price defined as p(t)

η(t) is non-increasing
in t, whereas Lemma 5 shows that any mechanism which always provides a
constant fraction of the expected revenue of the benchmark, independently
of the agents’ undiscounted valuation ṽ, is an optimal mechanism.

Lemma 4. In the IV setting, given any deterministic posted-price mech-
anism M, there always exists a deterministic posted-price mechanism M′

with an undiscounted price pM′ (t)
η(t) non-increasing in t such that Ev[R(M)] ≤

Ev[R(M′)] for every possible agents’ undiscounted valuation ṽ ∈ [1, h].
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Proof (Lemma 4). We only need to prove the result for mechanisms
M whose undiscounted price pM(t)

η(t) is not non-increasing in t, otherwise the
statement of the lemma is trivially true.

The main idea of the proof is to let the time period [0, T ] be evenly
partitioned into time intervals of length τ such that the undiscounted price
function ofM is constant in each interval. This is w.lo.g. if we take τ → 0.
Then, there must be two consecutive time intervals, namely I1 := Is,τ and
I2 := Is+τ,τ for some starting time s ∈ [0, T − τ ], such that there exist
p1 < p2 ∈ [1, h] with pM(t)

η(t) = p1 and
pM(t)
η(t) = p2 during I1 and I2, respectively

(otherwise the undiscounted price would be non-increasing). Now, let us
define a mechanism M′ whose undiscounted price function is the same as
that of M, except for the fact that pM′ (t)

η(t) = p2 during I1 and pM′ (t)
η(t) = p1

during I2 (i.e., intuitively, we exchange the values in the two intervals so as
to make the undiscounted price non-increasing in that window of time, see
Figure 3.2 in case of linear discounting rate).

We show that the expected revenue provided by M′ is always greater
than or equal to that achieved by M, as long as τ → 0. In order to make
compare the expected revenues of the two mechanisms, it is sufficient to
focus on the window of time I1∪I2, where their price functions differ. Given
p1 and p2, we can partition the agents’ undiscounted valuations ṽ ∈ [1, h]

into three different subsets, as follows:

• ṽ < p1, implying that ṽ η(t) < pM(t) and ṽ η(t) < pM′(t) for every
time instant t ∈ I1 ∪ I2;

• p1 ≤ ṽ ≤ p2, implying that pM(t) ≤ ṽ η(t) ≤ pM′(t) for every time
instant t ∈ I1 and pM′(t) ≤ ṽ η(t) ≤ pM(t) for every time instant
t ∈ I2;

• ṽ > p2, implying that ṽ η(t) > pM(t) and ṽ η(t) > pM′(t) for every
time instant t ∈ I1 ∪ I2.

In the first case, E[R(M(ṽ))] − E[R(M′(ṽ))] = 0, since both M and M′

achieve an expected revenue equal to 0 during the time window I1∪I2, given
that the item is never sold in that window (as both pM(t) and pM′(t) are
always higher than the agents’ valuation ṽ η(t)). As for the second case, let
us assume p1 < ṽ < p2 (since the cases ṽ = p1 and ṽ = p2 are analogous).
Then,M can sell the item only during the interval I1, whileM′ can sell the
item only during the other interval I2. Thus, the difference E[R(M(ṽ))] −
E[R(M′(ṽ))] is equal to:∫ s+τ

s
p1η(t)λe−λtdt−

∫ s+2τ

s+τ
p1η(t)λe−λtdt
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which goes to 0 as long as τ → 0, given that η is continuous. Finally, in the
third case, we can compute the difference between the expected revenues of
the two mechanisms E[R(M(ṽ))]− E[R(M′(ṽ))] as follows:∫ s+τ

s
p1η(t)λe−λtdt+

∫ s+2τ

s+τ
p2η(t)λe−λtdt+

−
∫ s+τ

s
p2η(t)λe−λtdt−

∫ s+2τ

s+τ
p1η(t)λe−λtdt =

= (p1 − p2)

∫ s+τ

s
η(t)λe−λtdt− (p1 − p2)

∫ s+2τ

s+τ
η(t)λe−λtdt =

= (p1 − p2)

[∫ s+τ

s
η(t)λe−λtdt−

∫ s+2τ

s+τ
η(t)λe−λtdt

]
which is less than or equal to 0 as τ → 0, by continuity of η.

By re-iterating the procedure on all the pairs of consecutive infinitesimal
intervals defined as I1 and I2 (each time using the last mechanism M′ as
the newM), we can render the undiscounted price function non-increasing,
obtaining a final mechanismM′ such that E[R(M(ṽ))] ≤ E[R(M′(ṽ))] for
every possible agents’ undiscounted valuation ṽ ∈ [1, h]. �

ṽ3

ṽ2

ṽ1

s s+ τ s+ 2τ

pi

pi+1

(a) The first mechanism

ṽ3

ṽ2

ṽ1

s s+ τ s+ 2τ

pi

pi+1

(b) The second mechanism

Figure 3.2: Non-increasing mechanism: linear η(t)

Lemma 5. In the IV setting, let M be a deterministic posted-price mech-
anism whose pricing strategy pM satisfies pM(0) = h and pM(t) = η(t) for
t ∈ [t0, T ] ⊆ [0, T ]. If the ratio E[R(M(ṽ))]

bench(ṽ) does not depend on the agents’
undiscounted valuation ṽ, thenM is an optimal mechanism.
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Proof (Lemma 5). By contradiction, suppose thatM is not optimal,
i.e., there exists another deterministic posted-price mechanismM′ such that
cM′ > cM. According to Observation 1 and Lemma 4,M′ must be defined
by a pricing strategy pM′ such that the undiscounted price pM′ (t)

η(t) is non-
increasing in t and the minimum price is selected for a time interval [t′0, T ] ⊆
[0, T ] having non-zero length (recall that cM(ṽ) > 0 does not depend on ṽ
and cM = minv∈[1,h] cM(ṽ)).

Case t′0 ≥ t0. Let us consider the undiscounted valuation ṽ = 1.
Then, we have that the expected revenue of mechanismM is E[R(M(ṽ))] =∫ T
t0
η(t)λe−λtdt (accounting for the case in which an agent arrives at t ≥ t0

and buys the item at price η(t)), which is greater than or equal to the ex-
pected revenue of mechanismM′, defined as E[R(M′(ṽ))] =

∫ T
t′0
η(t)λe−λtdt.

Intuitively, E[R(M(ṽ))] ≥ E[R(M′(ṽ))] sinceM′ posts the minimum price
for a period of time shorter than that of M. Therefore, it holds cM′ ≤
cM′(ṽ) ≤ cM(ṽ) ≤ cM, which is a contradiction.

Case t′0 < t0. First, suppose that there exists a time instant t′ ∈ [0, t′0]

defined as t′ := sup{t ∈ [0, t′0] | pM(t) < pM′(t)}, i.e., the last time instant
in which pM(t) changes from being less than pM′(t) to being larger than or
equal to pM′(t). Clearly, it holds pM(t) ≥ pM′(t) for every t ∈ [0, T ] : t > t′.
Moreover, let us consider the agents’ undiscounted valuation ṽ′ ∈ [1, h] such
that ṽ′η(t′) = pM(t′) and focus on the case in which pM(t) = pM′(t) (as
the other cases are analogous). Notice that, for every time instant t ≤ t′,
mechanismM′ cannot sell the item, since, by using Lemma 4, we get:

ṽη(t) < ṽpM′(t)
η(t′)

pM′(t
′)

= ṽpM′(t)
η(t′)

pM(t′)
≤ ṽpM′(t)

η(t′)

ṽη(t′)
≤ pM′(t).

Additionally, with an analogous reasoning we can shows that, for all the
times t ∈ [0, T ] : t > t′, both mechanisms may sell the item, but the price
posted by M′ is always less than or equal to that chosen by M, with a
non-empty time interval in which the former is strictly less than the latter
(as t′0 < t0). Thus, in this case, it holds cM(ṽ) > cM′(ṽ), which implies that
cM′ < cM, a contradiction. Finally, it remains to analyze the case in which
a time instants t′ defined above does not exist. Since the undiscounted price
functions are non-increasing by Lemma 4 and t′0 < t0, it must be the case
that there is no intersection point between the two functions. Hence, it must
be pM(t) > pM′(t) for all t ∈ [0, t0], which implies that cM′ < cM by taking
ṽ = h. This leads to a contradiction. �
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ṽ

c

1

1 h

cM

bench

cM′

(c) if t′0 < t0 , @ t′

Figure 3.3: Parts of the Proof

3.3.1 The Benchmark

The last step before the proofs is a discussion about the omniscient bench-
mark. In the Identical Valuation scenario, it knows both the discounting
rate η(t) and the point mass distribution F , and so the undiscounted pri-
vate valuation ṽ of the agents. Nevertheless, it doesn’t know the arriving
times of the customers. The strategy of the benchmark is to post the price
pbench(t) = ṽη(t) for t ∈ [0, T ]. We give the following:

Observation 2. The expected revenue of the benchmark is linearly dependent
on the undiscounted private valuation ṽ.

It’s clear that the revenue of the benchmark is not a fixed value, but
it’s a random variable depending on the Poisson process. Let’s compute the
Expected Value of the Revenue of the benchmark. We refer to it as bench:

bench =

∫ T

0
pbench(t)λe−λtdt =

∫ T

0
ṽη(t)λe−λtdt = ṽ

∫ T

0
η(t)λe−λtdt = ṽ·kbench

(3.4)
It is evident the linear behaviour. The slope is called kbench and it represents
the expected revenue of the benchmark when the agents have the minimum
undiscounted valuation ṽ.

3.3.2 Proofs

We now present the proofs of the Theorem 1, Theorem 2, Theorem 3.
The basic idea is the following: since

i. the best deterministic posted-price mechanism has constant competi-
tive ratio for all the undiscounted private valuation ṽ (Lemma 5) and
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ii. the benchmark has a linear dependency in the variable ṽ (Observa-
tion 2) then

We search for a deterministic posted price mechanism whose expected rev-
enue is linearly dependent on the variable ṽ.

We give the following definition, next we proceed to the proofs.

Definition 7. Given a pricing strategy p(t) and a valuation v(t) we call t∗

the time instant s.t. t∗ ∈ [0, t0] and p(t∗) = v(t∗).

Given an undiscounted valuation ṽ, t∗ is the time instant after which the
condition v(t) ≥ p(t) is satisfied.

Proof (Theorem 1). Our aim is to define a pricing strategy p(t) :

[0, T ]→ R+ s.t. the Expected Revenue can be written as E[R(ṽ)] = k · ṽ for
some k. We already know that we should offer the minimum price for [t0, T ].
Hence, we can restrict the problem to the pricing strategy p(t) : [0, t0]→ R+.
Since η(t) = 1 we can write E[R(ṽ)] =

∫ t0
t∗ p(t)λe

−λ(t−t∗)dt+
∫ T
t0
λe−λ(t−t∗)dt.

While ṽ can be written as p(t∗). We have the following equation to solve,
where the function p(t) is unknown.

eλt
∗
∫ t0

t∗
p(t) · λe−λtdt+ eλt

∗
∫ T

t0

λe−λtdt = k · p(t∗) (3.5)

Let us derive with respect to t∗. The left side becomes:

∂E[R(ṽ)]

∂t∗
=

∂

∂t∗

(
eλt
∗
∫ t0

t∗
p(t) · λe−λtdt+ eλt

∗
∫ T

t0

λe−λtdt

)
=

= eλt
∗ ∂

∂t∗

(∫ t0

t∗
p(t)λe−λtdt

)
+ λeλt

∗
∫ t0

t∗
p(t)λe−λtdt+

+λeλt
∗
∫ T

t0

λe−λtdt

Rewrite the term ∂
∂t∗

(∫ t0
t∗ p(t)λe

−λtdt
)
as ∂

∂t∗G(t∗) where

G (t∗) =

∫ t0

t∗
p(t)λe−λtdt = −

∫ t∗

t0

p(t)λe−λtdt =

∫ t∗

t0

g(t)dt

Applying the fundamental theorem of calculus:

∂

∂t∗
G(t∗) = g(t∗) = −p(t)λe−λt
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Hence the derivative of the expected revenue becomes:

∂E[R(ṽ)]

∂t∗
= eλt

∗ ∂G (t∗)

∂t∗
+ λeλt

∗
∫ t0

t∗
p(t)λe−λtdt+ λeλt

∗
∫ T

t0

λe−λtdt

= eλt
∗
g (t∗) + λ

[
eλt
∗
∫ t0

t∗
p(t)λe−λtdt+ λeλt

∗
∫ T

t0

λe−λtdt

]

Notice the term in square brackets is exactly the left side of the Equation
3.5. We can now write the derivative of (3.5):

−eλt∗p (t∗)λe−λt
∗

+ λ [k · p (t∗)] = kp′ (t∗)

⇒ p′ (t∗) = λ

(
1− 1

k

)
p (t∗) (3.6)

The solution of the differential equation (3.6) is:

p (t) = A · e
∫
λ(1− 1

k )dt = A · eλ(1− 1
k )t (3.7)

Adding the boundary conditions s.t. p(0) = h and p(t0) = 1, we can
derive A = h and k = λt0

λt0+ln(h) . Finally we have to define t0. It must be the
time instant s.t. E[R(1)] = k. Hence:∫ T−t0

0
λe−λtdt = 1− e−λ(T−t0) = k

We can finally write the deterministic posted-price mechanism that achieves
the best competitive ratio:

p(t) =

{
h

1− t
t0 t ∈ [0, t0)

1 t ∈ [t0, T ]

This concludes the proof. �

Corollary 5.1. The above posted-price mechanism achieves a constant com-
petitive ratio of 1−e−λ(T−t0)

1−e−λT .

Proof (Corollary 5.1). The proof is trivial.

E[R(ṽ)]

bench(ṽ)
=

k · ṽ
kbench · ṽ

=
k

kbench
=

E[R(1)]

bench(1)
=

∫ T−t0
0 λe−λtdt∫ T

0 λe−λtdt
=

1− e−λ(T−t0)

1− e−λT

This concludes the proof. �
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t

p

h

1

Tt0

Figure 3.4: The Upper Bound ( I)

The proof of the Theorem 2 has the same structure as the previous one.
Here we have a linear discounting rate η(t) = 1− t

T .
Proof (Theorem 2). Our aim is to define a pricing strategy p(t) :

[0, T ] → R+ s.t. the Expected Revenue can be written as E[R(ṽ)] = k · ṽ
for some k. We already know that we should offer the minimum price for
[t0, T ]. Hence, we can restrict the problem to the pricing strategy p(t) :

[0, t0] → R+. The Expected Revenue is E[R(ṽ)] = eλt
∗ ∫ t0

t∗ p(t) · λe
−λtdt +

eλt
∗ ∫ T

t0

(
1− t

T

)
λe−λtdt, while ṽ

(
1− t∗

T

)
= p (t∗). We have the following

equation to solve, where the function p(t) is unknown.

eλt
∗
∫ t0

t∗
p(t) · λe−λtdt+ eλt

∗
∫ T

t0

(
1− t

T

)
λe−λtdt = k

T

T − t∗
p (t∗) (3.8)

Let us derive with respect to t∗. The left side:

∂E[R(ṽ)]

∂t∗
= eλt

∗ ∂G (t∗)

∂t∗
+λ

[
eλt
∗
∫ t0

t∗
p(t)λe−λtdt+ λeλt

∗
∫ T

t0

(
1− t

T

)
λe−λtdt

]
Where G (t∗) =

∫ t0
t∗ p(t)λe

−λtdt = −
∫ t∗
t0
p(t)λe−λtdt =

∫ t∗
t0
g(t)dt. We can

apply the fundamental theorem of calculus. Moreover the square brackets
term is exactly the expected revenue. The derivative of the right side of the
3.8 is:

∂

∂t∗

(
kT

T − t∗
p (t∗)

)
=

kT

T − t∗
p′ (t∗) +

kT

(T − t∗)2 p (t∗)

We can write the derivative with respect to t∗ of (3.8) getting the following
differential equation:

p′ (t∗) =

[
λ− λ (T − t∗)

kT
− 1

T − t∗

]
p (t∗) (3.9)
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The solution of (3.9) is:

p(t) = A · e
∫ [
λ−λ(T−t)

kT
− 1
T−t

]
dt

= A · eλ(1− 1
k )t+ λ

2kT
t2+ln(T−t)

Adding the boundary conditions s.t. p(0) = h and p(t0) = 1− t0
T , we can

derive A = h
T and k = λt0

2T−t0
2T (λt0+ln(h)) .

