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“There, peeping among the cloud-wrack above a dark tor high up in the mountains,
Sam saw a white star twinkle for a while. The beauty of it smote his heart, as he
looked up out of the forsaken land, and hope returned to him. For like a shaft, clear
and cold, the thought pierced him that in the end the Shadow was only a small and
passing thing: there was light and high beauty for ever beyond its reach.”

[J.R.R. Tolkien - The Return of the King]
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Abstract

A combined experimental and numerical approach towards a
comprehensive drug delivery model

by Marco VIDOTTO

Convection-Enhanced Delivery (CED) has been recently introduced as a promis-
ing surgical technique to bypass the blood-brain barrier and inject a chemother-
apeutic agent directly in the brain tissue. CED can be used for treating differ-
ent kind of diseases, from brain tumor to Parkinson and epilepsy. Although
this technique was expected to be effective, especially against recurrent tu-
mors, the clinical trials did not achieve the desired results in terms of life ex-
pectancy for the patients. A major impairment to progress is given by the fact
that the cancerous areas are usually not reached by a sufficiently high concen-
tration of drug. Indeed, since the brain is an anisotropic and heterogeneous
porous medium, for the clinicians it is very difficult to set the infusion in the
best way possible and often the drug misses the target area.

To tackle this issue, researchers have worked on predictive numerical mod-
els that can offer the surgeons a simulation environment to test different in-
fusion settings. Despite these models are extremely valuable, their predic-
tive capability is still not sufficiently accurate thus preventing their use in
standard clinical practice. For this reason, many researchers pointed out the
paramount importance of having refined mathematical models on the spatial
drug distribution within the brain and underlined the pivotal role of the brain
microstructure. This aspect, in particular, has been explored by limited re-
searches and the relation between tissue microstructure and important fluid
dynamics parameters is still controversial.

In the present contribution, we develop an extensive study that starts from
a detailed analysis of the brain microstructure, with particular emphasis on
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the white matter (WM) permeability, and finishes with the integration of the
acquired information in a CED predictive model at the macroscale. In addition
to the Introduction Chapter and the Conclusion Chapter, the dissertation is
divided in four main research tracks.

In the first (Chapter 2), we build a geometrical model of the WM consid-
ering its main geometrical characteristics, namely axon diameter distribution,
extracellular space (ECS) volume fraction and ECS width. From this model,
we extract two important information: the hydraulic permeability in three
WM areas and the size of the representative volume element (RVE) to analyse
to obtain reliable results. A three-dimensional version of the same geometri-
cal model is also exploited, with a different methodological approach, to study
the WM tortuosity, a very important parameter for drug diffusion.

In the second (Chapter 3), we move towards a more realistic estimate of the
permeability by analysing two WM areas (corpus callosum and fornix) start-
ing from the acquisition of electron microscopy images of their microstructure.
In this track, we demonstrate and quantified the anisotropic and heteroge-
neous behaviour of the WM which is a very important results because it helps
shading light on this fundamental but still controversial parameter.

These results are validated in the third track (Chapter 4) by means of an ex-
perimental campaign on ovine WM samples performed in collaboration with
Imperial College London.

Finally, in the last track (Chapter 5), we integrate the information about
the WM permeability, acquired in the previous Chapters with a relatively
new imaging technique, namely the Neurite Orientation Dispersion and Den-
sity Imaging, to incorporate a more advanced and comprehensive descrip-
tion of the brain microstructure into a predictive computational model. We
demonstrate the relevance of the work by showing the impact on the pre-
dicted drug distribution, which differs significantly from the state-of-the-art
model in terms of distribution shape, concentration profile and infusion lin-

ear penetration length.
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Chapter 1

Introduction

1.1 Clinical problem (brain tumor)

Despite the importance of the brain for patient life expectancy and life quality,
it is still our least understood organ (Medical Research Council, 2009). This
is due to its impressive complexity, not only in terms of physiological and
pathological mechanisms but also from a structural and anatomical point of
view (Lei et al., 2015). Moreover, according to the European Brain Council
(EBC), brain-related diseases affect 179 millions of Europeans. Indeed, we
have assisted to the increase of diseases typical of an elderly population such
as nervous disorders, tumours and strokes (Olesen et al., 2012). This is due to
the ageing of population whose life expectancy has sharply increased in the
last 70 years (World Population Prospects 2019).

Dealing with brain disorders is not only a clinical problem but it also has
a considerable bearing on the economic sustainability. In 2012, Olesen et al.,,
2012, estimated the cost of brain disorders in Europe relative to the 2010; ac-
cording to their report, the total amount is around €798 billion with an aver-
age cost per inhabitant equal to €5,550. Finally, the authors concluded that
an increased focus on research strategies, prevention and care is necessary to
reduce the future cost of brain disorders.

In this dissertation, we focus our attention on a very important disease, the
brain tumour, which affects 14.8 per 100,000 person/years with a cost in Eu-
rope around €5.2 billion (Buckner et al., 2007; Olesen et al., 2012). In particular,

gliomas account for 78% of malignant tumors (Buckner et al., 2007). Within
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this group, the most common and most malignant brain tumors is Glioblas-
toma Multiforme (GBM) (Ohgaki and Kleihues, 2013). GBM shows regions
of necrosis in the central region and increased vascularity on the borders that
can be identified by T1-weighted MRI scans (Fig. 1.1) as well as in fixed tissue
(Fig. 1.2) (Buckner et al., 2007). Its incidence rate per 100,000 person/year was
reported by Ohgaki et al. (Ohgaki et al., 2004) to be around 3.3 in males and 2.3
in females, between 1980 and 1994. However, a more recent study by Philips
et al. (Philips et al., 2018) has shown that the incidence rate has more than
doubled its value in only 20 years (Fig. 1.3). Moreover, despite the treatments
cost billions, the median overall survival for GBM is limited to 14.6 months
with only a 6.9 months interval in which there is no progression of the tumour
(Mehta et al., 2015; Thakkar et al., 2014).

1.2 GBM treatments and limitations

1.2.1 GBM conventional treatments

The current standard of care for newly-diagnosed GBM is maximum safe cy-
toreductive surgery followed by concurrent temozolomide (TMZ) and frac-
tional external beam radiotherapy (Davis, 2016; Mehta et al., 2015). Moreover,
in the last years, the use of functional MRI and Diffusion Tensor Imaging (DTI)
in preoperative planning, as well as ultrasound and MRI with direct stimu-
lation during surgery, has allowed for multimodal neuronavigation and the
integration of patient-specific anatomical data (Davis, 2016).

Despite the introduction of these technologies, the survival rate is still very
poor because differentiating between normal brain and residual tumor contin-
ues to be a major challenge (Davis, 2016). This is due to the highly invasive
character of GBM cells that tends to infiltrate in the tumor surrounding areas.
Since GBM often occurs in important part of the brain e.g. control speech, mo-
tor function and senses, a radical resection of the primary tumor mass is not
curative because some cells always remain (Williams et al., 2014). Moreover,
even if treated with postoperative radiation therapy with concomitant TMZ
chemotherapy, around 70% of the patients still experience disease recurrence
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FIGURE 1.1: Gadolinium-enhanced T1-weighted magnetic resonance im-
age showing the typical appearance of GBM. Adapted from (Buckner et al.,
2007).

or progression in the following year (Stupp et al., 2009) with less than 5% of
them surviving five years after diagnosis (Ostrom et al., 2014).

Obviously, there are a number of factors which influence the clinical out-
comes for patient affected by GBM and, for this reason, researchers are still
looking for novel approaches (Jahangiri et al., 2016). Nevertheless, a key issue
for chemotherapy efficacy, which has been highlighted by many researchers
(Bobo et al., 1994; Crawford, Rosch, and Putnam, 2016; Jahangiri et al., 2016;
Davis, 2016), is represented by the blood-brain barrier (BBB). The latter is a
natural protective barrier which prevents the entrance of toxic molecules and
agents into the central nervous system (CNS). The flux of polar molecules
and big compounds (molecular weight higher than 400 Da) from the blood
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FIGURE 1.2: Slice of a fixed brain affected by glioblastoma multiforme

(GBM). It is easy to notice the necrotic part in the center of the tumor mass

and the hemorrhage at the borders. Adapted from: Pathology Education In-

formational Resource (PEIR) Digital Library (http://peir.path.uab.edu/ li-
brary/).

to the CNS is strictly restricted by tight junction between the capillary en-
dothelial cells. Moreover, even if lipophilic molecules may pass through the
BBB through diffusion mechanism, there are special proteins on the endothe-
lial cells that transport them back into the blood stream (Crawford, Rosch,
and Putnam, 2016; Ballabh, Braun, and Nedergaard, 2004). For the reasons
explained above, it is evident the need for drug delivery systems capable of
beating the formidable challenge represented by the BBB.
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FIGURE 1.3: Glioblastoma multiforme age-standardized incidence rate
based on sex; dark blue, violet and green curves represent male, female and

overall values, respectively. Figure adapted from data present in (Philips et
al., 2018).

1.2.2 GBM innovative treatments

Since the BBB is the main obstacle to conventional chemotherapy, a way to
overcome the problem could be to manipulate or bypass the BBB. Several ap-
proaches have been investigated in the literature:

e Temporary disruption of tight junctions in the BBB via osmotic mech-
anism: this method relies on the administration of an hypertonic solu-
tion that causes a shrinkage of the endothelial cells thus leading to the
physical disruption of the tight junctions. In this way, BBB permeabil-
ity increase 10 times and even big molecular compounds would be able
to pass through the BBB (Kroll, Neuwelt, and Neuwelt, 1998; Rapoport,
2001). However, the usability of this procedure has been limited due to
toxicity risks and complexity of the method.
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* Trans-cranial delivery of low frequency ultrasound waves: this is an-
other disruptive method where the ultrasound waves are used to create
openings between endothelial cells. Preclinical studies suggest that this
technique can safely facilitate the focal delivery of drugs in the brain.
However, more studies are needed to move this technique to clinical
practice (Todd et al., 2019; Hynynen et al., 2006; Etame et al., 2012).

¢ Intranasal administration: it is a relatively new approach that allows cir-
cumventing the BBB by providing a direct route to the brain. Indeed, af-
ter the administration, the drugs are absorbed through the nasal mucosa
and can enter the brain through either the olfactory or trigeminal path-
ways. This approach promotes a very high drug accumulation within
the first few hours that can be useful for some pathologies (Meredith,
Salameh, and Banks, 2015; Crawford, Rosch, and Putnam, 2016).

¢ Chemotherapeutic wafers: after surgery, wafers containing the
chemotherapeutic agent are implanted in the region surrounding the tu-
mor resection cavity with the goal of destroying local remaining tumor
cells. Indeed, the drug is released from the degrading wafers and dif-
fuses in the brain due to the concentration gradient (Crawford, Rosch,
and Putnam, 2016). Despite this approach has shown clinically useful re-
sults (Westphal et al., 2006), there are still some limitations. In particular,
to eliminate the tumoral cells, a high concentration of drug is required
but the concentration tends to be very high in proximity of the wafers
and to steeply decrease as the distance from the wafer increases (Weiser
and Saltzman, 2014; Crawford, Rosch, and Putnam, 2016).

¢ Convection-Enhanced Delivery (CED): this technique was introduced
by Bobo et al., 1994 to deal with the problem of poor drug penetration.
The main idea was to use convection to augment the local concentra-
tion of drug molecules by infusing directly in the brain tissue (Crawford,
Rosch, and Putnam, 2016). Since CED is one of the most promising tech-
nique, this dissertation will focus on this approach that will be treated

in full in the next section.
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FIGURE 1.4: Artist’s illustrations showing the improvement in distribu-

tion with CED relative to diffusion occurring with non-convected injection.

The figure shows the theoretical distribution with minimal associated reflux
(green in cannula) with CED. Adapted from (Jahangiri et al., 2016).

1.3 Convection-Enhanced Delivery (CED)

As stated above, Bobo et al., 1994 introduced CED, an innovative procedure
where the infusion is driven by an applied positive pressure thanks to a pump
that drives the flow into the tissue through one or more catheters thus cir-
cumventing the BBB (Fig. 1.4). The catheters are positioned through direct
stereotactic intracerebral placement and attached to a pump that can provide
a constant microfluidic flow rate which is usually in the order of ul/min for
hours to days (Jahangiri et al., 2016; Barua et al., 2013; Barua et al., 2014).
Such a small flow rate is necessary to avoid a phenomenon called backflow
or reflux. When backflow occurs, the chemotherapeutic solution flows in the
interstitial space between the brain and the catheter that leads out of the brain

instead of into the parenchyma (Mehta et al., 2015).
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As stated by Crawford, Rosch, and Putnam, 2016, CED may not be suitable
for diseases that affect a considerable part of the brain because there are limits
to the volume of distribution of the infused material. On the other hand, more
localized diseases, in which the target area is contained in a certain region,
are more convenient for the use of CED (Crawford, Rosch, and Putnam, 2016;
Vogelbaum and Aghi, 2015; Lam, Thomas, and Lind, 2011). Indeed, if CED
is applied after resection of a brain tumor, the microinfusion catheters aim at
the peritumoral region thus enhancing the distribution of small or large ther-
apeutic compounds in the brain (Mehta et al., 2015). It is important to under-
line that, with CED it is possible to obtain an almost constant concentration of
drug spanning a predictable distance from the infusion site before the drop-off
(Ding et al., 2010; Mehta et al., 2015).

Concluding, CED offers several advantages with respect to other mecha-
nisms that rely only on diffusion such as chemotherapeutic wafers (Jahangiri
et al.,, 2016). First, with CED, it is possible to achieve a much higher intra-
tumoral spatial distribution because the pressure gradient allows drugs to be
infused over a larger volume. Moreover, the distribution is more even and
with higher concentration (Raghavan et al., 2006; Sykové and Nicholson, 2008;
Vargova et al., 2003). Second, since CED overcomes the problem of having a
steep concentration gradient associated with diffusion-mediated delivery, it is
possible to use less strong dose of chemotherapeutic agent (Kroll et al., 1996).
Third, the drug transport is mainly due to bulk flow thus favouring the distri-
bution also of agents with a high molecular weight (Jahangiri et al., 2016).

Although CED has shown promising results in the field of neurological
drug delivery, clinical trials have not succeeded in demonstrating its benefit
in terms of life expectancy for the patients (Jahangiri et al., 2016; Kunwar et al.,
2010; Crawford, Rosch, and Putnam, 2016). This is due to the fact that several
challenges still need to be faced as reported by brilliant reviews (Jahangiri et
al., 2016; Crawford, Rosch, and Putnam, 2016; Debinski and Tatter, 2009):

* Agent to be delivered: choosing the best agent to be delivered is crucial
to determine CED outcomes. Indeed, since it is necessary to target the
tumor cells infiltrated between the white matter (WM) cells, the drug

must have a wide therapeutic index.
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* Catheter design: currently there are many different type of catheters, e.g.
with rounded tip, with multiple openings, flexible for longer-term CED
etc. Each of them as pros and cons but a gold standard has not been
identified yet.

¢ Catheter placement: retrospective analysis on the PRECISE trial (Kun-
war et al., 2010) showed that the catheters were misplaced in more than
50% of the patients thus leading to not optimal results. Therefore, CED
would benefit from a more precise and automatic positioning of the
catheter thus reducing risks of leakage of drug into the intraventricular
spaces or subarachnoid space.

¢ Intratumoral penetration: since tumors are strongly heterogeneous, it is
difficult to reach an homogeneous delivery of therapeutic agent. Com-
putational modelling based on the physical characteristics of the tumor
may improve the penetration by allowing accurate and reliable predic-
tion of the chemotherapeutic concentration.

¢ Protocol: CED overall protocol, from infusion parameters to optimal
endpoint is still unclear. Currently, long-term implantable ports are be-
ing studied to allow patients to receive multiple rounds of CED.

From this brief overview on CED, two important considerations emerge: CED
efficacy depends on the ability to reach enough concentration of drug in the
desired region but, unfortunately, drug distribution is influenced by many fac-
tors and infusion parameters. Therefore, clinicians would benefit from the use
of reliable predictive numerical models that can predict the drug distribution
and concentration in the preoperative phase (Crawford, Rosch, and Putnam,
2016; Jahangiri et al., 2016). Indeed, a predictive model allows the surgeon to
test different catheter setups and clinical settings in order to decide the best
way to proceed with the patient.

Nevertheless, as underlined also by Vendel, Rottschifer, and Lange, 2019,
there is still an important need for refined mathematical models on spatial
drug distribution within the brain. In the next session, we present the state of
the art about this topic.
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1.4 CED predictive numerical models

The brain is one of the most complex organs of the human body, not only from
the physiological / pathological functioning point of view but also considering
its structural and anatomical organization. The brain is composed of excitable
nerve cells, called neurons, and their long processes, known as axons or nerve
fibres. It is protected by a system of membranes, called meninges, and sus-
pended in the cerebrospinal fluid (CSF). It is organised into region mainly
consisting of nerve cell bodies, the grey matter (GM), and into regions mainly
composed of axons, the WM. Moreover, it is crossed by a particular vascular
system known as BBB (Peate, 2017).

From a modeling perspective, the cerebral tissue is an heterogeneous and
anisotropic porous medium (Vendel, Rottschéfer, and Lange, 2019). The het-
erogeneity is given by the presence of different phases (cells, CSF and blood)
whereas the anisotropy is due to the presence of long parallel myelinated
nerve fibres which characterise the WM regions (Ehlers and Wagner, 2015).

In Table 1.1, it is possible to appreciate a brief history of the main contri-
butions to CED modelling that started back in 1994 and are still ongoing. We
grouped them in terms of cell phase constitutive model, imaging modality
and validation procedure.

1.4.1 Cellular phase constitutive model

During CED, a chemotherapeutic agent is injected directly in the brain tis-
sue and it flows through the interstitial spaces between neural cells where
the extracellular space (ECS) volume fraction can vary between 0.15 and 0.4
(Sykové and Nicholson, 2008; Duval, Stikov, and Cohen-Adad, 2016). The
cells represents the solid part of the brain and choosing the most appropriate
constitutive model is not trivial. Indeed, if the solid part is modelled as rigid,
the brain constitutive parameters do not change in time. On the other hand, if
the cells are subjected to deformation caused by the fluid pressure, the consti-
tutive parameters can change. From Table 1.1, it is clear that both approaches
have been followed by researchers in modelling CED.
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TABLE 1.1: The main contributions found in the literature concerning CED
modeling are listed in chronological order. Moreover, we reported how the
authors modelled the cellular phase of the brain (R = Rigid; D = Deformable),

the imaging modality and the validation strategy (if present).
Refs Rigid Imaging Validation
Morrison et al., 1994 R NA No
McGuire, Zaharoff, and Yuan, 2006 D NA Rat tumour
Sarntinoranont et al., 2006 R DTI Rat
Chen and Sarntinoranont, 2007 D NA Analytical
Sampson et al., 2007 R DTI Human
Linninger et al., 2008b R DTI Agarose gel
Linninger et al., 2008a R DTI No
Smith and Garcia, 2009 D NA No
Smith and Jaime Garcia, 2010 D NA No
Kim, Mareci, and Sarntinoranont, 2010 R DTI Rat
Raghavan and Brady, 2011 D DTI Pig
Rosenbluth et al., 2011 D DTI Primates
Smith, Starkweather, and Garcia, 2011 D NA No
Steverud et al., 2011 D DTI No
Kim et al., 2012 R DTI Rat
Ehlers and Wagner, 2015 D DTI No
Garcia, Molano, and Smith, 2013 D NA Agarose gel
Lueshen et al., 2014 R DTI Rat
Dai et al., 2016 R DTI Rat
Zhan et al., 2017 R DTI No
Messaritaki et al., 2018 R NG-DTI No
Zhan, Alamer, and Xu, 2018 R DTI No
Zhan and Wang, 2018 R DTI No
Zhan, Baena, and Dini, 2019 R DTI No
Vidotto et al., N.D. R DTI-NODDI No
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* Rigid: modelling the brain as a not deformable porous media is an ap-

proach that has been followed by many authors (Table 1.1). Morrison et
al., 1994 developed a simplified theory of the transport of substances in
brain tissue associated with direct infusion. The goal was to describe the
transport mechanism in the simplest way possible. Indeed, it was based
on several simplifying assumptions, between the most important we can
find that: the brain was considered an homogeneous porous medium
and both the ECS volume fraction and the hydraulic permeability were
constant. On the other hand, other hypotheses proved themselves to be
very appropriate and were then used by all the subsequent models. For
example the fact that the bulk flow driven by the pressure gradient and
produced by the pump can be described with Darcy’s law (Darcy, 1994)
and that the infused molecule is not significantly retarded by the intersti-
tial matrix. Accordingly, subsequent rigid models build on the work ex-
plained above trying to tackle its main limitations (homogeneous brain
tissue and constant fluid dynamics parameters).

Sarntinoranont et al., 2006 developed a methodology to process DTI data
and segment GM and WM assigning different tissue transport proper-
ties. DTI is a diffusion-weighted magnetic resonance imaging method
(DW-MRI), that can be used to map and characterise the three dimen-
sional diffusion of water in the brain as a function of spatial location
(Alexander et al., 2007). Indeed from DTI, it is possible to derive the
fiber tract orientation that were used to assign directional dependence
of hydraulic permeability and diffusivity.

Linninger et al., 2008a added another piece to CED modelling by extract-
ing from the DTI tensor not only the eigenvectors but also the eigenval-
ues. The latter were used to scale a fixed value of hydraulic permeability
and diffusivity along the three principal directions as a function of the
DTI eigenvalues. This paradigm was then exploited also in other mod-
els with minor changes according to the specific application. On the
contrary, other authors (Kim, Mareci, and Sarntinoranont, 2010; Kim et
al., 2012; Dai et al., 2016) continued to use fixed values of permeability
but introduced an innovative approach where the numerical model was
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extracted directly from the imaging dataset with a univocal correspon-
dence between image voxels and model elements.

¢ Deformable: one of the first computational study proposed in the liter-
ature with a deformable brain model was developed by McGuire, Za-
haroff, and Yuan, 2006. The authors aimed at studying the effect of
infusion pressure and infusion induced tissue deformation on infusion
rate. They modeled the cerebral tissue as a poro-elastic medium and
compared their results with three mouse tumor models. Hydraulic per-
meability depended on tissue deformation according to a modified ver-
sion of the Lai and Mow, 1980 equation that took into account tissue
anisotropy. However, since the authors had no way to inspect the brain
microstructure, their model is based on several debatable assumptions.

A similar approach in terms of geometrical model, with an extremely
simplified spherical symmetry, was implemented by Smith and Garcia,
2009 and Smith and Jaime Garcia, 2010. Their biphasic nonlinear mathe-
matical model aimed at demonstrating the importance of geometric and
material nonlinearities. A decisive step forward can be found in the
works of Raghavan and Brady, 2011; Steverud et al., 2011; Ehlers and
Wagner, 2015 where DTI comes into play.

In (Raghavan and Brady, 2011), the main idea was to use the fractional
anisotropy (FA), a dimensionless index derived from DTI that measures
the fraction of each voxel that can be assigned to anisotropic diffusion
(Basser and Pierpaoli, 1996), to predict the WM ECS volume fraction
and thus the effect on permeability. Moreover, they tried to predict how
tissue deformation affects the backflow. Stoverud et al., 2011 used the
FA to distinguish between GM and WM and the same calibration ap-
proach described in (Linninger et al., 2008b; Linninger et al., 2008a) to
derive an initial value of permeability. However, since Steverud et al.,
2011 used a poro-elastic model, permeability changed according to local
deformation. Finally, Ehlers and Wagner, 2015 developed the more com-
plete brain model considering the brain as a multi-component porous
medium composed of cells, interstitial fluid and vascular system. Even
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in this case DTI was used to infer brain tissue parameters following (Lin-

ninger et al., 2008a) approach.

In this brief overview, we have shown how different authors have faced the
problem of defining a constitutive model for the solid part of the brain tissue.
Of course, both approaches have pros and cons and choosing the best strategy
is very dependent on the application or the specific issue to be addressed.

As a general comment, we can say that the deformable model are more
correct because the brain is far from being a rigid medium, its Young’s modu-
lus is about 5,000 Pa and in open skull surgery, it can be clearly seen pulsating
with the heartbeat (Stoverud et al., 2011; Raghavan and Brady, 2011). More-
over, considering all the different phases as it was done by Ehlers and Wagner,
2015, it is surely a valuable attempt to have a comprehensive model.

Despite that, this type of model has a fundamental problem which is hard
to tackle: the more a model is complicated and the more it will depend on
the choice of the constitutive parameters to be used in the numerical equa-
tions. However, most of these parameters and their relation with tissue de-
formation, time after infusion and drug-cells interaction are far from being
understood. For example, Ehlers and Wagner, 2015 affirmed that: "A major
drawback in computational biomechanics is still the almost impossible task of a proper
(in vivo) determination of patient-specific material parameters" and Steverud et al.,
2011 said that: "Even though permeability values for brain tissue can be found in the
literature, there is still a large uncertainty in this parameter".

On the other hand, rigid models offer simpler equations and therefore less
parameters that depend on other physical quantity that are almost impossi-
ble to be determined in vivo. For this reason, most of the newer studies have
adopted this type of strategy for modeling CED. The main assumption is that
for a very low volumetric flow rate, for CED it is in the order of puL/min,
the local deformation can be considered negligible. Moreover, using a sim-
pler model means having a lower computational cost which is desirable also
from a clinical perspective since hospital computational resources are usually
limited.
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1.4.2 Imaging

Asitis clearly visible from Table 1.1, the introduction of DTI represented a step
change in CED modelling. Indeed, it is very sensitive to changes at the cellular
and microstructural level and it can describe the magnitude, the degree of
anisotropy and the orientation of diffusion anisotropy (Alexander et al., 2007).

DTI was used to understand the diffusion principal directions in each voxel
and consequently the permeability main directions (McGuire, Zaharoff, and
Yuan, 2006). Moreover, DTI eigenvalues have been used to scale a baseline
value of permeability and diffusivity as described in (Linninger et al., 2008a).

Only recently, Messaritaki et al., 2018 highlighted that, even though DTT is
a powerful tool, it only encompass Gaussian diffusion for the water molecules
thus leaving out non-Gaussian diffusion (NG-DTI). Accordingly, they ad-
vanced the hypothesis that numerical model prediction could be improved by
considering also the non-Gaussian character of diffusion. Their results prove
that there is actually a relevant difference between DTI based model and NG-
DTI based model and encourage more research in this direction. However,
their results still need to be validated.

Concluding, it is necessary to underline a common limitation that affects
all DTI or NG-DTI based models. These types of imaging have a resolution
which is in the order of mm? to be clinically feasible with conventional MRI
machine and with usual time that a patient can spend in the MRI. However,
the actual distance between neural cells in the ECS is in the order of nm
(Sykova and Nicholson, 2008; Nicholson and Hrabétovd, 2017). Therefore,
there is a very important difference between the in vivo imaging and the char-
acteristic length where convection and diffusion take place.

1.4.3 Model validation

The validation process is a fundamental step to verify the goodness of a nu-
merical model and to check its ability to predict how a drug diffuses in the
brain tissue. However, validating CED model is extremely challenging and
not all the numerical models here presented are combined with a proper val-
idation process. This is due to a number of reasons, here we list the most
important ones:
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1. Difficult access to brain tissue to perform experiments: extracting the
brain from a dead animal is a long and burdensome process that requires

the presence of an expert veterinary with proper equipment.

2. Most of the last studies use MRI and DTI to reconstruct the brain ge-
ometry and infer model parameters. To have a reliable validation, there
should be a perfect registration between preoperative images, postoper-
ative images, the model geometry and the pose of the catheter. However,
this is not trivial as suggest also by Kunwar et al., 2010 that highlights
the fact that most of the catheter insertions performed on 296 patients
were misplaced.

3. Brain tissue tends to lose its physical and mechanical properties in less
than 24 hours after death. Therefore, to have reliable data, researchers
should perform their analyses in vivo which is much more complex and

expensive than conducting experiments ex vivo.

4. The heterogeneity and anisotropy of the brain tissue make it very dif-
ficult to mimic its mechanic behaviour with artificial materials such as
hydrogels. However, some attempts in this direction have been made
(Forte et al., 2014; Forte et al., 2016).

1.5 Thesis motivation

Even though researchers have started to tackle the problem of enhancing the
level of accuracy in modelling CED in multiple ways, an unneglectable gap is
still preventing clinicians to easily and fully take advantage of numerical mod-
els. Analysing the state of the art, we have identified three main limitations
that affect all the proposed models.

Firstly, there is an urgent need for a reliable estimate of the brain consti-
tutive parameters. The latter are, independently from the model used, the
foundation on which a model is build. Obviously, as we use more and more
complicated models, the number of parameters to be determined increases.
However, as highlighted in (Ehlers and Wagner, 2015; Stoverud et al., 2011; Vi-
dotto et al., 2019a; Vidotto, Dini, and De Momi, 2018; Vendel, Rottschifer, and
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Lange, 2019), there is still a huge uncertainty in most of them. In particular,
we pinpoint the fact that permeability and tortuosity, that are key parameters
for the convective and diffusive part of the flux, can vary up to three orders of
magnitude (Vidotto et al., 2019a; Vidotto, Dini, and De Momi, 2018).

Secondly, we have shown that most models use DTI as a way to extract in-
vivo information on the brain microstructure and only recently Messaritaki et
al., 2018 have raised a doubt on this paradigm. However, even DTI or NG-DTI
are themselves models which are based on simplifying assumptions on the
WM and GM structure. Indeed, there is a wide branch of researchers working
on the development and validation of DTI models. Moreover, the clinical stan-
dard in terms of imaging time per patient limits the DTI to a resolution which
is very far from the nanometric scale where convection and diffusion occurs.
For this reason, from DTI it is possible to infer if a voxel belongs to isotropic
GM or anisotropic WM but it is not possible to obtain any detailed information
about the microstructure. Therefore, it is our opinion that more efforts should
be addressed towards understanding the role of the microstructure geometry
in influencing convection and diffusion parameters.

The third limitation is a consequence of the first two. As stated also by
Holter et al., 2017, analysing the brain microstructure is pivotal to shed light
on controversial parameters and to bridge the gap between the microscale
and clinically feasible imaging techniques. To this end, it would be desirable
to have access to reconstructed volumes of GM and WM areas. However,
acquiring high-quality microscopy images is very expensive both in terms of
resources and time and there are relatively few robust automatic methods for

segmenting the cellular structures (Vidotto et al., 2019b).

1.5.1 Aim of the thesis

CED is the most encouraging approach to inject chemotherapeutic agents di-
rectly into the brain, but a high variability in the results still do not allow a
clinical use. Therefore, the overall goal of this dissertation is to implement
an effective model of the drug distribution in the brain when using CED thus
narrowing the gap between prediction and real outcomes. Through the analy-
sis presented, the central role of the brain microstructure and its relation with



18 Chapter 1. Introduction

convection and diffusion parameters is studied. The study aims at obtaining
insights that would help in developing more comprehensive and reliable pre-
dictive models.

To do so, the analysis first focuses on the study of a fundamental parame-
ter for the convective transport of drug molecules inside the brain, namely the
hydraulic permeability. As already mentioned, this parameter is controversial
and can vary up to three orders of magnitude (Vidotto et al., 2019a; Holter
et al., 2017). To shed light on this aspect, we started by developing a geomet-
rical model resembling the WM microstructure. The model encompasses the
main characteristics of the WM available in the literature such as Axon Diam-
eter Distribution (ADD) (Liewald et al., 2014), ECS volume fraction and ECS
width (Sykové and Nicholson, 2008). From this model, we gained two im-
portant information. First, we estimated the size of the representative volume
element (RVE), namely the minimum size of a volume of WM to be analysed
to have reliable and repeatable results. Secondly, we computed the hydraulic
permeability in three WM structures (corpus callosum, superior fascicle and
inferior fascicle) (Vidotto et al., 2019a)’.

Using the same model in terms of geometry but with a Monte Carlo based
simulation approach, we calculated the WM tortuosity, another controver-
sial parameter which is important for the diffusive part of the mass transport
equation (Vidotto, Dini, and De Momi, 2018)”.

Despite the works explained above gave important insights on the effects
of the WM microstructure on transport parameters, they are still based on
a geometrical model that is different from the real WM anatomy. To tackle
the issue, we developed a Fully Convolutional Neural Network (FCNN) to
segment the cellular phase from Electron Microscopy (EM) images of WM
samples. We tested the algorithm on a publicly available dataset obtaining
good results (Vidotto et al., 2019b)°.

1Vidotto, Marco et al. (2019a). “A computational fluid dynamics approach to determine white
matter permeability”. In: Biomechanics and modeling in mechanobiology, pp. 1-12.

2Vidotto, Marco et al. (2018). “Effective diffusion and tortuosity in brain white matter”. In:
2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, pp. 4901-4904.

3Vidotto, Marco et al. (2019b). “FCNN-based axon segmentation for convection-enhanced
delivery optimization”. In: International journal of computer assisted radiology and surgery. 14.3, pp.
493-499.
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Then, in collaboration with Imperial College of London and Universita
Statale of Milan, we acquired scanning EM images of a couple of WM areas
from a sheep brain. Note that it was not possible to segment the cellular phase
(solid phase of the porous medium) with the algorithm previously developed
because the images were quite noisy and blurred. Therefore, we preferred a
manual segmentation that allowed us to separate the solid and fluid phases
with higher precision. Twenty slices for every volume were manually seg-
mented and imported in the finite element solver ANSYS FLUENT. In each
slice, we computed the velocity and pressure fields necessary to obtain an av-
erage value of permeability. Since the WM is a porous material with a strongly
anisotropic structure, we focused our attention on this aspect. The results con-
firm our hypothesis leading to significantly different values of permeability in
case of flux parallel or perpendicular to the WM fibres (Vidotto, De Momi, and
Dini, N.D.)*. Moreover, these values are in good agreement with the model
developed in Vidotto et al., 2019a and the relevant literature.

To validate our computational results, we designed an experimental cam-
paign in collaboration with Imperial College London. We modified an already
existent benchmark for measurement of outflow facility of eye (iPerfusion)
(Reina-Torres et al., 2016) to experimentally measure the hydraulic permeabil-
ity in WM areas from ovine brains. The benchmark is controlled applying a
constant pressure and measuring the flow rate. In this work, we confirm the
findings highlighted in the previous chapter namely the anisotropic behaviour
of the WM (Jamal et al., N.D.)°.

Finally, in collaboration with Imperial College London and San Raffaele
Hospital, we worked on a comprehensive predictive model for CED inter-
ventions that could take into account the contribution of the WM microstruc-
ture analysed in our previous studies. To do so, we integrated the Neurite
Orientation Dispersion and Density Imaging (NODDI) (Zhang et al., 2012), a
multi shell DTI imaging modality that includes microstructural information

4Vidotto, Marco et al. (N.D.). “White matter microstructure role for hydraulic permeability: a
new electron microscopy images based approach”. To be submitted to Proceedings of the National
Academy of Sciences.

5Jamal, Asad et al. (N.D.). “Infusion mechanisms in brain white matter and its dependence of
microstructure: an experimental study of hydraulic permeability”. Under review in IEEE Trans-
action of Biomedical Engineering.
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(Vidotto et al., N.D.)°.
The main objectives of the PhD research are summarized in the following

topics:

* 01 Understanding the RVE size of a WM sample to analyse to have re-
liable and repeatable results and compute reference values of hydraulic
permeability O1.1 (Chapter 2) and tortuosity O1.2 (Chapter 2)

* 02 Conduct an in depth study on the hydraulic permeability from EM
images thus considering the real WM microstructure and eventually de-
velop an automatic method to distinguish between solid and fluid phase
in WM samples O2.1 (Chapter 3).

¢ O3 Validate the numerical results with an ad hoc experimental analysis
(Chapter 4).

* 04 Integrate the information in a comprehensive CED predictive model
showing the difference with previous studies (Chapter 5).

1.6 Outline

This dissertation is organized in six chapters:

e Chapter 1 - Motivation and Background: in the first chapter the research
context, motivations and thesis aim are outlined. An overview of CED
modelling is presented.

o Chapter 2 - Permeability and tortuosity from a geometrical model: in the first
part of this chapter, a computational fluid dynamics approach to deter-
mine WM permeability is presented. A WM geometrical model is de-
veloped starting from the main characteristics of the WM available in
the literature. Then, solving the velocity and pressure fields across the
porous medium, we estimate the size of the RVE and we compute a ref-
erence value of hydraulic permeability in three WM structures.

%Vidotto, Marco et al. (N.D.). “Advanced imaging methods to improve the predictive capabil-
ities of CED models”. Under second review in Annals of Biomedical Engineering.
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In the second part of the chapter, we exploit a three-dimensional evolu-
tion of the geometric model previously developed to measure tortuosity
in brain WM. A Monte Carlo based simulation environment is presented
and used to evaluate the hindrance to diffusion caused by the tortuous
pathways between the axons. Tortuosity in the direction parallel to the
axons is used to prove the soundness of the method matching the re-
sults expected theoretically. On the other hand, tortuosity perpendicu-
lar to the axons appears to increase as the ECS volume fraction and ECS
width decrease.

o Chapter 3 - White matter permeability from electron microscopy imaging: in
this chapter, an electron microscopy imaging based study to address
WM permeability is presented. In the first part of the chapter, a FCNN is
implemented to segment the axons thus separating the solid and liquid
phases. The second part of the chapter focuses, in particular, on the role
of the WM microstructure. Starting from EM images, we demonstrate
that the hydraulic permeability in the direction parallel to the axons is
significantly higher than the one perpendicular to the axons. Moreover,
we show that two brain areas, despite both belonging to the WM, exhibit
a significant difference in WM permeability.

¢ Chapter 4 - Experimental study of hydraulic permeability: in the fourth
chapter, an experimental study of hydraulic permeability is presented.
An infusion mechanism is used to study the brain WM and its depen-
dence on microstructure. This work represents the experimental valida-
tion of the results achieved in Chapter 2 and Chapter 3. Besides demon-
strating the reliability of the numerical results, this chapter also deepens
the role of the pressure applied and the time post-mortem.

e Chapter 5 - CED predictive numerical model: in this chapter, advanced
imaging methods to improve the predictive capabilities of CED models
are used. An innovative predictive model based on the integration of
DTI and NODDI analyses is compared with a state of the art model by
simulating a CED intervention on a healthy subject. The results clearly
reveal a significant difference between the two models in terms of drug



22 Chapter 1. Introduction

distribution volume, concentration profile and linear penetration length.
We believe that our model introduces a more comprehensive way to de-
scribe the permeability tensor which relies on the integration of our pre-

vious analyses with a clinically feasible imaging technique.

¢ Chapter 7 - Conclusions: in the last chapter the dissertation’s conclusion
are drawn, highlighting scientific contributions, future perspectives and

limits.

——GEOMETRICAL MODEL EM MODEL

FCNN (02.1)
i PN

Permeability (O3)

Tortuosity (O1.1) )(Permeability (O1.2

CED PREDICTIVE
MODEL (04)

FIGURE 1.5: Schematic illustration of the proposed research. The brain WM
is studied following three approaches: the first is based on a WM geometri-
cal model and it is used to evaluate permeability and tortuosity (blue box,
Chapter 2). The second, which starts from EM images represents a step for-
ward towards a more realistic description of the real WM microstructure
(green box, Chapter 3). The third is an experimental campaign that is used
to validate the previous approaches (yellow box, Chapter 4). Finally, the re-
lation between permeability and WM microstructure is integrated in a com-
prehensive CED predictive model and tested using the imaging dataset from
a healthy subject (light blue box, Chapter 5).
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Chapter 2

Permeability and tortuosity evaluated
starting from a geometrical model of the

white matter

The first part of this chapter* proposes a method to compute a fundamen-
tal parameter for convection-enhanced delivery modelling outcomes, the hy-
draulic permeability, in three brain structures. Therefore, a two-dimensional
brain-like structure is built out of the main geometrical features of the white
matter: axon diameter distribution extrapolated from electron microscopy im-
ages, extracellular space volume fraction and extracellular space width. The
axons are randomly allocated inside a defined border, and the extracellular
space volume fraction as well as the extracellular space width maintained in a
physiological range. To achieve this result, an outward packing method cou-
pled with a disc shrinking technique is implemented. The fluid flow through
the axons is computed by solving Navier-Stokes equations within the com-
putational fluid dynamics solver ANSYS. From the fluid and pressure fields,
an homogenisation technique allows establishing the optimal representative
volume element size. The hydraulic permeability computed on the represen-
tative volume element is found in good agreement with experimental data
from the literature.

In the second part of this chapter**, a new method to compute tortuosity,
a key parameter for drug diffusion in fibrous tissue, is presented. Tortuosity
is a measure of the hindrance to diffusion caused by the intricate paths be-

tween the axons. We develop a three-dimensional version of the previously
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defined geometrical model with the axons simulated as straight parallel cylin-
ders. Then, using a Monte Carlo based simulation, we show that tortuosity is
different in the direction parallel or perpendicular with respect to the axons.
In the first case, it is always equal to 1, as predicted theoretically, thus proving
the reliability of the model. In the second case, tortuosity increases from 1.35
to 1.85 as the extracellular space width and the extracellular space volume
fraction decrease. The results are in good agreement with the experimental
data reported in the literature.

*This work has been published as: Vidotto, M., Botnariuc, D., De Momi,
E. & Dini, D. (2019). “A computational fluid dynamics approach to deter-
mine white matter permeability”, Biomechanics and Modeling in Mechanobiology,
18:1111-1122.

**This work has been published as: Vidotto, M., Dini, D., & De Momi, E.
(2018). "Effective diffusion and tortuosity in brain white matter", International
Conference of the IEEE Engineering in Medicine and Biology Society, 2018:4901-
4904.
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2.1 Introduction

The most common brain malignant tumour, glioblastoma multiforme, leaves
patients a median overall survival rate ranging from 12 to 18 months, as re-
ported in Mehta et al., 2015. Moreover, despite affecting only 6 in 100,000 peo-
ple, the treatment cost in Europe in 2010 was about 5.2 billion Euro (Olesen
et al., 2012). Conventional treatment options such as surgery, chemotherapy
and radiation have not proved themselves as decisive, despite being highly
aggressive for the patients (Crawford, Rosch, and Putnam, 2016). Therefore,
Bobo et al., 1994 introduced a new technique, namely Convection-Enhanced
Delivery (CED), which has shown encouraging results with recurrent glioblas-
toma in the last twenty years (Crawford, Rosch, and Putnam, 2016). Indeed, it
allows overcoming the main obstacle to pharmaceutical treatment of tumour,
the blood-brain barrier, by injecting a therapeutic agent under positive pres-
sure directly into the parenchyma.

A key aspect to reach good results is the ability to predict, in the pre-
operative phase, the distribution of the drug inside the tumour (Raghavan
et al., 2006; Raghavan, Brady, and Sampson, 2016). This would allow plan-
ning the infusion point and the flow rate to optimise the treatment. Several
studies have been conducted in the last fifteen years proposing numerical
models which were based on different assumptions (Ehlers and Wagner, 2015;
Steverud et al., 2011; Linninger et al., 2008a; Kim et al., 2012; Sarntinoranont
et al., 2006; Chen and Sarntinoranont, 2007; Morrison et al., 1999; Raghavan
et al.,, 2006; Raghavan and Brady, 2011; Smith and Garcia, 2009). Nonethe-
less, the cerebral tissue complex structure has represented a formidable chal-
lenge to modelling and more studies should be conducted to reach a satisfy-
ing level of accuracy. As suggested by Ehlers and Wagner, 2015 and Steverud
et al., 2011, this could be due the fact that the constitutive parameters which
are used in the models vary significantly across the scientific literature (up to
three orders of magnitude). Therefore, in this paper, we aimed to shed light
on the hydraulic permeability which is one of the key parameters affecting
CED outcomes. Indeed, it drives the convective flux through the brain thus
determining the pharmaceutical agent ability to spread within the cancerous
tissue.
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The brain could be divided in three main components characterised by
different properties: cerebrospinal fluid (CSF), grey matter and white matter
(WM). The CSF can be found in all the empty spaces within the skull thus com-
prising the gap between the brain and the skull, the ventricles and the extra-
cellular space (ECS). The grey matter consists of neuron cell bodies which are
highly packed making the tissue very dense. In contrast, the WM can be found
in the inner part of the brain and presents a more regular structure made of
elongated parallel axons with a quasi-circular cross section (Steverud et al.,
2011). In addition, the blood vessel system runs through the parenchyma to
supply oxygen and nutrients. This simplified description of the brain is not
meant to be exhaustive but highlights that the brain is a multi-phasic material
(Ehlers and Wagner, 2015). Nevertheless, as pointed out by Tavner et al., 2016,
the correct mathematical framework to model the brain parenchyma is still a
controversial subject which depends on the specific phenomenon studied.

In this work, since the blood vessels occupy less than 3% of the total vol-
ume (Duval, Stikov, and Cohen-Adad, 2016), we describe the WM as a bipha-
sic continuum in which the axons represent the solid phase which is immersed
in the ECS which constitutes the fluid phase. Under the hypotheses of incom-
pressible fluid and very low Reynolds number, the convective flux through
the axons can be described by means of Darcy’s law, which relates the pres-
sure loss across a porous medium with its average velocity according to the
hydraulic permeability (Dullien, 2012; Kim et al., 2012; Steverud et al., 2011;
Ehlers and Wagner, 2015). The latter depends only on the porous media ge-
ometry and the fluid properties (Yazdchi, Srivastava, and Luding, 2011), and
it can be computed in three different way:

(i) Experimentally: numerous experimental techniques have been devel-
oped and described in the geotechnical literature (Tiirkkan and Kork-
maz, 2015) but, to the best of our knowledge, only a limited number
of studies can be found concerning human tissues (Swabb, Wei, and
Gullino, 1974; Netti et al., 2000; McGuire, Zaharoff, and Yuan, 2006;
Franceschini et al., 2006).

In particular, Swabb, Wei, and Gullino, 1974 conducted the first in vitro



2.1. Introduction 27

(ii)

(iii)

experimental campaign which aimed to infer the hydraulic permeabil-
ity of hepatocarcinoma, the most common liver cancer. Netti et al., 2000
performed confined compression test on slices of freshly excised tissue
belonging to four tumour lines. Then, they estimated the permeability
fitting the experimental data with a poroviscoelastic model. McGuire,
Zaharoff, and Yuan, 2006 followed a similar approach implanting three
tumour lines in mice. Then, after the injection of a controlled flow of
Evans blue-labeled albumin in the centre of the cancerous tissue, the
latter was excised and sliced. Finally, the albumin distribution was fit-
ted by means of Darcy’s law for unidirectional flow in an infinite region
around a spherical fluid cavity. Franceschini et al., 2006 conducted an ex-
tensive and comprehensive work in which they performed several types
of mechanical tests on human brain samples within 12 hours of death.
Without entering into details, we will just focus on the permeability ex-
traction. They performed an oedometric test on 12 cylindrical specimens
harvested in the parietal lobe. The average ratio between initial and final
specimen’s shortening under a loading step, namely consolidation ratio,
was depicted as a function of time. These data were fitted according to
Terzaghi theory thus allowing to infer the permeability.

Despite the works cited above being extremely valuable, they are af-
fected by two important limitations. First, the permeability in not mea-
sured directly but it is inferred from a model which is based on certain
assumptions and, second, the hydraulic permeability decreases with
time post-mortem and its estimation is therefore affected by the exact
time measurements have taken place (Tavner et al., 2016).

An alternative methodology with respect to the experimental one is us-
ing the Kozeny-Carman equation which relates permeability to other
geometrical parameters such as porosity and specific surface; for details
the reader can refer to Xu and Yu, 2008 and citation therein. However,
the major drawback of the analytical approach is that it is only suitable
for simple and regular geometries but cannot be applied to complicated
structures such as the WM.

Finally, in the numerical approach, Navier-Stokes equations are solved
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to obtain the permeability under some hypotheses. It has been proven to
be a powerful tool to analyse random arrangements of fibres as shown in
(Hitti, Feghali, and Bernacki, 2016; Nedanov and Advani, 2002; Takano
et al.,, 2002) or other porous media (Pinela et al., 2005; Kolyukhin and
Espedal, 2010; Dias et al., 2012; Zeng et al., 2015; Eshghinejadfard et
al.,, 2016). For example, Hitti, Feghali, and Bernacki, 2016 computed the
permeability of a unidirectional disordered fibres array with constant
diameter by first assessing the velocity and the pressure fields of the
convective flow through them. Then, by means of an homogenisation
method they obtained the permeability of the whole domain.

In this paper, we develop an approach that for the first time applies numer-
ical techniques to the study of the brain microstructure. The brain geometry
and spatial organisation are considered to describe the inter-axons convective
flux.

We present an outward packing method to create a bi-dimensional ran-
dom geometry based on the Axon Diameter Distribution (ADD) provided by
(Liewald et al., 2014) that ensures an extracellular space (ECS) volume frac-
tion and an ECS width in the physiological range (Sykova and Nicholson,
2008). Moreover, a spatial analysis, by means of Ripley’s k-function (Hans-
son, Jafari-Mamaghani, and Krieger, 2013; Marcon, Traissac, and Lang, 2013),
is conducted to guarantee that the overall geometrical organisation is consis-
tent with the one of the experimental data. Then, a computational fluid dy-
namics (CFD) model is implemented within the commercial software ANSYS
(ANSYS, Lebanon, NH) to compute the WM hydraulic permeability which
will be compared with other data available from the relevant literature.

2.2 Methods

2.2.1 Dataset

In the study conducted by Liewald et al., 2014, the authors measured the in-
ner diameter of myelinated axons in three anatomical structure namely corpus
callosum (CC), superior longitudinal fascicle (SF) and uncinate/inferior occip-
itofrontal fascicle (IF). Their analysis was performed on three human brains
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and a monkey brain. Since the first ones underwent a late fixation that could
lead to degradation of cellular material and a reduction of hydraulic perme-
ability as pointed out by Tavner et al., 2016, we used the ADD of the monkey
which guaranteed an higher fixation quality. Moreover, since we are inter-
ested in the external diameter, we added the average myelin sheath width,
measured by Liewald et al., 2014, to the ADD.

2.2.2 Brain-like geometry

The first objective was to design a geometry which could mimic the WM struc-
ture and spatial organisation. Therefore, we created a two-dimensional ran-
dom disordered fibres packing with a circular cross section which met four
important geometrical requirements that drive the convective flux in the extra
cellular space: axon diameter distribution, ECS volume ratio, ECS width and
spatial organisation.

The generation algorithm was based on the closed form advancing front
approach presented by Feng, Han, and Owen, 2003, but with a main differ-
ence. This work introduces an optimisation phase which pushes the ECS vol-
ume fraction at a lower level with respect to the previous method in order to
meet the physiological requirements. All the algorithm here presented was
developed in the environment provided by MATLAB:

1. The user specifies the total number of fibres, which are represented by
discs of varying diameters in our two-dimensional representation, and
the desired ADD and ECS volume ratio. Then, he indicates the shape
of the domain inside which he wants to insert the discs, e.g a square
or a rectangle with a certain ratio between adjacent edges. The initial
domain area and its boundaries are computed from the sum of each disc
area using simple geometrical arguments and calculations. This initial
area is not big enough to host all the discs because it does not consider
the empty spaces. Therefore, the area increases iteratively until all the
discs have found space.

2. The algorithm is based on the following geometrical consideration:
given a couple of discs, it is always possible to add a third one which is
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tangent to both of them if the distance between the first two is less than
the diameter of the third; this is schematically depicted in Figure 2.1 (a).
Figure 2.1 (b) shows the polygon formed by the disc centres which con-
stitutes the front along which the generation algorithm propagates. Each
new disc is accepted if it is contained inside the domain boundaries and
if no overlapping with the other discs occurs.

. Once all the discs are placed in the domain, the ECS volume ratio is

computed as the ratio between the void spaces between the discs and
the total area. The outcome of this first part of the algorithm is a highly
packed structure with an ECS volume ratio of about 0.22.

. However, as stated by Sykovéd and Nicholson, 2008, the ECS volume

ratio can reach a minimum of 0.15 in the brain; for this reason we imple-
mented an optimisation algorithm which fills the empty spaces in the

structure. It could be summarised in four additional steps:

(i) The original geometry is converted in a black and white image to
allow morphological analyses, which are a collection of non-linear
operations related to the shape or morphology of features in an im-
age (Patil and Bhalchandra, 2012).

(ii) The subsequent step is the skeletonization that, starting from a
black and white image, uses the iterative thinning algorithm to re-
duces all the objects to lines, without changing the essential struc-
ture of the image (Haralick and Shapiro, 1992). The branch points
of the skeleton represent the location where the distance between
close discs is maximised. In other words, they are the best locations
where it is possible to add new discs as can be appreciated in Figure
2.1 (c).

(iii) Even in this case the new disc is accepted if its diameter is com-
prised in the range of the ADD previously defined.

(iv) The process continues iteratively until reaching the minimum
physiological ECS volume ratio.



2.2. Methods 31

5. Finally, the desired porosity is achieved by means of a shrinking tech-
nique as described in Hitti, Feghali, and Bernacki, 2016. It is easy to un-
derstand that the discs shrinking affects the desired ADD. However, for
the physiological porosity range, which does not exceed 0.3, the shrink-
ing produces a decrease in the axons diameter of only 2.5% which could
be considered negligible.