Finally we have to define t0. It must be the time instant s.t. E[R(1)] = k.
Hence:∫ T−t0

0

(
1− t

T

)
λe−λtdt = 1− 1

λT

(
1 + λt0 − e−λ(T−t0)

)
= k

We can finally write the deterministic posted-price mechanism that achieves
the best competitive ratio:

p(t) =

{
h ·
(
1− t

T

)
· eλ(1− 1

k )t+ λ
2kT

t2 t ∈ [0, t0)

1− t
T t ∈ [t0, T ]

This concludes the proof. �

t

p

h

1

Tt0

Figure 3.5: The Upper Bound ( II): mechanismM1

Corollary 5.2. M1 achieves a constant competitive ratio of 1− 1
λT (1+λt0−e−λ(T−t0))

1− 1
λT (1−e−λT )

.

Proof (Corollary 5.2). The proof is trivial.

E[R(ṽ)]

bench(ṽ)
=

k · ṽ
kbench · ṽ

=
k

kbench
=

E[R(1)]

bench(1)
=

∫ T−t0
0

(
1− t

T

)
λe−λtdt∫ T

0

(
1− t

T

)
λe−λtdt

=
1− 1

λT

(
1 + λt0 − e−λ(T−t0)

)
1− 1

λT (1− e−λT )
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This concludes the proof. �

Finally we give the proof of the Theorem 3. This is a generalization of
the previous two. Hence it has the same structure.

Proof (Theorem 3). Our aim is to define a pricing strategy p(t) :

[0, T ] → R+ s.t. the expected revenue can be written as E[R(ṽ)] = k · ṽ
for some k. We already know that we should offer the minimum price for
[t0, T ]. Hence, we can restrict the problem to the pricing strategy p(t) :

[0, t0] → R+. The Expected Revenue is E[R(ṽ)] = eλt
∗ ∫ t0

t∗ p(t) · λe
−λtdt +

eλt
∗ ∫ T

t0
η(t)λe−λtdt. while ṽη(t∗) = p (t∗). Hence ṽ = 1

η(t∗)p (t∗). We call
ζ(t) = 1

η(t) . We have the following equation to solve, where the function p(t)
is unknown.

eλt
∗
∫ t0

t∗
p(t) · λe−λtdt+ eλt

∗
∫ T

t0

η(t)λe−λtdt = kζ(t∗)p (t∗) (3.10)

We derive the equation 3.10 and apply the Fundamental theorem of cal-
culus, getting the following differential equation:

−λp (t∗) + λkζ (t∗) p (t∗) = kζ(t∗) (t∗) p′ (t∗) + kζ ′ (t∗) p (t∗)

⇒ p′ (t∗) =

[
λ− λ

kζ ′ (t∗)
− ζ ′ (t∗)

ζ (t∗)

]
p (t∗) (3.11)

The solution of (3.11) is:

p(t) = A · e
∫ [
λ− λ

kζ′(t)−
ζ′(t)
ζ(t)

]
dt

Adding the boundary conditions s.t. p(0) = h and p(t0) = η(t0), we can
derive A and k. We also define t0 s.t. E[R(1)] = k.

We can finally write the deterministic posted-price mechanism that achieves
the best competitive ratio:

p(t) =

{
A · e

∫ [
λ− λ

kζ′(t)−
ζ′(t)
ζ(t)

]
dt

t ∈ [0, t0)

η(t) t ∈ [t0, T ]

This concludes the proof. �

Corollary 5.3. The above posted-price mechanism achieves a constant com-

petitive ratio of
∫ T−t0
0 η(t)λe−λtdt∫ T

0 η(t)λe−λtdt
.
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Proof (Corollary 5.3). The proof is trivial.

E[R(ṽ)]

bench(ṽ)
=

k · ṽ
kbench · ṽ

=
k

kbench
=

E[R(1)]

bench(1)
=

∫ T−t0
0 η(t)λe−λtdt∫ T

0 η(t)λe−λtdt

This concludes the proof. �

3.4 Pricing and Convolution

The aim of this section is to show a different approach to the Identical Valu-
ation problem. We show a possible interpretation of the Expected Revenue
of a posted-price mechanism. We discuss the result in the following theorem.
The proof is very simple and immediate.

Theorem 6. In Identical Valuation scenario, consider a posted-price mech-
anism p(t) : [0, D]→ R+ s.t. ∀ ṽ ∈ [1, h], there exists an unique intersection
point t∗ between v(t) and p(t). For any probability density function over the
arrivals of the agents g(t) and for any decreasing valuation rate η(t);
The expected revenue of the mechanism is the convolution of the functions
P (t) and G(t) where P (t) = p(−t) · [H(D− t)−H(−t)], G(t) = g(t) · [H(t)−
H(t−D)] and H(t) is the Heaviside step function.

E[R(t̃)] = (P ∗G)(t̃) =

∫ ∞
−∞

P (t̃− τ) ·G(τ)dτ (3.12)

where t̃ = −t∗.

Proof (Theorem 6). The convolution equation is simply derived by
the definition of the expected revenue. We call p̃(t) = p(−t)

E[R(t̃)] =

∫ D−t∗

0
p (t+ t∗) g(t)dt =

=

∫ D−t∗

0
p̃ (−t− t∗) g(t)dt =

∫ D+t̃

0
p̃(−t+ t̃)g(t)dt =

=

∫ ∞
−∞

p̃(−t+ t̃)[H(D − t)−H(−t)] · g(t)[H(t)−H(t−D)]dt = (P ∗G)(t̃)

This concludes the proof. �

This theorem suggests an interpretation of the expected revenue of a pric-
ing strategy. The expected revenue is the weighted average of the function
P (t) - the reverse pricing curve - at the time t̃ where the weighting is given
by G(−t) - the reverse probability density function - shifted by amount t̃.
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3.5 Variation of the Model: Abrupt Changes

In this section we show a possible variation of the model. We take into
account the effects of the seasonability on the market. We consider these
effects through abrupt changes in the valuations of the buyers, i.e. in the
discounting rate.
Let us consider the following modified model. There are N τ -lengthed phases
in which the valuations of the agents are continuous over time. From a phase
to the next one, an abrupt change occurs. In each phase i there is a max-
imum valuation vmaxi and a minimum valuation vmini , where vmini ≥ vmini+1 .
Without loss of generality, we assume vmaxi be h · vmini , ∀i. Indeed, h can
be the maximum ratio between valuations over the phases. We define the
undiscounted valuation ṽ as the ratio between the valuation of an agent in
a certain phase normalized with respect to the minumum valuation of that
phase. In this new model, the Identical Valuation scenario suggests that
each agent has a private undiscounted valuation ṽ.
In each phase i, the valuations have time-dependency ṽvmini ηi(t), where ηi(t)
is the continuous discounting rate of the ith phase. In principle these func-
tions should change from a phase to another one. Initially we consider the
undiscounted case, in which ηi(t) = 1, for i = 1, . . . , N . Secondly, we will
consider the linear and general discounting rate case.
Notice that the only assumption made on vmini is that they are non-increasing
in i. This means that the magnitudes of these parameters could be generic.
We consider two possible situations. In the first one, we assume vmini >

hvmini+1 , hence we call it non-overlapping phases case. In the second situa-
tion, we do not make this assumption.

Briefly, we discuss the role of the benchmark. Also in this scenario, the
clairvoyant mechanism knows the undiscounted valuation ṽ of the agents.
This means that in each phase i, she can offer the price ṽvmini ηi(t), collecting:

bench = ṽ ·

[
vmin

1

∫ τ

0
λe−λtdt+ · · ·+ vmin

N

∫ Nτ

(N−1)τ
λe−λtdt

]
Where bench is the expected revenue of the benchmark mechanism. Note
that the square brackets term is constant with respect to ṽ. Hence, also in
this case the expected revenue of the benchmark has a linear dependency
with respect to the undiscounted valuations.

bench = kbenchṽ (3.13)

The Backward Induction approach here seems to be the best approach to
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solve this problem. Unfortunately, it turns out to be not the case. Indeed,
it is not possible to consider the phases independently from each other. The
performance dramatically changes whether considering only one or several
phases.

3.5.1 Non-Overlapping Phases

We study the case in which vmini > hvmini+1 . This means that the agents’ val-
uations are well distinct from different phases, Figure (3.6). Given a certain
phase i, it seems reasonable to offer the minimum price vmini . Indeed, we
will never have the possibility of posting such a price in future. We define
the pricing strategy of the ith phase to be: pi(t) = ṽp̃i(t). We can think
the single phase as a special instance of the model defined in section 3.1.
For these reason, a first step is to apply the optimal mechanism (3.1) in the
single phase, we call this mechanism ∆1. One can object that a better choice
should be that one of posting the pricing strategy of (3.1) in the overall time
horizon. We define such a mechanism ∆N .

tτ 2τ 3τ 4τ

1

ṽ

h

Figure 3.6: Abrupt Changes: Non-Overlapping Phases

For simplicity we compare these two choices in the case N = 2. Then
the results will be generalized.

We define mechanism ∆1 as follows:

∆1 : p̃i(t) =

{
h

1
t−(i−1)τ

t1 t ∈ [(i− 1)τ, (i− 1)τ + t1)

1 t ∈ [(i− 1)τ + t1, iτ)
i = 1, 2 (3.14)
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Where t1 is such that [t1, τ ] is the time interval in which the bottom price is
posted, as prescribed by mechanism (3.1).

Mechanism ∆2 is defined as follows:

∆2 : p(t) =


vmin

1 · h1 t
t2 t ∈ [0, τ)

vmin
2 · h1− t

t2 t ∈ [τ, t2)

vmin
2 t ∈ [t2, 2τ ]

(3.15)

Where t2 is such that [t2, 2τ ] is the time interval in which the bottom price
is posted, as prescribed by mechanism (3.1). See Figure (3.7).

t

p̃(t)

h

1

τ 2τ0 t1 t2

∆1

∆2

Figure 3.7: Mechanisms ∆1 and ∆2

We make a comparison of these two mechanisms. We denote the ex-
pected revenue of ∆1 and ∆2 as E[R∆1(ṽ)] and E[R∆2(ṽ)], respectively, when
agents’ undiscounted valuation is ṽ; we give the following propositions:

Proposition 1. E[R∆1(1)] ≥ E[R∆2(1)].

Proposition 2. E[R∆2(h)] ≥ E[R∆1(h)].

We cannot say that one of these two mechanisms has a greater com-
petitve ratio than the other one. However, because of these propositions, we
are sure that no one of these two mechanisms always dominates the other one.

Proof (Proposition 1). When ṽ = 1, the two mechanisms can sell the
item only in the time interval in which they set the bottom price. ∆1 offers
the bottom price for an amount of time of 2(τ − t1), ∆2 for (2τ − t2). We
claim 2(τ − t1) ≥ (2τ − t2). Note that t1 and t2 are defined as follows:

λ

lnh
t1 = eλ(τ−t1) − 1 (3.16)
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λ

lnh
t2 = eλ(2τ−t2) − 1 (3.17)

Suppose by contradiction that (2τ−t2) ≥ 2(τ−t1). It follows that e(2τ−t2) ≥
e2(τ−t1) and consequently

λ

lnh
t2 ≥ e2(τ−t1) − 1 (3.18)

From 3.16, it follows:

eλ(τ−t1) =
λ

lnh
t1 + 1⇒ e2λ(τ−t1) =

(
λ

lnh
t1

)2

+ 2
λ

lnh
t1 + 1

Hence, from 3.18:

λ

lnh
t2 ≥

(
λ

lnh
t1

)2

+ 2
λ

lnh
t1 ⇒ t2 ≥

λ

lnh
t21 + 2t1

⇒ 2τ − λ

lnh
t21 − 2t1 ≥ 2τ − t2 ≥ 2(τ − t1)

Where the last inequality follows from the hypothesis, hence:

− λ

lnh
t21 ≥ 0 (3.19)

And the contradiction is reached, being λ > 0 the parameter of the Poisson
process. Hence, the claim is true. Note now that E[R∆2(1)] = vmin2

∫ 2τ−t2
0 λe−λtdt

and E[R∆1(1)] = vmin1

∫ τ−t1
0 λe−λtdt+ vmin2

∫ 2(τ−t1)
τ−t1 λe−λtdt. We can graph-

ically represent these two values:

t

vmin1

vmin2

(τ − t1) 2(τ − t1)

(a) Mechanism ∆1

t

vmin1

vmin2

(τ − t1) 2(τ − t1)

(b) Mechanism ∆2

Figure 3.8: Expected revenue in ṽ = 1

Since the claim is true, the integral time of the first one is always smaller
than the second one. It is now evident that E[R∆1(1)] ≥ E[R∆2(1)]. This
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concludes the proof. �

Before proposing the proof of Proposition (2), we report here a theorem
by (Steffensen, 1925).

Theorem 7. (Steffensen, 1925) Let g1 and g2 be functions defined on [a, b]

such that ∫ x

a
g1(t)dt ≥

∫ x

a
g2(t)dt for all x ∈ [a, b] (3.20)

and ∫ b

a
g1(t)dt =

∫ b

a
g2(t)dt (3.21)

Let f be a decreasing function on [a, b], then∫ b

a
f(x)g1(x)dx ≥

∫ b

a
f(x)g2(x)dx. (3.22)

.

Proof (Proposition 2). Suppose that vmin2 = vmin1 . Note that, in the
second phase, ∆1 is always above ∆2. Hence, this assumption is in favour
of ∆1. From the proof of Proposition (1), it follows that 2 (τ − t1) > 2τ −
t2 ⇒ t2 > 2t1. Consider a new mechanism ∆

′
1 such that the corresponding

t2 = 2t
′
1. It is clear that E[R

∆
′
1
(h)] ≥ E[R∆1(h)]. Let us consider another

mechanism ∆
′′
1 , which is equal to ∆

′
1, but it switches the time intervals

[t1, τ) and [τ, τ + t1). From the definition of the expected revenue of a
pricing strategy when ṽ = h it is evident that E[R

∆
′′
1
(h)] ≥ E[R

∆
′
1
(h)].

Consequently
E[R

∆
′′
1
(h)] ≥ E[R∆1(h)] (3.23)

We have to prove now that in ṽ = h the expected performance of ∆2 exceeds
the expected performance of ∆

′′
1 .

Note that p̃∆2(t) and p̃
∆
′′
1
(t) satisfy Inequality (3.20) and Equality (3.21).

Where a = 0 and b = 2τ . Being λe−λt the decreasing function f of the
Theorem 7, it follows that:∫ 2τ

0
λe−λtp̃∆2(t)dt ≥

∫ b

a
λe−λtp̃

∆
′′
1
(t)dt (3.24)

Where the left side of Inequality (3.24) is the expected revenue of the mech-
anism ∆2 in ṽ = h, the right side that one of ∆

′′
1 in ṽ = h. From Inequality

(3.23), the claim of the theorem is proved. �
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Mechanism ∆1 is the mechanism (3.1) applied to time time horizon of
one phase, ∆2 is the same mechanism applied to time horizon of two phases.
We can now extend this reasoning, and consider a generic mechanism ∆i.
The previous propositions can be generalized:

Proposition 3. E[R∆i(1)] ≥ E[R∆2i(1)].

Proposition 4. E[R∆2i(h)] ≥ E[R∆i(h)].

The proof of Proposition (3) easily follows the proof of Proposition (1).

Sketch of Proof (Proposition 4). We apply exactly the same reason-
ings of the proof of Proposition (2). Suppose all the minimum valuations
vminj to be equal to vmini

2
+1

. Suppose t2i = 2t
′
i and a new mechanism ∆

′′
i built

switching the pricing strategies of the time intervals [ti,
i
2τ) and [ i2τ,

i
2τ+t1).

Then, the steps are the same of the proof of Proposition (2). �

None of these mechanisms that dominates the other ones. We now pro-
pose a new mechanism. The basic idea is to divide the undiscounted valu-
ations ṽ ∈ [1, h] into N sections. Each phase handles just one section. The
first phase manages the highest valuations’ section, the second one manages
the second highest valuations’ section and so on. We call this new mechanism
∆ and it can handle also the overlapping phases.

3.5.2 Overlapping Phases

In this section the only assumption is that the minimum valuations vmini are
non-increasing in i. The first result is a generalization of Lemma (4).

Lemma 8. In the Identical Valuation Setting, a decreasing pricing strategy
always dominates an increasing one.

Proof (Lemma 8). We have already proved the claim of this theorem
for the prices posted inside a certain phase, Lemma 4. We have to consider
now the prices from a phase to another one.
Consider three undiscounted valuations ṽ1, ṽ2 and ṽ3 such that ṽ1 < ṽ2 < ṽ3

and two consecutive phase. We make a comparison between two mechanisms
evaluating them in the infinitesimal time instant [iτ − dt, iτ ] just before the
end of the ith phase and the infinitesimal time instant (iτ, iτ + dt] just af-
ter the beginning of the ith phase. The first mechanism posts two constant
prices pi and pi+1 consequently; while the second mechanism posts pi+1 in
[iτ − dt, iτ ] and then pi in (iτ, iτ + dt]. Suppose that pi < pi+1 such that in
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both the phases pi+1 lies below the valuation ṽ3 and above the valuation ṽ2,
and pi lies below the valuation ṽ2 and above the valuation ṽ1, as the figure
3.9 shows.

ṽ3

ṽ2

ṽ1

iτ − dt iτ iτ + dt

pi

pi+1

(a) The first mechanism

ṽ3

ṽ2

ṽ1

iτ − dt iτ iτ + dt

pi

pi+1

(b) The second mechanism

Figure 3.9: Non-increasing mechanism: Phases

We now show that the expected revenue of the second mechanism is
always greater than the one of the first mechanism in the considered undis-
counted valuations. In the continuous case the external valuations converge
to the central one, and the duration τ tends to zero.

E [R1 (ṽ1)]− E [R2 (ṽ1)] =
[
pi

(
1− eλτ

)
+ pi+1

(
1− eλτ

)
eλτ
]

+

−
[
pi+1

(
1− eλτ

)
+ pi

(
1− eλτ

)
eλτ
]
< 0

E [R1 (ṽ2)]− E [R2 (ṽ2)] = pi+1

(
1− eλτ

)
− pi+1

(
1− eλτ

)
= 0

E [R1 (ṽ3)]− E [R2 (ṽ3)] = 0

Note that, as in Lemma 4, the undiscounted valuations can be partitioned
in three sets. The corresponding expected revenue always is one of the tree
computations above. Hence, the expected revenue of the second mechanism
is always greater than the one of the first mechanism. �

We now present mechanism ∆ in the case of ηi(t) = 1, ∀i.
Mechanism ∆ : given N phases, ∆ divides the phases in three sets.

The first set S1 is composed by the first m− 1 phases, the second set S2 is
composed by only the mth phase, the third set S3 by the last N −m phases.
The pricing strategy adopted in a certain phase depends on the set at which
that phase belongs. Consider that the actual price posted by the mechanism
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is pi(t) = vmini p̃i(t), where each price p̃i(t) is defined with respect a relative
time metric, p̃i : [0, τ ]→ [1, h]. This means that pi(t̄) is the price posted at
time (i− 1)τ + t̄.

We defined ∆ as follows:

∆ : p̃i(t) =


Aie

λ

(
1− v

min
i
k

)
t

if i ∈ S1

Ame
λ

(
1− v

min
m
k

)
t
I[0,t0){t}+ I[t0,τ){t} if i ∈ S2

1 if i ∈ S3

(3.25)

Where the m parameters Ai are specified such that p̃i(iτ) = p̃i+1(iτ).
These constraints are fundamental. They do not imply a continuous pric-
ing strategy, but they impose that all the undiscounted valuations ṽ will
be covered. For the same reason, the parameter k is specified by imposing
p̃1(0) = h. Finally parameter t0 is defined as

k = eλ((m−1)τ+t0)

vmin
m

∫ mτ

t0

λeλtdt+
N∑

j=m+1

vmin
j

∫ (j+1)τ

jτ
λeλtdt

 (3.26)

The basic idea is that dividing the valuations in phases, each of the phases
handles a portion of valuations independently from the others. In this way,
we can adapt definition 7.

Definition 8. Given a pricing strategy p̃(t) and a valuation ṽ we call t∗ the
time instant s.t. t∗ ∈ [0,mτ + t0] and p̃(t∗) = ṽ.

Theorem 9. In Identical Valuation setting, ∆ reaches a constant competitive
ratio of k

kbench
.

Proof (Theorem 9). Let us distinguish the three sets of phases:

• S3: the set of the last phases in which the seller posts the bottom prices.
The number of phases belonging to this set is not yet defined. It depend
on t0.

• S2: we follow the proof of Theorem (1). The expected revenue of the
mechanism depends on ṽ and, consequently, on t∗. Remember that each
phase handles his own portion of valuations, hence his own portion of t∗.
The contribution of the mth phase in the total expected revenue is the left
side of the following equality. We impose such a contribution to be equal
to kp̃m(t∗).

eλt
∗
vmin
m

∫ t0

t∗
p̃m(t) · λe−λtdt+ eλ(t∗−t0)k (3.27)
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Deriving with respect to t∗ and using the fundamental theorem of calculus,
we can provide the following differential equation:

p̃′m (t∗) = λ

(
1− vminm

k

)
p (t∗) (3.28)

Whose solution is:

p̃m (t) = Am · e
λ

(
1− v

min
m
k

)
t

(3.29)

We add the boundary condition s.t. p̃m(t0) = 1, defining Am.

• S1: the contribution of the (m− 1)th phase to the expected revenue of the
mechanism can be expressed as follows:

eλt
∗
vmin
m−1

∫ (m−1)τ

t∗
p̃m(t)·λe−λtdt+eλt∗

[
vmin
m

∫ t0

(m−1)τ
p̃m(t) · λe−λtdt+ e−λt0k

]
(3.30)

Note the similarity between Equation (3.27) and (3.30). Only the square
brackets term increases of a constant. Applying the same procedure, we
obtain:

p̃m−1 (t) = Am−1 · e
λ

(
1−

vminm−1
k

)
t

(3.31)

We add the boundary condition s. t. p̃m−1((m − 1)τ) = p̃m((m − 1)τ),
defining Am−1. The same procedure is iterate up to the first phase where
the boundary conditions are p̃1(τ) = p̃2(τ) and p̃1(0) = h, defining A1 and
k.

Hence, mechanism ∆ is built such that it has a linear expected revenue with
respect the undiscounted valuation ṽ, where the linear coefficient is k. Also
the benchmark has the same linear behaviour, (3.13). Hence, ∆ reaches a
constant competitive ratio of k

kbench
. This concludes the proof. �

A final comment : mechanism ∆ can be implemented also in the case of
linear and general discounting rate, following the same steps of Theorem (9)
and applying the computation of Theorem (2) and (3), respectively.
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Chapter 4

Identical Valuation:
Optimization

This chapter is dedicated to a mathematical programming approach to the
problem of Identical Valuation. The main result in this context is the Maxi-
mum Violation Algorithm, that will be generalized to the Random Valuation
scenario in the next chapter. This is the first reason why we study the Iden-
tical Valuation setting also from an optimization point of view. The second
is to meet a common and realistic need: usually sellers can’t modify the
posted-price in every time instant. Hence a continuous time pricing function
cannot be used in practice.
We study the case with linear discounting rate, i.e. η(t) = 1 − t

T . As al-
ready discussed, this case can represent a very common realistic economic
situation. Moreover, this scenario is easily extendible to the degenerate dis-
counting rate η(t) = 1 case. Indeed, the latter is a good approximation of
the first one when we have a very high T and an arbitrary D. Hence, all
the results of this chapter must be considered valid also for the degenerate
discounting rate case.
This is a non-linear optimization problem.

4.1 Piecewise Linear Optimization

We consider a finite number of initial private valuation ṽ ∈ [1, h]. The
undiscounted valuation vector v= [ṽ0, . . . , ṽn−1] is composed of n discrete
undiscounted valuation s.t. ṽ0 = 1 and ṽn−1 = h. We want to find a pricing
curve p(t), s.t. p(0) = h and p(t0) = 1− t0

T , that maximizes the competitive
ratio. For any valuation ṽi · (1 − t

T ) - a straight line, we assume only one
intersection point with the pricing curve p(t). We call ti the time instant

39
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when the pricing curve intersects the valuation ṽi. We collect all these time
instances in the vector t= [t0, . . . , tn−1]. Note that tn−1 = 0

In this first section we assume a piecewise linear curve p(t), composed by n
segments - the last one is 1 − t

T for t ∈ [t0, T ]. The points of discontinuity
occur at the time instants ti. We define each segment as follows:

ri(t) = Ai · t+Bi ti ≤ t < ti−1 (4.1)

Each segment have to respect two constraints: the starting and ending points
of every segment has to lie on two consecutive valuations. Hence, for i =

1, · · · , n− 1:

ri (ti) = Ai · ti +Bi = ṽi

(
1− ti

T

)

ri (ti−1) = Ai · ti−1 +Bi = ṽi

(
1− ti−1

T

)

ṽi−1

ṽi

ṽi+1

ti+1 ti ti−1

Figure 4.1: Piecewise Linear Pricing Curve

We are looking for the posted-price mechanism that maximizes the com-
petitive ratio. This means that is a maxmin problem:

max
p

{
min
ṽi∈v

c (ṽi)

}
(4.2)

Where c(ṽi) = E[R(ṽi)]
opt(ṽi)

. Our idea is to solve (4.2) by observing that E [R (ṽi)] =

E [R (ṽi, ti)]. We can write (4.2) as:

max
t

{
min
ṽi∈v

c (ṽi)

}
(4.3)

The expected revenue of the piecewise linear mechanism is the followig:
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E [R (ṽi, ti)] = eλti ·


i−1∑
j=0

[
Ai−j

(
e−λti−j

(
ti−j +

1

λ

)
− e−λti−j−1 (ti−j−1+

+
1

λ

))
+Bi−j

(
e−λti−j − e−λti−j−1

)]
+

+e−λD
(
D

T
− 1 +

1

λT

)
+ e−λt0

(
1− t0

T
− 1

λT

)}

The mathematical programming problem is the following:

max α

subject to: c(ṽi, ti) ≥ α ∀i = 0, n− 1

Ai · ti +Bi − ṽi
(
1− ti

T

)
= 0 ∀i = 1, n− 1

Ai · ti−1 +Bi − ṽi
(

1− ti−1

T

)
= 0 ∀i = 1, n− 1

ti − ti−1 ≤ 0 ∀i = 1, n− 1

t0 ≤ D, tn−1 = 0

Where the variables are: α, Ai, Bi and ti. There are 2n inequality
constraints and 2(n− 1) equality constraints.
We can rewrite the problem reducing the number of variables. We derive
the expressions of Ai and Bi from the second and third constraints, getting:

Ai =
ṽi − ṽi−1 − 1

T (ṽiti − ṽi−1ti−1)

ti − ti−1

Bi = ṽi

(
1− ti−1

T

)
−
ṽi − ṽi−1 − 1

T (ṽiti − ṽi−1ti−1)

ti − ti−1
ti−1

These values are then insert in the expression of the expected revenue.
The variables of the new problem are only α and ti, the number of constraints
is equal to 2n. The final Piecewise Linear Optimization problem is the
following:

max α

subject to: c(ṽi, ti) ≥ α ∀i = 0, n− 1

ti − ti−1 ≤ 0 ∀i = 1, n− 1

t0 ≤ D, tn−1 = 0
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4.2 Maximum Violation Algorithm (I)

The Piecewise Linear Optimization solves maxp {minṽi∈v c (ṽi)}, that is a
maxmin problem,. Unfortunately, the search space v is a finite set of n ele-
ments. We can’t consider an infinite set of undiscounted valuations, because
for each element of the set there is an inequality constraint. The idea of our
algorithm is to perform an intelligent discretization of the undiscounted val-
uations, i.e. starting from a (low) finite number of undiscounted valuations,
define the piecewise linear pricing curve that maximizes the competitive ra-
tio in the valuations considered, then search - in a continuous space - for
the worst performance valuation (the maximum violation), and run a piece-
wise linear optimization considered the finite set of undiscounted valuations
of the previous step and the worst performance valuation. We itearte this
procedure, until a certain tolerances is reached. We call this algorithm the
Maximum Violation Algorithm (I), or MVA(I)

Algorithm 1 Maximum Violation Algorithm(I)
1: v← [1, h];
2: (α, t)← PiecewiseLinearOptimization(v, λ, T,D);
3: v̄ ← minv c (v, t);
4: β ← c(v̄, t);
5: if α− β ≥ ε then
6: v← v ∪ {v̄};
7: go to 2;
8: end if
9: return t, β

t

p

h

1

TDt0

(a) Step 1

t

p

v̄
v⊥

h

1

TDt0t1

(b) Step 2

Figure 4.2: Maximum Violation Algorithm (I): first two steps
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4.2.1 Analysis of the Algorithm

We study the behaviour of the MVA from a step to the next one. We take
into account the first two steps, shown in Figure 4.2. First, notice that at
i-th step α(i) represents an upper bound of the competitive ratio, while β(i)

a lower bound. As i grows, also the number of constraints grows, hence the
upper bound α(i) decreases. In the following analysis we want to show that
the lower bound β(i) increases while i grows.
Take the first two steps. Since α(1) ≥ α(2), t(2)

0 ≥ t
(1)
0 . t0 is proportional

to the expected revenue when all the customers have the bottom valuation.
The higher is t0, the smaller is the upper bound. On the other hand, in
the undiscounted valuation v̄, we reach a higher Expected Revenue wrt the
previous step. Indeed, fixing t(2)

0 , we move r1(t1) towards zero, which is the
best choice for v̄ with a fixed t0. It is clear that the optimization performs
a trade-off, we gain something in the undiscounted valuation v̄ - the worst
one in the previous step - loosing in the undiscounted valuation 1 - the best
one in the previous step.
What happen in between? We call ṽ⊥ the undiscounted valuation in which
the two pricing strategies cross. From v̄ to ṽ⊥ the performance of p(2) is
better. From ṽ⊥ to 1, p(2) gains more and more wrt p(1). The undiscounted
valuation 1 represents the point in which there is the maximum distance
between E[R(1)] and E[R(2)]. Hence ∀v s.t. 1 < v ≤ v̄:

E[R(1)(1)]− E[R(2)(1)] ≥ E[R(1)(ṽ)]− E[R(2)(ṽ)]

E[R(1)(1)]− E[R(2)(1)]

kopt
≥ E[R(1)(ṽ)]− E[R(2)(ṽ)]

ṽ · kopt

E[R(1)(1)]

kopt
− E[R(2)(1)]

kopt
≥ E[R(1)(ṽ)]

ṽ · kopt
− E[R(2)(ṽ)]

ṽ · kopt

But notice that E[R(2)(1)]
kopt

is greater or equal than the upper bound α(2).