FIGURE 2.1: Discs generation algorithm: (a) given two discs with radius r;
and r2 and centred at c; and c» respectively, the centre c3 of the new disc
(green) with radius r3 is given by one of the two intersections of the dotted
discs with radius r; + r3 and r2 + 73 centred at ¢; and ¢ respectively; (b)
the first three discs form the initial propagation front, a new disc is added
on the right side of each arrow; (c) in the second part of the algorithm, new
discs are added at the skeleton branch points (black dot) if their diameter is
comprised in the ADD.

It must be noticed that the second part of the algorithm, where the empty
spaces are filled with discs, changes the ADD. Indeed, since the void spaces
are small, they are more likely occupied by the discs with a smaller diameter.
Nevertheless, this limitation could be considered negligible as discussed in
Appendix A.

2.2.3 Spatial distribution analysis

To compare the permeability evaluated both within the same ADD and be-
tween different ADDs as a function of ECS volume ratio, it was necessary to



32 Chapter 2. Permeability and tortuosity from a geometrical model

ensure that the spatial organisation of every geometry was consistent. There-
fore, the ability of the algorithm described in subsection 2.2.2 to create random
arrangements of axons was quantified by means of Ripley’s function (Ripley,
1976). The axon centres represent a spatial point process, see the contribution
by Diggle, 2003 for details, and Ripley’s function was used to differentiate be-
tween: (i) aggregation, where the points tend to stay close to other points, (ii)
inhibition where the points form a regular pattern and (iii) complete spatial
randomness (CSR) where the points do not follow any specific rule (Jafari-
Mamaghani, 2010; Lang and Marcon, 2010; Marcon, Traissac, and Lang, 2013).

Moreover, we compared the model spatial organisation with the exper-
imental one analysing the transmission electron microscopy (TEM) images
provided by Liewald et al., 2014. Therefore, as a preliminary step, we manu-
ally segmented the microscopy images and computed the centroids for each
anatomical structure (Gopi, 2007).

Ripley’s function is defined as:
R(t)=p 'E (2.1)

where p is the number of points per unit area, namely the intensity, and
is the number of extra points within a distance ¢, which is the distance scale
considered, of an arbitrary point (Ripley, 1976). For a homogeneous Poisson
process that characterises the CSR:

R(t) = mt? (2.2)

given the location of all points within a domain, the equation below describes
how to compute R:

O =p > wlls,ly) d”TG) 2.3)

where d;; is the distance between the i'" and j" points, N is the total number
of points and I(z) is a function whose value is 1 if the distance between the ;"
and j'" points is less than ¢ and otherwise is zero. Finally, w(;, ;) provides the

edge correction to minimise the effects that arise because points outside the
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boundary are not counted (Dixon, 2002). Usually, it is convenient to linearise
the R-function as:

L(t) =/ —2 2.4)

because the L — function plot for a CSR distribution is a simple line with an
angular coefficient equal to 1 and passing from the origin. On the contrary,
for clustering and inhibition the angular coefficient is higher and lower than 1
respectively. Thus, it is easier to show the deviation from CSR and the length
scale at which it occurs (Dixon, 2002; Hitti, Feghali, and Bernacki, 2016; Chen
and Sarntinoranont, 2007).

2.2.4 Brain convection model

In the brain the axons represent the solid phase of the WM which is immersed
in the ECS. As well as the other cells, they could be modelled as a soft tis-
sue but a unique answer on which constitutive model is more appropriate is
still missing. For example, for Steverud et al., 2011 the solid phase behaves
as an isotropic linear elastic material whereas Ehlers and Wagner, 2015 used a
hyperelastic model. On the other hand, other authors stated that, if the flow
rate is very low the deformation provoked by the fluid-structure interaction
can be considered negligible and therefore, it is possible to safely model the
axons as a rigid material (Kim et al., 2012; Kim, Mareci, and Sarntinoranont,
2010; Raghavan and Brady, 2011). Since the interest of this study is to infer
the permeability in a quasi-static condition (creeping flow), we follow the lat-
ter approach and we model the solid phase as a rigid porous media, whose
continuity equation is:

V.v=0 (2.5)

where v is the fluid superficial velocity.

The well-known Darcy’s law is a macroscopic relation between the pres-
sure loss Vp and v which is the velocity through the pores averaged on the
fluid volume V; (equation 2.6 and 2.7 respectively)

k

V==Vp (2.6)
1
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V= % vdV (2.7)
Vs

where k is the permeability of the porous media, 4 is the viscosity of the fluid
(1073 Pa - s) (Jin, Smith, and Verkman, 2016), V and V; are the total and fluid
volume respectively (Yang, Lu, and Kim, 2014; Hitti, Feghali, and Bernacki,
2016). The superficial velocity though the pores was computed solving the
Navies-Stokes equations by means of the Finite Element Method (FEM) soft-
ware ANSYS (ANSYS, Lebanon, NH) with Semi-Implicit Methods for Pres-
sure Linked Equations (SIMPLE) (ANSYS, 2017). A no slip condition was set
on each wall and the conduct length was designed to have a fully developed
flow before the porous zone. The boundary condition at the inlet (velocity in-
let 0.0024 m/s) was chosen to have a very low Reynolds number Re ~ 103
to respect Darcy’s law hypothesis and to have a velocity close to the one that
is usually used in CED intervention (Barua et al., 2013; Barua et al., 2014). A
zero pressure was applied at the outlet to reproduce the conventional experi-
mental conditions for measuring hydraulic permeability (Yazdchi, Srivastava,
and Luding, 2011; Truscello et al., 2012; Hitti, Feghali, and Bernacki, 2016).

2.2.5 Representative Volume Element (RVE) size determina-
tion

According to Drugan and Willis, 1996 an RVE is: “the smallest material vol-
ume element of the composite for which the usual spatially constant (overall modu-
lus) macroscopic constitutive representation is a sufficiently accurate model to rep-
resent the mean constitutive response”. However, as stated by Du and Ostoja-
Starzewski, 2006, a lot of studies are based on the existence of a so-called RVE
but only a few of them have quantitatively determined its size with respect to
the micro—heterogeneity. As previously described in subsection 2.2.2, the ECS
volume ratio can range between 0.18 and 0.3, however, we decided to limit
our study to geometries with the highest value for the following reason. Since
the space between each axon is proportional to the ECS volume ratio, choos-
ing a value equal to 0.3 leads to a geometry with a larger ECS width. This
characteristic is strongly desirable from a computational point of view, indeed

the smaller the inter-axons space is, the more the meshing process becomes
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challenging and the simulation dramatically more time-consuming.

In this work, we created 6 (n) random structures for each ADD (CC, SF and
IF). The mean permeability k and the standard deviation o were computed for
each brain zone as a function of the RVE size.

k= % zn: k; (2.8)
i=1

o= nilz(ki—l_c) (2.9)
=1

The RVEs size was determined dividing the height of each model geometry by
20 as shown in Figure 2.2 which also depicts a comparison between the model
geometry and a TEM image belonging to the SE. However, only the first 16
RVEs were considered for the calculation as a consequence of the channelling
effect described in Nield and Bejan, 2013 which rises at the walls. A detailed
explanation can be found in Appendix B.

N

5um

FIGURE 2.2: On the left: each model geometry was divided in 20 square

RVEs whose edge length is a fraction of the porous media height. The pic-

ture shows 5/20 (red), 10/20 (green) and 20/20 (blue); On each RVE the per-

meability was computed by means of Darcy’s law. On the right: TEM image
of the SF, with courtesy of Prof. Dr. Almut Schiiz (Liewald et al., 2014).
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2.3 Results

2.3.1 Geometry

Figure 2.3 shows the relationship between two geometrical parameters that
are fundamental in determining the fluid dynamics within a porous media,
namely, the ECS volume ratio o and the ECS width d. The latter has been
identified by Sykova and Nicholson, 2008 as an “atmosphere” surrounding
every axon which can be quantified by the following equation:

d — Vawon «

(2.10)

Samon 1 —«

where Vyzon and Sqzon are the average axon volume and surface area for an
ideal thin slab of length equal to 1 yum. As depicted in Figure 2.3 the ECS
width in our model increases in a quasi-linear fashion with the ECS volume
ratio from a minimum of 16 nm to a maximum of 35 nm which is comparable
with the range identified by Sykova and Nicholson, 2008. The minimum ECS
volume ratio that we were able to reach with our method was equal to 0.18,
which is very close to the experimental minimum value of 0.15 (Sykova and
Nicholson, 2008).

Figure 2.4, depicts the results of Ripley’s function analysis applied to the
TEM images and to the geometry generated through the algorithm described
in subsection 2.2.2. Moreover, it is possible to compare them with the ideal
case of CSR. We can observe that in all the anatomical structures the spatial
organisation of both real and model axons is almost coincident to the CSR as
we approach the final part of the curve. It should be noted that there is an
initial discrepancy between the experimental and the model trend. However,
this could be easily explained since the number of axons for each image was
significantly lower than the one in the model. Therefore, the presence of big
axons in the TEM images strongly affects the analysis whereas their effect is
mitigated in the model geometries. Nonetheless, for ¢ equal to 1 which is a
normalised value corresponding to the 25% of the image length as suggested
in Jafari-Mamaghani, 2010, both experimental and model data converge to
CSR.
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FIGURE 2.3: The ECS width is represented as a function of the ECS volume
fraction for CC, SF and IF. The ECS width increases in quasi-linear way from
a minimum of 16 to a maximum of 35 nm.

2.3.2 Grid sensitivity analysis

The first important step is to perform a grid-sensitivity analysis to find the
correct trade-off between the discretisation error reduction and the cost of
the simulation in terms of computational time (Montazeri and Blocken, 2013).
The grid resolution depends on different parameters; we varied separately the
maximum face size allowed for each cell and the edges” discretisation in the
porous zone (ANSYS, 2017). We compared 6 grids with an increasing number
of nodes, from a coarse one, characterised by 14862 nodes and an average ele-
ment size of 0.16 - 10~2 um?, to a finer one corresponding to 153496 nodes and
0.015-1072 um? average element size. In Figure 2.5, it is possible to appreciate
the geometry used for the grid-sensitivity analysis and the lines along which
the velocity has been computed, the results of the analysis are shown on the
right. The independence of the average velocity from the grid resolution is
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on the TEM images of CC (blue), SF (light blue) and IF (green).
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FIGURE 2.5: (a) Geometry used to perform the mesh sensitivity analysis, also

showing the lines along which the velocity has been averaged. (b) Effect of

the grid resolution on the area-weighted average velocity is shown. Note
that convergence is reached after about 100000 nodes.

achieved for a number of nodes close to 10°. Indeed, the percentage error be-
tween the grids with 100155 and 147016 nodes ranges between 0.08 and 0.4%,
which can be considered negligible (Montazeri and Blocken, 2013). Therefore,
further analysis were performed following the discretization features of the
100155 nodes grid which has been proven to assure high accuracy and ad-
equate computational cost. The simulations took 3 hours on a workstation
with a i7-6800K 6 cores 3.60 GHz CPU and 16 GB of memory.

2.3.3 RVEsize

Figure 2.6 represents k as a function of the RVE size for CC, SF and IF. The
standard deviation is very high at the beginning when the RVE size is less
than 8 pm; then, as the RVE size increases, the standard deviation decreases
progressively until it becomes two orders of magnitude less than the mean
permeability. This is due to the fact that, the bigger the area considered for
the homogenisation is and the more it is representative of the porous media
behaviour. On the other hand, a large area can increase dramatically the com-
putational cost of the simulations. The best trade-off between accuracy and
simulation time is identified by the optimal RVE size. In each anatomical area,
we found the RVE critical value as the point that satisfies two requirements:
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FIGURE 2.6: The hydraulic permeability (a) in the CC, SF and IF is repre-
sented as a function of the RVE size along with the respective velocity (b)
and pressure contours (c).

TABLE 2.1: RVE size and average hydraulic permeability in CC, SF and IF.

CcC SF IF

RVE (im) 17.5 16.8 152
k(m?)  1.33-10716 1.32.10716 1.22.10716

the average permeability is constant and the standard deviation becomes a
small fraction of the average value. It is worth noticing that the minimum
standard deviation is about 2% of the permeability, thus confirming that 6 ge-
ometries for each ADD provide a sufficient level of accuracy. The results are
summarised in Table 2.1.

Furthermore, Figure 2.6 shows examples of velocity and pressure contours
for each ADD. In each geometry the flow paths as well as the maximum veloc-
ity are very similar since the average ECS width, which drives the convective
flux in CC, SF and IF, is comparable. Moreover, the pressure field decrease
linearly along the porous media with an overall pressure drop of about 30000
Pa.
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2.3.4 Comparison with previous studies

In the literature there exist a few studies concerning hydraulic permeability
in human tissues, which report a wide range of values. Table 2.2 lists three
of the major experimental papers where the authors used different types of
tissue (Netti et al., 2000; Swabb, Wei, and Gullino, 1974; Franceschini et al.,
2006). The obtained results vary significantly and cover a range of three orders
of magnitude. This suggests a strong correlation between permeability and
histological features. Our results are well within the experimental range.

TABLE 2.2: Experimental studies on hydraulic permeability with several
types of tissues.

Tissue Type Permeability (m?) Researchers

Hepatic neoplastic tissue 3.1-10717 Swabb, Wei, and Gullino,
in vitro 1974

Hepatic neoplastic tissue (2.9 —8.4)-107'®  Swabb, Wei, and Gullino,
in vivo 1974

MCalV murine mam- 1.86-10~1° Netti et al., 2000

mary carcinoma

LS174T human colon ade- 3.37- 10716 Netti et al., 2000
nocarcinoma

U87 human glioblastoma 4.87 - 1076 Netti et al., 2000

HSTS 26T human soft tis- 6.9 - 10~17 Netti et al., 2000

sue sarcoma

Human brain tissue 2.47-10717 Franceschini et al., 2006

2.4 Discussion

The relevant literature concerning fibrous porous media has seen many at-
tempts to describe the hydraulic permeability of unidirectional fibres; the
models can be roughly divided in ordered and disordered where the analytical
or numerical approach has been followed respectively. In the former category,
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an analytical relationship between hydraulic permeability and porosity can be
established according to the fibres packing (triangular, square, hexagonal) as
described by Gebart, 1992 and Tamayol and Bahrami, 2009. On the contrary,
in the second category, computational methods have been used to understand
how permeability is influenced by other geometrical factors such as the mean
nearest inter-fibres distance and the degree of disorder (Chen and Papathana-
siou, 2007; Chen and Papathanasiou, 2008; Hitti, Feghali, and Bernacki, 2016).
Although the contributions of the researches cited above are valuable and un-
derline the importance of the geometry on the overall behaviour of the porous
media, they use a population of fibres with the same diameter which is not
the case of the WM as explained in subsection 2.2.1. Therefore, the presence
of a geometry which is able to mimic the main geometrical characteristics of
the WM is fundamental to model effectively the flow through the axons. In
subsection 2.3.1, we demonstrated how we achieved this task implementing a
model geometry in which the main histological features of the WM are consid-
ered. Indeed, the ECS volume fraction covers 87% of the physiological range.
Moreover, the ECS width is in very good agreement with the experimental
data presented in the literature, also considering the inter-species variabil-
ity, since they analysed murine brain, and the differences between grey and
WM (Nicholson, Kamali-Zare, and Tao, 2011; Ohno et al., 2007; Nicholson
and Hrabétov4, 2017; Sykové and Nicholson, 2008).

Furthermore, we exploited Ripley’s function to inquire the spatial organi-
sation as depicted in Figure 2.4. Although a comprehensive analyses that cov-
ers the entire parameter space is out of the scope of this work, the randomness
analysis performed on either the experimental images and our model shows a
behaviour which is ascribable to CSR. Moreover, assessing the spatial organ-
isation of a porous media and ensuring that it is homogeneous along all the
length scale considered is fundamental in all the studies that aim to estimate
the correct size of an RVE (Hitti, Feghali, and Bernacki, 2016).

The sensitivity analysis conducted on the grid resolution allowed us to ob-
tain accurate results as well as a feasible computational times for a challenging
geometry.

The permeability of each ADD was computed on RVEs of increasing size.
The results illustrated in Figure 2.6 and Table 2.1 show outcomes concerning
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both the RVE critical size and the permeability values which were similar in
the cases examined. This is probably due to the fact that, even if we are con-
sidering three different anatomical structures, their ADD as well as the ECS
width are very similar, thus producing a comparable effect on the fluid flow
as suggested also by Chen and Papathanasiou, 2008 in their discussion on the
mean nearest inter-fibres distance. On the other hand, comparing our results
with data presented in literature has proven to be a more difficult task since a
very small amount of experiments have been conducted. The work which is
closest to our study is that performed by Franceschini et al., 2006, who com-
puted a permeability value which is slightly lower than ours. However, it
must be noticed that there are four important differences to take into account.
Firstly, there is an inter-species variability, as suggested by Abbott, 2004, since
we are analysing a monkey brain instead of a human one. A second factor
to consider is that the permeability is not a direct measure but it is inferred
from a model which is based on simplifying hypotheses and, for example,
does not consider non-circular axons and deviation from collinear bundles,
which would both contribute to lower the permeability of the tissue. Third,
the results obtained by Franceschini et al., 2006 are an average between brain
samples excised in both grey and WM whereas we limit our study to WM.
Finally, the average ECS volume ratio in the brain is about 0.2 (Sykova and
Nicholson, 2008), whereas we used the maximum value of 0.3 for the reasons
explained in subsection 2.2.5. Since the ECS volume fraction is directly related
to permeability, this contributes to the lower value obtained by Franceschini
et al., 2006.

Nevertheless, our results are in good agreement with the experimental
data if compared to the range of values presented in the literature and rep-
resent the first attempt to estimate the permeability with a numerical ap-
proach which starts from the WM microstructure. The method presented in
the present contribution opens the possibility to further extend the study in-
corporating more images belonging to normal or pathological subjects, thus
allowing to create a specific database for the permeability of brain tissue mat-
ter.
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2.5 Conclusion

We presented a novel method to assess hydraulic permeability, starting from
the ADD of three WM anatomical structures. Moreover, we paid particular at-
tention to estimate the RVE size to ensure the reliability of the results obtained.
The approach consisted of the following three steps: (i) Generation of a ran-
dom geometry in which the cross-sectional area of the neurons is considered
circular. The algorithm created a fibres assembly according to the experimen-
tal ADD of CC, SF and IF, offering also the possibility to vary the ECS volume
fraction covering almost all the physiological range. (ii) Implementation of
a CFD model by means of the finite element solver ANSYS to compute the
velocity and pressure fields experienced by our model WM. Furthermore, we
conducted a grid-sensitivity analysis to ensure high accuracy. (iii) Finally, we
used this data to compute the hydraulic permeability on different RVEs in
order to determine its size.

We found that the RVE size and the hydraulic permeability are slightly dif-
ferent for each anatomical structure suggesting that an RVE characterised by
a length scale of about 17um can be representative of the overall behaviour.
Moreover, the permeability values that we found are consistent with the re-
sults provided by experimental data available in the literature. Albeit based
on simplifying assumptions, we believe that this work is the first important
step towards a combined experimental and computational approach which
aims to shed light on fundamental constitutive parameters to model brain
matter. Extensions to three-dimensional domains, consideration of irregular
axonal geometries and osmotic pressure, contribution of glial cells and a para-
metric study on the effect of the ECS volume ratio will constitute the subject
of further studies.
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Appendix A

In subsection 2.2.2, we explained that the the algorithm to create a brain-like
geometry is mainly comprised of two phases. In the first phase, the fibres are
randomly arranged respecting a prescribed ADD, the minimum ECS volume
ratio reachable in this phase is about 0.22. In the second phase, whose ob-
jective is to minimise the ECS volume ratio, the empty spaces are filled with
other fibres whose diameter is comprised in the range of the ADD. Since the
axons with a small diameter are more likely to find room between the others,
the ADD is more skewed towards them with respect to the original one. That
results in a median diameter which goes from the 0.34 psm of the original ADD
to the 0.3 um of the skewed ADD. To quantify the effect of this limitation on
the permeability calculation, we created a geometry respecting the ADD of
the CC. Then, applying the shrinking method described in subsection 2.2.2,
we reached the desired ECS volume ratio equal to 0.3.

We computed the permeability on an RVE of 17.5 um as suggested by the
results reported in subsection 2.3.3 obtaining a final value equal to 1.4 - 10716
m? which is 5% higher than the one presented in Table 2.1. In conclusion, our
generation algorithm, on the one hand introduces a very small error, on the
other hand allows analysing almost all the physiological range of ECS volume
fraction. We believe that the increased flexibility obtained by the proposed
algorithm and its fidelity in reproducing realistic ECS volume fractions greatly
overcomes the potential error introduced in the computation of permeability
and therefore, we considered this limitation acceptable.

Appendix B

In the attempt of filling a volume or an area with solid particles, a common
issue usually rises in the proximity of the walls. Indeed, here, the particles
find it harder to pack together, with respect of the inner zones of the porous
media, because of the presence of the walls. Therefore, the free space volume
fraction increases; for an analytical description of this phenomenon the reader
can refer to the work by Nield and Bejan, 2013.
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FIGURE 2.7: (a) Velocity contour before the porous media, the channelling

effect is clearly visible near the walls. The black lines indicate the direction

along which the velocity profiles have been extracted; (b) Average velocity

profile for the CC, even in this case the sudden increase in the velocity profile

points out the beginning of the channelling effect zone; (c) Its exact starting

points have been determined averaging the position of the first and last local
minima between the 6 random geometries of the CC.

As it is easy to imagine, the volume fraction increase brings, as a conse-
quence, the augmentation of the volume of fluid flowing near the walls as
well as the average velocity, and this is evident in Figure 2.7a. Since this phe-
nomenon, which is known as channelling effect (Nield and Bejan, 2013), affects
the permeability computation, we designed a method to infer and exclude the
areas involved.

In each geometry, we extracted the velocity profile along 10 lines in the
proximity of the porous zone as indicated in Figure 2.7a. The threshold of the
channelling effect zone can be identified by the anomalous and sudden increase
in the velocity profile highlighted in Figure 2.7b. Mathematically, this oper-
ation means finding the position of the first and last local minima along the
normalised height of the channel h. Finally, Figure 2.7c depicts the position
of the upper and lower threshold averaged between the 6 geometries created
for the CC. Equivalent results (not shown in this paper) emerged for the other
anatomical structures.

Accordingly, the porous media areas corresponding to 10% of the chan-
nel height at both ends (top and bottom in Figure 2.7a of the computational
domain) were excluded from the hydraulic permeability computation.
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2.6 Introduction

Patients affected by glioblastoma, which is the most common malignant tu-
mor, suffer from a poor prognosis. Despite surgery, chemotherapy and radi-
ation are aggressive techniques, the median survival time does not exceed 2
years (Crawford, Rosch, and Putnam, 2016; Mehta et al., 2015). In this clin-
ical scenario, convection enhanced delivery (CED) has shown encouraging
results because it allows to overcome the blood-brain barrier (BBB) which is
a major obstacle in reaching the parenchyma with therapeutics (Debinski and
Tatter, 2009; Jahangiri et al., 2016). Indeed, in CED, a pharmaceutical agent
is injected directly into the brain by means of a catheter which is linked to
an external pump that provides a defined flow rate. The ability to predict, in
the operative phase, the distribution of the drug inside the tumor is one of
the most important factors affecting CED efficacy as suggested in (Raghavan
et al., 2006; Raghavan, Brady, and Sampson, 2016). Therefore, several numeri-
cal models aiming to predict the efficacy of this treatment and the penetration
of the drug have been developed in the last twenty years (Ehlers and Wag-
ner, 2015; Kim et al., 2012; Linninger et al., 2008a). However, they are still
affected by unsatisfactory predictive capabilities. One of the reasons for the
lack of success in producing definitive answers and simulation tools for this
problem is that most of the constitutive parameters involved vary significantly
from one study to another. Indeed, the brain has proved to be a challenging
medium to be studied because of the extreme difficulty to conduct either ex-
perimental campaigns or numerical studies (Nicholson and Hrabétova, 2017).
One of the most important parameters affecting CED outcomes is tortuosity
which mainly depends on the extracellular space (ECS) geometry (Nicholson
and Hrabétova, 2017; Tao, Tao, and Nicholson, 2005; Sykova and Nicholson,
2008; Hrabe, Hrabétovd, and Segeth, 2004). Although the ECS plays a fun-
damental role in determining the CED performance, its characteristics are
still largely unknown, especially since its width is quantified in the tens of
nanometers. Several studies (Sykova and Nicholson, 2008; Hrabe, Hrabétova,
and Segeth, 2004; Tao and Nicholson, 2004; Hrabétova and Nicholson, 2004)
have determined that the ECS occupies about 20% of the brain volume; the
ECS is composed by narrow spaces between the cells of the central nervous
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system, which form an interconnected system of channels demarcated by cel-
lular membranes. The gap between each membrane is filled with a fluid,
whose characteristics resemble the cerebrospinal fluid, and the extracellular
matrix consisting of proteoglycans, hyaluronan and other proteins (Nicholson
and Hrabétova, 2017; Tao, Tao, and Nicholson, 2005; Sykova and Nicholson,
2008; Hrabe, Hrabétovd, and Segeth, 2004; Tao and Nicholson, 2004; Hrabé-
tovd and Nicholson, 2004). Although different important steps forward have
been made in this area, linking the microscopic properties of the ECS to macro-
scopic parameters remains challenging (Hrabe, Hrabétova, and Segeth, 2004).
Tortuosity, which expresses the geometrical complexity of the ECS, is defined

as
D

D*

where D is the free diffusion coefficient determined in water or a very dilute

A=

2.11)

gel and D* is the effective diffusion coefficient due to the hindrance of the
ECS. Two different approaches have been developed to determine the tor-
tuosity. The experimental approach, that may be conducted ex vivo or in
vivo, exploits molecules with a hydrodynamic diameter much smaller than
the gap between cells, which are used as a probe to infer the ECS characteris-
tics. Tortuosity values range from 1.44 to 3.50 depending on the animal used,
the probe molecules and the physio-pathological conditions, as evidenced by
the detailed studies reported in (Nicholson and Hrabétova, 2017; Sykova and
Nicholson, 2008; Nicholson, Kamali-Zare, and Tao, 2011). A value of about
A = 1.6 has been assigned to normal brain in physiological condition. The
second approach consists in the creation of geometrical models which un-
dergo Monte Carlo simulations (Hrabe, Hrabétova, and Segeth, 2004; Tao and
Nicholson, 2004; Hrabétova and Nicholson, 2004). The first set of simula-
tions reported in (Hrabe, Hrabétovd, and Segeth, 2004; Tao and Nicholson,
2004) have shown that a maximum value of A = 1.225 can be attained by
modelling the system as an assembly of regularly spaced convex cells (cubes
and other objects); this value is remarkably lower than the values extracted
from experiments. To fill the gap between experiments and simulations, Tao,
Tao, and Nicholson, 2005; Hrabétovéd and Nicholson, 2004 have hypothesized

the presence of dead-space microdomains that hinder the molecules diffusion.
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This approach produced results that are much closer to the experiments, but
its geometry is based on cubes with cavities of different shapes and the au-
thors could only speculate on the morphological basis for these assumptions.
Therefore, this paper aims to shed light on tortuosity focusing, on the relation-
ship with the ECS geometry. To do that, we propose a new geometry model
for white matter with realistic features and that is able to match experimen-
tal data. Moreover, to the best of our knowledge, this is the first attempt to
differentiate between gray and white matter.