We consider now the range [v̄, h]. The optimization performs a trade-
off between the h - the best one in the previous step - and v̄ - the worst
one in the previous step. This trade-off is performed through the variable
t1. Moving t1 towards zero, as already discussed, the performance in v̄

increases, while in h decreases. Fixing the other variables, the comparison
between E[R(1)(v)] and E[R(2)(v)] in the range [v̄, h] is the same comparison
discussed before in the range [1, ṽ⊥], but with reversed roles. This means
that v̄ is the undiscounted valuation in which the difference E[R(2)]−E[R(1)]

is maximum. This also means that h is the undiscounted valuation in which
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the difference E[R(1)]−E[R(2)] is maximum. But, again, this happens exactly
in the upper bound.

4.3 Comparison and Experimental Results

The Maximum Violation Algorithm (I) gives a guarantee on the result. The
outputs of the algorithm are a posted-price mechanism and its competitive
ratio. The value of the competitive ratio is not an approximation. This is
the great advantage wrt the Piecewise Linear Optimization, whose outputs
are a pricing strategy and its optimistic estimate of the competitive ratio.
We cannot give any guarantee, except a measure of the robustness of the
solution, given by the number of undiscounted valuations considered (hence
the number of constraints). Clearly the guarantee insured by the MVA has
a cost in terms of time.
In this section we show some experimental results, using the solver BARON.
We consider three different settings:

• h = 1.5, λ = 3, T = D = 5;

• h = 2, λ = 3, T = 7, D = 5;

• h = 3, λ = 5, T = 7, D = 3;

Notice that, even if the three settings are quite different, they are in
some sense comparable. Indeed, the expected number of customers λD is
constant.

ε = 0.05 ε = 0.01 ε = 0.005 ε = 0.005

MVA

α = 0.847944

β = 0.827606

time = 8.58531
n = 3

α = 0.841996

β = 0.835173

time = 32.569
n = 5

α = 0.841218

β = 0.836614

time = 73.1012
n = 6

α = 0.839921

β = 0.83893

time = 316.198
n = 13

PL Opt
α = 0.848847

time = 11.6688
n = 3

α = 0.841574

time = 20.0735
n = 6

α = 0.840668

time = 20.0797
n = 8

α = 0.839807

time = 20.1091
n = 18

Table 4.1: Scenario I: h = 1.5, λ = 3, T = D = 5

It is clear from the data the main difference between these two ap-
proaches. The MVA pays the guarantee with a bigger computational time,
while the computational time of the PL optimization never exceeds 22 sec-
onds. However, notice that we have no way to be sure what is the actual
tolerance achieved by the optimization. Indeed, in the tables above there is
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ε = 0.05 ε = 0.01 ε = 0.005 ε = 0.005

MVA

α = 0.826299

β = 0.788559

time = 4.20144
n = 3

α = 0.812035

β = 0.80251

time = 59.8762
n = 6

α = 0.809641

β = 0.805173

time = 123.578
n = 9

α = 0.808444

β = 0.807451

time = 442.192
n = 18

PL Opt
α = 0.820124

time = 15.7917
n = 4

α = 0.810176

time = 20.0801
n = 10

α = 0.808755

time = 20.3472
n = 18

α = 0.808242

time = 20.2961
n = 39

Table 4.2: Scenario II: h = 2, λ = 3, T = 7, D = 5;

ε = 0.05 ε = 0.01 ε = 0.005 ε = 0.005

MVA

α = 0.811141

β = 0.788172

time = 4.5067
n = 5

α = 0.803279

β = 0.79628

time = 111.92
n = 9

α = 0.801826

β = 0.796886

time = 199.466
n = 13

α = 0.800341

β = 0.799405

time = 574.941
n = 32

PL Opt
α = 0.816666

time = 16.9787
n = 5

α = 0.801973

time = 20.1041
n = 19

α = 0.800799

time = 20.2005
n = 33

α = 0.800203

time = 21.4115
n = 93

Table 4.3: Scenario III: h = 3, λ = 5, T = 7, D = 3;

a hidden computational time used to check the tolerances, and such a com-
putational time is always greater than the one of the algorithm. However,
data also show that if we consider a very high number n of undiscounted
valuation, the tolerances achieved are satisfactory. For example notice table
4.3, PL optimization achieves a ε = 0.005 tolerance with n = 93 discrete
undiscounted valuations. The time required for this goal is almost 21.5 sec-
onds.
Notice also the behaviour of the upper and lower bounds α and β. As pre-
viously discussed, as the algorithm steps increase, α always decreases and β
always increases.

Finally we want to graphically show the outputs of the two approaches.
In the figure 4.3 the two posted-price mechanisms are compared with the
upper bound (3.2)M1, i.e. the best possible mechanism.

We use the first one of the three settings described above, with a small
difference. To make more visible the plot, the value of the maximum undis-
counted valuation is h = 4.
It is clear that both of the approaches achieve a very good approximation of
the best mechanism possible, even with a very small number of constraints
(n = 4). In particular MVA gets a result very close to that one of M1. It
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t

p

h

1

Tt0

(a) PL Optimization: n = 4

t

p

h

1

Tt0

(b) MVA: n = 4

Figure 4.3: The Upper Bound and The optimization

is also interesting to look at the competitive ratios. The best possible value
is c = 0.694, Corollary 5.2. PL optimization reaches an optimistic value
of 0.726. While the MVA outputs an upper bound α = 0.718 and a lower
bound β = 0.647. In this example it is evident that even if the PL optimiza-
tion shows the higher competitive ratio, this is actually only an optimistic
estimate. On the other hand, notice the quite good estimate given by the
MVA. Estimate that should become much better in the next step n = 5,
reaching a tight estimate of α = 0.707 and β = 0.686.

4.4 Possible Extensions

This is a brief section that tries to answer the question Why a piecewiese
linear pricing strategy?. The possible answers are two. First, because it
is simple and efficient. A piecewise linear pricing curve is an extremely
manageable tool. The key point is that it is completely controllable through
the intersection time points ti. Second, because it can be modified and
spread. Basically, one can follow two possible directions. The first one is
adding variance, i.e. consider a bigger number of variables - with a constant
number of discrete undiscounted valuations - in order to get a smoother
pricing curve and have more degrees of freedom to modify it. The second
one is trying to maintain the complexity of the problem, hence the number
of variables and constraints, but changing the curve. We briefly show two
non-linear mathematical programming examples, one for each direction.

Example 1 (SPLINE Optimization). This is an example of the first direc-
tion. We simply re-define the optimization problem adding a variable for
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each piece of curve. The segment of equation (4.1) in this case becomes:
si(t) = Ai · t2 +Bi · t+ Ci ti ≤ t < ti−1 and the problem:

max α

subject to: c(ṽi, ti, Bi) ≥ α ∀i = 0, n− 1

ti − ti−1 ≤ 0 ∀i = 1, n− 1

t0 ≤ D

Where c(ṽi, ti, Bi) = E[R(ṽi,ti,Bi)]
opt(ṽi)

. The Expected Revenue E [R (ṽi, ti, Bi)]

is:

eλti
{∑i−1

j=0

[(
−Ai−j

λt2i−j−1+2λti−j−1+2

λ2 −Bi−j λti−j−1+1
λ − Ci−j

)
e−λti−j−1+

+

(
Ai−j

λt2i−j−1+2λti−j−1+2

λ2 +Bi−j
λti−j−1+1

λ + Ci−j

)
e−λti−j

]
+e−λD

(
D
T − 1 + 1

λT

)
+ e−λt0

(
1− t0

T −
1
λT

)}

While Ai and Ci are easily derivable by the equations si(ti) = ṽi
(
1− ti

T

)
and

si(ti−1) = ṽi

(
1− ti−1

T

)
. Finally notice that also the MVA can be adapted to

this framework.

Example 2 (Polynomial Optimization). This is an example of the second
direction. We define a new kind of pricing curve, depending on a set of
variables that we have to optimize. We show here a simple polynomial pricing
curve of order m:

p(t) =

m∑
j=0

ajt
j t ∈ [0, t0]

Where for i = 0, · · · ,m aj are the variables to be optimized. We fix two of
them, constraining the curve to assume values h in t = 0 and 1 − t0

T and
t = t0.
In the PL optimization the variables defined by the mathematical program-
ming are the time instants ti and the discrete undiscounted valuations are the
given parameters of the problem - as in Example 1. Here we switch the two
roles. We give a vector of fixed time instants and the optimization procedure
defines the price for each time instant, hence the corresponding undiscounted
valuation.
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We can write the expected revenue of the mechanism as follows:

E [R (ti, aj)] = eλti
∫ t0

ti

p (t+ ti)λe
−λtdt+ eλti

∫ D

t0

(
1− t

T

)
λe−λtdt =

−
m∑
j=1

ajt
j
i

(
1− e−λ(t0−ti)

)
−

m∑
j=0

aj

∑j
k=0

j!
k! (λt0)k

λj
e−λ(t0−ti) +

+

m∑
j=0

aj

∑j
k=0

j!
k! (λti)

k

λj
+ eλti

[
e−λD

(
D

T
− 1 +

1

λT

)
+ e−λt0

(
1− t0

T
− 1

λT

)]

Expressing the competitive ratio as c(ti, aj) =
E[R(ti,aj)]
opt(p(ti))

, we can define
the Polynomial optimization problem as follows:

max α

subject to: c(ti, aj) ≥ α ∀i = 0, n− 1

p(0) = h

p(t0) = 1− t0
T

4.5 Constrained Optimization

Very often, in a realistic economic scenario, a seller cannot modify the posted-
price at every time instant. She must set a constant price at least for a given
time interval δ. Consequently, she cannot use a continuous time pricing
curve. Hence, a new model is needed. We study now a mathematical pro-
gramming problem, similar to the PL optimization.
We have, again, a vector of undiscounted valuation v= [ṽ0, . . . , ṽn−1] com-
posed of n discrete values s.t. ṽ0 = 1 and ṽn−1 = h. The goal is to define
a constant price for each time slot of duration δ. After enumerating the T

δ

slots, the price for each slot is pi, i = 1, · · · , Tδ .
We define two kinds of binary variables xi,k for each pair of price pi and
undiscounted valuation ṽk and yi for each price pi. xi,k is equal to 1 if the
probability point mass distribution F is on ṽk and the item can be sold at
the price pi. Formally:

xi,k =

{
1 if ṽk

(
1− iδ

T

)
≥ pi

0 otherwise

This formulation is traduced in the following constraints:

xi,k

(
ṽk
T − iδ
T

− pi
)

+ (1− xi,k)
(
pi − ṽk

T − iδ
T

)
≥ 0 ∀i, k
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The binary variable yi is 1 if the price the i−th slot is before the time instant
t0. Where also in this case, [t0, T ] is the time interval at which the minimum
price is posted. Notice that t0 is not a given parameter, but a variable to be
optimized. Hence the yi is defined as follows:

yi =

{
1 if pi ≥ 1− (i−1)δ

T

0 otherwise

Traduced in the constraints:

yi

(
pi − 1 +

(i− 1)δ

T

)
+ (1− yi)

(
1− pi −

(i− 1)δ

T

)
≥ 0 ∀i

If the meaning of the first kind of binary variable xi,k is evident, the
reason behind the binary variable yi is not yet clear. Let us restrict our
research to a special class of posted-price mechanisms. For each valuation
ṽ(1 − t

T ) we consider only that mechanisms where ∃ a time slot ī s.t. pi ≥
ṽ(1 − t

T ), ∀i < ī and pi ≤ ṽ(1 − t
T ), ∀i > ī. This assumption is the same

made in the chapter 3. Let us formulate the corresponding constraints.
Given a price pi, consider the corresponding undiscounted valuation ṽ s.t.

ṽ(1− (i−1)δ
T ) = pi, we say that the next price pi+1 has to be:

pi+1 ≤ ṽ
(

1− (i+ 1)δ

T

)
= pi

T − (i+ 1)δ

T − (i− 1)δ
∀i

This constraints hold in the range [0, t0]. While from t0 to T , the mechanism
posts the minimum price, hence pi = 1− iδ

T . And that is the meaning of yi.
Once defined this class of mechanism, it is evident that if a certain undis-

counted valuation ṽk is above a slot price pi, then ṽk is above any other
following slot prices pj , ∀j > i. The same for yi.

Hence, the Constrained Optimization problem is:

max α

s. t.: c(ṽk) ≥ α ∀i
xi,k

(
ṽk

T−iδ
T − pi

)
+ (1− xi,k)

(
pi − ṽk T−iδT

)
≥ 0 ∀i, k

yi

(
pi − 1 + (i−1)δ

T

)
+ (1− yi)

(
1− pi − (i−1)δ

T

)
≥ 0 ∀i

yi

(
pi+1 − pi T−(i+1)δ

T−(i−1)δ

)
+ (1− yi)

(
pi+1 − 1 + (i+1)δ

T

)
≤ 0 ∀i

xi,k ≤ xi+1,k ∀i, k
yi ≥ yi+1 ∀i
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Where the competitive ratio is c(ṽk) = E[R(ṽk)]
opt(ṽk) and the Expected Rev-

enue:

E [R (vk)] =
(

1− e−λδ
) T/δ∑
i=1

xi,kpie
−λδΣi−1

j=1xj,k

Example 3 (Constrained Optimization: a Room to Rent). We refer to the
motivating example 1.1.1. Suppose to be at the end of the year. A seller wants
to rent a room within the end of the next year. She has some knowledge of
the market, for example she knows the range in which the agents’ valuations
lie. hence, she can evaluate the ratio between the maximum and minimum
valuation. There exists a buyer who is willing to rent the same room at most
two times the minimum buyers’ valuation and there is no other agents with
an higher valuations, hence h = 2. From the past years she also knows the
expected number of agents coming in the market. Unfortunately, she can
modify the posted price only twice a week. She has almost 50 weeks to rent
the room in a year; hence, she has available 100 time slots. Let assume that
in expectation 15 customers will be interested in renting the room over the
year. Hence λT = 15. Conventionally, suppose λ = 3 and T = 5.
Solving the optimization problem (4.4) with BARON, we’re able to reach
a competitve ratio of 0.698. Note that the optimal mechanism M1 in this
scenario is able to reach 0.784 as constant competitive ratio.



Chapter 5

Random Valuation

In the Random Valuation scenario, the undiscounted valuations ṽ are drawn
from an unknown cumulative distribution function F . In this chapter, we
assume F belonging to the family F of MHR - Monotone Hazard Rate -
distributions. The hazard rate q of a CDF F (x) is q(x) = f(x)

1−F (x) , defined for
F (x) ≤ 1. All the probability distributions, whose hazard rate is monotone
non-decreasing in x, belong to the MHR family F . The MHR assumption
is common in economics and auction theory and this family includes a wide
range of distributions.
In actuarial science the hazard rate is also called "force of mortality", in
engineering science "failure rate", in economics its reciprocal is known as
"Mills’ ratio". The concept of virtual valuation suggests a very interesting
interpretation of the hazard rate. We can think the undiscounted valuation of
an agent ṽi as the maximum revenue obtainable from agent i. The reciprocal
of the hazard rate can be interpretable as the inevitable revenue loss caused
by not knowing ṽi in advance, the “information rent”. The virtual valuation
is the difference between ṽi and the Mills’ ratio. This is the fundamental
trade-off that a seller who doesn’t know the buyer’s willingness to pay must
make. See (Roughgarden, 2013) for example.
In this chapter we consider the linear discounting rate case.

5.1 The Model

The Random Valuation scenario inherits the Identical Valuation model (3.1).
We define random variable

(
1− ti

T

)
as the time discount associated to agent

i. It takes value from the discounting rate function. Where ti ∼ Γ(i, λ)

is gamma-distributed and represents the arriving time of the ith agent in
the Poisson process. A good question is whether the two random variables

51
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(
1− ti

T

)
and ṽi are correlated. Do the arriving time of an agent influence

the intrinsic willingness to pay of that agent? The arriving time of an agent
is roughly the time at which the agent starts to need the item. Hence, there
is no correlation. One can say that an agent with a higher undiscounted
valuation is incentive to participate to the trade earlier with respect to an
agent with a smaller valuation. But the no-correlation assumption makes
the model an under estimation of the latter. Indeed, if high valuations show
early, the time discounts for that valuations are close to one. Consequently
there should be higher willingness to pay in the market and a seller should
gain more. Hence, we assume the random variable ṽi and

(
1− ti

T

)
to be

independent.
We define random variable XλT as the maximum undiscounted valuation of
agents arriving in a T-lengthed time interval.

XλT = max
i=1:N(T )

ṽi (5.1)

Where random variable N(T ) represents the total number of agents arriving
in [0, T ] according to the Poisson process. Hence, XλT is the first order
statistic of N(T ) samples from F . We call its CDF FXλT .
We define YλT as the random variable of the maximum valuation of agents
arriving in a T-lengthed interval. We call its CDF FYλT .

YλT = max
i=1:N(T )

vi = max
i=1:N(T )

ṽiui (5.2)

5.2 The Benchmark

This section is dedicated to the onmiscient seller that we use as the bench-
mark in our competitive analysis. The benchmark is the clairvoyant offline
mechanism who knows all the input data before time 0, hence the realiza-
tions of the agents’ valuations. This mechanism sells the item to the highest
valuations agent, gaining exactly her willingness-to-pay. We call this mech-
anism Y benchmark. Thus, her expected revenue - let us call it Ybench -
is equal to the expected value of the maximum valuation arriving until the
deadline.

Y bench = E [YλT ] (5.3)

In this study, it is useful to refer to another ideal benchmark whose expected
revenue is even higher than the previous one, let us call it X benchmark.
Such a mechanism knows the valuations of the agents before they arrive
in the market, but she is also able to sell the item in an offline manner,
i.e. at time 0. This means that the discount associated is always 1. Thus,
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the expected revenue of X benchmark is equal to the expected value of the
maximum undiscounted valuation arriving until the deadline.

Xbench = E [XλT ] (5.4)

This section is dedicated to the computation of the cumulative density func-
tion FYλT and FYλT , exposing some of their properties. First of all, we present
a common result in a Poisson process, see for example (Ross et al., 1996).

Lemma 10. (Poisson process) Given that N(T ) = n, the n arrival times
t1, . . . , tn have the same distribution as the order statistics corresponding to
n independent random variables uniformly distributed on the interval (0, T ).

Observation 3. Intuitively, we usually say that under the condition that
n events have occurred in (0, T ), the times t1, . . . , tn at which events occur,
considered as unordered random variables, are distributed independently and
uniformly in the interval (0, T ).

We call s1, . . . , sn the unordered arrival times of the agents conditioning
to the event that n agents arrive in (0, T ). Their order statistics are t1, . . . , tn.
We can conclude that si is uniformly distributed in (0, T ). Hence, we define
ui as the unordered time discount associated to a general agent i. Let us
refer to the CDF and PDF of ui as Gu and gu, respectively. They have a
very simple shape:

Gu(x) = P (ui ≤ x) = P
(

1− si
T
≤ x

)
= 1− P (si ≤ T (1− x)) =

= 1−


1 if x < 0

T (1−x)
T if x ∈ [0, 1]

0 if x > 0

=


0 if x < 0

x if x ∈ [0, 1]

1 if x > 0

gu(x) = I[0,1]{x}

Where IA is the indicator function defined on the set A.
Looking at Gu could be surprising notice that there is no dependency on T .
Only the shape of the discounting rate affects the Gu. This seems curious.
The probability distribution over the time discounts loses the information
about how long is the time horizon. This brings to the following question.
Does not the time horizon affect the maximum value of the discounted valu-
ation?. We will answer this question later.

Hence, the random variable representing the private valuation vi of agent
i is expressible as the undiscounted valuation ṽi discounted by ui, i.e. vi =
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ṽiui. We stress the fact that agent i is not the ith agent arrived. We
are interested in computing the conditional cumulative distribution function
FV |N (x, k) = P

(
ṽi
(
1− ti

T

)
≤ x|N = K

)
, ∀ k ≥ i.

FV |N (x, k) = P
(
ṽ

(
1− ti

T

)
≤ x|N = k

)
= P(ṽu ≤ x) = P

(
ṽ ≤ x

u

)
=

= I[0,1){x}
∫∫
D′
f(ṽ)g(u)dṽdu+ I[1,h]{x}

∫∫
D′′
f(ṽ)g(u)dṽdu =

= I[0,1){x}
∫ h

1
f(ṽ)

∫ x/ṽ

0
g(u)dudṽ +

+I[1,h]{x}

(∫ 1

0
g(u)du

∫ x

1
f(ṽ)dṽ +

∫ h

x
f(ṽ)

∫ x/ṽ

0
g(u)dudṽ

)

= I[0,1){x} · x
∫ h

1

1

ṽ
f(ṽ)dṽ + I[1,h]{x}

(
F (x) + x

∫ h

x

1

ṽ
f(ṽ)dṽ

)

The domains D′ and D′′ are defined as:

D′ =
{

0 ≤ u ≤ x

ṽ
, 1 ≤ ṽ ≤ h

}
D′′ = D′′1 ∪ D′′2 = {0 ≤ u ≤ 1, 1 ≤ ṽ ≤ x} ∪

{
0 ≤ u ≤ x

ṽ
, x < ṽ ≤ h

}

u

ṽ

h

x
1

10

x
u

D′

(a) D′ for x ∈ [0, 1)

u

ṽ

h

x

1

10

x
u

D′′2

D′′1

(b) D′′ for x ∈ [1, h]

Figure 5.1: Domains of FV |N

Hence, the conditional CDF FV |N (x, k) and PDF fV |N (x, k) are:

FV |N (x, k) =

{
x ·
∫ h

1
1
ṽf(ṽ)dṽ if x ∈ [0, 1)

F (x) + x
∫ h
x

1
ṽf(ṽ)dṽ if x ∈ [1, h]

(5.5)
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fV |N (x, k) =

{ ∫ h
1

1
ṽf(ṽ)dṽ if x ∈ [0, 1)∫ h

x
1
ṽf(ṽ)dṽ if x ∈ [1, h]

(5.6)

Notice that for x ∈ [0, 1) the conditional distribution function has a
typical uniform distribution behaviour. Indeed,

∫ h
1

1
ṽf(ṽ)dṽ is a constant

term. It is worth mentioning that FV |N (1−, k) = FV |N (1+, k). Notice also
that for x ∈ [1, h], FV |N (x, k) ≥ F (x). This is correct, the discounted
valuation of an agent is for sure smaller than the undiscounted one.
We want to underline the fact that these formulas are constant ∀i and ∀k ≥ i.
Let us discuss now a useful property.

Property 1. The function g(x1, . . . , xn) is said to be symmetric if g(x1, . . . , xn) =

g(xi1 , . . . , xin) for any permutation of (i1, . . . , in).

Lemma 11. The function P
(
maxi∈{1,...,j}

{
ṽi
(
1− ti

T

)}
≤ x

)
is symmetric,

for any j ≥ 1.

Proof (Lemma 11). For j = 1 the proof is obvious.
Fo j > 1, notice that the random variables ṽi are i.i.d.. Hence, the maximum
does not change with respect to the order of the random variables ṽi

(
1− ti

T

)
.

Indeed:

max
i∈{1,...,j}

{
ṽi
(
1− ti

T

)}
= max

i∈{i1,...,in}

{
ṽi
(
1− ti

T

)}
for any permutation of (i1, . . . , in). The thesis of the theorem directly fol-
lows. �

Finally, we can compute the CDF of YλT .

Theorem 12. YλT has CDF:

FYλT (x) =
∞∑
j=0

(λT )je−λT

j!
F jV |N (x, j) (5.7)

Proof (Lemma 12). For lemma 10 and lemma 11, it is possible to write
the following, for a generic j:

P
(

max
i∈{1,...,j}

{
ṽi
(
1− ti

T

)}
≤ x|P(N(T ) = j)

)
= P

(
max

i∈{1,...,j}

{
ṽi
(
1− si

T

)}
≤ x

)

= P
(

max
i∈{1,...,j}

{ṽiui} ≤ x
)

= P

(
j⋂
i=1

(vi ≤ x)

)
=

j∏
i=1

P (vi ≤ x) = F jV |N (x, j)
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Finally, being YλT the maximum valuations of agents arriving in a T -lengthed
interval based on a Poisson process, its CDF is:

FYλT (x) =
∞∑
j=0

P(N(T ) = j)P
(

max
i∈{1,...,j}

{
ṽi
(
1− ti

T

)}
≤ x|P(N(T ) = j)

)
=

=

∞∑
j=0

(λT )je−λT

j!
F jV |N (x, j)

This concludes the proof. �

We can now answer the open question: Does not the time horizon affect
the maximum value of the discounted valuation?. Clearly it does! The mag-
nitude of T affects neither Gu nor FV |N . Nevertheless, it affects the weights
of the summation. Given a certain number of agents, the maximum valua-
tion of that agents has the same distribution independently by T . But this
probability distribution is only a weighted term of the overall distribution.
Such a weight depends on T .
It is quite interesting make a final remark.

Observation 4. If the expected number of agents λT remains constant, the
cumulative probability distribution over the maximum valuation FYλT is con-
stant, no matter the magnitude of T .

Let us compare the (5.7) with the CDF of XλT :

FXλT (x) =
∞∑
j=0

(λT )je−λT

j!
F j(x) (5.8)

We derive a results about FXλT . The random variable of the maximum in
a τ -lengthed interval over the undiscounted valuations preserves the Mono-
tone Hazard Rate property.

Lemma 13. FXλτ has non-decreasing monotone hazard rate.

Proof (Lemma 13). The cumulative density function of Xλτ is:

FXλτ (x) =
∞∑
i=0

(λτ)ie−λτ

i!
(F (x))i = e−λτeλτF (x) = e−λτ(1−F (x))
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We compute the hazard rate of FXλτ (x) and show it is non-decreasing.

hXλτ (x) =
fXλτ (x)

1− FXλτ (x)
=

d
dxFXλτ (x)

1− FXλτ (x)
=
λτfXλτ (x)e−λτ(1−F (x))

1− e−λτ(1−F (x))
(5.9)

=
λτf(x)

eλτ(1−F (x)) − 1
= λτ

f(x)

1− F (x)

1− F (x)

eλτ(1−F (x)) − 1
(5.10)

= λτh(x)
1− F (x)

eλτ(1−F (x)) − 1
(5.11)

F is MHR, thus its hazard rate h(x) is non-decreasing. Note that F (x) is non-
decreasing, so y = 1 − F (x) in non-increasing. Proving that 1−F (x)

eλτ(1−F (x))−1
is

non-decreasing in x is equivalent to show that g(y) = y
eλτy−1

is non-increasing
in y. We study the first derivative of g(y):

d

dy
g(y) =

eλτy(1− λτy)− 1

(eλτy − 1)2
< 0 ∀y

This implies that g(y) is non-increasing in y, hence 1−F (x)

eλτ(1−F (x))−1
is non-

decreasing in x.
We conclude that hXλτ (x) is monotone non-decreasing. �

5.3 A Lower Bound for M1

M1 is the deterministic posted-price mechanism with the highest competitive
ratio in the identical valuation setting:

p(t) =

{
h ·
(
1− t

T

)
· eλ(1− 1

k )t+ λ
2kT

t2 t ∈ [0, t0)

1− t
T t ∈ [t0, T ]

where
k = 1− 1

λT

(
1 + λt0 − e−λ(T−t0)

)
and t0 is such that

λt0
2T − t0

2T (λt0 + ln(h))
= 1− 1

λT

(
1 + λt0 − e−λ(T−t0)

)
In this section we study the performances of mechanismM1 in the ran-

dom valuation setting. AlthoughM1 was developed to be the optimal mech-
anism in the identical valuation setting, we show that it can achieve good
performances also in this other scenario. In particular, Theorem 16 provides
a lower bound on the competitive ratio ofM1 that is computed with respect
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to a clairvoyant mechanism which knows the valuations of the agents in ad-
vance. We show that our bound is valid for every non-decreasing monotone
hazard rate distribution F .

In order to derive a constant lower bound for the mechanism M1, we
follow the basic idea suggested by (Babaioff et al., 2011) in their Equal Sam-
ple for Every Scale mechanism. In their setting, the number of agents that
sooner or later arrive in the market is known. Moreover there is no deadline
and no discounting rate of the valuations. This simply means there is no
interest in when the item is sold, but only that it will be sold in future. Our
challenge is much more complex for at leat three reasons. 1) we don’t know
how many agents will arrive in the market, we have only an estimate of the
expected value of this number. 2) there is a deadline, we have to sell the
item within a given time horizon, otherwise we gain 0 revenue. 3) the valu-
ations are time-variant, hence time plays a very important role in our setting.