2.7 Materials and methods

2.7.1 Dataset

In this work, we used the axon diameter distribution (ADD) of the corpus cal-
losum of a monkey which was provided by (Liewald et al., 2014). The authors
used the measured inner diameter of myelinated axons and the average width
of the myelin sheath to construct a realistic model.

2.7.2 Geometry creation

The geometry was created using an ad-hoc algorithm within the Matlab pro-
gram (Mathworks, Nantick, MA). The main idea was to create a geometry
that could resemble closely the white matter microstructure. Therefore, we
modeled the axons as straight cylinders parallel to each other with a circu-
lar cross section according to the ADD and the myelin sheath width (Abol-
fathi et al., 2009). Moreover, ECS volume ratio and ECS width were made
to vary within physiological values (Sykové and Nicholson, 2008). The algo-
rithm to generate the geometry was based on the advancing front approach
described in (Feng, Han, and Owen, 2003) but, instead of having tangential
circles, we imposed the minimum distance between each of them to be the
ECS width, as shown Fig. 2.8 (a). Moreover, to keep the ECS volume frac-
tion in the physiological range, we implemented a complementary algorithm
which, respecting the ADD and ECS width constraints, adds a new circle in
each void space which is suitable, as depicted in Fig. 2.8 (b). This second part
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exploited the skeletonization algorithm described in (Haralick and Shapiro,
1992); indeed the skeleton branch points represent the location where the dis-
tance between close circles is maximized. Finally, the circles were extruded
to form 3D cylinders whose length was designed according to the specifica-
tion suggested in (Tao and Nicholson, 2004); the result of the generation of
the three-dimensional domain used for the numerical models reported in the
next sub-section is shown in Fig. 2.8 (c). We created five 3D geometries whose
geometrical features are summarized in Table 2.3.

@ (b) (c)

FIGURE 2.8: Circles generation algorithm: (a) given two circles with radius
r1 and 72 and centered at c¢1 and c> respectively, the center c3 of the new
circle (green) with radius r3 is given by one of the two intersections of the
dotted circles with radius 71 4 r3 + d and r1 + r3 + d centered at c¢; and c2
respectively; (b) in the second part of the algorithm, new circles are added at
the skeleton branchpoints (black dot) if they respect the ADD and the ECS
width; (c) each circle is extruded in a straight cylinder to produce the final
three-dimensional geometry.

2.7.3 Numerical modeling

The numerical simulation were conducted using the software MCell (Stiles
and Bartol, 2001; Stiles et al., 1996; Kerr et al., 2008) which allows measuring
the effective diffusion coefficient and tortuosity reproducing the experimental
point-source paradigm (Nicholson and Hrabétova, 2017). In each simulation,
5000 molecules were released in the center of the volume and let free to dif-
fuse. We did not include any chemical reaction between molecules and axons
membrane since we were only interested in the effect that geometry has on
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TABLE 2.3: Main features of the brain geometries created.

ECS width (nm) ECS Volume ratio Number of axons Dimension (pm)

5 0.18 7490 60.6 x 60.6 x 62.6
20 0.21 7204 60.5 x 60.5 x 62.5
40 0.25 6934 62.1 x 62.1 x 64.1
60 0.27 6754 63.4x63.4x 65.4
80 0.32 6868 65.7 x 65.7 x 67.7

tortuosity. Therefore, each collision was modelled as perfectly elastic (Hrabe,
Hrabétova, and Segeth, 2004). We set a free diffusion coefficient D = 10~7
em?/s with a time step At = 1 us for a total simulation time of 10 seconds.
These parameters resulted in a mean linear step length:

Loean = 24/ 221 (2.12)
i

which is about six times smaller than the minimum space between axons.
In this way, each molecule executed several Monte Carlo steps between con-
secutive interactions with axon surfaces (Tao, Tao, and Nicholson, 2005). The
sampling box approach originally developed by Tao and Nicholson, 2004, was
used in the generalized version provided by Hrabe, Hrabétov4, and Segeth,
2004 to take into account the anisotropic shape of our geometry. In this sec-
ond method, each concentric box is defined by three dimensions a,, a, and
a, along each principal axis; however, since we want to compute the effective
diffusion along each axis separately, we let two out of three dimensions be-
come much larger so that the domain can be considered to be infinitely large
along those axes. This allows us to examine the behavior of the system in the
third remaining direction (e.g. to compute the effective diffusion along the x
axis, with both a, and a, — o0). In this way, we set 8 sampling boxes along
each principal direction. Being transparent at the molecules passage, their
only function is to count the number of molecules inside them as a function
of time. The number of molecules n in each box is described by the following
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equation:
a,

VD

where ny is the initial number of molecules, ¢ is the time and D}, Dy, D;

n(t) = nger f( a erf(—*4 erf(4

a
. ) (2.13)
4,/Dr ' '4,/D;

are the effective diffusion coefficients along the principal directions. Equation
2.13 was used to fit the simulation data by means of a Matlab based nonlinear
fitting algorithm thus estimating D* for each box. The final value of D}, Dy,
D} and so A;, Ay, A, was obtained averaging the results of each box along the
principal axes.

2.8 Results

The geometry was designed to be axisymmetric with respect to two principal
directions: the first runs parallel to the axons and the second is perpendicular
to them. We verified this statement comparing the results obtained along the x
and the y axis which showed negligible differences. Fig. 2.9 gives a graphical
idea of the axisymmetric behavior of the system: in Fig. 2.9 (a) the molecules
spread radially in a uniform way whereas in Fig. 2.9 (b), the molecules move
preferentially in the z direction. Therefore, only the results obtained along the
x and z axes, namely the radial and longitudinal directions, will be shown. In
Fig. 2.10, it is possible to notice that A, (longitudinal tortuosity) is constant and
equal to 1. This behavior was expected because the axons are parallel to each
other and so they do not offer any obstacles to the diffusion of molecules along
this direction. In other words, the longitudinal component of the random dis-
placement performed during the simulation is never affected. In contrast, A,
(radial tortuosity) is always higher than 1 because the axons geometry hinders
the molecules movement. Furthermore, Fig. 2.10 shows that A, is inversely
proportional to both ECS volume ratio and ECS width, meaning that the ef-
fective diffusion varies from 29 to 54% of the free diffusion. Finally, Fig. 2.10
compares A, with the convex cell model presented in (Tao and Nicholson,
2004) and experimental data of similar brain structures reported in (Sykova
and Nicholson, 2008).
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L.

FIGURE 2.9: (a) Top view and (b) frontal view of one of the five volumes

studied in our simulations, showing the diffusing molecules after 1.8 sec-

onds. The anisotropic behavior of the system is highlighted by the ellipsoidal
shape of the molecules cloud in (b).
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FIGURE 2.10: Radial tortuosity (blue) and longitudinal tortuosity (red) ob-

tained with our simulations. The radial tortuosity decreases as both the ECS

volume fraction and the ECS width increase. In contrast, the longitudinal

tortuosity is constant and equal to 1. The radial tortuosity is compared with

the convex cell model (black) (Sykova and Nicholson, 2008), and experimen-

tal data obtained on different rat white matter fibre tracts (Hrab&tovéd and
Nicholson, 2004).

2.9 Discussion

The simulation of physiological models can follow two main approaches: fi-
nite element method (FEM) or Monte Carlo (Schutter, 2009). Both methods
have advantages and drawbacks, but whereas in the first the accuracy is guar-
anteed by the solution convergence, in the second, this passage is not straight-
forward. Therefore, in Monte Carlo simulation, it is fundamental to assess

the accuracy comparing numerical and theoretical results. In our model, the



2.9. Discussion 55

soundness of the method is proved by A, which is equal to 1 in all the simu-
lations with a negligible standard deviation (Fig. 2.10). This result is in com-
plete agreement with what was expected theoretically since the geometry was
designed to offer no resistance in the longitudinal direction. Moreover, the
results depicted in Fig. 2.9 show that the geometrical anisotropy has a fun-
damental role in determining the molecules diffusion path. Since it has been
demonstrated that the white matter is highly anisotropic (Sykova and Nichol-
son, 2008), this factor should be taken into account to shed light on the dif-
fusion process mechanism. Existing models (Tao, Tao, and Nicholson, 2005;
Hrabétova and Nicholson, 2004) have attempted to find a specific correlation
between a certain geometrical feature, namely ECS volume fraction and dead-
space microdomains, and the outcomes in term of tortuosity. However, it has
been hard to find a morphological justification for the existence of the dead-
space microdomains. In contrast with this, the geometrical model proposed
in this paper matches most of the main histological white matter character-
istics in terms of ADD, ECS volume ratio and width. The latter could have
a prevalent responsibility as suggested by the results showed in Fig. 2.10.
Indeed, the circular axonal cross sections facilitates the formation of bottle-
necks followed by large cavities. While the bottlenecks provide a very small
passage for the molecules to freely move across the matter, the cavities may
be described as pockets (Tao, Tao, and Nicholson, 2005) or lakes (Chen and
Nicholson, 2000) where the molecules remain trapped. Finally, in Fig. 2.10, it
is possible to note that the model produces a trend of A, that correlates well
with the experimental values extrapolated from results obtained from similar
brain regions either in vivo or ex vivo. This suggests that our geometry has
succeeded in including the main parameters responsible for this behavior. It
should be noted that there is not a perfect agreement between the simulation
and the experimental data. This could be easily explained by the fact that
we aimed to understand the role of the geometry whereas the experimental
tortuosity is a composite parameter, which depends on other factors such as
extracellular matrix and hydrodynamic diameter of the diffusing molecules
(Nicholson and Hrabétova, 2017). Nevertheless, understanding the relation-
ship between geometry and tortuosity is fundamental to integrate this param-

eter with imaging techniques such as diffusion tensor imaging, used in CED
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interventions, which provides statistical information on the microstructure.

2.10 Conclusion

We presented a new model that incorporates the main geometrical features
of the white matter. The model cannot be considered exhaustive since some
assumptions had to be made to simplify the geometry along the z axis. There-
fore, future improvements will incorporate characteristics concerning the lon-
gitudinal axonal development, such as curvature and cross-sectional area vari-
ation. Nevertheless, our model outcomes are in good agreement with the ex-
perimental data and represent a significant improvement with respect to pre-
vious works, whose failure to accurately predict tortuosity is probably due
to their attempt to describe the whole brain. This suggests that a zone-wise
approach which differentiates at least between white and gray matter could
be more reliable in inferring the diffusion properties which are essential to

determine the evolution of many biological and drug delivery process.
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Chapter 3

White matter permeability: an electron

microscopy imaging based study

In this chapter, we present an ideal workflow that starts with the processing of
electron microscopy images and finishes with the white matter permeability
computation by means of numerical simulations.

In the first part of the chapter®, we present an automatic, accurate and fast
method for axon segmentation in electron microscopy images based on fully
convolutional neural network. The method allows the computation of impor-
tant geometrical parameters such as the axon diameter distribution, through
axon architecture analysis. The segmentation is performed using a residual
fully convolutional neural network inspired by UNet and Resnet. The fully
convolutional neural network training is performed exploiting mini-batch
gradient descent and the Adam optimizer. The Dice coefficient is chosen as
loss function. The proposed segmentation method achieves results compa-
rable with already existing methods for axon segmentation in terms of In-
formation Theoretic Scoring (98%) with a faster training (5 hours on the de-
ployed GPU) and without requiring heavy post-processing (testing time is 0.2
seconds with a non-optimized code). Moreover, the axon diameter distribu-
tions computed from the segmented and ground-truth images are statistically
equivalent.

In the second part of the chapter**, we move towards a more realistic es-
timate of the white matter permeability by analysing two areas (corpus cal-
losum and fornix) whose three-dimensional microstructure is reconstructed
starting from the acquisition of electron microscopy images. As expected,
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the white matter structure is mainly composed of elongated and parallel ax-
ons. Using a principal component analysis, we define two principal direc-
tions, parallel and perpendicular with respect to the axons main direction and
we compute the permeability along them. The results demonstrate a statis-
tically significant difference between parallel and perpendicular permeability
thus proving the anisotropic behaviour of the white matter. Moreover, we
show that the permeability in corpus callosum and fornix is statistically dif-
ferent which suggests that the white matter is also an heterogeneous porous
medium.

Note that, as stated in the Introduction Chapter, the algorithm developed
in the first part is not used for the axons segmentation. This is due to the
presence of some errors that, despite being negligible for extracting the axon
diameter distribution, have a great impact on the permeability computation.
Therefore, to avoid any unwanted effect, we prefer performing a manual seg-
mentation.

*This work has been published as: Vidotto, M., De Momi, E., Gazzara, M.,
Mattos, LS., Ferrigno, G., & Moccia, S. (2019). "FCNN-based axon segmenta-
tion for convection-enhanced delivery optimization", International Journal for
Computer Assisted Radiology and Surgery, 14(3):493-499.

**This work will be submitted as: Vidotto, M., De Momi, E., & Dini,
D. (2020). "White matter microstructure role for hydraulic permeability: a
new electron microscopy images based approach", Proceedings of the National
Academy of Sciences.

Note for the reader: the sections of the second part of the chapter are or-
dered in an unconventional fashion as demanded by the journal where this
article will be submitted.
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3.1 Introduction

Gliomas are the most common brain tumors (=~ 40% of brain tumors (Buckner
et al.,, 2007)) and glioblastoma multiforme (GBM) is the most common and
malignant one, accounting for 51% of gliomas (Kanu et al., 2009).

Nowadays, GBM treatment is one of the most challenging tasks in clinical
oncology. Despite the variety of modern therapies, GBM is still a deadly dis-
ease with extremely poor prognosis and median survival of 15 months from
diagnosis (Thakkar et al., 2014). The three main therapeutic approaches are
surgical resection, radiation therapy and chemotherapy Hanif et al., 2017. A
high grade of GBM infiltration does not allow complete surgical resection and
thus relapses occur (Iacob and Dinca, 2009). Several risk factors and restric-
tions are associated with radiation therapy, including radiation necrosis, per-
manent radiation-induced neuronal damage and radio-resistance (Hanif et al.,
2017). The biggest limitation in chemotherapeutic treatment is related to the
blood-brain-barrier (BBB), which limits the spreading of the most common
chemotherapeutic agents (Jovcevska, Ko¢evar, and Komel, 2013).

An alternative treatment procedure, called convection enhanced delivery
(CED), has shown encouraging results in the last years (Raghavan et al., 2006).
In CED, a pharmacological agent is injected directly into the brain tissue by
means of a catheter positioned in the target cancerous region, through a hole in
the scalp. Drug spreading is driven by both a positive pressure and a diffusion
gradient, allowing CED to overcome the main problems related to BBB (Bobo
et al., 1994; Debinski and Tatter, 2009; Jahangiri et al., 2016).

Despite the encouraging results, it is widely accepted in the clinical liter-
ature that CED outcome is still suboptimal due to two main problems. The
first is related to the choice of the optimal catheter design and the infusate
backflow (White et al., 2011; Barua et al., 2016). The second deals with leak-
ages within the substrate at the point of delivery and limited drug distribution
(Barua et al., 2013; Raghavan, Brady, and Sampson, 2016). This paper specifi-
cally focuses on the second problem.

Drug distribution is controlled by drug infusion parameters, such as flow
rate and infusion duration (Varenika et al., 2008; Raghavan et al., 2006). A
way to optimize the infusion parameters for CED planning is to implement,
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in the pre-operative phase, numerical models able to predict the drug dis-
tribution within the brain (Raghavan and Brady, 2011; Ehlers and Wagner,
2015). However, despite the fact that several studies have been conducted
in the field, a satisfying level of planning has not been achieved yet. Ehlers
and Wagner, 2015 suggested that this could be due to a lack of consensus on
model-parameter values (in particular for hydraulic permeability and effec-
tive diffusivity).

Since the drug flows through interstitial pathways between neurons, tak-
ing into account the brain micro-structure is essential to infer the physical
properties that drive both the convective and diffusive flux (Goriely et al,,
2015). Brain micro-structure can be retrieved exploiting electron microscopy
(EM), which guarantees high resolution at neuron scale (Knott and Genoud,
2013; Titze and Genoud, 2016). For example, in (Vidotto et al., 2018) and
(Vidotto, Dini, and De Momi, 2018), two different methodologies, inspired
by consolidated work in the literature (Nicholson and Hrabétova, 2017; Dias
et al., 2012), are proposed to compute the brain hydraulic permeability and
the effective diffusivity starting from the axon diameter distribution (ADD)
(Liewald et al., 2014) computed from axon manual segmentation in EM im-
ages.

In this scenario, the goal of this work was to develop an automatic and
accurate method for axon segmentation in EM images with the goal to au-
tomatically retrieving reliable ADDs. Following recent advancements in the
literature, the proposed segmentation algorithm was based on deep fully-
convolutional neural networks (FCNNs) and, in particular, on deep-residual
learning networks (Resnets) (He et al., 2016). The evaluation was performed

in terms of:

¢ Axon-segmentation performance on the ISBI2012 challenge dataset de-
fined in (Arganda-Carreras et al., 2015)

* Comparison of the ADD obtained from the FCNN-based and the
ground-truth axon segmentation.

The paper is organized as follows: Sec. 3.3 surveys axon segmentation
strategies, with a focus on deep learning. Sec. 3.4 explains the proposed ap-
proach to axon segmentation in EM images and ADD computation from the
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segmented images. Sec. 3.5 deals with the experimental protocol used to test
the proposed methodology. Results are presented in Sec. 3.6 and discussed in
Sec. 3.7. Finally, strength and limitations of this work are reported in Sec. 3.8.

3.2 Materials and methods

3.3 State of the art

In the last decades, axon segmentation in EM images was mainly based on
image filtering and thresholding (Mishchenko, 2009), and mathematical mor-
phology (More et al., 2011).

More recently, with the spreading of high-computational-power comput-
ers and publicly-available large and labeled datasets', machine learning meth-
ods became the most common approach to axon segmentation. One of the first
attempts at using machine learning for axon segmentation was proposed in
Andres et al., 2008. A hierarchical segmentation procedure based on random
forest (RF) and watershed segmentation was proposed for 3D segmentation
of neural tissues in scanning EM volume data from rat retina. Similarly, RF
was exploited in (Kaynig, Fuchs, and Buhmann, 2010) and its probabilistic
output was used in combination with axon geometrical properties to define
a regular cost function that enforced gap completion via perceptual group-
ing constraints. A similar approach was used in (Laptev et al., 2012), where
dense correspondence across sections was exploited to resolve ambiguities in
neuronal segmentation.

During the last years, deep learning, a subfield of machine learning based
on deep neural networks (DNN), drew the attention of researchers in the field
(Litjens et al., 2017). First examples include (Jurrus et al., 2010) and (Liu et
al., 2012), where deep artificial neural networks were used. For example, in
(Turaga et al., 2010) graph-theory was adopted and a convolutional neural
network (CNN) was used to infer graph weights. In (Ciresan et al., 2012) a
CNN was used to directly obtain axon segmentation. The network had four
convolutional layers, each one followed by a max pooling layer. A similar

l(http://brainiac2.mit.edu/isbi_challenge/home)
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approach was exploited also in (Fakhry, Peng, and Ji, 2016) and in (ITschopp
etal., 2016). All the three approaches performed segmentation via pixel classi-
fication, using two fully connected layers at the end of the convolutional path.

A further innovation was introduced with the use of FCNNSs. In a FCNN,
the fully connected layers are replaced by up-convolutional layers, allowing
a faster and more precise axon localization with respect to approaches based
on fully-connected-layer classification (Moccia et al., 2018; Litjens et al., 2017).
In (Ronneberger, Fischer, and Brox, 2015) a FCNN, which is known as U-Net
due to its u-shaped architecture, was proposed outperforming all the previous
approaches.

Starting from the U-Net implementation, architectural improvements of-
ten dealt with multilevel analysis (to encode image information at multiple
scale) and introduction of residual blocks (to tackle the vanishing gradient
problem) (Quan, Hildebrand, and Jeong, 2016; Xiao et al., 2018). In most
of these approaches, remarkable performances were achieved at the cost of
heavy time-consuming post-processing (e.g. based on superpixel and water-
shed segmentation for global refinement).

For our task, while post-processing may heavily prolong the overall com-
putational time (i.e. the time for axon segmentation, ADD computation, and
computation of the optimal CED infusion parameters with numerical mod-
els), methodologies based on residual blocks may be suitable for achieving a
reasonable segmentation performance for computing ADDs from EM images.

3.4 Methods

3.4.1 Architecture description

As introduced in Sec. 3.1, the proposed FCNN architecture was inspired by
U-Net (Ronneberger, Fischer, and Brox, 2015) and Resnet (He et al., 2016). As
(Ronneberger, Fischer, and Brox, 2015), the proposed FCNN consisted of a
convolutional and an up-convolutional path. A schematic figure of the ex-
ploited FCNN architecture is shown in Fig. 3.1.
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FIGURE 3.1: Top: Scheme of the fully-convolutional neural network ex-
ploited in this work. There are four stages forming the descending path and
four stages forming the ascending path. Each stage of the descending path
is made of a convolutional block (full blue boxes) and two identity blocks
(full green boxes), whereas in the ascending path the convolutional block is
substituted by an upconvolutional block (full red boxes). We used the anno-
tation introduced in Xiao et al., 2018, the empty blue boxes indicate convolu-
tional layers (C_N_S) with channels C, kernel size N x N and stride S; the
empty yellow box (N_S) indicates a maxpooling over N x N patches with
stride S; the empty red boxes denote upsampling operation (K _K) with size
K. Each convolutional operation is followed by batch normalization and a
ReLU activation function. The dotted arrows refer to the concatenation of
the feature map from the descending to the ascending path. Bottom: The
convolutional and identity blocks of Stage 1, and the upconvolutional block
of Stage 5 are shown. On the top of arrows, the number of feature maps is
reported.
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The proposed FCNN started with convolutions performed with 16 (7x7)
filters followed by batch normalization, activation with the rectified linear unit
and 2x2 pooling.

After this initial processing, in the convolutional path a first convolutional
block was present with three convolutional kernels in cascade and a shortcut
connection with 1 x 1 convolution for dimensional matching. The convolu-
tional block was followed by two identity blocks made of three convolutional
kernels and an identity skip connection. This structure (one convolutional
block and two identity blocks) was repeated four times, doubling the number
of convolutional kernels per layer. The up-convolutional path was symmetric
to the convolutional one, but with up-convolutional blocks instead (thus halv-
ing the number of kernels per layer). All convolutions and up-convolutions
were performed with 3 x 3 kernels. Batch normalization and activation with
the rectified linear unit were applied after each convolution.

The proposed FCNN ended with a bare full convolution with two 3x3
kernels activated with a sigmoid function.

3.4.2 Training

Adam optimizer (Kingma and Ba, 2014) was used to train the proposed
FCNN. Adam exploited the first moment estimate (1;) and the second mo-
ment estimate (¢;) of the loss-function gradient to update the network param-

eters:
n

m : Tﬁt(gt,i) 3.1

Ory1,6 = Op —

where 6.1, denotes the i-th parameter after ¢ + 1 mini-batches, g:; is the
gradient with respect to the parameter 6; after ¢ mini-batches and ¢ is a small
number. The cost function we adopted was the Dice similarity coefficient.

3.5 Experimental protocol

The dataset used to test the segmentation performance was released for the
ISBI2012 challenge®. The training dataset is composed by 30 sections from

2(http://brainiac2.mit.edu/isbi_challenge/home)
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the ventral nerve cord of a first-instar Drosophila larva acquired using serial
section transmission EM. The 30 sections are 512 x 512 grayscale images. The
ground-truth segmentation is composed by 512 x 512 binary images, where the
axons membranes are labeled in black and the background is labeled in white.
The ISBI2012 challenge organizers provided also another set of 30 (512 x 512)
grayscale images (for which the ground truth was not publicly available) for
testing purposes.

As suggested in (Ronneberger, Fischer, and Brox, 2015) and in (Fakhry,
Peng, and Ji, 2016), data augmentation was performed. Seven linear trans-
formations (rotations of 0°, 30°, 45°, 60° and 90°, vertical and horizontal mir-
roring) and eleven non-linear transformations (barrel transform, sinusoidal
transform and shearing) were applied. The augmented dataset consisted of
8 x 11 x 30 = 2310 training images.

The training and testing images were padded (symmetric padding) to
compensate the pixel loss due to the convolution operations. This was the
only manipulation we performed on the images during segmentation.

Adam optimizer parameters were set as suggested in (Kingma and Ba,
2014). We train the proposed FCNN with a batch size of 16 on 100 training
epochs and initial learning rate of 1073. The 40% of the training images was
used as validation set.

We performed all our experiments on Google Colaboratory®.

To evaluate the segmentation performance of the proposed FCNN, we
used the metrics suggested by the challenge organizer*

* Foreground-restricted Rand Scoring (V f1e"d):

2
VRand — Zij pij (3 2)
aZk3i+(1_a)Zkt% '

where p;; is the probability that a randomly chosen pixel belongs to

a segment ¢ (defined as a set of connected pixels) in the predicted
segmentation S and segment j in the ground-truth segmentation 7,
s; = )_;pij and t; = >, p;; are the probability that a randomly chosen

Shttps:/ /colab.research.google.com/
4(http://brainiac2.mit.edu/isbi_challenge/evaluation)


http://brainiac2.mit.edu/isbi_challenge/evaluation

66 Chapter 3. White matter permeability from electron microscopy imaging

pixel belongs to segment ¢ in S and j in T respectively and o = 0.5 is
the Rand F-score which weights split and merge errors equally.

¢ Information Theoretic Scoring (V/"/°):

nfo _ 1(5;T)
B (1—a)H(S)+ aH(T) (33)

where I(S;T) = 3=, pijlog(pij) — >, silog(si) — >, tjlog(t;) is a mea-
sure of the similarity between S and T"and H(S) = — ), s;log(s;) is the
entropy.

The segmentation evaluation was performed through an automated on-
line system where the segmented images were compared with the relative
(hidden) ground-truth (Fakhry, Peng, and Ji, 2016).

We compared the FCNN performances with those achieved by the best
competitors in the literature among those that used the ISBI dataset for testing
purposes, as to perform a fair comparison. In particular, we considered the
FCNNs implemented in (Xiao et al., 2018; Quan, Hildebrand, and Jeong, 2016;
Beier et al., 2017).

As introduced in Sec. 3.1, we compared the ADDs computed from the im-
ages segmented with the FCNN with those computed from the ground-truth
images (ADD was computed as in (Liewald et al., 2014)). As the ground-truth
for the testing images of the ISBI dataset was not available, we divided the
original training dataset in a subset for re-training from scratch the FCNN (20
images) and a set for computing the ADD (10 images). Both subsets under-
went data augmentation (seven linear transformations and eleven non-linear
transformations). The Wilcoxon rank-signed test (significance level = 0.05)
was used to assess whether statistical differences existed between the ADDs
computed from the FCNN-based segmentation and from the ground-truth.

3.6 Results

No significant differences were found when comparing the ADDs computed
from the images segmented with the FCNN and the relevant ground truth



3.6. Results 67

400

350 - T

300

250

200

150

100 ~

Axon diameter distribution [nm]

[$)]
o
1

| |

T T
Proposed FCNN Ground-truth

FIGURE 3.2: Comparison between the axon diameter distributions extracted
from the segmented and the ground-truth images.

FIGURE 3.3: Sample segmentation results obtained with the proposed

FCNN. Raw testing images and output probability maps are compared. Red

arrows on input images and output segmentation maps indicate structures
that were incorrectly segmented.
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TABLE 3.1: VRand, Vinfo and training time for the proposed and the com-
petitor approaches. The Vrand, Vinso are computed on the testing set using
the best FCNN model over the 100 training epochs.

Model VRand  Vinfo  Training time
Ref. Xiao et al., 2018 0.9835 0.9906 36 hours
Ref. Beier et al., 2017 0.9826 0.9894 20 hours
Ref. Quan, Hildebrand, and Jeong, 2016  0.9805 0.9881 -
Proposed 0.9419 09768 5 hours

(these results were obtained with a Vj;,, r, = 0.96). The ADDs are shown in the
boxplots in Fig. 3.2.

In Table 3.1, the Vgrgnq and Vi, 5, obtained for the proposed FCNN and for
the competing approaches are reported. Training time is reported, too.

The proposed FCNN architecture had a lower training time (5 hours) with
respect to the competitors at the cost of a slightly lower performance (Vgana
= 0.941987271 and V7, ¢, = 0.976824393). The computational time required to
segment one image was 0.2 s with a non-optimized code. A direct comparison
with the competitors was not possible though, as the relevant testing time was
not reported.

Sample testing EM images and segmentation results after Otsu’s thresh-
olding, that we performed for visualization purpose only, are shown in Fig.
3.3.

3.7 Discussion

From Fig. 3.2, the achieved ADD was comparable (no statically significant dif-
ference were found) with that obtained with time-expensive manual tracing,
thus indicating that the achieved segmentation performance was appropriate
for our purposes. This was possible even if some errors were present in the
segmentation, mainly due to thick axon borders and to small-organelle pro-
files within big axons (Fig. 3.3). False positive in correspondence of mitochon-
drial structures were detected, too. Errors were mainly related to intensity
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drops, noise in the images and limited number of samples against the high
data variability.

In Table 3.1, it is possible to notice that the proposed FCNN achieved per-
formances comparable with the competing approaches in terms of Vr4pnq and
Vingo (the values were 4.1 - 1072 and 1.3 - 102 lower, respectively, than those
for (Xiao et al., 2018), which achieved the best performances).

The time required for training our FCNN was significantly lower with re-
spect to all the other competitor methods (about four times lower with respect
to (Beier et al., 2017) and seven times lower with respect to (Xiao et al., 2018)).
Furthermore, even if the testing times are not reported by the competitors,
they performed heavy post-processing that sharply increases the segmenta-
tion computational cost. On the contrary, our approach, without any post-
processing, obtained good results as supported by the absence of significant
difference between the ADDs extracted from the ground-truth and the pro-
posed FCNN (Fig. 3.2).

A limitation of this work can be seen in the fact that our experimental pro-
tocol dealt with axons of Drosophila larva, instead of human ones. Nonethe-
less, while neuronal global architecture and axons diameter vary across dif-
ferent species, the axon microstructure (i.e., the round-shaped cross-section)
is very similar (Zaimi et al., 2018).

With the goal of integrating this work into a full framework for reliable
and robust fluid-dynamics brain-model implementation for CED, the FCNN
performance should be tested on datasets of human-brain images. In fact, this
work is part of the European project EDEN2020 (www.eden2020.eu), which
supports the collections of such datasets, that, to the best of authors” knowl-
edge, are currently not available. This could be attributed to the fact that
high-resolution EM is a time consuming procedure. Images with lower res-
olution could be collected in a faster way (thus achieving a larger datasets and
granting higher variability) but these images would probably be more chal-
lenging to segment. However, despite this still having to be experimentally
tested, we expect that, with a proper training dataset, performance suitable
for geometrical-parameter estimation can be still achieved. In fact, there is al-
ready evidence in other fields that proper segmentation performance may be

achieved also when processing low-resolution images (e.g. (Cai et al., 2017)).
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3.8 Conclusions

In this work, a method for accurate FCNN-based axon segmentation and
ADD computation was proposed. The method was inspired by recent ad-
vancements in deep learning and integrated FCNNs and residual nets allow-
ing good results in terms of axon geometrical-parameter extraction without
the need of heavy post-processing (no statistically significant difference was
found between the ADDs computed from the ground truth and proposed
FCNN).

It is acknowledged that further research is required to ameliorate the pro-
posed algorithm but the results presented in this work are surely a promising

step toward CED optimization by means of brain micro-structure analysis.
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3.9 Introduction

Understanding the effect of the brain microstructure on spatial drug distribu-
tion is pivotal to design effective treatment strategies for neurological disor-
ders (Vendel, Rottschéfer, and Lange, 2019).

The recent introduction of an innovative technique called Convection-
Enhanced Delivery (CED) in the neurosurgical scenario opened up the possi-
bility to deliver chemotherapeutic agents to brain tumours and, more recently,
gene therapy for Parkinson’s disease and antiseizure agents for epilepsy (De-
binski and Tatter, 2009; Christine et al., 2019; Rogawski, 2009). In CED, the
main idea is to use convection to augment the local concentration of a drug
by directly infusing in the brain tissue (Crawford, Rosch, and Putnam, 2016).
Usually, one or more catheters are stereotactically placed in the region of in-
terest and then anchored to a pump that can inject a drug at certain flow rate,
which is usually in the order of ul/min (Jahangiri et al., 2016). Using CED, it is
possible to achieve a much higher spatial distribution of the drug because the
pressure gradient allows infusing over a larger volume with respect to other
methods (Crawford, Rosch, and Putnam, 2016).

Despite CED has shown promising results in the field of neurological drug
delivery, clinical trials did not succeed in demonstrating benefit in terms of
life expectancy for patients (Crawford, Rosch, and Putnam, 2016; Jahangiri
et al., 2016; Kunwar et al., 2010). Indeed, for CED to be effective, it is neces-
sary to have a sufficiently high concentration of drug in the regions occupied
by the diseased tissue. However, a number of factors such as catheter design,
catheter placement and infusion protocol, which are often very difficult to con-
trol, influence the drug distribution and concentration profile. Accordingly,
clinicians would significantly benefit from making use of numerical models
able to predict the drug distribution and concentration in the preoperative
phase (Crawford, Rosch, and Putnam, 2016; Jahangiri et al., 2016). A predic-
tive model allows the surgeon to test different scenarios in terms of catheter
setup and infusion settings in the preoperative phase to decide the best way
to operate on the patient.

Although several models devoted to tackle the above scenario have been
developed in the last 20 years (Ehlers and Wagner, 2015; Raghavan and Brady,
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2011; Kim et al., 2012; Steverud et al., 2011; Dai et al., 2016), there are still
important discrepancies between prediction and reality, thus suggesting the
need for more refined and comprehensive approaches (Vendel, Rottschifer,
and Lange, 2019). In particular, the brain extracellular space (ECS) spatial or-
ganisation is identified as a pivotal factor for drug transport as highlighted by
Nicholson and Hrabétova, 2017. However, there exists only a limited number
of studies which have tried to understand the relation between ECS and hy-
draulic permeability, a fundamental parameter for modelling CED, which is
also the subject of an important controversy (Holter et al., 2017; Vidotto et al.,
2019a).

Recent advance in imaging and 3D reconstruction of brain structures at the
cellular level have laid the first milestone towards a deeper understanding
of the ECS spatial organisation role. For example, Holter et al., 2017 used
the neuropil reconstruction (grey matter) by Kinney et al., 2013 to compare
advective and diffusive transport within the interstitial space.

In this work, we use the dataset obtained using focused ion beam scanning
electron microscopy (FIB-SEM) to provide 2D and 3D tissue microstructural
information, as provided by Bernardini et al., N.D., to examine the perme-
ability of two white matter (WM) structures, corpus callosum (CC) and fornix
(FO). By integrating the information acquired simulating a convective flow
between the axons and the principal component analysis (PCA) performed
on the axons’ centerline, we determine and, in doing so, confirm the ability
to predict the strongly anisotropic character of the WM in terms of hydraulic
permeability. Moreover, comparing the two WM structures, we reveal the sig-
nificant difference between different WM areas. The relations between ECS
and WM anisotropy and heterogeneity are here systematically discussed for
the first time and represent an important contribution not only for CED mod-
elling but also for understanding the interstitial solute transport.
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3.10 Results

This study was conducted starting from the dataset provided by Bernardini
et al., N.D., who reconstructed the 3D volume of brain areas by means of FIB-
SEM. This method offers some advantages with respect to other electron mi-
croscopy techniques, the most important being the capability of scanning an
entire volume by sequentially ablating layers of the specimen. This feature is
especially important when dealing with WM, whose strongly anisotropic ge-
ometrical organisation is well known (Duval, Stikov, and Cohen-Adad, 2016).
Indeed, it allows avoiding issues related to the registration of consecutive im-
ages in order to obtain an accurate 3D reconstruction.

Figure 3.4 briefly outlines the main steps of this work. In Figure 3.4A, two
different cuts are shown: the coronal cut exposes the CC whereas the sagittal
cut exposes the FO. A sample from each anatomical area was harvested, fixed,
stained and imaged with the FIB-SEM (Figure 3.4B) as described in Bernar-
dini et al., N.D.. From each volume, we selected 20 equally spaced slices (10
parallel to the zy plane and 10 parallel to the xz plane Figure 3.4B), where we
manually segmented the axons boundary. Indeed, although automatic seg-
mentation methods have shown incredible performances for the morphome-
try of WM structures, these are usually employed to image the intracellular
space rather than the ECS (Abdollahzadeh et al., 2019; Zaimi et al., 2018; Vi-
dotto et al., 2019b). In these scenarios, small errors may not play a major role
in the accuracy of the reconstruction of the domain of interest. On the con-
trary, since in this study we focus on the relation between ECS and permeabil-
ity, we preferred to perform a manual segmentation thus avoiding unrealistic
intersections of close axons, which are extremely important for the exact de-
termination of flow, as suggested also in (Kinney et al., 2013).

Finally, an example section from the CC parallel to the xy plane is shown
in Figure 3.4C with a detail of the discretised surface. As described in Methods,
the resulting mesh, that contains more than 600,000 elements, is the result of a
sensitivity analysis. Note that, each slice has an ECS volume fraction of about
30%, which is within the physiological range (Sykova and Nicholson, 2008)
(Table 3.2).
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TABLE 3.2: Average ECS volume fraction and standard deviation for the zy
plane and the zz plane of CC and FO.

WM region xy plane xz plane
CC 0.31 £0.019 0.33 £0.022
FO 0.27 £0.049 0.28 +£0.038

3.10.1 Flow and pressure

The velocity and pressure fields were computed by solving the Navier-Stokes
equations with ANSYS Fluent (ANSYS, Lebanon, NH). The boundary condi-
tions were chosen according to the literature on CED (Vidotto et al., 2019a): we
imposed a velocity of 0.0025 m/s at the inlet and a pressure of 0 Pa at the out-
let, modelling the axons as impermeable and rigid bodies (Holter et al., 2017).
Note that, since the brain is usually considered an hyperelastic tissue, the last
assumption is valid only with very low flow rate because the deformations,
caused by the applied pressure, can be considered negligible (Kim et al., 2012;
Dai et al., 2016).

Figure 3.5 shows the results of the numerical analysis conducted on the 2D
slices extracted from CC and FO. Looking at the velocity profile, CC and FO
show similar results with a maximum velocity around 0.07 m/s (Figure 3.5 A
and E). Moreover, we can detect some of the features found in the topologi-
cal analysis on a rat CA1 hippocampal neuropil performed by Kinney et al.,
2013, where the authors divided the ECS into tunnels and sheets. The first are
formed at the junction of three or more cells and have a 40 - 80 nm diameter,
whereas the second can be found between pairs of cells with a width of 10 - 40
nm. Despite the brain samples being taken from WM areas and not neuropil,
we can still recognise a similar topological organisation which has an impact
on on the velocity profile. Indeed, the velocity increases, especially, in the
sheets between axons, as it is possible to recognise in the streamlines depicted
in Figure 3.5 Band F.

On the other hand, Figures 3.5 C and G show that the pressure decreases
from inlet to outlet as the flux encounters greater local pressure loss due to the
tortuous geometry of the ECS. Moreover, comparing the pressure loss across
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FIGURE 3.4: Workflow outline A) A coronal and a sagittal cut were per-
formed on a sheep brain. These cuts exhibit two WM regions, CC and FO,
from which two samples were harvested (as highlighted by the dashed black
contour). B) The WM samples were fixed, stained and imaged by means of
a FIB-SEM with a resolution of 0.02 um/pz as detailed in (Bernardini et al.,
N.D.) C) The 3D volumes of CC and FO were divided in 20 equally spaced
slices (10 parallel to the xy plane and 10 parallel to the zz plane) where the
axons boundaries were manually selected. A detail of the triangular discreti-
sation performed on each slice (about 300000 elements) can be appreciated
in the inset exploded in the right part of the figure.
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Corpus callosum Fornix

FIGURE 3.5: These results have been obtained applying a velocity of 0.0025
m/s at the inlet and a pressure of 0 Pa at the outlet as boundary conditions.
A) Contour of the x component of the velocity in the CC. B) Velocity stream-
lines computed on a cross-section of the CC at depth equal to 3.4 pm. C)
Pressure contours on the zy planes of the CC. D) Pressure drop along the
x direction on each slice of the CC. The black line indicates the mean value
that increases linearly (R? ~ 0.99) from 0 to 50 kPa. E) Contour of the y
component of the velocity in the FO. F) Velocity streamlines computed on
a cross-section of the FO at depth equal to 8 pm. G) Pressure contours on
the zy planes of the FO. H) Pressure drop along the y direction on each slice
of the FO. The black line indicates the mean value that increases linearly
(R? =~ 0.99) from 0 to 100 kPa.

CC and FO, we notice that in the FO the pressure required to allow a convec-
tive flux is about twice that required in the CC. This could be due to the greater
presence of axons with a larger equivalent diameter in the FO with respect to
the CC. Indeed, this kind of axons are expected to offer higher resistance to
the flux with respect to the smaller ones. Despite this difference, in both CC
and FO the pressure drop increases linearly (R? ~ 0.99) along the length of
the samples as shown in Figures 3.5 D and H. The black line represents the
average pressure drop along the « and y axes for CC and FO, respectively.
Similar results, not displayed here for the sake of brevity, were found also

in the other planes.
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3.10.2 Parallel and perpendicular directions

As outlined in the introduction, the main aim of this manuscript is to show
how the strongly anisotropic geometry of the WM influences a fundamental
parameter for drug delivery, namely hydraulic permeability. Using Darcy’s
law, which assumes a linear relationship between the pressure loss across a
porous material and the average velocity through the pores (Jin, Smith, and
Verkman, 2016; Hitti, Feghali, and Bernacki, 2016), we computed the perme-
ability tensor k with respect to the FIB-SEM imaging reference frame zyz.
However, since zyz is randomly oriented, these preliminary results need to
be rotated in order to be expressed with respect to the WM principal direc-
tions. Indeed, the WM can be considered as a transversely isotropic porous
medium defined by a principal direction parallel to the axons and a perpen-
dicular plane in which the material’s behaviour is direction-independent (Vi-
dotto, Dini, and De Momi, 2018; Kim et al., 2012; Dai et al., 2016). Therefore,
we can summarise our objective in the definition of the parallel permeability
(k) and the perpendicular permeability (k).

To compute these parameters in our brain samples, first we performed a
PCA on the axons’ centerline (Bernardini et al., N.D.; Abdi and Williams, 2010)
and, by averaging the first component of the PCA of each axon, we identify the
overall parallel direction Z (Fig. 3.6A). Then, randomly choosing two of the
infinite vectors orthogonal to Z, we define the XY Z reference frame, where X
and Y represent the directions perpendicular to the axons. Figure 3.6A is an
example showing the CC but the same operation was performed also on the
FO. Indeed, as can be inferred from Figure 3.6B, CC and FO exhibit a different
orientation of the parallel and perpendicular directions with respect to the
imaging reference frame zyz.

Then, using the Euler angles, it was possible to express the permeability
tensor with respect to the XY Z reference frame thus obtaining k*¥% and,
consequently, kx, ky and k7 (Fig. 3.6C). Finally, k| coincides with k7 whereas
k. is obtained averaging kx and ky. Details of the computation are reported
in the Methods section.
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FIGURE 3.6: A) Three-dimensional volume of the CC reconstructed by
Bernardini et al., N.D. with respect to the FIBSEM imaging reference frame
zyz. On the contrary, since the WM geometrical organisation is strongly
anisotropic, the XY Z reference frame (in black) is defined according to the
WM principal directions: the Z axis is parallel to the axons whereas X and Y
are two vectors chosen randomly to form a right-handed coordinate system.
B) The Euler angles 1, ¢ and ¢, which express the intrinsic rotation about the
x, y and z axes, respectively, describe the orientation of the XY Z reference
frame with respect to the zyz reference frame. C) Both the zyz and the XY Z
reference frames are centred in the origin: k., k, and k. are the z, y and z
components of the permeability tensor k. The latter is then expressed with
respect to the XY Z reference frame by means of the Euler angles. As a con-
sequence, kx ky and kz are given by the sum of the contribution of the k.,
ky and k. vectors along the X, Y and Z axes, respectively.
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3.10.3 Permeability

For the CC, k| is comprised between 1,046 and 2,249 nm? with a median value
of 1,710 nm?. The results obtained along the same direction but for the FO are
considerably lower with a median value of 907 nm? and ranging from 429 to
1,777 nm?2.

On the other hand, looking at the perpendicular direction, in the CC k.
is equal to 794, 525 and 1,049 nm? for the median, minimum and maximum
values respectively. Even in the perpendicular direction, the FO exhibits per-
meability values lower than CC: the median of k is about 432 nm? and values
range between 210 and 716 nm?. We analysed these results by looking at two
aspects: the first is related to the WM anisotropy that we expect to influence
the hydraulic permeability, whereas the second aims at understanding if also

the anatomical area from which the samples have been harvested plays an
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important role.

To this end, since the Shapiro-Wilk tests on k| and k, rejected normality
for both CC and FO (p < 0.10~3), we conducted a statistical analysis using the
Mann-Whitney rank-sum test for unpaired samples.

The analysis results are summarised in Figure 3.7. In both geometries, the
comparison between k| and &k shows a statically significant difference (p =
2.46 - 10~ for CC and p = 0.0028 for FO). This outcome strongly suggests that
the anisotropic geometrical organisation of the WM has an impact on the flow
across the tissue which ultimately leads to different values of permeability. It
also interesting to note that the ratio between the median value of k| and &
is comparable in the two WM samples analysed: 2.15 in the CC and 2.09 in the
FO.

Moreover, we inspect the WM by comparing the permeability values in
the same direction obtained in the CC and FO samples. Also in this case the
Mann-Whitney rank-sum test was used. As shown in Figure 3.7, for both k|
and k,, there is statistically significant difference between the two samples
(p = 0.0022 for kj and p = 0.0028 for k). This result clearly represents a
measure of the heterogeneity of the WM in different regions of the brain.

3.11 Discussion

Most of the research efforts of the last 20 years to address the need for tool to
predict the drug distribution profile in the brain, were conducted by imple-
menting more and more complex mathematical models (Ehlers and Wagner,
2015; Steverud et al., 2011; Kim et al., 2012; Raghavan and Brady, 2011; Dai et
al., 2016). However, despite previous cited investigations represent extremely
valuable contributions, they still do not guarantee a sufficient level of accu-
racy because of the large uncertainty on most of the constitutive parameters.
Indeed, as pointed out by Nicholson and Hrabétovd, 2017, the ECS is still a
largely unknown territory made of narrow intercellular channels which form

very tortuous paths.
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FIGURE 3.7: The boxplot shows a comparison between permeability evalu-
ated on CC and FO taking into account the WM anisotropy and the anatomi-
cal area from which they were harvested. The statistical analysis, conducted
with the Mann-Whitney rank-sum test for unpaired samples demonstrates
that there is an strong statistical difference between k| and k. in the CC
(p = 2.46 - 10~%) and between kj and k1 in the FO (p = 0.0028). Moreover,
we find evidences of a statistically significant difference also comparing the
kj in CC and FO (p = 0.0022) and the k£ in CC and FO (p = 0.0028).

It is only recently that new microscopy imaging techniques have started
to unveil the real structure of the ECS thus giving the possibility to run accu-
rate numerical simulations (Holter et al., 2017; Kinney et al., 2013). In this
manuscript, we exploit the 3D reconstruction of two WM structures from
Bernardini et al., N.D., namely CC and FO, to reach three objectives: quan-
tify the hydraulic permeability, highlight its anisotropic behaviour and show
the zonal heterogeneity of its value within WM.

Quantifying the brain hydraulic permeability has always represented a



3.11. Discussion 81

very challenging problem that has been addressed following two main ap-
proaches, experimental and numerical. Just a few works have followed the
experimental approach, with Franceschini et al., 2006; Tavner et al., 2016 who
performed their experiments on human and lamb brain tissue respectively,
whereas Netti et al., 2000 used cerebral neoplastic tissue.

TABLE 3.3: Comparison of permeability values from the literature. E and N

stand for experimental and numerical approach respectively. A viscosity of

1mPa- s was assumed when the permeability was converted from hydraulic
conductance (Vidotto et al., 2019a).

Tissue Type Permeability Approach Ref

(nm?)
Sheep CC k. 794 N This study
Sheep FO k. 432 N This study
Sheep CC k| 1,710 N This study
Sheep FO k; 907 N This study
Human/lamb brain 24.7 E (Franceschini et al., 2006)

(Tavner et al., 2016)

U87 human glioblastoma 487 E (Netti et al., 2000)
k1 from WM model 122 — 133 N (Vidotto et al., 2019a)
WM human 7,500 N (Basser, 1992)

The results, summarised in Table 3.3 shows that our permeability values
are much higher than the one found by Franceschini et al., 2006; Tavner et al.,
2016. However, in the comparison, we need to consider a fundamental dif-
ference: our research focuses specifically on WM areas whereas Franceschini
et al. and Tavner et al. considered a generic brain tissue sample (with ei-
ther white and grey matter and without considering the directionality in the
tissue). Accordingly, their value can be only considered representative of an
isotropic and homogeneous sample of the brain. Despite this issue prevents a
convincing comparison, the fact that the ratio between their result and ours is

roughly one order of magnitude recalls the ratio that it is usally found in the
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literature between grey matter (isotropic tissue) and WM (anisotropic tissue)
(Basser, 1992; Linninger et al., 2008a; Steverud et al., 2011).

On the other hand, our outcomes are in the same order of magnitude of
the research conducted by Netti et al., 2000. In this work, the authors first
performed a series of confined compression tests on excised tissue of human
glioblastoma (U87) and then they fitted the experimental data with a porovis-
coelastic model. Note that, as suggested by Tavner et al., 2016, there is still
an important debate on which model is the most appropriate for brain tissue.
In this case, we can only speculate that the similarity between our findings is
probably due to the fact that the porous structure of the U87 cell line is some-
how similar to the WM, thus offering a comparable resistance to the flow.

A second approach is represented by numerical studies. Basser, 1992 de-
veloped a geometrical model based on important simplifying assumptions.
The resulting permeability in the WM is probably overestimated and does not
include any anisotropic property. On the contrary, Vidotto et al., 2019a im-
plemented an idealised geometrical model of the WM in the perpendicular
direction starting from the axon diameter distribution from (Liewald et al.,
2014). Looking at Table 3.3, we can notice that our results in the perpendicular
direction are in good agreement with their work.

From this overview, it is clear that a proper comparison with the state of
the art is not possible because our work represents the first systematic and
comprehensive analysis of the WM permeability considering the directional-
ity of the axons in two WM areas. Indeed, in Figure 3.7, we show that there
is a statistically significant difference between permeability in the parallel and
perpendicular direction in both CC and FO. To the best of our knowledge,
this research demonstrates, for the first time, the anisotropic properties of the
WM starting from the reconstructed microstructure of the axonal fibres. This
represents a step change with respect to magnetic resonance imaging based
method, such as diffusion tensor imaging (DTI) or neurite orientation disper-
sion and density imaging (NODDI) (Zhang, Yang, and Jiang, 2012). Indeed,
despite DTI and NODDI are fundamental tools used in the standard clinical
practice, they usually have a resolution in the order of millimetres whereas
the average ECS width is in tens of nanometres (Sykova and Nicholson, 2008).

Therefore, they can only provide macroscopic and homogenised information
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about the WM microstructure and, in turn, about the permeability.

Furthermore, we provide a quantitative estimate of the ratio between k;
and k, that, in both CC and FO, is about 2. Obviously, we cannot claim that
this ratio is constant across the brain but it suggests that a ratio equal to 10 or
more, which is found in several CED modelling works (Kim et al., 2012; Dai
et al., 2016), may be overestimated.

Also, our findings provide a clear picture of the WM heterogeneity within
a single animal (Fig. 3.7). Considering both k| and k|, there is, indeed, a stati-
cally significant difference between CC and FO. This proves that, not only the
brain cannot be easily divided in grey and white matter but neither dividing
the WM according to the parallel and perpendicular direction to the axons is
enough. Therefore, also this aspect deserves a further in-depth analysis.

As a conclusion, we want to underline that the importance of our find-
ings are not limited to drug delivery but may have consequences also for the
controversial discussion on interstitial solute transport in the ECS (Holter et
al., 2017; Asgari, De Zélicourt, and Kurtcuoglu, 2016) and for the validation
of model of the micro-structure starting from the DTI analysis (Zhang, Yang,
and Jiang, 2012).