Note that the pricing strategy ofM1 is monotone non-increasing. Image
a τ -lengthed sliding window moves on the time horizon [0, T ], with τ ≤ T .
Instead of comparing the performance of our mechanism in the time horizon
[0, T ] with respect to the benchmark, we consider the performance of M1

only in an optimizing positioned sliding window and we compare it to the
overall offline benchmark. It is clear that the expected performance of the
mechanism in the overall time horizon is at least its expected performance
only in the sliding window.
It will be useful computing the expected revenue of the benchmarks in the
sliding window. Note that the expected revenue of Y benchmark depends
both on the duration τ and on the initial time instant of the sliding window
t: E [Yλτ,t]. The expected revenue of X benchmark depends only on τ . We
use now a result by (Zheng et al., 2016).

Lemma 14. (Zheng et al., 2016)

E[Xλτ ]

E[Xλτ ′ ]
≥ lnλτ

lnλτ ′
, ∀τ ≤ τ ′

The proof in the appendix.

Let us call lnλτ
lnλT = (1− ε). This implies the following expressions:

E[Xλτ ] ≥ (1− ε)E[XλT ] (5.12)

E[Yλτ,t]] ≥
(

1− t+ τ

T

)
E[Xλτ ] ≥

(
1− t+ τ

T

)
(1− ε)E[XλT ] (5.13)
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We give two definitions:

Definition 9. Consider mechanism M1 and a time interval Is,τ = [s, τ +

s] ⊆ [0, T ] of length τ , where s ∈ [0, T − τ ]. The ratio between the price at
the starting point and the price at the ending point is:

κ(s) =
ps
pτ+s

=
T − s

(T − τ − s)eλ(1− 1
k )τ+ λ

2kT
(τ2+2sτ)

Note that κ(s) depends on the position of the interval on [0, T ].

Definition 10. We denote the maximum ratio between the prices posted by
M1 in a τ -lengthed interval by:

κ = max
s∈[0,T−τ ]

κ(s)

Lemma 15. Consider pricing mechanismM1. There exists at least a time
interval Is,τ = [s, τ + s] such that each price pt with t ∈ Is,τ is in the range[E [XλT ]

(
1− τ+s

T

)
(1−ε)

κ ,E [XλT ]
(
1− τ+s

T

)
(1− ε)

]

t

p

h

T

E[xλt](1− ε)(1− (t̄+T )
T

)

E[xλt](1−ε)(1−
(t̄+T )
T

)

k

t̄ t̄+ T

Figure 5.2: M1: Position of the sliding window

Proof (Lemma 15). We define the interval Is̄,τ choosing s̄ such that
ps̄ = E [XλT ]

(
1− τ+s̄

T

)
(1− ε). From Definition 10 we know that κ(s̄) ≤ κ.

Hence,

pτ+s̄ =
ps̄
κ(s̄)

=
E [XλT ]

(
1− τ+s̄

T

)
(1− ε)

κ(s̄)
≥

E [XλT ]
(
1− τ+s̄

T

)
(1− ε)

κ

The pricing strategy of mechanism M1 is monotone non-increasing, thus,
∀t ∈ [s̄, τ + s̄] we have:

pt ∈ [ps̄, pτ+s̄] ⊆
[E [XλT ]

(
1− τ+s̄

T

)
(1− ε)

κ
,E [XλT ]

(
1− τ + s̄

T

)
(1− ε)

]
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The equalities are satisfied if s̄ = arg maxs∈[0,T−τ ] κ(s). In this case there
exists a unique interval satisfying Lemma 15. �

Finally, we can derive the constant lower bound for the mechanismM1.

Theorem 16. Let (λT )ε ≥ logκ h for ε ∈ (0, 1) and consider agent undis-
counted valuations drawn i.i.d. from a distribution F with non-decreasing
monotone hazard rate and linearly discounted by

(
1− t

T

)
. Mechanism M1

has a competitive ratio of
(

1−(λT )−ε− t0
T

)
(1−ε)

κe that is constant with respect
to the choice of F. s̄ and κ are parameters defined by the problem instance,
hence, depending on T, λ and h.

Note that the monotone-hazard rate assumption is only required for F ,
the distribution of valuations. No such requirement is needed for the distri-
bution of the random variable Z of the discounted valuations.

Proof (Theorem 16). Let (λT )ε ≥ logκ h. Since 1 − ε = ln(λτ)
ln(λT ) , it

follows λτ = (λT )1−ε, for ε ∈ (0, 1). From Lemma 15, mechanism M1

guarantees the existence of an interval Is,τ ⊆ [0, T ] such that pt ∈ Ĩ =[E [XλT ]
(

1− τ+s
T

)
(1−ε)

κ ,E[XλT ]
(
1− τ+s

T

)
(1− ε)

]
, ∀t ∈ Is,τ .

We have,

E[R(M1)] = E[R(M1)][0,T ] (5.14)

≥ E[R(M1)][s,τ+s] (5.15)

≥ pτ+sP(Yλτ,s ≥ pτ ) (5.16)

≥ pτ+sP
(
Xλτ

(
1− τ + s

T

)
≥ E [XλT ]

(
1− τ + s

T

)
(1− ε)

)
(5.17)

= pτ+sP(Xλτ ≥ E [XλT ](1− ε)) (5.18)

= pτ+sP
(
Xλτ ≥ E [XλT ]

ln(λτ)

ln(λT )

)
(5.19)

≥ pτ+sP(Xλτ ≥ E [Xλτ ]) (5.20)

≥ pτ+s

e
≥

E [XλT ]
(
1− τ+s

T

)
(1− ε)

κe
(5.21)

≥
E [XλT ]

(
1− τ+t0

T

)
(1− ε)

κe
(5.22)

where E[R(M1)][a,b] is the expected revenue of the mechanism in an interval
[a, b]. Inequality (5.17) holds because of Inequality 5.13. Inequality (5.20)
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follows from Lemma 14. A result by Barlow and Marshall (1964) implies that
the probability of exceeding its expectation is at least 1

e for a non-decreasing
monotone hazard rate distribution. We use this result in Inequality (5.21).
Finally, note that the sliding window Is,τ in the worst case has its starting
point at s = t0. Indeed, from t0 on, the mechanism posts the minimum
price. Hence, we have Inequality (5.22).

Now we compute a lower bound for the competitive ratio of the mecha-
nismM1:

cM1 =
E[R(M1)]

E[R(M∗)]
≥ E[R(M1)]

E[YλT ]
(5.23)

=
E[XλT ]

E[YλT ]

(
1− τ+s

T

)
(1− ε)

κe
(5.24)

≥
(
1− τ+t0

T

)
(1− ε)

κe
(5.25)

It is easy to see that E[XλT ]
E[YλT ] ≥ 1 and limλT→∞

E[XλT ]
E[YλT ] = 1, hence we can

write Inequality 5.25.

Recalling the condition λτ = (λT )1−ε,

τ = T 1−ελ−ε

We can write the bound as

cM1 =

(
1− (λT )−ε − t0

T

)
(1− ε)

κe

where t0, ε and κ are constants depending on the parameters of the problem,
which are T, λ, h. �

5.4 A Lower Bound for M2

In this section we define a mechanism M2 where the offered price p(t) is a
staircase function. We evenly partition [0, t0] in dlogδ he τ -lengthed subinter-
vals Ii = [(i − 1)τ, iτ ], for i ∈ {1, . . . , dlogδ he}. Note that τ = t0

dlogδ he
. The

constant price posted in interval Ii is denoted by p(Ii) and δ is a parameter
in the range (1, h]. Both t0 and δ are parameters that can be optimized.
Mechanism M2 offers price h

δi
(1 − iτ

T ) to agents arriving in the time inter-
val Ii, for i ∈ {1, . . . , blogδ hc}, (1− dlogδ heτ

T ) to agents arriving in the time



62 Chapter 5. Random Valuation

interval Idlogδ he and (1 − iτ
T ) for agents arriving in the time interval Ii for

i = blogδ hc, . . . , cTτ b. Note that if h and δ are s.t. dlogδ he = blogδ hc, then
h

δdlogδ he
= 1 and the two intervals are actually the same.

Note thatM2 for [bTτ c, T ] is not defined. This is not an oversight. Actu-
ally, the lower bound built for this mechanism does not consider the interval
[t0, T ]. The reason is quite simple, a seller does not want to sell the item
too late, otherwise the associated discount is too high. It is quite evident
that, in a real scenario, the pricing strategy is defined also in such an inter-
val. This clearly increases the revenue of the mechanism, because it can be
possible that no agents arrive within t0. Nevertheless, for the purposes of
the computation of this bound it is not meaningful.

There are at least two reasons for posting a staircase function. First,
as already mentioned in the section (4.5), a constant price in a sub-interval
meets a specific need of some sellers which cannot change the price contin-
uously in time. Second, this is an extension of the Equal Sample for Every
Scale by (Babaioff et al., 2011), in which constant prices are offered to a
sub-set of agents.

We now prove a similar result to that one of 15 for mechanismM1.

Lemma 17. Consider pricing mechanismM2. There exists a price p∗i such
that:

p∗i ∈
[E [XλT ]

(
1− iτ

T

)
(1− ε)

δ
,E [XλT ]

(
1− iτ

T

)
(1− ε)

]
for some i ∈ {1, . . . , dlogδ he}.

Proof (Lemma 17). We prove by contradiction the existence of such a
price p∗i . We start by supposing that @ i such that p∗i ∈ Ĩi.
Note that ν is the lower bound for the maximum undiscounted valuation in
a τ -lengthed interval. Hence, ν ∈ [1, h]. Considering Lemma 14 this lower
bound is expressible with respect to the maximum undiscounted valuation
in a T - lengthed interval as E[XλT ](1− ε). This means that either ν ∈ [hδ , h]

or ν ∈ [1, hδ ). If ν ∈ [hδ , h], then ∃p∗i = p1 such that p1 ∈ [νδ
(
1− τ

T

)
, ν
(
1− τ

T

)
].

Hence, it must hold ν ∈ [1, hδ ). Then, either ν ∈ [ h
δ2 ,

h
δ ] or ν ∈ [1, h

δ2 ). But if
ν ∈ [ h

δ2 ,
h
δ ], then ∃p∗i = p2 such that p2 ∈ [νδ

(
1− 2τ

T

)
, ν
(
1− 2τ

T

)
].

We iterate this procedure until the blogδ hc-th step.
Note that pblogδ hc is for sure smaller than δ

(
1 − blogδ hcτ

T

)
. Note also that

from the step before, it must hold that ν ∈ [1, h
δblogδ hc−1 ). Hence, either

ν ∈ ( h
δblogδ hc−1 ,

h
δblogδ hc

] or ν ∈ [1, h
δblogδ hc

). If the former holds, then p∗i =
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pblogδ hc. If the latter holds, then (1− dlogδ heτ
T ) ∈ [νδ

(
1− τ

T

)
, ν
(
1− τ

T

)
], but

this is the final offered price within t0. The contradiction is reached. �

We can finally report the main theorem of this section, in which we
show that mechanismM2 has a competitive ratio that is lower bounded by
a constant, independently from the unknown probability distribution from
which the valuations are sampled.

Theorem 18. Let (λT )ε ≥ logδ h for ε ∈ (0, 1) and consider agent undis-
counted valuations drawn i.i.d. from a distribution F with non-decreasing
monotone hazard rate and linearly discounted by

(
1− t

T

)
. Mechanism M2

has a competitive ratio of
(

1− t0
T

)
(1−ε)

δe that is constant with respect to the
choice of F.

Proof (Lemma 18). Let λτ = (λT )ε. For Lemma 17, there exists a

price p∗i = p(Ii) = h
δi

(1− iτ
T ) such that p∗i ∈ Ĩi =

[E [XλT ]
(

1− iτ
T

)
(1−ε)

δ ,E[XλT ]
(
1−

iτ
T

)
(1−ε)

]
, for some i ∈ {1, . . . , blogδ hc}. The expected revenue of the mech-

anism in [0, T ] is at least that attained in a τ -lengthed interval, with τ ≤ T .
Being Yλτ,iτ the random variable of the maximum discounted valuation of
agents arriving in the τ -lengthed interval Ii = [(i − 1)τ, iτ ]. Notice that
Yλτ,iτ and Yλτ,i′τ are different random variables if i 6= i′ because the valua-
tions discount changes over time.

E[R(M2)] = E[R(M2)][0,T ] (5.26)

≥ E[R(M2)][(i−1)τ,iτ ] (5.27)

≥ p∗iP(Yλτ,iτ ≥ p∗i ) (5.28)

≥ p∗iP
(
Xλτ

(
1− iτ

T

)
≥ E [XλT ]

(
1− iτ

T

)
(1− ε)

)
(5.29)

= p∗iP(Xλτ ≥ E [XλT ](1− ε)) (5.30)

= p∗iP
(
Xλτ ≥ E [XλT ]

ln(λτ)

ln(λT )

)
(5.31)

≥ p∗iP(Xλτ ≥ E [Xλτ ]) (5.32)

≥ p∗i
e
≥

E [XλT ]
(
1− iτ

T

)
(1− ε)

δe
(5.33)

≥
E [XλT ]

(
1− t0

T

)
(1− ε)

δe
(5.34)

where E[R(M1)][a,b] is the expected revenue of the mechanism on an interval
[a, b]. Inequality (5.29) holds because Xλτ

(
1− iτ

T

)
is the maximum valuation
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drawn from F in the τ -lengthed i nterval weighted by the maximum dis-
count, that is the minimum weight in that interval. Yλτ,iτ is the maximum
discounted valuation in Ii which means that is some valuation wighted by a
discount

(
1 − t

T

)
≥
(
1 − iτ

T

)
. Inequality (5.32) follows from Lemma 14. A

result by Barlow and Marshall (1964) implies that the probability of exceed-
ing its expectation is at least 1

e for a non-decreasing monotone hazard rate
distribution. We use this result in Inequality (5.33).

Now we compute a lower bound for the competitive ratio of the mecha-
nismM2:

cM2 =
E[R(M2)]

E[R(M∗)]
≥ E[R(M2)]

E[YλT ]
(5.35)

=
E[XλT ]

E[YλT ]

(
1− iτ

T

)
(1− ε)

δe
(5.36)

≥
(
1− t0

T

)
(1− ε)

δe
(5.37)

This concludes the proof. �

5.5 Experimental Results

In this section we provide a simulation of a real scenario. We refer to the
Motivating Example 1.1.1. In Milan, a seller aims to rent a single room but
she does not know the private valuations of the agents. However she can
estimate the range of the initial undiscounted valuations [1, h]. Considering
data from the metropolitan area of Milan, the value chosen for h is 2.8. We
simulate a real setting in which agents arrive according to a Poisson process
of parameter λ = 2 in a period of time T = 20. Both the number of agents
and the arrival times are random variables. Each agent draw a sample ṽ
from a probability distribution F , then her private valuation is discounted
with respect to her arrival time. We consider 10 different probability distri-
butions F . We are interested in evaluating the performance ofM1 andM2.
The parameters (δ, t0) of mechanismM2 are optimized with respect the the-
oretical bound on the competitive ratio in the considered setting. In Figure
5.3, it is shown the two mechanisms facing an instance of the problem. The
simulation is performed in MATLAB.