3.12 Materials and Methods

3.12.1 Finite-Elements Simulations

The brain is modelled as a porous medium in which fluxes of molecules, drugs
or cerebrospinal fluid take place in the interstitial space between the axons.
The latter represent the solid phase of the white matter that, for very low flow
rate, can be considered as a rigid material (Vidotto et al., 2019a; Kim et al,,
2012; Dai et al., 2016). Accordingly, the flow is modelled by the Stokes equa-
tions Hitti, Feghali, and Bernacki, 2016:

AV —Vp=0 (3.4)

V.ov=0 (3.5)
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where v is the fluid velocity, p the pressure and p the viscosity (1073 Pa - s).
As boundary conditions, we imposed a velocity equal to 0.0025 m/s at the in-
let and 0 Pa pressure at the outlet with a no slip condition on the axon walls
(v = 0) as suggested in other studies (Vidotto et al., 2019a). The resulting
partial differential equations were solved in the finite element method (FEM)
software ANSYS (ANSYS, Lebanon, NH) with semi-implicit method for pres-
sure linked equations (SIMPLE). The meshes were generated using ANSYS
meshing tool. Generating a mesh and running a simulation took about 60
minutes on an Intel i7-6800K processor. For both samples, we analysed 10
equally spaced slices parallel to the FIBSEM zy plane and 10 slices parallel to
the xz plane (Figure 3.4B).

3.12.2 Mesh sensitivity analysis

The ECS of the WM shows a highly tortuous and intricate ramification of
channels that makes the discretisation process very challenging. To ensure
that the results are independent from the meshing parameters, we performed
a mesh sensitivity analysis varying the elements size on the edges and the
maximum face size. The mesh was refined 7 times going from 67,000 trian-
gular elements for the baseline to 760,000 triangular elements for the finest
mesh. We stopped refining the mesh when the difference between two con-
secutive mesh refinements in term of both average velocity and pressure drop
was below 1%. Accordingly, the final mesh used to compute the flux in all the
geometries has the following parameters: element size on the edges equal to
0.015 pm and maximum face size of the triangles equal to 0.045 pum for a total
elements number around 600,000 (Figure 3.4C).

3.12.3 Permeability

The hydraulic permeability of a porous media can be computed using Darcy’s
law which describes the linear relation between pressure drop and velocity
(Hitti, Feghali, and Bernacki, 2016; Vidotto et al., 2019a):

k
¥=-Vp (3.6)
0
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where k is the hydraulic permeability tensor, Vp is the gradient pressure in
the direction of the flux and v is the velocity through the pores averaged on
the fluid volume according to the following equation:

- 1

vV=— vdV (3.7)

Vv,

where V' and V; are the total and fluid volume respectively (Yang, Lu, and
Kim, 2014; Vidotto et al., 2019a).

Using Eq. 3.6 and Eq. 3.7, we computed the permeability values in the
FIBSEM imaging reference frame (zyz) thus obtaining, for each sample, 10
values of k;,, kyy and k.., namely the diagonal elements of k (Figure 3.5).
Then, to describe the WM permeabilty with respect to a more informative set
of coordinates, we defined the XY Z reference frame.

To do that, we first conducted a PCA on the axons’ centerline thus obtain-

ing, for each one of them, a vector indicating the principal direction (ZFC4).

Then, we performed a weighted average between the ZFCA vectors to find

the overall principal direction (Z), using the following equation:

Sicy Li-ZPCA
Zf\; Li

Where N is the total number of axons and L; is the linear length of the

Z= (3.8)

it" axon defined as the euclidean distance from head to tail. In this way, we
gave more importance to the longer axons, namely the one occupying a larger
portion of the volume.

Assuming that the WM can be modelled as a transversely isotropic porous
medium (Kim et al., 2012; Dai et al., 2016; Zhan, Baena, and Dini, 2019), we
randomly chose the X and Y vectors to form the right-handed reference frame
XY Z where Z and XY represent the directions parallel and orthogonal to the
axons, respectively. The orientation of the XY Z reference frame with respect
to the zyz reference frame can be described by means of the Euler angles v,
¢ and 6 expressing the intrinsic rotation about the z, y and z axes. Then, we
converted the Euler angles in the corresponding rotation matrix (R ,) and

we expressed the previously computed permeability tensor k with respect to
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the XY Z reference frame:

ke O 0
KY2= (R0 Ky O (3.9)
0 0 ke

kXYZ we computed kx,

Finally, summing the X, Y and Z components of
ky and kz. Since kx and ky lie on the same plane, we calculated %, as the
mean value between them whereas k| coincides with k7. Note that, all the

operations listed above were conducted for both CC and FO independently.
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Chapter 4

Infusion mechanisms in brain white matter
and its dependence of microstructure: an
experimental study of hydraulic

permeability

In this chapter, we measure the permeability of white matter of fresh ovine
brain tissue considering the localised heterogeneities in the medium using an
infusion based experimental set up, iPerfusion. We measure the flow across dif-
ferent parts of the white matter in response to applied pressures for a sample
of specific dimensions and calculate the permeability from directly measured
parameters. Furthermore, we directly probe the effect of anisotropy of the
tissue on permeability by considering the directionality of tissue on the ob-
tained values. Additionally, we investigate whether white matter hydraulic
permeability changes with post-mortem time. To our knowledge, this is the
first report of experimental measurements of the localised white matter per-
meability, showing the effect of axon directionality.

This work has been submitted as: Jamal*, A., Mongelli*, MT., Vidotto, M.,
Madekurozwa, M., Bernardini, A., Overby, DR., De Momi, E., Rodriguez y
Baena, F., Sherwood, JM., & Dini, D. (2020). "Infusion mechanisms in brain
white matter and its dependence of microstructure: an experimental study of
hydraulic permeability", IEEE Transaction of Biomedical Engineering.

*Jamal and Mongelli contributed equally to this manuscript. Jamal wrote
the manuscript with support from Vidotto, Sherwood and Dini. Mongelli
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carried out the experiments. Vidotto, conceived and planned the experi-
ments, designed the study and supervised the findings of this work. All au-
thors provided critical feedback and helped shape the research, analysis and

manuscript.
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4.1 Introduction

Glioblastoma multiforme (GBM), a grade IV glioma, is the most aggressive
and frequently diagnosed form of primary central nervous system (CNS) tu-
mour in adults, with an average age of 64. Studies have reported an incidence
of 5 per 100,000 persons and GBM leads to 250,000 deaths per year world-
wide (Bush, Chang, and Berger, 2017; Alphandéry, 2018). Conventional tech-
niques for GBM treatment, such as radiation and chemotherapy, have either
severe side effects (e.g. localised tissue damage) or suffer from limitations in
passing through the blood-brain barrier (BBB) and distribution of therapeutic
agents throughout the tissue by passive diffusion (Harder et al., 2018; Weidle,
Niewdhner, and Tiefenthaler, 2015; Yuan, 1998). Convection-Enhanced drug
Delivery (CED) (Mehta et al., 2015; Lonser et al., 2015), an intra-tumoural in-
fusion method for localised drug delivery, has emerged as a viable delivery
technique and a promising solution to overcome some of the mentioned ob-
stacles. In contrast to diffusion-based drug delivery techniques, which rely
on concentration gradients to drive the flow, CED is based on infusion un-
der a positive pressure gradient into the CNS. By utilising advective trans-
port, CED enables relatively lower concentrations of the therapeutic agent
than diffusion-based delivery methods. CED is not without limitations and
its efficiency is affected by a number of factors, including target heterogene-
ity, white matter (WM) edema and transport parameters. Furthermore, lack
of histological information of brain tissue leads to issues in determining the
ratio of the drug distribution volume to the infusion volume, R;/; (Vg : V;)
(Mehta et al., 2015; Lonser et al., 2015), which is conventionally used to assess
the efficacy of CED.

For a given pressure gradient, flow through a porous tissue can be char-
acterised by Darcy’s law and the hydraulic permeability, k, which represents
a geometry and viscosity corrected conductance (reciprocal of resistance to
flow). However, in heterogeneous and anisotropic tissues, resistance to fluid
flow is both location and direction dependent and consequently it dictates
the ratio R4/; (Raghavan et al., 2006). Therefore, determining the hydraulic
permeability of multiphase tissues is key for the development and successful
implementation of intra-tumour infusion-based drug delivery therapies that
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rely on advective transport mechanisms (Chen and Sarntinoranont, 2007; Mi-
ranpuri et al., 2013; Raghavan and Odland, 2017). It also plays a fundamental
role in determining transport of interstitial molecules (Ray, Iliff, and Heys,
2019; Sykova and Nicholson, 2008), which is strongly linked to many physi-
ological processes of the brain, including dynamics of pathological molecules
that transit the extracellular matrix (ECM) (Mestre et al., 2020; Vargova and
Sykové, 2008; Agnati, Bjelke, and Fuxe, 1992).

In contrast to rigid porous materials, wherein & is constant, hydraulic per-
meability in biological materials has been reported to vary with tissue defor-
mation that occurs due to the pressure gradient during intra-tumoural infu-
sion (McGuire, Zaharoff, and Yuan, 2006). Hydraulic permeability also has
a large dependence on pore structure topology and tissue geometry (Datta,
2006). For brain tissue, there is limited knowledge of these parameters, and a
lack of reliable methodologies for their accurate determination, which makes
it difficult to understand infusion mechanisms and determine the hydraulic
permeability in a predictive manner.

For cerebral tissue, although theoretical models have been developed to
determine hydraulic permeability, less attention has been paid to experimen-
tal studies. Furthermore, the constitutive parameters used in theoretical mod-
els vary by up to three orders of magnitude (Vidotto et al., 2019a; Tavner et al.,
2016; Ehlers and Wagner, 2015; Steverud et al., 2011; Raghavan and Brady,
2011; Linninger et al., 2008a). Such a significant difference across the litera-
ture and lack of experimental evidence to complement these models makes it
difficult to justify the use of specific values for predictive purposes, e.g. when
they need to be used as inputs for large scale CED simulations. Furthermore, a
deeper understanding of the effect of tissue microstructural features is needed
to predict the local response of the system to external infusion and physio-
logical processes; what is the effect of fibril bundle orientation on hydraulic
permeability? This ought to be characterised and reproduced with the most
accurate available methods.

There are a number of available techniques for estimating hydraulic per-
meability experimentally. These techniques include infusion, i.e. localised
drug delivery to a tissue from a point source (catheter’s tip) (Milosevic et al.,
2008; Zhang et al., 2000; Boucher et al., 1998), perfusion, i.e. drug delivery
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from a source with cross sectional surface comparable to the tissue dimen-
sions (Zhang et al., 2000; Heneghan and Riches, 2008; Reynaud and Quinn,
2006) and compression (Vunjak-Novakovic et al., 1999; Gu and Yao, 2003).
Due to heterogeneity of local tissue microstructure, differences in where the
sample comes from and sample size between these techniques makes it diffi-
cult to compare results and may have led to the large range of reported values.

In the case of brain tissue, only a few studies have experimentally deter-
mined hydraulic permeability, but their results are affected by the sample and
experimental protocol adopted. Franceschini et al., 2006 performed an ex vivo
uniaxial deformation experiment on human brain tissue excised within 12h
of death and indirectly determined permeability from the compressibility pa-
rameters by fitting the data to Terzaghi’s theory. Tavner et al., 2016, used a
perfusion experiment to determine the hydraulic conductivity (which can be
directly linked to permeability) of lamb and sheep brains using Darcy’s law.
However, both of these studies adopted large samples (30 mm/5-8 mm ini-
tial diameter/height) to study the macroscopic tissue response and did not
consider the microscale localised heterogeneities in the tissue. Brain is com-
posed of cerebrospinal fluid, grey matter and WM, and is anisotropic due to
the directionality of axons in WM. Also, the perfusion based experimental set
up used by Tavner et al., 2016 is not compatible with the CED, which instead
requires an infusion-based approach. Furthermore, the effect of post-mortem
time on hydraulic permeability has not been investigated previously. In order
to improve understanding of drug transport within brain matter, more infor-
mation about differences between grey matter and WM, and anisotropy in the
tissue are required.

WM anisotropy, due to directionality of axons in the matrix (Pieri et al.,
2019; Winklewski et al., 2018; Walhovd, Johansen-Berg, and Karadottir, 2014),
makes WM hydraulic permeability direction-dependent. This detail is of-
ten overlooked, and only a few theoretical studies have reported the effect
of anisotropy of brain WM on the hydraulic permeability (Zhan, Baena, and
Dini, 2019). To the best of our knowledge no experimental study has consid-
ered the anisotropy of WM at the millimetre and sub-millimetre scales or has
investigated the effect of directionality of axons on hydraulic permeability.
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The present study is aimed at experimentally determining brain tissue hy-
draulic permeability and its dependence on tissue microstructure, with focus
on axon orientation. We use fresh ovine brain and perform experiments to de-
termine the localised hydraulic permeability of WM using an infusion-based
experimental set up, iPerfusion (Sherwood et al., 2016). We measure the flow
across a specific part of WM in response to applied pressures and calculate
the permeability from directly measured parameters for a sample of specific
dimensions. Furthermore, we explore if the hydraulic permeability of WM
changes with post-mortem time. We also investigate the effect of anisotropy
of WM on the hydraulic permeability and, to the best of our knowledge, we
provide the first experimental investigation reporting the effect of directional-
ity of axons on the hydraulic permeability of WM.

4.2 Materials and Methods

4.2.1 Sample Preparation

Fresh ovine brains were arranged from a local slaughterhouse, and separate
slices of 7-8 mm in thickness were made by cutting along coronal and sagit-
tal directions. These cuts expose the cerebral WM from two perpendicular
directions as shown in Fig. 4.1a,b. The matrix of cerebral WM is mainly com-
posed of two constituents, the axons and extracellular matrix. In coronal cut
slices, the axons are parallel to the surface area direction whereas in sagittal
cuts they are perpendicular to the surface area direction, as represented by
black dots and lines in the schematic representation shown in Fig. 4.1a. Using
sharp blades, elongated specimens were obtained from a specific part of WM,
corona radiata, and were carefully inserted in transparent plastic tubes of 5
mm inner diameter and 7 mm length. Special attention was paid to the size
of the sample while cutting, in order to avoid excessive deformation during
insertion into the tube. In the samples from coronal cut slices, the axons were
parallel to the long axis of the tube (5|), whereas in samples from sagittal cut
slices (S 1), the axons were perpendicular to the long axis of the tube.

During the slicing of the brain, phosphate-buffered saline (PBS) was
sprayed on the tissue in order to keep it hydrated. A plastic petri dish with
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FIGURE 4.1: (a) Schematic representation of slicing the ovine brain along
coronal and sagittal cuts showing the directionality of axons in WM and
making of a tube shaped sample from the slice, (b) representative picture of
ovine brain and the coronal and sagittal cut slices, where the corona radiata
part of WM used for making the sample is highlighted by dashed rectan-
gles and (c) schematic representation of the experimental set up including
the plastic petri dish showing samples suspended in a glass bath filled with
PBS.
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custom made holes was used to hold the samples suspended in a glass bath
filled with PBS at room temperature as shown in Fig. 4.1c to avoid dehydra-
tion of the tissue during the experiments.

To calculate hydraulic permeability from directly measured parameters,
we used iPerfusion (Fig. 4.1c), developed to determine flow-pressure relation-
ship in soft tissues as described elsewhere (Sherwood et al., 2016). The system
uses an actuated reservoir to control the pressure drop across the tissue, while
recording the flow rate through the tissue with a thermal flow sensor (Sen-
sirion SLG150), with an accuracy of approximately 5nl/min. The pressure is
measured with a differential pressure transducer (Omegadyne PX409), with
an accuracy of 0.04 mmHg. A needle (BD MicrolanceTM; stainless steel; 30G
x 12”; 0.3 x 13 mm) was connected to a micromanipulator for insertion into
the WM sample.

4.2.2 Experimental protocol and data acquisition

Prior to each acquisition, the pressure and flow sensors were calibrated. The
needle was then inserted in the sample so that tip was in the middle of the
sample, i.e. for a 7 mm long sample needle was inserted 3.5 mm. The sample
was completely immersed in PBS, which was also the infusate, at room tem-
perature. An initial pressure of 7 mmHg was applied and was held until a
stable condition for the flow rate was reached. This acclimatisation took 25-30
minutes and allowed the brain sample to adapt to the experimental environ-
ment.

An automated protocol of discrete applied pressure steps was then carried
out, consisting of 10, 12.5, 15, 17.5, 20, 22.5 and 25 mmHg. For each step,
the slope of the flow rate was estimated by linear regression over a moving
window of 300 s and continuously monitored. Steady state was defined as
when the slope was continuously less than 5 ni/min/min for 60 s, and the
subsequent step was then applied. The last 4 minutes of stable data step was
extracted, a Savitzky-Golay filter with a 60 s half-width was applied to reduce
noise, and the average values of the filtered signals were used to represent

that steady pressure and flow values.
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To determine tissue hydraulic permeability from the experimental data,
flow-pressure analysis on the flow rate and pressure traces was performed

A P\’ /A
Q=kP (Lu> =k.P <R-> <Lu> (4.1)

where () is flow rate, P is the applied pressure drop across the tissue, A and

using the model:

L are the cross-sectional area and length of sample respectively and p is the
viscosity of the infused fluid. The pressure-dependence of hydraulic perme-
ability is modelled using k = k. (P%) ﬁ, where k, is the hydraulic permeability
at reference pressure P, and the exponent 3 characterises the dependence of
k on pressure. In this study, we chose P. = 10 mmH g as representative of
physiological CSF pressure in adults (Dunn, 2002).

It should be noted that the full tissue length was used here to evaluate per-
meability; the assumption made here, whose validity has been checked and
confirmed via poro-elastic simulations of the infusion process performed us-
ing the finite element method similar to those performed in (Zhan, Baena, and
Dini, 2019) but for the samples under investigation here, is that the infused
fluid exudes from both end of the tubes containing the samples.

Figure 4.2 shows representative flow rate and pressure traces with respect
to time (a,b), and steady state flow rate (c) and hydraulic permeability for each
applied pressure (d) for sample S| (blue) and S (red) cases. Figures 4.2 (e,f)
schematically represent the flow orientation with respect to the axon bundles.

Experiments were repeated on samples of corona radiata from different
lamb brains. In total 71 brain samples with post-mortem time ranging from 3
to 24h were used to collect the experimental data.

It was not always possible to count each step as in some samples higher
pressure steps did not achieve the steady state condition and were therefore
excluded from data analysis. Only those samples were included for which
at least three consecutive pressure steps (as shown in Fig. 4.2(a)) achieved
the steady state condition and no anomalies were found in the instantaneous
response to consecutive pressure rises. After quality control, 50 samples were
analysed for the results presented in this work.
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FIGURE 4.2: (a, b) Flow rate and pressure traces of representative S (blue)

and S (red) samples. Green lines show filtered signal. (c) Flow-pressure

and (d) hydraulic permeability pressure relationships. Error bars show two

standard deviations and shaded regions indicate 95% confidence bounds.

The k. and f3 values are the geometric mean with 95% confidence interval at

all pressure steps. (e,f) Reconstruction of flow orientation relative to axons
(Gu and Yao, 2003) for S| and S, respectively.
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4.3 Results and Discussion

4.3.1 Effect of axons directionality on hydraulic permeability

For statistical analysis, the average k, of each sample was used (i.e. the av-
erage of all pressure steps for that sample). Shapiro-Wilk tests on k&, rejected
normality for both S and S, samples (p < 10~%), but did not reject lognor-
mality (p = 0.48 and p = 0.17 respectively), hence analysis was carried out on
the log of k.. An overview of the hydraulic permeability data for S and S
samples is shown in Fig. 4.3.

For S| samples, the average hydraulic permeability was k, = 2.0[1.3,3.0] -
10716 m? (geometric mean, [95% confidence interval]), while S| samples
yielded k, = 0.7[0.6,1.0] - 107'¢ m?2. The hydraulic permeability was thus
65 [44, 78]% lower in S, than S| samples (independent 2-tailed t-test, p =
0.0002). This trend is in line with what can be predicted by modelling the flow
behaviour due to anisotropy through a composite material consisting of im-
permeable coarse fibres embedded in a fine matrix as proposed e.g. by Ethier,
1991. However, considering that, as reported by Sykovéa and Nicholson, 2008,
the volume fraction of fibres in the tissue is 70-80%, a direct quantitative com-
parison with Ethier’s model, which is most accurate for small fibres volume
fraction (up to 30%), would prove inaccurate.

These results confirm that the flow across the tissue is strongly dependent
on the local mechanical microenvironment. The WM matrix is composed of
aligned myelinated axons and relatively soft extracellular matrix (Alexander
et al., 2019). In the case of S|, the cross sectional area of the tissue exposed
to infusate pressure is composed of both axons and the relatively soft ECM,
whereas in case of S | , the exposed cross-sectional area is predominantly com-
posed of axons (Pieri et al., 2019). It is harder to deform axons (stiffness of a
single axon reported to be e.g. E = 9.5 kPa (Ouyang, Nauman, and Shi, 2013))
than ECM (E in the order of a few hundred pascals (Wells, 2008)). Therefore,
in case of infusion, depending on the directionality in the tissue, the infusate

faces different mechanical environments. Previously it has been reported that
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in WM, interstitial flow is more rapid in perivascular space and along the ax-
ons (Abbott, 2004; Geer and Grossman, 1997). Also, interstitial flow is im-
pacted by convection driven flow. In CED, catheter delivers a volume of in-
fusate to the targeted part of the tissue; this also increases interstitial flow in
the surrounding parenchyma because of the pressure differential (Stine and
Munson, 2019). This suggests that if diffusion driven interstitial flow is more
rapid in perivascular space and along the axons then convection driven flow
will have similar behaviour. Our results also advocate this environment de-
pendency of flow in the tissue. In the case of S, when the axons are aligned
to the injection direction the hydraulic permeability is higher, whereas in case
of S, the axons are perpendicular to the fluid, and the hydraulic permeabil-
ity is lower. These results clearly demonstrate that infusion across the WM
tissue, and hence its hydraulic permeability, is strongly influenced by its in-
trinsic anisotropy. Therefore, the directionality of axons in the tissue should be
considered when interpreting underlying infusion mechanisms within WM.

Our hydraulic permeability values of the ovine brain WM are the
first experimentally determined values that consider localisation and tissue
anisotropy. Franceschini et al., 2006 and Tavner et al., 2016 experimentally
studied the permeability of brain tissue without considering the directionality
in the tissue. Furthermore, their reported value of permeability is obtained
using large samples of WM; hence, they can only represent homogenised
isotropic macroscopic values of permeability. These issues make it inappropri-
ate to compare our results with other experimental results in the literature. It
is, however, worth noting that the values obtained in our experiments seem to
confirm the disparity in permeability predicted when considering microstruc-
tural effects and different orientations of infusion, as reported in previous the-
oretical and numerical studies (Vidotto et al., 2019a).

The results reported in Fig. 4.3 clearly demonstrate the difference in hy-
draulic permeability between S| and S and thus the dependence of this pa-
rameter, and in turn of CED procedures, on the directionality of axons in WM.
This strongly encourages to consider the anisotropy of WM tissue when mod-
eling the localised pressure-flow behavior in infusion phenomenon and when
assessing interstitial transport in brain tissue due to physiological conditions
or CED procedures.
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FIGURE 4.3: Hydraulic permeability of S and S1 samples and their pres-
sure dependence. (a) Cello plot representing each k, value by dot with the
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two-sigma within which 95% data are expected to lie by horizontal out thin
white lines and 95% confidence intervals on the mean value by dark central
bands, (b) the nonlinearity, 3, for S| and S, samples, dots represent each
data point, central dark line represents the median and out two lines repre-
sent the IQR.
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4.3.2 Pressure dependence of hydraulic permeability

Our data also revealed a pressure-dependence of the hydraulic permeability.
Fig. 4.3b shows the non-linearity parameter, 3, for both S| and S, samples.
The Shapiro-Wilk test rejected both normality (p < 0.03) and log-normality
(p < 107°) for 3, hence a non-parametric analysis is utilised. For S| samples,
the 3 was 0.88 (0.34, 1.90) (median (25" percentile, 75! percentile)), which
is significantly different from zero (p = 0.0002, two-sided Wilcoxon rank sum
test), implying that hydraulic permeability increases with increasing pressure.
S| samples, yielded 8 = 0.32 (-0.20, 0.81), which is borderline different from
zero, (p = 0.04). The median 8 was therefore 64% lower for S than S, al-
though this outcome was borderline statistically significant (p = 0.07).

The non-linearity in the observed pressure-flow relationships could be
caused by several sources, including strain-dependence of hydraulic perme-
ability due to the local tissue response to deformation, but also other material
(both solid response to pressure gradients and complex fluid flow behaviour)
and geometrical non-linearities, which include the boundary conditions at the
infusion site, the cavity formed at the tip of the catheter. Based on macroscale
experiments, both, the stiffening behavior under tension (Franceschini et al.,
2006) and the softening behavior (Miller and Chinzei, 2002) in brain tissue
due to geometrical non-linearities have been reported in the literature. Sev-
eral poroelastic or biphasic models of brain tissue have been developed to
explain such experimental results. Considering a simplified spherical geom-
etry, Smith and Garcia, 2009 modeled the enlargement of the infusion sphere
relative to its initial radius with increase in applied pressure, which results
in geometrical non-linearity. Considering the biomaterial as a poroelastic
medium, McGuire, Zaharoff, and Yuan, 2006 performed numerical simula-
tions and showed that strain dependent permeability is anisotropically af-
fected by infusion-induced tissue deformation. It should be noted that the
models presented in these studies represent the brain tissue as fundamen-
tally homogeneous and isotropic and were developed to explain previously
reported experimental results, which are based on compression of large sam-
ples rather than infusion. These approaches therefore only provide the large-
scale bulk response of the tissue and cannot be used to describe the effect of
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microstructurally-induced anisotropy.

It must be noted that another potential source of non-linearity could be
the existence of flow along the needle/tissue interface. This form of leakage
cannot be completely ruled out in the absence of detailed localized flow mea-
surements; this could be responsible for some of the larger values of 3 re-
ported in this study. However, the fact that the non-linearity parameter is
larger in the specimens characterized by parallel axon fibers (see Fig. 4.3(b)),
which shows that the non-linear response depends on the orientation of the
fibers whilst leakage would equally affect all samples. This, together with the
evidence provided by the studies reported above, provide us with reasons to
believe that the non-linear pressure dependence reported in our study is likely
to be related to the subtleties of infusion induced microscale deformation of
the WM tissue. Further studies, employing direct microscopic measurements
of tracked nano- and micro-particles, will be devoted to exploring the main
source of the non-linearity of the pressure-flow relationship and to verify the
absence of needle side leakage.

4.3.3 Effect of post-mortem time on hydraulic permeability

The effect of post-mortem time on the mechanical behaviour of brain tissue
has been reported in the literature (Nicolle et al., 2005), though not much atten-
tion has been paid to the effect of post-mortem time on hydraulic permeability.
For example, mechanical stiffness of WM has been reported to increase with
post-mortem time, with specific changes recorded after 6h post-mortem (Garo
et al.,, 2007). Here, we analysed the hydraulic permeability at post-mortem
times up to 11h. No statistical correlation between post-mortem time and hy-
draulic permeability was observed: for S|, p = —0.003 (p = 0.99) and for S,
p = —0.09 (p = 0.7) using Spearman’s ranked correlation test.

It should be noted here that whilst the results obtained during this study
were consistent for experiments performed within 11h post-mortem, experi-
ments performed after 11h post-mortem either failed by showing significant
anomalies in the instantaneous response to pressure steps or registered sud-
den abrupt changes in flow, which can be reconducted to tissue rupture dur-
ing testing. As a result of this none of these experiments passed the quality
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control measures to be included in the data analysis.

4.4 Conclusions

The localised hydraulic permeability of brain WM, despite being a key param-
eter for the development of infusion-based technologies, has so far not been
systematically studied experimentally. In this work we investigated for the
first time the effect of local microstructural features on hydraulic permeability
of cerebral WM in a systematic manner using an infusion based experimental
set up. We accounted for the directionality of axons in WM and showed the
dependence of hydraulic permeability on the anisotropy in WM tissue. We
also investigated whether it is affected by post-mortem time.

Our results demonstrate that the mean value of hydraulic permeability is
significantly higher when the axons in WM are parallel to the flow direction
than when axons are perpendicular to the flow direction. We also observed
a pressure dependent increase in hydraulic permeability. Although there was
no correlation between hydraulic permeability and post-mortem time within
11h, the tissue degradation at later times significantly affected our ability to
measure hydraulic permeability after 11h.

Our experimental results provide quantitative values of hydraulic perme-
ability as a function of the direction of the WM fiber bundles from directly
measured parameters. These can be used to enhance the development of tech-
nologies such as CED and as a prime source of information to build detailed
mechanical models of brain tissue. Additionally, this investigation provides
further evidence of the need to include tissue anisotropy as one of the key
parameters for the optimization of infusion-based drug delivery techniques.
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Chapter 5

Advanced imaging methods to improve the

predictive capabilities of CED models

In this chapter, we present an innovative predictive CED model based on the
integration of two imaging modalities. The first is diffusion tensor imaging
which provides information on the principal directions followed by the ax-
onal fascicles. The second is the neurite orientation dispersion and density
imaging from which it is possible to extract the extracellular space volume
fraction, a fundamental information about the white matter microstructure.
By tailoring this parameter with a simplified geometrical model of the white
matter, we can assign anisotropic permeability values to each voxel. To show
the significance of our approach, we compare it with a state of the art model
based only on diffusion tensor imaging. The results, analysed in terms of dis-
tribution shape, concentration profile and infusion linear penetration length,
show significant differences with respect to previous models only based on
DTI. We believe that the proposed approach is a decisive step further in CED
modelling because it introduces a more comprehensive way to describe the
permeability tensor which has its foundation on the studies conducted in the
previous chapters.

This work is under second review as: Vidotto, M., Pederzani, M., Castel-
lano, A., Pieri, V., Falini, A., Dini, D., & De Momi, E. (2020). "Advanced imag-
ing methods to improve the predictive capabilities of CED models", Annals of
Biomedical Engineering.
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5.1 Introduction

The blood-brain barrier (BBB) is an highly selective semipermeable vascular
system composed by endothelial cells, astrocyte end-feet, and pericytes that
serves as a diffusion barrier (Ballabh, Braun, and Nedergaard, 2004). Despite
the BBB is essential for the normal function of the central nervous system, it
is also a dramatically effective barrier that prevents most drugs from going
from the blood stream to the brain tissue (Ballabh, Braun, and Nedergaard,
2004). For this reason, the BBB has been clearly identified as the main cause
of the failure of chemotherapeutic treatments that aim at targeting the brain
tissue (Bobo et al., 1994; Arifin et al., 2009; Crawford, Rosch, and Putnam,
2016; Jahangiri et al., 2016).

To overcome this obstacle, an innovative and promising technique, namely
convection-enhanced delivery (CED), has been introduced by Bobo et al,,
1994, consisting in injecting a therapeutic agent under positive pressure di-
rectly into the brain parenchyma by means of one or more catheters. CED was
originally designed for treating aggressive tumors such as glioblastoma mul-
tiforme (GBM) which has a dramatically low survival rate, with only about
40% of the patients living more than a year after diagnosis (Philips et al.,
2018). CED could offer a viable alternative to more conventional treatments,
which consist in surgical resection followed by simultaneous radiation ther-
apy and chemotherapy (Mehta et al., 2015). Indeed, despite these treatment
approaches being highly aggressive, patients” outcome remains dismal and
around 80% of them experience tumoral recurrence or progression in the fol-
lowing years (Crawford, Rosch, and Putnam, 2016; Davis, 2016). Moreover,
CED has been recently used for delivering therapeutic substances for other
brain diseases such as gene therapy for Parkinson’s disease and antiseizure
agents for epilepsy (Christine et al., 2019; Rogawski, 2009).

Regardless of the pathology, a pivotal factor for CED efficacy is the abil-
ity to reach all the diseased tissue with enough concentration of therapeutic
agent, and, on the other hand, to leave the healthy tissue unaltered as much
as possible to avoid side effects (Crawford, Rosch, and Putnam, 2016; Debin-
ski and Tatter, 2009; Jahangiri et al., 2016). To optimise the treatment and
to obtain better clinical outcomes, a valuable support is given by numerical
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models (Vendel, Rottschifer, and Lange, 2019). In fact, by modelling the brain
structures and the drug characteristics, they can predict how the drug will dis-
tribute in the brain for a given initial catheter setup. In this way, in the preop-
erative phase, the surgeon can examine different clinical settings (e.g. catheter
placement, infusion flow rate) and plan the best way to proceed (Crawford,
Rosch, and Putnam, 2016; Jahangiri et al., 2016).

Nevertheless, since brain is an anisotropic and heterogeneous porous
tissue composed of grey matter (GM), white matter (WM), cerebrospinal
fluid (CSF) and blood vessels (BV), modelling CED is extremely challenging
(Vendel, Rottschéfer, and Lange, 2019; Goriely et al., 2015). In the last years,
several researchers have proposed numerical models based on different hy-
potheses and assumptions (Ehlers and Wagner, 2015; Kim et al., 2012; Lin-
ninger et al., 2008a; Raghavan and Brady, 2011; Sarntinoranont et al., 2006;
Steverud et al., 2011; Zhan, Baena, and Dini, 2019). However, their predic-
tions do not always match the experimental observations, thus suggesting
that there is still a long way to go to guarantee an accurate targeting of the
zones of interest. This can be due to several reasons, but a key factor is related
to how the microstructure of the brain tissue is modelled, both at the injection
site and in the targeted area (Vidotto et al., 2019a).

All the investigations previously mentioned related to CED models devel-
opment used diffusion tensor imaging (DTI) to depict non-invasively the tis-
sue microstructure which in turn affects the penetration of the drug molecules.
Indeed, DTI is a non-invasive imaging modality that measures the effects on
the magnetic resonance signal intensity of water molecules diffusion over
time. The resulting diffusivity tensor is isotropic in the case of GM, mainly
composed by cell bodies, and anisotropic in the case of WM, whose mi-
crostructure is dominated by axonal fibres (O’Donnel, L; Westin, 2011). DTI
represents a powerful tool because it allows inferring some aspects of the brain
microstructure, thus giving important information that can be used to define
specific modelling parameters. Despite DTI being extremely useful, it has an
important limitation. It does not provide any information about the extracel-
lular space volume fraction (V F'gcs) of the brain tissue. Critical modelling
parameters, such as hydraulic permeability, are directly related to the V Frcg
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(Vidotto et al., 2019a); therefore, this missing information represents an im-
portant drawback affecting the currently available models.

In this work, we aim at overcoming the limitations of the DTI-based
approach and improving the model predictive capability by discussing a
methodology that enables to consider the information related to the V Fgrcs
and we demonstrate its use in a single case-study of a healthy subject. In con-
trast to previous models, we not only consider DTI-derived information, but
we also incorporate a more comprehensive quantification of the brain tissue
microstructural complexity derived from a more sophisticated multicompart-
mental diffusion model, namely the neurite orientation dispersion and den-
sity Imaging (NODDI) (Zhang et al., 2012). Indeed, NODDI relies on more
complex diffusion data fitted by a tissue model that distinguishes three com-
partments with different microstructural characteristics: intracellular, extra-
cellular and CSF compartments. Each environment affects the diffusion of the
molecules differently, thus giving rise to separate signals. By estimating the
relative contribution of the three distinct compartments to the total diffusion
signal in each voxel, it is possible to infer the V F'gc s in every part of the brain.
We first derive a relationship between V Frcgs and WM hydraulic permeabil-
ity conducting a numerical analysis on a simplified geometrical model.

We then demonstrate the relevance of the work by comparing our model
with another state-of-the-art model by conducting the same drug delivery
simulations and comparing the outputs in terms of infusion volume and
shape. We show that the predictions given by our model differ significantly
from those given by the models that use only DTI and using a fixed value of
permeability. We finally discuss the important implications that the new CED
modelling framework has in terms of its potential future use in pre-clinical
trials.

5.2 Materials and Methods

5.2.1 Imaging dataset

The brain is a porous medium, where the solid part is composed of neurons
and glial cells, and the voids represent the extracellular space (Nicholson,
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Kamali-Zare, and Tao, 2011). Accordingly, information relative to the volume
fraction occupied by each region are important to describe brain properties.
With NODDI it is possible to extract, for each voxel, the volume fraction oc-
cupied by the intraneurite (V Frn¢) and isotropic (V Fiygter) compartments.
Each environment affects the diffusion of the molecules with different contri-
butions giving rise to separate signals (Zhang et al., 2012). In this work, we
used an imaging dataset acquired on a healthy adult subject on a 3T Inge-
nia CX scanner (Philips Healthcare, Best, The Netherlands), with a 32-channel
head coil. The study was approved by the OSR Institutional Ethics Commit-
tee, and signed informed consent was provided by the subject before magnetic
resonance imaging (MRI).
The MRI protocol included:

* a two-shell Diffusion MR Imaging (dMRI) sequence, based on axial
Single-Shot Spin-Echo echo planar imaging (EPI). Diffusion gradients
were applied along 35 and 60 non-collinear directions, and images were
acquired at multiple b-values (0, 711, and 3000 s/mm?), with the fol-
lowing parameters: TR/TE 5977/78 ms; flip angle, 90°; 60 slices; thick-
ness, 2/0 mm gap; acquisition matrix, 128 x 126; voxel size, 2 x 2 x
2 mm; SENSitivity-Encoding (SENSE) reduction factor, R=2; Multiband
factor=2. Twelve images without diffusion weighting (b=0 s/mm?) were
obtained, one of which was acquired with reversed phase-encoding
to estimate susceptibility-induced distortions. This diffusion imaging
dataset was exploited to extract both tensorial and NODDI metrics, to
be combined in the model.

* asagittal 3DT1-weighted sequence, acquired with the following param-
eters: repetition time/echo time [TR/TE] 12/5.9 ms; flip angle, 8°; 236
slices; thickness, 0.8/0 mm gap; acquisition matrix, 320 x 299; voxel size,
0.8 x 0.8 x 0.8 mm; SENSE factor, R=2; acquisition time, 5 min 19 s. This
anatomical sequence was exploited to achieve the preoperative planning
of the simulated gadolinium (GD) solution infusions along nine differ-

ent catheter orientations.

dMRI volumes were corrected for eddy-current distortions, movement
and susceptibility-induced artifacts by applying the eddy and top-up tools of
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FMRIB Software Library, respectively (FSL, University of Oxford, https:
//fsl.fmrib.ox.ac.uk/fsl/).

DTI analysis was performed on high angular resolution diffusion-
weighted Imaging (HARDI) volumes (60 diffusion directions, b-value= 3000
s/mm?) extracted from the multi b-value dMRI dataset using the fslsplit and
fslmerge FSL-tools. The dtifit FSL-tool allowed estimating the diffusion ten-
sor and generating tensorial maps, such as Fractional Anisotropy (FA) which
measures the fraction of the diffusion that is anisotropic (O’Donnel, L; Westin,
2011).

The NODDI model was fitted to all the volumes of the two-shell dMRI
datasets using the MATLAB NODDI toolbox (http://mig.cs.ucl.ac.
uk/Tutorial.NODDImatlab), that computed the V Fryc and V Fyygter dif-
fusion compartments of each voxel. Those outputs were then reparameter-
ized in order to derive the extraneurite diffusion compartment (V Fgn¢), so
that the sum of the three compartments equalled 1 in each voxel, as described
in Caverzasi et al., 2016. Hence, the V Fgcg that we integrated in our model
was finally derived as V Fg yc+V Fiy ater, which corresponds to the sum of the
compartments where a drug can flow (Vandamme et al., 2017).

5.2.2 Brain tissue modelling

The brain is an extremely complex system whose tissue mainly consists of cells
immersed in the CSE. Despite most of the relevant literature agrees to describe
the brain as a porous medium, there is not a common answer on which specific
model is the most appropriate to use. Indeed, one of the most controversial as-
pect is the modelling of the solid part that can be described as elastic or rigid.
For example, Stoverud et al., 2011 and Ehlers and Wagner, 2015 used a linear
elastic material and an hyperelastic material, respectively, whereas other au-
thors adopted rigid models (Dai et al., 2016; Kim et al., 2012; Kim, Mareci, and
Sarntinoranont, 2010). On the one hand, elastic models offer a more accurate
description with respect to rigid models by considering the infusion-induced
tissue deformation. However, complex models require a larger number of pa-
rameters, that could be hard to identify, and a high computational cost. On the
other hand, rigid models demonstrated to be reliable when the deformation
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can be neglected and with a much lower computational cost with respect to
elastic models. Since in this study we are simulating procedures that require
very low flow rate, we can safely neglect the infusion-induced deformation
and model the axons as a rigid material (Dai et al., 2016; Kim et al., 2012; Kim,
Mareci, and Sarntinoranont, 2010; Vidotto et al., 2019a). Accordingly, the con-
tinuity equation is (Vidotto et al., 2019a):

Vou=0 (5.1)

where v is the average extracellular fluid velocity and V is the gradient
operator. Moreover, fluid flow in a porous medium is described by Darcy’s
law (Kim et al., 2012):
v = K -Vp (5.2)
I
where p is the fluid pressure, and K is the hydraulic permeability tensor.
Mass transport in the brain tissue is driven by convection, diffusion and loss

due to absorption or washout:

Jdc
5
where c is the GD concentration, S is the loss term (0.01 min~!) and D is
the diffusivity tensor (Nhan et al., 2014).
The brain model was divided in three areas following the thresholding

V- (ve)+V-(D-Ve)— 85 (5.3)

suggested by Kim et al., 2012, as summarized in Table 5.1. Each area has
different properties that define the permeability and diffusivity tensors as it
will be explained in the next sections.

5.2.3 Diffusion tensor

GM regions are characterized by isotropic diffusion. Accordingly, Dgwm is
defined as:

Dam = D - I (5.4)
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TABLE 5.1: Thresholding applied to divide the brain model between GM,

WM and CSE.
Tissue region Threshold range
Gray matter 0<FA <0.23
White matter V Fwater > 0.99
Cerebro-spinal fluid 0.25

where Dy is the GD molecular diffusivity, equal to 1.54-10~7 kg/ims, and I is
the (3x3) identity matrix.

On the contrary, in WM, diffusion is anisotropic. The principal direction
of the diffusion tensor Dwn was assumed as the maximum transport direc-
tion along the axons, as measured by DTI. Since water diffusion tensor D is
symmetric and positive definite, it is possible to define three orthogonal eigen-
vectors (e_f, s, e_3>) with the corresponding eigenvalues (A1, A2, A3). To account
for the molecular transport of GD, eigenvalues obtained from D at each voxel
must be scaled according to the GD molecular diffusivity, as described in Lin-

ninger et al., 2008a, following these steps.

Step 1
A 00
DE=FEA where A= |9 ), 0| and E=[e,e35,¢e5 (55
0 0 X3
Step 2
M 00
Dy . R
DWM_TE X 0| ET where Azgi;/\i (5.6)
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FIGURE 5.1: (a) This picture offers a schematic representation of the lead-
ing idea behind this study which combines both DTI and NODDI imag-
ing modalities. DTI provides information about the WM fibres direction-
ality: on the left, an axial section of FA map of a healthy subject, displayed
as colour-orientation map. Latero-lateral-oriented fibres are coded in red,
cranio-caudal fibres in blue, and antero-posterior fibres in green. The neu-
ral fibres orientation (red box) is then used to define the permeability tensor
eigenvectors. On the other hand, NODDI gives an insight into the axons
composing the fascicles microstructure (black box) thus allowing the defini-
tion of the permeability tensor eigenvalues. Accordingly, the WM is mod-
elled as a triangular arrangement of fibres. Each grey circle represents the
section of an axon, whereas the green box is the representative volume ele-
ment (RVE) analysed (Vidotto et al., 2019a). (b) Model geometries used to
compute k| and k.. The green shapes represent the extracellular space of
each geometry, namely, the space where the fluid can flow. On the left, 3D
geometry used to simulate a flow parallel to the fibres with L = 0.15 pm. On
the right, the bi-dimensional geometry used to simulate a flow perpendic-
ular to the direction of the fibres with L that varied according to different
values of V Fgcs.
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5.2.4 Permeability tensor

Tensor K was characterized differently in GM and WM areas. Since in GM, K

can be considered isotropic, Kawm was defined by the following equation:

Kom = Ko - 1 (5.7)

where K is equal to 4.22 - 10718 m? (Kim et al., 2012).

On the other hand, in WM areas, the permeability tensor Kw is trans-
versely isotropic with the main transport direction that coincides with the one
identified for Dwg.

By 00
Kwm=FE|0 k, 0 (5.8)
0 0 kL

where k| and k, describe the hydraulic permeability in directions parallel
and perpendicular with WM fibers, respectively. In previous studies (Kim et
al., 2012; Kim, Mareci, and Sarntinoranont, 2010), these parameters had a fixed
values in all the brain (kj = 6.75-107'° m? and k; = 4.22-107'% m?). On the
contrary, in the proposed model, k| and k, change spatially as a function of

V Fgcs as detailed in the next section.

5.2.5 Geometrical model

To study how k| and & are related to V Fgcs, we conducted a numerical anal-
ysis on a simplified model geometry resembling the WM structure. Adopting
an approach similar to the one developed in Vidotto et al., 2019a, the axons
were simulated as cylinders with rigid walls and the extracellular space cor-
responding to the space where the fluid could flow. Even in this case, as ex-
plained in the Brain tissue modelling section, it is possible to safely consider the
axons as rigid if the flow rate is very low. The axons, with constant radius
r = 0.34 pm (Liewald et al., 2014), were organized following a triangular ar-
rangement (Fig. 5.1a). Then, varying the distance between the axons, it was
possible to obtain a set of geometries with V F'gcg ranging from 0.15 to 0.80.
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Note that we performed more simulations in the interval between 0.15 and
0.40 because it is the physiological range indicated in Sykova and Nicholson,
2008. Moreover, it is necessary to specify that describing the axonal bundles
with arrays of constant-radius cylinders is an important assumption that will
be argued in the Discussion section comparing our results with other studies
(Franceschini et al., 2006; Vidotto et al., 2019a).

For each geometry, a pressure difference of 5 Pa was applied between inlet
and outlet with no sleep condition at the walls (Fig. 5.1b). This pressure was
chosen to maintain a very low flow rate and to satisfy the assumptions that
allow Darcy’s law to be used to model flow in the tissue. The average velocity
within the medium, along the direction over which the gradient of pressure
was applied, was computed solving the Navier-Stokes equations by means of
the finite element method (FEM) solver ANSYS (ANSYS, Lebanon, NH) with
semi-implicit methods for pressure linked equations. Then, both k| and &
were computed using Darcy’s law (Eq. 5.2). Finally, the numerical results
describing the relation between V Frcs and permeability were fitted using
the analytical equations developed by Tamayol and Bahrami, 2009 for k| and
Kuwabara, 1959 for k. We selected these equations as they were shown to be
the most accurate models in the comparative analysis on permeability of fiber
bundles performed by Karaki et al., 2017. The resulting equations, whose coef-
ficients were obtained using a generalized reduced gradient nonlinear solver,
are reported below:

2

.,
_ —1.47 — 0.94In(1 — V Fges)+
7771 — VFECS)< ( ros) (5.9)

2(1 = VFgcs) — 0.5(1 — VFgcs)? —0.039(1 — VFgos)*

Ky

2

.
_ —1.56 — 1.04In(1 — V Fpos)+
2970 = VFagg) ( 50s) (5.10)

2.05(1 — VFgcs) — 0.5(1 — VEges)? — 0.004(1 — VFges)Y)

ki
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5.2.6 CED simulation set-up

The proposed method, in which the permeability tensor is a function of the
VFgcs, was compared with the approach used in Kim et al., 2012; Kim,
Mareci, and Sarntinoranont, 2010; Dai et al., 2016. Their CED models, based
on DTI imaging acquired on rat brains, assumed that, in the permeability ten-
sor, k| and k. can be considered constant across all the WM areas. However,
many studies (Ehlers and Wagner, 2015; Steverud et al., 2011; Vidotto et al,,
2019a) have underlined the fact that permeability is still a very controversial
parameter with a wide range of values available in the literature. For brevity,
we name our model the DTI-NODDI model and we will refer to the more con-
ventional models, such as those developed by Kim et al., 2012; Kim, Mareci,
and Sarntinoranont, 2010; Dai et al., 2016, as the DTT model.

Both models simulate an injection of a GD solution in a WM area by means

of a 1 mm diameter catheter (Fig. 5.2a). As boundary conditions for the flow,

(a) Perspective view

Coronal view Sagittal view

FIGURE 5.2: (a) Perspective view, coronal view and sagittal view of the brain
model reconstructed from the healthy control dMRI dataset, with the infu-
sion catheter inserted in a WM region. The model simulates a constant infu-
sion rate of 3 pul/min. (b) Coronal section plane with a detail of the final mesh
adopted for all the simulation after sensitivity analysis (Appendix).
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a velocity was set at the inlet directed as the catheter, knowing that the in-
fusion rate was 3 pul/min (Barua et al., 2014), and a null pressure at the outlet.
Moreover, GD concentration at the inlet was fixed to ¢g = 0.5 mol/L, and no flux
was allowed across the external surface of the brain. The entire volume was
discretized with about 3.5 - 106 tetrahedral elements after performing a mesh
sensitivity analysis (Appendix). Note that a finer mesh was used in proximity
of the catheter (Fig. 5.2b). The total infusion time, equal to 180 seconds, was
chosen empirically as a convenient time frame to maintain the infused vol-
ume confined in a WM area. The simulations were repeated for nine different

orientations of the catheter (Fig. 5.3).

FIGURE 5.3: Scheme of the nine catheter orientations used to simulate the
injection of the drug. To define the orientations, the brain coronal and sagit-
tal planes intersecting the injection point are shown on 3D-T1 weighted se-
quence. Catheters 1 and 3 lie on the sagittal plane and in parallel with the
x axis; catheters 2 and 4 lie on the coronal plane in parallel with the y axis;
catheter 5 lie on the intersection between the sagittal and coronal planes;
catheters 6, 7, 8, and 9 lie on the bisector of the solid angle defined by the
semi-axes [-x, -y, z], [, -y, z], [x, y, z] and [-X, y, z] respectively.
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5.2.7 Metrics

Quantitative analyses were performed to examine the difference between the
DTI-NODDI model and the DTI model in terms of drug concentration and

distribution.

Concentration

An analysis of the drug distribution was carried out to investigate differences
in the prediction of the tissue concentration. The root mean square difference
(RMSD) represents a good parameter to evaluate how much the results pre-
dicted by the models differ in terms of concentration (Raghavan and Brady,
2011). It is defined as:

1 1 n
RMSD = oA\ Vi ; Vi(eprr — epri—-Nopp1)? (5.11)

where V} 4 is the total volume occupied by the models, V; is the volume of
each element belonging to Vio:e; and cprr and cpri—noppr are the local con-
centrations in the two models. Note that, similarly to Raghavan and Brady,
2011, only the elements where the drug concentration is higher than 2.5% of

the infused concentration (¢, ), were considered.

Main distribution direction

To compare how the drug distributes inside the brain tissue in terms of main
distribution direction, a principal component analysis (PCA) was performed
(Abdi and Williams, 2010). The PCA was conducted on the coordinates of
each element where the presence of drug was detected. Even in this case, we
considered only the voxels with a concentration higher than ¢,;,. Perform-
ing a PCA on these data returns the principal direction along which the drug
spreading has occurred.

From the PCA output, two additional analyses were conducted. In the
tirst, we computed the angular difference between the infusion volumes prin-
cipal directions in the two models at 180 seconds (6).
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In the second, we compared the linear penetration length (L,,4,) of the
infusion volumes computed along the principal direction defined by the PCA.

5.3 Results

5.3.1 Permeability tensor characterization

The results of the numerical study to characterize the permeability tensor are
graphically shown in Figure 5.4. The numerical permeability values were fit-
ted finding the coefficients of the analytical equations developed in Tamayol
and Bahrami, 2009 and Kuwabara, 1959 for k| and &, respectively. Both par-
allel (Eq. 5.9) and perpendicular (Eq. 5.10) permeabilities have a similar trend
which grows logarithmically as V Fgcs increases.

5.3.2 GD concentration distribution

Figure 5.5 shows an example of the predicted GD concentration after infusion
in a WM region for both models on different section planes. From a qualita-
tive point of view both differences in shape and in concentration distribution
can be noticed from the contour plots. In particular, a marked difference in
the shape of the areas is evident comparing the GD distribution outlines ob-
tained with the two models (Fig. 5.5 bottom row). The outlines were defined
finding the more external elements with a GD concentration higher than ¢, i,.
Indeed, the one predicted by the DTI model is generally more elongated than
the one predicted by the model that also integrates NODDI. This observation
is confirmed by the fact that in all the simulations the overlapping volume
between DTI and DTI-NODDI models is about 57% + 1.4% which means that
brain areas interested by the infusion differ by about 43%.