In this simulation we have considered 250 instances of the problem, 25

for each distribution. For each instance the selling price is compared with
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(a) MechanismM1
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(b) MechanismM2

This is an instance of the problem. Each circle represents an agent, specifically her private
valuation and arrival time. The blue plots are the pricing strategies of the two mechanisms.
The black straight lines are the maximum and the minimum valuations.

Figure 5.3: Simulation: an Instance of the Problem

the Y benchmark, whose selling price is always the maximum valuations of
the agents for that specific instance. The ratios between these two selling
prices are collected in a dataset, shown in Figure 5.4.
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(a) MechanismM1
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(b) MechanismM2

This is a dataset of 250 instances from the Simulation. Each circle represents the ratio
between the selling price of the mechanism and the selling price of the Y benchmark. The
red line is the mean computed over the 250 ratios.

Figure 5.4: Simulation: Comparison of the two Mechanisms

First of all, note that the expected performance of mechanism M1 ex-
ceeds the one ofM2 of almost 0.1. Indeed,M1 reaches a mean competitive
ratio of 0.6959, while M2 of 0.5997. Then, note that in Figure 5.4b there
are two well-distinct regions. Indeed, M2 has only 7 possible selling prices



66 Chapter 5. Random Valuation

and it is able to sell the room at least at its second highest price. Instead
the selling prices of M2 are much more spread. Finally, for the most of
the instances, note that M1 reaches at least a 0.5-approximation of the Y
benchmark.



Chapter 6

Random Valuation:
Optimization

This chapter is dedicated to a mathematical programming approach to the
problem of Random Valuation. The analysis is a natural extension of the
Chapter 4, where a first version of the Maximum Violation Algorithm was
presented. Here we modify the algorithm in order to handle the RV setting.
The algorithm will be quite different, but it keeps the same structure and the
basic idea. We study the case with linear discounting rate, i.e. η(t) = 1− t

T .
As already said, this case is easily extendible to the degenerate discounting
rate case η(t) = 1.
The mathematical model is almost the same of that presented in Chapter
5. But here we cannot use the continuous assumption on the initial private
valuations of the agents. We consider a discrete set of undiscounted valuation
ṽ0, . . . , ṽn−1. Therefore, also the unknown probability distribution F has to
be considered a discrete probability distribution - whose PDF is denoted
with ρ0, . . . , ρn−1, leading to a new formulation of the expected revenue of
the benchmark. Moreover, there is a huge difference with respect to the
Chapter 5: we faces the problem of the unknown distribution proposing a
distributionally robust optimization. This approach leads to a new challenge
not yet been addressed, the evaluation of a mechanism given a probability
distribution F . This is not a trivial issue and we suggest two ways to deal
with this challenge. Finally, we propose the Maximum Violation Algorithm
(II), or MVA (II).

67
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6.1 The Benchmark

The expected revenue of the benchmark mechanism is still the expected value
of the maximum valuation of the agents inside the time horizon.

bench = E[YλT ] = E[ max
i=1:N(T )

vi] = E[ max
i=1:N(T )

ṽiui] (6.1)

Hence, let us compute E[YλT ] following the steps of (5.2). First, we derive
the expression of FV |N , the conditional CDF of vi, then we compute E[YλT ].

FV |N (x, k) = I[0,1]{x}
n−1∑
i=0

ρi

∫ x/ṽi

0
gu(u)du+

I[1,h]{x}

 ī∑
i=0

ρi

∫ 1

0
gu(u)du+

n−1∑
i=ī+1

ρi

∫ x/ṽi

0
gu(u)du

 =

= I[0,1]{x} · x
n−1∑
i=0

ρi
vi

+ I[1,h]{x}

 ī∑
i=0

ρi + x

n−1∑
i=ī+1

ρi
vi



Where ī =
⌊
(x− 1)n−1

h−1

⌋
. Observing that FYλT is a mixture distribution,

from Equation (5.7), where the mixture weights are aj = (λT )je−λT

j! , we
compute the expected revenue of YλT :

E [YλT ] =

∞∑
j=0

ajE
[
F jV |N (x, k)

]
=

∞∑
j=0

aj

∫ h

0
1− F jV |N (x, k)dx =

= h−
∞∑
j=0

aj

 1

j + 1

(
n−1∑
i=0

ρi
vi

)j
+

∫ h

1

 ī∑
i=0

ρi + x

n−1∑
i=ı̄+1

ρi
vi

j

dx



To solve the integral, notice that ∀x ∈ [ṽk, ṽk+1] the index ī does not
change. Hence, we can rewrite the term as follows:

∫ h

1

 ī∑
i=0

ρi + x
n−1∑
i=ī+1

ρi
vi

j

dx =
n−2∑
k=0

∫ vk+1

vk

(
k∑
i=0

ρi + x
n−1∑
i=k+1

ρi
vi

)j
dx
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Finally, the expected revenue of the benchmark can be written as follows:

E [YλT ] = h−
∞∑
j=0

(λT )je−λT

j!

 1

j + 1

(
n−1∑
i=0

ρi
vi

)j
+

+
n−2∑
k=0


(∑k

i=0 ρi + vk+1
∑n−1

i=k+1
ρi
vi

)j+1
−
(∑k

i=0 ρi + vk
∑n−1

i=k+1
ρi
vi

)j+1

(j + 1)
∑n−1

i=k+1
ρi
vi




(6.2)

6.2 An Evaluation Procedure

We try now to answer a simple question: Given a probability distribution
F , how can we evaluate a mechanism? We propose two possible answers.
The first solution, discussed in this section, is to extend the pricing strategy
p(t) = p(t, ṽ) and computing the expected revenue of p(t, ṽ) consequently;
the second one, discussed in the next section, follows a new possible inter-
pretation of the discrete problem.
Clearly, the mentioned extension does not imply that a seller should be able
to post different prices for different undiscounted valuations. Indeed, it is
just a useful notation s.t. p(t) = p(t, ṽ) ∀ṽ. In a posted-price mechanism the
seller faces the agents one-by-one. Let us build the expected revenue of a
mechanism facing the agents one-by-one. First of all, consider the ith agent
with undiscounted valuation ṽi and arrival time ti ∼ Γ(i, λ). Let us notice
that:

P (ṽi ≤ x) = P
(
ṽi

(
1− ti

T

)
≤ x

(
1− ti

T

))
= P

(
vi ≤ x

(
1− ti

T

))
Consequently: P (ṽi ≤ f(x)) = P

(
vi ≤ f(x)

(
1− ti

T

))
.

If the item is still available, the necessary condition for an agent to buy
the item is that her private valuation vi(ti) is above the posted price at

the time ti. Let us rewrite this probability P (vi ≤ p(ti)) = P
(
ṽi ≤ p(ti)

1− ti
T

)
.

Hence, given a posted price mechanism p(t), if the item is still available when
the ith agent enters in the market, the probability that the agent i buys the
item is:

P ((ṽi, ti) ∈ D) (6.3)

Where D =
{

1 ≤ ṽi ≤ h, T p(t)
T−t ≤ ti ≤ T

}
. Figure 6.1.

Consequently, the probability that the pair (ṽi, ti) belongs to the com-
plementary domain D⊥ is the probability that the agent does not buy the
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ti
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T p(t)
T−t

Figure 6.1: Domain D

item (again, if the item is still available). Notice that the sum of the two
probabilities is not 1, but it is equal to the probability that the ith agent
enters in the market within the deadline.
We can now derive the expression of the expected revenue of a certain mecha-
nism E[R]. Let us expand the pricing strategy, imposing p(t, ṽ) = p(t)+0∗ ṽ.
The pricing curve can be now evaluated in the domain D, Figure 6.2. We
define E[Ri] as the expected revenue of the mechanism facing the ith agent
and assuming that the at time ti the item is still available.

E[Ri] =

∫∫
D
p (ṽi, ti) f (ṽi) fΓ,i (ti) dṽidti (6.4)

Where fΓ,i is the PDF of the random variable ti ∼ Γ(i, λ).
The total expected revenue of the mechanism is therefore:

E[R] =
∞∑
j=0

E [Rj ] · P

(
j⋂
i=1

(
(ṽi, ti) ∈ D⊥

))
(6.5)

6.3 A New Possible Interpretation: Markov Chains

In this section we introduce a new model. This model allows us to give a
new interpretation of our setting, suggesting a very intuitive representation.
Our posted-pricing problem can be seen as a big trade-off among posted
prices and attracting customers. First of all, we analyse this model and we
show that it is equivalent to the original one. Then, we use the proposed
model to evaluate a certain mechanism. We will use this method to build
the Maximum Violation Algorithm (II).
Let us call H1 the model used so far: a Poisson process with parameter λ
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Figure 6.2: Evaluation of the pricing curve p(t)

manages the arrivals of the agents with private valuations ṽi · η(ti), where
ṽi are i.i.d. from a discrete CDF F . At each undiscounted valuation ṽi ∈
[ṽ0, . . . , ṽn−1] is associated a probability ρi ∈ [ρ1, . . . , ρn−1]. We propose a
new model, let us call it H2: consider n independent Poisson processes with
rates λρi. Each of them manages the arrivals of agents with a specific undis-
counted valuation.

Theorem 19. Models H1 and H2 are equivalent.

Proof (Theorem 19). Let randomly split the Poisson process into n
subprocesses with probabilities [ρ1, . . . , ρn−1]. Each arrival is switched in-
dependently of each other arrival and independently of the arrival epochs.
First consider a small increment (t, t+δ]. The original process has an arrival
in this incremental interval with probability λδ. Because of the independent
increment property of the original Poisson process and the independence of
the division of each arrival between the subprocesses, the new processes have
the independent increment property, and from above have the stationary in-
crement property. Thus each process is Poisson.
It remains to prove the independence of the processes.
Let Ni(Ii) be the number of arrivals from subprocess i in the interval Ii.
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Arrivals in non overlapping intervals are certainly independent. There may
be independence only among Ni(I) where I is an interval shared between
several agents. But these represent the random split of the total number of
arrivals N(I) from the original process into n sets, with N(I) distributed
as a Poisson(λ|I|). And the Poisson distribution is an infinitely-divisible
distribution. Hence, Ni(I) are independent. This concludes the proof. �

How does a mechanism should handle the model H2? We try now to
answer this question. Let us consider a mechanism whose pricing strategy
p̄(t) is s.t. p̄(t) = (1 − t

T ) for t ∈ [t0, T ] and satisfies the following: given t̄
s.t. p̄(t̄) = ṽk(1 − t̄

T ), then @ t > t̄ s.t p̄(t) > ṽk(1 − t̄
T ), ∀k. Let us call tk

the first time instant s.t. p̄(tk) = ṽk(1− tk
T ). This means that tk is the time

instant at which the kth subprocess is activated, i.e. from tk on, if an agent
arrives on subprocess k, she will get the item. This assumption ensures that
if a subprocess is activated at a the time t̄, it remains activated ∀t ≥ t̄. Let
us call this assumption activation assumption. Model H2 allows us to talking
about classes of agents: class ak is composed of agents with undiscounted
valuation ṽk and arrival rate λρk. We can shift the focus from the probability
over the valuations, to the arrival frequency of classes of agents.

We are now interested in the behaviour of agents facing a mechanism
p̄(t). To represent such a behaviour we use a discrete-parameter Markov
Chain.

• States: there are (n+1)(n+2)
2 states specifying whether the item is avail-

able or sold and, if the latter holds, the class of agent that bought
the item. We have two sets of states for each time instant ti, for
i = 0, . . . , n − 1 and two sets for T . A set represents a sold item, the
other one the unsold item. In the latter there is always a unique state.
In the former there are n − 1 − i states, one for each class of agents
that potentially bought the item. s1 is the initial state. s2,n−1 is the
state for the item sold within the time tn−2 to an agent of class an−1;
s∗2 for the item unsold within the time tn−2. s3,k the state representing
the item sold within the time tn−3 to the class of agent ak; s∗3 the item
unsold within the time tn−3, and so on.

• Transition Probabilities: first notice that all the states corresponding
to the sold item are terminal states. Hence the transition probabilities
from those states are all equal to zero. The non-zero probabilities are
related to the transitions from an unsold state to a sold one.
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Figure 6.3: Markov Chain (1)

It is worth underlying the fact that this Markov chain describes the
behaviour of the agents facing with a general mechanism p̄(t); the only as-
sumption made on the pricing strategy is the activation assumption. As the
example of Figure 6.3 suggests, the states lying on the same vertical line
are parallel states. Each vertical line corresponds to a time instant ti, for
i = 0, . . . , n − 1 and T . Quite intuitively, at the time ti, the Markov chain
should stay in one of the parallel states sn−i.
Let us compute the transition probabilities. We show the first two steps,
then we generalize the computation. We refer to the case of Figure 6.3,
where n = 2. The first step is straightforward. At time t1 the probability
that the item is sold corresponds to the arrival probability of an agent of
class a2 within t1. Hence, π1,2 = 1 − e−λ2t1 , while the π1,2 = e−λ2t1 is the
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complementary probability, i.e the probability that zero agents of class a2

arrive within t1.
The second step. The probability to transition from s∗2 to s3,2 is the prob-
ability to sell the item to an agent of class a2 in [t1, t0], knowing the item
is still available in t1. Hence, it is equal to the probability that an agent
of class a2 arrives before any agent of class a1, in [t1, t0], knowing that no
agents of class a2 arrive in [0, t2]. The same reasoning can be done for the
computation of π2,1 and π2,∗.

Proposition 5. π2,2 = λ2
λ1+λ2

(
1− e−(λ1+λ2)(t0−t1)

)
Proof (Proposition 5). Let t̃2 and t̃1 be the random variables defining

the arrival time instants of the first agent of classes a2 and a1, respectively.
The two random variables are independent exponentially distributed. We
first notice that:

P
(
t̃2 ≤ t̃1 + t1|t̃2 ≥ t1

)
=

P
(
t1 ≤ t̃2 ≤ t̃1 + t1

)
P
(
t̃2 ≥ t1

) =

=
P
(
t̃2 ≤ t̃1 + t1

)
− P

(
t̃2 ≤ t1

)
P
(
t̃2 ≥ t1

) =
1− e−λ(t̃1+t1) − 1 + e−λt1

e−λt1
=

= 1− e−λt̃1 = P
(
t̃2 ≤ t̃1

)
Then, we can derive π2,2.

π2,2 = P
(
t̃2 ≤ t̃1 ∩ t̃2 ≤ t0 − t1

)
=

∫ t0−t1

0
f1

(
t̃1
)
dt̃1

∫ t1

0
f2

(
t̃2
)
dt̃2 +

+

∫ ∞
t0−t1

f1

(
t̃1
)
dt̃1 +

∫ t0−t1

0
f2

(
t̃2
)
dt̃2 =

=

∫ t0−t1

0
λ1e
−λ1 t̃1

[
−e−λ2 t̃2

]t1
0
dt̃1 +

∫ ∞
t0−t1

λ1e
−λ1 t̃1

[
−e−λ2 t̃2

]t0−t1
0

dt̃1 =

=

(
1− λ1

λ1 + λ2

)(
1− e−(λ1+λ2)(t0−t1)

)
=

λ2

λ1 + λ2

(
1− e−(λ1+λ2)(t0−t1)

)

This concludes the proof. �

Hence:
π2,2 =

λ2

λ1 + λ2

(
1− e−(λ1+λ2)(t0−t1)

)
(6.6)
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π2,1 =
λ1

λ1 + λ2

(
1− e−(λ1+λ2)(t0−t1)

)
(6.7)

π2,∗ = e−(λ1+λ2)(t0−t1) (6.8)

A general step. We simply adapt the same principles, considering that
an agent from a certain class buys the item if she arrives before any agents
from another class.

Proposition 6. πk,i = λi∑n−1
j=n−1−k λj

(
1− e−

∑n−1
j=n−1−k λj(tn−k+1−tn−k)

)
Proof (Proposition 6). We simply generalise the Proposition 5. Let

t̃j be the random variable defining the arrival time instant of the first agent
of class aj .

πk,i = P
(
t̃i ≤ min

{
t̃n−k, t̃n−k+1, . . . , t̃i−1, t̃i+1, . . . , t̃n−1

}
∩ t̃i ≤ tn−k+1

)
But notice that the random variables t̃j are i.i.d. with exponential distribu-
tion. Hence, we can write:

P
(
min

{
t̃n−k, t̃n−k+1, . . . , t̃i−1, t̃i+1, . . . , t̃n−1

}
> t
)

= P
(
t̃n−k > t ∩ . . . ∩ t̃n−1 > t

)
i−1∏

j=n−k
P
(
t̃j > t

) n−1∏
j=i+1

P
(
t̃j > t

)
=

i−1∏
j=n−k

e−λjt
n−1∏
j=i+1

e−λjt

= e−(
∑i−1
j=n−k λj+

∑n−1
j=i+1 λj)t

But this means that the random variable of the minimum t̃min has an
exponential distribution with parameter λmin =

∑i−1
j=n−k λj +

∑n−1
j=i+1 λj .

Consequently, πk,i can be written as follows:

πk,i = P
(
t̃i ≤ t̃min ∩ t̃i ≤ tn−k+1 − tn−k

)
That is exactly the case of Proposition 5, where t̃1 is replaced by t̃min and
(t0 − t1) with (tn−k+1 − tn−k). Hence:

πk,i =
λi

λi + λmin

(
1− e−(λi+λmin)(tn−k+1−tn−k)

)
This concludes the proof. �

Finally, we can derive the transition probabilities for the generic step:

πk,i =
λi∑n−1

j=n−1−k λj

(
1− e−

∑n−1
j=n−1−k λj(tn−k+1−tn−k)

)
(6.9)

πk,∗ = e−
∑n−1
j=n−1−k λj(tn−k+1−tn−k) (6.10)
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A comment: in the discussed Markov chain there is neither price nor
reward. But the chosen pricing strategy modifies the probabilities associated
to the transitions. How? Imposing values to the activation time instants
tk. A seller cannot choose or even know the arrival rates of the different
classes of agents, but she can decide how long she should wait for the highest
valuations classes. It is more clear and practically intuitive the big dilemma
of our problem, which can be seen as a great trade-off between posted prices
and attracted agents classes. Take the first step, the seller offers a very high
price, but she offers that price only to a small portion of agents, the higher
valuation class. The trade-off is between the very high posted price and the
discarded classes of agents, hence the cumulative probability of selling to
that agents. At the second step, the price is slightly smaller, but this allows
to attract one more agent class. Up to the final step, in which all the classes
should buy the item, but with a very low price.

6.3.1 Another Evaluation Procedure

We use this new interpretation to evaluate a certain mechanism. First notice
that the discussed Markov chain describes the agents behaviour facing a
mechanism. But this behaviour is not completely observable by the seller.
If the item is sold, the seller is not able to distinguish which class of agents
bought the item; she can only know which classes do not buy it. Hence,
we present now a simplified Markov chain, in which are presented only the
observable states by the seller. Take the k̄th step, for i = n − k, n − k +

1, . . . , n − k, the states sk̄,i represent all the possible attracted classes that
should buy the item. But this is a hidden information. Hence, we simply
unify states sk̄,i in a unique sk̄ state. We have:

• States: there are 2n+ 1 states specifying whether the item is available or
sold. We have two states for each time instant ti, for i = 0, . . . , n− 1 and
two states for T . A state represents a sold item, the other one the unsold
item. s1 is the initial state. s2 is the state for the item sold within the
time tn−2; s∗2 for the item unsold within the time tn−2, and so on.

• Transition Probabilities: first notice that all the states corresponding to
the sold item are terminal states. Hence the transition probabilities from
those states are all equal to zero. The non-zero probabilities are related
to the transitions from an unsold state to a sold one. The probabilities
πi,∗ are the same. We call πi the transition probabilities from s∗i to si+1:
πi =

∑n−1
j=n−i πi,j =

(
1− e−

∑n−1
j=n−1−k λj(tn−k+1−tn−k)

)
. πi is equal to the

probability that at least one agent from the activated classes arrives.
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s1

s2

s∗2

s3

s∗3

s4

s∗4

π1

π1,∗

π2

π2,∗

π3

π3,∗

Figure 6.4: Markov Chain (2)

Given a discrete CDF F over the undiscounted valuations and a pricing
strategy p(t), which satisfies the activation assumption, we can now evaluate
its expected revenue in the model H2, following the Markov chain (6.3.1).
Since, for Theorem (19) models H1 and H2 are equivalent, the found ex-
pected revenue also holds for the original model H1.
First, consider a mechanism posting constant prices ṽi(1 − ti−1

T ) for t ∈
[ti, ti−1) = ri, satisfying the activation assumption. Its expected revenue is
computed following the possible paths in the Markov chain:

E [Rconst(F )] = π1rn−1 + π1,∗ (π2rn−2 + π2,∗ (π3rn−3 + π3,∗(. . . ))) =

= π1rn−1 + π1,∗π2rn−2 + π1,∗π2,∗π3rn−3 + π1,∗π2,∗π3,∗(. . . ) + . . .

For a generic mechanism satisfying the activation assumption, its ex-
pected revenue is:

E[R(F )] =

n−1∑
i=1

i−1∏
j=1

πj∗

∫ tn−i−1−tn−i

0
p (t+ tn−i)

n−1∑
j=n−i

λje
−
∑n−1
j=n−i λjtdt+

+
n−1∏
j=1

πj,∗

∫ T−t0

0
p (t+ t0)λe−λtdt

(6.11)
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6.4 Maximum Violation Algorithm (II)

The previous sections of this chapter are tools used to develop the Maximum
Violation Algorithm in the case of Random Valuation. The first version of
this algorithm - 4.2 - basically consists in iterating two steps. In the first one
an optimization is performed, in the second the algorithm searches for the
maximum violation - which in that case corresponds to a valuation. In the
present framework, the basic idea is the same. The algorithm is composed of
two steps. Starting from a certain probabibility distribution F (i), in the first
step the algorithm searches for a mechanism that optimize the ratio between
the expected revenue of that mechanism and that of the benchmark, given
F (i). We are able to evaluate a mechanism given a probability distribution;
indeed, we can compute its expected revenue - section 6.2 or 6.3.1 - and the
expected revenue of the benchmark - section 6.1. In the second step, the
algorithm finds the maximum violation - that, in this case, is the probability
distribution F (i+1) that minimize the competitive ratio of the mechanism
just defined. This procedure is then iterated, performing a distributionally
robust optimization. There are different ways to search for this probability
distribution. Our choice is to use model H2, build a database of MHR dis-
crete probability distributions and then make a choice inside this database.

Let us consider a family of mechanisms which offer a price p(t) = ṽk(1−
t
T ) for t ∈ [tk, tk−1), k = 0, . . . , n − 1 and p(t) = 1 − t

T for t ∈ [t0, T ].
Such a family is defined by the vector t = [t0, . . . , tn−2] (Figure 6.5), with
t0 ≥ t1 ≥ . . . tn−2. The MVA (II) is going to optimize such a vector.

t

p

h

ṽ2

ṽ1

1

Tt0t1t2

Figure 6.5: Family of Mechanisms t

Note that this mechanisms’ family satisfies the activation assumption.
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Hence, given a mechanism t and a probability distribution F , we can com-
pute the expected revenue of the mechanism using Equation (6.11). Let us
call ρ the PDF of F . By imposing λk = λρk, we can compute:

E[R(t,ρ)] =

n−1∑
i=0

ṽj ·

 n−1∏
j=i+1

eλjtj

 ·
e−∑n−1

k=i λkti−1

(∑n−1
k=i λk (ti−1 − T ) + 1

)
T
∑n−1

k=i λk
+

−
e−
∑n−1
k=i λkti

(∑n−1
k=i λk (ti − T ) + 1

)
T
∑n−1

k=i λk


(6.12)

Moreover, thanks to Equation 6.2 we can compute the expected revenue
of the benchmark for the PDF ρ. This allows us to define the following
optimization problem. Given the parameters of the model (λ, T, h) and a
finite set P of PDFs, we define the following Random Valuation Optimization
problem:

max α

subject to:
E[R(t,ρ)]

bench(ρ)
≥ α ∀ρ ∈ P

ti − ti−1 ≤ 0 ∀i = 1, n− 1

t0 ≤ T

(6.13)

Where the variables are α and t.
Finally, we can present the MVA(II). We denote by Π a arbitrary large set of
the MHR probability distributions and with ρ(0) a certain PDF. We define
the following algorithm:

Algorithm 2 Maximum Violation Algorithm(II)
1: P ← ρ(0);
2: (α, t)← RandomValuationOptimization(h, λ, T,P);
3: ρ̄← minρ∈Π c (ρ, t);
4: β ← c(ρ̄, t);
5: if α− β ≥ ε then
6: P ← P ∪ {ρ̄};
7: go to 2;
8: end if
9: return t, β

Where c(ρ̄, t) = E[R(t,ρ)]
bench(ρ) .



80 Chapter 6. Random Valuation: Optimization

6.4.1 Experimental Results

We present here an application example of the MVA(II). First, note the
strongly non-linear dependency on the variables of the Random Valuation
Optimization 6.13, specifically in the term of the expected revenue. Since
this formulation is a non-linear program, also in this case BARON has to be
employed as solver.
Let Π be composed by 2500 different discrete probability distributions over
the n = 10 undiscounted valuations. As already discussed in 5.5, we consider
h = 2.8, λ = 2 and T = 20.
The algorithm outputs the following results:

t = [0.16, 0.27, 0.29, 0.373, 0.667, 0.813, 1.167541, 1.67541, 12.32563]

β = 0.489513

reaching a tolerance of ε = 0.001 in 12 iterations.



Chapter 7

Conclusions

In this thesis, for the first time in literature, we studied an online, time-
variant, model-free, revenue-maximization pricing problem from an economic
mechanism design point of view. We defined the optimal economic mecha-
nism in different Identical Valuation scenarios, also proposing a method to
handle the seasonability effects of the market. We introduced a mechanism
following the automated mechanism design approach, which turned out to be
very flexible and able to address different variations of the initial problem,
for example the constrained model in which the seller can post only constant
prices for a certain time interval. We then studied the Random Valuation
scenario, proposing three different economic mechanisms. We proved that
two of them have a constant lower bound of the competitive ratio. The third
one is the output of a mathematical programming algorithm.

Our work handles a single-item single-unit pricing scenario. We believe
that the methods studied in this thesis can be quite easily generalised. Let
us refer to the motivating example, 1.1.1. Suppose a company aims to sell
many units of rooms and apartments. None of these items are equal to the
other ones. But they clearly share the same features, for example location,
square footage, number of occupants and so on. Our economic mechanisms,
combined together with some Machine Learning techniques of feature selec-
tion, can define the price of the single feature, the final prices of the rooms
and apartments can be composed accordingly.

81
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A final comment. In this thesis, we tried to solve a pricing problem
very close to real economic scenarios. Reading this work, one might wonder:
Is that really a fair price? But this is not really a recent question. Even
in Ancient Greece, Aristotle asked himself exactly the same question. Let
us close this work with a quotation from John Kenneth Galbraith, in his
Economics in Perspective: A Critical History - ’Nothing has so engaged
economic attention over the centuries as the need to persuade people that the
price given by the market has a justification superior to all ethical concern’.
(Galbraith, 1987).
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Appendix A

A.1 Proof of Lemma 14

We state the following variant of Chebyshev Inequality (Mitrinovic et al.,
2013). It is useful for the proof of Lemma 14.

Lemma 20 (Mitrinovic et al. (2013)). Suppose function h(x) is positive
and non-decreasing on [a, b], function g(x) is non-decreasing on [a, b], and
function f(x) is continuous on [a, b], then the following inequality holds,

∫ b
a h(x)f(x)g(x)dx∫ b
a h(x)f(x)dx

≥
∫ b
a f(x)g(x)dx∫ b
a f(x)dx

Lemma 20 is a variant of Chebyshev Inequality (Mitrinovic et al., 2013).

Proof (Lemma 14) Recall that FXλτ (x) = e−λτ(1−F (x)) from proof of
Lemma 13. We need to express the expected value of the maximum valuation
of agents arriving in a τ -lengthed time interval, with τ ≤ τ ′ ≤ T , as follows:

E[Xλτ ] =

∫ ∞
0

xfXλτ (x)dx =

∫ ∞
0

1− FXλτ (x)dx =

∫ ∞
0

1− e−λτ(1−F (x))dx

=

∫ ∞
0

1− F (x)

f(x)

1− e−λτ(1−F (x))

1− F (x)
dF (x)

=

∫ 1

0

1

H(F−1(1− k))

1− e−λτk

k
dk

Now we apply Lemma 20. F having non-decreasing monotone hazard rate
implies that h(k) = 1

H(F−1(1−k))
is a non-decreasing function of k. Hence,

h(k) is non-decreasing and positive on [0, 1]. g(k) = 1−e−λτk
1−e−λτ ′k is non-decreasing
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on [0, 1] and f(k) = 1−e−λτ ′k
k is continuous on [0, 1]. We have,

E[Xλτ ]

E[Xλτ ′ ]
=

∫ 1
0

1
H(F−1(1−k))

1−e−λτk
k dk∫ 1

0
1

H(F−1(1−k))
1−e−λτ ′k

k dk
=

∫ 1
0

1
H(F−1(1−k))

1−e−λτ ′k
k

1−e−λτk
1−e−λτ ′k dk∫ 1

0
1

H(F−1(1−k))
1−e−λτ ′k

k dk

≥
∫ 1

0
1−e−λτk

k dk∫ 1
0

1−e−λτ ′k
k dk

=

∫ λτ
0

1−e−t
t dt∫ λτ ′

0
1−e−t
t dt

=
Ein(λτ)

Ein(λτ ′)

=
γ − Ei(−λτ) + ln(λτ)

γ − Ei(−λτ ′) + ln(λτ ′)
≥ ln(λτ)

ln(λτ ′)

whereEin(x) =
∫ x

0
1−e−t
t dt is the entire exponential integral function, Ei(x) =∫ x

−∞
et

t dt is the exponential integral function and γ ≈ 0.577 is the Euler’s
constant. �
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