Furthermore, we can observe that the difference is not limited to the dis-
tribution shape but there is also a marked different pattern of concentration
profile. This is particularly evident in the second column of Fig. 5.5 which
displays the GD concentration on a plane perpendicular to the catheter and
with an offset of 1 mm with respect to the infusion point. Here, the maximum

GD concentration of the model that integrates also NODDI is about two times
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FIGURE 5.4: The parallel and perpendicular permeability returned by Eq. 5.9
and Eq. 5.10 after fitting the numerical results are plotted versus the V Frcs

in the top and bottom part of the figure, respectively.

the one of the model based only on DTL. Despite this being just a qualitative

example, the difference between the models in terms of concentration will find

confirmation in the quantitative analysis illustrated in the next section.
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FIGURE 5.5: Predicted GD concentration after infusion in a WM region of
the brain. Top: schematic drawing representing the catheter and the sec-
tion plane corresponding to the contours below. Middle: GD concentration
contours obtained with the DTI and the DTI-NODDI models at 180 seconds.
Bottom: Comparison between the GD distribution outlines defined as the
more external elements with a GD concentration higher than ¢ in.
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5.3.3 Prediction of GD concentration

The analysis on drug concentration is summarized in Figure 5.6 which shows
the average RMSD between the simulations performed with different orien-
tations of the catheter. It is immediately possible to notice that the RMSD
increases in time, going from a minimum about 12% to a maximum about
23%. Moreover, we can notice that the standard deviation is approximately

constant across time even with different orientations of the catheter.

5.3.4 Prediction of GD distribution main direction and infu-
sion penetration length

From the PCA, we obtained the main directions along which the drug has dif-
fused for the DTT and DTI-NODDI models for each catheter orientation. The
angular difference between these directions is defined by the angle 6. The
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FIGURE 5.6: Variation of the RMSD between the two models in time (shown

in terms of percentages). The figure shows the RMSD averaged between all

the simulations at each time step (squared symbol). Since the data distribu-

tion at each time step is normal, the light red band indicates the standard
deviation.

maximum difference in terms of ¢ is around 7.92 degrees, whereas the min-
imum one is around 0.95. However, the average is about 4.85 degrees with
a standard deviation equal to 2.54 degrees. Since the data are normally dis-
tributed, a one-sided one-sample t-test was used to study the results. A p
equal to 2.87 - 10~* demonstrates that 6 is significantly different from zero.
Another interesting parameter to explore is the maximum linear penetra-
tion length (Lynqz) reached by the injected volumes, to analyse how deep in
the tissue the drug can distribute. This parameter was defined calculating the
maximal length (at 180 seconds) of the infusion volumes along the direction
obtained with the PCA. The L,,,.. values for the DTI and DTI-models for each
catheter orientation were then compared using a two-sided paired t-test. The
boxplot showed in Figure 5.7 brings evidence of a statistically significant dif-

ference between the two models (p = 5 - 107°).
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FIGURE 5.7: Boxplot comparing the infusion volume linear penetration
length in the models. A two-sided paired t-test was performed to show the
statistically significant difference between the models (p = 5 - 1077).

5.4 Discussion

The proposed work comes from a relatively simple observation that was
pointed out also in other studies (Nicholson and Hrabétova, 2017): when in-
jecting a drug in the brain, the final outcome in terms of drug spreading de-
pends on the microstructural organization of the neural tissue. This is due
to the fact that a drug moves in the interstitial space between glial cells, neu-
ron cell bodies and axons, whose tortuous paths influence the main directions
the infusate can take (Vidotto, Dini, and De Momi, 2018). Accordingly, the
common approach adopted by many researchers is to use DTI to model this

aspect. However, DTI does not consider the V Fgcg which is directly related
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to the brain hydraulic permeability (Vidotto et al., 2019a).

To tackle this issue, we have developed a simplified geometrical model of
the WM with the aim of defining a direct relation between the V Fgcg pro-
vided by the NODDI analysis and the hydraulic permeability. The model
assumes that it is possible to describe the axons arrangement as an array of
parallel and rigid cylinders with the same radius. Despite this is far from be-
ing a realistic description, it succeeded in providing an analytical expression
which is in very good agreement with more comprehensive studies such as
(Vidotto et al., 2019a; Franceschini et al., 2006) (Fig. 5.4). Therefore, we can
confirm the soundness of our method and combine the NODDI and DTI anal-
ysis to characterize the anisotropic permeability tensor Kwm.

To test the importance of including the input from NODDI in a CED pre-
dictive model, we compared our methodology with other important contribu-
tions from the state of the art (Dai et al., 2016; Kim et al., 2012; Kim, Mareci,
and Sarntinoranont, 2010), where the values of WM permeability & and &,
were considered constant across the brain tissue. To this end, we performed
several analyses that were exhibited in the previous Results section.

At first, we conducted a qualitative analysis on the GD concentration con-
tours (Fig. 5.5). By looking at different planes parallel and perpendicular with
respect to the direction of the catheter, it is evident an important discrepancy
both in terms of distribution shape and concentration. Moreover, the differ-
ence concerning the overall infused volume is about 43% meaning that there is
anon-negligible impact on the brain area involved. This is particularly impor-
tant in CED interventions for highly malignant brain tumors as GBM. Since
this is a dramatically aggressive tumor with a very high recurrence rate, it is
crucial that the drug reaches both the most motile and the innermost cellular
component of the mass, to possibly contain the spreading of the tumor. Fur-
thermore, note that despite Figure 5.5 provides an example for one simulation,
these results are consistent also for all the other simulations independently
from the catheter infusion directions shown in Figure 5.3.

As explained in the introduction, reaching all the cells affected by a certain
disease is not enough, indeed, for the treatment to be effective, it is necessary
to have a concentration of drug sufficiently high. Therefore, we analyzed the

models in terms of RMSD which provides a quantitative feedback in terms
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of concentration difference (Fig. 5.6). Even in this case, the catheter orienta-
tion does not play a crucial role and the RMSD increases as a function of time
reaching a maximum of 23%. Such an important discrepancy implies a poten-
tially inaccurate prediction of the outcome of the delivered therapy. Moreover,
we need to take into account that, usually, CED interventions last much more
than 3 minutes or could even be chronically implanted in patient’s brain, thus
suggesting that the difference in concentration could raise even more.

Finally, we investigated the main direction that the drug takes when in-
jected. Despite the angle ¢ between the two models is statistically different
from zero, the difference about 4.85 degrees is not impressive. This is proba-
bly due to the fact that, in both models, the eigenvectors characterizing Kwn
come from the same DTI dataset. On the other hand, comparing the infusion
volume linear penetration length, we can notice a statistically significant dif-
ference which is about 3 mm (Fig. 5.7). This difference might seem small as
an absolute number but as a percentage, it shows that the DTI model predicts
a linear penetration length increase of more than 50%. Since in brain surgery
errors in the order of millimetres are not negligible, this analysis also supports
the importance of using the right numerical model.

The proposed approach has two limitations which will be tackled in future
developments. The first concerns the relation between the V Fcg and the hy-
draulic permeability. In fact, it was derived only for the WM, where the fibres
tend to be highly aligned forming bundles, because GBM tends to infiltrate
and derange WM tracts. However, to have a more complete model, a relation
also for the GM should be derived. Moreover, a more complex geometrical
model for the WM could be used. The second limitation is given by the fact
that our model needs to be validated with proper in-vivo or ex-vivo tests.

5.5 Conclusion

Concluding, we presented an innovative model for predicting the drug dis-
tribution in brain tissues for CED application. The main element of novelty
comes from the idea to characterize the permeability tensor combining both
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DTI and NODDI images from the same subject, used as representative case-
scenario. In fact, DTT allows distinguishing WM and GM regions and deter-
mining the orientation of the neural fibres within each voxel whereas NODDI
provides information relative to the V Fgcg. By tailoring this fundamental
information about the microstructure with a simplified geometrical model of
the WM, we were able to assign anisotropic permeability values depending
on the fibres’ directionality to each voxel. The results analysed in terms of
distribution shape, concentration and infusion linear penetration length show
significant differences with respect to previous models only based on DTI.
Specifically, the DTI model tends to overestimate the drug distribution with
respect to our model. This phenomenon was detected also by Kim et al., 2012
by comparing their prediction with in vivo experiments on rat brain.

The proposed approach makes an important step further in CED mod-
elling introducing a more comprehensive way to describe the permeability
tensor. We believe that further studies, in which the brain microstructure plays
a key role, could lead to a deeper understanding of the relation between mod-
elling parameters and non-invasive imaging modality like NODDI. Indeed,
despite detailed analyses of the neural tissue at the microscale are necessary
and provides invaluable results, it is only by integrating this kind of studies
with clinically feasible imaging modalities that we will be able to provide the
surgeons with more effective predictive tools.

Appendix

The grid sensitivity analysis is an important step to find a good trade-off be-
tween reducing the discretization error and the computational cost of the sim-
ulation. Accordingly, we examined several grids for each numerical model
developed in this research.

First, we performed a sensitivity analysis on the geometrical models de-
scribed in section Geometrical model whose objective was computing k| and
S as a function of the V Fgcg. For both geometries, we compared 11 grids

with an increasing number of nodes achieved varying the edges discretization
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and the maximum face size. Since we performed the analysis on the geome-
tries with V Fgcg equal to 0.15 that are the most difficult to discretize due to

the proximity of the axons, we assume that the same discretization parameter

would fit also the geometries with higher V Frcg. The results of the sensitiv-

ity analysis are shown in Figure 5.8, the green marker indicates the number of

elements for the mesh

chosen for running all the simulations.
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Similarly to what has been already described, we performed a sensitivity
analysis also on the CED model varying, in particular, the discretization of the
catheter edges in proximity of the inlet and the maximum dimension of the
tetrahedral elements in the brain. As it is possible to notice from Figure 5.9,
these simulations are intrinsically expensive because of the large number of el-
ements. For this reason, for the sensitivity analysis only, we performed steady
state simulations testing 6 different grids. We compare the simulations com-
puting the average GD concentration in the elements comprised in a sphere
(radius equal to 3 mm) centred in the centre of the catheter inlet. The sphere



5.5. Conclusion 127

radius was chosen empirically to include a representative portion of the brain

interest by the GD injection.
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Chapter 6

Conclusions

This PhD thesis investigated the role played by brain tissue microstructure in
relation to transport of drugs in Convection-Enhanced Delivery (CED) inter-
ventions. The final aim was the development of a predictive numerical model
to help the surgeon to accurately plan the surgery.

Recently, CED has been introduced as a promising surgical technique to
bypass the BBB and inject a chemotherapeutic agent directly in the brain tis-
sue (Jahangiri et al., 2016). Despite this technique was expected to be effective
especially against recurrent tumors, the clinical trials failed to meet the de-
sired results in terms of life expectancy for the patients (Kunwar et al., 2010).
Clearly, it is not easy to pinpoint a unique cause for this failure but many fac-
tors can contribute to the final outcome of this therapy. One of them, is the
incapability to reach all the cancerous areas with a sufficiently high concen-
tration of drug. Indeed, since the brain is an anisotropic and heterogeneous
porous medium, for the clinicians it is often difficult to set the infusion in the
best way possible.

For this reason, researchers have worked on predictive numerical models
that can offer the surgeons a simulation environment to test different infusion
settings. Despite these models, summarized in Table 1.1, have offered an ex-
tremely valuable contribution to this research field, their predictive capability
is still not sufficiently accurate. Indeed, few of them have found a way to-
wards a market application. Therefore, Vendel, Rottschifer, and Lange, 2019
pointed out the paramount importance of having refined mathematical mod-
els on the spatial drug distribution within the brain. Moreover, Nicholson
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and Hrabétovd, 2017 and Holter et al., 2017 underlined the pivotal role of the
brain microstructure in driving convection and diffusion of drug in the neu-
ral tissue. This aspect, in particular, has been explored by limited researches
and the relation between tissue microstructure and important fluid dynamics
parameters is still controversial.

To this end, in the first part of Chapter 2, we used a model built consid-
ering the main geometrical characteristics of the white matter (WM) and we
extracted two important information, a first estimate of the hydraulic perme-
ability in three areas and the size of the representative volume element (RVE)
to analyse to have reliable results. This geometrical model was also exploited
in the second part of Chapter 2, with a different methodological approach, to
study the WM tortuosity, a very important parameter for drug diffusion that
surely deserves further research. In Chapter 3, we designed an ideal scenario
that starts from the segmentation of the real WM microstructure from EM im-
ages and finish with the computation of the hydraulic permeability on a RVE
whose size was defined in Chapter 2. Despite we had to perform the segmen-
tation manually instead of automatically, in the second part of Chapter 3, we
demonstrated and quantified the anisotropic and heterogeneous behaviour of
the WM. These results were validated in Chapter 4 by means of an experimen-
tal campaign on ovine WM samples. Finally, in Chapter 5, the information
about the WM permeability, acquired in the previous studies, were integrated
in a comprehensive CED predictive model.

6.1 Thesis contributions

This PhD research focuses on the analysis of the brain microstructure as a way
to estimate important constitutive parameters of the brain. The later are fun-
damental for the development of accurate CED predictive model that can help
the clinicians to plan the surgical intervention. Note that, despite studying the
brain microstructure is not possible for every patient, the Neurite Orientation
Dispersion and Density Imaging (NODDI) analysis used in Chapter 5 allows

bridging the gap between our studies and a clinically feasible imaging modal-

ity.
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To understand the role of the microstructure in driving the convective and
diffusive flux of drug molecules, the first step was identifying the brain sam-
ple size to analyse to get reliable results. To do that, in the first part of Chapter
2, we build a geometrical model of the WM considering the main structural
information available in the literature. Using a computational fluid dynam-
ics approach, we computed the pressure and velocity fields and subsequently,
the WM permeability. Despite this geometrical model makes use of some sim-
plifying assumptions, it is based on a sounding methodology which ensures
reliable results. In particular, the model includes ECS volume fraction and
ECS width as main input parameters that were compared with the experi-
mental data. Moreover, we verified that the spatial organization of our axons,
modelled as cylinders, was in complete agreement with the complete spatial
randomness found in the real axons. Note that ensuring the homogeneity of
the porous media along all the length scales considered is fundamental to esti-
mate the RVE size. For all the structures analysed (corpus callosum, superior
and inferior fascicles), we identified a RVE characterized by a length scale of
about 15-17 um. The corresponding values of permeability range in the orders
of 10716 m? which is in very good agreement with our findings in Chapter 3
and Chapter 4. This result is particularly important because of the large un-
certainty in the estimate of this parameter that, despite its importance, in the
literature can vary up to three orders of magnitude (Vidotto et al., 2019a)’.
Moreover, it paves the way to the use of non-invasive in vivo imaging tech-
niques instead of the expensive ex vivo EM imaging. This point will be further
discuss in the Future Perspective section.

In the second part of Chapter 2, we used a three-dimensional version of the
geometrical model developed in the first part of the chapter to inspect another
parameter named tortuosity. In the specific application of CED, tortuosity is
less important than permeability because it concerns the diffusive part of the
flux which is secondary with respect to the convective one. Nonetheless, it is
a fundamental parameter that measures the hindrance offered by the ECS to
the diffusion of drug molecules. To this end, we implemented a Monte Carlo

based simulation: the main idea was to release a certain number of molecules

1Vidotto, Marco et al. (2019a). “A computational fluid dynamics approach to determine white
matter permeability”. In: Biomechanics and modeling in mechanobiology, pp. 1-12.
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in the center of the volume and then to measure their diffusion in time. Fitting
the simulation data with an ad hoc function, it was then possible to compute a
value of tortuosity parallel and perpendicular with respect to the direction of
the axons. Parallel tortuosity was constantly equal to 1. This result, meaning
no hindrance, proves the soundness of the method being in complete agree-
ment with what was expected theoretically. On the other hand, perpendicular
tortuosity increases as the ECS volume fraction and the ECS width decrease.
This is due to the fact that, the more the axons are close one to each other and
the more for the molecules it is difficult to move between them. The find-
ings highlighted in this chapter helps to shed light on this parameter and its
relation with the ECS microstructure (Vidotto, Dini, and De Momi, 2018)?.

In Chapter 3, we designed an ideal workflow to study the WM microstruc-
ture that starts with the EM images analysis and finishes with the extraction of
relevant parameters. Accordingly, we developed a fully convolutional neural
network (FCNN) to segment the axons’ boundaries starting from EM images.
The algorithm, tested on a publicly available dataset, shows performances
comparable with the state of the art but with a much lower training time.
Moreover, despite some errors in the segmentation are present, the achieved
ADD is in strong agreement with that obtained with time-expensive man-
ual tracing (no statically significant difference). Therefore, in the event that
the ADD is used to build a geometrical model as in Chapter 2, the achieved
segmentation performances are appropriate for the purpose (Vidotto et al.,
2019b)°. On the other hand, if the objective is to perform a direct study on the
microstructure without using any model, our algorithm did not demonstrate
enough robustness thus suggesting the need for more sample images to tackle
the high data variability.

For this reason, in the second part of Chapter 3, it was necessary to perform
a manual segmentation on the ovine brain WM EM images that we acquired

in collaboration with Imperial College of London and Universita Statale of

2Vidotto, Marco et al. (2018). “Effective diffusion and tortuosity in brain white matter”. In:
2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, pp. 4901-4904.

3Vidotto, Marco et al. (2019b). “FCNN-based axon segmentation for convection-enhanced
delivery optimization”. In: International journal of computer assisted radiology and surgery. 14.3, pp.
493-499.
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Milan. Since the images were quite noisy and blurred, a manual tracing was
the only way to distinguish, precisely, between the intra-cellular space and
the ECS. We analysed 20 slices for each one of the two volumes available, cor-
pus callosum and fornix, belonging to the same animal. On each slice, we
computed the velocity and pressure fields using a CFD approach and, subse-
quently, the hydraulic permeability using Darcy’s law. Note that, the later was
computed on the EM imaging planes which are randomly oriented. To obtain
a more meaningful result, we exploited the certerline of each axon (Bernardini
et al.,, N.D.) to conduct a principal component analysis. This analysis allowed
defining the axons principal direction and, assuming that the WM can be de-
scribed as transversely isotropic porous medium, the direction perpendicular
to them. Finally, we projected the permeability values, previously computed
on the imaging planes, onto the parallel and perpendicular directions. For
both corpus callosum and fornix, the results show a statistically significant
difference between permeability in the parallel and perpendicular directions.
This contribution is particularly important because it demonstrates and quan-
tifies the anisotropic properties of the WM starting from the real microstruc-
ture of the fibers. Moreover, we found a statistically significant difference also
between the parallel permeability values and the perpendicular permeability
values computed in the corpus callosum and in the fornix. This last analysis
suggests that the brain is an heterogeneous porous medium even if we look at
WM areas only (Vidotto, De Momi, and Dini, N.D.)*. Therefore, it is clear that
a simple division between WM and GM is not enough and a further in-depth
analysis is needed. We partially address this issue in Chapter 5 where we
try to build a CED model with a voxel by voxel estimate of the permeability
tensor.

In Chapter 4, we conducted an experimental campaign in collaboration
with Imperial College London. The objective of this work was to verify that

4Vidotto, Marco et al. (N.D.). “White matter microstructure role for hydraulic permeability: a
new electron microscopy images based approach”. To be submitted to Proceedings of the National
Academy of Sciences.
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the hydraulic permeability values obtained in Chapter 2 and 3 were consis-
tent with an experimental validation. Moreover, we were interested in un-
derstanding the effect of local microstructural features on hydraulic perme-
ability. To address this issue, at first we excised cylindrical samples (7-8 mm
thickness by 5 mm diameter) from slices of fresh ovine brain (within 24 hours
post-mortem) and we inserted them in a phosphate-buffered saline. Then,
we exploited an infusion based experimental set up (iPerfusion) to derive the
flow-pressure relationship in WM samples. The results show that samples
having the axons parallel to the flow direction have a mean hydraulic perme-
ability value which is significantly higher than when axons are perpendicular
to the direction of the flow. These results clearly demonstrate that the intrinsic
anisotropy of the WM strongly influences the resistance to the flow across the
tissue. Moreover, the average values of permeability are in good agreement
with the results obtained in Chapter 2 and Chapter 3. Also, we analysed the
pressure dependence of hydraulic permeability thus revealing a non-linear re-
lationship which is significant in the parallel samples and mildly significant
in case of perpendicular samples. This is probably due to the local tissue de-
formation that, dealing with soft tissue, is almost impossible to avoid. Finally,
we show that there is no statistical correlation between hydraulic permeability
and post-mortem time up to 11 hours (Jamal et al., N.D.)°.

Finally, in Chapter 5, we move from the microstructural analysis on the
WM axons to a comprehensive drug delivery model at the macroscale. In this
model, our objective was to integrate the information acquired in the previ-
ous chapters with a clinically acceptable imaging technique. Indeed, despite
EM imaging is extremely useful, it is very difficult to perform, it requires a
great amount of time, it can be managed only by expert operators and, most
importantly, it cannot be done on living patients. To tackle this issue, we intro-
duced a new imaging technique, namely NODD], in drug delivery modelling
that combines the capability to infer microstructural features with the possi-
bility to acquire the images in a standard time frame. We exploited one of
the parameter that can be extracted from NODD], the ECS volume fraction, to

5Jamal, Asad et al. (N.D.). “Infusion mechanisms in brain white matter and its dependence of
microstructure: an experimental study of hydraulic permeability”. Under review in IEEE Trans-
action of Biomedical Engineering.
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characterize the permeability tensor. Modelling the axons as straight parallel
cylinders and varying the distance between them, it was possible to find a re-
lation between the ECS volume fraction and permeability in the parallel and
perpendicular directions. Then, we combined this information with DTI, an-
other imaging technique from which it is possible to understand the principal
direction of the axons and, accordingly, the direction perpendicular to them.
Using both DTI and NODDI in the same model represents a step change with
respect to the state of the art models where only DTI is included. To demon-
strate the relevance of our work, we compared our model (DTI-NODDI model)
with a state-of-the-art model (DTI model). In both models, we injected a GD so-
lution for 3 minutes in a WM areas with different orientation of the catheters.
The results show a marked difference between the models GD distribution
in terms of concentration profiles and infusion volume shapes. Indeed, we
display that the concentration difference (expressed as RMSD) increases un-
til 23% in only 180 seconds and there is a statistically significant difference
in terms of infusion volume penetration length and distribution principal di-
rection. Concluding, the novelty introduced by our model to characterize the
permeability tensor combining both DTI and NODDI, has proved itself to be
decisive. We believe that the proposed approach represents an important step
further in CED modelling introducing a more comprehensive way to describe
the permeability tensor and its relationship with the microstructure (Vidotto
etal., N.D.)°.

The overall results highlight the benefit of achieving an in-depth knowl-
edge of the brain microstructure. Indeed, studying the geometrical organi-
zation of the axons, it is possible to determine parameters that, despite their
crucial role, are still affected by important uncertainties. Different approaches
can offer distinct contribution and insights into the factors that drives the drug
transport in the brain tissue. Moreover, integrating the information gained
studying the microstructure in a drug delivery model could lead to a more
comprehensive predictive capability that in turn could benefit the clinicians
and the patients.

®Vidotto, Marco et al. (N.D.). “Advanced imaging methods to improve the predictive capabil-
ities of CED models”. Under second review in Annals of Biomedical Engineering.
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6.2 Future perspective

In the near future, modern medicine will most likely look at a more and more
personalized medicine which relies on advanced technological tools to help
the healthcare personnel to ameliorate their performances. Neurosurgery is
no exception and the fact that the brain is such a complex environment, makes
it an ideal framework where technology can play an important role.

In this scenario, the proposed work represents a portion of a wider research
field that aims at understanding the mechanisms related to drug distribution
in the brain in their entirety and in a perspective that goes beyond the objective
of this thesis (Vendel, Rottschafer, and Lange, 2019). In this research, we focus
our attention on CED, an innovative surgical technique that, despite being
promising, has not succeeded in increasing the patients life expectancy when
dealing with aggressive tumors such as GBM (Jahangiri et al., 2016).

In order to enhance CED performances, we believe that providing the sur-
geons with a computational tool able to predict the drug distribution in the
brain could represent a step change in the treatment outcomes. Indeed, in this
way, in the pre-operative phase the surgeon would be allowed testing differ-
ent catheters and infusion parameters and then decide the best way to pro-
ceed. However, a predictive model to be effective should have two important
characteristics: it should be very accurate in predicting the drug distribution
and it should be feasible in a clinical scenario meaning that the time neces-
sary for the imaging and for running the simulations must be in line with the
healthcare system standards.

In this sense, we put considerable efforts into making the model more ac-
curate by deepening our understanding of the relation between the brain mi-
crostructure and important constitutive parameters such as hydraulic perme-
ability and tortuosity. To do that, in Chapter 2, we built a geometrical model of
the WM based on the ADD and, with different approaches, we estimated the
WM permeability and tortuosity in the direction perpendicular to the main
direction of the axonal fibers. Note that in our case, the ADD data came from
EM images that, despite being very accurate, require a great amount of time to
be acquired and processed (Liewald et al., 2014). A viable alternative is given
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by MRI methods based on double diffusion encoding though which it is possi-
ble to estimate and map the ADD within an imaging volume (Benjamini et al.,
2016). Unfortunately, also the MRI approach has two important limitations:
it relies on strong prior assumptions on the axon spatial organization and the
acquisition time is about 40 hours which is obviously not feasible for a stan-
dard clinical analysis. Nevertheless, it is surely an interesting path to further
explore in the future.

In Chapter 2, we highlighted also the fact that the lack of information about
how the axons develop longitudinally precludes the possibility to compute
permeability and tortuosity in the parallel direction. It is our opinion that
more researches should aim at unveiling this aspect of the axons morphology
at the microscale level. Our contribution in Chapter 3 represents a first at-
tempt in this direction. In Chapter 3, we developed a FCNN to automatically
segment the axons from two-dimensional EM images and in the second part,
we computed the anisotropic permeability tensor starting from the same kind
of images. Despite we obtained important results, it is evident the need for
larger data sets of annotated images to be used either to train FCNNSs either to
compute the hydraulic permeability on more WM and GM areas.

In Chapter 4, we performed an experimental campaign on two WM struc-
tures to validate our numerical results. Even in this case, it would be interest-
ing to extend our analysis to more WM and GM areas. Moreover, it would be
interesting to deepen the pressure-permeability relationship which is surely
an important aspect not only for CED modeling but also for brain trauma in-
duced pathologies.

Finally, in Chapter 5, we built a comprehensive CED predictive model in-
tegrating the information about the brain microstructure with a patient spe-
cific MRI sequence that is feasible in a standard clinical scenario. Despite we
demonstrated the relevance of our approach with respect to the state of art,
we still need to validate our model with proper ex-vivo or in-vivo tests. More-
over, we conducted our study on a healthy subject but the presence of brain
pathologies would surely influence the hydrodynamics parameters. To face
this issue, we are currently collaborating with Imperial College London and
Universita Statale Milano to analyse cancerous tissue samples through EM
imaging. Understanding how the microstructure is altered by the disease can



138 Chapter 6. Conclusions

help inferring its effect on the relevant modelling parameters.
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